
ON ADAPTABILITY IN GRID SYSTEMS

Artur Andrzejak, Alexander Reinefeld, Florian Schintke, Thorsten Schütt
Zuse Intitute Berlin
Takustr. 7
D-14195 Berlin-Dahlem
Germany
<surname>@zib.de

Abstract
With the increasing size and complexity, adaptability is among the most badly

needed properties in today’s Grid systems. Adaptability refers to the degree to
which adjustments in practices, processes, or structures of systems are possible
to projected or actual changes of their environment.
In this paper, we review concepts, methods, algorithms, and implementations

that are deemed useful for designing adaptable Grid systems, illustrating them
with examples. Contrary to the existing literature, the portfolio of the proposed
approaches includes unorthodox tools such as game theory. We also discusses
methods which have not been fully exploited for purposes of adaptability, such as
automated planning or time series analysis. Our inventory is done along the stages
of the feedback loopknown fromcontrol theory. These stages includemonitoring,
analyzing, predicting, planning, decision taking, and finally executing the plan.
Our discussion reveals that several of the problems paving the way to fully

adaptable system are of fundamental nature, which makes a ’quantum leap’
progress in this area unlikely.

Keywords: Adaptability, non-functional properties, autonomic computing, decentralized ser-
vice architecture, grid computing.



2

1. Introduction
During the last four decades, system architects have mainly focused on per-

formance issues. Their quest for performance was overly successful, but only
at the cost of an increased software complexity which makes computer systems
difficult to operate and maintain. Vertical software integration like the popular
Service Oriented Architecture (SOA) helped reducing the barriers for system
use, but if something fails only experienced software experts are able to trace
down through the many software layers to the source of failure.
This is especially true for networked computers which are operated in chang-

ing environments with variable user needs. Leslie Lamport’s saying “A dis-
tributed system is one in which the failure of a computer you didn’t even know
existed can render your own computer unusable” tells about the vulnerability
of distributed environments. The aggregation of many independent hetero-
geneous subsystems to a well-functioning Grid causes much administration
overhead. Since human operators are costly, slow and error-prone, advanced
self-management properties are needed that are able to cope with resource vari-
ability, changing user needs and system faults.
This paper deals with adaptability in future Grid systems. Adaptable mid-

dleware is able to mask changes in the execution environment. Such changes
may be caused by variations in the availability of processors, networks, stor-
age. Adaptable middleware is also self-stabilizing [11], that is, it recovers after
faults without global re-initialization. This is a permanent optimization process,
which is executed in a closed feedback loop.
The paper is organized along the stages of a feedback loop. In the following

section, we recall the basics of feedback loops and self-stabilization known from
control theory. Thereafter, we investigate the stages in more detail: models,
policies and goals in Section 3, analysis and prediction in Section 4, and plan-
ning and decision taking in Section 5. We conclude the paper with a discussion
of challenges and limitations.

2. Feedback Loop
Adaptability refers to the degree to which adjustments in practices, pro-

cesses, or structures of systems are possible to projected or actual changes of
its environment. Adaptation can be spontaneous or planned, and be carried out
in response to or in anticipation of changes in conditions.

Open / Closed Loop. Adaptable systems are in a state of continuous self-
regulation [11, 16] through a feedback loop. Deviations of output from some
ideal or desired state are fed back into the control unit, which then acts to
minimize the discrepancy.



On Adaptability in Grid Systems 3

Figure 1. Three feedback loop configurations.

We distinguish three kinds of feedback loops [16] as illustrated in Fig. 1:
an open loop, a closed loop, and a closed loop with external input. Part (a)
illustrates the static open loop configuration. The user defines the goal state
and hands it to a controller, which drives the system. No feedback is involved.
Part (b) shows a reactive configuration, where the controller is able to observe
the impact of its actions via a feedback loop. Finally, part (c) illustrates a closed
loop with additional impact from outside the system. The controller observes
the system and indirectly reacts on external changes.
Open loops are commonly used when services act on static data or when they

quickly return some status information. As an example, a service that submits a
parallel job to multiple sites may retrieve a list of available CPUs, and assumes
that all CPUs are still available after it checked which of the resources match the
job’s requirements. Closed loops, in contrast, are used for continuously running
services, like the load-balancing of file availability in peer-to-peer systems [28].
In large Grid systems, closed loops with external input are perhaps the most
importantmodel. This is because local site administratorsmay change resources
or services at any time without prior notice.

