
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D.5.1
User Requirements

Due date of deliverable: July 15, 2007
Actual submission date: July 15, 2007

Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor
for this deliverable: FT
Revision: 0.5
Dissemination level: CO

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007

CONTENTS

Contents

1 Executive summary 1

2 Contractors contributing to the Deliverable 2

3 Results 4
3.1 M2M Use Case . 5

3.1.1 Applicative Context . 5
3.1.2 Autonomic Scenarios . 13
3.1.3 Requirements . 18
3.1.4 Conclusion . 22

3.2 Distributed Database Use Case . 24
3.2.1 Applicative Context . 24
3.2.2 Scenarios . 24
3.2.3 Autonomic Scenarios . 27
3.2.4 Requirements . 27
3.2.5 Conclusion . 28

3.3 P2P Video Streaming Use Case . 29
3.3.1 Applicative Context . 29
3.3.2 Autonomic scenarios . 29
3.3.3 Requirements . 29
3.3.4 Conclusion . 30

4 Papers and publications 31

A The Fractal Component Model and its Support in Java 32

B Fractal Component-Based Software Engineering (The Fractal Com-
ponent Model and Ecosystem) 62

C Large Scale Management Architecture 76

D Transactional Reconfiguration of Component-Based Architectures 83

E Composite Probes 92

F ECA rules for Components 113

G Autonomic Performance Characterization of Components 124

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

The purpose of the WP5 is to provide user requirements, demonstrators and eval-
uations in different use cases.

User requirements (D5.1) for each use cases actually cover the description of
an applicative context, the proposition of some autonomic scenarios in this context
and finally the requirements on components, transactions, overlay networks and
self-* features associated to the implementation of the proposed scenarios in the
considered applicative contexts.

Four use cases were considered during Task 5.1. Two of them are confirmed.
The first one proposed by France Telecom concerns M2M systems. The second one
proposed by ZIB concerns a distributed database system. Two additional use cases
were investigated as replacements for the one that should have been proposed for
the partner E-plus which left the Selfman project in its first year. The first one,
proposed by the PeerTV company (contact established by KTH(P2)), concerns P2P
video streaming (P2P TV). The second one, proposed by the Bull company (con-
tact established by France Telecom R&D(P4)), concerns a J2EE application server.
After investigation, the latter use case from Bull finally appeared not suitable for
the Selfman project and was then discarded. The former use case by PeerTV is still
under investigation.

The M2M use case was developed in collaboration with WP2 (components) and
in connection with WP3 (transactions) and WP1 (overlay networks). Its goal is
to develop large scale distributed M2M architecture. The illustrative M2M sys-
tem, that is basically dedicated to the management of the thermal environment of
buildings is responsible for transporting data from very numerous sensors to several
M2M services which process data from sensors and send commands to the thermal
equipments actuators. The M2M use case exhibits strong requirements towards
autonomic (self-*) features and components ; and secondary requirements towards
transactions and overlay networks.

The distributed database use case was developed in collaboration with WP3. Its
goal is to develop a distributed transactional database which supports versioning.
A wiki , which is the illustrative example, can then be added by a thin layer on top
of it. The M2M use case exhibits strong requirements towards autonomic (self-*)
features, transactions and overlay networks ; and secondary requirements towards
components.

The P2PTV use case was developed in collaboration with WP1 and especially
KTH. Its goal is to develop a P2P system for streaming of videos and TV. The
P2PTV exhibits strong requirements towards overlay networks.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 1

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

France Telecom R&D(P4), ZIB(P5), KTH(P2)and PeerTV have contributed to this
deliverable.

France Telecom R&D(P4) France Telecom has contributed on the definition
of the M2M use case and associated requirements. Parts of this work has produced
results that can be found in the appendices of this deliverable and associated to WP5
but that can also be considered as contributions to WP2 (on the Fractal component
model and self-management architectural framework) and WP3 (self-optimization
services).

France Telecom is leader of the WP5, editor of the Selfman wiki section devoted
to WP5 and editor of this deliverable (T. Coupaye). France Telecom contribu-
tors to this deliverable are (in alphabetical order): O. Beyler (R&D Engineer), B.
Dillenseger (Senior Researcher), T. Coupaye (Senior Researcher), A. Diaconescu
(Junior Researcher), A. Harbaoui (PhD Student), N. Jayaprakash (PhD Student)
), M. Kessis (PhD Student), A. Lefebvre (Senior Researcher), M. Leger (PhD Stu-
dent), F.-G. Ottogalli (R&D Engineer).

There have been no deviations from the workplan but France Telecom consumed
more human resources than expected on this task/deliverable. Indeed, the work on
user requirements for M2M systems actually revealed itself more complex than fore-
casted. France Telecom does develop and exploit operationally M2M platforms and
applications but it is worth mentioning that today’s operational M2M generic plat-
forms are in fact pretty basic with typically a few dozens to hundreds sensors sending
data directly to one client service/application that consumes/processes this data.
The M2M use case proposed in this Selfman deliverable explicitly tries to envision
tomorrow’s M2M systems that are expected to be of much higher size and com-
plexity - and that then would required advanced features such as component-based
architectures, overlay networks, transactions and autonomic (self-*) properties stud-
ied in Selfman. Such reflections required a greater effort than expected.

ZIB(P5) has contributed on the definition of the wiki use case and associated
requirements. This work is based on the development in WP3 on transactions in
structured overlay networks.

ZIB contributors to this deliverable are (in alphabetical order): M. Moser (PhD
Student), S. Plantikow (PhD Student), T. Schütt (PhD Student).

There have been no deviations from the workplan, but due to E-Plus leaving,
their input to the distributed database scenario is limited. Especially, in the areas
of performance requirements and user profiles, real-world data would have been
helpful.

PeerTV together with KTH(P2) has contributed on the definition of the P2PTV
use case.

PeerTV contributors are: Andreas Dahlström, Johan Ljunberg, Sameh El-Ansary,
Mohammed El-Beltagy together with Seif Haridi from KTH.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 2

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

There have been no deviations from the workplan since PeerTV and the P2PTV
use case were not included in the initial workplan. This use still being under
consideration in the Selfman project as a replacement for the E-Plus leaving.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 3

3 RESULTS

3 Results

This section specifies user requirements for each of the 3 use cases: M2M, Dis-
tributed Database and P2PTV. More precisely, each use case covers the description
of an applicative context, the proposition of some autonomic scenarios in this con-
text and finally the requirements on components, transactions, overlay networks
and self-* features associated to the implementation of the proposed scenarios in
the considered applicative contexts.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 4

3 RESULTS

3.1 M2M Use Case

This section introduces the Machine-To-Machine (M2M) use case proposed by
France Telecom. The use case is made of an applicative context, some autonomic
scenarios in this context and finally the requirements in terms of i) functional and
non functional desired properties of a M2M system and ii) the required mecha-
nisms to support the proposed scenarios. The latter part is to be taken as re-
quirement to the other Selfman Working Packages and especially as requirement on
components (WP2), autonomics features (WP4), transactions (WP2) and overlay
networks (WP1).

3.1.1 Applicative Context

The applicative context we consider is that of a large M2M (Machine-To-Machine)
system dedicated (essentially but not only) to the management of the thermal en-
vironment of buildings (homes). The big picture of the considered M2M system is
given in Figure 1.

The M2M system is responsible for transporting data from sensors to several
M2M services which in turn process data and send commands to the thermal equip-
ments. At the edges of the system, thousands (or millions) of buidlings are equiped
with sensors such as thermometers and smoke detectors ; and actuators on thermal
equipments such as heaters and boilers. All these data are presents in a private
local area network (called the domestic environment in the sequel). A gateway is
present in this environment which role is to export these data to interested M2M
services, provided by third party service providers, that will use process/use these
data. Gateways (’GW’ on Figure 1) can be seen as peripheral nodes of the M2M
system. Three M2M services are considered in the use case. A fire alarm service de-
tects fires by means of in-houses smoke detectors and possibly correlations with the
thermal regulation service. A weather forecast service provides local, regional and
national data about current (observed) and forecast weather. A thermal regulation
service uses data from in-houses sensors (e.g. thermometers) and possibly weather
forecasts to provide a thermal regulation of the domestic environments by sending
commands to in-houses thermal equipments (actuators on boilers, radiators, etc.).

Different actors appear in the M2M use case:

• individuals (end-users) who want their domestic thermal environment to be
managed (including fire detection). They of course agree to have their homes
equipped with sensors (e.g. thermometers, smoke detectors) and actuators on
their thermal equipments (e.g. boilers, radiators). They also agree to have
their sensors data exported into the M2M infrastructure so as to be possibly
used by third party service providers.

• M2M service providers: thermal regulation, fire alarm and weather forecast.

• the infrastructure operator who is in charge of operating the system, i.e. of
deploying and managing the infrastructure so as to guarantee its correct be-
haviour (including QoS).

The M2M system architecture is typically a data-flow (Pipe & Filter) archi-
tecture made of interconnected nodes that receive, process and send data. The

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 5

3 RESULTS

Boiler

Radiator

Therm. Smoke
detector

GW

Home

Home

GW

Home

GW

Home

GW

Home

GW

Home

GW

Fire Alarm Weather
Forecast

Thermal
Regulation

Figure 1: Big picture of the M2M use case.

2 3

1

1 2 3

4

1 2 11

3 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 2: Detailed generic architecture of the M2M use case.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 6

3 RESULTS

2 3

1

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 3: Fire Alarm service architecture.

complete system (see Figure 2) involves 5 interacting services: 3 are applicative
M2M services: thermal regulation, fire alarm, weather forescast, and 2 infrastructure
(technical, generic) services (or enablers): logging and notification. The services are
distributed: each service is implemented of a set of interconnected distributed nodes.
The complete M2M system is made of the interconnected service nodes.

An important feature is that different criticities are associated to services (and
hence possibly to the data they manipulate): the fire alarm service is of higher
priority than the thermal regulation service which is itself of higher priority than
weather forecast service. Also, data emitted from the domestic environment could
be categorized as data devoted to a unique service versus data shared among ser-
vices. For instance, temperature data are used by thermal regulation, fire alarm
and weather forecast ; while smoke detection data is used only by fire alarm. Due
to the different criticities and business decisions between service providers to share
or not data, M2M infrastructure elements (service nodes) may be shared or not
between services. Another feature, due to the large scale of the system, is the
hierarchical data diffusion pattern used - with typically 3 layers: local, regional,
national (separated by dotted lines in Figure 2).

Fire alarm The purpose of the fire alarm service is to detect fire situations in
domestic environments and to notify these alarms to third parties, typically the
appropriate fire departments.

Fire detection is based either on smoke detectors only (by default), or by cor-
relating data from smoke detectors and temperature data from thermal regulation.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 7

3 RESULTS

2 3

1

1 2 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 4: Fire alarm use case.

Indeed, to prevent false alarm detection, thermal regulation can help in discrim-
inating situations (see Figure 4). Smoke can be detected in a house because of
overcooked food in the oven (!), but without significant temperature increase. This
situation could probably be classified as a false fire alarm detection. In the other
hand, if the thermal regulation service provides in temperature historical represent-
ing a sharp increase, this probably describe a true fire alarm detection even without
smoke detection. In a basic way, fire detection is based on smoke detectors. When
smoke is detected in a house, a fire alarm node (red node in Figures 3 and 4) receives
an alarm message from it and then a notification is sent. This situation is depicted
by red node 2 in Figure 3. Node 3 is not able to notify by it self. It has to delegate
the notification scenario to an alarm node linked to the notification service (nodes
1 or 2 in this example).

As the fire alarm service is critical and prioritary, data processed by fire alarm
service nodes are of high priority. Moreover, in overload situations of the fire alarm
service, resources can be ’stolen’ from other services. In order to (try to) pre-
vent such situations, self-optimization mechanisms such as intra-service routing or
load-balancing can take place. Intra-service routing depicts situations in which an
overloaded node would send the data it receives to a pair node belonging to the
same service, e.g. the fire alarm service in this case. Finally, a specific network of
nodes is dedicated to the fire alarm service (cf. Figure 3) with specific resources
dedicated to it. A constraint on the fire alarm service which is critical us that
the sub-graph of the complete system graph corresponding to the fire alarm shoud
always be connected.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 8

3 RESULTS

4

1 2 11

3 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 5: Weather forecast architecture.

Weather forecast The weather forecast service provides data about the current
weather and future tendencies. The forecasts are build upon actually observed data
provided by local sensors (thermometers, barometers) and possibly satellical data
(cf. Figure 5). Local data are more accurate but with a narrow range of validity.
Forecasts based on it are for short periods of time (typically couple of hours).
Regional data aggregate local data. It help to estimate longer period forecasts
(typically about one day). The national level uses both regional data and satellites
data. Forecasts can be made on longer periods such as several days.

The weather service is organized hierarchically to match the accuracy of the
weather forecasts discussed above. In each level (local, regional, national), nodes
are functionally equivalents, i.e. they implement the same function/algorithm

A strong connectivity hypothesis exists between the regional and national levels.
No hypothesis exist between local and regional levels. A node can be isolated and
so need nodes from other services to keep the connectivity. This is QoS and pricing
concerns.

Weather forecast can be used in several ways. The most simple one is to provide
weather forecasts to customers (subscribers). In that case, a weather forecast node
have to notify the forecast to a customer thanks to a notification service (e.g. blue
node 4 in Figure 6). Another way is to provide weather forecast to the thermal
regulation service: thermal regulation is essentially based on the actual observed
local temperatures, but it can include weather forecasts so as to anticipate evolutions
of the weather. The accuracy and the time validity of the forecasts depend on which
node is providing the data. On the Figure 6, nodes 1 and 2 provide local data with

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 9

3 RESULTS

1 2 3

4

1 2 11

3 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 6: Weather forecast use case.

a short range of validity. Nodes 3 give accurate forecasts about a region with a
middle range of validity. Node 4 gives national level forecast with a longer range.

Thermal regulation Thermal regulation service providers (typically thermal
equipment vendors) are able to manage domestic equipments to achieve thermal
regulation specified by policies. Policies are based on goals to be reached such as
maximum amounts or acceptable ranges of power consumption. To make regula-
tion decisions, data are collected from domestic environments - and also possibly
from the weather forecast service. As different levels of weather forecasts exist in
the system (regional, national), the thermal regulation service can subscribe to the
one(s) that is(are) relevant.

