
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D2.2a
Report on Architectural Framework Specification

Due date of deliverable: July 15, 2007
Actual submission date: July 15, 2007

Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor
for this deliverable: KTH
Revision: 0.6
Dissemination level: CO

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007

CONTENTS

Contents

1 Executive summary 1

2 Contractors contributing to the Deliverable 2

3 Results 4
3.1 Fractal-based autonomic infrastructure 4
3.2 Event-driven component-based middleware architecture 5

3.2.1 Event Scheduling . 5
3.2.2 Failure Detection . 6
3.2.3 Future Work . 8

3.3 P2PKit relaxed-ring service architecture 8
3.3.1 Structure of P2PKit . 8
3.3.2 P2PKit services . 11
3.3.3 P2PKit as a self-adaptability primitive 11

4 Papers and publications 12

A Large Scale Management Infrastructure 14

B Transactional Reconfiguration of Component-Based Architectures 21

C Composite Probes 30

D Event-Condition-Action Rules for Components 51

E Middleware for Building Internet-scale, Dynamic, Distributed Ap-
plications 62

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 1

1 EXECUTIVE SUMMARY

1 Executive summary

The main objective of workpackage WP2 is to design and implement the SELF-
MAN service architecture, a component-based architecture for large, self-managing
distributed systems. The architecture relies on the structured overlay networks de-
veloped in WP1 for its basic distributed services. The component-based architecture
comprises: (1) a reflective component-based computational model, (2) together with
its formal semantics, and (3) a component-based architectural framework, compris-
ing abstractions, design patterns, and basic infrastructure services.

This deliverable is responsible for specifying the architectural framework that
embodies the SELFMAN service architecture. It includes

• an advanced component model (such as Fractal [1]) with associated execution
supports and tools and services participating in an autonomic infrastructure:

• services used for large distributed systems monitoring (probes, sensors), probes,
events filtering, aggregation, composition, diagnosis, decision making, recon-
figuration, etc;

• transactional dynamic reconfiguration support for component-based systems
providing ACID properties where consistency is defined based on architectural
constraints;

• an Event-Condition-Action rules mechanism providing a basic mechanism for
decision-making in autonomic systems, where rules are implemented as hier-
archical Fractal [1] components;

• an architecture for monitoring large-scale distributed systems allowing for
flexible topologies of domains including hierarchical and overlapping domains
so as to support the different needs of multiple management applications;

• an event-driven component-oriented middleware for building self-managing
and self-organizing distributed applications, providing basic mechanisms for
scalable connection-oriented communication, failure detection, overlay name-
based routing, group communication and a distributed hash table abstraction.

• the P2PKit SON service architecture adapted to the new P2PS relaxed-ring
topology described in deliverable D1.1.

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 1

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

FT R&D(P4), KTH(P2) and UCL(P1) have contributed to this deliverable.

FT R&D(P4) The contribution of France Telecom to this deliverable is twofold:
i) a continuous work on the Fractal [1] component model (notably with INRIA),
platforms and tools ; and ii) an anticipation work on a self-management architec-
tural framework.

In the first line of work (basic component model), France Telecom has recently
developed the tool ’Fractal ADL Dumper’ which allows to store/restore components
(with their state) into Fractal ADL XML format. The tool is available as open
source in the ObjectWeb/Fractal code base.

In the second line of work, France Telecom has developed some extensions of
Fractal that can be seen as core building blocks (”enablers”) of a component-based
autonomic infrastructure. The extensions concern: transactional reconfiguration
of component architectures, an architecture for the aggregation of probes/sensors,
an architecture for large scale management of distributed systems, an active rules
(Event-Condition-Action) mechanism, a new version of the CLIF load injector and
performance analysis and reporting.

It is worth noting that these works are framed by the development of the M2M
use case in WP5 (deliverable D5.1 on user requirements) - hence they are seen as
contributions both to WP2 and WP5 (user requirements and evaluations). Works
on performance analysis and their usage in self-optimization scenarios can also be
seen as contributions to WP3 (self-optimization services)

France Telecom contributors to this deliverable are (in alphabetical order): T.
Coupaye (Senior Researcher), B. Dillenseger (Senior Researcher), A.Diaconescu (Ju-
nior Researcher), A. Harbaoui (PhD Student), N. Jayaprakash (PhD Student), M.
Kessis (PhD Student), A. Lefebvre (Senior Researcher), M. Leger (PhD Student).

KTH(P2) The contribution of KTH to this deliverable consists of designing and
implementing a component-based event-driven middleware architecture for building
Internet-scale, dynamic, distributed applications. The middleware provides basic
mechanism for self-managing and self-organizing distributed applications, such as:
scalable connection-oriented communication, failure detection, overlay name-based
routing, group communication and a distributed hash table abstraction. Our mid-
dleware implements the Distributed k-ary System [3] structured overlay network.

The middleware is architectured as event-driven components executed by an
adaptive number of threads, automatically accommodating multicore machines.
Components interact by exchanging events through a publish-subscribe interface.

KTH contributors to this deliverable are (in alphabetical order): Cosmin Arad
(PhD Student), Seif Haridi (Senior Researcher), Roberto Roverso (Research Engi-
neer).

UCL(P1) The contribution of UCL to this deliverable consists of adapting the
service architecture of the P2PKit structured overlay network to the new relaxed-
ring topology of P2PS. This is ongoing work that will be published during the next
period of the project.

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 2

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

UCL contributors to this deliverable are (in alphabetical order): Yves Jaradin
(PhD Student), Boriss Mejias (PhD Student), Peter Van Roy (Senior Researcher).

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 3

3 RESULTS

3 Results

3.1 Fractal-based autonomic infrastructure

We consider here that an autonomic system is composed of an autonomic infras-
tructure superimposed on a target component-based system seen as an overlay net-
work. The autonomic infrastructure is responsible for implementing a control loop,
i.e. instrumenting the components of the target system for monitoring, detecting,
filtering, aggregating, composing and notifying events, diagnosing the system based
on these events, and making decisions to determine what and how corrective ac-
tions need to be executed, and finally, executing the corrective actions on the target
component-based system. We are targeting as much as possible a component-based
implementation of autonomic control loops so as to envision the autonomic man-
agement of autonomic infrastructures.

France Telecom has produced 4 extensions of the Fractal [1] component frame-
work (devised by the ObjectWeb open source consortium) participating of an au-
tonomic component-based infrastructure:

• a transactional support for components dynamic reconfigurations. The mech-
anism includes support for concurrency and recovery (including state store/restore).
The ACID properties, in which the consistency is defined based on architec-
tural constraints (both intrinsic to the Fractal component model and appli-
cation specific constraints), for which a constraint language has been defined,
ensures the reliability and correctness of systems reconfigurations.

• a distributed architecture that allows for the filtering and aggregation of data
coming from probes/sensors in which composite probes (or probes aggrega-
tors) are themselves implemented as Fractal [1] components. Probes and
composite probes can be distributed thanks to Fractal RMI (a dialect of Java
RMI specific to Fractal).

• an active rules (or Event-Condition-Action or ECA rules) mechanism for
component-based systems which is used as a basic decision making mecha-
nism in an autonomic infrastructure. The work focuses more precisely on an
extensible component-based architecture, in which rules and their constituents
(policies, rules, events, conditions, actions, individual and collective behavior
of rules, etc.) are themselves implemented as components so as to support
dynamicity and extensibility: rules can be added, removed, their scope (the
components they concern) and behavior changed at will, including at run-
time.

• an architecture for the management of large-scale distributed systems. This
middleware sits between resources (or managed elements in IBM autonomic
terminology) and management applications (or manager elements in IBM au-
tonomic terminology). It is worth noting in the context of SELFMAN that an
autonomic control loop is a particular case of a management application. The
middleware is architectured based on the concept of domain (implemented
as Fractal [1] components) which encapsulate resources (or resource proxies)
and provides them with management services (e.g. event management, query

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 4

3 RESULTS

facilities). The middleware allows for flexible topologies of domains including
hierarchical and overlapping domains so as to support the different needs of
multiple management applications (or autonomic managers) and to handle
scalability.

3.2 Event-driven component-based middleware architecture

We have considered the basic low-level services needed to support a self-managing
and self-organizing large distributed system. These basic services include scalable
connection-oriented communication, eventually perfect failure detection [4, 2], over-
lay name-based routing, group communication and a distributed hash table abstrac-
tion. The application nodes are connected in a structured overlay network induced
by the Distributed k-ary System [3] DHT topology.

KTH has implemented these basic services in a middleware library architectured
as event-driven components that interact through a publish-subscribe interface.
Components subscribe to certain input event types, that they can handle and might
trigger (publish) other output events while handling their input events. Triggered
events are prioritized into three priority classes. We summarize here the event
scheduling and the failure detection algorithms:

3.2.1 Event Scheduling

Triggering and execution of events relies on a publish-subscribe mechanism. Com-
ponents subscribe for all the event types that they can handle. Whenever a new
event is triggered, it is published for scheduling and when scheduled, the corre-
sponding event handlers or all components that had subscribed for that event type
are executed. Event handlers are executed by the worker threads of a thread pool
of adjustable size. While being executed, event handlers might trigger other events.

An event subscription contains a reference to the subscriber component instance,
a reference to the event handler method, and the event type for which the subscrip-
tion is made. All event subscriptions are stored in a hash table indexed by event
type. In fact, a set of subscriptions is associated to an event type as there can be
more than one component subscribing for the same event type. The event subscrip-
tion table is depicted in Figure 1.

When an event is triggered a new event instance is created and placed on an
event queue. The event queue is a priority queue and is used for prioritization
of events. Events can have one of three priorities: low, medium, or high. By
convention timer expiration events are given high priority, middleware events are
given medium priority, and application events are given low priority. In general,
high priority events are scheduled before medium and low priority ones and medium
priority events are scheduled before low priority ones. However, to avoid starvation
of low priority events we implement the following fairness mechanism: not more
than f events are consecutively scheduled from a higher priority queue if there
exist events in lower priority queues. f is a fairness parameter.

When an event is dequeued for scheduling, its type is looked up in the subscrip-
tion table and all subscriptions are retrieved. For each subscription in part a work
item is created and submitted for execution to the thread pool. A work item is a

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 5

3 RESULTS

Event classes Subscriptions to Events

Event1

Event2

Subscription1
Event 1

Subscription2
Event 1

Subscription3
Event 1

Subscription1
Event 2

Subscription2
Event 2

Event3

Subscription1 Subscription2

Subscription1
Event 3

Subscription2
Event 3

Subscription3
Event 3

Event4 Subscription1
Event 4

Event 4
Subscription1

• Component instance
Subscription1

• Handler Method

Figure 1: Subscription Table

unit of work that can be executed by a worker thread in the thread pool. It consists
of the event instance that needs to be handled and references to the component
instance and handler method that need to be executed for handling the event. A
worker thread that processes a work item will invoke the handler method on the
specified component instance passing it the event instance as an argument.

While invoking an event handler method on some component instance, a worker
thread locks that particular component instance. This enforces that one component
instance executes only one event handler at a time so the component writer does not
have to deal with concurrency. We can say that event handlers execute atomically
with respect to each other, or that components are concurrency-safe.

The event scheduling is summarized in Algorithm 1.

3.2.2 Failure Detection

As our middleware nodes are to be deployed over the Internet which behaves as
a partially synchronous network [4], we provide an eventually perfect [2, 4] failure
detector. This failure detector triggers suspicion events when it suspects that a
peer node has crashed, and rectification events when it finds that the suspicion was
in fact a false positive. False positives can happen in the Internet where most of
the time the message transmission delay is bounded but sometimes, due to conges-
tion, messages or acknowledgments may take longer than expected to arrive, thus
resulting into a timeout and triggering a false suspicion.

The failure detector relies on a prediction of round-trip time for each connection
in part. As all messages exchanged by the middleware are acknowledged, the RTT
can be measured for each sent message. For each connection the average RTT is
kept together with the RTT variance. These values are used to compute an expected
round-trip timeout (RTTO). RTTO = E(RTT) + 4 × V AR(RTT). This timeout
value is used to set a timer every time a message is sent. If the timer expires
before an acknowledgment is received, the peer is suspected to have crashed. If an

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 6

3 RESULTS

Algorithm 1 Event scheduling

1: procedure trigger(e) . Called to trigger event e
2: eventQueue.enqueue(e);
3: schedule();
4: end procedure

5: procedure schedule()
6: e := eventQueue.dequeue();
7: if e 6= nil then
8: subscriptions := subscriptionTable.get(e.type);
9: for all sub in subscriptions do

10: w := makeWork(sub);
11: workerPool.executeWork(w);
12: end for
13: end if
14: end procedure

15: procedure executeWork(w) . executed by a worker thread
16: lock(w.component);
17: (w.component).(w.handler)(w.event);
18: unlock(w.component);
19: end procedure

acknowledgment is eventually received, the RTTO is recomputed to adapt to the
new RTT. If an acknowledgment is received before the timer expires the timer is
just canceled.

In the case when the local peer doesn’t actively send messages to the remote
peer, the failure detector periodically sends ping probes awaiting for pong acknowl-
edgments within a timeout of RTTO milliseconds. From the failure detection point
of view, pings are equivalent to ordinary messages and pongs are equivalent to mes-
sage acknowledgments. The local peer waits for γ milliseconds from the time it
receives a pong until is sends the next ping. No ping is sent if the remote peer is
suspected, but the local peer awaits for the pong to the last sent ping.

As the failure detection mechanism closely relies on the RTTO estimation, com-
puted per each link in part, and on message acknowledgments, it is implemented
inside the communication component. Because each connection may have a dif-
ferent expected RTTO we have a failure detector instance for each connection in
part. The failure detector is a state machine depicted in Algorithm 2 and Algo-
rithm 3. The state machine is driven by events like: a message is sent by the local
peer, an acknowledgment is received, a timer expires, a pong is received. Here is a
description of the states of the failure detector:

• INIT if no message is sent a ping is sent after γ ms;

• MSENT a message has been sent and a timer set for RTTO;

• PSENT a ping has been sent and a timer set for RTTO;

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 7

3 RESULTS

• PMSENT a message has been sent while in the PSENT state;

• PSUSPECT no pong was received in the PSENT state and the timer ex-
pired;

• MSUSPECT no acknowledgement was received in the MSENT state and
the timer expired;

• PSUSPECT MSENT a message has been sent while in the PSUSPECT
state;

• MSUSPECT MSENT a message has been sent while in the MSUSPECT
state.

If the local peer sends a sequence of messages, only the first message is used
for failure detection. From the failure detection point of view, all messages sent
before the acknowledgement to the first sent message is received are ignored. This
behavior relies on the fact that connections are FIFO.

3.2.3 Future Work

As future work, we plan to fit a reflective, hierarchical component model, like Frac-
tal [1], to the DKS architecture, to allow for dynamic software reconfiguration. The
Fractal component model is being refined as part of Task T2.1 Component-based
computation model. We plan to work together with INRIA(P3) and FT R&D(P4),
the two project partners that developed the Fractal component model.

We also plan to implement a transactional database on top our DHT. Initial
work on transactional databases on top of DHTs has been done by project partners
ZIB(P5) and KTH(P2) and has been delivered in deliverable D3.1a.

3.3 P2PKit relaxed-ring service architecture

We have adapted the P2PKit service architecture to the new P2PS SON with a
relaxed ring topology. With the new topology, a node may be able to join the
network but unable to ever form part of the core ring, for example as a result of
firewalling. Such nodes should be avoided as they diminish the performance of the
DHT. On the other hand, the situation itself is unavoidable and the ability to work
with such restricted nodes is paramount to the usability of the architecture on the
Internet.

3.3.1 Structure of P2PKit

The P2PKit architecture is two-tiered. The first tier is made of peers, forming a
SON based on P2PS. Peer nodes are expected to have a reasonable stability and
the ability to form a perfect ring in the long run. Generic services are installed on
peers, in a redundant way.

The second tier is made of clients. Each client connects to a certain number of
peers. Particular services can run on clients. Since they are not part of the SON

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 8

3 RESULTS

Algorithm 2 Failure detection algorithm

1: event Init()
2: state := INIT

3: timer TimerR.start(γ)
4: end event

5: event MessageSent(messageId)
6: if state = INIT then
7: state := MSENT

8: timer TimerR.cancel()
9: firstSentMessageId = messageId

10: timer TimerM .start(RTTO)
11: else if state = PSENT then
12: state := PMSENT

13: else if state = PSUSPECT then
14: state := PSUSPECT MSENT

15: else if state = MSUSPECT then
16: state := MSUSPECT MSENT

17: else if state = PMSENT or state = PSUSPECT MSENT then
18: return . Ignore and wait for Pong
19: else if state = MSUSPECT MSENT or state = MSENT then
20: return . Ignore and wait for Ack(firstSentMessageId)
21: end if
22: end event

23: event AckReceived(ackId, newRTT)
24: if state = INIT then
25: return . Ignore, ack of message received during suspecting time
26: else if state = MSENT and ackId = firstSentMessageId then
27: timer TimerM .cancel()
28: updateExpectedRTTO(newRTT)
29: state := INIT

30: timer TimerR.start(γ)
31: else if state = MSUSPECT or state = MSUSPECT MSENT

32: and ackId = firstSentMessageId then
33: trigger rectificationEvent(connectedPeer)
34: updateExpectedRTTO(newRTT)
35: state := INIT

36: timer TimerR.start(γ)
37: end if
38: end event

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 9

3 RESULTS

Algorithm 3 Failure detection algorithm continued

1: event PongReceived(newRTT)
2: if state = PSENT or state = PMSENT then
3: timer TimerP .cancel()
4: updateExpectedRTTO(newRTT)
5: state := INIT

6: timer TimerR.start(γ)
7: else if state = PSUSPECT or state = PSUSPECT MSENT then
8: trigger rectificationEvent(connectedPeer)
9: updateExpectedRTTO(newRTT)

10: state := INIT

11: timer TimerR.start(γ)
12: end if
13: end event

14: event TimerExpired(TimerR)
15: sendto connectedPeer.ping()
16: state := PSENT

17: timer TimerP .start(RTTO)
18: end event

19: event TimerExpired(TimerP)
20: if state = PSENT then
21: trigger suspicionEvent(connectedPeer)
22: state := PSUSPECT

23: else if state = PMSENT then
24: trigger suspicionEvent(connectedPeer)
25: state := PSUSPECT MSENT

26: end if
27: end event

28: event TimerExpired(TimerM)
29: if state = MSUSPECT or state = PSUSPECT MSENT

30: or state = MSUSPECT MSENT then
31: return . Ignore, the peer is already suspected
32: else if state = PMSENT then
33: return . Ignore, waiting for Pong
34: else if state = MSENT then
35: trigger suspicionEvent(connectedPeer)
36: state := MSUSPECT

37: end if
38: end event

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 10

3 RESULTS

Figure 2: A P2PKit client connects to a P2PS node in order to publish and subscribe
to services.

per se, they have much less disruptive power. The only services which rely on a
particular client are the ones run by the client itself.

Figure 2 depicts the connections of a P2Pkit client to a P2PS node, which is
part of a SON using relaxed-ring topology. It uses a network handler to publish
services, and to submit requests. Response streams are used to filter message per
every service the client is subscribed to.

The two-tier architecture can be seen as closing the gap between pure SON
where stability and performance requirements are low and client-server where the
requirements are high for the server and extremely low for the clients. Now we can
combine extremely unreliable clients with a traditional SON.

3.3.2 P2PKit services

P2PKit services are active components that interface by message streams. Services
can dynamically create new streams and pass references to them to other services.
The generic services, installed on all the peers, have also access points. An access
point is a well-known name corresponding to a stream on each peer. A service can
send messages to an access point, specifying a modality (i.e. sending to just one
peer, at least one peer, all the peers, a specifically identified peer or according to
the DHT).

Particular services, run by the clients can of course have access to all the re-
sources of the client whereas generic services, being replicated to all the peers are
restricted to only use the P2PKit service architecture.

3.3.3 P2PKit as a self-adaptability primitive

Good performance of the P2PKit architecture requires a big stable SON of peers.
Since all the local resource access are in the client, peers are really equivalents and
an unstable peer can be removed from the SON. On the other hand, a client running
on a stable node can launch a peer on the same node to join the SON.

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 11

4 PAPERS AND PUBLICATIONS

4 Papers and publications

Appendices of the architectural framework specification contains the following doc-
uments:

• M. Kessis, P. Déchamboux, C. Roncancio, T. Coupaye, A. Lefebvre. Towards
a Flexible Middleware for Autonomous Integrated Management Applications.
Published in 2006 at the International Multi-Conference on Computing in the
Global Information Technology (ICCGI’06), August 2006.

• M. Leger, T. Coupaye, T. Ledoux. Reliability of Dynamic Reconfigurations
in Component-Based Systems. France Telecom Technical Report, February
2007.

• A. Diaconescu, B. Dillenseger. Composite Probes: a Generic Monitoring
Framework for Hiearchical Management of Heterogeneous Data. Submitted
for publication by France Telecom in April 2007.

• N. Jayaprakash, T. Coupaye, C. Collet, P.-C. David. Flexible Reactive Capa-
bilities in Component-Based Autonomic Sys tems. Submitted for publication
by France Telecom in May 2007.

• C. Arad, R. Roverso, A. Ghodsi, S. Haridi. Middleware for Building Internet-
scale, Dynamic, Distributed Applications. KTH Technical Report, June 2007.

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 12

REFERENCES

References

[1] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. The fractal component model and its support in java: Ex-
periences with auto-adaptive and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[2] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[3] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden,
December 2006.

[4] R. Guerraoui and L. Rondrigues. Introduction to Reliable Distributed Program-
ming. Springer-Verlag, Heidelberg, Germany, 2006.