Autonomic Grids. The described feedback loop is sometimes referred to as
‘autonomic’—a termwith a biological connotation. It indicates the unconscious
self-regulation [22] within human bodies and economic systems.
Each autonomic element consists of one or more managed systems and a

control cycle, as shown in Fig. 2. Sensors (not shown in the figure) observe
behavioral characteristics of the system and report them to a monitor. The
monitor collects, aggregates andfilters the data and logs them for further use. An
analyzer provides functions andmechanisms for correlating complex situations.
The planner constructs actions that are needed to achieve the user-specified goal
from the current status. As there are often multiple ways to achieve the goal, the



4

Figure 2. Feedback loop in more detail.

planner may be guided by the results of a predictor which determines forecasts
based on time-series analysis. This allows the system to ‘interpret’ situations
and predict future behavior. An execution unit (not shown) applies the actions
to the system by means of one or more actuators. All components exchange
information via appropriate protocols and some aggregated data is stored for
later analysis and tracing. With few exceptions (see the DataGrid example
below) autonomic elements in Grids are not yet present, both on the level of
individual servers as well as on the level of clusters and virtual organizations.
Thus, the above picture represents a vision which is likely to be found in the
future generation of Grid systems, but not in today’s systems.

Example – DataGrid
In the course of the European DataGrid project, a feedback loop has been im-
plemented for the autonomous management of PC clusters which are embedded
into a worldwide Particle Physics Grid for the analysis of the LHC data.

The above figure illustrates the architecture of the cluster maintenance sys-
tem [29]. A job manager accepts local and Grid jobs and assigns them to the



On Adaptability in Grid Systems 5

various clusters in a site. A monitor continuously checks the cluster, aggregates
the system data and reports it to a fault detection and recovery system. The
latter compares the data to the goal state given by the configuration manager
and takes appropriate actions when both states diverge. If, for example, some
specific software is not available on the monitored cluster (e.g. after adding
some newly purchased PCs), the fault detection and recovery system injects a
maintenance job for installing the software on the compute nodes. This is done
without affecting other jobs.

Multivariable Feedback Loops. In [16] several approaches are shown how
multivariable and non-linear control loops can be implemented. The simplest
approach of controlling each pair of input and output parameters independently
as a single-input, single-output system may lead to undesirable oscillations,
so-called thrashing effects. They can be avoided by using controllers with
Linear Quadratic Gaussian optimal control theory (LQG) [16], which allows
to optimize multi-input, multi-output systems by minimizing a quadratic cost
functional and respecting the presence of Gaussian white noise disturbances in
the system.

Errors in Control Loops. While control loops are made to cope with
over/underloaded, unavailable or erroneous external systems, they are them-
selves often not free of errors. Errors may be transient or permanent. Both
must be coped with. Depending on the stage at which an error occurs in the
control loop, we distinguish three types: mistakes, lapses and slips. Mistakes
occur in the planning phase due to insufficient information or lack of expertise.
Lapses occur between the planning and the execution phase. Usually a plan is
not applied immediately, but its steps must be memorized (stored) for later use.
Anymisses between the formulation of the intended actions and their execution
are termed lapses. Slips are caused by insufficient skills in the execution phase.
While these categories have been defined in the context of human errors [27],
they analogously apply to distributed systems. Especially, mistakes and slips
may occur in the planning and execution phase (ref. Fig. 2).

3. Models and Policies
The actors of a feedback loop operate in the context of managed Grids, and

therefore require a model of the managed entities, their relationships and pos-
sible actions. Also the flow of information between the stages of the feedback
loop and to/from the external interfaces requires a specification of an exchange
format, both in syntax and in semantics. Such models and their description can
be application dependent, for example having a form of C-like records or a file
with a proprietary structure. However, for the sake of re-usability it is preferable
tomake themgeneric and to standardize them. Such a standardization facilitates
the exchange of problem cases, best practices, or system descriptions between



6

different system administrators or even enterprises, significantly lowering the
formalization effort. A universal set of models would ensure the exchange-
ability of feedback loop components such as analysis and decision algorithms
without the need for rewriting or adapting the self-management framework.

3.1 Models
Thementioned model and its description ideally would be able to capture the

architecture of the managed system, its state, the allowed management actions,
desired target system states and the optimization goals. In other words, the
standard must be able not only to capture the managed entities including their
state and their relationships, but also the dynamic aspects of the management
process. Currently, none of the existing specification frameworks adheres to
all of these requirements, but the specification standards discussed below are
likely candidates to be extended in this direction.