Thermal regulation exhibits an autonomic behaviour since it implies sending
commands to thermal equipments as a reaction to changes in observed thermal
conditions. Commands are functions of the delta of in-house temperatures between
the observed temperatures and the desired ones. Commands are specific to the
target equipements. A thermal regulation service provider may or may not be able
to build the proper command to send. Both situations are depicted in Figure 8.
Orange node 1 represents a node able to receive data from a house and to send
commands to it. Orange node 3 is able to receive data and send commands to
house E but not to house D. Commands to house D have to be send through orange
node 2. In this case, orange node 3 and 2 have to collaborate (i.e. node 3 will build
and send comands to house D on behalf of node 2).

Finally, in thermal regulation phases, the way the energy will be consumed has

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 10

3 RESULTS

1 2 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 7: Thermal regulation service architecture.

1 2 3

4

1 2 11

3 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 8: Thermal regulation use case.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 11

3 RESULTS

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 9: Logging service architecture.

to be managed to avoid to overload the energy distribution network. Thus, thermal
regulation services (from different providers) have to collaborate, as much as possi-
ble, to smooth the energetic demands from the houses. This involves collaboration
between thermal regulation service providers to plan the commands to send, and
with the energy providers to advertise the energetic requirements.

Thermal regulation use data from multiple sources: from sensors (e.g. temper-
ature), from the weather forecast service, from the end-users (e.g. desired thermal
ambiance) and from thermal equipments (e.g. power level). Data produced by ther-
mal equipments are pushed at agiven frequency. When a thermal regulation action
is engaged, a timeout is set to prevent to send new commands before the effects of
the first have an effect (hysteresis). Data from houses, as well as commands, have
a time-to-live to avoid unrelevant data or commands.

Logging service The logging service is a classical, generic and common facility
share by all M2M services that provide for interfaces used to manage (creation,
destruction) and actually use (read and write queries) logs (i.e. traces of services
behaviour).

In our M2M use case, the logging service could be implemented as an (P2P)
overlay network1. When a M2M service node (or client node) needs to access to
the logging service, it just has to find a reference to one logging node and then to
bind to it. Since all nodes of the logging service are functionally equivalent, a client

1This possibility will be further investigated according interest from other Selfman Working
Packages.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 12

3 RESULTS

2 3

1

1 2 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 10: Logging service architecture.

node can link to any logging node. Log queries are handled by the overlay, i.e. a
query can be adressed to any logging node, queries and query results are routed by
the overlay.

Since logging data can have different priority levels, a QoS level associated to
each link between an M2M service node and a logging node. A specific link has
then to be established for each level of log needed by the node.

A transactional logging service could also be envisionned with concurrent queries
and log persistence2.

Notification service The notification service is generic, common technical ser-
vice (enabler) that can notify messages to subscribers on different media: SMS,
MMS, e-mail, fax, text-to-speak etc.

As the logging service, the notification service could be architectured in as an
overlay3.

3.1.2 Autonomic Scenarios

An M2M system, such as presented in the previous section, typically consists of a
distributed set of data processing nodes linked together in an arbitrary graph/network.

2This possibility will be further investigated according interest from other Selfman Working
Packages.

3This possibility will be further investigated according interest from other Selfman Working
Packages.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 13

3 RESULTS

2 3

1

4

1 2 11

3 3

A C D E

Notification

Fire Alarm

Thermal Regulation

Weather Forecast

Log

B

Figure 11: Notification service architecture.

Each node consumes messages that contain data and that come from an arbitrary
number of incoming links, then process data in a so-called proceed operation imple-
menting some business process, and then produce an arbitrary number of messages
containing data on a number of outgoing links.

Such a distributed infrastructure is a typical target for autonomic computing,
especially in our M2M use case where the nodes are really numerous (possibly mil-
lions of homes), heterogeneous in terms of functionality and criticality, and widely
distributed on an arbitrarily complex network topology. An autonomic M2M infras-
tructure may dynamically and autonomously evolve by means of reconfigurations
(adding, removing, updating of nodes and links) in order to adapt to changing ex-
ecution conditions. Here come commonly identified autonomic features, classified
according to the common principles of self-configuration, self-protection, self-healing
(or self-repair), and self-optimization.

Self-protection scenarios

Fault prevention through M2M nodes reinstantiation This scenario
relies on detecting special conditions that are likely to evolve towards a node failure.
For instance, if the available memory on the computer hosting an M2M node is going
lower and lower, possibly because of a memory leak in the node implementation,
a new node may be instantiated on another host computer in order to replace the
node that is expected to fail.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 14

3 RESULTS

On the sensor part, this scenario requires fault-prevention detectors, e.g. detec-
tors that anticipate over a possible failure. The memory usage example given above
may be transposed to all typical computing resources, such as CPU usage, number
of processes, etc. On the actuator part, this scenario will reconfigure a sub-part of
the network topology in order to replace the suspicious node with the new one. This
replacement is achieved through a two-steps process consisting in first instantiating
the new node and then discarding the local node. The two steps shall be performed
in a sort of a transaction so that (1) at no moment both nodes are active and actu-
ally processing incoming messages, and (2) no message is lost. It may require also
a state transfer between nodes in case of stateful proceed functions.

In our use case, this scenario may be applied to the notification service. The
service must always be on and quickly responding. So, the autonomic control must
anticipate on possible failures.

Overload prevention through graceful service degradation An M2M
infrastructure typically hosts several services that are likely to share a number of
computing and networking resources. When a serious overload occurs in the M2M
infrastructure, a possible solution to prevent a global crash of the infrastructure and
hosted services is to apply priority policies between services. Low priority services
may be stopped or disconnected in order to reaffect computing and networking
resources to the most critical services. This is a self-protection mechanism since
an overload condition generally results in performance degradation that in turn
amplifies the overload condition, and so on, until partial or general failure of the
system. Here, the autonomic control ensures most critical services still work. This
strong enforcement may be applied for severe overload only. Light overload may be
overcome by self-optimization policies (see section 3.1.2).

A variety of overload indicators may be used in this scenario: bandwidth usage
on network equipments or M2M nodes’ hosts, available memory in JVMs or hosts,
CPU usage on hosts, etc. Beyond these low level indicators, M2M-level indicators
may also be used such as the number of pending messages in the in-buffer, or the
processing time of messages. Regarding reliability, since an M2M-based application
is modeled as a DAG, it could be interesting to guarantee that between several
semantically redundant paths in the graph, one is always active i.e., with no stopped
or broken nodes.

In our use case, a progressive degradation could be made, starting by discon-
necting the weather forecast service, then the thermal regulation service, to keep
all resources for the fire alarm service working. Not only some communication links
can be disabled in the M2M infrastructure to save network resources, but nodes’
hosts may be affected to the fire alarm service.

Self-healing scenario

Node Failure Recovery As a complement of scenario 3.1.2, this scenario
consists in reacting when a node has unexpectedly failed. It simply consists in
instantiating a replacement node. The consequence may be different depending on
whether the service is supported by a single node or by a set of nodes. In the former

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 15

3 RESULTS

case, there will be a service disruption, while in the latter case, the service may be
maintained, possibly but not necessarily disturbed by a temporary load increase.

Common failure detectors are the hello protocol (are you alive?) and the heart-
beat protocol (I’m alive). Such protocols may be implemented are various levels
(e.g. through ICMP or IP network datagrams, JVM monitoring, or via dedicated
messages between M2M nodes). The higher level, the more reliable the protocol is,
because it means all lower levels are OK while you don’t know about upper levels.
For instance, the network connectivity may be correct while the JVM running the
M2M node has crashed.

In our use case, this scenario may be applied to the fire alarm service. The
service must always be on and quickly responding. So, the autonomic control must
ensure that the set of nodes supporting the service is always sufficient. The fire
alarm service may temporarily afford a node failure among the set of nodes, while
a new node is being reinstantiated.

Self-optimization scenarios

Drop or delay data processing according to QoS A QoS specification
may be taken into account in overload situations, so that some messages can be
delayed or dropped when a congestion situation occurs. In some M2M-based ap-
plications, some messages may be more important than others or, more precisely,
messages require a variety of delivery constraints. For instance, temperature mea-
sures may be dropped from time to time without noticeable impact, while a heat
excess alarm (fire threat) shall be neither lost nor delayed. However, an instant
measure such as temperature should be either dropped or delivered in a timely
fashion. Another example is a meter reading for electricity or gas consumption that
must not be lost but may be delayed for a couple of days. So, we see from those
examples three kinds of Quality of Service on delivery reliability and delay: (1)as
soon as possible, (2) now or never, (3) whenever possible.

Implementing such a scenario is likely to involve filtering nodes enforcing QoS
policies accordingly to the congestion level, in order to provide a generic solution for
the required QoS parameters. A scheduling policy with dynamic priorities between
nodes can be a solution to manage processing of data according to the execution
context.

In our use case, this scenario could be typically applied to the transmission of
local weather measurements (temperatures, pressure, humidity). With less data,
the weather service and the thermal regulation service can still work, possibly with
lower accuracy, while still keeping the fire alarm service work. Of course, data
coming from fire detectors shall not be concerned by this message drop or delay
feature.

Increasing processing power through node clustering and load balanc-
ing This scenario consists in instantiation new M2M nodes implementing a given
proceed method P in case the (set of) existing node(s) implementing this method
is/are overloaded. This overload condition may be detected when an incoming mes-
sage buffer is full. New nodes shall be instantiated on a distinct physical host in
order to actually increase the amount of computing resources.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 16

3 RESULTS

This reconfiguration introduces redundancy for the identified bottleneck P method,
which requires a routing feature to be inserted (when not already present), typi-
cally through a message routing node performing some load balancing of incoming
messages between the redundant nodes. This scenario subsequently implies finding
available target hosts for deployment of new nodes and accordingly updating links.
The modification involves not only the links topology, but also the nature of some
links, since some local shared memory-based links may become network-supported
remote links (TCP socket, JMS topic or queue).

It has to be underlined that such a reconfiguration is neither always possible
nor always relevant. For instance, replicating a database or an SMS-sending node
might be either practically not feasible or not relevant because the actual bottleneck
resource cannot be replicated (e.g. hardware or location-dependent resource). The
autonomic decision process will also have to take into account that the resulting
wider distribution of the M2M infrastructure also possibly results in a greater us-
age of communication-related resources, greater communication latency and lower
communication bandwidth.

Optimize computing resources usage and communication through co-
localization When several nodes are executed on physically distributed hosts
and are linked to one another to exchange messages, it may be smart to change
the configuration, when possible, in order to co-locate them and optimize commu-
nication. This may also enable saving power by switching unused hosts off. The
links topology will be updated and their nature possibly changed for the sake of
efficiency. Some network-supported links would typically be changed into shared
memory-based links. The autonomic decision process will have to check that all
necessary resources are available at the target host, and that no compatibility or
physical attachment constraint forbids the reconfiguration plan.

Self-configuration scenario

A self-configured logging overlay network M2M nodes may be used to
implement a service based on a peer-to-peer network model. Here, distributed
M2M nodes all provide the same service and cooperate in order to support the
service. As with classical P2P networks, the expected benefits may be efficiency
and robustness thanks to a smart service distribution between peers. Pushing the
autonomic approach there could consist in having a self-configured network of peer
M2M nodes to provide a service to fulfill specific non functional objectives.

In our use case, we may apply this P2P approach to the log service. This
service provides a number of other services (weather forecast, thermal regulation,
fire alarm) with a persistence facility for events that may be useful to consult some
time later (e.g. for troubleshooting purpose). As a consequence, this service must
be efficient, reliable and widely available in the global M2M infrastructure. Peer
log nodes may be linked with each other in an arbitrary, self-configured topology.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 17

3 RESULTS

3.1.3 Requirements

This section identifies the requirements associated the autonomic scenarios in the
considered M2M applicative context presented in the previous sections. The section
is organized in two sub-sections. This first one identifies requirements in terms of
functional and non functional desired properties. The second one then lists some
mechanisms/functions required to support the desired properties. This second sub-
section exhibits requirements for the other Selfman Working Packages. Hence, it is
organized in 4 paragraphs: requirements on component programming, transactions,
overlay networks and autonomics (self-* mechanisms).

Required Properties

Flexibility, modularity, manageability, maintainability The desired prop-
erties, that we may call architectural properties, refer to the ability to manage (in
the most general meaning) distributed software configurations. Flexibility and mod-
ularity refers to the ability to configure and dynamically reconfigure homogeneously
both individual components and component assemblies forming an M2M infrastruc-
ture. In order to enhance an M2M infrastructure with autonomic features, it should
be possible to easily manipulate complex software configurations in terms of com-
ponents and connections between components (i.e. M2M nodes and links). Since
autonomic features required runtime adaptations, configurations and dynamic re-
configurations should both be supported. Manageability refers more generally to
software deployment where the term deployment covers all the activities that have
to be carried out after the development itself e.g. packaging, delivery, installation,
configuration, activation, update and upgrades (i.e. reconfigurations), deactivation,
uninstallation. Maintainability refers to the ability of an M2M infrastructure to be
easily repaired and evolved. These features are of course of primary importance in
autonomic settings.

Reliability, integrity This desired property essentially refers here to the abil-
ity to guarantee a correct behaviour of a system in a given environment. The re-
liability property is assessed against its integrity supposedly defined by integrity
constraints on the state and behaviour of a system. In our M2M context, some
integrity constraints, such as the ones that concern reliable data routing and pro-
cessing (e.g. ’no data must be lost’, ’all data must be processed’), may be considered
as functional. Some others may be considered as non functional: typically the ones
that concern the reliable reconfigurations of an M2M infrastructure.

Availability This desired property refers to the ability of a system to ensure
its function ’the maximum possible amount of time’. Availability is generally seen as
a ratio between Mean time between failure (MTBF) and Mean time to repair. M2M
systems we consider put serious requirements of the availability of the supporting
M2M infrastructure especially in presence of different quality of service (QoS) on
data routing and processing, and priorities between M2M services.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 18

3 RESULTS

Scalability This desired property refers to the ability to either handle growing
amounts of work, in a graceful manner, or to be readily enlarged. In our M2M
context, this feature refers i) to the ability to support the equipments of thousands
to millions of domestic environments and ii) to support the addition of new M2M
services (or applications e.g. Thermal regulation, fire alarming, weather forecast,
logging, notification in our applicative context). Both generally in a growing number
of M2M nodes and links. This requirement is connected to the requirement on
manageability and accountability since it puts heavy requirements on deployment
and monitoring capabilities. It is also connected to the reliability and availability
requirement for QoS requirements on data processing and management of priorities
between M2M services have to be supported even with large and growing number
of M2M nodes.

