
Fractal Component-Based Software Engineering

Thierry Coupaye1 and Jean-Bernard Stefani2

1 France Telecom R&D
thierry.coupaye@orange-ftgroup.com

2 INRIA
Jean-Bernard.Stefani@inrialpes.fr

Abstract. This article is a report on the 5th international workshop
devoted to the Fractal component model that took place the 4th of July
2006 in Nantes, France, as an ECOOP workshop. Prior to that, the article
provides some background on the Fractal project and previous Fractal
workshops for readers who are not familiar with Fractal.

1 Introduction

We are witnessing a tremendous expansion in the use of software in scientific
research, industry, administration and more and more in every day life. With the
advent of the Internet and more globally the convergence between telecommu-
nications and computing, software has become omnipresent, critical, complex.
Time-to-market of services, which rely on system engineering (operating systems,
distributed systems, middleware), is becoming a strategic factor in a competitive
market in which operation (deployment, administration) costs are much higher
than development costs.

In this context, component-based software architectures have naturally emerged
as a central focus and reached momentum in different fields of computing be-
cause Component-Based Software Engineering (CBSE) is generally recognized
as one of the best way to develop, deploy and administrate increasingly complex
software with good properties in terms of flexibility, reliability, scalability3 - not
to mention lower development cost and faster time-to-market through software
reuse and programmers productivity improvements.

Fractal is an advanced component model and associated on-growing pro-
gramming and management support devised initially by France Telecom and
INRIA since 2001. Most developments are framed by the Fractal project inside
the ObjectWeb open source middleware consortium. The Fractal project targets
the development of a reflective component technology for the construction of
highly adaptable and reconfigurable distributed systems.

3 As stated in the conclusions of the 7th International Symposium on CBSE (Edin-
burgh, Scotland, 2004): ”Components are a way to impose design constraints that
as structural invariants yields some useful properties”.

2

2 The Fractal Ecosystem

2.1 Component Model

The Fractal component model relies on some classical concepts in CBSE: com-
ponents are runtime entities that conforms to the model, interfaces are the only
interaction points between components that express dependencies between com-
ponents in terms of required/client and provided/server interfaces, bindings are
communication channels between component interfaces that can be primitive, i.e.
local to an address space or composite, i.e. made of components and bindings
for distribution or security purposes.

Fractal also exhibits more original concepts. A component is the composition
of a membrane and a content. The membrane exercices an arbitrary reflexive con-
trol over its content (including interception of messages, modification of message
parameters, etc.). A membrane is composed of a set of controllers that may or
may not export control interfaces accessible from outside the considered compo-
nent. The model is recursive (hierarchical) with sharing at arbitrary levels. The
recursion stops with base components that have an empty content. Base compo-
nents encapsulate entities in an underlying programming language. A component
can be shared by multiple enclosing components. Finally, the model is program-
ming language independent and open: everything is optional and extensible4 in
the model, which only defines some ”standard” API for controlling bindings
between components, the hierarchical structure of a component system or the
components life-cycle (creation, start, stop, etc).

The Fractal component model enforces a limited number of very structur-
ing architectural principles. Components are runtime entities conformant to a
model and do have to exist at runtime per se for management purposes. There
is a clear separation between interfaces and implementations which allow for
transparent modifications of implementations without changing the structure of
the system. Bindings are programmatically controllable: bindings/dependencies
are not ”hidden in code” but systematically externalized so as to be manipulated
by (external) programs. Fractal systems exhibits a recursive structure with com-
posite components that can overlap, which naturally enforces encapsulation and
easily models resource sharing. Components exercise arbitrary reflexive control
over their content: each component is a management domain of its own. Alto-
gether, these principles make Fractal systems self-similar (hence the name of the
model): architecture is expressed homogeneously at arbitrary level of abstraction
in terms of bindings an reflexive containment relationships.

2.2 Implementations

There exist currently 8 implementations (platforms)5 providing support for Frac-
tal components programming in 8 programming languages:
4 This openness leads to the need for conformance levels and conformance test suites

so as to compare distinct implementations of the model.
5 Julia, AOKell, ProActive and THINK are available in the ObjectWeb code base.