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 13

A LARGE SCALE MANAGEMENT INFRASTRUCTURE

A Large Scale Management Infrastructure

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 14

Towards a Flexible Middleware for Autonomous Integrated Management
Applications

 Mehdi Kessis*, Pascal Déchamboux*, Claudia Roncancio**, Thierry Coupaye*, Alexandre Lefebvre*

*France Telecom, Research & Development, MAPS/AMS
28 chemin du Vieux Chêne, 38243 Meylan CEDEX, France

{Firstname.Lastname}@francetelecom.com
**LSR-IMAG

{Firstname.Lastname}@imag.fr

Abstract

Enterprise and global-scale systems today might

have thousands to millions of geographically
distributed nodes and this number will increase over
time. Managing efficiently such scattered systems
becomes increasingly complex and requires powerful
management capabilities. Traditional solutions to
manage and control them seem to have reached their
limits. In recent years, integrated management systems
and services as well as autonomic systems have raised
much interest in distributed systems and software
engineering. This paper discusses the architectural
issues facing the design of large-scale distributed
management systems. Then it suggests a new flexible
and scalable integrated management middleware to
handle management problems in large-scale
networked and heterogeneous systems.

Key words:
Integrated management, autonomic, component-based
architecture.

1. Introduction

In recent years there has been a considerable growth
in the use of distributed systems (peer-to-peer
networks, clusters, pervasive computing, sensor
networks, etc). These systems are scattered in our
companies, administrations, homes and even in our
pockets. Typically, they consist of large numbers of
heterogeneous computing devices connected by
communication networks, using various operating
systems, resources and services, and user applications
running on them. The dependability of our societies on
such systems is becoming more and more noticeable.
However, they become larger and more complex,
heterogeneous and scattered. Traditional solutions to
manage and to control them seem to have reached their
limits. The size and the complexity of distributed

system make it hard or even impossible to manage each
of their components. Today, enterprise networks may
count tens to thousands of managed resources.
Telecommunication operators may manage thousands
to millions of resources. For instance, France Telecom
is managing more than one million “Livebox” home
gateways. Due to the increased cost and complexity of
managing such infrastructures manually, distributed
computing systems are moving towards more
autonomous operation and management.

This paper discusses an integrated management
middleware that deals with such complex
environments. This middleware plays the role of
management broker that can be used by administrators
or by management applications (i.e., management
processes). It offers them (a) a customized view of the
system through resource monitoring functions and (b)
resource control management functions. We believe
that such an infrastructure may offer a high degree of
autonomy through management applications, by
automating actions on groups of resources. We note
that, in order to be able to automate such processes, a
rich information model as well as a powerful
programmatic model are needed.

This paper overviews our ongoing research. We aim
at investigating new approaches to handle scalability,
autonomy and heterogeneity issues in system
management. After discussing new management needs
and challenges, this paper proposes a middleware
architecture to deal with these issues. Our work focuses
on the monitoring activity, bringing flexibility and
adaptability to the proposed solution.

2. Distributed management challenges

Today, large-scale distributed systems management
is facing several major challenges. In this study, we
focus on four of these challenges: autonomy,
scalability, heterogeneity, and administrative isolation.

2.1. Autonomy

Managing efficiently such scattered systems
becomes increasingly complex and requires powerful
management capabilities. Traditional solutions to
manage and control them seem to have reached their
limits. In recent years, integrated management systems
and services, autonomic systems have raised much
interest in distributed systems and software engineering
[14]. An autonomic system is capable to repair,
configure, heal and protect itself [14]. The emerging
field of autonomic distributed computing addresses the
challenge of how to design and build distributed
computing systems that can manage, heal and optimise
themselves. Distributed computing systems are moving
towards increasingly autonomous operation and
management, in which their interacting components can
organise, regulate, repair and optimise themselves
without human intervention. [32]. These systems are
intended to tackle administration complexity that is out
of reach of human administrators, for instance handling
a large number of alarms and notifications. Besides,
automating management may reduce cost and improve
efficiency. To automate management, we need at least
three key elements: (a) representation, observation and
monitoring capabilities, (b) decision rules and
mechanisms and (c) control mechanisms.

2.2. Scalability

Scalability is a major problem for large-scale
distributed systems. There is no commonly accepted
definition of it [9]. In this paper, we consider the
following definition of scalability: "A scalable system
is one that maintains constant, or slowly degrading,
overheads and performance as its size increases" [8].
In the past years, centralised network management has
shown inadequacy for efficient management of large
heterogeneous networks. As a result, several distributed
approaches have been proposed to overcome the
problem [21]. This is a main concern of our work
because an enterprise network is an order of magnitude
less complex than the infrastructure of some service
providers, who monitor thousands to millions of
resources. There are two key aspects of scalability
involved in system management: the size of networks
and the number of users. Service providers create
extreme demands on both aspects1. Management
systems should accommodate large numbers of

1 The international Engineering Consortium
(http://www.iec.org), Performance Management of Next
Generation Networks.

participating nodes and they should allow applications
to monitor large numbers of managed resources.
Grouping and distributing management operations may
improve scalability of the management system.

2.3 Heterogeneity

The information model is a key feature in any
management system [2]. It offers a view of managed
resources (network, services, applications, etc.) to
management applications. Today’s networks involve
heterogeneous resources. A service failure can be
related to network or to application failures. In order to
rapidly identify causes of failures and to understand the
behaviour of complex managed resources, it is
important to be able to describe heterogeneous
managed resources and their interactions in the same
way. The main object of integrated management [12] is
to integrate different types of management (policy,
user, network, services) in a unique infrastructure. Such
infrastructure offers a complete view of the managed
environment. To do so, we need a common description
and representation of managed resources and their
interactions.

2.4. Administrative Isolation

Traditionally, in large-scale networked systems,
elements are grouped in managed domains. "A domain
is a set of objects to which a common management
policy applies" [18]. Each management domain is a
logical partition of managed resources and
management services. The set of managed objects may
include computers, people, privileges, software
processes, etc, depending on the purpose for which the
domain is defined. In order to deal with large-scale
networked and interconnected systems, domain
management tools are needed. Such tools offer to the
administrator the possibility to create, extend or merge
new logical domains from existing primitive domains.
Let us consider the France Telecom home gateway
example. An example of primitive management domain
could be the set of gateways related to a particular
DSLAM. A management domain might contain the
logical partition of gateways of a particular geographic
zone, while another might contain the set of “LB1234”
gateway model, in order to update their firmware.
Administrator needs automated tools to build and to
interact with management domains.

3. Towards a flexible and scalable
integrated management middleware

3.1 A component-based model

Flexibility is a required property for managing
large-scale networked systems. [11,7]. With a model
such as the one proposed by Fractal [1], we believe that
we can design, build and dynamically reconfigure
component-based management infrastructure.

Fractal is a generic component model focusing on
reconfiguration using flexible composition of
components. It adopts a recursive view of components
that may be nested. A component owns a membrane
(i.e., a set of controllers), which realizes arbitrary forms
of control over the content of the component.
Composite components include other sub-components.
A component sends and receives invocations through
access points called interfaces. Such interactions
require communication channels (named bindings)
between some of the component interfaces. Figure 1
illustrates the architecture of a Fractal component. This
composite component contains two sub-components
and exposes control interfaces C1 and C2 as well as
functional interfaces CS and Cc.

Figure 1 Example of Fractal components

Three main Fractal features are of particular interest:
a) Component hierarchy: composite components

recursively contain components, ending with
primitive components.

b) Component sharing: a (sub) component can be
contained in several composite components.
Typically, this feature can be used to model
resources that are intrinsically shared.

c) Components dynamicity: bindings between
components can be manipulated at runtime and is
particularly interesting for management purpose.
The model allows the definition of flexible
bindings, since bindings may be themselves
components.

Such properties are very interesting to design and
build management domains. Figure 4 shows an
example of mapping between domains and Fractal
components. Disjoint domains are represented by
disjoint components. Overlapping domains are

represented by shared component. Hierarchical
domains can be represented by composite domains.

Figure 2 Management Domains in Fractal

3.2. Global management architecture

This section introduces the global architecture of an
integrated management middleware that is positioned
between management applications and managed
resources. Managed resources are the set of physical
resources (switches, PC, PDA, Set-Top Box, etc.) and
logical resources (all or only a part of the OS,
middleware, applications, services, etc.) available in an
operator network.

A middleware relying on a flexible overlay network
is a promising approach to overcome issues outlined in
section 2. Such an approach allows management
applications to construct an abstract view of the
underlying network infrastructure and to federate
different networks (IP, ad-hoc, etc). The middleware
we propose builds an overlay network of mediation
nodes that support management domains. The overlay
network is functionally independent of the network
infrastructure. It is formed by mediation nodes, which
are interconnected through logical links. Figure 3
illustrates the global architecture of the proposed
management infrastructure. Nodes collaborate in order
to respond to queries of management applications.
Each node represents one or many management
domains. A node may contain one or many sub-
domains (hierarchical relation). It interacts with several
domains (links between nodes). This overlay builds an
abstract representation of physical management
domains (geographical for example) through
management domains that correspond to specific
management needs. (e.g., set of gateways model
“LB1234”). Each node of the overlay offers a set of
management services or tasks (information repository
management, resource location service, query service,
etc). As it can be noticed, these services cover only
non functional management aspects delegated by
management applications to the middleware.

Membrane

Client interface

Server Interface

Controller Interfaces

Domain representation
in Fractal

Management domains

Managers

Managed resources

Cs

C1 C2

Cc

Figure 3 Global architecture of the management middleware

Both nodes structure and their interconnections are

managed by the middleware administrator in a
transparent way. The middleware hides management
applications the complexity of the underlying
infrastructure. The resulting overlay network is totally
flexible, extensible and dynamically reconfigurable.
Nodes and interconnections are dynamically
reconfigurable.

To better understand the behaviour of these nodes,
let us zoom inside one of them as depicted in Figure 4.
Inside a node, a set of components work together in
order to achieve a function. In Figure 4, the node
offers 4 services: (i) events management service (that
handles events and routes them to interested entities),
(ii) a CIM repository (representation of the managed
infrastructure), (iii) a query management service (for
querying CIM repositories) and (iv) a repository for
naming resources.

We believe that management applications requires
rich information modelling to take into consideration
physical and logical interdependent resources.
Common Information Model (CIM) [4] is a standard
for defining device, network and application
characteristics so that system and network
administrators and management programs can control
heterogeneous devices and applications.

CIM also allows for vendor extensions. The
adoption of such a model is key to overall
interoperability for information storage and for system
management environment.

The proposed middleware is based on two API:
a) A configuration and deployment API: It concerns

the mediation nodes and management services.
Network administrator, can build, deploy and
configure the management middleware. After
configuration and deployment, the middleware is
ready to be requested by management applications.

b) A mediation API: This API is used by management
applications. It permits them to communicate,
indirectly, with managed resources, through our
middleware.

Although both interfaces have different concerns,
they are both managed by administrators at different
level. Furthermore, the proposed middleware should
use itself for its own management issues.

Figure 4 Internal structure of mediation node

4. Discussion

The choice of component-based architectures for
managing networks and services have several
advantages. V. Wadel et al. [17] consider them when
designing management solutions within the world of
telecommunication (flexibility, modularity, clear
design, etc.).

The management applications are designed in order
to be independent from the size of the network or from
the number of properties to ensure. The management
middleware aims at routing the requests over
management information, supporting persistence of this
information when necessary, locating resources, etc. It
provides mediation nodes whose one of the primary
roles is to ensure that its functions whatever are the
conditions of the infrastructure that support the
management network (i.e., an overlay network). The
objective is that this middleware can adapt to such
diverse situations as sensors network or as computation
grids. This means that flexibility and adaptability are
among the main challenges we target. These properties
should ensure that our middleware can adapt to the
various functional requirements of management
applications, and can also adapt its own behaviour to
the resources dedicated to its operation. We argue that
component-based architecture is a major enabler
towards this goal.

The Fractal component model we rely on allows the
definition of components as assemblies of components
and provides total control over the component used as
well as the bindings between them. Hence, at the very
end, the overlay can be considered a component
composed of other components (e.g., the mediation

Event
Management

Query
Management

Query
Management

Events (alarmes,
notifications, etc)

Query from Mgt
Applications

Resource Location

Event dissemination

nodes), managing them and their relationships as well.
The overlay can then be configured and reconfigured in
order to respond to management needs.

Autonomous management is seen as the only means
to deal with large-scale management. This approach
will lead to very complex applications to support the
processes composing this autonomous management
environment.

The information model on which the management
applications rely is highly distributed by nature. So
should be the middleware for supporting them. We
consider that good work has been done for specifying
the information model, especially with CIM [4]. Our
objective is to be able to organise the management of
this information space in a distributed manner while
ensuring its safety, scalability, correctness (i.e., in a
sense considering the implementation of a reliable
distributed CIMOM). We also consider much simpler
interfaces to manipulate this information model,
especially within our Java implementation context. For
example, we consider pure Java objects accessible
through technologies such as EJB2 or JDO3 for giving
access to the CIM repository.

5. Related Works
Several works studied large-scale systems and

network management, during these two last decades [6,
10, 20, 8].

 CIM/WBEM [6], a DMTF4 standard, proposes a
web-based management architecture. WBEM is built
around the CIM model. The main WBEM architecture
is composed of three main elements (management
applications as client, WBEM server, WBEM
providers (probes and actuators)). This architecture
follows a flat and centralized model (Manager/Agent
model). There is no M to M (Manager to Manager)
communication. WBEM servers can be used to manage
enterprise environments. However, it does not scale to
large distributed environments. The administrative
isolation is implemented through the concept of
namespace (logical view of CIM instances and classes).

Yalagandula et al proposed SDIMS (Scalable
Distributed Information Management System) [5]. It
consists of a building block for large-scale distributed
services. SDIMS aggregates information about large-
scale networked systems and provides detailed views of
information (and events) and summary views of global
information. It ensures four properties: scalability,
flexibility, administrative autonomy and robustness.

2 http://java.sun.com/products/ejb/docs.html
3
 http://java.sun.com/products/jdo/

4 Distributed Task Force Management; URL: http://www.dmtf.org

This work concerns neither resource heterogeneity nor
autonomic behavior.

Renesse et al [8] proposed a similar work:
Astrolabe. This system gathers, disseminates and
aggregates information about zones. A zone is
recursively defined to be either a host or a set of non-
overlapping zones. It supports scalability through
hierarchy (zone hierarchy), flexibility through mobile
code, robustness through a randomized peer-to-peer
protocol and security through certificates. Each
Astrolabe zone has a set of aggregation functions that
calculates the attributes for the zone’s MIB (SNMP
like Management Information Base). Astrolabe is
designed under the assumption that MIBs will be
relatively small objects, a few hundred or even
thousand bytes, not millions which limit its scalability.

Anerousis et al [10] proposed Marvel. This system
is a distributed computing environment that allows the
creation of scalable management services using
intelligent agents and the world-wide web. Marvel
builds on top of existing element management agents a
hierarchy of servers that aggregate the underlying
information in a synchronous or asynchronous fashion.
Marvel is based on an information model that generates
computed views of management information. These
views follow an object-oriented model to store
management information. Marvel requires that
managed elements be organized into groups. Users can
dynamically define these groups based on any factor
that makes sense such as location or functionality. The
object implementation of Marvel's views is proprietary
and not extensible. Besides it does not address
autonomy issue.

Recently, Bouchenak et al [15] proposed the JADE
framework. It is an environment for implementing
autonomic administration software. The main idea of
this work consists on modelling the administrated
system as a component based software architecture
which provides means to configure the environment. A
prototype of Jade was developed and used for
deployment and fault management of clustered J2EE
application. This work provides administrative
isolation through composition and sharing relations.
This work is based on an ad-hoc information model.
The global vision of the proposed work in this paper is
coherent and complementary with the autonomic
management vision proposed in the European project
IST Selfman [3], to which we actively participate.

6. Conclusion and Future works
In this paper we have studied large scale networked

heterogeneous systems problem. We have identified
four important properties that large-scale management

systems have to respect: autonomy, scalability,
administrative isolation and heterogeneity. We suggest
the architecture of a flexible middleware that respects
these properties. The proposed middleware is based on
the Fractal component model. It offers the
administrator the possibility to build a scalable and
dynamically reconfigurable overlay network of
mediation nodes. Each node represents on or many
management domains. The middleware offers the
possibility to build, aggregate, select, and query
management domains according to administrator needs.
All these operations can be done without interrupting
management applications activity. The different nodes
cooperate to offer management applications several
services (event filtering, aggregation, routing, storage
management, etc). Scalability is achieved through the
support of domain and through the distribution of the
management activity.

We believe that the proposed middleware can be a
powerful building block for autonomous management
applications. A set of management policy can be
defined for each management domain that we build.
Automatic actions can be assigned to each of them.
Scalability is achieved through distribution of the
management infrastructure and grouping management
operations. Heterogeneity is achieved through CIM
local repositories, managed by the node of our overlay
network. In these repositories, heterogeneous resources
are described in a standard way. Administrative
isolation is achieved through the different possible
composition relations proposed by the Fractal
component model. Autonomy is achieved through the
reflexive aspect of the Fractal components.

We are studying the possibility to integrate a data
steam management system to handle, in a scalable way,
streams of events sent by probes and network
equipments. This feature is particularly interesting for
large event-based monitoring systems in real-time
context. Besides, we are studying the possibility to
make some of our node mobile. The ProActive5

technology, based on the Fractal component model, has
already experienced such an approach.

7. References
 [1] E. Bruneton, T. Coupaye, and J.-B. Stefani. "Recursive
and Dynamic Software Composition with Sharing".
Proceedings of the Seventh International Workshop on
Component-Oriented Programming (WCOP02), Malaga,
Spain, June 10-14, 2002.
[2] J.-P. Martin-Flatin, "Toward Universal Information
Models in Enterprise Management", in Proc. VLDB 2001

5 http://www-sop.inria.fr/oasis/ProActive/

Workshop on Databases in Telecommunications (DBTel
2001), Rome, Italy, September 2001.
[3] P. Van Roy, A. Ghodsi, JB Stefani, S. Haridi, T.
Coupaye, A. Reinefield, E. Winter and R. Yap. " Self
management of large-scale distributed systems by combining
structured overlay networks and components". Workshop

IST NoE CoreGrid Integration, Greece, Nov 2005.
[4] Common Information Model Standard, URL:
http://www.dmtf.org/standards/cim/
[5] P. Yalagandula and M. Dahlin, "A scalable distributed
information management system ", Proceedings of the 2004
conference on Applications, technologies, architectures, and
protocols for computer communications, session Distributed
information systems, Pages: 379 – 390, Portland, Oregon,
USA, 2004.
[6] Java Specification Request N°48 (JSR 48): WBEM
Services Specification, URL:
http://www.jcp.org/en/jsr/detail?id=48
[7] J. Won-Ki Hong, J. Kim and J. Park: "A CORBA-Based
Quality-of-Service Management Framework for Distributed
Multimedia Services and Applications". IEEE Network, Vol.
13, No. 2, (1999) 70-79
[8] R. V. Renesse, K. P. Birman, and W. Vogels, "Astrolabe:
A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining", ACM
Transactions on Computer Systems, Vol. 21, No. 2, May
2003, Pages 164–206.
 [9] M. D. Hill, "What is scalability?". ACM SIGARCH
Computer Architecture News, December 1990.
[10] N. Anerousis and G. Hjálmtysson, "View-based
Management of Services in a Programmable Internetwork".
Proc. of the 2000 Network Operations and Management
Symposium, Honolulu, HI, April 2000.
[11] G. Goldszmidt, "Distributed Management by
Delegation". 1996. Ph.D Thesis – Graduate, School of Arts
and Sciences, Columbia University, New York.
[12] H.G. Hegering, S. Abeck and B. Neumair. "Integrated
Management of Networked Systems: Concepts,
Architectures, and their Operational Application". Morgan
Kaufmann Publishers, 1999.
[14] J. O. Kephart and D. M. Chess." The vision of
autonomic computing". IEEE Computer, 36(1):41–50,
January 2003.
[15] S. Bouchenak, N. de Palma and D. Hagimont,
"Autonomic administration of clustered J2EE applications".
Proceedings of IFIP/IEEE International Workshop on Self-
Managed Systems & Services (SelfMan 2005). 2005.
[16] M. Kahani, H.W. Peter Beadle, "Decentralized
Approaches for Network Management", in SIGCOMM, July
1997.
 [17] V. Wade, D. Lewis, C. Malbon, T. Richardson, L.
Sorensen and C. Stathopoulos, "Component Integration
Technologies for Telecoms Management Systems", TCD-CS,
Technical Report, Trinity College Dublin Computer Science
Department, 1999.
[18] M. Sloman, J-D. Moffett, "Domain model of
autonomy". ACM SIGOPS European Workshop 1988

B TRANSACTIONAL RECONFIGURATION OF COMPONENT-BASED
ARCHITECTURES

B Transactional Reconfiguration of Component-

Based Architectures

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 21

Reliability of dynamic reconfigurations in
component-based software systems

Marc Léger1, Thierry Coupaye1, and Thomas Ledoux2

1 France Telecom R&D
28, chemin du Vieux Chêne

F-38243 Meylan
{marc.leger, thierry.coupaye}@orange-ftgroup.com

2 OBASCO Group, EMN / INRIA, LINA
Ecole des Mines de Nantes

4, rue Alfred Kastler
F-44307 Nantes Cedex 3
thomas.ledoux@emn.fr

Abstract. This article is an analysis based on our experience with the
Fractal component model of the need of reliability for dynamic reconfig-
urations in component based systems. We make a proposal to ensure this
reliability, which can applied to concurrent reconfigurations. We started
from the definition of ACID properties in the context of component mod-
els and we propose to use integrity constraints to define system consis-
tency and transactions for guaranteeing the respect of these constraints
at runtime. To deal with concurrency, we have to detect potential con-
flicts when composing reconfiguration operations.

1 Introduction

Dynamic reconfigurations in component-based software applications [MK96] are
central to promissing approaches like autonomic computing [KC03]. There are
many motivations to introduce modifications in a system at runtime: correction
of security flaws or functional bugs, improvement of systems (e.g., performance
optimizations), or adaptions to execution context changes.

Thanks to properties of component models like loosely coupling, reconfigu-
rations can rely on component-based architectures [OMT98]. However, runtime
modifications can let the system in an inconsistent state. From a structural point
of view, the architecture of the system once reconfigured can be not in confor-
mity with the component model or eventually system specific constraints (e.g.
architectural invariants) anymore. From a functional point of view, a reconfig-
uration must not perturb the execution of the system (i.e., functional and non
functional aspects need to be synchronized). Furthermore, in case of concurrent
reconfigurations, reconfiguration must be synchronized between themselves.