CIM. The Common Information Model (CIM) [10] is a conceptual model
and language standard for describing computing and business entities in Grid,
enterprise and service provider environments. It is an ongoing effort by the
Distributed Management Task Force (DMTF), a non-profit collaborative body
comprised of academic and industrial members that is leading the development
of management standards for computing system environments.
CIM is comprised of a schema and a specification. The schema provides

the actual model descriptions of the managed entities and their relationships
in an object-oriented way. The CIM schema includes for example models for
systems, applications, networks (LAN) and devices. The CIM specification is
the language and methodology for describing management data, i.e. it covers
the ‘syntax’ part of CIM and the way how the models are exchanged. As for the
later aspect, the standard language used to define elements of CIM isManaged
Object Format (MOF), which is based on the Interface Definition Language
(IDL). AnXML-based description language, xmlCIM, has also been introduced
as part of an HTML-based protocol for exchanging CIM information.
While CIM is surely the most widely adopted standard in the area of system

management, it does not allow the specification of management actions to a
degree required by an adaptive Grid infrastructure. The CIM schema policy
model comes most closely to the description of management actions, yet it
allows only constructs of the form

if <condition(s)> then <action(s)>.

This limited form does not admit e.g. declarative action specifications. How-
ever, a part of CIM is the CIM meta-model which allows for an elegant in-
troduction of new features into this standard, thus rendering CIM as the most
likely candidate to fulfill all requirements stated above.



On Adaptability in Grid Systems 7

SDL. The Specification andDescription Language (SDL) [19] has been intro-
duced by the Telecommunication and Standardization Sector of ITU as a means
to describe behavior, data and structure of particularly larger systems. SDLwas
originally targeted for specifying telecommunications real time systems, for ex-
ample call and connection processing in switching systems, maintenance and
fault treatment in such systems, or data communication protocols. One unique
feature of this standard is the graphical representation with text elements, which
greatly enhances the readability of the specifications. The latest major revision
of SDL, the SDL-2000, is completely based on object orientation.
In SDL the basic specification concept is an agent, which is an instance of an

extended finite communicating state machine with its own signal input queue,
life cycle, and reactive behavior specification [12]. This notion generalizes the
former SDL concepts of a system, block and process. An agent is specified
by its attributes (parameters, variables, procedures), behavior in the form of
implicit or explicit state machine, and internal structure, i.e. contained agents
and communication paths.
The last part indicates that all elements are specified in SDL as a hierarchy

of simple and composite agents. It is possible to determine the scheduling se-
mantics of an agent by choosing an appropriate container: a block indicates
concurrency of the subelements, and a process an alternating execution. The
communication between agents is specified by means of channels, gates (end-
points of channels), and connections (joining/splitting of channels at implicit
gate) [12]. An essential part of SDL is the specification of the agent behavior
through state machines consisting essentially of states and transitions.

CIM versus SDL. While the primary intention of the current CIM version
is to describe system structures and component relationships, SDL focuses on
the description of system behavior, resembling a high-level programming lan-
guage. It lags behind CIM by not offering prepared ‘templates’ for commonly
encountered components (covered in CIM by the CIM Schema Common Mod-
els) and by its limited extensibility. For example, a declarative specification
of behavior would be hard to express in this standard. Also the exchange of
the SDL-models is not easy due to the graphical nature of the language and a
missing mapping to XML. On the other hand, SDL provides richer means to
express behavior and data transfer than other standards.

3.2 Policies
A policy is a definite goal, course or method of action to guide and deter-

mine present and future decisions [20]. Traditionally, the term policy is used to
describe parts of the system configuration that controls system behaviors such
as in security policies or quality-of-service policies. This covers for example
rules specifying event-triggered actions as well as goals to be achieved by the



8

management actions. Policies have been most successfully used in the area
of networks, where they specify traffic priority issues, access control, quality
of service and other aspects. There are many approaches to describe policies,
including logic-based languages or Role-Based Access Control (RBAC) spec-
ification in the security area, and CIM, Policy Description Language (PDL), or
event-trigger-rules in the system management area [8]. The most sophisticated
policy description language is perhaps Ponder [9] which can be used for spec-
ifying management and security policies. It is a declarative, object-oriented
language that supports a variety of features, for example various access control
mechanisms for firewalls, operating systems, databases and Java, and event
triggered condition-action rules for management of networks and distributed
systems.

4. Analysis and Prediction
Modeling and predicting the demand of individual servers or their clusters

is one of the key supporting techniques for the automated management and
scheduling of computing resources. In Grid environments, modeling and pre-
diction of the future application demand facilitates the performance tuning,
anomaly detection, scheduling of jobs, sharing of resources, capacity planning,
or discovering interdependencies between applications.
The usefulness of modeling and prediction for self-management depends not

only on the accuracy, but requires some additional, scenario-specific features:

human-readable models – these allow for plausibility checks and help
improving methods and results

assessment of the prediction confidence – knowing how much we can
trust a prediction facilitates the choice of a management strategy, e.g. an
applicationwith less predictable demandmight receive a dedicated server,
while predictable applications might be admitted for resource sharing

exploitation of data correlations – by taking into account the compute
demand traces from the whole cluster, a model might be more accurate
than one based on a single trace

computational efficiency – to ensure a wide acceptance of the technique,
the overhead caused by modeling should be negligible compared to the
computational cost of the application itself

long-term accuracy – at least some of the methods should be long-term
accurate to facilitate capacity planning.

