EEEEEEEEEEEEEEE

Self Management
for Large-Scale

Distributed Systems

— 000
p’r rrrrrrr ﬂ Peter Van Roy 00
L ik and SELFMAN partners | @ @
o
May 8, 2008
2008

Université catholique de Louvain
Louvain-la-Neuve, Belgium

May 2008 P. Van Roy & SELFMAN project

EEEEEEEEEEEEE

OF

SEI-FMAN o000

Software is fragile!
A single bit error can cause a catastrophe

Software complexity is ramping up quickly due to:
The sufficient bandwidth and reliability of the Internet
The increasing number of networked devices
The increasing computing power of these devices

Many new applications are appearing

File-sharing (Napster, Morpheus, Freenet, BitTorrent,...), information sharing

(Youtube, Flickr, ...), social networks (LinkedIn, FaceBook, ...), collaboration

(Wikis, Skype, Messengers, ...), MMORPGs, on-line vendors (Amazon, eBay,
PriceMinister, ...), etc.

These applications are currently a mix of client/server and peer-to-peer,
but they are getting more complicated

How can we build such applications so they are not fragile?
They should be self managing

May 2008 P. Van Roy & SELFMAN project 2

EEEEEEEEEEEEEEE

SELF“A" cee

What is self management?

e The system should be able to reconfigure itself to handle
changes in its environment or its requirements without human
intervention but according to high-level management policies

Human intervention is lifted to the level of the policies
e Typical self-management operations include: add/remove nodes, tune
performance, auto-configure, failure detection & recovery, intrusion
detection & recovery, software rejuvenation
e Self management is needed at all levels

Such as: single node level (failures), network level, services (transactional
storage, broadcast), application level

e For large-scale systems, environmental changes that require
recovery by the system become normal and even frequent events

“Abnormal” events are normal occurrences (failure is a normal
occurrence)

May 2008 P. Van Roy & SELFMAN project 3

EEEEEEEEEEEEEEE ...

How to build large-scale self- e
managing applications?

e \We start with systems that already solve the problem A

Structured overlay networks (derived from peer-to-peer)

e These systems already handle the lower layers
Self-managed communication and storage

e \We add the higher layers needed by applications

First we complete the overlays by handling network partitioning
and improving lookup consistency

Then we add replicated storage and a transaction service
e The needs are guided by three application scenarios
Machine-to-machine messaging (France Telecom)

Distributed Wiki (ZIB)
On-demand video streaming (Stakk)

May 2008 P. Van Roy & SELFMAN project 4

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Three application scenarios

e Our self-management architecture is designed so that these
three scenarios can work well:

e Machine-to-machine messaging (France Telecom):
decentralized messaging application, must recover on node
failure, must gracefully degrade and self optimize, have
transactional behavior

e Distributed Wiki (ZIB): Wiki distributed over SON using
transactions with versioning and replication, both editing and
search support

e P2P video streaming (Stakk): distributed live media streams
with quality of service to large numbers of customers, need
dynamic reconfiguration to handle fluctuating structure

May 2008 P. Van Roy & SELFMAN project 5

EEEEEEEEEEEEEEE

SEI-FMAN 'YX
o0
o
Application requirements
Use Case Self-* Components Overlay Transactions
Properties Networks
Machine To ++ ++ + +
Machine
Distributed ++ ++ ++
Wiki
P2P Video ++ + ++
Streaming

May 2008

P. Van Roy & SELFMAN project

EEEEEEEEEEEEEEE

SELF“A" cee

Successive steps to build a e
self-management architecture

e First, we fix the overlay networks
Improving lookup consistency: relaxed ring
Handling network partitioning: merge algorithm
e Second, we add services
Replicated storage
Distributed transaction service
e We explain each of these steps
This is work being done in the SELFMAN project

May 2008 P. Van Roy & SELFMAN project 7

THE ADVENTURES OF

SELF MAN

SELFMAN project

e STREP in IST Software and Services,
3 years starting June 2006
e Partners:

e Université catholique de Louvain
(Belgium) (coordinator)

o Kungliga Tekniska Hogskolan

), (Sweden)
& ¢ Institut National de Recherche en
-~ .