Observability, accountability As an M2M possibly involve, as in our sample
applicative context, multiple actors (people living in the houses, people from the
fire department or weather forecast service, etc.) including actors that support
critical businesses (e.g. fire alarming), it is of paramount importance for an M2M
infrastructure i) to provide means for easily add,remove, manipulate probes and
sensors so as to be able to define responsibilities in case of malfunctions (e.g. data
loss) and failures (e.g.crash of nodes or links) and ii) to assess resource consumption
per services in a billing perspective (’pay-per-use’).

Autonomicity This desired property refers to self-* properties, i.e. the abil-
ity for a system i) to observe its structure, behaviour and environment, and ii) to
take corrective actions if needed. Autonomicity is of primary importance in large
scale, dynamic, open M2M systems, such as the ones envisioned here, in which a
“manual” (by human operators) configuration and management is almost impossi-
ble. Autonomic computing seeks fundamentally to automate as much as possible
the deployment and management of software systems so as to lessen human inter-
ventions and afferent costs - which is very relevant in M2M settings.

Required Mechanisms

Components The M2M use case exhibits strong architectural requirements
in terms of flexibility, manageability, scalability, accountability. These call in turn
for a sound architectural framework which allows for M2M system configuration,
deployment and management. Component models look like the ideal candidates to
support these requirements - especially:

• reflexive components models w.r.t. observability and dynamic reconfiguration,

• hierarchical (or recursive) component models w.r.t. scalability, i.e. the uni-
form management of large scale distributed systems at arbitrary levels of
abstraction - typically through the concept of management domains (possibly
overlapping),

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 19

3 RESULTS

• open/extensible component models w.r.t the great variability in terms of com-
ponents types, components life cycle, programming languages, etc. that has
to be supported in large scale autonomic distributed systems.

Advanced component models generally comes with advanced languages and tools
such as Architecture Description Languages (ADLs), packaging and deployment
models and management frameworks, powerful monitoring and dynamic reconfigu-
ration support, QoS contracts support, etc. which are very valuable and (arguably)
required mechanisms in autonomic systems.

In the M2M use case, all scenarios require configuration, deployment and man-
agement capabilities as provided by components as a basis to almost all desired
properties listed in the previous paragraph e.g. configurability and manageability
through reflexive components, scalability trough hierarchical components, reliabil-
ity and availability through the intrinsic isolation provided by component-based
architectures.

Autonomics For a system to be autonomic (or self-adaptable or featuring
self-* properties):

• it must be adaptable, i.e. its construction has to be based on a explicit
structural (architectural) model that exhibits its sub-elements that can be
subjects to adaptation and operative mechanisms that allow for the realization
of these adaptations ;

• it must have this knowledge of itself (e.g. through reflexive mechanisms)
and of its environment in order to detect changes in its environment or in
its own behaviour so as to take corrective actions - essentially expressed as
reconfigurations.

We consider here that an autonomic system is composed of an autonomic in-
frastructure superimposed on a target (component-based) system. The autonomic
infrastructure is responsible for implementing a control loop, i.e. instrumenting the
components of the target system for monitoring, detecting and notifying events,
diagnosing the system based on these events, and making decisions to determine
what and how corrective actions need to be executed, and finally executing the
corrective actions on the components of the target system.

An autonomic control loop conceptually should allow for advanced observation,
diagnosis, decision making and reconfiguration (not to mention event and actions
transport mechanisms we do not detail here).

By advanced observation, we mean powerful monitoring capabilities where in-
dividual probes/sensors can easily be programmed, deployed and configured (e.g.
push/pull, change polling frequency, etc.). Also, diagnosis capability required in
autonomics setting does generally not boil down to the simple observation of in-
dividual probes but requires probe aggregation and event correlation mechanisms
(this is the case for instance in the M2M autonomics scenarios introduced in the
previous section).

By Decision making, we mean high level, typically declarative, formalisms/languages
that allow for the specification and execution of heuristics and policies. Although

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 20

3 RESULTS

complex mechanisms coming from artificial intelligence such as neural networks,
bayesian networks, etc. can be used ; we consider simpler mechanisms such as Pol-
icy languages (e.g. Ponder or PDL), deductive rules (e.g. JBoss Rules) or active
rules (or Event-Condition-Action rules) are good candidates to implement the core
reactive behaviour of an autonomic control loop.

Moreover, a simulation mechanism would allow for checking that a given recon-
figuration decision would be actually correct and fruitful. As for typical artificial
intelligence techniques, the idea is to generate possible action plans and to evaluate
them, using modeling and simulation in our context. Our M2M use case particularly
suits queuing network-based modeling and simulation. For modeling purpose, we
need to characterize the performance and resource usage of M2M nodes. Since M2M
nodes embed arbitrary business code with no assumption about its performance and
resource usage, we will adopt either (1) an online characterization approach with a
real workload and probes for observation purpose, or, (2) even better and whenever
possible, an offline characterization approach with a self-regulated traffic generator
sending messages to an M2M node, still including probes for observation.

As discussed in the previous section and examplified by the proposed M2M
autonomic scenarios, autonomicity is a very valuable feature in the M2M use case.
Note that all the mechanisms we mention here, again, need to be flexible and in
particular dynamically reconfigurable: in the long run, we might probably consider
that an autonomic control loop has to be itself autonomic.

Transactions The M2M use case exhibits strong requirements in terms of
reliability and integrity. When looking deeper at these requirements, we discover
they match pretty well the transactional properties (or so-called ACID properties).
The M2M use case exhibits (at least) 5 use cases for transactions:

1. Transactional reconfiguration: this is a classic requirement towards ACID
transactions for concurrency and recovery purposes. Reconfiguration transac-
tions, which are sequences of reconfiguration actions (e.g. add, remove,replace
components and bindings between components), have to be atomic, consis-
tent, isolated and durable. Reconfiguration transactions can run concurrently
so reconfiguration transactions have to be isolated. Consistency in this con-
text is based on integrity constraints that can be generic (typing constraints,
there cannot be cycles in the graph of components hierarchical containment)
or application specific. Durability is based on persistent logging used for re-
covery. The need for transactional reconfiguration appears in all autonomic
scenarios of the M2M use case.

2. Inter-nodes transactional data routing and processing : An M2M system is
made of a set of nodes organized in an almost arbitrary graphs. A transac-
tional data processing behaviour is sometimes required. In our M2M use case,
the processing of fire alarm data from the sensors (smoke detectors) to the
fire department through the M2M network of nodes should be transactional.
There might be room for non conventional transaction models here. For in-
stance compensating transactions (as in SAGAs) is often preferable to classic
flat transactions in an M2M context. There might be also room for nested
transactions.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 21

3 RESULTS

3. Intra-node transactional data processing : An M2M node is typically made
of 3 sub-components (in turn each made of sub-components): one that han-
dles data reception (possibly from multiple connections), one that actually
process the data, and one that handles data emission. Du to the no data
loss requirement, a transactional behaviour (especially atomicity) is required
between these 3 sub-components inside a node component.

4. Transactional logging : Our M2M use case specifies a single dedicated net-
work of M2M nodes for logging. The logging service, which receives read and
write logging accesses, could be transactional, essentially in order to support
concurrency. In one of the proposed autonomic scenarios, the logging ser-
vice could be self-organized as a overlay network (see below) which leads to
transactions in overlay networks.

5. Transactional deployment : As we have seen before, manageability and es-
pecially remote deployment is a strong requirement in M2M environments.
In our M2M use case, a transactional deployment (initial installation or up-
grades) of software inside domestics environments would be a valuable asset.
The main requirement concerns atomicity: software in all (or at least large
sets of homes) should be upgraded atomically or none. As logging, deployment
could be implemented as a overlay network which leads again to transactions
in overlay networks.

Overlay networks Overlay networks naturally exhibit good properties essen-
tially w.r.t. scalability, availability and autonomicity (mainly self-configuration).

The M2M use case, and more specifically the self-configuration of the log network
scenario exhibits a requirement towards self-configuration (the logging overlay nodes
should discover each others, determine and maintain routes/connections between
each others automatically) and possibly self-dimensioning (the logging overlay could
determine itself how many logging nodes with which storage capability it needs
according read/write queries it receives). Note that the M2M use case identifies
only the implementation of the logging function as self-configured overlay network
but other infrastructure services (or ’technical services’ or ’non functional services’
or ’enablers’) could be implemented as self-configured overlay networks as well e.g.
notification, deployment, accounting, billing, etc.

A deeper use of overlay networks in the proposed M2M use case would concern
a more drastic architectural re-engineering of the current France Telecom M2M
platform in which the complete M2M infrastructure (i.e. all types of nodes) would
be implemented as an self-configured overlay network which would basically provides
for a SON-based trading layer between data producers (e.g. homes in our applicative
context) and data consumers (Fire alarming, thermal regulation and other M2M
services in our applicative context).

3.1.4 Conclusion

The previous sections described an M2M (Machine-To-Machine) use case that deals
with the autonomic management of the thermal environment of buildings. The use
case introduced the applicative context, some autonomic scenarios in this context

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 22

3 RESULTS

then some high level requirements in terms of desired properties and some associ-
ated technical requirements in terms of technical services (or functions) needed to
support the identified generic requirements.

Complementary to this synthetic description of the M2M use case, this deliver-
able contains in the appendices the following material produced by WP5/M2M Use
Case in the first year of Selfman:

• The 2 documents: “An Open Component Model and Its Support in Java” and
“Fractal Component-Based Software Engineering - Report of Fractal CBSE
Workshop at ECOOP’06” provide some background on the Fractal component
model which is the preferred architectural framework considered in the M2M
autonomic use case.

• The 5 documents: “Towards a Flexible Middleware for Autonomous Inte-
grated Management Applications”, “Composite Probes: a Generic Monitoring
Framework for Hierarchical Management of Heterogeneous Data”, “Flexible
Reactive Capabilities in Component-Based Autonomic Systems”, “Reliabil-
ity of Dynamic Reconfigurations in Component-Based Systems” and ‘Perfor-
mance Characterization of Black Boxes with Self-Controlled load injection for
Simulation-based Sizing” describe elements of an generic autonomic frame-
work that is essentially an extension of the Fractal component framework for
autonomic computing.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 23

3 RESULTS

3.2 Distributed Database Use Case

This Section will give a short overview of the wiki(pedia) scenario that illustrates a
distributed database system and discusses some of the requirements in the context
of the SELFMAN project.

3.2.1 Applicative Context

Wikipedia is a free encyclopedia where any user can edit existing or add new content.
The current version is a traditional three-tier application with proxies, application
servers and database servers 4.

For SELFMAN, it can be treated as database-like application with versioning,
replication and transactions. Trust management and self-optimization can also
easily be integrated.

The wiki scenario covers the major topics of SELFMAN and in addition the real
data sets are available for testing (http://download.wikipedia.org/backup-index.html)
ranging in size from several kilobytes to several gigabytes.

3.2.2 Scenarios

Centralized Environment The architecture as of today follows a traditional
three-tier design, where each server serves only a single purpose – database, business
logic, or proxy (see Fig 12). The performance of the business logic servers and the
proxies can be easily increased by adding more machines as this code is inherently
parallel with almost no synchronisation overhead.

The shared state is stored in the database servers. Read as well as write accesses
usually require synchronization between the nodes which limits the scalability.

Trusted Environment Instead of using separate hosts as proxies, application
and database servers, each wikipedia server could run one peer of a structured
overlay with a database like abstraction which provides the same functionality as
the existing software.

The self-* components could autonomously balance the load and adapt sys-
tem parameters to optimize the performance, e.g. the replication factor. Replica
placement is also an issue as the performance can be improved by placing German
content on servers in the center of Europe.

Untrusted Environment The server farm could be replaced by a structured
overlay network where the peers run on the computers of the users of wikipedia.
In this case self-* components, replication and trust management become more
challenging. ...

Running the system in an untrusted environment means that the system has
to handle a higher failure rate among nodes. Replication is needed to guarantee
availability of the content in case of node failures. However with replication in
SONs, keeping replicas in a consistent state becomes more complicated. In fact it
is not possible to optimize for high availability, consistency and network partition

4http://meta.wikimedia.org/wiki/Wikimedia servers

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 24

3 RESULTS

Figure 12: Wikipedia Server Farm as of 2006-05-09.

tolerance at the same time. It has to be investigated to which extent availability
should be optimized and which consistency level is sufficient for a wiki scenario.

To provide strong consistency, update operations have to be atomic. We might
even do transactions on data. Suppose a user editing some content. The system
has to check whether the user had been working on the latest version at the time
he wants to make his changes permanent. It should be ensured that changes made
in between don’t get lost. Data therefore gets some kind of version tags, and trans-
actional mechanisms ensure that changes made by other users are not overwritten.

Besides regular editing and reading of pages, modern Wikis provide a host of
additional features: support for attachments, user-based access control, storing
per-page metadata (author, geographic coordinates etc.), anti-spam filtering, and
several techniques to enhance navigation. These include fulltext searching, back-
links, and page categorization. All navigational features require storing of additional
information that must be kept synchronized with page content. For example, to
provide backlinks, it is necessary to have an additional reverse index that allows
to find all links pointing to a page. Keeping these additional index structures syn-
chronized requires the use of atomic transactions. Without atomicity, it becomes
impossible to update page content and index structures consistently.