We take a closer look at three methods which at least partially fulfill the
above list of features: (1) classical ARIMA/Kalman filter timeseries modeling,



On Adaptability in Grid Systems 9

ARIMA/Kalman Classification Sequence Mining
Human-readable no partially yes
Confidence Assessment partially partially partially
Exploiting Correlations yes yes no
Computational Efficiency yes yes yes
Long-term Accuracy no partially yes

Table 1. Feature matrix of the considered prediction methods.

(2) classification based on data mining methods, and (3) mining of repetitive
patterns in the demand by means of sequence mining. Table 1 shows the fulfil-
ment of the required features by these methods.

ARIMA. TheARIMAmethod is a classical timeseries decompositionmethod
used in econometrics [23]. It assumes that a future sample value can be esti-
mated as a linear combination of past sample values (the autoregressive, ‘AR’
part of ‘ARIMA’), and a linear combination of past prediction errors (themoving
average, ‘MA’ part). To remove trends and effects of seasonal fluctuation, the
series might be differenced (the integrated, ‘I’ part) prior to the decomposition.
The disadvantages of the method are its high computational cost in estimating
the coefficients of the linear combinations, and the rapidly decreasing accuracy
if the coefficients are not recomputed on new data (i.e. the method admits only
a small forward leg).
As a partial remedy, the computationally efficient Kalman filter [23] can be

applied after an ARIMA model has been obtained. This so-called state space
approach updates with each sample an internal ‘black box’ model (initially
given by ARIMA) to minimize the prediction errors. To take advantage of
the potential correlations in the input data, the multivariate versions of both
approaches can be used.

DataMining andClassification. Data mining originally focused on finding
regularities in consumer behavior, yet it quickly found applications in other
fields such as bioinformatics, health care, or system management. A typical
application in the latter field is the detection of anomalies caused e.g. by denial-
of-service attacks, or failure of systemcomponents. It also plays amajor role in a
field called recovery oriented computing (ROC) [6], a research initiative devoted
to the problem of fast and non-intrusive recovery from failures as opposed to
avoiding them. Here data mining tools allow to identify a critical system state
which requires a rejuvenation from a normal state or a transient error. Data
mining provides several tools for performing prediction, the most important
two being classifiers and algorithms for mining association rules.



10

Classifiers can be seen as functions which take as arguments certain easily
obtainable system characteristics (attributes), e.g. load in the last 15 minutes,
number of processes, disk activity in bytes etc. and return a value representing
a likely system state (class value), e.g. ‘all ok’, ‘probable denial-of-service
attack’, ‘major system malfunction’, etc. The key advantage is that a classifier
learns from provided examples (tuples of attribute values and the class value)
and canbe regarded as a black box after the training. Simple yet fast and accurate
classifiers include decision trees, Bayesian methods, or k-nearest search. More
elaborate methods such as neural networks or support vector machines might
provide increased accuracy at the higher cost of training. Classifiers allow for
exploitation of data correlations, and as a by-product, the data preparation stage
might identify the dependencies between the demand of different applications.
Association rules mining attempts to retrieve additional information in form

of explicit rules involving attribute and class values. The user can specify the
interestingness criteria by which the rules are selected. In classical data mining
applications such as modeling of consumer behavior the rule frequency is a
common criterium [13]. In the domain of system adaptability we will be also
searching for rare but important events, such as system overload, component
failure, or a deadlock. A subsequent analysis (currently still performed manu-
ally) is required to distinguishwhether a discovered rule represents an important
relationship or is due to a pure chance only.

SequenceMining. Sequence mining methods allow for discovery of repeti-
tive patterns in time series, such as increased server load at certain times during
the week. An approach which takes into account the possibility of changes of
the patterns over time is presented in [1]. In this method, the results of the min-
ing phase can be applied to make long-term predictions, provided the patterns
are not likely to change significantly in the forecast horizon. The results are also
human-readable and might help to identify inefficient resource usage or false
configurations. Unfortunately, the correlations between different application
traces cannot be taken into account.

5. Planning and Decision Taking
Automated Planning. A plan is a partially ordered collection of actions
for performing some task or achieving a certain goal. There are many elabo-
rate programs supporting human planners, such as project management tools
or automatic schedule generators. However, automated planning is much more
difficult, with many research prototypes and few practical systems. While the
research has still to cope with a host of difficult practical problems in this do-
main, mostly involving computational complexity, there are several successful
cases such as the NASA DS1 mission [4].