In this paper, we focus to the reliability of runtime adaptations and we
chose to base our work on the Fractal component model [BCL+04] because
of its support of dynamic and opened reconfigurations. In our approach, we

2 Marc Léger, Thierry Coupaye, and Thomas Ledoux

tried to define each of the ACID properties [TGGL82] in the specific context
of component-based systems an show how it can solve this reliability problem
during adaptations. These properties are unifying concepts of transactions for
distributed computation used essentially for supporting concurrency and recov-
ery. We specify the consistency property by using integrity constraints about
system structure and state. An example of a structural constraint at the level
of component model is cycle-free component structure. Moreover we must avoid
wrong execution flow of reconfiguration operations according to their semantics
to ensure the isolation property.

This paper is organized as follows. Section 2 is an overview of dynamic re-
configurations in component models, with a focus on Fractal, and it shows what
problems it raises regarding reliability. Then section 3 describes how transac-
tions combined with integrity constraints can be a solution to these problems.
Finally section 4 presents some related works before concluding in section 5.

2 The need of reliability for dynamic reconfigurations in
component-based systems

2.1 Dynamic reconfigurations in component models

Dynamic reconfigurations allow modifications of a part of a system during its
execution without stopping it entirely to keep the system partly available. Ac-
tually, maximization of the availability time is essential for some systems like
entreprise application servers. Dynamic reconfigurations can involve every man-
ageable element defined in the component model and reified at runtime, they
can be:

– structural (e.g., addition or removal of elements like components, interfaces
etc. and interconnection modifications with bind unbind operations),

– behavioral (e.g., lifecycle modification used to synchronize component activ-
ity with the rest of the system),

– linked to component deployment (e.g., component instantiation, destruction,
migration),

– linked to component state (e.g., change of component attribute values),

Fractal [BCL+04] is a recursive component model with sharing and reflexive
control. It is based on classic concepts of component (as a runtime entity), inter-
face (an interaction point between components expressing provided and required
services) and binding (a communication channel between component interfaces).
A component consists of a membrane which can show and control a causaly con-
nected representation of its encapsulated content. An Architecture Description
Language (Fractal ADL [Fra]) is used to specify component configurations and
there is notably a Java implementation of the model, Julia. Several controllers
are defined to control bindings, the hierarchical structure, component lifecycle,
attributes and names, but other controllers can be user-defined.

Operations in controllers constitute primitive reconfiguration operations and
do either introspection or intercession (modifications) in the system. To compose

Reliability of dynamic reconfigurations 3

operations, we consider sequences or parallel executions of intercession opera-
tions with conditions expressed by means of introspection operations in com-
ponent configurations. An example of composite reconfiguration is component
hotswap, a mechanism used to update a system where an old version of a com-
ponent is replaced by a new one. In Fractal, this reconfiguration is composed
of a sequence of several primitive reconfiguration operations, it implies to stop
the component, unbind all its interfaces, remove it, add the new instantiated
component, bind its interfaces and start it (a state transfert operation is used
in case of stateful component).

2.2 The reliability problem with dynamic reconfiguring applications

A first problem when modifying a system at runtime is the synchronization
between reconfigurations and the functionnal execution of the system. Actually,
the part of the system which is modified could be unavailable for functional
execution during the reconfiguration time. To take the hotswap example with
a stateful component, calls on the old component must be blocked until a a
“quiescent state” [KM90] is reached, then the state must be transfered, finally
previous calls are forwarded towards the new component.

A second problem at the model level is about consistency violation by re-
configurations. First of all, we must make clear what exactly consistency is for
component-based systems. Component models and application models should
define what this consistent system is, especially in term of structure. For instance,
we may want to add a structural constraint about the number of subcomponents
of a composite component. In Fractal, the specification of the component model
is not always sufficient and we want to express some integrity constraints on
systems. So we must ensure the conformity of the system to the model and
constraints after reconfigurations.

The third and last problem we identified is linked to the composition of re-
configuration operations. A prerequisite is the separation of concerns between
the functional part and the control part of systems. Then separation between in-
trospection operations and intercession operations must be explicit. Once these
operations have been identified, the semantics of reconfiguration operations im-
plies there can be some conflicts between them in case of compostion and for
synchronization between several reconfigurations (e.g., in Fractal it is manda-
tory to unbind all component interfaces before removing the component from its
super-component).

3 A transactional approach to ensure reliable
reconfigurations

3.1 ACID properties in the context of dynamic reconfigurations

We think that well-defined transactions associated with structural and behav-
ioral constraints verification is a means to guarantee the reliability of reconfigu-
rations in component models, i.e. to solve problems we identified in the section

4 Marc Léger, Thierry Coupaye, and Thomas Ledoux

2.2. As any reconfiguration operation could lead the system to an inconsistent
state, each reconfiguration must always be included in a transaction. In this
context, we define the meaning of ACID properties as follows:

– Atomicity: either all happen or none happen, that is to say either the
system is reconfigured or it is not. A reconfiguration transaction can be
a single primitive reconfiguration operation or a more complex operation
composed of several operations. Each reconfiguration operation must specify
its reversible operation. Thus if a reconfiguration transaction goes badly and
is rollbacked, it is possible to come back in a previous stable state by undoing
operations. Transactions demarcation is either programmed in the language
or automatic (a reconfiguration script corresponds to a transaction).

– Consistency: a transaction must be a correct transformation of the sys-
tem state. So the reconfigured application must be conform to the compo-
nent model and application specific constraints. That is to say consistency
is given by integrity constraints essentially architectural invariants. A recon-
figuration transaction can be commited only if the resulting system respects
the constraints. Other faults like software and hardware failures (network
and machines) are the responsibility of the commit protocol (e.g., 2 phase
commit protocol).

– Isolation: several reconfiguration transactions are independant and any
schedule of reconfiguration operations must be equivalent to their serial-
ization. The scheduling must respect the operation semantics and conflicts.
This property relies on the knowledge of the semantics of reconfiguration
operations.

– Durability: once a reconfiguration completes with success (commit), the
new state is persistent. For every transaction, operation are logged in a jour-
nal so that reconfigurations can be redone in case of failure. The application
state (architecture and component state) is periodically checkpointed basi-
cally with ADL dumps and component state is saved in databases. So any
component can be recovered in its last stable state resulting from the last
successful reconfiguration. However, the only functional state we capture
is the state which is well identified in the component model and is saved
only at commit time of reconfigurations because we don’t want to impose
transactions at the functional level.

Only the first problem presented in 2.2 is not completely adressed by our
approach because we do not fully modelise the functional execution flow of sys-
tems, we relies on the implementation of the component lifecycle operations with
interceptors on component interfaces to realize the synchronization. A solution
to the synchronization problem is to apply the hotswap protocol proposed in
[KM90]. The guarantee we can bring is that the order of operations in the pro-
tocol is respected. Among the ACID properties we will especially focus in the
following sections on two properties: consistency and isolation.

Reliability of dynamic reconfigurations 5

3.2 Integrity constraints to ensure system consistency

In our proposal, system consistency relies on integrity constraints and we want
to express these constraints both at the application and at the model level. An
integrity constraints is essentially a predicate which concerns the validity of an
assembly of architectural elements but it can also concern component state. Ex-
amples of such constraints at the component model level are hierarchical integrity
(bindings between components must respect the component hierarchy) or cycle-
free structure (a component cannot contain itself to avoid infinite recursion). On
the other hand, application specific constraints are used to specify invariants on
a given system either on component types or directly on component instances
designed by their names. Invariants can concern for example cardinality of sub-
components in a super-component, two component interfaces which can never
be unbound etc.

In an open world where reconfigurations are not anticipated at compile time,
some component models like Fractal are relying on reflexive architectures to
dynamically reconfigure systems by means of a runtime mapping between the
system which is really executed and its model. So integrity constraints verified on
the model will be also valid in the system. We represent the Fractal component
model as a typed graph and then each fractal-based application is also a graph
which is an instance of this typed graph. The instance graph is a more formal
representation of the system provided at runtime by the reflexivity of the com-
ponent model and is used to navigate in runtime applications. The vertexes are
elements from the component model: components, functional interfaces, con-
trollers, attributes and operations. The edges represent relations between the
elements: composition links, binding links etc. Then the instance graph must
always be well-typed regarding to the typed graph (i.e., conform to the compo-
nent model) and the instance graph must respect integrity constraints. Therefore
contraints at the model level can be specified on the typed graph and others on
the instance graph. As the model is extensible and new user-defined controllers
can be added, graphs should be also easily extensible in terms of elements and
relations.

To express integrity constraints, we propose to use a DSL based on an exten-
sion of the query language in Fractal configurations FPath [DL06] to transform it
into a real constraint language “à la OCL” [OCL05]. An advantage of the FPath
language is that it can navigate both in the ADL and in the runtime system and
it is already based on a graph representation of the system during execution. The
constraint language must just have introspection capacity without side effects
on the system. We want to express invariants, preconditions and postconditions
in this language and we want notably to have quantifiers, collection operations
and filters. The following basic example is a structural invariant constraint at
the application level expressed in FPath (with its XPath 1.0 syntax like) where
the component designed by the variable c can never be shared (it can only have
one parent at the same time):
size(c/parent::*)=1

Constraints must be checked both at compile time on the component static
configuration and at runtime. We consider checking constraints as far as possible

6 Marc Léger, Thierry Coupaye, and Thomas Ledoux

before applying the reconfiguration on the system, eventually by code analysis of
a dedicated reconfiguration language like FScript [DL06]. Constraints can also
be checked either directly during the execution of the reconfiguration of the real
system or by simulation on a local copy of the representation of the system (i.e.,
the instance graph) so as to limit the effect on the system in case of constraint
violation.

3.3 Isolation of reconfigurations to support concurrency

We take the hypothesis that not only application components are distributed
but also administrators. Furthermore, reconfiguration initiators are either hu-
mans (interactive reconfigurations) or the system itself (the system is able to
auto-reconfigure). Concurrency in reconfigurations comes from the fact that one
administrator can explicitely want to execute some operations in parallel, or
several administrators can reconfigure the same system at the same time. The
reconfiguration scheduler can also detect when it can launch parallel reconfigu-
ration tasks to optimize the reconfiguration process.

As seen in section 2.1, reconfiguration operations are composable but all
compositions are not valid. In Julia, operation semantics is hidden in controller
implementations and so we want to make it explicit and we want eventually
to be able to change it and to specify new primitive operations. So we need
to express operation semantics in terms of preconditions and postconditions
with our constraint language presented in section 3.2. We distinguish two types
of conflicts between operations: parallel conflicts and execution dependencies.
For two given reconfigurations R1 and R2 executed on the same system, a
parallel conflict occurs if R1 and R2 modify the same manageable elements in
the system model (e.g. bind and unbind operations). An execution dependency
occurs if R1 either need R2 to be executed first (e.g. stop before unbind)or if
R1 cannot be executed after R2. That is to say R2 postconditions cover or not
R1 preconditions.

// Example of a precondition for removing a component
operation: void removeSubComponent(Component sub);
preconditions :
// all interfaces of the sub-component are unbound (. is the current node)
not(exists(sub/interface::*[not(bound(.))]));

For concurrency management, we propose a pessimistic approach with lock-
ing. Our locking algorithm is based on operation semantics to avoid inconsistent
operation compositions. We see two different possibilities for the locking algo-
rithm. The first one is to lock directly reconfiguration operations. That is to
say, either conflicts between operations are automatically calculated thanks to
its preconditions and postconditions or it must define the operations with which
it is in conflict. The second one is to use a modified DAG locking algorithm on
our instance graph defined in 3.2. Then the lock granularity is defined by the

Reliability of dynamic reconfigurations 7

manageable elements in the graph representation and for example a lock acqui-
sition on a component also locks all its interfaces and every operations in each
interfaces.

Another approach to locking is to constrain the execution order of reconfig-
uration operations. We propose to use a simple language inspired of behavior
protocols in [PV02] to describe the desired execution order of reconfiguration
operations, what we call behavioral reconfiguration constraints. The protocol
compliance is checked at runtime by intercepting reconfiguration calls.

4 Related work

Many works on ADLs follow a static approach to check consistency of component-
based architectures by compilation but only a few are interested in dynamic
analysis of this consistency. We will focus here on other reflective component
models which allow non anticipated (also called ad-hoc) reconfigurations.

FORMAware [MBC04] is relatively close to our work. This framework to
program component-based application gives the possibility to constrain recon-
figurations with architectural style rules. A transaction service manages the re-
configuration by stacking operations. The main difference with our proposal is
our integrity constraints are more flexible than styles and they can be applied
to every element of our component model. Moreover we define more formally
reconfiguration operations to identify conflicts between them, our locking algo-
rithm is then more precise than a simple lock on components and we consider
introspection operations as reconfiguration operations.

Plastik [BJC05] is the integration of the OpenCOM component model and
the ACME/Armani ADL. As in our solution, architectural invariants can be
checked on ADL configuration or at runtime and constraints are expressed at
the style level and at the instance level. However, reconfiguration cannot be
generic composite reconfigurations with model elements in parameters and the
execution, the operation semantics is not explicit and not extensible and the
order of reconfiguration operation cannot be constrained as we can do with
reconfiguration protocols.

5 Conclusion

Dynamic reconfiguration in component-based systems raises reliability problems,
especially in open systems in which they are not anticipated. In this article, we
identified the three following global problems based on our experience with the
Fractal component model: synchronization between reconfiguration and the func-
tional execution of systems, consistency regarding component and application
models, and synchronization between reconfiguration operations. We focused
more on the two last problems: the first one concerns conformity at runtime of
systems with constraints and models, the second one deals with the validity of
composition of reconfiguration operations.

8 Marc Léger, Thierry Coupaye, and Thomas Ledoux

We propose to use integrity constraints to define consistency for dynamic
reconfigurations and to include these reconfigurations in transactions. We build a
graph representation of our application at runtime thanks to the reflexivity of the
Fractal component model and use a constraint language on this graph. Moreover
we want to detect execution conflicts between reconfiguration operation in order
to be able to compose them with reliability with eventually the specification of
reconfiguration protocols. We are currently implementing this proposal in Julia,
a Java implementation of the Fractal model.

References

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java. In
Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau,
editors, CBSE, volume 3054 of Lecture Notes in Computer Science, pages
7–22. Springer, 2004.

[BJC05] Tháıs Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing
dynamic reconfiguration in component-based systems. In Ronald Morri-
son and Flávio Oquendo, editors, EWSA, volume 3527 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2005.

[DL06] Pierre-Charles David and Thomas Ledoux. Safe dynamic reconfigurations of
fractal architectures with fscript. In Proceedings of the 5th Fractal Workshop
at ECOOP 2006, Nantes, France, July 2006.

[Fra] Fractal ADL. http://fractal.objectweb.org/fractaladl.
[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, 2003.
[KM90] J. Kramer and J. Magee. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[MBC04] Rui S. Moreira, Gordon S. Blair, and Eurico Carrapatoso. Supporting adapt-
able distributed systems with formaware. In ICDCSW ’04: Proceedings of
the 24th International Conference on Distributed Computing Systems Work-
shops, pages 320–325, Washington, DC, USA, 2004. IEEE Computer Society.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.
In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on
Foundations of software engineering, pages 3–14, New York, NY, USA, 1996.
ACM Press.

[OCL05] OCL 2.0 Specification. http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.
[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-

based runtime software evolution. In ICSE ’98, pages 177–186, Washington,
DC, USA, 1998. IEEE Computer Society.

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[TGGL82] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay.
Transactions and consistency in distributed database systems. ACM Trans.
Database Syst., 7(3):323–342, 1982.

C COMPOSITE PROBES

C Composite Probes

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 30

JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 3, May-June 2005

Cite this article as follows: Author’s name: “Paper title”, in Journal of Object Technology, vol. 4,
no. 3, May-June 2005, pp. …..

Composite Probes: a Generic
Monitoring Framework for Hierarchical
Management of Heterogeneous Data

Ada Diaconescu and Bruno Dillenseger, Orange Labs

Abstract
System monitoring has become an essential utility for managing software applications.
However, as software systems are becoming increasingly complex, analyzing collected
monitoring data is becoming progressively more difficult and costly a task. This article
presents Composite Probes, a generic monitoring framework for complex system
management. Composite Probes provides support for organizing heterogeneous data
into hierarchical constructs that process data at different granularity and abstraction
levels. Composite Probes represent building blocks that are instantiated, customized
and connected to form flexible hierarchies adapted to various application requirements.
System administrators configure each instance with specific data-processing functions,
including aggregation, filtering and scheduling. A Composite Probes prototype was
implemented and successfully tested on different distributed applications.

1 INTRODUCTION

System monitoring has become an essential utility for assisting the development,
configuration and runtime administration of software systems. Generic and specific
monitoring tools are being employed to test and calibrate software systems offline, as
well as to supervise, manage and adapt software systems during runtime. Performance
profiling, SLA-compliance verification and autonomic computing are only some of the
important industrial and research areas heavily relying on monitoring functions. Existing
monitoring utilities collect different data types from various managed entities (e.g. CLIF1,
LeWYS2, Compas3, Ganglia4, or JVMTI5). Collected data can range from a system's
hardware and software resource consumption, to a system's usage patterns and achieved
quality attributes. Monitored data is subsequently analyzed in order to determine various

1 CLIF: load-injection and monitoring framework for distributes applications (clif.objectweb.org)
2 LeWYS: monitoring framework for hardware and software resources (lewys.objectweb.org)
3 COMPAS: framework for performance management in J2EE applications (compas.sourceforge.net)
4 Ganglia: distributed monitoring for high-performance computing systems (ganglia.sourceforge.net)
5 JVMTI: JVM™ Tool Interface from Sun Microsystems (java.sun.com/j2se/1.5.0/docs/guide/jvmti)

2 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

properties, such as system correctness, performance, overall utilization, state, or SLA-
conformance levels. However, as systems are becoming increasingly complex and
monitoring tools more sophisticated, progressively larger amounts of heterogeneous data
are being collected for analysis and diagnosis operations. Examining accumulated
monitoring data is consequently becoming an increasingly complex and costly task,
especially when periodically required during system execution. Available monitoring
utilities generally provide data in the initially collected format and offer little support for
processing this data. Consequently, massive amounts of heterogeneous data are
represented at the same abstraction level, in a flat data structure. The responsibility for
organizing, aggregating and filtering monitoring data is left entirely to data consumers, or
clients. Meanwhile, multiple data-processing tasks are common to most clients,
regardless of client-specific management goals. For example, various high-level
indicators must be computed from low-level measurements in most complex management
applications. There is an emerging need for aggregated data to be readily available, to
represent high-level resource measurements or abstract indicators.

This paper proposes a novel monitoring framework called Composite Probes
(CPs) that aims at extending current monitoring utilities with support for hierarchical
data-organization and processing. CPs provides support for constructing flexible
monitoring hierarchies from reusable and configurable probes. Such hierarchies can be
configured to follow customized data processing and scheduling policies in order to
aggregate and filter incoming data, possibly from heterogeneous resources, at multiple
abstraction levels. In this manner, CPs instances in a hierarchy provide monitoring data at
various granularity and complexity levels, representing basic or abstract resources, fine-
grained measures or high-level indices. Namely, a CP can provide measures as different
as a system's CPU usage, a cluster's overall resource load, a system's SLA-compliance
level, or a an application's state. The main contributions of the CPs framework include:

1. Reusable applicative support for data assembly and event forwarding functions,
commonly required for building data association and processing chains.
Therefore, CPs helps decrease management costs by preventing replicated efforts,
expertise and development work from being conducted at multiple sites.

2. Highly-customizable and extensible data-processing elements, that can be
configured to use different aggregation, filtering and scheduling algorithms

Additionally, CPs features important characteristics required for a scaleable,
manageable and adaptable monitoring framework:

3. Support for integrating and using low-level monitoring data from heterogeneous
resources, at different system levels (e.g., OS, JVM, middleware and application).

4. Uniform data representation and control for all probe types
5. Standard external access via common communication and management protocols
6. Seamless extensibility, via new data-processing algorithms, new scheduling

policies, new probe types and additional communication protocols
7. Support for integrating legacy probes and third party data processing functions
8. Inherent scalability of monitoring hierarchies, as large amounts of data can be

collected and processed at multiple distributed sites.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 3

2 COMPOSITE PROBES

Framework Overview

Composite Probes (CPs) is a generic monitoring and analysis framework for large-scale,
distributed (LSD) applications. The framework's main goal is to provide support for
organizing and managing massive amounts of monitoring data collected from
heterogeneous resources. CPs aims at extending flat monitoring architectures with
flexible hierarchical constructs, in order to facilitate data understanding, provide different
information views and reuse data-processing functions.

CPs represent building blocks for constructing flexible and configurable
hierarchies, which can process monitoring data at various granularity and abstraction
levels. As depicted in Figure 1, in a CPs monitoring hierarchy data obtained from low-
level system probes flows upwards through the hierarchy and undergoes incremental
processing at each CP instance involved. CPs are classified into two major types, based
on their roles and functions (Figure 1 and Figure 2). The first probe type is the Basic
Probe (BP), whose role is to extract monitoring data from the managed system resources.
BPs represent leaf nodes in the hierarchy, meaning that they cannot be further composed
of other probes. BPs process collected monitoring data and subsequently forward it to
connected parent probes. The second probe type is the Composite Probe (CP), whose
role is to manage and organize incoming data from multiple data sources, or child probes.
CPs can contain other CPs or BPs, which constitute the CP's data sources (Figure 4). CPs
process incoming data and subsequently forward it to connected parent probes. Data
processing in BPs and CPs involves data aggregation and filtering procedures, as dictated
by well-specified scheduling policies. From an external perspective, clients have a
uniform view of all probes. Probe access is restricted to probe external interface(s), which
are identical for all probe types (Figure 2). For the scope of this paper, the term
Composite Probes (CPs) will be used to indicate any of the two probe types, Basic or
Composite, unless otherwise specified. The term also refers to the monitoring framework
proposed. The exact meaning of the term will be clear from the used context.

