
May 2008 1P. Van Roy & SELFMAN project

Self Management
for Large-Scale

Distributed Systems

Peter Van Roy
and SELFMAN partners

May 8, 2008

Grid@Mons 2008

Université catholique de Louvain

Louvain-la-Neuve, Belgium

May 2008 P. Van Roy & SELFMAN project 2

Vision

 Software is fragile!
 A single bit error can cause a catastrophe

 Software complexity is ramping up quickly due to:
 The sufficient bandwidth and reliability of the Internet
 The increasing number of networked devices
 The increasing computing power of these devices

 Many new applications are appearing
 File-sharing (Napster, Morpheus, Freenet, BitTorrent,…), information sharing

(Youtube, Flickr, …), social networks (LinkedIn, FaceBook, …), collaboration
(Wikis, Skype, Messengers, …), MMORPGs, on-line vendors (Amazon, eBay,
PriceMinister, …), etc.

 These applications are currently a mix of client/server and peer-to-peer,
but they are getting more complicated

 How can we build such applications so they are not fragile?
 They should be self managing

May 2008 P. Van Roy & SELFMAN project 3

What is self management?

 The system should be able to reconfigure itself to handle
changes in its environment or its requirements without human
intervention but according to high-level management policies
 Human intervention is lifted to the level of the policies

 Typical self-management operations include: add/remove nodes, tune
performance, auto-configure, failure detection & recovery, intrusion
detection & recovery, software rejuvenation

 Self management is needed at all levels
 Such as: single node level (failures), network level, services (transactional

storage, broadcast), application level

 For large-scale systems, environmental changes that require
recovery by the system become normal and even frequent events
 “Abnormal” events are normal occurrences (failure is a normal

occurrence)

May 2008 P. Van Roy & SELFMAN project 4

How to build large-scale self-
managing applications?

 We start with systems that already solve the problem
 Structured overlay networks (derived from peer-to-peer)

 These systems already handle the lower layers
 Self-managed communication and storage

 We add the higher layers needed by applications
 First we complete the overlays by handling network partitioning

and improving lookup consistency
 Then we add replicated storage and a transaction service

 The needs are guided by three application scenarios
 Machine-to-machine messaging (France Telecom)
 Distributed Wiki (ZIB)
 On-demand video streaming (Stakk)

!

May 2008 P. Van Roy & SELFMAN project 5

Three application scenarios

 Our self-management architecture is designed so that these
three scenarios can work well:

 Machine-to-machine messaging (France Telecom):
decentralized messaging application, must recover on node
failure, must gracefully degrade and self optimize, have
transactional behavior

 Distributed Wiki (ZIB): Wiki distributed over SON using
transactions with versioning and replication, both editing and
search support

 P2P video streaming (Stakk): distributed live media streams
with quality of service to large numbers of customers, need
dynamic reconfiguration to handle fluctuating structure

May 2008 P. Van Roy & SELFMAN project 6

Application requirements

+++++J2EE
Application

Server

+++++P2P Video
Streaming

+++++++Distributed
Wiki

++++++Machine To
Machine

TransactionsOverlay
Networks

ComponentsSelf-*
Properties

Use Case

May 2008 P. Van Roy & SELFMAN project 7

Successive steps to build a
self-management architecture

 First, we fix the overlay networks
 Improving lookup consistency: relaxed ring

 Handling network partitioning: merge algorithm

 Second, we add services
 Replicated storage

 Distributed transaction service

 We explain each of these steps
 This is work being done in the SELFMAN project

May 2008 P. Van Roy & SELFMAN project 8

SELFMAN project

 STREP in IST Software and Services,
3 years starting June 2006

 Partners:
 Université catholique de Louvain

(Belgium) (coordinator)
 Kungliga Tekniska Högskolan

(Sweden)
 Institut National de Recherche en

Informatique et Automatique (France)
 France Télécom Recherche et

Développement (France)
 Konrad-Zuse-Zentrum für

Informationstechnik Berlin (Germany)
 National University of Singapore

(Singapore)
 Peerialism AB (Sweden)