FracNet, FractTalk and Flone are available as open source on specific web sites.

3

– Julia was historically (2002) the first Fractal implementation6, provided by
France Telecom. Since its second version, Julia makes use of AOP-like tech-
niques based on interceptors and controllers built as a composition of mixins.
It comes with a library of mixins and interceptors mixed at loadtime (Julia
relies very much on loadtime bytecode transformation as the main underly-
ing technique thanks to the ASM Java bytecode Manipulation Framework).
The design of Julia cared very much for performance: the goal was to prove
that component-based systems were not doomed to be inefficient compared
to plain Java. Julia allows for intra-components and inter-components opti-
mizations which altogether exhibit very acceptable performance.

– THINK is a C implementation of Fractal, provided by France Telecom and
INRIA Sardes, with a growing participation of STMicroelectronics and CEA,
geared at operating and especially embedded systems development. Using
THINK, OS architects can build OS kernels conforming to any kernel ar-
chitecture: exo-kernel, micro-kernel... Minimal kernels can be built on bare
hardware and basic functions such as scheduler and memory policies can
be easily redefined or even not included. This helps achieve speed-ups and
low memory footprints over standard general-purpose operating systems.
THINK is also suggested for prototyping when using a complete OS would
be a too heavy solution. It can also be used when implementing application-
specific kernels, especially when targeting small platforms embedding micro-
controllers. THINK comes along with KORTEX, a library of already existing
system components, implementing various functions (memory management,
schedulers, file systems, etc.) on various targets (e.g. ARM, PPC, x86).

– ProActive is a distributed and asynchronous implementation of Fractal tar-
getting grid computing, developed by INRIA Oasis with a participation of
France Telecom. It is a grid middleware for parallel, distributed, and concur-
rent computing, also featuring mobility and security in a uniform framework.
It mixes the active object paradigm for concurrent programming (objects
executing their own asynchronous activity in a thread) and the component
paradigm for deployment and management.

– AOKell is a Java implementation by INRIA Jacquard and France Telecom
similar to Julia, but based on standard AOP technologies (static weaving
with AspectJ in AOKell v1 and loadtime weaving with Spoon in AOKell
v2) instead of mixins. Also AOKell v2 is the first Fractal implementation
that supports component-based membranes: Fractal component controllers
can themselves be implemented as Fractal components. AOKell offers similar
performance to Julia.

– FractNet is a .Net implementation of the Fractal component model developed
by the LSR laboratory. It is essentially a port of AOKell on .Net, in which
AspectDNG is used as an alternative aspect weaver to AspectJ or Spoon.
FractNet provides for Fractal component programming in J#, C#, VB.Net
and Cobol.Net languages.

6 And sometimes considered for this reason as ”the reference implementation” in Java.

4

– Flone is a Java implementation of the Fractal component model developed
by INRIA Sardes for teaching purposes. Flone is not a full-fledge implemen-
tation of Fractal: it offers simplified APIs that globally reduce the openness
and use of reflection of the general Fractal model so as to make teaching of
component-based programming easier for students.

– FracTalk is an experimental SmallTalk implementation of the Fractal com-
ponent model developed at Ecole des Mines de Douai. FracTalk focuses very
much on dynamicity in component-based programming thanks the intrinsic
dynamic nature of the SmallTalk language.

– Plasma is a C++ experimental implementation of Fractal developed at IN-
RIA Sardes (with a participation of Microsoft Research) dedicated to the
construction of self-adaptable multimedia applications.