On Adaptability in Grid Systems 11

Automated planning arose as a field of artificial intelligence due to the need
for affordable and efficient planning tools. The application domains of such
tools include complex and changing tasks which require a high degree of safety
or efficiency, or autonomy and self-control capabilities in artifacts such as robots
or spacecrafts. In the field of Grid systems, automated planning can be used to
automate complex tasks involving heterogeneous resources and having a lot of
interdependent steps. Examples of such tasks are the migration of distributed
jobs including data transfer and software installation, or the construction of
complex resources such as virtualised server farms on demand. Given the
specifications of possible actions in such an environment, an automatically
generated plan can be translated into a standardized workflow and distributedly
executed [3].
The major problem of the research on automated planning is the size of

the search space. Of course, the planning problems are not trivial—the com-
plexity of the problems plan-existence and plan-length range from np-
complete to expspace-complete in all but few trivial cases [15]. However,
many practical cases can be solved more efficiently, for example by incorporat-
ing domain-specific knowledge in form of specialized algorithms. Currently,
general-purpose automated planning can solve smaller problem instances but
requires substantial tuning and adjusting for larger problem sizes.
The progress in the research on automated planning is recorded in the yearly

International Planning Competitions [14], which provide a chance to compare
prototypical general-purpose and specialized planners on a set of realistic prob-
lem cases. In the course of the competitions, a common standard for problem
and goal description has been established—the Planning Domain Definition
Language (PDDL). This declarative language allows for specification of pred-
icates, functions, actions and other objects in a Lisp-like notation, acting as a
widely adapted front-end to most of the research and production planners. Re-
cent versions of PDDL have been enriched with means of temporal planning,
which encompass relations between time intervals, precedence and ‘deadlines’
of action executions, and others.
The major methods deployed in classical planning include planning-graphs,

propositional satisfiability techniques, and constraint satisfaction techniques [15].
The increase of efficiency is usually addressed by heuristics such as guided
forward-search, and control rules.

Optimization. Optimization plays a central role in the tuning of system
parameters, e.g. for increasing performance or allocating resources. In its
most general form, an optimization problem consists of a set of variables for
which value assignments are sought, a set of constraints imposing relationships
between these variables, and possibly one or more objective functions whose
values should be maximized or minimized. Note that if we drop the objective



12

function(s) and just seek an assignment of values to variables which satisfy the
constraints, than this definition also covers satisfiability and constraint satisfac-
tion problems.
If the variables take real values, and both the constraints and the objective

function is linear in the variables, such an optimization problem is called a linear
program. Such problems belong to a benign class of problems for which it is
not only theoretically possible to find a provably optimal solution in polynomial
time, but which also can be solved fast in practice. Unfortunately, already small
variations of the problem such as discrete variable domains or higher-order con-
straintsmake the problems hard to solve optimally both in theory and in practice.
As to annoy the computer scientists striving for adaptability of systems, real
optimization problems in system management are rarely representable as linear
programs.

Example – Job Assignment
Consider the problem of assigning jobs to servers in a server-consolidation sce-
nario of a large cluster [2]. Here we model the situation that a job j is hosted on
a server s by setting a variable xs,j to 1, and setting it to 0 otherwise. Using such
binary variables renders this problem np-complete and makes it costly to solve
optimally in practice, even if all constraints and the objective function remain
linear. If we want to further minimize the total communication cost between the
processes, the objective function becomes quadratic, additionally increasing the
problem’s complexity.

However, not every problem must be solved optimally—in most cases a
good or even any solution will do, and here heuristics come into play. While
in many instances heuristics such as simulated annealing or genetic algorithms
work much faster than the exact algorithms, there is a trade-off: heuristics do
not guarantee an optimal solution, and usually it remains unknown by how
much the found solution is worse than the optimum. Moreover, if a solution
has not been found by the heuristics, it does not mean that none exists. Fi-
nally, some problems are even too hard for the generic heuristics, and require
a time-consuming design of more efficient problem-specific approaches. This
particularly applies to the domain of scheduling, e.g. job-shop problems, or the
replica placement problems [21].

Example – Genetic Algorithms
Genetic algorithms [17] are particularly popular heuristics in the optimization.
They have proved to be robust and efficient for a multitude of problems, includ-
ing complex multi-criteria optimization problems such as design of an airplane
propeller profile. The basic idea of a genetic algorithm is very simple. At each
optimization phase, a pool (generation) of potential problem solutions (genes) is
maintained in memory. A transition between generations is achieved by tweak-
ing the genes (by mutation and cross-over), and the subsequent evaluation and
selection of the best among them. After a fixed number of transitions or other
stopping criteria the best gene becomes the problem solution. The quality of
the solution increases with growing number of genes and number of transitions.