Informatique et Automatique (France)

e France Télécom Recherche et
Développement (France)

o Konrad-Zuse-Zentrum fur
Informationstechnik Berlin (Germany)

o National University of Singapore
(Singapore)
o Peerialism AB (Sweden)

ROYAL INSTITUTE
OF TECHNOLOGY

May 2008 P. Van Roy & SELFMAN project

EEEEEEEEEEEEEEE

Structured
overlay networks

ooooooo

EEEEEEEEEEEEEEE

Three generations of
peer-to-peer networks

e Hybrid (client/server) m
Napster &y .

e Unstructured overlay

Gnutella, Kazaa,
Morpheus, Freenet, ... 7 f

Uses flooding

e Structured overlay 0
Exponential network 9 P
DHT (Distributed Hash o o
Table), e.g., Chord, DKS,
P2PS é “

May 2008 P. Van Roy & SELFMAN project

000
000
[X]
o

R = N-1 (hub)

R =1 (others)

H=1

R = ? (variable)

H=1...7

(but no guarantee)

R=log N
H=log N

(with guarantee)

10

EEEEEEEEEEEEEEE

What is a Structured Overlay Network oo

(also known as Distributed Hash Table)?

e An ordinary hash table that is distributed

Key Value

Bengt 193.20.10.2
Ali 202.49.2.44
Bjorn 241.13.11.19
Peter 169.14.33.1
Olle 10.0.0.1
Nisse 211.113.9.12

|
i
|

)

-

e Every node provides a lookup operation
Provide the value associated with a any key

e Nodes keep routing pointers

If item not found, route to another node

P. Van Roy & SELFMAN project 11

May 2008

EEEEEEEEEEEEEEE

Properties of SONs/DHTs

e Scalability
Number of nodes
Number of items

Maximum log(n) re-routes
log(n) routing table size

1/n portion of items per node

e Self-manage in presence joins/leaves/failures

Routing information
Data items

Update routing tables continuously

Replicate data for reliability

e Guarantees: fast routing, finding the item

May 2008 P. Van Roy & SELFMAN project 12

EEEEEEEEEEEEEEE

SELFHAN

Based on a ring topology

May 2008

1247

1012
& P
S a— "
530 /‘F "‘L_ 1395
B ; e @

N
"“i __— Ring
N e

(connectivity)
<)

A
2’» Fingers

17 (efficiency)

P. Van Roy & SELFMAN project

13

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Lookup illustrated in Chord

We illustrate lookup in Chord, a simple SON.
Nodes sparsely populate a circular identifier
space.

Given a key, find the value associated to
the key (here, the value is the IP address of
the node that stores the key)

Assume node O searches for the value
associated to key K with identifier 7

Interval node to be contacted
[1,2) 6
[2,4) 6
[4,8) 6
[8,0) 12

@® Indicates presence of a node
May 2008 P. Van Roy & SELFMAN project 14

EEEEEEEEEEEEEEE III

Where are SONs used?

e Internet Architecture

Routing On Flat Labels (ROFL)
e Mobility

Session Initiation Protocol, Host Identity Protocol (HIP), 13, ...

e File sharing and Streaming
e-Mule, Azureus, PPLive N

e Application Servers
amazon.com DYNAMO

e Other uses
databases (PIER), DFS (WheelFS , ...), caches

May 2008 (Squ”.reli LU) P. Van Roy & SELFMAN project 15

EEEEEEEEEEEEEEE

Relaxed ring
algorithm

ooooooo

EEEEEEEEEEEEEEE

Ring maintenance

e In a SON based on a ring topology,
self organization is done at two levels:

The ring ensures connectivity (correctness): it must
always exist despite joins, leaves, and failures

The fingers reduce number of routing hops (efficiency):
they can be temporarily in an inconsistent state
e The relaxed ring algorithm improves the
connectivity maintenance
It has improved behavior for failures
It greatly reduces the probability of inconsistent lookups

May 2008 P. Van Roy & SELFMAN project

17

EEEEEEEEEEEEEEE

Connectivity maintenance

e Connectivity maintenance is not trivial
Peers can join and leave at any time

Peers that crash are like peers that leave but
without notification

Temporarily broken links create false
suspicions of failure

e Crucial properties to be guaranteed

Lookup consistency
Ring connectivity

May 2008 P. Van Roy & SELFMAN project

18

EEEEEEEEEEEEEEE

SEI-F“A" cee

The relaxed-ring architecture

e Thering is constructed using an invariant:
Every peer is in the same ring as its successor

e Connectivity maintenance is completely asynchronous

e Nodes communicate through message passing

For a join, instead of one step involving 3 peers (as in DKS, also developed in
SELFMAN), we have two steps each with 2 peers — we do not need locking

e A peer can never indicate another peer as the responsible node (a peer
knows only its own responsibility, which starts with the key of the
predecessor + 1)

p—>t
Pe—q
s+t
May 2008 P. Van Roy & SELFMAN project 19

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Example of a relaxed ring

e Itlooks like a ring with “bushes”
sticking out

e The bushes appear only if
there are failure suspicions

Usually the ring is not as bushy
as in this example!

e There always exists a perfect
ring (in red) as a subset of the
relaxed ring.

e The relaxed ring is always
converging toward the perfect
ring

The number of bushes existing
at any time depends on the

churn (rate of change of the
ring, failures/joins per time)

May 2008 P. Van Roy & SELFMAN project 20

EEEEEEEEEEEEEEE ...