2.3 Languages & Tools

A large number of R&D activities are being conducted inside the Fractal commu-
nity around languages and tools, with the overall ambition to provide a complete
environment covering the complete component-based software life cycle covering
modelling, design, development, deployment and (self-)management. A repre-
sentative but not exhaustive list of such activities is the following:

– development of formal foundations for the Fractal model, typically by means
of calculi, essentially by INRIA Sardes,

– development of basic and higher levels (e.g. transactional) mechanisms for
trusted dynamic reconfigurations, by France Telecom, INRIA Sardes and
Ecole des Mines de Nantes (EMN),

– support for configuration, development of ADL support and associated tool
chain, by INRIA Sardes, Jacquard, France Telecom, ST Micoelectronics,

– support for packaging and deployment, by INRIA Jacquard, Sardes Oasis,
IMAG LSR laboratory, ENST Bretagne,

– development of navigation and management tools, by INRIA Jacquard and
France Telecom,

– development of architectures that mix components and aspects (AOP), at
the component (applicative) level and at the membrane (technical) level, by
INRIA, France Telecom, ICS/Charles University Prague,

– development of specification models, languages and associated tools for static
and dynamic checking of component behaviour, involving ICS/Charles Uni-
versity Prague, I3S/U. Nice, France Telecom, Valoria/U. Bretagne Sud,

– development of security architectures (access control, authentication, isola-
tion), by France Telecom,

– development of QoS management architectures and mechanisms, for instance
in THINK-based embedded systems, by France Telecom, or multimedia ser-
vices with Plasma, by INRIA Sardes,

– development of semi-formal modelling and design methodologies (UML, MDA),
models and tools, by CEA, Charles University Prague and others,

– ...

5

The most mature among these works are typically incorporated as new mod-
ules into the Fractal code base. Examples of such modules are the following:

– Fractal RMI is a set of Fractal components that provide a binding factory
to create synchronous distributed bindings between Fractal components (la
Java RMI). These components are based on a re-engineering process of the
Jonathan framework.

– Fractal ADL (Architecture Description Languages) is a language for defin-
ing Fractal configurations (components assemblies) and an associated retar-
getable parsing tool with different back-ends for instantiating these configu-
rations on different implementations (Julia, AOKell, THINK, etc.). Fractal
ADL is a modular (XML modules defined by DTDs) and extensible language
to describe components, interfaces, bindings, containment relationships, at-
tributes and types - which is classical for an ADL - but also to describe
implementations and especially membrane constructions that are specific to
each Fractal implementation, deployment information, behaviour and QoS
contracts or any other architectural concern. Fractal ADL can be considered
as the favourite entry point to Fractal components programming (its offers
a much higher level of abstraction than the bare Fractal APIs) that embeds
concepts of the Fractal component model7.

– FractalGUI is a graphical editor for Fractal component configurations which
allows for component design with boxes and arrows. Fractal GUI can im-
port/export Fractal configurations from/to Fractal ADL files.

– FScript is a scripting language used to describe architectural reconfigura-
tions of Fractal components. FScript includes a special notation called FPath
(loosely inspired by XPath) to query, i.e. navigate and select elements from
Fractal architectures (components, interfaces...) according to some proper-
ties (e.g. which components are connected to this particular component? how
many components are bound to this particular component?). FPath is used
inside FScript to select the elements to reconfigure, but can be used by itself
as a query language for Fractal.

– Fractal Explorer is a ”graphical” (in fact a multi-textual windows system)
management console that allows for navigation, introspection and reconfig-
uration of running Fractal systems in Java.

– Fractal JMX is a set of Fractal components that allows for automatic, declar-
ative and non-intrusive exposition of Fractal components into JMX servers
with filtering and renaming capabilities. Fractal JMX allows administrators
to see a Fractal system as if it was a plain Java system instrumented ”by
hand” for JMX management: Fractal components are mapped to MBeans
that are accessible by program or with a JMX console through a JMX server.

7 It is worth noticing that Fractal ADL is not (yet) a complete component-oriented
language (in the Turing sense), hence the need for execution support in host pro-
gramming languages a.k.a. ”implementations”.

6

2.4 Component Library & Real Life Usage

Fractal has essentially been used so far to build middleware and operating system
components. The current library of components engineered with Fractal that are
currently available inside ObjectWeb include:

– DREAM, a framework (i.e. a set of components) for building different types
(group communications, message passing, event-reaction, publish-subscribe)
of asynchronous communication systems (management of messages, queues,
channels, protocols, multiplexers, routers, etc.)