All CPs can be identified via a unique probe Id. Clients use probe Ids to access
any probe in a hierarchy, in order to retrieve monitoring data or send control commands.
Communication can be done directly with a targeted probe, or indirectly, via the probe’s
parents. Indirect communication requires the path to the targeted probe to be provided as
a request parameter, which allows the request to be routed to its destination probe.

Two main information flows characterize CPs hierarchies. These are the data
flow and the control flow (Figure 1). In short, the data flow transports monitoring data
upwards from lower-level BPs to higher-level CPs. The control flow transports control
commands downwards from CPs at higher hierarchical levels to lower-level BPs.

The proposed framework has a modular, configurable and extensible design,
which allows its main functions - aggregation, filtering, scheduling and communication -
to be individually tuned and modified for each CP instance.

4 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 1: General view of a Composite Probes hierarchy

Composite

Probes

Figure 2: Logical view of the main component types provided in the Composite Probes framework

Example of Composite Probes Hierarchy for Cluster Monitoring

An example scenario in which the CPs use is potentially beneficial involves monitoring a
distributed system, such as a computer cluster. Figure 3 provides a simplified example of
such clustered system with two interconnected machines. For monitoring this system, two
BPs are deployed on each machine for measuring their respective memory and CPU
consumption. In a realistic scenario, low-level monitoring probes from tens or hundreds
of clustered machines would produce a significant amount of fine-grained data, difficult
to analyze manually during runtime. To alleviate such difficulties, this example shows
how a CPs hierarchy is employed to aggregate monitoring data at different abstraction
levels, such as overall system and cluster levels. The example CPs hierarchy in Figure 3
organizes monitoring data as follows. Two system CPs represent the overall load on each
system (i.e. 'system1' and 'system2' probes). At a higher abstraction level, a cluster CP

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 5

aggregates data from all available system CPs and provides cluster-level measurements
(i.e. 'cluster' probe). Finally, a cluster CPU CP aggregates CPU data from all managed
machines and represent the overall CPU load of the entire cluster. Hence, the cluster CPU
probe simulates the existence of a single cluster CPU resource, hiding the fact that this
abstract resource is aggregated from multiple system-level CPU resources.

%CPU

%CPU

%used ram %used ram

Filter : <not used>
Scheduler : Threshold
Aggregator : Many Attributes
per Child Blade of Same Type

cluster

system2 system1

%CPU
%CPU user
%CPU kernel

% used ram
used ram [MB]
cached [MB]
buffers [MB]
% used swap
used swap [MB]

cpu2 memory2 cpu1 memory1

Filter : Single Attribute (first)
Scheduler : Threshold
Aggregator : Many Attributes
per Child Blade of Same Type

Filter : Transparent
Scheduler : Threshold
Aggregator : One Attribute per
Child Blade of Different Type

Filter : <not used>
Scheduler : Periodic
Aggregator : Many Attr ibutes per
Child Blade of Same Type

cluster_CPU

%CPU

%used ram %CPU

Figure 3: Sample Composite Probes hierarchy for monitoring a clustered system

Monitoring Data Flow

The monitoring data flow transports monitoring information through the CPs hierarchy.
Data is collected by BPs and propagated up towards CPs at the top of the hierarchy.
Figure 4 depicts a simplified view of the data flow through a monitoring probe. In short, a
probe receives data from one or multiple data sources. Incoming data is collected,
processed and stored as local data. From an external perspective, local data represents the
data that a probe 'monitors'. For BPs, local data is based on actual measures taken from
managed resources. For CPs, local data simulates measures taken from an abstract
resource that the probe represents. In all cases, local data is subsequently filtered and
forwarded to the probe's parents, or data sinks. In addition, external clients can access a
probe's local data via direct method calls or by listening to the probe’s events (Figure 4).

…

Generic

Probe

local data

…

incoming data

outgoing data

data sources

data sinks

clients
data requests

local data

Figure 4: Generic data flow through Composite Probes

6 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 5 details the data flow view for BPs and CPs. The main dissimilarity
between the two probe types is in the monitoring data source. Namely, BPs receive data
from a single data source, which is an instrumented managed resource. The resource
instrumentation code is represented in Figure 5 by the Insert component; it can be
provided by the BPs or reused as existing legacy code. CPs receive data from multiple
sources and aggregate this data into summary statistics or meaningful high-level
measurements. Statistics are used to summarize a set of observations, in order to
communicate concentrated or simplified information to external clients and parent CPs.
Possible statistical functions include mean or median functions, standard deviation and
variance, minimum or maximum functions. In addition, various aggregation algorithms
can be specified for correlating data of different types into meaningful high-level
indicators. For example, a system's congestion can be determined based on the individual
hardware and software resource loads. Administrators are responsible for selecting or
specifying the aggregation functions for each CP in the hierarchy. Aggregated results are
stored as probe local data and can optionally be persisted to a storage support.

Basic
Probe

loca l data

incoming data

outgoing data

Instrumented
system resources

Insert

Filter Composite
Probe

local data

…
incoming data

outgoing data

Other generic probes
(composite or basic)

Composite probes

Aggregator

Filter
Specifies which part of the local
data is forwarded to the sinks

Extracts data
from a targeted
system resource

Processes data
from multiple
data sources

Updates local data

Uses local data as input

… …

Composite probes

Figure 5: Data flow through Basic and Composite Probes

Control Commands

The control flow transports control commands for managing the probes' lifecycles.
Namely, control commands are used to initialize, start, stop, pause, resume or terminate
the execution of one probe or of a probes sub-graph. Namely, commands targeted at a
certain probe can be optionally propagated to affect uniformly the probe's sub-graph. This
facility simplifies hierarchy control processes by allowing an entire probe tree to be
controlled via a single command sent to the tree's root.

Architectural Overview

BPs and CPs provide identical external interfaces and feature very similar internal
architectures. The main architectural difference between the two probe types results from
their different roles in a monitoring hierarchy. Namely, BPs use a specific Insert
subcomponent for extracting monitoring data from the managed system. Conversely,
CPs are in charge of managing monitoring data received from multiple lower-level

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 7

probes. Consequently, CPs do not use an Insert subcomponent themselves, and obtain
their data via connections to their child probes instead. Besides the manner in which they
obtain their monitoring data, BPs and CPs contain identical subcomponents. Evidently,
the way some of these subcomponents inter-communicate is influenced by whether a
probe contains an Insert subcomponent or is merely connected to lower-level probes.

An overall view of the BP architecture is presented in Figure 6. The CP
architecture is identical, except for the missing Insert subcomponent and additional
connections to child probe components. The most important external interfaces include
the Probe Management, Data Collector Administration and Probe Control interfaces.
System administrators configure probes via their Probe Management interfaces.
Supported management operations include setting and configuring a probe's aggregator,
filter or scheduler functions, as well as connecting or disconnecting a probe from parent
or child probes. Administrators use the Probe Control interface to perform control
operations such as init, start, pause, resume, or stop on a targeted probe or probe sub-
graph. Clients have access to a probe's monitoring data via the probe's Data Collector
Administration interface. Probe interdependencies on external functionalities are
represented via client interfaces. The principal client interface is the Data Collector Write
Delegate, for forwarding data events to a probe's parents. Other client interfaces include
the Probe Response Delegate and Supervisor Information, for sending asynchronous
notifications, current probe state or abnormal events to parents.
 Basic Probe

cDC
Data collector m anager

Data collector write

Data collector administration

Probe

Management

Probe

management

DC manager

BA manager

Storage write

Child dc dele gation manager

Parent dc delegation manager

Insert

Probe control

Data collector write

Insert r esponse

Probe control composite
cBA

(b - basic /

c - composite)

Probe adapter m anager

Subordonate information

Probe insert response

Child ba delegation manager

Parent ba d elegation manager

Storage proxy administartion

Data collector write

Delegate data

collector write

Probe response

delegate

Supervisor
information

Data collector

administration

Probe

management

Probe control

Delegate data

collector administration

Insert control (b)

Child

Delegation

Manager

Data collector

delegation manager

Probe adapter

delegation manager

Probe response delegate

Supervisor information

Parent

Delegation

Manager

Delegate data

collector write

Data collector

delegation manager

Probe adapter

delegation manager

Figure 6: Basic Probe architecture (Composite Probe architecture is identical, except for the missing Insert)

Probe subcomponents common to both probe types are described as follows. The
Data Collector (DC) subcomponent receives monitoring data and processes it according
to specific aggregation, filtering and scheduling policies. Processed data is subsequently
forwarded to the probe's parents and optionally sent to a storage support for persistent

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

logging, or further processing purposes. The Blade Adapter (BA) subcomponent provides
asynchronous support for executing the probe's control commands. This prevents clients
from being blocked while their control commands are being executed, possibly on a
significantly large probe sub-graph. The Probe Management subcomponent represents a
portal for all management operations, redirecting requests to the specific subcomponents
capable of processing them, and shielding external clients from internal details. Finally,
the Child and Parent Delegation Manager subcomponents manage probe communication
with child and parent probes, respectively. Their role is to isolate probe inter-connection
logic from functional code, and facilitate eventual communication protocol changes.

3 DATA-PROCESSING IN COMPOSITE PROBES

A probe's Data Collector (DC) dictates the specific manner in which the probe handles
incoming monitoring data and makes it available to clients and parent probes. The
principal processes involved in collecting, processing and forwarding incoming data are
assigned to specialized DC subcomponents, namely the Aggregator, Filter and Scheduler.
Consequently, a DC's processing logic is highly configurable, as the algorithms and
policies of each of its subcomponents can be individually specified and configured. In
short, the DC Aggregator collects incoming data events over well-specified intervals. At
the end of each interval, the Aggregator uses the collected data events to calculate and
update the probe's local data. Intervals are dictated by the DC's Scheduler. Processed
local data is sent to the DC's Filter and the filtered result forwarded to the probe's parent
probes. This design enables administrators to create flexible hierarchies with custom
data-processing paths by setting the data-processing policies of each instantiated probe.

Data Aggregator

The Aggregator's role is to manage incoming data from multiple data sources. They
provide two major functions, namely, collecting incoming data and processing it to
calculate local data. The first function stores incoming data events according to a
specified policy. For example, data received from identical probe types can be mixed
together into a common storage (e.g. the 'cluster' and 'cluster CPU' probes in Figure 3),
while data received from sources of different types must be stored separately (the 'system'
probe in Figure 3). The second Aggregator function dictates how stored data is processed
to calculate local statistics (e.g. maximum or weighted average functions).

Data Filter

The Filter's role is to determine a probe's outgoing data for the probe’s data sinks. A
typical filter determines which subset of a probe's local data will be sent as output data. A
probe's Filter is unaware of whether the output data will be forwarded to one or multiple
data sinks, as all inter-probe communication is managed by probe Delegation Managers.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

Interval Scheduler

The Scheduler's role is to dictate a CP's data processing intervals. Intervals dictate the
exact instants at which a probe's Aggregator calculates local statistics based on the
collected monitoring data. Each Scheduler has an associated Task, which can be
implemented to trigger various data processing and forwarding functions. The Scheduler
will trigger the Task's execution at the end of each interval.

4 CURRENT IMPLEMENTATION

Implementation Overview

A CPs prototype was implemented for demonstrating the main capabilities and functions
proposed in the framework specification. The prototype implementation is based on
Julia6, a Java implementation of the Fractal7 component model, and on additional Fractal
utilities, including Fractal-ADL8, Fractal-RMI9 and Fractal-JMX10. Fractal is a
hierarchical component model suitable for building complex applications with high
modularity and adaptability requirements. The CPs framework is based on an existing
monitoring and load-injection application called CLIF11. CPs extends CLIF's monitoring
architecture and functions in order to add hierarchical data-management functions to the
flat data representation initially supported. CPs equally reuses some of the
instrumentation code provided in CLIF for monitoring UNIX, Windows and MacOS
resources, including CPU, memory and disk utilization. The CPs prototype implements
the BP and CP types, and provides several Aggregator, Filter and Scheduler
implementations. The framework implementation supports remote client access to CP
instances via the RMI12 and JMX13 protocols.

Implemented Aggregation Functions

Several Aggregator types are provided in the current CPs implementation. First, a "Many
per Identical Type" Aggregator was implemented to aggregate multiple parameters from
identical data sources. This implies that all data sources send data with identical formats
and semantics. Secondly, a 'One per Different Type' Aggregator was implemented to
aggregate a single data item from different source types. This implies that each source
sends a single parameter’s values, where each parameter is of a different type. A third
Aggregator type was implemented to process data on a managed element's state. The
'Component State' Aggregator receives state events from a single element and calculates

6 Julia: the reference Java implementation of the Fractal component model (fractal.objectweb.org/julia)
7 Fractal: component model (fractal.objectweb.org)
8 FractalADL: Fractal model's Architecture Description Language (fractal.objectweb.org/fractaladl)
9 FractalRMI: enables remote method calls between Fractal components (fractal.objectweb.org/fractalrmi)
10 FractalJMX: enables JMX management of Fractal applications (fractal.objectweb.org/fractaljmx)
11 CLIF: generic Java-based performance testing framework (clif.objectweb.org)
12 RMI: Java Remote Method Invocation from Sun Microsystems (java.sun.com/javase/technologies/core/basic/rmi)
13 JMX: Java Management Extensions from Sun (java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement)

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

its local data as the value of the last event in the interval. Finally, a 'Path State'
Aggregator was implemented to provide the overall state of an application call-path. Each
Path State Aggregator collects state data from the multiple elements (e.g. nodes and
connections) constituting the managed call path. At the end of each interval, the overall
path state is calculated based on the individual element states.

Implemented Filtering Functions

Two filter types are available in the current CPs implementation. First, a 'Single
Parameter' Filter selects a single data element from the input data set and sends it as the
output data set. Second, a 'Transparent' Filter sends the entire, unchanged input data set
as the output data set. This filter was provided in order to maintain a uniform data-
processing architecture across all CPs.

Implemented Scheduling Policies

Two Scheduler types are available in the current CPs implementation. First, a 'Threshold'
Scheduler determines intervals based on the number of monitoring data events received.
Namely, the scheduler dictates the end of an interval each time the number of received
events crosses a certain threshold. The second scheduler type, a 'Timer' Scheduler,
determines intervals in a strictly time-based manner. Specifically, it uses a configurable
period to determine the end of each interval. Both Scheduler implementations trigger the
statistics calculation process in the associated probe Aggregator, at the end of each
interval. New statistics are immediately filtered and forwarded to the probe's parents.

5 USAGE SCENARIOS AND PRELIMINARY RESULTS

Two example usage scenarios were tested to show the CPs framework benefits for
monitoring large-scale, distributed systems. In the first example, a CPs hierarchy was
built for monitoring various resource types in a clustered computer system. In the second
example, a different CPs hierarchy was constructed to monitor the state of component-
based data-processing applications, at various granularity levels. The goal of the two
usage scenarios was to demonstrate the correct functionality of various CPs hierarchies
and show the capacity of instantiating and inter-connecting different BPs and CPs,
configured with various Aggregator, Filter and Scheduler types. The tested scenarios
show the utility of using CPs when managing complex systems. Meanwhile, these initial
scenarios did not explicitly test performance and scalability issues, even though such
concerns were carefully considered in the framework's architecture specification.

Monitoring the Overall Load of a Clustered System

The CPs framework was used to create a monitoring hierarchy for supervising the
resource usage of large-scale distributed systems. The monitoring hierarchy used is
presented in the example in Figure 3. The following probe types were created to build the

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 11

monitoring hierarchy in the presented scenario. First, two BPs were used to monitor the
CPU and memory resources on the managed stations. One memory and one CPU probe
was instantiated to monitor the respective resources on each machine. The BPs were
configured to use Many per Identical Type Aggregators and Single Parameter Filters.
Consequently, even though multiple CPU and memory parameters are monitored and
made available at the BP level, only the values of one CPU and one memory parameter
are forwarded to parent CPs. The percentage memory usage was selected as the unique
forwarded measure for memory probes and the CPU percentage usage for CPU probes.

Secondly, a system load CP was prepared to represent the overall resource
consumption on each machine. Two such system CPs were instantiated and used in the
monitoring hierarchy, one for each managed station. Each system load probe collected
data from the corresponding CPU and memory BPs on the monitored station. The system
CPs were configured to use a One per Different Type Aggregator and a Transparent
Filter. This implies that system probes collect one measure from each distinct child probe
and forward all calculated values to parent probes. Concretely, a system probe collects
two different measures, one from its CPU child probe and one from its child memory
probe. Statistics calculated based on these measures are subsequently forwarded to parent
probes, in this case, to a cluster load CP. In the current scenario, the system CP maintains
the different collected measures separate from each other, as shown in Figure 7 (i.e. the
'system' probe in the bottom-right pane) and Figure 8 (i.e. 'system2' probe in the top
pane). Nonetheless, the Aggregator used can easily be modified to calculate a unique
system load measure, based on the separate measures collected. It is up to each system
administrator to define the actual function to use for calculating a global system load
measure based on discrete resource data (e.g., a max function considers the system load
as equal to the load on the most used resource, most likely to become a bottleneck).

Finally, a cluster load CP was created to represent the overall resource load on the
entire distributed system. A single probe of this type was instantiated and bound to collect
data from all system CPs of the managed machines in the cluster. The cluster load CP
was configured to use a Many per Identical Type Aggregator. This CP receives measures
on the average memory and CPU consumption of the two systems in the cluster. Based
on these measures, the Aggregator calculates the average CPU and memory consumption
at the overall cluster level, at the end of each monitoring interval. The two selected
stations had similar CPU and memory capacities, so that calculating the average resource
usage in percentages for the two stations made sense. The Aggregator used can easily be
modified to provide a unique cluster load measure, based on the separate CPU and
memory data collected from the individual systems involved. In addition, a different
Aggregator could equally be employed show the total resource usage in the cluster. Care
must be taken when creating monitoring hierarchies from probes with different
Aggregator and Filter types. System administrators should make sure that calculated
measures at higher hierarchical levels make sense with respect to data received from
probes in the lower hierarchical levels. All probes were configured to use Threshold
Schedulers, meaning that statistics were calculated every time the number of collected
monitoring events crossed a certain specified threshold.

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 7 and Figure 8 present snapshots of monitoring data obtained via the CPs
hierarchy, at various abstraction levels. Figure 7 depicts data from monitoring probes
deployed on the first machine and Figure 8 data from the second machine in the cluster.

Figure 7: Composite Probes for System 1 and overall Cluster

Top-left: CPU 1 measures; bottom-left: memory 1 measures; top-right: cluster measures showing the
average CPU and memory consumption in the entire cluster; Bottom-right: centralized system 1 measures

Figure 8: Composite Probes for system 2

Top: overall system 2 measures; middle: memory 2 measures; bottom: CPU 2 measures

As shown in the figures, the CPU, memory and system load probes were deployed
on the respective stations they monitored. The cluster load CP was deployed on the first
station. Monitoring data from the seven probes in the monitoring hierarchy is presented in

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 13

the corresponding graphs in Figure 7 and Figure 8. Each graph is labeled with the unique
id of the corresponding probe. The graphs show how the system probes provide
centralized data on the overall CPU and memory consumption on the machines they
represent. In addition, the cluster probe provides average consumption values for the
managed cluster resources, based on values received from the constituent system probes.
Initial tests were successfully carried out to verify the framework's support for external
client access via the RMI and JMX protocols and for dynamic modifications on
hierarchies of probes of similar types. Specifically, CPU probes were dynamically added
and removed from a cluster CPU probe (Figure 3), without disrupting the monitoring
system's execution.

Monitoring the Overall Availability of a Data-Processing Graph System

The CPs framework was used to create a monitoring hierarchy for supervising
component-based data-processing applications. This type of applications involves several
interconnected nodes, or components, that form a graph-like architecture. The application
data-processing nodes are possibly distributed across multiple machines. Input data is
forwarded between the graph's nodes, following a well-defined data-processing path.
Each node contains a certain data-processing function, so that the node's output data is
the result of the node's function applied on the node's input data. An application can
provide several distinct processing paths, where different paths can share multiple nodes.

With respect to the performed testing scenarios, the central parameter of interest
in the data-processing application scenario was the application state. State values were
monitored at various granularity levels, such as node, data-processing path, overall node
availability and global application availability. The possible node states are Loaded,
Initialized, Started, Stopped and Unloaded. In order to display the nodes' states in
graphical formats, the possible node states are mapped to numeric values (i.e. the Loaded
state is mapped to value zero, Initialized to 1, Started to 2, Stopped to 3, and Unloaded to
4). A processing path's state depends on the respective states of the path's nodes. More
complex scenarios can be envisaged to also consider inter-node connections and
execution platform states when determining path states. Currently, a path is considered to
be in the Stopped state if any of its nodes is in the state Stopped and in the state Started if
all of its nodes are in the state Started. The overall node availability is calculated based
on the individual states of all nodes in the application. Similarly, the overall application
availability is considered based on the individual states of the available paths. Four probe
types were used to build the CPs hierarchy for providing state information at the
presented abstraction levels (Figure 9-a). With respect to the probes' internal
configuration, each probe type was configured with a different Aggregator, depending on
the probe's role and functions. Meanwhile, all probe types were configured to use the
same Filter and Scheduler types, specifically, Transparent Filters and Timer Schedulers.

The different roles and functionalities assigned to each of the four probe types are
described as follows. First, special-purpose BPs where employed to obtain information on
the nodes' states. One BP was instantiated for each data-processing node in the monitored
system (i.e., probes S1 to S10 in Figure 9-a). The BPs were configured to use State

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Aggregators. In this testing scenario, the legacy instrumentation code provided by the
data-processing application was used to provide the BP's Insert functionality. This was
possible since the managed application already provided JMX-based monitoring events at
the node level. Therefore, the BPs were implemented as JMX adapters to the existing
instrumentation code, registering as listeners to node state-change events. At a higher
abstraction level, a second CP type was used for representing the overall node availability
in the application (i.e. the 'Ovrl Node States' probe in Figure 9-a). This CP is connected to
all BPs (i.e., S1 to S10) and aggregates all individual node states for providing an overall
view of the system node availability. A One per Different Type Aggregator was used for
this CP type. Consequently, the 'Ovrl Node States' CP currently displays all monitored
node states individually, providing a centralized view of the application state at node
level. This Aggregator can easily be extended to use the centralized data and calculate the
node availability, in percentages, as a unique measure of the system node state.