Lookup consistency

e Definition: Lookup consistency means that at any time there is
exactly one responsible node for a particular key k

Lookup consistency is difficult to achieve

Strong (atomic) data consistency, availability, and partition tolerance are
impossible to achieve simultaneously (Brewer’'s conjecture)

What can we do in the case of the Internet’s failure model?
Crash failures of nodes and networks and false failure suspicions
Eventually perfect failure detection

e Theorem: The relaxed-ring join algorithm guarantees lookup
consistency at any time in presence of multiple joining peers

This is not true for many other SONs, e.g., Chord

e Theorem: Multiple failing peers never introduce inconsistent lookup
unless the network is partitioned
In practice, the probability of inconsistency is vastly reduced

May 2008 P. Van Roy & SELFMAN project 21

EEEEEEEEEEEEEEE

Ring merge algorithm

May 2008 P. Van Roy & SELFMAN project

22

EEEEEEEEEEEEEEE

Problem statement

e Network partitions occur frequently
Often small, occasionally large

e Any long-lived DHT will experience partitions

Problem barely studied at all

e This is an important problem
Studied in other contexts: databases (80s), file systems

(90s)

May 2008 P. Van Roy & SELFMAN project

23

THE ADVENTURES OF

ELF“A"

eal world example ot

May 2008 P. Van Roy &

THE ADVENTURES OF

SELFMAN cee
o0

Real world example

May 2008 P. Van Roy & SELFMAN project 25

EEEEEEEEEEEEEEE

(Yp)]
W
F
N
=
=
=
0000
(X X
o0

Current beliefs about partitions &
SONSs are wrong!

e Ring-based DHTs "cannot function at all until
the whole merge process is complete”, Datta
et al. [Iwsos'00, best paper award]

e Ring-based SONs are inherently ill-suited for
dealing with network partitions, Ken Birman
[gossip-leiden’06]

May 2008 P. Van Roy & SELFMAN project 26

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Existing systems

e Most existing DHTs survive network partitions

e How to efficiently merge several rings?
Automatic merge when partition detected
Manual merge decided by external management

May 2008 P. Van Roy & SELFMAN project 27

EEEEEEEEEEEEEEE

SELF“A" cee

Automatically detecting need
for a merge

e Each node maintains a passive list
Stores every locally stored crashed node

e Ping passive lists periodically
Alive node indicative of merger

e If passive list contains no live node

“Kick start” the merge by using external mechanism
to add one node to passive list

May 2008 P. Van Roy & SELFMAN project 28

EEEEEEEEEEEEEEE

SELF“A" cee

Simple ring unification +
algorithm

e Assume a detects b on a different ring

e a calls mlookup(b)
mlookup traverses ring to get close to b
It then calls trymerge(cpred, csucc)

e trymerge(cpred, csucc)

Try merging by updating pointers to candidates
(cpred, csucc)

Recursively call mlookup to continue the merger

May 2008 P. Van Roy & SELFMAN project 29

EEEEEEEEEEEEEEE

SEI'F“A"
mlookup(a)
up(b)
a:trymerge
@ SON1 VAYE N
() SON 2 ~ a V[\

May 2008

P. Van Roy & SELFMAN project

30

EEEEEEEEEEEEEEE

SELF“A" cee
o0

mlookup(r.succ)

c:trymerge

b:trymerge ucc:trymerge

mlookup(c)

@ SON1
() SON 2

May 2008 P. Van Roy & SELFMAN project 31

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Improved algorithm

e The algorithm needs linear time to merge rings
This can be acceptable:
Partitions are rare
Let algorithm run in background
Low cost, low performance

e With gossiping we improve the algorithm to merge
rings in logarithmic average time
Let detecting node share info with M random nodes

Caveat: node does not know M random nodes
Spread this process during the merger

May 2008 P. Van Roy & SELFMAN project 32

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Fixing “loopy rings”™

e Sometimes DHTs end up in a loopy ring

e The gossip algorithm can recover from loopy rings

May 2008 P. Van Roy & SELFMAN project 33

EEEEEEEEEEEEEEE

Distributed
transactions

ooooooo

EEEEEEEEEEEEEEE ...