Update of a Page Editing a single page of wikipedia already requires a simple
transaction. When updating a wikipedia page it is first read, before changes are
applied on the read content. When the changes should be submitted it has to be

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 25

3 RESULTS

Relation name Key Value
Contents PageName and Version Contents and Categories
CategoriesIndex CategoryName PageName

Table 1: Simple relational model for storing wiki pages and categories

updatePage(PageName, Contents, LastVersionSeen)

BOT //Begin Of Transaction

if(CurrentVersion(PageName) == LastVersionSeen)

OldContents = UpdateContent(PageName, Contents)

OldCategories = ExtractCategories(OldContents)

NewCategories = ExtractCategories(Contents)

foreach c in NewCategories - OldCategories

AddPageToCategory(PageName, c)

foreach c in OldCategories - NewCategories

RemovePageFromCategory(PageName, c)

else

FailTransaction

end

EOT //End Of Transaction

Figure 13: Code for updating a page

checked whether the read version is still the current one and whether the changes
can be applied. Thereby the version number of the read wikipedia page is compared
with the version number of the page stored in the storage system. Additionally an
update to a wikipedia page might require updating another page at the same time,
e.g. a category page which is related to the particular page. In this case the update
on the one page should only take place if it can be done on the other page at the
same time. A transaction provides a mechanism to ensure this.

In a very simple model each page has a name, a version number and belongs
to several categories (Tab. 3.2.2). To update a page, the current version number of
the page in the database has to match the version number of the page the user was
editing – there were no updates of the page since the user started to change the
page. If check passed the page can be updated in the database and the categories
table is updated to reflect the changes.

Searching for category pages In order to retrieve consistent results, searching
wikipedia pages requires the use of transaction processing, too. A range query is
necessary to query the overlay for all pages that fall in a specific category (Fig. 14).

If it is required that no concurrently added page should be missed by this query,
predicate locking is necessary. Besides read-locking the index entries themselves, in
this simple case, this requires locking the whole category for insertion and deletion.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 26

3 RESULTS

categoryPages(categoryName)

BOT //Begin Of Transaction

pages = GetMatching("CategoriesIndex", "CategoryName=" + categoryName)

Sort(pages, "Version")

return pages

EOT //End Of Transaction

Figure 14: Code for searching category pages

3.2.3 Autonomic Scenarios

Self-Optimization: Global Load-Balancing Research on SONs usually as-
sumes that all stored entries are equally popular. Real-world access patterns usually
follow a Zipf-distribution, where a few items are very popular and the majority of
the items are seldom accessed. In addition the access pattern varies over the day
because of the different timezones.

A self-optimizing component is needed which adjusts the mapping of the key
space of the SON to the nodes and adjusts the replication factor for individual keys.

Self-Healing: Recovery of Data on Failure This scenario describes the mech-
anisms needed to handle unexpected node failures. First of all, the integrity of
the data stored on the failed node has to be guaranteed. Using redundancy, the
database has to implement safety measures to be able to restore the missing data.
Using failure detectors neighboring nodes in the overlay will monitor each other and
find replacement nodes in cases of failure.

3.2.4 Requirements

This section identifies the requirements and components associated with the sce-
narios described above. The distributed scenario needs three components:

• Distributed Database

• Distributed Webserver

• Distributed Trust Management

Each of them and the specific requirements are described in the following.

Components

Distributed Database The current backend of wikipedia is a MySQL database
distributed over 15 servers where the distribution of data over the server is con-
figured by hand and certain tasks can only be performed by a few and not by all
machines (Master-Slave).

A distributed database build on top of a DHT must at least provide the following
functionality.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 27

3 RESULTS

Versioning. Each article is stored with its whole history and there exists a
total order over all the versions of an article.

At any time, changes to an article can be reverted and the differences between
several versions can be displayed.

When a user updates an article it has to be guaranteed that the changes were
made on the latest version, i.e. the user saw the latest version before he started to
change the article.

Distributed Webserver A distributed webserver which accesses the database
and renders the web pages.

Distributed Trust Management A distributed trust management compo-
nent to assess the quality of the contributions of users.

Autonomics

Self-Repairing To increase the reliability and availability of the database all
information has to be replicated over several nodes to tolerate the failure of small
numbers of nodes and repair mechanism are needed to fix failed nodes autonomously.

Self-Optimization The structured overlay has to employ an autonomous
load-balancing scheme which takes popularity of items and the influence of time-
zones into account.

Transactions A transaction mechanism is needed to ensure atomicity of the re-
quired operations for an update. It is also needed to prevent concurrent update
from violating the consistency of the content.

Overlay networks There very few requirements to the overlay network which
go beyond the features provided by standard SONs. Of importance is only the
maintenance overhead in the Trusted Environment scenario. As the failure is very
low the ring maintenance should be adapted accordingly.

3.2.5 Conclusion

The main challenge is to build a system based on a SON, which provides the user
with an acceptable performance and sufficient data consistency. Therefore a proper
trade-off between availability, data consistency and network partition tolerance has
to be found.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 28

3 RESULTS

3.3 P2P Video Streaming Use Case

This section introduces the P2PTV use case proposed par the PeerTV company.
The goal of this use case is to be able to distribute live media-streams from any
source to large number of consumers (nodes), 100 K to Million nodes, without using
any expensive central resources.

3.3.1 Applicative Context

IP multicast is currently mostly disabled by most ISPs due to the extra cost in-
curred on the routers and incompatibilities between different Autonomous Systems
(AS?s). The current approach for live streaming uses large and expensive server
equipment allocated nearby the router devices to perform media distribution. An
alternative solution is to use overlay networks of consumer nodes to broadcast live-
streams, thereby minimizing the cost of deployment and provisioning by individual
media providers. On the top of the overlay the nodes will be dynamically organized
as multicast trees. Nodes will cooperate in streaming by exploiting their upload
bandwidth capacities to multicast streams to other nodes.

3.3.2 Autonomic scenarios

Peer-to-peer live streaming is challenging problem in the context of Selfman as one
needs to:

• maximize the total utilization of upload bandwidth,

• minimize latency, and to

• dynamically reconfigure the trees during network dynamism.

The first requirement stresses that the solution needs to ensure that the actual
available upload bandwidth at each node should be utilized as much as possible.
Any solution must, therefore, adapt to the given upload bandwidth of the individ-
ual nodes. This implies that even nodes with petty upload bandwidth should be
utilized.

The second requirement puts focus on latencies between the actual nodes. It
also implies that the depth of the multicast trees should be shallow to minimize
latencies (this is at least true given identical node latencies).

Finally, the solution should continuously reconfigure the system, as there will
always be some network dynamism. By network dynamism we refer to i) nodes
joining/leaving/failing, or ii) network capacity changing due to network congestion
etc.

3.3.3 Requirements

There are a number of requirements on the systems built in Selfman to be able to
handle this type of applications:

1. It should be possible to dynamically build multicast trees on the top of the
overlays designed in the project.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 29

3 RESULTS

2. It should be possible to optimize continuously the nodes in the multicast trees
so that nodes with higher upload capacities are on the top of the multicast
trees and nodes with lower capacities near to the leaves.

3. It should be possible to optimize continuously the nodes in the multicast trees
so that the latency between neighboring nodes in the overlays are minimized

4. It should be possible to optimize continuously the nodes in the multicast trees
so that the traffic between AS?s are minimized

5. It should be possible to upgrade the software of the overlays remotely and
dynsmically. All these requirements pose interesting challenges on the results
of Selfman.

3.3.4 Conclusion

Dynamic live-streaming is an interesting application scenario for Selfman as it re-
quires most of the self* properties that the project is set to design on the top of
overlay networks.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 30

4 PAPERS AND PUBLICATIONS

4 Papers and publications

Appendices of the M2M use case contains the following documents:

• E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J-B. Stefani. An Open
Component Model and Its Support in Java. Published in Software Practice
& Experience Journal - Special Issue on Auto-adaptive and Reconfigurable
Systems, 36(11-12), 2006.

• T. Coupaye, J-B. Stefani. Fractal Component-Based Software Engineering -
Report of Fractal CBSE Workshop at ECOOP’06 . Published in 20th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2006) Workshop
Reader, LNCS 4379, 2007.

• M. Kessis, P. Déchamboux, C. Roncancio, T. Coupaye, A. Lefebvre. Towards
a Flexible Middleware for Autonomous Integrated Management Applications.
Published in 2006 at the International Multi-Conference on Computing in the
Global Information Technology (ICCGI’06), August 2006.

• M. Leger, T. Coupaye, T. Ledoux. Reliability of Dynamic Reconfigurations
in Component-Based Systems. France Telecom Technical Report, February
2007.

• A. Diaconescu, B. Dillenseger. Composite Probes: a Generic Monitoring
Framework for Hierarchical Management of Heterogeneous Data. Submitted
for publication by France Telecom in April 2007.

• N. Jayaprakash, T. Coupaye, C. Collet, P.-C. David. Flexible Reactive Capa-
bilities in Component-Based Autonomic Systems. Submitted for publication
by France Telecom in May 2007.

• A. Harbaoui, B. Dillenseger, J.-M. Vincent. Performance Characterization of
Black Boxes with Self-Controlled load injection for Simulation-based Sizing.
Submitted for publication by France Telecom in May 2007.

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 31

A THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA

A The Fractal Component Model and its Sup-

port in Java

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 32

1 1 2 2

2

1

2

©

•

•

•

©

•

•

•

•

©

membrane

content
server interface

J

K

client interface
I

control interfaces

©

Menu

Menu Select

Options

Toolbar

Toolbar

Undo

New

Open

Menu

Menu

Undo

Select

Options

Toolbar

Toolbar

Undo

New

Open

Architecture without shared components Architecture with shared components

©

•

•

•

•

•

•

©

T T

T
T

©

membrane

content

Model

Component

server interface
J

K

client interface
I

Implementation in Julia

Controller object

In
te

rfa
ce

 o
bj

ec
t

"i
m

pl
" l

in
k

In
te

rc
ep

to
r

BindingController LifeCycleController

•

•

•

©

•

•

•

•

©

23 = 8

∗

∗

©

1 n

n n−1 n−2 1

i

j j < i

©

l
i 1000∗ i+ l

©

©

•

•

•

©

©

•

•

•

©

im
pl

 li
nk

de
le

ga
te

 li
nk

im
pl

 li
nk

I2I1

optimized impl link

•

•

•

©

©

µ

†

µ

µ µ

µ

†

©

©

push(message) ;

void push (Message m){
// Processing of message m

}

(b)
Push connection

Message m = pull();
// Processing of
// message m

Message pull (){
// Returns a message

}

(c)
Pull connection

(a)
Principle

Component B

Component A

A2A1 A4

E E E E E E E

A3

T1 T2 T3 T4 T5

activity
controller

scheduling
controller

thread
controller

activity

executor

scheduling
queue

thread

©

AgentAgent

Engine

SCServer

Agent Agent Agent

GlobalConduit

Local bus Local bus

Network 1 Network 2 Network 3

Conduit

Network 1 Network 2 bus
message

SCServer

Engine

Agent

→

©

©

≈

≈

©

×
×
×

×
×
×

×
×
×
×

≈

©

n2 n

©

©

©

©

B FRACTAL COMPONENT-BASED SOFTWARE ENGINEERING (THE
FRACTAL COMPONENT MODEL AND ECOSYSTEM)

B Fractal Component-Based Software Engineer-

ing (The Fractal Component Model and Ecosys-

tem)

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 62

Fractal Component-Based Software Engineering

Thierry Coupaye1 and Jean-Bernard Stefani2

1 France Telecom R&D
thierry.coupaye@orange-ftgroup.com

2 INRIA
Jean-Bernard.Stefani@inrialpes.fr

Abstract. This article is a report on the 5th international workshop
devoted to the Fractal component model that took place the 4th of July
2006 in Nantes, France, as an ECOOP workshop. Prior to that, the article
provides some background on the Fractal project and previous Fractal
workshops for readers who are not familiar with Fractal.

1 Introduction

We are witnessing a tremendous expansion in the use of software in scientific
research, industry, administration and more and more in every day life. With the
advent of the Internet and more globally the convergence between telecommu-
nications and computing, software has become omnipresent, critical, complex.
Time-to-market of services, which rely on system engineering (operating systems,
distributed systems, middleware), is becoming a strategic factor in a competitive
market in which operation (deployment, administration) costs are much higher
than development costs.

In this context, component-based software architectures have naturally emerged
as a central focus and reached momentum in different fields of computing be-
cause Component-Based Software Engineering (CBSE) is generally recognized
as one of the best way to develop, deploy and administrate increasingly complex
software with good properties in terms of flexibility, reliability, scalability3 - not
to mention lower development cost and faster time-to-market through software
reuse and programmers productivity improvements.

Fractal is an advanced component model and associated on-growing pro-
gramming and management support devised initially by France Telecom and
INRIA since 2001. Most developments are framed by the Fractal project inside
the ObjectWeb open source middleware consortium. The Fractal project targets
the development of a reflective component technology for the construction of
highly adaptable and reconfigurable distributed systems.

3 As stated in the conclusions of the 7th International Symposium on CBSE (Edin-
burgh, Scotland, 2004): ”Components are a way to impose design constraints that
as structural invariants yields some useful properties”.

2

2 The Fractal Ecosystem

2.1 Component Model

The Fractal component model relies on some classical concepts in CBSE: com-
ponents are runtime entities that conforms to the model, interfaces are the only
interaction points between components that express dependencies between com-
ponents in terms of required/client and provided/server interfaces, bindings are
communication channels between component interfaces that can be primitive, i.e.
local to an address space or composite, i.e. made of components and bindings
for distribution or security purposes.

Fractal also exhibits more original concepts. A component is the composition
of a membrane and a content. The membrane exercices an arbitrary reflexive con-
trol over its content (including interception of messages, modification of message
parameters, etc.). A membrane is composed of a set of controllers that may or
may not export control interfaces accessible from outside the considered compo-
nent. The model is recursive (hierarchical) with sharing at arbitrary levels. The
recursion stops with base components that have an empty content. Base compo-
nents encapsulate entities in an underlying programming language. A component
can be shared by multiple enclosing components. Finally, the model is program-
ming language independent and open: everything is optional and extensible4 in
the model, which only defines some ”standard” API for controlling bindings
between components, the hierarchical structure of a component system or the
components life-cycle (creation, start, stop, etc).

The Fractal component model enforces a limited number of very structur-
ing architectural principles. Components are runtime entities conformant to a
model and do have to exist at runtime per se for management purposes. There
is a clear separation between interfaces and implementations which allow for
transparent modifications of implementations without changing the structure of
the system. Bindings are programmatically controllable: bindings/dependencies
are not ”hidden in code” but systematically externalized so as to be manipulated
by (external) programs. Fractal systems exhibits a recursive structure with com-
posite components that can overlap, which naturally enforces encapsulation and
easily models resource sharing. Components exercise arbitrary reflexive control
over their content: each component is a management domain of its own. Alto-
gether, these principles make Fractal systems self-similar (hence the name of the
model): architecture is expressed homogeneously at arbitrary level of abstraction
in terms of bindings an reflexive containment relationships.