May 2008 9P. Van Roy & SELFMAN project

Structured
overlay networks

May 2008 P. Van Roy & SELFMAN project 10

Three generations of
peer-to-peer networks

 Hybrid (client/server)
 Napster

 Unstructured overlay
 Gnutella, Kazaa,

Morpheus, Freenet, …
 Uses flooding

 Structured overlay
 Exponential network
 DHT (Distributed Hash

Table), e.g., Chord, DKS,
P2PS

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

May 2008 P. Van Roy & SELFMAN project 11

What is a Structured Overlay Network
(also known as Distributed Hash Table)?

 An ordinary hash table that is distributed

 Every node provides a lookup operation
 Provide the value associated with a any key

 Nodes keep routing pointers
 If item not found, route to another node

Key Value

Bengt 193.20.10.2

Ali 202.49.2.44

Björn 241.13.11.19

Peter 169.14.33.1

Olle 10.0.0.1

Nisse 211.113.9.12

May 2008 P. Van Roy & SELFMAN project 12

Properties of SONs/DHTs

 Scalability
 Number of nodes
 Number of items

 Self-manage in presence joins/leaves/failures
 Routing information
 Data items

 Guarantees: fast routing, finding the item

Maximum log(n) re-routes
log(n) routing table size

1/n portion of items per node

Update routing tables continuously

Replicate data for reliability

May 2008 P. Van Roy & SELFMAN project 13

Based on a ring topology

Ring
(connectivity)

Fingers
(efficiency)

May 2008 P. Van Roy & SELFMAN project 14

Lookup illustrated in Chord

Indicates presence of a node

We illustrate lookup in Chord, a simple SON.
Nodes sparsely populate a circular identifier
space.

Given a key, find the value associated to
the key (here, the value is the IP address of
the node that stores the key)

Assume node 0 searches for the value
associated to key K with identifier 7

Interval node to be contacted
 [0,1) 0
 [1,2) 6
 [2,4) 6
 [4,8) 6
 [8,0) 12

0

8

412

2

610

14

1

3

5

79

11

13

15

May 2008 P. Van Roy & SELFMAN project 15

Where are SONs used?

 Internet Architecture
 Routing On Flat Labels (ROFL) [sigcomm’06]

 Mobility
 Session Initiation Protocol, Host Identity Protocol (HIP), I3, …

 File sharing and Streaming
 e-Mule, Azureus, PPLive [sigcomm’07], …

 Application Servers
 amazon.com DYNAMO [sosp’07]

 Other uses
 databases (PIER), DFS (WheelFS [sosp’07], …), caches

(squirrel, …)

May 2008 16P. Van Roy & SELFMAN project

Relaxed ring
algorithm

May 2008 P. Van Roy & SELFMAN project 17

Ring maintenance

 In a SON based on a ring topology,
self organization is done at two levels:
 The ring ensures connectivity (correctness): it must

always exist despite joins, leaves, and failures

 The fingers reduce number of routing hops (efficiency):
they can be temporarily in an inconsistent state

 The relaxed ring algorithm improves the
connectivity maintenance
 It has improved behavior for failures

 It greatly reduces the probability of inconsistent lookups

May 2008 P. Van Roy & SELFMAN project 18

Connectivity maintenance

 Connectivity maintenance is not trivial
 Peers can join and leave at any time

 Peers that crash are like peers that leave but
without notification

 Temporarily broken links create false
suspicions of failure

 Crucial properties to be guaranteed
 Lookup consistency

 Ring connectivity

May 2008 P. Van Roy & SELFMAN project 19

The relaxed-ring architecture

 The ring is constructed using an invariant:
Every peer is in the same ring as its successor

 Connectivity maintenance is completely asynchronous

 Nodes communicate through message passing
 For a join, instead of one step involving 3 peers (as in DKS, also developed in

SELFMAN), we have two steps each with 2 peers → we do not need locking

 A peer can never indicate another peer as the responsible node (a peer
knows only its own responsibility, which starts with the key of the
predecessor + 1)

May 2008 P. Van Roy & SELFMAN project 20

Example of a relaxed ring

 It looks like a ring with “bushes”
sticking out

 The bushes appear only if
there are failure suspicions
 Usually the ring is not as bushy

as in this example!