The remaining CP types are related to the application's data-processing paths. The
third CP type monitors and represents the state of individual data-processing paths. A
special Aggregator was implemented to calculate a path's state based on the individual
states of the nodes in that path. This Aggregator can be extended to consider additionally
the states of node inter-connections, or execution platforms. Finally, a fourth CP type was
introduced to centralize all path states in the system (i.e. the ‘Ovrl Path States’ in Figure
9-a), which it collects from the individual path probes (P1, P2, P3 and P4). This CP type
measures the global availability of the application, as experienced by external clients. The
current implementation uses a One per Different Type Aggregator for this CP, separately
maintaining the individual path states. This Aggregator could be extended to calculate the
percentage of available paths, as a unique measure of the overall system availability.

The data-processing application depicted in Figure 9-b was instantiated and
monitored using the CPs framework. This application consists of 10 data-processing
nodes, interconnected to form four distinct data-processing paths. For example, path 1 in
Figure 9 consists of the ordered nodes 1, 2, 3, 4 and 5; and path 4 consists of nodes 9, 3
and 10. As such, certain nodes are part of multiple data-processing paths. In the example,
paths 1, 2 and 3 all share node 3, while node 10 is only involved in path 4. A direct
consequence is that a node's failure can have different effects on the global system
functioning, depending on the node's utilization in processing paths. For instance, a
failure in node 10 will only disrupt the functioning of path 4, while a disruption in node 3
would affect all application paths and render the entire system unavailable. In this
example, the dysfunction of a single node in the system, or 10% node unavailability, can
have a considerably different impact on the overall system availability. More precisely,
10% unavailability at the node-level can result in 25% application unavailability if node
10 is disrupted and in 100% application unavailability if node 3 is disrupted. A
monitoring hierarchy that highlights such information was constructed using the CPs
framework, as shown in Figure 9-a. This CP hierarchy allows administrators to obtain
system state information at various granularity and abstraction levels, as monitoring data
is readily available on each node, path and global node and path availabilities.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

Two example scenarios were considered, starting with a fully functioning
application, where all nodes were in the 'Started' state. The first use-case scenario shows
how stopping node 10 affects the local and overall application availability (Figure 10).

Managed data -processing application

1

6

9

8 7

5 4 3 2

10

3

4

2

1

S1 S2 S3 S9 S8 S7 S6 S5 S4 S1
0

P1 P2 P3 P4

OvrlNodeStat
es

OvrlPathState
s

Composite Probes monitoring hierarchy

b)

a)

C

B Basic Probe

Composite Probe

Input data

Output data

N Call path N

 Data -processing node

Node interconnection

Figure 9: Using Composite Probes to monitor a data-processing application

a) CPs hierarchy, probe types: node BP (S1–S10), path CP (P1–P4), all paths CP (OvrlPathState), all nodes
CP (OvrlNodeState); b) Monitored application: ten nodes (1-10) and four paths (1-4)

At the node granularity level, the monitoring data shows node 10 changing its state from
Started to Stopped, while all other nodes remain in state Started. Path 4, which uses node
10, consequently changes its state from Started to Stopped, while all other paths remain
unaffected. This data is depicted in Figure 10, as follows. The top-right graph
corresponds to probe S10, for node 10; the top-left graph corresponds to probe ‘Ovrl
Node States’ and shows centralized data on all nodes states; the bottom-right graph
corresponds to probe P4 and shows the sate of path 4; the bottom left graph corresponds

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

to probe ‘Ovrl Path States’ and shows centralized data on all paths states. The two overall
Aggregators for probes ‘Ovrl Node States’ and ‘Ovrl Path States’ can seamlessly be
extended to indicate the overall node availability of 90% (i.e. 9 out of 10 available nodes)
and the global application availability of 75% (i.e. 3 out of 4 available paths). Similarly,
the second scenario shows how stopping node 3 affects the local and overall application
availability (Figure 11). In this case, the node's failure causes the entire application to
become unavailable, as all paths are using node 3. At the overall level, this translates in a
90% overall node availability and a 0% global application availability.

Figure 10: Local and overall impact on application availability when stopping node 10

Global node availability: 90%; Global data-processing application availability: 75%

The two scenarios indicate the important benefits of observing monitoring data at
different granularity levels. While in both cases a single node was observed to fail, the
actual impact on the overall application availability varied dramatically. Ultimately, from
an application management perspective, the global data-processing availability is of
major importance, as it is directly experienced by application clients. While significant,
such global availability information is difficult to detect by merely following fine-grain
measures at the individual node level. In addition, this difficulty increases dramatically
with the application's scale and distribution. This example scenario shows how a CPs
hierarchy can be used to alleviate such difficulties by providing aggregated monitoring
information irrespectively of the system's scale. Similar CPs hierarchies can be equally
employed to monitor the state and activity of different types of modular systems, such as
component or service-based applications.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

Figure 11: Local and overall impact on application availability when stopping node 3

Global node availability: 90%; Global data-processing application availability: 0%

6 RELATED WORK

Hierarchical monitoring systems, both freeware (e.g. Ganglia [1], Clumon14, Supermon15
[2], or Parmon [3]) or industrial (e.g. Big Brother16, or Cluster Systems Management17)
are available for monitoring clustered and grid systems. These tools represent mature,
scaleable and efficient monitoring solutions for the precise system types they were
designed for. On the Other hand, CPs’ significant advantage lies in its high flexibility and
extensibility features, as it provides support for creating and integrating customised
probes and probe hierarchies for a wide range of system types.

A relatively recent project, Test & Performance Tools Platform18 (TPTP) has
many similar goals and characteristics with the proposed CPs framework. TPTP provides
frameworks and services for developing test and performance tools, for system evaluation
and profiling. The Monitoring Tools Project extends the TPTP platform to provide
support for collecting, analyzing, aggregating, and visualizing data in detailed or

14 Clumon: cluster monitoring system, NCSA (clumon.ncsa.uiuc.edu)
15 Supermon: high performance cluster monitoring, Los Alamos National Laboratory
(supermon.sourceforge.net)
16 Big Brother : web-based system and network monitoring solution, Big Brother® Software (bb4.com)
17 Cluster System Management: management of distributed and clustered IBM servers, IBM
18 Eclipse Test & Performance Tools Platform Project (www.eclipse.org/tptp)

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

statistical views. Future work will follow the TPTP Project evolution and determine
functionalities that can be reused and/or integrated with the CPs framework.

Virtually all research and industry projects in the autonomic computing area
involve monitoring and analysis utilities for collecting, organizing and correlating data
from the managed domain [4]. Depending on each project’s goals, monitoring and
analysis are required for creating system models (e.g. [5]), establishing execution
contexts (e.g. [6]), evaluating and optimizing system performance (e.g. [6], or [8]),
detecting application faults and system failures (e.g. [9], or [10]), or determining
execution paths and performance anti-patterns (e.g. [11]). Most existing projects use
proprietary solutions for collecting, grouping, aggregating and filtering monitoring data.
CPs provides a reusable, scaleable and extensible framework for creating such
monitoring and analysis facilities and accessing them via standard protocols.

7 CONCLUSIONS AND FUTURE WORK

Autonomic management systems require complex monitoring and analysis
functions, which existing tools do not generally provide. This paper proposes Composite
Probes (CPs), a flexible, hierarchical monitoring framework for autonomic management
applications. CPs combines Basic Probes (BPs) that extract data from managed resources
with highly customizable Composite Probes (CPs) that aggregate and filter data at
various abstraction levels. CPs can be seamlessly extended with new instrumentation
BPs, data-processing algorithms, scheduling policies and communication protocols.
These characteristics make CPs suitable for a wide range of management applications and
reusable across a wide range of system types. A CPs prototype was implemented and
tested in two system management scenarios. The presented examples demonstrated how
the CPs prototype could be used to create special-purpose monitoring hierarchies,
combining the available aggregation, filtering and scheduling functions and integrating
third-party instrumentation code via JMX. The examples showed CPs’ suitability for
monitoring dissimilar system types at various abstraction levels. Using CPs, managers
have different views on a managed system, such as performance, architectural, or
availability views, and browse through CPs hierarchies to determine the exact cause of an
observed miss functioning. Future work will focus on integrating CPs with existing
monitoring and management frameworks (i.e. CLIF, Jade and Jasmine). CPs will be
extended as needed with new BP types, probe adaptors and data-processing functions.
Additional support for JMS-based communication is equally envisaged.

8 ACKNOWLEDGEMENTS

The authors would like to thank their colleagues at Orange Labs, Marc Leger, Mehdi
Kesis and Thomas Saillard for their valuable research ideas and technical support.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

REFERENCES

[1] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience”, Parallel Computing, Vol. 30,
Issue 7, July 2004

[2] M.J. Sottile, R.G. Minnich, “Supermon: a high-speed cluster monitoring system”,
IEEE International Conference on Cluster Computing, pp 39-46, 2002

[3] R. Buyya, “Parmon: a portable and scalable monitoring system for clusters”,
Software Practice and Experience, pp 723-739, 2000

[4] “An Architectural Blueprint for Autonomic Computing”, IBM White Paper, 2005
www-128.ibm.com/developerworks/autonomic/library/ac-summary/ac-blue.html

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, "Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure,", IEEE
Computer Vol. 37, Num. 10, pp. 46-54, October 2004

[6] A. Diaconescu, J. Murphy, "Automating the Performance Management of
Component-Based Enterprise Systems through the use of Redundancy", ACM/
IEEE Conference on Automated Software Engineering, Long Beach, USA, , 2005

[7] A. Diaconescu, A. Mos and J. Murphy, "Automatic Performance Management in
Component Based Software Systems", International Conference on Autonomic
Computing, New York, USA, 2004

[8] S. Bouchenak, N. De Palma, D. Hagimont, S. Krakowiak, and C. Taton,
“Autonomic Management of Internet Services: Experience with Self-
Optimization”, International Conference on Autonomic Computing, Dublin,
Ireland, 2006.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, “Pinpoint: Problem
Determination in Large, Dynamic Internet Services”, International Conference on
Dependable Systems and Networks, pp 595 – 604, 2002

[10] S. Bouchenak, N. De Palma, D. Hagimont, and C. Taton, “Autonomic
Management of Clustered Applications”, IEEE International Conference on
Cluster Computing, Barcelona, Spain, 2006

[11] T. Parsons, J. Murphy, “Detecting Performance Antipatterns in Systems
Built using Contextual Component Frameworks”, Journal of Object Technology,
to appear.

[12] B. Dillenseger, E. Cecchet, “CLIF is a Load Injection Framework”,
Middleware Benchmarking workshop, OOPSLA, Anaheim, CA, USA, 2003

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

About the author(s)
Ada Diaconescu is a research engineer in the Adele/LSR group, University Joseph
Fourier, Grenoble, France. The presented work was carried out as part of her postdoctoral
work at Orange Labs. She obtained her PhD from the School of Electronic Engineering
and Computing at Dublin City University. Her main research interests include autonomic
computing and complex systems. Contact her at adadiaconescu@gmail.com. See also
adadiaconescu.there-you-are.com

D EVENT-CONDITION-ACTION RULES FOR COMPONENTS

D Event-Condition-Action Rules for Components

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 51

Flexible Reactive Capabilities in Component-Based
Autonomic Systems

Jayaprakash

Nagapraveen
∗

HADAS Group, LIG
Saint Martin d’Hères, France
nagapraveen.jayaprakash@imag.fr

Thierry Coupaye
France Telecom R&D
Grenoble, France

thierry.coupaye@orange-ftgroup.com

Christine Collet
INP Grenoble
LIG Laboratory

Saint Martin d’Hères, France
Christine.Collet@imag.fr

Pierre-Charles David
†

OBASCO Group, EMN/INRIA
Nantes, France

pcdavid@gmail.com

ABSTRACT
Reactive behaviour, the ability to (r)eact automatically to
take corrective actions in response to the occurrence of sit-
uations of interest (events) is a key feature in autonomic
computing. In active database systems, this behaviour is
incorporated by Event-Condition-Action (ECA or active)
rules. Our approach consists in defining a mechanism for
the integration of these rules in component-based systems
to augment them with autonomic properties. The contribu-
tion of this article is twofold. First, we propose a rule model,
i.e. a rule definition model and a rule execution model, that
can be coherently integrated into a component model. Sec-
ond, we propose a graceful architecture for the integration
of active rules into component-based systems in which the
rules as well as their semantics (execution model, behaviour)
are represented/implemented as components, which permits
i) to construct personalized rule-based systems and ii) to
modify dynamically the rules and their semantics in the
same manner as the underlying component-based system by
means of configuration and reconfiguration. These founda-
tions form the basis of a framework/toolkit which can be
seen as a library of components to construct events, condi-
tions, actions, rules and policies (and their execution sub-
components). The framework implementation is extensible:
additional components can be added at will to the library to
render more elaborate and more specific semantics according
to certain applicative requirements.

∗This work was done while the author was a PhD student
at France Telecom R&D and IMAG-LSR
†This work has been done while the author was a post-
doctoral fellow at France Telecom R&D.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
D.2.13 [Software Engineering]: Reusable Software— ;
H.2 [Database Management]: Systems

General Terms
Design, Experimentation

Keywords
autonomic systems, component-based architectures, ECA /
active rules

1. INTRODUCTION
The overall motivation which underlies the emergence of au-
tonomic computing[9] is based, from an IT industrial point
of view, on the observation that the costs related to the
software infrastructures (TCO) currently move from costs
related to the development and licensing to costs related
to the deployment and exploitation. It appears also quite
clearly that a ”manual administration” of pervasive envi-
ronments such as ”machine to machine” (automotive, home
networking, etc.) software infrastructures or grid comput-
ing is, in practice, almost impossible. Autonomic computing
thus aims basically at, as much as possible, automating the
deployment and management (administration) of software
systems in order to decrease human interventions and asso-
ciated costs.

We consider in this work that an autonomic system is com-
posed of an autonomic infrastructure superimposed on a tar-
get component-based system. The upper layer or the auto-
nomic infrastructure, is responsible for implementing a con-
trol loop, i.e. instrumenting the components of the target
system for monitoring, detecting and notifying events, diag-
nosing the system based on these events, and making deci-
sions to determine what and how corrective actions need to
be executed, and finally, executing the corrective actions on
the components of the target system.

Our work focuses on the architecture and the behaviour of

control loops. We propose to use Event-Condition-Action
(ECA or active) rules[12], a mechanism widely used in ac-
tive database systems to provide a reactive behaviour (an
elaborated form of triggers as found in most commercial
DBMS). The fundamental idea is to ”extract” the reactive
functionality of active database systems[8], and to ”adapt
and inject” it in component-based systems so as to provide
them with autonomic capabilities.

Our objective is to realise a modular and extensible frame-
work/toolkit for the construction of ECA rule-based auto-
nomic architectures. In this framework, the rules as well
as their semantics (execution model, behaviour) are rep-
resented/implemented as components, which permits i) to
construct personalized rule-based systems and ii) to modify
dynamically the rules and their semantics in the same man-
ner as the underlying component-based system by means of
configuration and reconfiguration. In its basic version, the
framework is a library formed of basic components (and sub-
components) which permits to construct basic rules. The
framework is extensible, i.e, additional components can be
added at will to the library to render more elaborate and
more specific semantics according to certain applicative re-
quirements.

The main goal of this article is to introduce the design of this
framework (called Fractal ECA) through an illustrative ex-
ample used throughout the paper. Due to space constraints,
only the elements of the framework required for the compre-
hension and implementation of the example are discussed.

Sample Autonomic Scenario. Let us consider as a target
system, a minimal HTTP webserver with the sole function-
ality of retrieving HTML documents. It is made of two main
components, namely a Request Receiver and a Request Pro-
cessor. The request receiver component or front-end uses a
lower-level scheduler component that creates a new activity
(a thread in this case) for each request. The request pro-
cessor component or back-end analyses the request, logs it
and responds to it. Our Comanche web server1(shown in the
bottom of Figure 4), is a multi-threaded system in Java that
follows a prefork model - the parent process forks new child
thread for every request. Most of the action takes place in
the child threads - figuring out what the requests mean and
sending the requested content back to the client. Once the
processing is done, the child thread waits for the next one
from its parent. Multithreading avoids the server from being
idle until an I/O operation is finished. On the other hand,
it introduces an overhead on the CPU due to the creation
of new threads and to the commutation between existing
threads. The right trade-off between these two conflicting
factors reflects on the system performance. We propose a
simple active rule to maintain this compromise (in complete
informal format):

RULE DoubleThreadPoolSize
ON each webpage request
IF (no free threads in the thread pool)
DO { Double the thread pool size }

1which comes with the Fractal distribution. See
http://fractal.objectweb.org.

The above rule’s purpose is to extend the capacity of the
webserver by increasing the size of the thread pool, that is
the number of possible concurrent child threads. A comple-
mentary rule can be equally envisaged that reduces the size
of the thread pool, when the number of passive threads are
high, thus liberating unused ressources.

The overall semantics of an ECA rule is the following: when
an event of type E occurs, if condition C is satisfied then
execute action A. Behind this apparent simplicity hides a
great deal of complexity that raises many questions which
we shall illustrate based upon our concrete example. Indeed,
several questions are raised by the execution of this simple
rule, to list a few:

• Is a new instance of a rule triggered for every occur-
rence of a triggering event (webpage request)? or once
for several occurrences of the triggering event?

• When are the condition and action parts executed with
respect to the target system execution? before the
execution of the triggering operation or after?

• Is the rule executed in the same execution thread as
the triggering operation or in a separate one?

For the above questions, several options exist, each repre-
senting an execution strategy of the rule. In the sequel,
we discuss possible answers to these questions based on our
illustrative scenario. More generally, our core work is to
provide the rule programmer with an abstract framework
for reasoning about rules execution and an actual architec-
tural framework for practically programming rules and their
semantics.

The rest of the paper is organized as follows. Section 2 and 3
introduce our first contribution: the proposition of an ECA
rule model suited for component-based systems made of a
rule definition model (Section 2) together with a rule execu-
tion model (Section 3). Section 4 and 5 introduce our second
contribution: the proposal of an architectural design that
allows for the graceful integration of active rules into com-
ponent based-systems (Section 4) and some elements about
the actual implementation of rules as Fractal components
(Section 5). Section 6 discusses related works. Section 7
concludes the article.

2. RULE DEFINITIONMODEL
A definition (or knowledge) model specifies how the rules
are represented and manipulated. This section describes
the rule definition model we propose for component-based
autonomic systems.

Event. An event is a happening of interest at a given point
in time. It is characterized by an event type, i.e, an expres-
sion describing a class of significant occurrences of interest.
In our framework, we consider the following event types:
i) applicative - corresponds to inter-component interactions,
ii) structural - represents modifications (reconfigurations)
of the structure (topology) of the system, like adding or
removing a component, or creating new bindings between

components, iii) system-level - characterises events coming
from the external or underlying environment or context of
execution (e.g. JVM and OS events). In our illustrative
scenario, we have an applicative event type: an operation
(method) invocation on a component interface, and more
precisely calls on the interface of the frontend component of
our web server to request web pages.

Condition. Conditions are optional and express additional
constraints on the state of the system that must be satisfied
for the action part to be executed. For example, in our auto-
nomic scenario, the condition predicate checks the number
of available threads, These kinds of condition expressions
(e.g. whether an attribute’s value is bigger than a particu-
lar value or not) are simple boolean expressions built using
logical operators. More complex expressions can be formed
based on queries on the structure of the system as well as on
its behaviour. A query that selects the various components
linked to a particular one is one such example. In such a
case, the condition is considered to be true when the query
returns a non-empty result.

Action. The corrective (re)actions that the target system
can be subjected to are expressed in the action part of the
rule. The event and condition parts of the rule serve to
analyse the symptoms affecting the system. In our scenario,
a method call to the Request Receiver component triggers
the rule. Its condition part evaluates if the number of free
threads is below a limit. If yes, the action that increases
twofold the size of the thread pool is performed. To rectify
the anomalies, the action can range from simple parameter-
izations of component attributes, for example, an increase
in the size of a cache or pool, to complex structural recon-
figuration operations, which can include addition, removal
or replacement of one or several components. Other types
of actions can be envisaged, like external notifications, for
example, an email or SMS notification to an administrator.

3. RULE EXECUTION MODEL
A rule execution model specifies the behavioural semantics
of rules. This section introduces the design of our proposed
execution model and discusses the main dimensions of this
model on our illustrative scenario.

The entire execution of a single rule is comprised of the
following three phases and various states:

1. Triggering and Event Processing Phase R(E): this phase
begins with the notification of the event(s) that trig-
gers (”wakes up”) the rule. The notification is per-
formed by the entity on which the event occurs. It
consists in processing the event(s) based on the vari-
ous rule execution parameters. The rule goes from the
triggerable state to the triggered state.

2. Condition Evaluation Phase R(C): the second phase
of the execution evaluates the condition expression. If
the condition is satisfied then the rule transits from
the evaluable state to evaluated state.

3. Action Execution Phase R(A): the last phase of the

rule execution corresponds to the execution of the ac-
tion part of the rule. It takes the rule from the exe-
cutable state to the final state of executed state (gener-
ally confonded with the initial triggerable state), thus
inducing a positive feedback change in the system be-
haviour.