2.2 Implementations

There exist currently 8 implementations (platforms)5 providing support for Frac-
tal components programming in 8 programming languages:
4 This openness leads to the need for conformance levels and conformance test suites

so as to compare distinct implementations of the model.
5 Julia, AOKell, ProActive and THINK are available in the ObjectWeb code base.

FracNet, FractTalk and Flone are available as open source on specific web sites.

3

– Julia was historically (2002) the first Fractal implementation6, provided by
France Telecom. Since its second version, Julia makes use of AOP-like tech-
niques based on interceptors and controllers built as a composition of mixins.
It comes with a library of mixins and interceptors mixed at loadtime (Julia
relies very much on loadtime bytecode transformation as the main underly-
ing technique thanks to the ASM Java bytecode Manipulation Framework).
The design of Julia cared very much for performance: the goal was to prove
that component-based systems were not doomed to be inefficient compared
to plain Java. Julia allows for intra-components and inter-components opti-
mizations which altogether exhibit very acceptable performance.

– THINK is a C implementation of Fractal, provided by France Telecom and
INRIA Sardes, with a growing participation of STMicroelectronics and CEA,
geared at operating and especially embedded systems development. Using
THINK, OS architects can build OS kernels conforming to any kernel ar-
chitecture: exo-kernel, micro-kernel... Minimal kernels can be built on bare
hardware and basic functions such as scheduler and memory policies can
be easily redefined or even not included. This helps achieve speed-ups and
low memory footprints over standard general-purpose operating systems.
THINK is also suggested for prototyping when using a complete OS would
be a too heavy solution. It can also be used when implementing application-
specific kernels, especially when targeting small platforms embedding micro-
controllers. THINK comes along with KORTEX, a library of already existing
system components, implementing various functions (memory management,
schedulers, file systems, etc.) on various targets (e.g. ARM, PPC, x86).

– ProActive is a distributed and asynchronous implementation of Fractal tar-
getting grid computing, developed by INRIA Oasis with a participation of
France Telecom. It is a grid middleware for parallel, distributed, and concur-
rent computing, also featuring mobility and security in a uniform framework.
It mixes the active object paradigm for concurrent programming (objects
executing their own asynchronous activity in a thread) and the component
paradigm for deployment and management.

– AOKell is a Java implementation by INRIA Jacquard and France Telecom
similar to Julia, but based on standard AOP technologies (static weaving
with AspectJ in AOKell v1 and loadtime weaving with Spoon in AOKell
v2) instead of mixins. Also AOKell v2 is the first Fractal implementation
that supports component-based membranes: Fractal component controllers
can themselves be implemented as Fractal components. AOKell offers similar
performance to Julia.

– FractNet is a .Net implementation of the Fractal component model developed
by the LSR laboratory. It is essentially a port of AOKell on .Net, in which
AspectDNG is used as an alternative aspect weaver to AspectJ or Spoon.
FractNet provides for Fractal component programming in J#, C#, VB.Net
and Cobol.Net languages.

6 And sometimes considered for this reason as ”the reference implementation” in Java.

4

– Flone is a Java implementation of the Fractal component model developed
by INRIA Sardes for teaching purposes. Flone is not a full-fledge implemen-
tation of Fractal: it offers simplified APIs that globally reduce the openness
and use of reflection of the general Fractal model so as to make teaching of
component-based programming easier for students.

– FracTalk is an experimental SmallTalk implementation of the Fractal com-
ponent model developed at Ecole des Mines de Douai. FracTalk focuses very
much on dynamicity in component-based programming thanks the intrinsic
dynamic nature of the SmallTalk language.

– Plasma is a C++ experimental implementation of Fractal developed at IN-
RIA Sardes (with a participation of Microsoft Research) dedicated to the
construction of self-adaptable multimedia applications.

2.3 Languages & Tools

A large number of R&D activities are being conducted inside the Fractal commu-
nity around languages and tools, with the overall ambition to provide a complete
environment covering the complete component-based software life cycle covering
modelling, design, development, deployment and (self-)management. A repre-
sentative but not exhaustive list of such activities is the following:

– development of formal foundations for the Fractal model, typically by means
of calculi, essentially by INRIA Sardes,

– development of basic and higher levels (e.g. transactional) mechanisms for
trusted dynamic reconfigurations, by France Telecom, INRIA Sardes and
Ecole des Mines de Nantes (EMN),

– support for configuration, development of ADL support and associated tool
chain, by INRIA Sardes, Jacquard, France Telecom, ST Micoelectronics,

– support for packaging and deployment, by INRIA Jacquard, Sardes Oasis,
IMAG LSR laboratory, ENST Bretagne,

– development of navigation and management tools, by INRIA Jacquard and
France Telecom,

– development of architectures that mix components and aspects (AOP), at
the component (applicative) level and at the membrane (technical) level, by
INRIA, France Telecom, ICS/Charles University Prague,

– development of specification models, languages and associated tools for static
and dynamic checking of component behaviour, involving ICS/Charles Uni-
versity Prague, I3S/U. Nice, France Telecom, Valoria/U. Bretagne Sud,

– development of security architectures (access control, authentication, isola-
tion), by France Telecom,

– development of QoS management architectures and mechanisms, for instance
in THINK-based embedded systems, by France Telecom, or multimedia ser-
vices with Plasma, by INRIA Sardes,

– development of semi-formal modelling and design methodologies (UML, MDA),
models and tools, by CEA, Charles University Prague and others,

– ...

5

The most mature among these works are typically incorporated as new mod-
ules into the Fractal code base. Examples of such modules are the following:

– Fractal RMI is a set of Fractal components that provide a binding factory
to create synchronous distributed bindings between Fractal components (la
Java RMI). These components are based on a re-engineering process of the
Jonathan framework.

– Fractal ADL (Architecture Description Languages) is a language for defin-
ing Fractal configurations (components assemblies) and an associated retar-
getable parsing tool with different back-ends for instantiating these configu-
rations on different implementations (Julia, AOKell, THINK, etc.). Fractal
ADL is a modular (XML modules defined by DTDs) and extensible language
to describe components, interfaces, bindings, containment relationships, at-
tributes and types - which is classical for an ADL - but also to describe
implementations and especially membrane constructions that are specific to
each Fractal implementation, deployment information, behaviour and QoS
contracts or any other architectural concern. Fractal ADL can be considered
as the favourite entry point to Fractal components programming (its offers
a much higher level of abstraction than the bare Fractal APIs) that embeds
concepts of the Fractal component model7.

– FractalGUI is a graphical editor for Fractal component configurations which
allows for component design with boxes and arrows. Fractal GUI can im-
port/export Fractal configurations from/to Fractal ADL files.

– FScript is a scripting language used to describe architectural reconfigura-
tions of Fractal components. FScript includes a special notation called FPath
(loosely inspired by XPath) to query, i.e. navigate and select elements from
Fractal architectures (components, interfaces...) according to some proper-
ties (e.g. which components are connected to this particular component? how
many components are bound to this particular component?). FPath is used
inside FScript to select the elements to reconfigure, but can be used by itself
as a query language for Fractal.

– Fractal Explorer is a ”graphical” (in fact a multi-textual windows system)
management console that allows for navigation, introspection and reconfig-
uration of running Fractal systems in Java.

– Fractal JMX is a set of Fractal components that allows for automatic, declar-
ative and non-intrusive exposition of Fractal components into JMX servers
with filtering and renaming capabilities. Fractal JMX allows administrators
to see a Fractal system as if it was a plain Java system instrumented ”by
hand” for JMX management: Fractal components are mapped to MBeans
that are accessible by program or with a JMX console through a JMX server.

7 It is worth noticing that Fractal ADL is not (yet) a complete component-oriented
language (in the Turing sense), hence the need for execution support in host pro-
gramming languages a.k.a. ”implementations”.

6

2.4 Component Library & Real Life Usage

Fractal has essentially been used so far to build middleware and operating system
components. The current library of components engineered with Fractal that are
currently available inside ObjectWeb include:

– DREAM, a framework (i.e. a set of components) for building different types
(group communications, message passing, event-reaction, publish-subscribe)
of asynchronous communication systems (management of messages, queues,
channels, protocols, multiplexers, routers, etc.)

– GOTM, a framework for building transaction management systems (man-
agement of transactions demarcation, distributed commit, concurrency, re-
covery, resources/contexts, etc.)

– Perseus, a framework for building persistence management systems (man-
agement of persistency, caching, concurrency, logging, pools, etc.),

– Speedo, an implementation of the JDO (Java Data Object) standard for
persistence of Java objects. Speedo embeds Perseus,

– CLIF, a framework for performance testing, load injection and monitoring
(management of blades, probes, injectors, data aggregators, etc.)

– JOnAS, a J2EE compliant application server. JOnAS embeds Speedo (hence
Perseus, Fractal, Julia, ASM),

– Petals, an implementation of Java Business Integration (JBI) platform, i.e.
an Enterprise Software Bus.

Some of these components that embed Fractal technology are used opera-
tionally, for instance JOnAS, Speedo and CLIF by France Telecom: JOnAS is
widely used by France Telecom8 for its service platforms, information systems
and networks by more than 100 applications including vocal services includ-
ing VoIP, enterprise web portals, phone directories, clients management, billing
management, salesman management, lines and incidents management.

3 Organization of the Workshop

3.1 History of Fractal workshops

The Fractal CBSE workshop at ECOOP 2006 was the 5th in the series9.
The first workshop was held in January 2003 as an associated event of an

ObjectWeb architecture meeting. The attendance was of about 35 people. 15
talks were given, organized in 5 sessions. The first session was a feedback ses-
sion about the use of Fractal in Jonathan (a flexible ORB), JORAM (a JMS-
compliant MOM) and ProActive (a distributed computing environment based
on active objects). The second session was dedicated to Fractal implementation,s
8 See http://jonas.objectweb.org/success.html for a more comprehensive list of oper-

ational usage of JOnAS.
9 All programs and talks from Fractal CBSE workshops are available on the Fractal

project web site at http://fractal.objectweb.org.

7

namely Julia and THINK. The third sessions was devoted to configuration tools,
namely Kilim and Fractal GUI. The fourth session was dedicated to management
and deployment, especially JMX management with Fractal JMX and connection
with J2EE management and OSGi. The last session presented a conceptual com-
parison of Fractal and other component models.

The second workshop was held in March 2004 as an associated event of an
ObjectWeb architecture meeting and ITEA Osmose project meeting. The at-
tendance was of about 30 people. 10 talks were given, organized in 3 sessions.
The first session was dedicated to tutorials on the Fractal model and Java tools
(Fractal ADL, Fractal GUI, Fractal Explorer). The second session was dedicated
to feedback from practical usage of Fractal in the Dream communication frame-
work, the CLIF framework for load injection and performance evaluation and
the GoTM open transaction monitor. The third session was dedicated to work
in progress: components for grid computing with Fractal and ProActive, com-
ponents and aspects, convergence of the Fractal and SOFA component models.

The third workshop was held in June 2005, again as an associated event of
an ObjectWeb architecture meeting. The attendance was of about 20 people.
It was mostly dedicated to discussions about components and aspects around
AOKell (aspect-oriented programming of Fractal component membranes), FAC
(Fractal Aspect Components: reification of aspects as components), and ”micro-
controllers”. Another talk was given about the development of a formal and
dynamic ADL.

The fourth workshop was held in November 2005 as a satellite of the ACM
/IFIP/USENIX Middleware conference. The attendance was of more than 50
people. 8 talks about work in progress were given, framed by an introduction
to Fractal and the Fractal project, and a final discussion about the evolution
of the Fractal project. The technical talks described the recent developments
concerning the Fractal ADL tool chain, the Fractal RMI ORB, the AOKell and
ProActive implementations, reliability of Fractal components thanks to contracts
(ConFract), behaviour protocols and model checking, with an original talk from
the Nokia research center about dynamic and automatic configuration of com-
ponents.

3.2 Call for proposals

The call for proposals, that was publicized on several mailing-lists (ObjectWeb,
DBWorld, seworld, ACM SIGOPS France...), contained:

– a description and rationale for component-based architecture and its interest
for the ECOOP conference;

– the expected audience: the Fractal community inside the ObjectWeb com-
munity hopefully enlarged thanks to ECOOP;

– the definition of scope of expected proposals: implementation and confor-
mance test suites, model extensions, languages and tools, practical usage
and feedback;

– and finally a description of the submission and selection process.

8

The submission and selection processes were rather light. Submissions were asked
to contain 2 to 4 pages describing the work to be presented during the workshop.
No full-length articles were asked for submission10.

3.3 Selection and call for participation

More than 20 propositions were received, evaluated and discussed by the work-
shop organisers. Among them, 11 were selected for regular talks during the
workshop. The selection was based on several individual criteria (technical ma-
turity, originality, novelty) and also globally so as to cover a wide spectrum of
activities around the Fractal component model and to make an interesting pro-
gram with potential vivid discussions among participants. Most other proposals
were very relevant but unfortunately could not fit in a one-day workshop, and
were proposed to give place to poster presentations during breaks and lunch.

The final call for participation repeated the general items of the call for
proposals and gave the detailed program with the list of regular talks and posters.

4 Tenue of the Workshop

The workshop took place the 3rd of July 2006. It was organized around 11 talks
(typically 20 mn talk + 10 mn discussion) grouped in 5 sessions: Implementation
and Basic Tools, Higher Languages and Tools, UML and MDA Design, Verifi-
cation and Predictable Assembly, and Applications. 3 poster sessions also took
place during coffee breaks and lunch. A final free discussion involving the around
30 participants closed the workshop.

4.1 Presentations and Discussions

The first morning session was devoted to implementations and basic tools for
Fractal component programming.