– GOTM, a framework for building transaction management systems (man-
agement of transactions demarcation, distributed commit, concurrency, re-
covery, resources/contexts, etc.)

– Perseus, a framework for building persistence management systems (man-
agement of persistency, caching, concurrency, logging, pools, etc.),

– Speedo, an implementation of the JDO (Java Data Object) standard for
persistence of Java objects. Speedo embeds Perseus,

– CLIF, a framework for performance testing, load injection and monitoring
(management of blades, probes, injectors, data aggregators, etc.)

– JOnAS, a J2EE compliant application server. JOnAS embeds Speedo (hence
Perseus, Fractal, Julia, ASM),

– Petals, an implementation of Java Business Integration (JBI) platform, i.e.
an Enterprise Software Bus.

Some of these components that embed Fractal technology are used opera-
tionally, for instance JOnAS, Speedo and CLIF by France Telecom: JOnAS is
widely used by France Telecom8 for its service platforms, information systems
and networks by more than 100 applications including vocal services includ-
ing VoIP, enterprise web portals, phone directories, clients management, billing
management, salesman management, lines and incidents management.

3 Organization of the Workshop

3.1 History of Fractal workshops

The Fractal CBSE workshop at ECOOP 2006 was the 5th in the series9.
The first workshop was held in January 2003 as an associated event of an

ObjectWeb architecture meeting. The attendance was of about 35 people. 15
talks were given, organized in 5 sessions. The first session was a feedback ses-
sion about the use of Fractal in Jonathan (a flexible ORB), JORAM (a JMS-
compliant MOM) and ProActive (a distributed computing environment based
on active objects). The second session was dedicated to Fractal implementation,s
8 See http://jonas.objectweb.org/success.html for a more comprehensive list of oper-

ational usage of JOnAS.
9 All programs and talks from Fractal CBSE workshops are available on the Fractal

project web site at http://fractal.objectweb.org.

7

namely Julia and THINK. The third sessions was devoted to configuration tools,
namely Kilim and Fractal GUI. The fourth session was dedicated to management
and deployment, especially JMX management with Fractal JMX and connection
with J2EE management and OSGi. The last session presented a conceptual com-
parison of Fractal and other component models.

The second workshop was held in March 2004 as an associated event of an
ObjectWeb architecture meeting and ITEA Osmose project meeting. The at-
tendance was of about 30 people. 10 talks were given, organized in 3 sessions.
The first session was dedicated to tutorials on the Fractal model and Java tools
(Fractal ADL, Fractal GUI, Fractal Explorer). The second session was dedicated
to feedback from practical usage of Fractal in the Dream communication frame-
work, the CLIF framework for load injection and performance evaluation and
the GoTM open transaction monitor. The third session was dedicated to work
in progress: components for grid computing with Fractal and ProActive, com-
ponents and aspects, convergence of the Fractal and SOFA component models.

The third workshop was held in June 2005, again as an associated event of
an ObjectWeb architecture meeting. The attendance was of about 20 people.
It was mostly dedicated to discussions about components and aspects around
AOKell (aspect-oriented programming of Fractal component membranes), FAC
(Fractal Aspect Components: reification of aspects as components), and ”micro-
controllers”. Another talk was given about the development of a formal and
dynamic ADL.

The fourth workshop was held in November 2005 as a satellite of the ACM
/IFIP/USENIX Middleware conference. The attendance was of more than 50
people. 8 talks about work in progress were given, framed by an introduction
to Fractal and the Fractal project, and a final discussion about the evolution
of the Fractal project. The technical talks described the recent developments
concerning the Fractal ADL tool chain, the Fractal RMI ORB, the AOKell and
ProActive implementations, reliability of Fractal components thanks to contracts
(ConFract), behaviour protocols and model checking, with an original talk from
the Nokia research center about dynamic and automatic configuration of com-
ponents.