It is worth mentioning that the condition of a triggered rule
is not always evaluated immediately (hence the two sepa-
rate states triggered and evaluable), and that a triggered
rule with a satisfied condition is not always executed im-
mediately (hence the two separate states evaluated and ex-
ecutable). When and how (e.g. which activity/thread) a
rule is processed depends on the various dimensions of the
rule execution model. Some of the most important ones are
discussed later in the context of our illustrative scenario. Of
course, when multiple rules are concerned, which is the case
in real autonomic systems, an execution model also specifies
when and how rules triggered simultaneously (by same or
different events) (a.k.a. multiple rules)and rules triggered
by other rules (a.k.a. cascading rules) are executed. This
is handled by rule execution strategies (or policies) which
basically specify the scheduling of rules (e.g. depth-first or-
der, width-first order, flat order, by cycles in sequential or
parallel settings). Due to space limitation, this article does
not detail these aspects. The reader may refer to [4]. Prior
to that and more fundamentally, if rules have an execution
model of their own, it has to be stated that the introduction
of active rules in a system (be it a database or a component-
based system) has also a non negligible impact on the be-
haviour of that system. Indeed, there exists a dependency
between the execution of the system and the execution of
rules, for it is the former that triggers the latter and also
the two executions are interwoven/intertwined together.

3.1 From active database systems to active com-

ponent based systems
Active rule execution models in database systems have been
extensively studied but cannot be directly applied to component-
based systems. First, events that trigger a rule in an active
DBMS are query (SQL) statements on a global data schema,
so are the condition and action parts. But this it is not the
case in component-based systems where we have a variety of
events, condition predicates and actions (as defined in the
rule knowledge model). In active database systems, all rule
operations are performed on a single database, whereas in
a component-based system, they may have to be performed
on different components. Indeed, in a component-based sys-
tem, situations of interest can happen on any component of
the system. To gain a thorough understanding of the com-
ponent and its execution environment, we might have to
perform additional queries on it or on its neighbours and
finally execute the corrective actions elsewhere. So, the dis-
tributed characteristic of component-based systems is one of
the distinguishing factors.

Execution units and execution points in component-
based execution models. Finally, besides the two differ-
ences we have just mentioned, a key difference between ac-
tive database systems and active component-based systems
is that execution models in active database systems are

based on a central concept, that of transaction, which is
(generally) inexistant in component-based systems. A trans-
action in database systems is a sequence of operations that
constitutes a unit of concurrency and recovery thanks to
the well-known ”ACID properties” (Atomicity, Consistency,
Isolation and Durability). Transaction is a core and foun-
dational concept of active database systems because, thanks
to transaction demarcations (start, commit, abort/rollback),
they provide a natural and convenient execution unit for the
execution of active rules. An execution unit specifies an in-
terval (between two execution points in a sequential flow or
basically between two points in time) during which events
can be detected/notified to interested rules and rules can
be evaluated and executed. Hence, an execution unit spec-
ifies the granularity of rules execution. On the one hand,
component-based systems generally do not consider trans-
actions. On the other hand, the behaviour of a component-
based system generally refers to interaction through inter-
faces only, thanks to operation (methods in Java) invocation.
Hence, we define the execution unit in component-based sys-
tems as delimited by the interval between the reception of an
operation invocation on a server interface and the emission
of a response onto a client interface. For method invocations
on a component’s functional interfaces (produces applicative
events), and operations that modify the structure of the sys-
tem (produces structural events), we may signal two events:
begin and end. Other forms of events (e.g. system events)
can be integrated in the model that by considering their be-
gin and end events are merged (i.e. they both represent the
same execution point or point in time).

3.2 Rule execution dimensions
Based on these hypotheses, we consider our approach for
defining a rule execution model, similar to the one followed
in active database systems[4], where it is defined as a set
of dimensions, with each dimension being attributed a par-
ticular value. The differences/issues outlined above, have
been addressed in the form of a flexible rule execution model
for component-based systems, adapted from rule execution
models defined in active DBMS. The sequel discusses rule
execution dimensions in the context of the autonomic sce-
nario introduced earlier.

Event Processing Mode. On every webpage request, the
Comanche webserver requests the scheduler service for an
execution thread. So, if an instance of the thread man-
agement rule is triggered for every call, then the system
ressources would be spent unnecessary resulting in a lower
performance. Ideally, a rule needs to be triggered once at
the appropriate moment to rectify the situation. The event
processing dimension addresses this issue, with the possibil-
ity of triggering a rule for several occurrences of the event
type. A rule may handle either only one event at a time
or a set of events. This is specified in the event processing
mode, having an instance-oriented semantics for the former,
and a set-oriented semantics for the latter. In other words,
an instance-oriented semantics suggests that a rule will be
triggered for every occurrence of a triggering event. Such
a kind of event processing strategy is interesting whenever
each event has to be treated individually, e.g. when an ex-
ception is raised, or on every attack or on every forced entry
by a malicious user which requires preventive measures to

be triggered in the form of a rule. If several rules are trig-
gered with the same purpose, system resources are bound to
get depleted, affecting the performance of the application.
Therefore, this strategy is beneficial when a single execution
of a rule is enough to resolve the anomaly in the system. We
shall opt for a set-oriented value to the rule’s event process-
ing mode: as said earlier, a single execution of the rule is
sufficient to retain the performance level of the system.

Coupling Modes. Once a rule is triggered, we have to de-
termine when and how it will continue its execution for it
should not affect the system’s execution. If we consider our
thread management rule, should our rule be executed be-
fore processing the request or after? Should it be done in
the same execution thread or in a separate one? Several
options exist for the above. This is taken care of by the
coupling mode dimension characterized by the couple : <
execution mode, activity mode>.

The execution mode specifies when the condition and action
parts of a rule are evaluated and executed with respect to
the execution of the triggering operation. The triggering op-
eration is the method invocation on a component’s interface
which produces events that trigger a rule. Such a rule that
is activated and is ready for execution, is called a triggered
rule. The commonly supported execution modes include (cf.
Figure 1):

• immediate (or as soon as possible - ASAP): the trig-
gered rule is processed immediately - its condition is
evaluated, if true, the action is executed without any
pause.

• defered: the triggered rule is processed later, await-
ing the end of the triggering operation. The rule is
triggered when an event indicating the beginning of
the triggering operation is received. But the condition
evaluation and action execution of the rule are pro-
cessed only on receiving an event indicating the end of
the triggering operation.

• delayed: here, the condition is evaluated immediately
after the rule has been triggered, but the action part
is executed only on the completion of the triggering
operation.

Rules dealing with security issues have generally a high pri-
ority, and may typically take the immediate value in order to
execute instantly before the damage is done. Defered rules
are typically used in situations in which the action has to
be executed on the final state of the system. In this respect,
immediate rules might embed pre-conditions, while defered
rules might embed post-conditions. Delayed rules are in-
termediary with a condition evaluated at the beginning of
the triggering operation (i.e. before the state of the system
might be changed by other rules for instance) and the action
executed at its end. Our rule concerns the performance of
the system. It permits the system to take preventive mea-
sures in order to maintain its performance levels. So, it is
not so crucial, and can be executed once the initial task is
completed, a defered value will be attributed to our rule’s
execution mode.

!"#$$%"#&$
'()%"*+#,&

-+*"+

%&.

! %/%&+
)",0%--#&$

12%/*34*+#,&

52%6%04+#,&

+#7%

!

-+*"+

%&.

52%6%04+#,&

12%/*34*+#,&

%/%&+
)",0%--#&$

!"#$$%"#&$
'()%"*+#,&

%&.

-+*"+

!

!"#$$%"#&$
'()%"*+#,&

12%/*34*+#,&

52%6%04+#,&

!""#$%&'# (#)#*#$ (#+&,#$

%/%&+
)",0%--#&$

Figure 1: Execution Mode

An execution thread represents a sequential flow of control.
The activity mode dimension determines whether the trig-
gered rule is executed in the same thread as the triggering
operation or in a separate thread. It is recommended to
create a separate flow of control for aspects related to the
administration of the system, e.g, logging. Thus, separat-
ing the system under control and its administration, so that
its normal execution is not too disturbed. On the other
hand, some administration scenarios might require the sys-
tem to be paused, to enable some modification, and to re-
sume later its execution. Depending upon the scenarios, the
best method of executing the rule has to be judged and em-
ployed. For our thread management rule, we shall follow
the conventional choice of executing the rule in a separate
thread because there is no risk due to concurrency on the
usage of threads in the pool since the rule creates only new
threads.

Focus on interactions between a couple of dimensions.
Since there exist some dependancies and intricacies among
these dimensions, the individual semantics of the dimensions
might slightly differ which one could guess at a first glance
when considered as a whole. To illustrate such intricacies,
we now focus on the interactions between event processing
and execution modes.

Prior to presenting the possible combinations for the couple
< event processing mode, execution mode > (including the
ones that match the above choice in our example) , the fol-
lowing notations are employed in the sequel and in Figure 2:

• bn: the event corresponding to the beginning of the
nth method invocation

• en: the event corresponding to the end of the nth op-
eration (method) invocation

• Rn(E): depicts the event processing phase of the nth

occurrence of the considered triggered rule R

• Rn(C): depicts the condition evaluation phase of the
nth occurrence of the considered triggered rule R

• Rn(A): depicts the action execution phase of the nth

occurrence of the considered triggered rule

The events bn and en are representative of the nth occur-
rence of a triggering event type.

1. < Immediate, Instance > : on every event bn, a rule
is triggered and processed immediately in its entirety.
All en events are ignored.

2. < Immediate, Set > : on the event indicating the be-
ginning of the first triggering operation, i.e, on b1, a
rule is triggered and continues processing till its com-
pletion. All bis that occur till the triggered rule com-
pletes evaluation, are consumed by the rule, i.e, the
triggering operations are taken into consideration by
the rule in execution. The next bi when the rule is in
Rn(A) or after, triggers the next rule. Similarly, this
rule also consumes all bi that occurs till it completes
evaluation. Two similar rules can coexist when one
is in the action execution phase and the other begins
execution.

3. < Defered, Instance > : on every bn, a rule is triggered,
it processes the event and waits for a complementary
en event to continue evaluating - Rn(C) and complete
execution - Rn(A).

4. < Defered, Set >: all bis trigger each a rule. The
rules complete the Rn(E) phase, and wait for an end
event ei. When a ei event is received, all rules trig-
gered after Ri are discarded and their corresponding
triggering operations consumed by the rule Ri. All
events ej where j > i received later, are discarded. For
any ek where k < i, the corresponding rule Rk resumes
execution, and consumes all triggering operations that
have triggered rules Rj where k < j < i.

5. < Delayed, Instance > : on every bn, a rule is trig-
gered, processes its event part - Rn(E), evaluates its
condition part Rn(C) and waits for the en event to
execute the last part of the rule - Rn(A).

!"

!#

$#

!%

$"

&" &# &%

&"'()

&#'()&"'*)

&"'+)
&#'*)

&#'+)

&%'()

&%'*)

!"

!#

$#

!%

$"

&" &# &%

&"'()

&"'*)

&"'+)

&%'()

!"#$%&&'(")*'$+$%,-*),.' !""#$%&&'(")*'$+$/'*

&%'*)

&" &# &%

&"'()

&#'()

&#'*)

&#'+)

&%'()

&%'*)

&%'+)

!"

!#

$"
&"'*)

&"'+)!%

$#

!,

!"""#$0'1'2'($+$%,-*),.'

&" &# &%

&"'()

&#'()

&%'()

&%'+)

!"

!#

$"
&"'*)

&"'+)!%

$#

!,

!"3#$0'1'2'($+$/'*

!"

!#

$"

!%

$#

$,

!3#$0'4)5'($+$%,-*),.'

&"'()

&#'()

&%'()

&"'*)

&#'*)

&#'+)

&#'+)

&%'+)

&%'*)

&"- &#- &%-

$#

$,

!3"#$0'4)5'($+$$/'*

&"- &#- &%-

!"

!#

$"

!%

&"'()

&"'*)

&"'+)

&"'()

&"'*)

&"'+)

Figure 2: Execution Models

6. < Delayed, Set > : on b1, i.e, event indicating the start
of the triggering operation, a rule R1 is triggered and
stops after condition evaluation. All bis that occur in
this period, are consumed by the R1. Once the event e1

is received, rule R1 resumes execution and completes
its last phase R1(A). All eis, whose complementary
bis have been consumed by the rule R1. The next bi

that occurs, a rule is triggered and the same strategy
is followed.

Conclusion. To sum up on our example, the rule execution
dimensions of the thread management rule take the follow-
ing values: Event Processing Mode : set, Execution Mode :
defered, Activity Mode : separate. In other words, the rule
is executed once for a set of events, after the triggering op-
eration’s execution returns, in a separate execution thread.
In our simple scenario with only one rule and the three di-
mensions (including one with 3 values) that we consider in
this article, we already get 12 combinations of values, i.e.
potentially twelve different ways of executing the rule. Note
that this does not have a big impact with our sample basic
rule but think of a real system with many rules. To the
rule programmer facing the complexity of rules semantics
(execution model), we propose a architectural framework in
which rule semantics is explicitely programmed/embodied
into software components.

4. ARCHITECTURAL INTEGRATION OF

ECARULES INCOMPONENT-BASED SYS-

TEMS
As advocated by IBM in its autonomic computing manifesto
[9], a supervision loop (or known as control loop in control
theory terminology [11]) has to be realized in order to pro-
vide autonomic behaviour to a target system. On similar
lines, we define an autonomic system as composed of an
autonomic infrastructure superimposed on a target system,
where the autonomic insfrastructure is responsible for imple-
menting the control loop. At the heart of the control loop
are reaction mechanisms that, on analysis of the events of
interest, determine the action operations needed to achieve
the objectives. Our reaction mechanism is formed of active
rules, whose structure and execution have been explained
thoroughly in the previous section. The thread management
rule, defined in the introduction section, is one such active
rule. This section details how such rules are architecturally
integrated with an underlying target system.

If it is legitimate to work towards adding autonomic be-
haviour a posteriori to any system and even more to tackle
explicitly existing legacy systems, we believe it is likely more
advantageous to build explicitly, a priori, the system in a
”certain way” to be able to make them autonomous in a flex-
ible and generic way. This ”certain way” is the component-
based approach - and more precisely the Fractal component
model [2], which has, according to us, interesting proper-
ties for the realization of autonomic systems. It has been
mentioned before that our webserver - Comanche - is imple-
mented as Fractal components.

4.1 Canonical Autonomic Architecture
An architecture for autonomic computing[14] must accom-
plish some fundamental goals, outlined in IBM’s autonomic
computing manifesto[9]:

1. It should possess knowledge about itself and about its
execution environment in order to be able to detect
modifications taking place externally in its environ-
ment, or in its behaviour to subsequently undertake
corrective actions. It must describe how to compose
these components so that the components can cooper-
ate toward the goals of system-wide self-management.

2. It should be adaptable, i.e., its construction should be
based on a structuring model which can isolate its con-
stituting elements, and subject them to adaptations
- and on operational techniques to actually perform
these adaptations (interception, programs transforma-
tion, etc.). It should be able to dynamically adapt
or reconfigure itself to varying and unpredictable en-
vironments without any explicit user intervention.

These key features are present in the Fractal component
model, and we believe Fractal/Julia (its implementation in
Java) is a suitable substrate framework for autonomic sys-
tems development as illustrated in the sequel.

Fractal Component Model. The Fractal[2] initiative aims
at supporting component-based development, deployment
and management (monitoring and dynamic reconfiguration)
of complex software systems, including in particular operat-
ing systems and middleware. It includes several extensions
coming from research works, for management (e.g. Fractal
JMX), security, transactions support, etc. Fractal is also
used for developing several middlewares such as Speedo -
a Java Data Object implementation, CLIF - a load injec-
tion framework, etc2. The Fractal component model relies
on some classical concepts in CBSE: components are run-
time entities that conforms to the model, interfaces are the
only interaction points between components that express de-
pendencies between components in terms of required/client
and provided/server interfaces, bindings are communication
channels between component interfaces that can be primi-
tive, i.e. local to an address space or composite, i.e. made
of components and bindings for distribution or security pur-
poses. Fractal also exhibits more original concepts. A com-
ponent is the composition of a membrane and a content.
The membrane exercices an arbitrary reflexive control over
its content (including interception of messages, modification
of message parameters, etc.). A membrane is composed of
a set of controllers that may or may not export control in-
terfaces accessible from outside the considered component.
For runtime information on the component system, the con-
trol interfaces provide with (meta) information about the
its structure and also means to manipulate this structure.
The model is recursive (hierarchical) with sharing at arbi-
trary levels. The recursion stops with base components that

2CLIF, Speedo and other middleware engineered
with Fractal are available in open source at
http://www.objectweb.org/.

have an empty content. Base components encapsulate enti-
ties in an underlying programming language. A component
can be shared by multiple enclosing components. Finally,
the model is programming language independent and open:
everything (e.g. controllers, type system) is optional and ex-
tensible3 in the model, which only defines some ”standard”
API for controlling bindings between components, the hier-
archical structure of a component system or the components
life-cycle (e.g. start, stop).

The Julia Implementation. Julia is an execution support
for Fractal components written in Java. It is a full-fledged
implementation of Fractal that supports the highest confor-
mance level. More fundamentally, Julia is a software frame-
work dedicated to components membrane programming. It
is a small run-time library together with bytecode genera-
tors that relies on an AOP-like mechanism based on mixins
and interceptors. A component membrane in Julia is ba-
sically a set of controller and interceptor objects. A mixin
mechanism based on lexicographical conventions is used to
compose controller classes. Julia comes with a library of
mixins and interceptor classes, the component programmer
can compose and/or extend. It is worth mentioning that
Julia’s membranes are particularly suited to insert sensors
for observing and actuators for controlling components.

(Re)Configuration Languages. For the configuration and
deployment of a Fractal-based system, an Architecture De-
scription Language (ADL), known as Fractal ADL, is used
to describe the system architecture. It is XML-based and
strongly typed. It describes the interfaces of components
(names and signatures), the subcomponents, the bindings
between the various components, the initial values of compo-
nent properties and the implementation of primitive compo-
nents(e.g., the name of a Java class). All static information
on a component is provided by the Fractal ADL. FScript
is a scripting language used to describe architectural recon-
figurations of Fractal components. FScript includes a spe-
cial notation called FPath (loosely inspired by XPath) to
query, i.e. navigate and select elements from Fractal ar-
chitectures (components, interfaces...) according to some
properties (e.g. which components are connected to this
particular component? how many components are bound to
this particular component?). FPath is used inside FScript
to select the elements to reconfigure, but can be used by
itself as a query language for Fractal.

Most of our approach relies on the Fractal component model.
Of course, in realistic industrial settings, we cannot assume
a whole distributed system to be Fractal-based; but we ar-
gue that those non-Fractal parts (legacy components) can be
wrapped into Fractal components, and extended with auto-
nomic behaviours. In the same line of thought, we believe
that it would be very advantageous to carry out the devel-
opment of the autonomic infrastructure itself in the form of
Fractal components so as to consider the autonomic man-
agement of the autonomic infrastructure itself. (Our work

3This openness leads to the need for conformance levels and
conformance test suites so as to compare distinct implemen-
tations of the model.

!""#$%&'$()*
+(,"()-)'.

!"#"$%&'

/0#-*1-&%'$2-*%(,"()-)'.
-)%&".0#&'-*

32-)'4+()5$'$()*6*!%'$()
*%(,"()-)'.7

!"#"$%('

!"#"$%)'

32-)'4*+()5$'$()*6*!%'$()*
1-&%'$2-*%(,"()-)'.

-)%&".0#&'-*
&""#$%&'$()*%(,"()-)'.7

8(#$%9*1-&%'$2-*%(,"()-)'.
-)%&".0#&'-*

10#-*1-&%'$2-*%(,"()-)'.7

!"#"$%*'

!

"

#

"# !

#

$

$

% %

$

Figure 3: Architectural Vision

can be considered as the first steps in this direction.)

4.2 Reactive part of the Canonical Autonomic

Architecture
The architecture of the autonomic infrastructure is inspired
from the fundamental management notion of domain[13],
which consists in grouping the components on which the
various reactive operations can be carried out. More for-
mally, a domain is:

• a unit of composition to enable physical or logical par-
titioning of the application components, and

• a unit of control to define the type of control that needs
to be carried out on these components.

The similarities between a Fractal component and the con-
cept of domain suggest that a domain can be aptly modelised
as a Fractal component. To incorporate reactive behaviour,
several types of domains have been defined, each with a
particular type of control unit applied onto its composition
unit. They are each represented by a Fractal component,
known as a reactive component. The autonomic infrastruc-
ture is formed by these reactive components. The various
reactive components with their specific functionalities are
listed below and illustrated by Figure 3.

• An Event (E) reactive component encapsulates appli-
cation components where events of interest need to be
detected. The membrane of this reactive component is
responsible for identifying the application components
that would belong to the content, instrumenting them
appropriately. Further, on the occurrence of events
of interest, they are notified to the appropriate con-
troller inside the membrane of the component which
processes them as defined in the rule execution model.

• A Condition (C) reactive component contains applica-
tion components that represent the scope the queries

!

!"#$%&$'($)*
+,-.#$/

&$'($)*
0")1,*23$/

4566$/&$'($)*%
7-,#89$/

&$'($)*%+,-.#$/

&$'($)*%%
&2":$/

;23$.(#$/

<//5/%&$'($)*
+,-.#$/

=5>,-23$
?,2@$-.

!/5-*$-.

"

#

$

Figure 4: Thread Management Rule

that are to be evaluated. The functionnalities of its
membrane include identifying the application compo-
nents that would be in its jurisdiction, and evaluating
queries on them.

• An Action (A) reactive component encapsulates ap-
plication components, on which actions are executed.
The type of control enforced by the Action compo-
nent’s membrane involves identifying its content’s con-
stituents, and executing some corrective operations on
request.

• A Rule (R) reactive component coordinates the pro-
cessing of a rule. It contains (exactly) one instance of
the 3 above reactive components, i.e, Event, Condi-
tion (optional) and Action. The control applied by its
membrane is the execution coordination of these re-
active components. It is responsible for the execution
of the rule embodying on a particular rule execution
model.

• A Policy (P) reactive component’s sole purpose is to
coordinate the execution of the rules based on an ex-
ecution strategy for a set of rules. The content part
of the policy reactive component contains rule compo-
nents, and its membrane controls the rights to their
execution. Only, on explicit notification by the pol-
icy membrane, can the rules, once triggered, continue
processing.