L. Seinturier presented a joint work between INRIA Jacquard (L. Seinturier,
N. Pessemier) and IMAG LSR laboratory (D. Donsez, C. Escoffier) towards
a reference model for implementing the Fractal specifications in Java and the
.Net platform. This preparatory work, fuelled by the development of the AOKell
Fractal implementation and its port on the .Net platform, and a comparative
analysis of the Julia implementation, advocates for a greater interoperability be-
tween Fractal implementations. The purpose of a Fractal implementation is to
support the Fractal APIs and to offer mechanisms to compose control aspects
inside membranes. Of course, all Fractal implementations support the Fractal
API (with possible different conformance levels however) but offer generally dif-
ferent and incompatible mechanisms for building membranes. The aim of this
line of work is to define some ”Service Provider Interfaces” (SPI) that would
10 A post-workshop editing and publishing activity to produce post-workshops pro-

ceedings was planned however.

9

embody programming conventions; implementations should follow these conven-
tions so as to build assembly of, for instance, Julia and OAKell components
and hopefully mix controllers/interceptors from different implementations. This
line of work was acknowledged by the audience as very useful and important,
and probably strongly connected to necessary efforts towards the definition of
compliance test suites and benchmarks for Fractal implementations.

E. Özcan presented a status of the work in progress around THINK by STMi-
crolectronics (E. Özcan, M. Leclerc), France Telecom (J. Polakovic) and INRIA
Sardes (J.-B. Stefani). The talk focused on recent developments of the ADL tool-
chain for THINK (Fractal ADL Factory) so as to make it more modular (finer-
grained), extensible and retargetable, i.e. able to consider different back-ends cor-
responding to different hardware platforms. The talk concluded by listing other
recent R&D activities and additions to the Kortex component library such as
support for multi-processor platforms and support for customizable multimedia
applications. The following discussion was not so much technical but concerned
the collaborative management of the THINK code base. The THINK code base
was historically managed by a few individuals from France Telecom and INRIA,
with a quite clear direction and minimal collaborative decision making. Now,
the growing implication of STMicrolectronics and others raises the question of
how to choose between alternative propositions, e.g. concerning the design of the
ADL tool chain for THINK, who is authorized to commit in the code base, who
is authorized to create branches, etc.

The second session was devoted to higher languages and tools.
P.-C. David presented the work he did on FScript with T. Ledoux at Ecole des

Mines de Nantes and France Telecom. FScript is a scripting language that allows
for expressing reconfigurations of Fractal systems much more concisely, thanks
to a higher level of abstraction than the bare Fractal APIs. FScript also includes
FPath, a sublanguage/subsystem for navigation/query in Fractal architectures.
It only comes with a Java backend for the time being but works are ongoing,
e.g. at France Telecom, to use FScript to express reconfigurations in the THINK
platform. One focus of the talk was the ACID-like transactional properties of
FScript that would allow for safe reconfigurations. The vivid discussion following
the talk revealed that this important but complex matter would/should require
more developments.

R. Rouvoy presented the work on attribute-oriented programming around
Fraclet with N. Pessemier, R. Pawlack and P. Merle at INRIA Jacquard. Fraclet
is an annotation framework for Fractal components in Java. The motivation for
this work is that component programming can be considered as verbose - and
hence time consuming - by developers because the components code has to re-
spect some conventions and provide meta-information as required by the Fractal
model. Fraclet is composed of a library of annotations and plugins to gener-
ate11 automatically various artifacts required by the Fractal component model
(a.k.a. callbacks). Annotations provide a way to describe the component meta-

11 Fraclet and attribute-oriented programming in general takes its roots in generative
programming and aspect-oriented programming.

10

information directly in the source code of the content Java class. Fraclet plugins
generate either Fractal component glue (use of Fractal APIs) or FractalADL def-
initions. Two implementations of the Fraclet annotation framework exist: Fraclet
XDoc and Fraclet Annotation. Fraclet XDoc uses the XDoclet generation engine
to produce the various artifacts required by the Fractal component model. Fra-
clet Annotation uses the Spoon transformation tool to enhance the handwritten
program code with the non-functional properties of the component model. The
talk emphasised two benefits of the approach. First, a reduction in development
time and in the size of the components code produced ”by hand”. Second, a
better support for software deployment and evolution: the presence in compo-
nents code of architecture/deployment concerns facilitates the co-evolution of
business and architecture/deployment code. This second benefit appeared as ar-
guable from an industrial point of view: mixing, within the same file, business
and deployment concerns might not appear as such a pleasant idea for soft-
ware administrators. Also, a massive use of annotations is quite questionable
with respect to code analysis and dependability in general. Most participants
to the workshops were rather programmers than industrials and appeared quite
enthusiastic about annotations and Fraclet anyway!

The third session was devoted to component modelling and more specifically
to UML and MDA design.

V. Mencl presented a study with M. Polak at Charles University, Prague.
They used their comparative analysis of UML 2.0 components and Fractal com-
ponents to discuss possible mappings of Fractal concepts in UML. They actually
proposed one specific mapping and instrumented it as a plug-in for the Enterprise
Architect platform which is able to generate the Fractal ADL component descrip-
tions, Java interfaces and a skeleton of the actual Java code of components. In
the after-talk discussion, some possible future extensions were mentioned such
as to reverse engineer UML models from Fractal ADL descriptions or runtime
capture and representation in UML of a running Fractal system.

F. Loiret presented a study with D. Servat at CEA/LIST and L. Seinturier at
INRIA Jacquard about modelling real-time Fractal components. This early work
includes the definition of a EMF (Eclipse Modelling Framework) meta-model of
Fractal IDL and ADL description, as well as the development of an Eclipse plug-
in for actual generation of Fractal components targetting the THINK platform.
The perspectives that were discussed include an extension of the meta-model to
describe components behaviour and a reverse engineering tool chain to extract
behaviour from the code of components.

The general discussion at the end of this modelling session acknowledged
that there is probably not a unique direct mapping between UML and Fractal,
especially because of specificities of Fractal such as component sharing and reflec-
tion (components controllers and membranes). However, thanks to UML/MDA
(meta)modelling capabilities, different UML (meta)models could be defined to
tackle Fractal specificities. People/teams interested by this line of work inside
the Fractal community were encouraged to discuss further and hopefully to con-

11

verge towards a common meta model (or at least to assess if one such a common
model would make sense).

In the afternoon, the fourth session was devoted to verification tools and
predictable assembly.

J. Kofron presented the work on behaviour protocols by J. Adamek, T. Bu-
res, P. Jesek, V. Mencl, P. Parizek and F. Plasil at Charles University, Prague.
Behaviour protocols are basically a formalism that allows for the specification of
the expected behaviour of components in terms of legal sequences of operation
invocations on components interfaces. A static behaviour protocol checker has
been developed in the context of the SOFA component models for several years
by Charles University. Recently, behaviour protocols have been ported on the
Fractal platform through a partnership between Charles University and France
Telecom. The result is a static checker and a dynamic checker that include Java
code analysis of primitive components with the JavaPathFinder (JPF) model
checker.

E. Madelaine presented a case-study of verification of distributed components
behaviour with L. Henrio and A. Cansado at INRIA Oasis/I3S/U. Nice. The
case study application itself has been defined in a partnership between Charles
University and France Telecom to experiment behaviour protocols (cf. previous
paragraph). E. Madelaine and al. used this application to experiment with their
own verification formalism, parameterized networks with their supporting ver-
ification platform Vercors. This formal approach allows for model-checking of
components behaviour (typically deadlock and reachability checking). The work
also mentioned the proposition of a new Fractal ADL module (defined in col-
laboration with Charles University) for attaching behaviour specification and
associated verification tools in architecture descriptions.

D. Deveaux presented a work with P. Collet, respectively at Valoria/U. Bre-
tagne Sud and I3S/U. Nice, on contract-based built-in testing. The approach
leverages previous works on built-in testing of Java classes by Valoria and Con-
Fract, a contracting system for Fractal by I3S and France Telecom. It proposes
to instrument each component under test (CUT) with, for instance, ConFract
contracts which embody the particular testing information of this component
and a test controller that would generate a test bed component encapsulating
(containing) each CUT. A prototype is currently under development. Some ques-
tions arose from the audience concerning the adherence to ConFract and if the
approach was only applicable during the design phase or whether it would be
used in a deployed system. D. deveaux explained that the system would exhibit
low dependancy to the contracting system (alternative contract systems may be
used instead of ConFract) and would not be limited to unit testing, but could
also handle admission, integration and regression test thanks to the dynamic
configuration management capabilities in Fractal.

The fifth and last session was devoted to applications in real life of the Fractal
technology.

N. Rivierre presented the work around JMXPrism with T. Coupaye at France
Telecom. JMXPrism is a mediation layer that stands between the systems to be

12

managed through JMX and management consoles or applications. JMXPrism
provides a unique access point (embedding a JMX server) for managers that al-
lows for the definition and management of logical views on the managed systems.
JMXPrism prevents managers to access directly the managed systems and allows
for filtering, renaming, etc. JMXPrims is implemented in Fractal which makes it
very dynamic, allowing views and other components of a JMXPrims server to be
changed very easily. JMXPrism embeds Fractal JMX, which was released some
time ago as open source in the Fractal code base, and which allows for a declara-
tive and non-intrusive exposition of Fractal components in JMX. JMXPrism has
been used inside France Telecom to build a toy autonomic prototype controlling
the creation of threads correlated to memory consumption. It has also been used
more operationally in a grid information system project in partnership with Fu-
jitsu to provide an homogenous view of resources in cluster on which resource
sharing control was exercised to arbitrate two concurrently running applications:
a visio-conference application exhibiting real-time QoS constraints and a batch-
oriented scientific computing application.

G. Huang presented the last work with L. Lan, J. Yang and H. Mei at Peking
University, Beijing, China on next generation J2EE servers. The work advocates
for a combined use of reflective (applicative) components as embodied in Fractal
or the ABC tool chain from Peking University and reflective middleware (espe-
cially EJB container) in future J2EE servers. Experiments are been conducted
in PKUAS, an J2EE-compliant J2EE application server developed at Peking
University. The talk raises up the engaged collaboration between ObjectWeb
and OrientWare12, a Chinese open source middleware consortium, as a suitable
context for this line of work.

4.2 Final Discussion

The open discussion session was launched by a short talk by D. Caromel from
INRIA Oasis, who reported on the Grid Component Model (GCM). GCM is
an component model dedicated to grid systems that is being defined by the
IST CoreGrid13 network of excellence (NoE) along with the IST STREP project
GridCOMP which is in charge of implementing, tooling and experimenting GCM.
Fractal is considered as the basis for GCM and also as the main candidate to
emerge as the standard component model for grid computing, at least in Europe.
The talk recalled for some changes in the Fractal APIs that would be suitable
for grid environments and that were discussed in previous Fractal workshop
(e.g. multicast interfaces) but, more importantly, advocates for a close synergy
between ObjectWeb/Fractal and CoreGrid/GridCOMP, i.e. a support of Fractal
in CoreGrid and symmetrically a commitment from the Fractal community. This
point was largely acknowledged as an important matter for the visibility and
future of Fractal.

12 http://www.orientware.org
13 http://www.coregrid.net/

13

The discussion on the expected synergy between ObjectWeb/Fractal and
CoreGrid/GridCOMP raised up a more general discussion about the evolution of
the Fractal project. Some time ago was announced an evolution towards ”Fractal
v3”. Some points were discussed during the previous Fractal workshop (Novem-
ber 2005), namely: i) evolution of the Fractal model specification (e.g. removal
of some semantic ambiguities, changes and additions required for grid comput-
ing), including evolution in the organisation of the work on the specification
with editors, editing committee and contributors, ii) evolution in the manage-
ment of the Fractal code bases (e.g. cartography/matrix of (in)compatibilities
between implementations and tools, conformance test suites) and iii) evolution
of the Fractal web site (e.g. bibliography, success stories) and more generally
of the management of the Fractal community (e.g. more structured workshops
with CFP, program committee, proceedings; working groups inside the Frac-
tal project). Since then, some elements contributed to ”Fractal v3” in a quite
informal way e.g. reflections on interoperability between Fractal implementa-
tions (cf. work by Seinturier and al. in the previous section), organisation of
the two last workshops as satellite events of Middleware and ECOOP confer-
ences (including CFP, PC and hopefully post-proceeding for Fractal Workshop
at ECOOP), additions to the Fractal code base(s) (e.g. AOKell, FScript) and
web site. The discussion at ECOOP, as well as previous informal discussions in
particular on the Fractal mailing-list, revealed that some people were perhaps
expecting a quicker evolution. Again, after a lively discussion, the workshop or-
ganisers pointed out that there might have been a misunderstanding and that
what was intended by ”Fractal v3” does not boild down to just a evolution of the
specification of the model itself but refers to a collective effort with implication
of many individuals that are part of the Fractal community so as to tackle the
different issues at stake (implementations engineering and interoperability, con-
formance test suites, tools, common code base for uses cases and demonstrators,
management of commit in code bases, web site, etc.).

From the evolution of Fractal, the discussion then jumped to the standardi-
sation of Fractal. Several participants advocated for a more volunteer approach
of the Fractal community towards standardization organisms. A vivid discus-
sion took place to assess which standard committees/organizations would be
most appropriate (ISO, IUT, Sun JCP, OMG...). Some others pointed out that
standardization in the middleware area is a huge effort and the return on this
investment not always remunerating. Most participants agreed that the group or
institution they represent would not have much resources for such activities any-
way. The question of standardization activities around Fractal remains largely
open.

Acknowledgments We would like to thank the ECOOP conference and work-
shop organizers for their assistance in the preparation of this workshop. We
would like to thank the Fractal community for its vitality, for having proposed
so many talks at this workshop even though this was the 3rd Fractal workshop
in less than a year. Thanks to A. Lefebvre for his careful reading and comments.

C LARGE SCALE MANAGEMENT ARCHITECTURE

C Large Scale Management Architecture

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 76

Towards a Flexible Middleware for Autonomous Integrated Management
Applications

 Mehdi Kessis*, Pascal Déchamboux*, Claudia Roncancio**, Thierry Coupaye*, Alexandre Lefebvre*

*France Telecom, Research & Development, MAPS/AMS
28 chemin du Vieux Chêne, 38243 Meylan CEDEX, France

{Firstname.Lastname}@francetelecom.com
**LSR-IMAG

{Firstname.Lastname}@imag.fr

Abstract

Enterprise and global-scale systems today might

have thousands to millions of geographically
distributed nodes and this number will increase over
time. Managing efficiently such scattered systems
becomes increasingly complex and requires powerful
management capabilities. Traditional solutions to
manage and control them seem to have reached their
limits. In recent years, integrated management systems
and services as well as autonomic systems have raised
much interest in distributed systems and software
engineering. This paper discusses the architectural
issues facing the design of large-scale distributed
management systems. Then it suggests a new flexible
and scalable integrated management middleware to
handle management problems in large-scale
networked and heterogeneous systems.