3.2 Call for proposals

The call for proposals, that was publicized on several mailing-lists (ObjectWeb,
DBWorld, seworld, ACM SIGOPS France...), contained:

– a description and rationale for component-based architecture and its interest
for the ECOOP conference;

– the expected audience: the Fractal community inside the ObjectWeb com-
munity hopefully enlarged thanks to ECOOP;

– the definition of scope of expected proposals: implementation and confor-
mance test suites, model extensions, languages and tools, practical usage
and feedback;

– and finally a description of the submission and selection process.

8

The submission and selection processes were rather light. Submissions were asked
to contain 2 to 4 pages describing the work to be presented during the workshop.
No full-length articles were asked for submission10.

3.3 Selection and call for participation

More than 20 propositions were received, evaluated and discussed by the work-
shop organisers. Among them, 11 were selected for regular talks during the
workshop. The selection was based on several individual criteria (technical ma-
turity, originality, novelty) and also globally so as to cover a wide spectrum of
activities around the Fractal component model and to make an interesting pro-
gram with potential vivid discussions among participants. Most other proposals
were very relevant but unfortunately could not fit in a one-day workshop, and
were proposed to give place to poster presentations during breaks and lunch.

The final call for participation repeated the general items of the call for
proposals and gave the detailed program with the list of regular talks and posters.

4 Tenue of the Workshop

The workshop took place the 3rd of July 2006. It was organized around 11 talks
(typically 20 mn talk + 10 mn discussion) grouped in 5 sessions: Implementation
and Basic Tools, Higher Languages and Tools, UML and MDA Design, Verifi-
cation and Predictable Assembly, and Applications. 3 poster sessions also took
place during coffee breaks and lunch. A final free discussion involving the around
30 participants closed the workshop.

4.1 Presentations and Discussions

The first morning session was devoted to implementations and basic tools for
Fractal component programming.

L. Seinturier presented a joint work between INRIA Jacquard (L. Seinturier,
N. Pessemier) and IMAG LSR laboratory (D. Donsez, C. Escoffier) towards
a reference model for implementing the Fractal specifications in Java and the
.Net platform. This preparatory work, fuelled by the development of the AOKell
Fractal implementation and its port on the .Net platform, and a comparative
analysis of the Julia implementation, advocates for a greater interoperability be-
tween Fractal implementations. The purpose of a Fractal implementation is to
support the Fractal APIs and to offer mechanisms to compose control aspects
inside membranes. Of course, all Fractal implementations support the Fractal
API (with possible different conformance levels however) but offer generally dif-
ferent and incompatible mechanisms for building membranes. The aim of this
line of work is to define some ”Service Provider Interfaces” (SPI) that would
10 A post-workshop editing and publishing activity to produce post-workshops pro-

ceedings was planned however.

9

embody programming conventions; implementations should follow these conven-
tions so as to build assembly of, for instance, Julia and OAKell components
and hopefully mix controllers/interceptors from different implementations. This
line of work was acknowledged by the audience as very useful and important,
and probably strongly connected to necessary efforts towards the definition of
compliance test suites and benchmarks for Fractal implementations.

E. Özcan presented a status of the work in progress around THINK by STMi-
crolectronics (E. Özcan, M. Leclerc), France Telecom (J. Polakovic) and INRIA
Sardes (J.-B. Stefani). The talk focused on recent developments of the ADL tool-
chain for THINK (Fractal ADL Factory) so as to make it more modular (finer-
grained), extensible and retargetable, i.e. able to consider different back-ends cor-
responding to different hardware platforms. The talk concluded by listing other
recent R&D activities and additions to the Kortex component library such as
support for multi-processor platforms and support for customizable multimedia
applications. The following discussion was not so much technical but concerned
the collaborative management of the THINK code base. The THINK code base
was historically managed by a few individuals from France Telecom and INRIA,
with a quite clear direction and minimal collaborative decision making. Now,
the growing implication of STMicrolectronics and others raises the question of
how to choose between alternative propositions, e.g. concerning the design of the
ADL tool chain for THINK, who is authorized to commit in the code base, who
is authorized to create branches, etc.