On Adaptability in Grid Systems 13

While some effort is necessary to encode a potential solution as a gene and to
design the mutation and cross-over operators, the approach is very flexible - the
gene can contain both discrete and real-valued variables at the same time, and the
objective function(s) might include rules and algorithms, not only expressions.
Furthermore, genetic algorithms can be easily parallelized with high speed-up
factors.

Expert systems. Another approach for planning and decision taking are
traditional expert systems from the field of artificial intelligence, studied since
the 1970s. An expert system consist of a model of the problem space and
an inference engine which analyses a given state and either proposes actions
to improve the state or derives new facts about the current state (diagnosis).
Often they maintain a decision tree as part of their internal data structure and
take paths in the tree depending on the monitored data. If a leaf in the tree
is reached, it is annotated with an appropriate action for this combination of
parameters. Such systems can be used both for the analysis and the planning
inside adaptable systems. If decisions were taken wrongly, the tree may be
updated automatically or manually. In the longterm, the necessary knowledge
to properly react on environmental changes is collected and can be automatically
applied when similar situations occur.

Example – Prolog
Prolog is a logical programming language, which is mainly used in natural lan-
guage processing and expert systems. Itsfirst use goes back to 1972whenColmer-
auer et al. [7] initiated a research project to create a natural language processing
system, where they implemented the language processor in Prolog. Shortly after
this project, also a symbolic computation system and a problem solving system
were developed in Prolog.
Internally Prolog is able to derive variable assignments that satisfy so called
’facts’ and ’rules’ by a built-in backtracking mechanism. Using these facts and
rules, the goals and policies and actions of a system can be expressed without
the need to know which of the actions have to be applied to achieve the goals.
Prolog allows even during runtime to add new facts and rules to the knowledge
base, which makes Prolog systems powerful and flexible.
Applied to replicamanagement, factsmaydescribe the current location of replicas
and their sizes as well as the available disks, network topology, and replica
availability, while rules describe the conditions for a replica migration. Then
Prolog would be able to answer basic questions like: ‘Can all replicas be stored
without violating storage constrains?’, ‘How can replicas from sites A, B andCbe
transmitted to a target site D with minimal overall network traffic?’. Additionally
constraints, which are a common extension to Prolog systems, may be added to
specify disk capacities for example.

Game Theory. Often, multiple goals must be fulfilled, resulting in an op-
timization problem with multiple feedback loops. These may be either (1)
disjunct, (2) partly overlapping, or (3) contradicting in their goals.



14

The first case, i.e. disjunct goals, is the easiest to handle, because the actions
do not affect each other in their optimization process. The optimization in each
loop may independently strive for its optimumwithout compromising any other
loops’ goals.
The third case, i.e. contradicting goals, corresponds to a zero-sum-game

with n non-cooperative players (n loops). As first proved for adversary games
(n = 2) by John von Neumann in his less known German contribution from
the year 1928 [26] and again published in the much later, but epoch-making
monograph ‘TheoryofGames andEconomicBehavior’ [24], there exists always
a solution to this problem.
More difficult is the second case with partly overlapping goals. It may be

solved by John Nash’s generalization of von Neumann’s minimax theorem,
the Nash equilibrium [25]. One popular example is the prisoner’s dilemma,
where a selfish maximization strategy does not lead to a joint optimum, because
each prisoner chooses to defect although the joint payoff of the players would
be higher by cooperating—hence the dilemma. Adaptive Grid systems are,
however, in a continuous optimization processwhich corresponds to the iterated
prisoner’s dilemma. Here the prisoners game is played repeatedly, thereby
giving each player the opportunity to punish its opponent for previous non-
cooperative play, which eventually leads to a superior cooperative outcome
after several rounds of learning.

6. Challenges and Limits
Service Semantics. In dynamic Grids, services should be exchangeable.
This is currently done using catalogs where all services are registered with their
interface and name. When two services have the same interface and service
name they are assumed exchangeable. Of course this is not necessarily the
case, because the semantics of the services may differ. Among other problems,
this has great impact on the reliability of Grid systems. If it is possible to
register services with the same interface and name, that may be chosen but do
not what the application expects them to do, denial of service attacks become
possible. If the semantics would be formally specified as part of the service
description, one would have to check whether the service semantics match the
required semantics. Taking this to the extreme we could search for some com-
posable services that—in combination—provide the desired semantics. This,
however, is equivalent to an automated theorem prover, which is known to be
very compute intensive.