Key words:
Integrated management, autonomic, component-based
architecture.

1. Introduction

In recent years there has been a considerable growth
in the use of distributed systems (peer-to-peer
networks, clusters, pervasive computing, sensor
networks, etc). These systems are scattered in our
companies, administrations, homes and even in our
pockets. Typically, they consist of large numbers of
heterogeneous computing devices connected by
communication networks, using various operating
systems, resources and services, and user applications
running on them. The dependability of our societies on
such systems is becoming more and more noticeable.
However, they become larger and more complex,
heterogeneous and scattered. Traditional solutions to
manage and to control them seem to have reached their
limits. The size and the complexity of distributed

system make it hard or even impossible to manage each
of their components. Today, enterprise networks may
count tens to thousands of managed resources.
Telecommunication operators may manage thousands
to millions of resources. For instance, France Telecom
is managing more than one million “Livebox” home
gateways. Due to the increased cost and complexity of
managing such infrastructures manually, distributed
computing systems are moving towards more
autonomous operation and management.

This paper discusses an integrated management
middleware that deals with such complex
environments. This middleware plays the role of
management broker that can be used by administrators
or by management applications (i.e., management
processes). It offers them (a) a customized view of the
system through resource monitoring functions and (b)
resource control management functions. We believe
that such an infrastructure may offer a high degree of
autonomy through management applications, by
automating actions on groups of resources. We note
that, in order to be able to automate such processes, a
rich information model as well as a powerful
programmatic model are needed.

This paper overviews our ongoing research. We aim
at investigating new approaches to handle scalability,
autonomy and heterogeneity issues in system
management. After discussing new management needs
and challenges, this paper proposes a middleware
architecture to deal with these issues. Our work focuses
on the monitoring activity, bringing flexibility and
adaptability to the proposed solution.

2. Distributed management challenges

Today, large-scale distributed systems management
is facing several major challenges. In this study, we
focus on four of these challenges: autonomy,
scalability, heterogeneity, and administrative isolation.

2.1. Autonomy

Managing efficiently such scattered systems
becomes increasingly complex and requires powerful
management capabilities. Traditional solutions to
manage and control them seem to have reached their
limits. In recent years, integrated management systems
and services, autonomic systems have raised much
interest in distributed systems and software engineering
[14]. An autonomic system is capable to repair,
configure, heal and protect itself [14]. The emerging
field of autonomic distributed computing addresses the
challenge of how to design and build distributed
computing systems that can manage, heal and optimise
themselves. Distributed computing systems are moving
towards increasingly autonomous operation and
management, in which their interacting components can
organise, regulate, repair and optimise themselves
without human intervention. [32]. These systems are
intended to tackle administration complexity that is out
of reach of human administrators, for instance handling
a large number of alarms and notifications. Besides,
automating management may reduce cost and improve
efficiency. To automate management, we need at least
three key elements: (a) representation, observation and
monitoring capabilities, (b) decision rules and
mechanisms and (c) control mechanisms.

2.2. Scalability

Scalability is a major problem for large-scale
distributed systems. There is no commonly accepted
definition of it [9]. In this paper, we consider the
following definition of scalability: "A scalable system
is one that maintains constant, or slowly degrading,
overheads and performance as its size increases" [8].
In the past years, centralised network management has
shown inadequacy for efficient management of large
heterogeneous networks. As a result, several distributed
approaches have been proposed to overcome the
problem [21]. This is a main concern of our work
because an enterprise network is an order of magnitude
less complex than the infrastructure of some service
providers, who monitor thousands to millions of
resources. There are two key aspects of scalability
involved in system management: the size of networks
and the number of users. Service providers create
extreme demands on both aspects1. Management
systems should accommodate large numbers of

1 The international Engineering Consortium
(http://www.iec.org), Performance Management of Next
Generation Networks.

participating nodes and they should allow applications
to monitor large numbers of managed resources.
Grouping and distributing management operations may
improve scalability of the management system.

2.3 Heterogeneity

The information model is a key feature in any
management system [2]. It offers a view of managed
resources (network, services, applications, etc.) to
management applications. Today’s networks involve
heterogeneous resources. A service failure can be
related to network or to application failures. In order to
rapidly identify causes of failures and to understand the
behaviour of complex managed resources, it is
important to be able to describe heterogeneous
managed resources and their interactions in the same
way. The main object of integrated management [12] is
to integrate different types of management (policy,
user, network, services) in a unique infrastructure. Such
infrastructure offers a complete view of the managed
environment. To do so, we need a common description
and representation of managed resources and their
interactions.

2.4. Administrative Isolation

Traditionally, in large-scale networked systems,
elements are grouped in managed domains. "A domain
is a set of objects to which a common management
policy applies" [18]. Each management domain is a
logical partition of managed resources and
management services. The set of managed objects may
include computers, people, privileges, software
processes, etc, depending on the purpose for which the
domain is defined. In order to deal with large-scale
networked and interconnected systems, domain
management tools are needed. Such tools offer to the
administrator the possibility to create, extend or merge
new logical domains from existing primitive domains.
Let us consider the France Telecom home gateway
example. An example of primitive management domain
could be the set of gateways related to a particular
DSLAM. A management domain might contain the
logical partition of gateways of a particular geographic
zone, while another might contain the set of “LB1234”
gateway model, in order to update their firmware.
Administrator needs automated tools to build and to
interact with management domains.

3. Towards a flexible and scalable
integrated management middleware

3.1 A component-based model

Flexibility is a required property for managing
large-scale networked systems. [11,7]. With a model
such as the one proposed by Fractal [1], we believe that
we can design, build and dynamically reconfigure
component-based management infrastructure.

Fractal is a generic component model focusing on
reconfiguration using flexible composition of
components. It adopts a recursive view of components
that may be nested. A component owns a membrane
(i.e., a set of controllers), which realizes arbitrary forms
of control over the content of the component.
Composite components include other sub-components.
A component sends and receives invocations through
access points called interfaces. Such interactions
require communication channels (named bindings)
between some of the component interfaces. Figure 1
illustrates the architecture of a Fractal component. This
composite component contains two sub-components
and exposes control interfaces C1 and C2 as well as
functional interfaces CS and Cc.

Figure 1 Example of Fractal components

Three main Fractal features are of particular interest:
a) Component hierarchy: composite components

recursively contain components, ending with
primitive components.

b) Component sharing: a (sub) component can be
contained in several composite components.
Typically, this feature can be used to model
resources that are intrinsically shared.

c) Components dynamicity: bindings between
components can be manipulated at runtime and is
particularly interesting for management purpose.
The model allows the definition of flexible
bindings, since bindings may be themselves
components.

Such properties are very interesting to design and
build management domains. Figure 4 shows an
example of mapping between domains and Fractal
components. Disjoint domains are represented by
disjoint components. Overlapping domains are

represented by shared component. Hierarchical
domains can be represented by composite domains.

Figure 2 Management Domains in Fractal

3.2. Global management architecture

This section introduces the global architecture of an
integrated management middleware that is positioned
between management applications and managed
resources. Managed resources are the set of physical
resources (switches, PC, PDA, Set-Top Box, etc.) and
logical resources (all or only a part of the OS,
middleware, applications, services, etc.) available in an
operator network.

A middleware relying on a flexible overlay network
is a promising approach to overcome issues outlined in
section 2. Such an approach allows management
applications to construct an abstract view of the
underlying network infrastructure and to federate
different networks (IP, ad-hoc, etc). The middleware
we propose builds an overlay network of mediation
nodes that support management domains. The overlay
network is functionally independent of the network
infrastructure. It is formed by mediation nodes, which
are interconnected through logical links. Figure 3
illustrates the global architecture of the proposed
management infrastructure. Nodes collaborate in order
to respond to queries of management applications.
Each node represents one or many management
domains. A node may contain one or many sub-
domains (hierarchical relation). It interacts with several
domains (links between nodes). This overlay builds an
abstract representation of physical management
domains (geographical for example) through
management domains that correspond to specific
management needs. (e.g., set of gateways model
“LB1234”). Each node of the overlay offers a set of
management services or tasks (information repository
management, resource location service, query service,
etc). As it can be noticed, these services cover only
non functional management aspects delegated by
management applications to the middleware.

Membrane

Client interface

Server Interface

Controller Interfaces

Domain representation
in Fractal

Management domains

Managers

Managed resources

Cs

C1 C2

Cc

Figure 3 Global architecture of the management middleware

Both nodes structure and their interconnections are

managed by the middleware administrator in a
transparent way. The middleware hides management
applications the complexity of the underlying
infrastructure. The resulting overlay network is totally
flexible, extensible and dynamically reconfigurable.
Nodes and interconnections are dynamically
reconfigurable.

To better understand the behaviour of these nodes,
let us zoom inside one of them as depicted in Figure 4.
Inside a node, a set of components work together in
order to achieve a function. In Figure 4, the node
offers 4 services: (i) events management service (that
handles events and routes them to interested entities),
(ii) a CIM repository (representation of the managed
infrastructure), (iii) a query management service (for
querying CIM repositories) and (iv) a repository for
naming resources.

We believe that management applications requires
rich information modelling to take into consideration
physical and logical interdependent resources.
Common Information Model (CIM) [4] is a standard
for defining device, network and application
characteristics so that system and network
administrators and management programs can control
heterogeneous devices and applications.

CIM also allows for vendor extensions. The
adoption of such a model is key to overall
interoperability for information storage and for system
management environment.

The proposed middleware is based on two API:
a) A configuration and deployment API: It concerns

the mediation nodes and management services.
Network administrator, can build, deploy and
configure the management middleware. After
configuration and deployment, the middleware is
ready to be requested by management applications.

b) A mediation API: This API is used by management
applications. It permits them to communicate,
indirectly, with managed resources, through our
middleware.

Although both interfaces have different concerns,
they are both managed by administrators at different
level. Furthermore, the proposed middleware should
use itself for its own management issues.

Figure 4 Internal structure of mediation node

4. Discussion

The choice of component-based architectures for
managing networks and services have several
advantages. V. Wadel et al. [17] consider them when
designing management solutions within the world of
telecommunication (flexibility, modularity, clear
design, etc.).

The management applications are designed in order
to be independent from the size of the network or from
the number of properties to ensure. The management
middleware aims at routing the requests over
management information, supporting persistence of this
information when necessary, locating resources, etc. It
provides mediation nodes whose one of the primary
roles is to ensure that its functions whatever are the
conditions of the infrastructure that support the
management network (i.e., an overlay network). The
objective is that this middleware can adapt to such
diverse situations as sensors network or as computation
grids. This means that flexibility and adaptability are
among the main challenges we target. These properties
should ensure that our middleware can adapt to the
various functional requirements of management
applications, and can also adapt its own behaviour to
the resources dedicated to its operation. We argue that
component-based architecture is a major enabler
towards this goal.

The Fractal component model we rely on allows the
definition of components as assemblies of components
and provides total control over the component used as
well as the bindings between them. Hence, at the very
end, the overlay can be considered a component
composed of other components (e.g., the mediation

Event
Management

Query
Management

Query
Management

Events (alarmes,
notifications, etc)

Query from Mgt
Applications

Resource Location

Event dissemination

nodes), managing them and their relationships as well.
The overlay can then be configured and reconfigured in
order to respond to management needs.

Autonomous management is seen as the only means
to deal with large-scale management. This approach
will lead to very complex applications to support the
processes composing this autonomous management
environment.

The information model on which the management
applications rely is highly distributed by nature. So
should be the middleware for supporting them. We
consider that good work has been done for specifying
the information model, especially with CIM [4]. Our
objective is to be able to organise the management of
this information space in a distributed manner while
ensuring its safety, scalability, correctness (i.e., in a
sense considering the implementation of a reliable
distributed CIMOM). We also consider much simpler
interfaces to manipulate this information model,
especially within our Java implementation context. For
example, we consider pure Java objects accessible
through technologies such as EJB2 or JDO3 for giving
access to the CIM repository.

5. Related Works
Several works studied large-scale systems and

network management, during these two last decades [6,
10, 20, 8].

 CIM/WBEM [6], a DMTF4 standard, proposes a
web-based management architecture. WBEM is built
around the CIM model. The main WBEM architecture
is composed of three main elements (management
applications as client, WBEM server, WBEM
providers (probes and actuators)). This architecture
follows a flat and centralized model (Manager/Agent
model). There is no M to M (Manager to Manager)
communication. WBEM servers can be used to manage
enterprise environments. However, it does not scale to
large distributed environments. The administrative
isolation is implemented through the concept of
namespace (logical view of CIM instances and classes).

Yalagandula et al proposed SDIMS (Scalable
Distributed Information Management System) [5]. It
consists of a building block for large-scale distributed
services. SDIMS aggregates information about large-
scale networked systems and provides detailed views of
information (and events) and summary views of global
information. It ensures four properties: scalability,
flexibility, administrative autonomy and robustness.

2 http://java.sun.com/products/ejb/docs.html
3
 http://java.sun.com/products/jdo/

4 Distributed Task Force Management; URL: http://www.dmtf.org

This work concerns neither resource heterogeneity nor
autonomic behavior.

Renesse et al [8] proposed a similar work:
Astrolabe. This system gathers, disseminates and
aggregates information about zones. A zone is
recursively defined to be either a host or a set of non-
overlapping zones. It supports scalability through
hierarchy (zone hierarchy), flexibility through mobile
code, robustness through a randomized peer-to-peer
protocol and security through certificates. Each
Astrolabe zone has a set of aggregation functions that
calculates the attributes for the zone’s MIB (SNMP
like Management Information Base). Astrolabe is
designed under the assumption that MIBs will be
relatively small objects, a few hundred or even
thousand bytes, not millions which limit its scalability.