The second session was devoted to higher languages and tools.
P.-C. David presented the work he did on FScript with T. Ledoux at Ecole des

Mines de Nantes and France Telecom. FScript is a scripting language that allows
for expressing reconfigurations of Fractal systems much more concisely, thanks
to a higher level of abstraction than the bare Fractal APIs. FScript also includes
FPath, a sublanguage/subsystem for navigation/query in Fractal architectures.
It only comes with a Java backend for the time being but works are ongoing,
e.g. at France Telecom, to use FScript to express reconfigurations in the THINK
platform. One focus of the talk was the ACID-like transactional properties of
FScript that would allow for safe reconfigurations. The vivid discussion following
the talk revealed that this important but complex matter would/should require
more developments.

R. Rouvoy presented the work on attribute-oriented programming around
Fraclet with N. Pessemier, R. Pawlack and P. Merle at INRIA Jacquard. Fraclet
is an annotation framework for Fractal components in Java. The motivation for
this work is that component programming can be considered as verbose - and
hence time consuming - by developers because the components code has to re-
spect some conventions and provide meta-information as required by the Fractal
model. Fraclet is composed of a library of annotations and plugins to gener-
ate11 automatically various artifacts required by the Fractal component model
(a.k.a. callbacks). Annotations provide a way to describe the component meta-

11 Fraclet and attribute-oriented programming in general takes its roots in generative
programming and aspect-oriented programming.

10

information directly in the source code of the content Java class. Fraclet plugins
generate either Fractal component glue (use of Fractal APIs) or FractalADL def-
initions. Two implementations of the Fraclet annotation framework exist: Fraclet
XDoc and Fraclet Annotation. Fraclet XDoc uses the XDoclet generation engine
to produce the various artifacts required by the Fractal component model. Fra-
clet Annotation uses the Spoon transformation tool to enhance the handwritten
program code with the non-functional properties of the component model. The
talk emphasised two benefits of the approach. First, a reduction in development
time and in the size of the components code produced ”by hand”. Second, a
better support for software deployment and evolution: the presence in compo-
nents code of architecture/deployment concerns facilitates the co-evolution of
business and architecture/deployment code. This second benefit appeared as ar-
guable from an industrial point of view: mixing, within the same file, business
and deployment concerns might not appear as such a pleasant idea for soft-
ware administrators. Also, a massive use of annotations is quite questionable
with respect to code analysis and dependability in general. Most participants
to the workshops were rather programmers than industrials and appeared quite
enthusiastic about annotations and Fraclet anyway!

The third session was devoted to component modelling and more specifically
to UML and MDA design.

V. Mencl presented a study with M. Polak at Charles University, Prague.
They used their comparative analysis of UML 2.0 components and Fractal com-
ponents to discuss possible mappings of Fractal concepts in UML. They actually
proposed one specific mapping and instrumented it as a plug-in for the Enterprise
Architect platform which is able to generate the Fractal ADL component descrip-
tions, Java interfaces and a skeleton of the actual Java code of components. In
the after-talk discussion, some possible future extensions were mentioned such
as to reverse engineer UML models from Fractal ADL descriptions or runtime
capture and representation in UML of a running Fractal system.

F. Loiret presented a study with D. Servat at CEA/LIST and L. Seinturier at
INRIA Jacquard about modelling real-time Fractal components. This early work
includes the definition of a EMF (Eclipse Modelling Framework) meta-model of
Fractal IDL and ADL description, as well as the development of an Eclipse plug-
in for actual generation of Fractal components targetting the THINK platform.
The perspectives that were discussed include an extension of the meta-model to
describe components behaviour and a reverse engineering tool chain to extract
behaviour from the code of components.

The general discussion at the end of this modelling session acknowledged
that there is probably not a unique direct mapping between UML and Fractal,
especially because of specificities of Fractal such as component sharing and reflec-
tion (components controllers and membranes). However, thanks to UML/MDA
(meta)modelling capabilities, different UML (meta)models could be defined to
tackle Fractal specificities. People/teams interested by this line of work inside
the Fractal community were encouraged to discuss further and hopefully to con-

11

verge towards a common meta model (or at least to assess if one such a common
model would make sense).