Transactions on a SON

e Transactions on a SON are challenging because of
high churn:
Frequent node leaves, crashes, and joins
Results in changing data responsibilities of nodes
e We use a crash stop failure model

e \We assume an eventually perfect failure detector
Failure detection on Internet is notoriously difficult
We use a majority algorithm based on a modified Paxos
Inconsistent lookups are hidden by the majority algorithm

e We build the transactions on top of a reliable
storage service that uses symmetric replication

May 2008 P. Van Roy & SELFMAN project 35

EEEEEEEEEEEEEEE

SELF“A" cee
o0

Concurrency control

e Pessimistic CC is used ...
in scenarios with high contention
in DBs (with in crash recovery model)

e Optimistic CC is used ...
in scenarios with low contention
when long network latencies cause much blocking

May 2008 P. Van Roy & SELFMAN project 36

EEEEEEEEEEEEEEE

SELF“A" cee

Atomic commit on a SON e

Start of validation phase

BOT
Write item(1)

Client CI |e n‘t cOT Write item(2)

2,6,10,14

e Client asks nearest node,
e.g. node 15

e Node 15 becomes the
Transaction Manager (TM)

e [M creates a transaction
item with a key for which it
IS responsible for
(e.g. key = 15)

May 2008 P. Van Roy & SELFMAN project 37

§Eﬁm 44
Atomic commit on a SON S
ol Write item(1)

Client

C| ient: coT Write item(2)

2,6,10,14

371115 o Assuming symmetric
replication, let the
replication degree f = 4

e Nodes 3, 7, 11 become
replicated Transaction
Managers (rTM), according
to the replication of the
transaction item

11,15,7,3

May 2008 P. Van Roy & SELFMAN project 38

EEEEEEEEEEEEEEE

Atomic commit on a SON

BOT
Write item(1)

CI |e nt coT Write item(2)

2,6,10,14

371115 o Nodes 1, 5,9, 13 and
2,6, 10, 14 become
Transaction Participants
(TP)

11,15,7,3

7,11,15,3 1. and 2. Step

May 2008 P. Van Roy & SELFMAN project 39

EEEEEEEEEEEEEEE

Atomic commit on a SON

e \When the transaction is
complete, we start the

)
* i 261014 atomic commit algorithm
3,7,11,15 ° TM Sends “Prepare”
e together with the
information needed for

validation to all TPs

11,15,7,3

' 7,11,15,3 3. Step

May 2008 P. Van Roy & SELFMAN project 40

EEEEEEEEEEEEEEE

e 13,
Atomic commit on a SON 33

e After having received
“Prepare” from the TIM,

2’6’""14 each TP sends a
37,1115 “Prepared” or “Abort”

message to all rTMs

11,15,7,3

7,11,15,3 4 Step

May 2008 P. Van Roy & SELFMAN project 41

EEEEEEEEEEEEEEE

SELFHAN EE
Atomic commit on a SON s

e The rTMs collect votes
from a majority of TPs
per item and locally

371118 decide on abort or

commit

e Each rTM sends the
outcome to the TM

2,6,10,14

11,15,7,3

7,11,15,3 5 Step

May 2008 P. Van Roy & SELFMAN project 42

EEEEEEEEEEEEEEE

Atomic commit on a SON

e The TM collects the
outcome from at least a

’ i 201014 majority of rTMs
Y e After having collected a
e majority, the TM sends
the decision to all TPs

e If the TM fails, this is

11,15,7,3

detected and a new
O leader is chosen

7,11,15,3

6. Step

May 2008 P. Van Roy & SELFMAN project 43

EEEEEEEEEEEEEEE ...

Current status

e Performance
6 communication rounds
e Succeeds if more than f/2 nodes alive
Time outs are not used
e Simulations in progress
For validating assumptions and performance

e Implementations

Transaction algorithm and Distributed Wiki application implemented in
Erlang at ZIB

This implementation won first prize in the First IEEE International
Scalable Computing Challenge (SCALE 2008) (May 2008)

Implementations in progress on PlanetLab/EverLab and using network
simulator

May 2008 P. Van Roy & SELFMAN project 44

EEEEEEEEEEEEEEE

Conclusions

May 2008

P. Van Roy & SELFMAN project

45

gl 5
Conclusions

e Structured overlay networks are a good starting point for building
large-scale self-managing systems

e Current SON research is almost mature enough for building self-
management architectures

We have fixed the main problems: network merge and lookup
consistency

e We are currently implementing and evaluating a replicated
transactional storage algorithm

Maijority algorithm (modified Paxos for atomic commit) together with
network merge seems to be adequate to deal with Internet failure model

We implemented a distributed Wiki using this algorithm which won first
prize in the First IEEE International Scalable Computing Challenge
(SCALE 2008).

e This work is being done as part of the SELFMAN project
See www.ist-selfman.org

May 2008 P. Van Roy & SELFMAN project 46