Figure 3 shows the relationships between the various reac-
tive components. The architecture employs key features of
the Fractal Component Model [2], notably: the containment
relationship - which can be found in components in the top
three levels, where each component has components from the
lower level as sub-components, e.g, the Policy component at
level 3 contains the Rule components of level 2; and over-
lapping of reactive domains, thanks to the sharing property,
e.g, an application component can belong to several reac-
tive components. Figure 4 represents the implementation of
our thread management rule. The Event reactive compo-
nent encapsulates the request receiver component, because

Figure 5: Extended Fractal Component

the event of interest for the rule occurs on it. The condi-
tion and action parts encapsulate the scheduler component.
For their respective operations, that of verifying whether the
thread pool is empty and increasing the size of the thread
pool occurs on the same component. Finally, we have the
Rule composite that encapsulates the reactive components
(Event, Condition & Action) to coordinate their execution.
The Policy reactive component is inexistant in the figure
since, due to space limitations, only a single rule has been
taken as an example to illustrate the framework.

5. AUTONOMIC INFRASTRUCTURE
This section presents the extensions in the prototypal imple-
mentation of our proposed framework, that offers the flexi-
bility feature of our autonomic infrastructure.

Each of the reactive components presented above encapsu-
late either application components or other reactive compo-
nents, where structurally both these types of components are
similar. But the controller unit of each of these reactive com-
ponents differs from one another because they implement
different dimensions of the rule execution model. Therefore,
the generic structure of a reactive component is a standard
Fractal component - a composite component to be precise,
with a flexible membrane formed by a set of newly defined
and existing controllers (cf. Figure 5). The Fractal specifica-
tion contains several examples of useful forms of controllers,
which can be combined and extended to yield components
with different reflective features. Likewise, additional con-
trollers, not defined in the Fractal specification, can also be
defined and incorporated in the membrane of a component.
This permits the reactive components to have a membrane
adapted to its respective rule execution dimensions. The
membrane of a reactive component is composed of the fol-
lowing types of controllers : i) standard Fractal controllers
as defined in the Fractal specification, ii) standard Fractal
controllers represented as classical Fractal components with
extended operations and finally iii) new controllers repre-
sented as Fractal components.

For instance, the membrane of the Event reactive compo-
nent is composed of: i) an extended attribute controller to
specify the parameters of the rule execution dimensions, ii)
a content controller to add/remove the application compo-
nents and iii) a event processing controller to process the

events of interest and notify its enclosing rule component.
The event processing controller is a newly defined controller
represented as a Fractal component. It is a composite com-
ponent with corresponding sub-components for the follow-
ing dimensions: execution mode, activity mode and event
processing mode. However, at the time our framework was
developed, the set of controllers that constitute the mem-
brane of a component could not be dynamically modified
in the Julia implementation, nor could the functionalities
of the existing controllers be modified. We have thus ex-
tended the Julia implementation to support these necessary
features.

6. RELATED WORKS
Decision-making/reaction mechanisms form the core of an
autonomic control loop, several systems use rules that spec-
ify conditions to be monitored and operations that should
be executed when certain conditions are detected. Produc-
tion rules (or deductive rules) have the following format -
”IF condition expression THEN action list”. These rules
can also been extended, as in the DIOS++ framework[10],
where an ”ELSE” part as been added at the end - ”IF
condition expression THEN action list ELSE action list”.
ACEEL [3] uses adaptation rules which are couplets of the
form ”OnEvent : Action” with the first part defining the
triggering event and the latter describing what actions to
be performed. Inspired by triggers, we use active rules,
which can be considered as a combinaison of the above two
broad types of rules: ”ON event expression IF condition
expression THEN action list”. Beyond these syntaxical dif-
ferences, the main differences between production (or adap-
tation) rules and active rules concen their execution model.
The execution model of production rules is based on the
Rete algorithm: events are seen as facts which are added to
the knowledge base; rules infer new facts from these facts
; the process stop when a fixed point is reached (no new
facts can be inferred). Production or adaptation rule ex-
ecution models are thus fixed and invariant. By contrast,
active rules models are much more powerful and flexible.
Also active rules models encompass the connection between
the target system and the reaction mechanism while pro-
duction rules systems do not (inference by production rules
is disconnected from the actual execution of the target sys-
tem).

For incorporating these active rules, the approach followed
in SAFRAN[5], K-Components[7] consists in enhancing the
computational component model with rule abstractions, where
all rules concerning a particular component are injected into
to it. Another approach, followed in Autonomia[6] or Au-
tomate[1], consists in implementing an autonomic comput-
ing infrastructure that acts as a control layer superimposed
on the application, that provides the application as well as
its individual components with the basic autonomic services
to make it autonomic. In our approach, rules are not ad-
hoc features injected into components but are themselves
first-class components which can be manipulated as such.
Thanks to the domain concept, the architectural connec-
tion between the application components and the rules are
through containment relationships (hence a rule is not tied
to a single component). Enabling thus, easy modification of
the rule constituents (Event, Condition & Action).

In summary, to our knowledge, several works have tackled
the architectural issues involved in the implementation of a
control loop for autonomic features but none make such an
explicit and extensive use of component programming for
implementing the autonomic features themselves as in our
proposition. As a consequence, these approaches often result
in ad-hoc and not flexible management of the autonomic
features. In most approaches that consider rules of a sort
or another (deductive, active, etc.) as the core mechanism
for autonomic features, rules execution issues have not been
addressed in depth. Their execution strategy/methodology
have been taken for granted, and many issues have been left
under specified and ambiguous (we only find a brief mention
of rule execution model in SAFRAN).

7. CONCLUSION
This article focuses on the architecture and behaviour of
autonomic control loops. It proposes to use active rules as a
decision-making mechanism, for which we have proposed i)
a rule model, which is composed of a rule definition model
and a rule execution model, to provide a clear semantics for
the integration of rules, and ii) a flexible architecture that
permits to dynamically add/delete new rules, to modify the
rule definition model as well as the rule execution model
of rules. Our rule execution model comprises of a set of
dimensions, which we claim is not fully comprehensive, other
dimensions can be envisaged. But we do claim that our
generic architecture can incorporate new dimensions not yet
identified. Further, our autonomic infrastructure takes into
consideration the evolution of the target system. We would
like to add that our work being positioned on components,
i.e, our autonomic infrastructure as well as the underlying
target system being component-based, has permitted us to
benefit from CBSE properties.

The proposed autonomic infrastructure was developed in
a Java implementation of the Fractal component model.
The dimensions outlined in the article have been imple-
mented, and experimented on the Fractal-based Comanche
webserver. Some other execution dimensions, e.g. those
related to the execution of multiple rules, which have not
been discussed here due to space constraints have also been
implemented.

Several future research directions are envisaged. In order to
assess the validity of our proposition, we wish to apply it on
more realistic applications. This would eventually permit us
to determine the set of execution dimensions that are most
relevant for component-based systems. Further, to enrich
our proposition, we foresee a formalism for the definition
of active rules that would typically be an extension of the
Fractal ADL. This extension should be quite straitforward,
for Fractal ADL is actually modular and extensible. On
a longer term, we shall study the problem of interference
between the behaviour of a control loop (i.e. the rules in our
case) and the target system and the stability of the global
system (target system and rules).

Acknowledgments. This work is partially supported by
the French RNTL Selfware project and the European IST
Selfman project. The authors thank A. Lefebvre and B.
Dillenseger for their careful reading and comments.

8. ADDITIONAL AUTHORS
9. REFERENCES
[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty,

C. Schmidt, G. Zhang, L. Zhen, M. Parashar,
B. Khargharia, and S. Hariri. Automate: Enabling
autonomic applications on the grid. Autonomic
Computing Workshop, pages 48–57, 2003.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. The FRACTAL component model
and its support in Java: Experiences with
Auto-adaptive and Reconfigurable Systems. Softw.
Pract. Exper., 36(11-12):1257–1284, 2006.

[3] D. Chefrour. Developing component based adaptive
applications in mobile environments. In SAC ’05:
Proc of the 2005 ACM symposium on Applied
computing, pages 1146–1150, New York, NY, USA,
2005. ACM Press.

[4] T. Coupaye and C. Collet. Detailed sketch of a
parametric execution model for active database
systems. Technical report, LSR - IMAG Laboratory,
University of Grenoble. France, 1997.

[5] P.-C. David and T. Ledoux. An Aspect-Oriented
Approach for Developing Self-Adaptive Fractal
Components. In 5th International Symposium on
Software Composition (SC’06), Lecture Notes in
Computer Science, Vienna, Austria, march 2006.
Springer-Verlag.

[6] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang,
S. Pavuluri, and S. Rao. Autonomia: an autonomic
computing environment. In Proc of the 2003 IEEE
Int’l Conf on Performance, Computing, and
Communications, pages 61–68, 2003.

[7] J. Dowling and V. Cahill. The k-component
architecture meta-model for self-adaptive software. In
Proceedings of the Third Int’l Conf on Metalevel
Architectures and Separation of Crosscutting
Concerns, pages 81–88, London, UK, 2001.
Springer-Verlag.

[8] S. Gatziu, A. Koschel, G. von Bültzingsloewen, and
H. Fritschi. Unbundling active functionality. SIGMOD
Record, 27(1), Mar. 1998.

[9] P. Horn. Autonomic computing: Ibm’s perspective on
the state of information technology. Technical report,
IBM Corporations, October 2001.

[10] H. Liu and M. Parashar. Dios++: A framework for
rule-based autonomic management of distributed
scientific applications. In Euro-Par, pages 66–73, 2003.

[11] M. Kokar and K. Baclawski and Y. Eracar. Control
Theory Based Foundations of Self Controlling
Software. IEEE Intelligent Systems, 14(3):37–45, 1999.

[12] N. W. Paton, F. Schneider, and D. Gries, editors.
Active Rules in Database Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1998.

[13] M. Sloman and K. Twidle. Domains: a framework for
structuring management policy. Network and
distributed systems management, pages 433–453, 1994.

[14] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess,
and J. O. Kephart. An Architectural Approach to
Autonomic Computing. In Int’l Conf in Autonomic
Computing, pages 2–9, New York, NY, 2004.

E MIDDLEWARE FOR BUILDING INTERNET-SCALE, DYNAMIC,
DISTRIBUTED APPLICATIONS

E Middleware for Building Internet-scale, Dynamic,

Distributed Applications

SELFMAN Deliverable D2.2a(v0.6), July 15, 2007, Page 62

Middleware for Building Internet-scale,

Dynamic, Distributed Applications

Cosmin Arad, Roberto Roverso, Ali Ghodsi, Seif Haridi
{cosmin, roberto, ali, seif}@sics.se

June 25, 2007

Abstract

This report presents the design and implementation of a middleware
for building large-scale, dynamic, and self-organizing distributed appli-
cations for the Internet. First, we identify the challenges that are faced
when building this type of applications and the constraints imposed on
the middleware that is to support them. We derive a set of essential
services that are to be provided by our middleware in order to facilitate
the development of distributed applications. These services include scal-
able communication, failure detection, name-based overlay routing, group
communication and a distributed hash table abstraction. We present the
event-based component-oriented architecture of the system, discussing the
design choices that we made in order to meet the aforementioned chal-
lenges and constraints while providing the essential services for distributed
applications. We describe in detail the event scheduling mechanism, the
communication and failure detection, as well as the interface to applica-
tions and other miscellaneous services.

1 Introduction

Internet-scale distributed applications and services such as wide-area storage
systems [12, 6, 15], content distribution networks [5, 9], media streaming sys-
tems [17, 14, 3] or peer-to-peer and GRID computing and resource sharing
systems [1] have motivated considerable advancements in the research on large-
scale distributed systems in the last few years. Typically, cooperating computer
nodes that form these distributed systems are organized in an overlay network
operating over the Internet.

Building real implementations of this type of systems poses a common set of
challenges. First, given the nature of the provided services, these applications
should accommodate a large number of users and participating machines. Thus,
their implementation should be scalable in terms of the size of the network and
the communication, storage, and computational load they are subjected to.

Second, these applications should operate in an environment of dynamic
membership, where nodes are constantly joining, leaving the network or fail-
ing. Hence, the applications need to be fault-tolerant. Nodes should accurately
detect the failure of neighboring nodes and act accordingly. Moreover given
the constraints imposed by a possible structure of the overlay network, these

1

applications should accommodate dynamic peer connectivity, being able to con-
tinuously maintain certain connections and garbage collect others.

In order to facilitate the development and quick prototyping of new large-
scale, dynamic, and self-organizing distributed applications, we decided to build
a middleware library that provides basic reusable services for this type of appli-
cations and encapsulates solutions to the aforementioned set of challenges.

DKS, the middleware that we have implemented provides the following ser-
vices: a Distributed Hash Table (DHT) indexing service, that allows for storing
and retrieving key-value pairs, an overlay network allowing for reliable name-
based routing of messages, and group communication services. In addition,
we provide lower level essential services like failure detection, timers, efficient
object-based message marshalling, and web-based testing support.

Implementing a middleware library brings certain constraints. Large-scale
systems imply a certain degree of heterogeneity in the performance and capacity
of participating machines. In order to accommodate this heterogeneity the
library should be as lightweight as possible, thus it should have a low memory
footprint and should use a number of threads that accommodates the number
of processing cores available on the machine where the middleware is executed.
Moreover, it should be extensible and easily integrated with applications.

In the following sections we discuss the services provided by DKS and then
we describe the DKS system architecture.

2 Middleware Services

We have derived a set of middleware services that we believe are essential to
any large-scale distributed application, and which, if available, facilitate the
quick implementation and deployment of new distributed algorithms without
reinventing the wheel.

First of all, application nodes need a reliable and efficient communication
infrastructure for point-to-point communication and name-based routing. Sec-
ond, they need to detect the failure of peer nodes in a timely manner and take
fail-over measures. Extending these basic abstractions, we believe many appli-
cations would benefit from the use of a distributed index provided by a DHT
service or from a group communication abstraction. Last, but not least, DKS
provides efficient message serialization, timers handling and built-in support for
application testing. We now look at each of these services in turn.

2.1 Reliable Name-based Communication and Routing

The application nodes running the DKS middleware form a Structured Overlay
Network (SON). Each node has a reference comprised of its overlay network
identifier and the underlay network address, namely its IP address and TCP
port number, that other nodes can use to open new connections to it.

DKS provides both point-to-point message passing and message routing
through the overlay network. It hides the connection management from the
application. Messages can be sent to overlay network identifiers, the sender
not having to know the underlay network address of the receiver. For point-to-
point communication, new temporary connections are established automatically
if needed. Endpoints of each connection negotiate whether any of them needs

2

the connection to be permanent or temporary. Temporary connections are au-
tomatically garbage collected and closed if not used for a certain period of time.
Permanent connections are established between overlay network neighbors, for
instance, but the application can chose to make a connection permanent should
it be used for a longer time, to avoid connection establishment trashing.

The overlay network topology is induced by the Distributed k-ary Sys-
tem [10] DHT. The topology is maintained automatically and it is used for
name-based routing of messages. The name in this case is the overlay network
identifier of the destination node.

2.2 Failure Detection

In order to be able to tolerate failures, applications need to detect them first.
A node failure detection service is thus crucial for a distributed application.
Due to the possibility of network congestion and message loss in the Internet,
no bound on transmission delay can be guaranteed thus it is impossible to im-
plement a strongly accurate [4, 11] failure detector using predefined message
acknowledgment timeouts. Therefore, DKS provides an eventually perfect fail-
ure detector, which adapts its timeouts, hence its accuracy, to the variation of
network latency, for each connection, thus for each neighboring node in part.
At times it can falsely suspect alive nodes to have failed, due to temporary in-
creased network latency, but eventually it adapts and resumes accurate failure
detection.

2.3 Distributed Hash Tables

Distributed Hash Tables (DHTs) are an essential component of robust large-
scale distributed systems. They provide a directory/index service in the form
of a hash table abstraction, which distributed applications can use to reliably
store various kind of meta-data. Data items in the DHT are replicated to keep
them available as nodes join and leave the system.

The basic DHT operations are storing <key, value> pairs and retrieving the
values associated to a key. DKS also provides bulk operations [10], whereby the
storage or retrieval of a set of items is optimized in terms of message complexity.

DKS provides multiple DHT tables, with different characteristics such as
replication degree or worst-case routing complexity. We are currently working
on providing a transactional database abstraction on top of the DHT.

2.4 Group Communication

Exploiting the structure of the overlay network, DKS provides an efficient over-
lay broadcast service as well as pseudo-reliable version of it [10]. Broadcast
messages reach all nodes in the overlay network in a number of communication
steps that is logarithmic in the size of the network, with no redundancy. A
broadcast with feedback operation is also provided. This allows any node to
aggregate global information from every other node in the system.

3

2.5 Other Services

DKS provides testing support for overlying applications by means of a built-in
web-server instance in each application node. Applications can expose internal
state though dynamic web pages published on the server. From a central testing
node, a script can automatically web-browse application nodes and assert the
validity of their published internal state.

Other services provided by the DKS middleware are efficient object-based
message serialization and timers management. Messages are serialized directly
to native operating system buffers, in order to minimize byte copying and the
serialization service provided by Java is avoided in order to decrease message
size. DKS allows overlying applications to register and cancel timers and triggers
notifications on timers’ expiration.

3 System Architecture

For reasons of modularity, readability and easy maintainability the DKS mid-
dleware is structured into components. Each component implements one service
that it provides to other components through an event-based interface. In gen-
eral, components are event-driven but there are some exceptions. For instance,
components that deal with I/O operations or timers are control oriented and
have their own thread of control.

Event-driven components are implemented as Java objects. They are com-
prised of some local state variables and a set of event handlers, which are ordi-
nary Java methods. Each event handler handles events of one type. Events are
ordinary Java objects and event types are Java types (classes). An event han-
dler is executed whenever an event of the corresponding type is triggered. Event
handlers are executed by the worker threads of a thread pool of adjustable size.
While being executed, event handlers might trigger other events.

Triggering and execution of events relies on a publish-subscribe mechanism.
Components subscribe for all the event types that they can handle. Whenever
a new event is triggered, it is published for scheduling and when scheduled, the
corresponding event handlers or all components that had subscribed for that
event type are executed.

An event subscription contains a reference to the subscriber component in-
stance, a reference to the event handler method, and the event type for which
the subscription is made. All event subscriptions are stored in a hashtable in-
dexed by event type. In fact, a set of subscriptions is associated to an event
type as there can be more than one component subscribing for the same event
type. The event subscription table is depicted in Figure 1.

3.1 Event Scheduling

When an event is triggered a new event instance is created and placed on an
event queue. The event queue is a priority queue and is used for prioritization
of events. Events can have one of three priorities: low, medium, or high. By
convention timer expiration events are given high priority, middleware events
are given medium priority, and application events are given low priority. In
general, high priority events are scheduled before medium and low priority ones
and medium priority events are scheduled before low priority ones. However,

4

Event classes Subscriptions to Events

Event1

Event2

Subscription1
Event 1

Subscription2
Event 1

Subscription3
Event 1

Subscription1
Event 2

Subscription2
Event 2

Event3

Subscription1 Subscription2

Subscription1
Event 3

Subscription2
Event 3

Subscription3
Event 3

Event4 Subscription1
Event 4

Event 4
Subscription1

• Component instance
Subscription1

• Handler Method

Figure 1: Subscription Table

to avoid starvation of low priority events we implement the following fairness
mechanism: not more than f events are consecutively scheduled from a higher
priority queue if there exist events in lower priority queues. f is a fairness
parameter.

When an event is dequeued for scheduling, its type is looked up in the
subscription table and all subscriptions are retrieved. For each subscription in
part a work item is created and submitted for execution to the thread pool. A
work item is a unit of work that can be executed by a worker thread in the thread
pool. It consists of the event instance that needs to be handled and references
to the component instance and handler method that need to be executed for
handling the event. A worker thread that processes a work item will invoke
the handler method on the specified component instance passing it the event
instance as an argument.

While invoking an event handler method on some component instance, a
worker thread locks that particular component instance. This enforces that one
component instance executes only one event handler at a time so the compo-
nent writer does not have to deal with concurrency. We can say that event
handlers execute atomically with respect to each other, or that components are
concurrency-safe.

The event scheduling is summarized in Algorithm 1.

3.1.1 Event Consumers

Components subscribe to events by type. As a result, a component that sub-
scribes to one event type will handle all events of that type. Some components
need to exchange messages with their peer components in other application
nodes. Message sending and receiving is handled by a communication compo-
nent. Whenever the communication component receives a message, it triggers

5

Algorithm 1 Event scheduling
1: procedure trigger(e) . Called to trigger event e
2: eventQueue.enqueue(e);
3: schedule();
4: end procedure

5: procedure schedule()
6: e := eventQueue.dequeue();
7: if e 6= nil then
8: subscriptions := subscriptionTable.get(e.type);
9: for all sub in subscriptions do

10: w := makeWork(sub);
11: workerPool.executeWork(w);
12: end for
13: end if
14: end procedure

15: procedure executeWork(w) . executed by a worker thread
16: lock(w.component);
17: (w.component).(w.handler)(w.event);
18: unlock(w.component);
19: end procedure

a message received event. If all components that handle messages subscribed
to this event, many of them would only handle it to find out that it contains a
message they are not interested in. Therefore, to avoid this event trashing, we
introduce the notion of event consumers.

Certain events, like the ones encapsulating received messages, may have as-
sociated with then, a consumer. A consumer is a pair containing the component
designated to handle the event, together with its event handler method. If an
event has an associated list of consumers, these will be scheduled to handle the
event, together with other subscribers for the event type.

Currently, this mechanism is only used for events encapsulating messages.
Components handling messages register as consumers by specifying a message
type and a message handler method. Consumer registrations are kept in a
hashtable indexed by message type. Whenever a message is received, based on
its type, the list of consumers is retrieved from the consumer registry and all of
them are scheduled to handle the message.

The consumers mechanism is a mechanism for message scheduling. Like
events, messages have types, and different components handle different types of
messages. Registering as a message consumer is the analogue of subscribing for
an event type. The alternative approach to message scheduling would be for
every message to be an event and use the event scheduling mechanism.