In the afternoon, the fourth session was devoted to verification tools and
predictable assembly.

J. Kofron presented the work on behaviour protocols by J. Adamek, T. Bu-
res, P. Jesek, V. Mencl, P. Parizek and F. Plasil at Charles University, Prague.
Behaviour protocols are basically a formalism that allows for the specification of
the expected behaviour of components in terms of legal sequences of operation
invocations on components interfaces. A static behaviour protocol checker has
been developed in the context of the SOFA component models for several years
by Charles University. Recently, behaviour protocols have been ported on the
Fractal platform through a partnership between Charles University and France
Telecom. The result is a static checker and a dynamic checker that include Java
code analysis of primitive components with the JavaPathFinder (JPF) model
checker.

E. Madelaine presented a case-study of verification of distributed components
behaviour with L. Henrio and A. Cansado at INRIA Oasis/I3S/U. Nice. The
case study application itself has been defined in a partnership between Charles
University and France Telecom to experiment behaviour protocols (cf. previous
paragraph). E. Madelaine and al. used this application to experiment with their
own verification formalism, parameterized networks with their supporting ver-
ification platform Vercors. This formal approach allows for model-checking of
components behaviour (typically deadlock and reachability checking). The work
also mentioned the proposition of a new Fractal ADL module (defined in col-
laboration with Charles University) for attaching behaviour specification and
associated verification tools in architecture descriptions.

D. Deveaux presented a work with P. Collet, respectively at Valoria/U. Bre-
tagne Sud and I3S/U. Nice, on contract-based built-in testing. The approach
leverages previous works on built-in testing of Java classes by Valoria and Con-
Fract, a contracting system for Fractal by I3S and France Telecom. It proposes
to instrument each component under test (CUT) with, for instance, ConFract
contracts which embody the particular testing information of this component
and a test controller that would generate a test bed component encapsulating
(containing) each CUT. A prototype is currently under development. Some ques-
tions arose from the audience concerning the adherence to ConFract and if the
approach was only applicable during the design phase or whether it would be
used in a deployed system. D. deveaux explained that the system would exhibit
low dependancy to the contracting system (alternative contract systems may be
used instead of ConFract) and would not be limited to unit testing, but could
also handle admission, integration and regression test thanks to the dynamic
configuration management capabilities in Fractal.

The fifth and last session was devoted to applications in real life of the Fractal
technology.

N. Rivierre presented the work around JMXPrism with T. Coupaye at France
Telecom. JMXPrism is a mediation layer that stands between the systems to be

12

managed through JMX and management consoles or applications. JMXPrism
provides a unique access point (embedding a JMX server) for managers that al-
lows for the definition and management of logical views on the managed systems.
JMXPrism prevents managers to access directly the managed systems and allows
for filtering, renaming, etc. JMXPrims is implemented in Fractal which makes it
very dynamic, allowing views and other components of a JMXPrims server to be
changed very easily. JMXPrism embeds Fractal JMX, which was released some
time ago as open source in the Fractal code base, and which allows for a declara-
tive and non-intrusive exposition of Fractal components in JMX. JMXPrism has
been used inside France Telecom to build a toy autonomic prototype controlling
the creation of threads correlated to memory consumption. It has also been used
more operationally in a grid information system project in partnership with Fu-
jitsu to provide an homogenous view of resources in cluster on which resource
sharing control was exercised to arbitrate two concurrently running applications:
a visio-conference application exhibiting real-time QoS constraints and a batch-
oriented scientific computing application.

G. Huang presented the last work with L. Lan, J. Yang and H. Mei at Peking
University, Beijing, China on next generation J2EE servers. The work advocates
for a combined use of reflective (applicative) components as embodied in Fractal
or the ABC tool chain from Peking University and reflective middleware (espe-
cially EJB container) in future J2EE servers. Experiments are been conducted
in PKUAS, an J2EE-compliant J2EE application server developed at Peking
University. The talk raises up the engaged collaboration between ObjectWeb
and OrientWare12, a Chinese open source middleware consortium, as a suitable
context for this line of work.