The Formalization Challenge. We have discussed above the limits of self-
managing solutions due to the inherent complexity problems. However, another
factor is likely to become a key bottleneck towards self-management: the for-
malization challenge.



On Adaptability in Grid Systems 15

Consider a domainwhich bears strong similarities with the core of autonomic
computing - creation of software. The purpose of software can be in essence
interpreted as the automation of ’tasks’. Compared to the rapid and sustainable
progress in hardware development, the gain of efficiency in software develop-
ment lags behind on the orders of magnitude. This well-known fact is usually
attributed to the effort of formalization. Simplifying, the formalization process
has to do with the interaction between ’what we want’ (what we expect from the
program) and how to force the machine to behave in this way [5]. Of course, the
formalization problem is more manifold, e.g. due to the variable specifications
caused by the fact that the expectations of users change when they start working
with the software.
The programming problem certainly generalizes the autonomic computing

problem, since in all by few exceptions the means to attain the self-managing
functionality is software. Does it mean that the effort of formalization for
self-management is similarly high as in the programming problem? This is
not necessarily the case, since in the domain of self-management the required
solutions are simpler (and more similar to each other) than in the field of pro-
gramming, and so the benefits of domain-specific solutions can be exploited.
A further step to reduce the effort of formalisation would be the usage of

machine learning to automatically extract common rules and action chains from
such descriptions [3]. Other tools are also possible, including graphical devel-
opment environments (e.g. for workflow development), declarative specifica-
tion of management actions used in conjunction with automatic planning, or
domain-specific languages, which speed-up the solution programming.

Complete fault-tolerance is neither possible nor beneficial. One goal of
autonomic computing is to hide faults from the user and to first try to handle
such situations inside the system. Some faults cannot be detected, like whether
an acknowledgement or calculation just takes a very long time, or was lost
during data transmission. This is also known as halting problem [30] which
states that no program can decide whether another program contains an endless
loop or not.
Also in some cases it would be not a good idea to try to hide errors. If, for

example, the user specified a non existing file as input data, the system should
immediately report this back to the user and should not try to hide this error by
waiting until such a file may be created sometimes in the future.
Finally, automation of management tasks does not come without cost, and in

some cases this effort does not pay off, e.g. if such a task is very rare. Measuring
or even estimating the cost of automation can help to decidewhether it is cheaper
to leave some scenarios not automated.



16

7. Conclusion
In this paper we have discussed requirements, features, and possible ap-

proaches of the adaptive Grid systems in context of the feedback loop. Such a
loop is inherent in self-managing systems, and includes as the essential stages
monitoring, analysis/modeling, decision taking and execution. The process-
ing of information in such a framework requires a definition of models of the
managed systems and the management actions, as well as goals and policies
governing the decision process. A suitable specification language is still to be
found, yet CIM, possibly in conjunction with SDL seems to be a appropriate
candidate.
The analysis part of the feedback loop instantiates the models and extracts

knowledge from information provided by the monitoring system. Our selection
of the methods in this domain included the field of demand and event modeling
and their prediction, data mining approaches, and the contribution of game
theory to tackle the multiple loop problem.
The decision taking stage of the feedback loop evaluates the preprocessed

input from the analysis part, and plans management decisions in accordance
with the specified goals and policies. Automated planning, still not a very
developed field of AI,might become a fundamental technique to tackle complex
management scenarios involving many interdependent steps. Another essential
contribution to decisionmaking comes fromoptimization techniques, especially
heuristics such as genetic algorithms. This is due to the fact that in the self-
management scenario a good solution which can be found efficiently is superior
over optimal solution which requires extensive computation.
The self-management challenge has created a lot of research activities, yet

real ’breakthroughs’ seem to remain elusive. Our work illustrates that reaching
this goal requires a lot of effort and improvements in a multitude of fields,
which makes singular ’quantum leaps’ unlikely. A partial reason for this is the
fact that many problems to be solved are not new, but of a more fundamental
nature, for example in the field of automated planning. This does not exclude
the fact that qualitatively new possibilities in systems management will arise
once a certain threshold of the progress has been crossed. A good example is
the development of computer hardware, where steady progress over decades
has led to application areas unthinkable of on the offset of the journey.

8. Acknowledgements
This researchwork is carried out in part under the FP6Network of Excellence

CoreGRID funded by the European Commission (Contract IST-2002-004265).

References



On Adaptability in Grid Systems 17

[1] A.Andrzejak andM.Ceyran.Characterizing andPredicting ResourceDemand by Period-
icityMining. Journal ofNetwork andSystemManagement, special issue onSelf-Managing
Systems and Networks, Vol. 13, No. 1, Mar 2005.