 There always exists a perfect
ring (in red) as a subset of the
relaxed ring.

 The relaxed ring is always
converging toward the perfect
ring
 The number of bushes existing

at any time depends on the
churn (rate of change of the
ring, failures/joins per time)

May 2008 P. Van Roy & SELFMAN project 21

Lookup consistency

 Definition: Lookup consistency means that at any time there is
exactly one responsible node for a particular key k
 Lookup consistency is difficult to achieve

 Strong (atomic) data consistency, availability, and partition tolerance are
impossible to achieve simultaneously (Brewer’s conjecture)

 What can we do in the case of the Internet’s failure model?
 Crash failures of nodes and networks and false failure suspicions
 Eventually perfect failure detection

 Theorem: The relaxed-ring join algorithm guarantees lookup
consistency at any time in presence of multiple joining peers
 This is not true for many other SONs, e.g., Chord

 Theorem: Multiple failing peers never introduce inconsistent lookup
unless the network is partitioned
 In practice, the probability of inconsistency is vastly reduced

May 2008 22P. Van Roy & SELFMAN project

Ring merge algorithm

May 2008 P. Van Roy & SELFMAN project 23

Problem statement

 Network partitions occur frequently
 Often small, occasionally large

 Any long-lived DHT will experience partitions
 Problem barely studied at all

 This is an important problem
 Studied in other contexts: databases (80s), file systems

(90s)

May 2008 P. Van Roy & SELFMAN project 24

Real world example

May 2008 P. Van Roy & SELFMAN project 25

Real world example

May 2008 P. Van Roy & SELFMAN project 26

Current beliefs about partitions &
SONs are wrong!

 Ring-based DHTs ”cannot function at all until
the whole merge process is complete”, Datta
et al. [iwsos’06, best paper award]

 Ring-based SONs are inherently ill-suited for
dealing with network partitions, Ken Birman
[gossip-leiden’06]

May 2008 P. Van Roy & SELFMAN project 27

Existing systems

 Most existing DHTs survive network partitions

 How to efficiently merge several rings?
 Automatic merge when partition detected
 Manual merge decided by external management

May 2008 P. Van Roy & SELFMAN project 28

Automatically detecting need
for a merge

 Each node maintains a passive list
 Stores every locally stored crashed node

 Ping passive lists periodically
 Alive node indicative of merger

 If passive list contains no live node
 “Kick start” the merge by using external mechanism

to add one node to passive list

May 2008 P. Van Roy & SELFMAN project 29

Simple ring unification
algorithm

 Assume a detects b on a different ring

 a calls mlookup(b)
 mlookup traverses ring to get close to b

 It then calls trymerge(cpred, csucc)

 trymerge(cpred, csucc)
 Try merging by updating pointers to candidates

(cpred, csucc)

 Recursively call mlookup to continue the merger

May 2008 P. Van Roy & SELFMAN project 30

SON 1

SON 2

b

a

mlookup(a)

mlookup(b)

a:trymerge

b:trymerge

trymerge

trymerge

May 2008 P. Van Roy & SELFMAN project 31

SON 1

SON 2

b

b:trymerge

trymerge

c

c.succ

mlookup(r.succ)

mlookup(c)

c:trymerge

trymerge

trymerge

c.succ:trymerge

May 2008 P. Van Roy & SELFMAN project 32

Improved algorithm

 The algorithm needs linear time to merge rings
 This can be acceptable:

 Partitions are rare
 Let algorithm run in background
 Low cost, low performance

 With gossiping we improve the algorithm to merge
rings in logarithmic average time
 Let detecting node share info with M random nodes
 Caveat: node does not know M random nodes