4.2 Final Discussion

The open discussion session was launched by a short talk by D. Caromel from
INRIA Oasis, who reported on the Grid Component Model (GCM). GCM is
an component model dedicated to grid systems that is being defined by the
IST CoreGrid13 network of excellence (NoE) along with the IST STREP project
GridCOMP which is in charge of implementing, tooling and experimenting GCM.
Fractal is considered as the basis for GCM and also as the main candidate to
emerge as the standard component model for grid computing, at least in Europe.
The talk recalled for some changes in the Fractal APIs that would be suitable
for grid environments and that were discussed in previous Fractal workshop
(e.g. multicast interfaces) but, more importantly, advocates for a close synergy
between ObjectWeb/Fractal and CoreGrid/GridCOMP, i.e. a support of Fractal
in CoreGrid and symmetrically a commitment from the Fractal community. This
point was largely acknowledged as an important matter for the visibility and
future of Fractal.

12 http://www.orientware.org
13 http://www.coregrid.net/

13

The discussion on the expected synergy between ObjectWeb/Fractal and
CoreGrid/GridCOMP raised up a more general discussion about the evolution of
the Fractal project. Some time ago was announced an evolution towards ”Fractal
v3”. Some points were discussed during the previous Fractal workshop (Novem-
ber 2005), namely: i) evolution of the Fractal model specification (e.g. removal
of some semantic ambiguities, changes and additions required for grid comput-
ing), including evolution in the organisation of the work on the specification
with editors, editing committee and contributors, ii) evolution in the manage-
ment of the Fractal code bases (e.g. cartography/matrix of (in)compatibilities
between implementations and tools, conformance test suites) and iii) evolution
of the Fractal web site (e.g. bibliography, success stories) and more generally
of the management of the Fractal community (e.g. more structured workshops
with CFP, program committee, proceedings; working groups inside the Frac-
tal project). Since then, some elements contributed to ”Fractal v3” in a quite
informal way e.g. reflections on interoperability between Fractal implementa-
tions (cf. work by Seinturier and al. in the previous section), organisation of
the two last workshops as satellite events of Middleware and ECOOP confer-
ences (including CFP, PC and hopefully post-proceeding for Fractal Workshop
at ECOOP), additions to the Fractal code base(s) (e.g. AOKell, FScript) and
web site. The discussion at ECOOP, as well as previous informal discussions in
particular on the Fractal mailing-list, revealed that some people were perhaps
expecting a quicker evolution. Again, after a lively discussion, the workshop or-
ganisers pointed out that there might have been a misunderstanding and that
what was intended by ”Fractal v3” does not boild down to just a evolution of the
specification of the model itself but refers to a collective effort with implication
of many individuals that are part of the Fractal community so as to tackle the
different issues at stake (implementations engineering and interoperability, con-
formance test suites, tools, common code base for uses cases and demonstrators,
management of commit in code bases, web site, etc.).

From the evolution of Fractal, the discussion then jumped to the standardi-
sation of Fractal. Several participants advocated for a more volunteer approach
of the Fractal community towards standardization organisms. A vivid discus-
sion took place to assess which standard committees/organizations would be
most appropriate (ISO, IUT, Sun JCP, OMG...). Some others pointed out that
standardization in the middleware area is a huge effort and the return on this
investment not always remunerating. Most participants agreed that the group or
institution they represent would not have much resources for such activities any-
way. The question of standardization activities around Fractal remains largely
open.

Acknowledgments We would like to thank the ECOOP conference and work-
shop organizers for their assistance in the preparation of this workshop. We
would like to thank the Fractal community for its vitality, for having proposed
so many talks at this workshop even though this was the 3rd Fractal workshop
in less than a year. Thanks to A. Lefebvre for his careful reading and comments.