3.1.2 Component Mutual Exclusion

There exist situations where multiple components need to access some shared
state. Typically, the shared state resides in one component and needs to be
accessed by other components. As we execute components concurrently in the

6

thread pool, we may introduce race conditions on the shared state. To avoid
such race conditions, we want to prevent executing a component event handler
that is accessing state of a running component and delay its execution until the
conflicting running component has finished executing its handler.

When subscribing for an event type, a component A registers an event han-
dler. At the same time it has to state what other component’s (say B) state
that handler accesses. We assume that all handlers of component B access the
state that the handler of component A accesses. Thus, the handler of compo-
nent A cannot run concurrently with any handler of component B. We say that
the handler of component A depends on the handlers of component B and vice-
versa. All such dependencies are stored in a dependency table. An example
dependency table is depicted in Figure 2. For each event handler we have a
dependency set consisting of all the handlers the respective event depends on.
These dependency sets are created both ways at handler subscription time.

Execution Pairs Dependency Sets

Component A
Handler 1

Component B
Handler 1

Component B
Handler 2

Component B
Handler 3

Component B
Handler 1

Component A
Handler 1

Component B
Handler 2

Component A
Handler 1

Component B Component AComponent B
Handler 3

Component A
Handler 1

Figure 2: Dependency Table for components A and B

The scheduler maintains a set of running handlers. Whenever a new event
handler is to be executed, its dependency set is intersected with the set of
running handlers and the new event handler is executed only if this intersection
is empty. Otherwise, the coresponding work item is placed in a waiting set.
Whenever one of the running handlers finishes executing, the waiting set is
inspected for handlers that are now ready to execute. The resulting scheduling
algorithm is depicted in Algorithm 2. The schedule() funtion is a critical
section and not two threads can call schedule() concurrently.

3.1.3 Hooks

Certain algorithms implemented by some components have special state tran-
sitions that may be of interest to other components. We provide a hooking
mechanism through which these state-transitions can be notified to interested
components.

Instead of breaking the atomicity of the event handlers implementing some
protocol that relies on it, we allow other components to hook calls into the
control flow of these event handlers. Thus, we label certain points in the flow
of the protocol and we call them hooks. To these hooks other components can
attach hook handlers. When the protocol execution reaches one of the hooks,
it executes all the hook handles attached to it.

7

Algorithm 2 Event scheduling with component mutual exclusion
1: procedure schedule()
2: for all w in waitingSet do
3: concurrentExecuteWork(w);
4: end for
5: if |waitingSet| 6= 0 then
6: return
7: end if
8: e := eventQueue.dequeue();
9: if e 6= nil then

10: subscriptions := subscriptionTable.get(e.type);
11: for all sub in subscriptions do
12: w := makeWork(sub);
13: concurrentExecuteWork(w);
14: end for
15: end if
16: end procedure

17: procedure concurrentExecuteWork(w)
18: dependecySet := dependencyTable.get(<w.component, w.handler>);
19: if (dependencySet 6= ∅) then
20: if ((dependencySet ∩ runningSet) = ∅) then
21: runningSet.add(<w.component, w.handler>);
22: waitingSet.remove(w);
23: workerPool.executeWork(w);
24: else
25: waitingSet.add(w);
26: end if
27: else
28: runningSet.add(<w.component, w.handler>);
29: waitingSet.remove(w);
30: workerPool.executeWork(w);
31: end if
32: end procedure

33: procedure executeWork(w) . executed by a worker thread
34: lock(w.component);
35: (w.component).(w.handler)(w.event);
36: unlock(w.component);
37: runningSet.remove(<w.component, w.handler>);
38: schedule();
39: end procedure

8

Hook handlers are pairs of component instances and methods. They are
stored in hashtable indexed by the hook label. Hooks handlers are a case of
components directly calling methods into other components. Hence, whenever
component A installs a hook handler into a hook contained in event handler H
of component B, a mutual exclusion dependency is created between handler H
of component B and all event handlers of component A.

One example usage of hooks is in the implementation of the DKS [10] join and
leave protocols. These protocols are concerned with maintaining the consistency
of the ring so they operate at the routing layer. A DHT component operating
at the data layer must be notified when a node has just joined or intends to
leave so that it can move data items to the new responsible node.

3.2 Communication

A communication component handles the sending and receiving of messages
between middleware nodes over TCP connections. Middleware nodes are ad-
dressed by a reference comprising of their Internet address and overlay address.
The communication component provides the service of sending a message to
a specified node reference by handling the corresponding event and triggers a
message received event when a new message is received from a remote node. In
providing these basic services the communication component hides the connec-
tion management from the other components of the middleware and from the
application.

Hidden connection management includes initiating or accepting a new con-
nection that is needed to send a message, periodically garbage collecting not
recently used connections, and tie-breaking when two nodes have open two dif-
ferent connections to each other simultaneously, by closing one of them. Every
middleware node listens for incoming connections on a TCP port that is part
of its node reference.

The communication component also offers explicit control to connection
management to other components. Connections are tagged as permanent or
temporary. Permanent connections are never closed while temporary connec-
tions are subject to garbage collection. Other components can change the status
of a specific connection through specific events. The status of a connection is
negotiated with the other peer and a connection can be made temporary only if
both end-points agree that they don’t need it as a permanent connection. Au-
tomatically created connections are initially temporary, but other components
can also explicitly create permanent or temporary connections. For instance, a
node should have permanent connections to its neighbors in the overlay routing
table.

3.2.1 Message Transmission and Reception

Message transmission and reception is done with a selector model rather than
with a thread per connection model. This is mainly because as the middleware
node is part of an overlay network it may have a considerable number of neigh-
bors and therefore many open connections. Having one thread per connection
would lead to a too large number of threads in the system and to consider-
able context-switching overhead as the Java threads are heavyweight threads.
Hence, the communication component contains its own thread that blocks on all

9

pending I/O operation and immediately unblocks and handles I/O operations
that become ready. This mechanism enables scalable communication.

Message transmission and reception is done by copying message bytes from
memory buffers to socket buffers and vice-versa. The selector thread blocks on
a receive operation until some bytes are available in the receive socket buffer.
It can also block on a transmit operation if the transmit socket buffer is full.

We use direct memory buffers for efficient communication as the Java Virtual
Machine make a best effort to perform native I/O operations on direct buffers,
avoiding extra byte copying. However, direct buffers have a higher allocation
cost than normal buffers. For this reason we pre-allocate a pool of direct buffers
at component initialization time. Buffers are acquired from the buffer pool as
they are needed and released back thereafter.

Each connection may have an active I/O operation and some state associ-
ated with it. When the respective I/O operation becomes ready, the selector
continues the operation (by sending or receiving some bytes) and updates its
state. Hence, the selector transmit and receive operations are state machines.
Whenever all bytes of a message have been received, and are available in a list
of buffers, they are passed to a marshaler component for unmarshaling (see Sec-
tion 3.2.4). Each connection has an associated queue of messages to be sent.
These are already marshaled messages and are represented as lists of buffers.
Whenever all bytes of a message have been sent, the next message is dequeued,
a message header is composed and sent and then the bytes of the message are
sent. The communication component guarantees FIFO message transmission
which is relied upon by the failure detector and some of the DKS [10] protocols.

Message headers are 9 bytes long and include the message type, the mes-
sage sequence number and the payload length. All messages are acknowledged.
This enables the continuous estimation of the round-trip time (RTT) of each
connection which is used for failure detection (see Section 3.3).

When triggering the sending of a message, other components can subscribe
to notifications. They can be notified, through a specified event, either when all
the bytes of the message have been sent or when the message receipt has been
acknowledged.

3.2.2 Connection Closing

Periodically, all temporary connections are inspected for their last used time. If
this time falls behind a specified threshold for some connection, the connection
is marked for closing. In closing connections we avoid message loss. Immediately
closing a connection may result in the loss of messages queued for sending on
the other side of the connection. Instead, we send a special CLOSE message
that instructs the remote peer to flush all its messages queued for sending on
the connection at hand. After flushing all messages, the remote peer closes the
connection itself.

3.2.3 Double Connection Tie-Breaking

Two peers may attempt to connect to each other at the same time. This may
result in two different connections being established between the two peers.
Should this happen, both peers detect it on accepting a new connection from
the other peer to which they have already connected to. Upon detection the

10

peer with the lowest address closes the connection it has initiated. In doing this
it applies the connection closing mechanism described in the previous section.

3.2.4 Message Marshalling

Messages need to be transformed from objects into sequences of bytes for trans-
mission and vice-versa after reception. This is done by a marshaling component
intermediating message sending and receiving between other components of the
middleware or application and the communication component. Marshaled mes-
sages are represented as lists of direct byte buffers which are naturally handled
by the communication component. Unmarshaled messages are ordinary Java
objects.

Given a sequence of bytes representing a marshaled message, the marshaling
component has to instantiate and initialize the correct message object. To keep
marshaled message size as little as possible we decided to code message types
as integers, as opposed to the Java serialization mechanism which includes a
complete class signature and is therefore too verbose.

Each middleware message type is associated a unique integer identifier, which
is reserved in a static message type table. Each message class contains a marshal
method returning a list of direct byte buffers and an unmarshal method taking
a list of direct byte buffers as an argument. The marshal method writes the
message fields, in order, as bytes in buffers which it acquires from the buffer
pool, while the unmarshal method reads bytes from the provided buffers and
initializes the message fields in the reverse order.

Upon marshalling a message the message type is the first integer written
in the buffer, followed by the message fields. Upon unmarshaling, the message
type is read from the buffer, the message class is looked up in the message type
table and a new message object is instantiated. The unmarshal method is then
called on this new message object instance.

As certain applications might have their own opaque messages, we have to
resort to Java serialization to marshal/unmarshal these messages. This results
in larger messages, however we use our efficient serialization mechanism for the
bulk of the middleware messages.

3.3 Failure Detection

As our middleware nodes are to be deployed over the Internet which behaves as
a partially synchronous network [11], we provide an eventually perfect [4, 11]
failure detector. This failure detector triggers suspicion events when it suspects
that a peer node has crashed, and rectification events when it finds that the
suspicion was in fact a false positive. False positives can happen in the Internet
where most of the time the message transmission delay is bounded but some-
times, due to congestion, messages or acknowledgements may take longer than
expected to arrive, thus resulting into a timeout and triggering a false suspicion.

The failure detector relies on a prediction of round-trip time for each con-
nection in part. As all messages exchanged by the middleware are acknowl-
edged, the RTT can be measured for each sent message. For each connec-
tion the average RTT is kept together with the RTT variance. These val-
ues are used to compute an expected round-trip timeout (RTTO). RTTO =
E(RTT)+4×V AR(RTT). This timeout value is used to set a timer every time

11

a message is sent. If the timer expires before an acknowledgement is received, the
peer is suspected to have crashed. If an acknowledgement is eventually received,
the RTTO is recomputed to adapt to the new RTT. If an acknowledgement is
received before the timer expires the timer is just canceled.

In the case when the local peer doesn’t actively send messages to the re-
mote peer, the failure detector periodically sends ping probes awaiting for pong
acknowledgements within a timeout of RTTO milliseconds. From the failure
detection point of view, pings are equivalent to ordinary messages and pongs
are equivalent to message acknowledgements. The local peer waits for γ mil-
liseconds from the time it receives a pong until is sends the next ping. No ping
is sent if the remote peer is suspected, but the local peer awaits for the pong to
the last sent ping.

As the failure detection mechanism closely relies on the RTTO estimation,
computed per each link in part, and on message acknowledgements, it is im-
plemented inside the communication component. Because each connection may
have a different expected RTTO we have a failure detector instance for each
connection in part. The failure detector is a state machine depicted in Algo-
rithm 3 and Algorithm 4. The state machine is driven by events like: a message
is sent by the local peer, an acknowledgement is received, a timer expires, a
pong is received. Here is a description of the states of the failure detector:

• INIT if no message is sent a ping is sent after γ ms;

• MSENT a message has been sent and a timer set for RTTO;

• PSENT a ping has been sent and a timer set for RTTO;

• PMSENT a message has been sent while in the PSENT state;

• PSUSPECT no pong was received in the PSENT state and the timer
expired;

• MSUSPECT no acknowledgement was received in the MSENT state and
the timer expired;

• PSUSPECT MSENT a message has been sent while in the PSUSPECT
state;

• MSUSPECT MSENT a message has been sent while in the MSUS-
PECT state.

If the local peer sends a sequence of messages, only the first message is used
for failure detection. From the failure detection point of view, all messages sent
before the acknowledgement to the first sent message is received are ignored.
This behavior relies on the fact that connections are FIFO.

3.4 Application Interface

Applications making use of the middleware may interact with it in two different
ways. One way, suitable for new applications, is to fit the application to the
middleware architecture, that is, to have a component-oriented event-driven
application.

12

Algorithm 3 Failure detection algorithm
1: event Init()
2: state := INIT
3: timer TimerR.start(γ)
4: end event

5: event MessageSent(messageId)
6: if state = INIT then
7: state := MSENT
8: timer TimerR.cancel()
9: firstSentMessageId = messageId

10: timer TimerM .start(RTTO)
11: else if state = PSENT then
12: state := PMSENT
13: else if state = PSUSPECT then
14: state := PSUSPECT MSENT
15: else if state = MSUSPECT then
16: state := MSUSPECT MSENT
17: else if state = PMSENT or state = PSUSPECT MSENT then
18: return . Ignore and wait for Pong
19: else if state = MSUSPECT MSENT or state = MSENT then
20: return . Ignore and wait for Ack(firstSentMessageId)
21: end if
22: end event

23: event AckReceived(ackId, newRTT)
24: if state = INIT then
25: return . Ignore, ack of message received during suspecting time
26: else if state = MSENT and ackId = firstSentMessageId then
27: timer TimerM .cancel()
28: updateExpectedRTTO(newRTT)
29: state := INIT
30: timer TimerR.start(γ)
31: else if state = MSUSPECT or state = MSUSPECT MSENT
32: and ackId = firstSentMessageId then
33: trigger rectificationEvent(connectedPeer)
34: updateExpectedRTTO(newRTT)
35: state := INIT
36: timer TimerR.start(γ)
37: end if
38: end event

13

Algorithm 4 Failure detection algorithm continued
1: event PongReceived(newRTT)
2: if state = PSENT or state = PMSENT then
3: timer TimerP .cancel()
4: updateExpectedRTTO(newRTT)
5: state := INIT
6: timer TimerR.start(γ)
7: else if state = PSUSPECT or state = PSUSPECT MSENT then
8: trigger rectificationEvent(connectedPeer)
9: updateExpectedRTTO(newRTT)

10: state := INIT
11: timer TimerR.start(γ)
12: end if
13: end event

14: event TimerExpired(TimerR)
15: sendto connectedPeer.ping()
16: state := PSENT
17: timer TimerP .start(RTTO)
18: end event

19: event TimerExpired(TimerP)
20: if state = PSENT then
21: trigger suspicionEvent(connectedPeer)
22: state := PSUSPECT
23: else if state = PMSENT then
24: trigger suspicionEvent(connectedPeer)
25: state := PSUSPECT MSENT
26: end if
27: end event

28: event TimerExpired(TimerM)
29: if state = MSUSPECT or state = PSUSPECT MSENT
30: or state = MSUSPECT MSENT then
31: return . Ignore, the peer is already suspected
32: else if state = PMSENT then
33: return . Ignore, waiting for Pong
34: else if state = MSENT then
35: trigger suspicionEvent(connectedPeer)
36: state := MSUSPECT
37: end if
38: end event

14

For applications written in a control-oriented manner we provide an inter-
facing component whose role is to provide blocking calls to the application.
Typically, middleware services are used by triggering a request event. When
the service operation has been completed a response event is triggered by the
middleware. The interfacing component wraps this event-based interface into a
blocking call interface, thus every service is made into a call which starts by trig-
gering the corresponding request event and then blocks awaiting for the response
event. Handling the response event results in the middleware call returning to
the application.

A middle ground between a fully synchronous interface and having a com-
plete event-based application is an asynchronous interface for control-oriented
applications. That is, request events are triggered by the application but the
application does not have to block waiting for the response event. It can con-
tinue to run and can later check whether the response event has been triggered
or not. The check can be blocking or non-blocking, that is if the response event
has not been triggered yet, the application can either block awaiting it or con-
tinue running and check again at a later time. This way, the application can
trigger a number of middleware services, whereby the response events are stored
in a mailbox that the application checks.

3.5 Miscellaneous Services

Our middleware provides unified timer management and web-based testing sup-
port for applications.

3.5.1 Timer Management

A timer component enables other components to start and cancel timers. On
starting a timer, a component has to specify an event that the timer component
will trigger on timer expiration. The timer component returns an unique timer
identifier when it starts a timer. This identifier can later be used by the com-
ponent starting the timer to cancel it. On timer expiration the event specified
when starting the timer is triggered being marked as a high priority event.

There is an unavoidable race between timer expiration and timer cancella-
tion. This may naturally result in a timeout event being triggered even if the
corresponding timer was canceled. Components should be aware of this fact and
should keep a set of outstanding timers and associated timeout events. When
a timer is started it should be added to the set of outstanding timers and when
it is canceled it should be removed from this set. Only timeout events that
are outstanding should be handled and the others should be ignored. This will
prevent any inconsistencies caused by handling both a timer cancellation and a
timer event.

The timer component has an associated background thread which is needed
by the Java timer mechanism. The motivation for unified timer management
is that if various components were to use their own timers that would result in
a thread being used for each timer which is a waste of resources. By using the
timer component, all timers share a single thread.

15

3.5.2 Web-based Testing Support

The middleware includes a web-server which serves pages with statistics and
state of the middleware components. The web-server does not listen on a sepa-
rate TCP port so web connections to the middleware are not distinguished from
connections initiated by other middleware nodes until a GET HTTP request is
received on them instead of a middleware message header. When that happens,
the communication component hands over the new connection to the web-server
component which replies with the requested page and closes the connection.

By default, the web-server replies with a human readable web-page contain-
ing statistics about the open connections, failure detection and status of some
of the middleware components. However, every component including applica-
tion components can publish their own dynamic pages on the web-server. These
pages should have an easily parsable format and should contain <variable,value>
pairs. Thus the value of certain variables can be automatically asserted from
a unit testing framework which can browse the middleware nodes’ web-servers
and retrieve interesting state information.

3.6 Summary of System Threads

The DKS middleware contains the following threads:

• I/O thread - needed for blocking selection of I/O operations;

• timer thread - background thread needed by the Java timers mechanism;

• n worker threads - executing component event handlers;

4 Conclusion and Future Work

We have presented the architecture of the DKS middleware library, the con-
straints and deployment environment challenges that motivated our design choices,
and described the services that it offers for building large-scale, dynamic, and
self-organizing distributed applications. We argue that this set of services ben-
efits most applications of this kind, and permits the rapid prototyping of new
ready-deployable applications while avoiding reinventing the wheel.

We are currently evaluating our DKS system implementation using the Mod-
elNet [18, 13] network emulator with a network model built from real Internet
measurements [16, 7, 8].

As future work, we plan to enrich the set of services provided by the DKS
platform and also to fit a reflective, hierarchical component model, like Frac-
tal [2], to the DKS architecture, to allow for dynamic software reconfigura-
tion. We are working on building a transactional database on top of the DKS
DHT. We also work on optimizing the overlay network for latency by providing
proximity-aware routing schemes. Finally we plan to add UDP communication
support and middlebox1 traversal support.

1NAT or firewall devices.

16

References

[1] David P. Anderson. Boinc: A system for public-resource computing and
storage. In GRID ’04: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, pages 4–10, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in
java: Experiences with auto-adaptive and reconfigurable systems. Softw.
Pract. Exper., 36(11-12):1257–1284, 2006.

[3] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: high-bandwidth multi-
cast in cooperative environments. In SOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems principles, pages 298–313,
New York, NY, USA, 2003. ACM Press.

[4] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[5] Bram Cohen. Incentives build robustness in bittorrent. Technical report,
bittorrent.org, 2003.

[6] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with CFS. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP’01), pages 202–215, Chateau
Lake Louise, Banff, Canada, October 2001. ACM Press.

[7] DIMES. http://www.netdimes.org, 2004-2007.

[8] ETOMIC. http://www.etomic.org, 2004-2007.

[9] Michael J. Freedman, Eric Freudenthal, and David Mazières. De-
mocratizing content publication with coral. In NSDI’04: Proceedings of the
1st conference on Symposium on Networked Systems Design and Implemen-
tation, pages 18–18, Berkeley, CA, USA, 2004. USENIX Association.

[10] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash
Tables. PhD dissertation, KTH—Royal Institute of Technology, Stockholm,
Sweden, December 2006.

[11] R. Guerraoui and L. Rondrigues. Introduction to Reliable Distributed Pro-
gramming. Springer-Verlag, Heidelberg, Germany, 2006.

[12] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weather-
spoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: an archi-
tecture for global-scale persistent storage. SIGPLAN Not., 35(11):190–201,
2000.

[13] ModelNet. http://modelnet.ucsd.edu, 2002-2007.

17

[14] J. J. D. Mol, D. H. J. Epema, and H. J. Sips. The orchard algorithm:
P2p multicasting without free-riding. In P2P ’06: Proceedings of the Sixth
IEEE International Conference on Peer-to-Peer Computing, pages 275–
282, Washington, DC, USA, 2006. IEEE Computer Society.

[15] A. Rowstron and P. Druschel. Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP’01), Chateau
Lake Louise, Banff, Canada, October 2001. ACM Press.

[16] Yuval Shavitt and Eran Shir. Dimes: let the internet measure itself. SIG-
COMM Comput. Commun. Rev., 35(5):71–74, 2005.

[17] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang.
The feasibility of supporting large-scale live streaming applications with
dynamic application end-points. In SIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 107–120, New York, NY, USA, 2004.
ACM Press.

[18] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,
Jeff Chase, and David Becker. Scalability and accuracy in a large-scale
network emulator. In OSDI ’02: Proceedings of the 5th symposium on
Operating systems design and implementation, pages 271–284, New York,
NY, USA, 2002. ACM Press.

18