 Spread this process during the merger

May 2008 P. Van Roy & SELFMAN project 33

Fixing “loopy rings”

 Sometimes DHTs end up in a loopy ring

 The gossip algorithm can recover from loopy rings
8

9 7

6

5

4

3

2

1
0

10

11

12

13

14

15

May 2008 34P. Van Roy & SELFMAN project

Distributed
transactions

May 2008 P. Van Roy & SELFMAN project 35

Transactions on a SON

 Transactions on a SON are challenging because of
high churn:
 Frequent node leaves, crashes, and joins
 Results in changing data responsibilities of nodes

 We use a crash stop failure model
 We assume an eventually perfect failure detector

 Failure detection on Internet is notoriously difficult
 We use a majority algorithm based on a modified Paxos
 Inconsistent lookups are hidden by the majority algorithm

 We build the transactions on top of a reliable
storage service that uses symmetric replication

May 2008 P. Van Roy & SELFMAN project 36

Concurrency control

 Pessimistic CC is used …
 in scenarios with high contention

 in DBs (with in crash recovery model)

 Optimistic CC is used …
 in scenarios with low contention

 when long network latencies cause much blocking

eotbot valid

May 2008 P. Van Roy & SELFMAN project 37

Atomic commit on a SON

Client:

 Client asks nearest node,
e.g. node 15

 Node 15 becomes the
Transaction Manager (TM)

 TM creates a transaction
item with a key for which it
is responsible for
(e.g. key = 15)

T
M

1,5,9,13

BOT
Write item(1)
Write item(2)

EOTClient

15,3,7,11
2,6,10,14

Start of validation phase

May 2008 P. Van Roy & SELFMAN project 38

Client:

 Assuming symmetric
replication, let the
replication degree f = 4

 Nodes 3, 7, 11 become
replicated Transaction
Managers (rTM), according
to the replication of the
transaction item

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

BOT
Write item(1)
Write item(2)

EOT

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 39

Client:

 Nodes 1, 5, 9, 13 and
2, 6, 10, 14 become
Transaction Participants
(TP)

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

BOT
Write item(1)
Write item(2)

EOT

1. and 2. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 40

 When the transaction is
complete, we start the
atomic commit algorithm

 TM sends “Prepare”
together with the
information needed for
validation to all TPs

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

3. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 41

 After having received
“Prepare” from the TM,
each TP sends a
“Prepared” or “Abort”
message to all rTMs

T
M

r
T
M

1,5,9,13

Clie
nt

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

4. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 42

 The rTMs collect votes
from a majority of TPs
per item and locally
decide on abort or
commit

 Each rTM sends the
outcome to the TM

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

5. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 43

 The TM collects the
outcome from at least a
majority of rTMs

 After having collected a
majority, the TM sends
the decision to all TPs

 If the TM fails, this is
detected and a new
leader is chosen

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

6. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 44

Current status

 Performance
 6 communication rounds

 Succeeds if more than f/2 nodes alive
 Time outs are not used

 Simulations in progress
 For validating assumptions and performance

 Implementations
 Transaction algorithm and Distributed Wiki application implemented in

Erlang at ZIB
 This implementation won first prize in the First IEEE International

Scalable Computing Challenge (SCALE 2008) (May 2008)

 Implementations in progress on PlanetLab/EverLab and using network
simulator

May 2008 45P. Van Roy & SELFMAN project

Conclusions

May 2008 P. Van Roy & SELFMAN project 46

Conclusions
 Structured overlay networks are a good starting point for building

large-scale self-managing systems
 Current SON research is almost mature enough for building self-

management architectures
 We have fixed the main problems: network merge and lookup

consistency

 We are currently implementing and evaluating a replicated
transactional storage algorithm
 Majority algorithm (modified Paxos for atomic commit) together with

network merge seems to be adequate to deal with Internet failure model
 We implemented a distributed Wiki using this algorithm which won first

prize in the First IEEE International Scalable Computing Challenge
(SCALE 2008).

 This work is being done as part of the SELFMAN project
 See www.ist-selfman.org