[2] A. Andrzejak, J. Rolia, and M. Arlitt. Bounding the Resource Savings of Several Utility
Computing Models for a Data Center. HPL Technical Report HPL-2002-339, Hewlett-
Packard Laboratories Palo Alto, December 2002.

[3] A.Andrzejak,U.Hermann, andA. Sahai.Feedbackflow -AnAdaptiveWorkflowGenerator
for System Management, 2nd IEEE International Conference on Autonomic Computing
(ICAC-05), 2005.

[4] D. Bernard, E. Gamble, N. Rouquette, B. Smith, Y. Tung, N. Muscetola, G. Dorias, B.
Kanefsky, J. Kurien, W. Millar, P. Nayak, and K. Rajan, Remote Agent Experiment. DS1
Technology Validation Report. NASA Ames and JPL report, 1998.

[5] M. Broy and R. Steinbrüggen. Modellbildung in der Informatik. Springer-Verlag, Berlin,
2004, ISBN 3-540-44292-8.

[6] G. Candea,A.B. Brown,A. Fox, andD. Patterson.Recovery-oriented computing: Building
multitier dependability. IEEE Computer, Nov. 2004, pp. 60–67.

[7] A. Colmerauer and Philippe Roussel, The Birth of Prolog. 2. SIGPLAN conference on
History of Programming Languages, 1993, pp 37–52.

[8] N. Damianou, A. K. Bandara, M. Sloman, and E. C. Lupu.A Survey of Policy Specification
Approaches., April 2002.

[9] N. Damianou, N. Dulay, et al. The Ponder Policy Specification Language. Policy 2001:
Workshop on Policies for Distributed Systems and Networks, Bristol, UK, Springer-
Verlag, 2001.

[10] Distributed Management Task Force (DMTF). DMTF CIM Concepts White Paper.
http://www.dmtf.org/standards/published documents.php

[11] S. Dolev. Self-Stabilization.MIT Press, Cambridge MA, 2000.
[12] J. Fischer and E. Holz. SDL-2000 Tutorial. SAM 2000 Workshop Grenoble, 2000.
[13] P. A. Flach and N. Lachiche. Confirmation-Guided Discovery of first-order rules with

Tertius.Machine Learning, 42, 1999, pp. 61-95.
[14] M. Fox and D. Long,PDDL2.1: An Extension to PDDL for Expressing Temporal Planning

Domains. Journal of Artificial Intelligence Research, vol. 20, 2003, pp. 61-124.
[15] M. Ghallab, D. Nau, and P. Traverso. Automated Planning - theory and practice.Morgan

Kaufmann Publishers, 2004, ISBN 1-55860- 856-7.
[16] T. Glad and L. Ljung.Control Theory: Multivariable and Nonlinear Methods. CRC Press,

June 2000.
[17] D. A. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company, Inc., 1989.
[18] J. Han and M. Kamber. Data Mining: Concepts and Techniques.Morgan Kaufmann Pub-

lishers, 2001.
[19] International Telecommunication Union (ITU). Specification and description language

(SDL). TU-T Recommendation Z.100, August 2002.
[20] The Internet Society. RFC 3198 - Terminology for Policy-Based Management. 2001.
[21] M. Karlsson and C. Karamanolis. Choosing Replica Placement Heuristics for Wide-Area

Systems. Int. Conf. on Distributed Computing Systems (ICDCS), March 2004, Tokyo,
Japan, pp. 350 -359.



18

[22] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Computer, Jan.
2003, pp. 41–50.

[23] S. Makridakis, S. C. Wheelwright, and R. J. Hyndman. Forecasting - Methods and Appli-
cations. 3rd edition, John Wiley & Sons, Inc., 1999.

[24] O.Morgenstern and J. v. Neumann. The Theory of Games and Economic Behaviour. 1944.
[25] J. Nash. Equilibrium Points in N-Person Games. Procs. of the National Academy of Sci-

ences, 36, 1950, 48–49.
[26] J. v. Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, vol. 100,

295–320, 1928.
[27] J. Reason. Human Error. Cambridge University Press, 1990.
[28] A.Reinefeld, F. Schintke, andT. Schütt.Scalable andSelf-OptimizingDataGrids.Chapter

2 (pp. 30 - 60) in: Yuen Chung Kwong (ed.), Annual Review of Scalable Computing, vol.
6, June 2004.

[29] T. Röblitz et al. Autonomic Management of Large Clusters and their Integration into the
Grid. J. of Grid Computing, 2(3):247–260, September 2004.

[30] A. Turing. On Computable Numbers, with an application to the Entscheidungsproblem.
Proceedings London Mathematical Society (series 2) vol 42, 1936, pp.230-265.