Anerousis et al [10] proposed Marvel. This system
is a distributed computing environment that allows the
creation of scalable management services using
intelligent agents and the world-wide web. Marvel
builds on top of existing element management agents a
hierarchy of servers that aggregate the underlying
information in a synchronous or asynchronous fashion.
Marvel is based on an information model that generates
computed views of management information. These
views follow an object-oriented model to store
management information. Marvel requires that
managed elements be organized into groups. Users can
dynamically define these groups based on any factor
that makes sense such as location or functionality. The
object implementation of Marvel's views is proprietary
and not extensible. Besides it does not address
autonomy issue.

Recently, Bouchenak et al [15] proposed the JADE
framework. It is an environment for implementing
autonomic administration software. The main idea of
this work consists on modelling the administrated
system as a component based software architecture
which provides means to configure the environment. A
prototype of Jade was developed and used for
deployment and fault management of clustered J2EE
application. This work provides administrative
isolation through composition and sharing relations.
This work is based on an ad-hoc information model.
The global vision of the proposed work in this paper is
coherent and complementary with the autonomic
management vision proposed in the European project
IST Selfman [3], to which we actively participate.

6. Conclusion and Future works
In this paper we have studied large scale networked

heterogeneous systems problem. We have identified
four important properties that large-scale management

systems have to respect: autonomy, scalability,
administrative isolation and heterogeneity. We suggest
the architecture of a flexible middleware that respects
these properties. The proposed middleware is based on
the Fractal component model. It offers the
administrator the possibility to build a scalable and
dynamically reconfigurable overlay network of
mediation nodes. Each node represents on or many
management domains. The middleware offers the
possibility to build, aggregate, select, and query
management domains according to administrator needs.
All these operations can be done without interrupting
management applications activity. The different nodes
cooperate to offer management applications several
services (event filtering, aggregation, routing, storage
management, etc). Scalability is achieved through the
support of domain and through the distribution of the
management activity.

We believe that the proposed middleware can be a
powerful building block for autonomous management
applications. A set of management policy can be
defined for each management domain that we build.
Automatic actions can be assigned to each of them.
Scalability is achieved through distribution of the
management infrastructure and grouping management
operations. Heterogeneity is achieved through CIM
local repositories, managed by the node of our overlay
network. In these repositories, heterogeneous resources
are described in a standard way. Administrative
isolation is achieved through the different possible
composition relations proposed by the Fractal
component model. Autonomy is achieved through the
reflexive aspect of the Fractal components.

We are studying the possibility to integrate a data
steam management system to handle, in a scalable way,
streams of events sent by probes and network
equipments. This feature is particularly interesting for
large event-based monitoring systems in real-time
context. Besides, we are studying the possibility to
make some of our node mobile. The ProActive5

technology, based on the Fractal component model, has
already experienced such an approach.

7. References
 [1] E. Bruneton, T. Coupaye, and J.-B. Stefani. "Recursive
and Dynamic Software Composition with Sharing".
Proceedings of the Seventh International Workshop on
Component-Oriented Programming (WCOP02), Malaga,
Spain, June 10-14, 2002.
[2] J.-P. Martin-Flatin, "Toward Universal Information
Models in Enterprise Management", in Proc. VLDB 2001

5 http://www-sop.inria.fr/oasis/ProActive/

Workshop on Databases in Telecommunications (DBTel
2001), Rome, Italy, September 2001.
[3] P. Van Roy, A. Ghodsi, JB Stefani, S. Haridi, T.
Coupaye, A. Reinefield, E. Winter and R. Yap. " Self
management of large-scale distributed systems by combining
structured overlay networks and components". Workshop

IST NoE CoreGrid Integration, Greece, Nov 2005.
[4] Common Information Model Standard, URL:
http://www.dmtf.org/standards/cim/
[5] P. Yalagandula and M. Dahlin, "A scalable distributed
information management system ", Proceedings of the 2004
conference on Applications, technologies, architectures, and
protocols for computer communications, session Distributed
information systems, Pages: 379 – 390, Portland, Oregon,
USA, 2004.
[6] Java Specification Request N°48 (JSR 48): WBEM
Services Specification, URL:
http://www.jcp.org/en/jsr/detail?id=48
[7] J. Won-Ki Hong, J. Kim and J. Park: "A CORBA-Based
Quality-of-Service Management Framework for Distributed
Multimedia Services and Applications". IEEE Network, Vol.
13, No. 2, (1999) 70-79
[8] R. V. Renesse, K. P. Birman, and W. Vogels, "Astrolabe:
A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining", ACM
Transactions on Computer Systems, Vol. 21, No. 2, May
2003, Pages 164–206.
 [9] M. D. Hill, "What is scalability?". ACM SIGARCH
Computer Architecture News, December 1990.
[10] N. Anerousis and G. Hjálmtysson, "View-based
Management of Services in a Programmable Internetwork".
Proc. of the 2000 Network Operations and Management
Symposium, Honolulu, HI, April 2000.
[11] G. Goldszmidt, "Distributed Management by
Delegation". 1996. Ph.D Thesis – Graduate, School of Arts
and Sciences, Columbia University, New York.
[12] H.G. Hegering, S. Abeck and B. Neumair. "Integrated
Management of Networked Systems: Concepts,
Architectures, and their Operational Application". Morgan
Kaufmann Publishers, 1999.
[14] J. O. Kephart and D. M. Chess." The vision of
autonomic computing". IEEE Computer, 36(1):41–50,
January 2003.
[15] S. Bouchenak, N. de Palma and D. Hagimont,
"Autonomic administration of clustered J2EE applications".
Proceedings of IFIP/IEEE International Workshop on Self-
Managed Systems & Services (SelfMan 2005). 2005.
[16] M. Kahani, H.W. Peter Beadle, "Decentralized
Approaches for Network Management", in SIGCOMM, July
1997.
 [17] V. Wade, D. Lewis, C. Malbon, T. Richardson, L.
Sorensen and C. Stathopoulos, "Component Integration
Technologies for Telecoms Management Systems", TCD-CS,
Technical Report, Trinity College Dublin Computer Science
Department, 1999.
[18] M. Sloman, J-D. Moffett, "Domain model of
autonomy". ACM SIGOPS European Workshop 1988

D TRANSACTIONAL RECONFIGURATION OF COMPONENT-BASED
ARCHITECTURES

D Transactional Reconfiguration of Component-

Based Architectures

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 83

Reliability of dynamic reconfigurations in
component-based software systems

Marc Léger1, Thierry Coupaye1, and Thomas Ledoux2

1 France Telecom R&D
28, chemin du Vieux Chêne

F-38243 Meylan
{marc.leger, thierry.coupaye}@orange-ftgroup.com

2 OBASCO Group, EMN / INRIA, LINA
Ecole des Mines de Nantes

4, rue Alfred Kastler
F-44307 Nantes Cedex 3
thomas.ledoux@emn.fr

Abstract. This article is an analysis based on our experience with the
Fractal component model of the need of reliability for dynamic reconfig-
urations in component based systems. We make a proposal to ensure this
reliability, which can applied to concurrent reconfigurations. We started
from the definition of ACID properties in the context of component mod-
els and we propose to use integrity constraints to define system consis-
tency and transactions for guaranteeing the respect of these constraints
at runtime. To deal with concurrency, we have to detect potential con-
flicts when composing reconfiguration operations.

1 Introduction

Dynamic reconfigurations in component-based software applications [MK96] are
central to promissing approaches like autonomic computing [KC03]. There are
many motivations to introduce modifications in a system at runtime: correction
of security flaws or functional bugs, improvement of systems (e.g., performance
optimizations), or adaptions to execution context changes.

Thanks to properties of component models like loosely coupling, reconfigu-
rations can rely on component-based architectures [OMT98]. However, runtime
modifications can let the system in an inconsistent state. From a structural point
of view, the architecture of the system once reconfigured can be not in confor-
mity with the component model or eventually system specific constraints (e.g.
architectural invariants) anymore. From a functional point of view, a reconfig-
uration must not perturb the execution of the system (i.e., functional and non
functional aspects need to be synchronized). Furthermore, in case of concurrent
reconfigurations, reconfiguration must be synchronized between themselves.

In this paper, we focus to the reliability of runtime adaptations and we
chose to base our work on the Fractal component model [BCL+04] because
of its support of dynamic and opened reconfigurations. In our approach, we

2 Marc Léger, Thierry Coupaye, and Thomas Ledoux

tried to define each of the ACID properties [TGGL82] in the specific context
of component-based systems an show how it can solve this reliability problem
during adaptations. These properties are unifying concepts of transactions for
distributed computation used essentially for supporting concurrency and recov-
ery. We specify the consistency property by using integrity constraints about
system structure and state. An example of a structural constraint at the level
of component model is cycle-free component structure. Moreover we must avoid
wrong execution flow of reconfiguration operations according to their semantics
to ensure the isolation property.

This paper is organized as follows. Section 2 is an overview of dynamic re-
configurations in component models, with a focus on Fractal, and it shows what
problems it raises regarding reliability. Then section 3 describes how transac-
tions combined with integrity constraints can be a solution to these problems.
Finally section 4 presents some related works before concluding in section 5.

2 The need of reliability for dynamic reconfigurations in
component-based systems

2.1 Dynamic reconfigurations in component models

Dynamic reconfigurations allow modifications of a part of a system during its
execution without stopping it entirely to keep the system partly available. Ac-
tually, maximization of the availability time is essential for some systems like
entreprise application servers. Dynamic reconfigurations can involve every man-
ageable element defined in the component model and reified at runtime, they
can be:

– structural (e.g., addition or removal of elements like components, interfaces
etc. and interconnection modifications with bind unbind operations),

– behavioral (e.g., lifecycle modification used to synchronize component activ-
ity with the rest of the system),

– linked to component deployment (e.g., component instantiation, destruction,
migration),

– linked to component state (e.g., change of component attribute values),

Fractal [BCL+04] is a recursive component model with sharing and reflexive
control. It is based on classic concepts of component (as a runtime entity), inter-
face (an interaction point between components expressing provided and required
services) and binding (a communication channel between component interfaces).
A component consists of a membrane which can show and control a causaly con-
nected representation of its encapsulated content. An Architecture Description
Language (Fractal ADL [Fra]) is used to specify component configurations and
there is notably a Java implementation of the model, Julia. Several controllers
are defined to control bindings, the hierarchical structure, component lifecycle,
attributes and names, but other controllers can be user-defined.

Operations in controllers constitute primitive reconfiguration operations and
do either introspection or intercession (modifications) in the system. To compose

Reliability of dynamic reconfigurations 3

operations, we consider sequences or parallel executions of intercession opera-
tions with conditions expressed by means of introspection operations in com-
ponent configurations. An example of composite reconfiguration is component
hotswap, a mechanism used to update a system where an old version of a com-
ponent is replaced by a new one. In Fractal, this reconfiguration is composed
of a sequence of several primitive reconfiguration operations, it implies to stop
the component, unbind all its interfaces, remove it, add the new instantiated
component, bind its interfaces and start it (a state transfert operation is used
in case of stateful component).

2.2 The reliability problem with dynamic reconfiguring applications

A first problem when modifying a system at runtime is the synchronization
between reconfigurations and the functionnal execution of the system. Actually,
the part of the system which is modified could be unavailable for functional
execution during the reconfiguration time. To take the hotswap example with
a stateful component, calls on the old component must be blocked until a a
“quiescent state” [KM90] is reached, then the state must be transfered, finally
previous calls are forwarded towards the new component.

A second problem at the model level is about consistency violation by re-
configurations. First of all, we must make clear what exactly consistency is for
component-based systems. Component models and application models should
define what this consistent system is, especially in term of structure. For instance,
we may want to add a structural constraint about the number of subcomponents
of a composite component. In Fractal, the specification of the component model
is not always sufficient and we want to express some integrity constraints on
systems. So we must ensure the conformity of the system to the model and
constraints after reconfigurations.

The third and last problem we identified is linked to the composition of re-
configuration operations. A prerequisite is the separation of concerns between
the functional part and the control part of systems. Then separation between in-
trospection operations and intercession operations must be explicit. Once these
operations have been identified, the semantics of reconfiguration operations im-
plies there can be some conflicts between them in case of compostion and for
synchronization between several reconfigurations (e.g., in Fractal it is manda-
tory to unbind all component interfaces before removing the component from its
super-component).

3 A transactional approach to ensure reliable
reconfigurations

3.1 ACID properties in the context of dynamic reconfigurations

We think that well-defined transactions associated with structural and behav-
ioral constraints verification is a means to guarantee the reliability of reconfigu-
rations in component models, i.e. to solve problems we identified in the section

4 Marc Léger, Thierry Coupaye, and Thomas Ledoux

2.2. As any reconfiguration operation could lead the system to an inconsistent
state, each reconfiguration must always be included in a transaction. In this
context, we define the meaning of ACID properties as follows:

– Atomicity: either all happen or none happen, that is to say either the
system is reconfigured or it is not. A reconfiguration transaction can be
a single primitive reconfiguration operation or a more complex operation
composed of several operations. Each reconfiguration operation must specify
its reversible operation. Thus if a reconfiguration transaction goes badly and
is rollbacked, it is possible to come back in a previous stable state by undoing
operations. Transactions demarcation is either programmed in the language
or automatic (a reconfiguration script corresponds to a transaction).

– Consistency: a transaction must be a correct transformation of the sys-
tem state. So the reconfigured application must be conform to the compo-
nent model and application specific constraints. That is to say consistency
is given by integrity constraints essentially architectural invariants. A recon-
figuration transaction can be commited only if the resulting system respects
the constraints. Other faults like software and hardware failures (network
and machines) are the responsibility of the commit protocol (e.g., 2 phase
commit protocol).

– Isolation: several reconfiguration transactions are independant and any
schedule of reconfiguration operations must be equivalent to their serial-
ization. The scheduling must respect the operation semantics and conflicts.
This property relies on the knowledge of the semantics of reconfiguration
operations.

– Durability: once a reconfiguration completes with success (commit), the
new state is persistent. For every transaction, operation are logged in a jour-
nal so that reconfigurations can be redone in case of failure. The application
state (architecture and component state) is periodically checkpointed basi-
cally with ADL dumps and component state is saved in databases. So any
component can be recovered in its last stable state resulting from the last
successful reconfiguration. However, the only functional state we capture
is the state which is well identified in the component model and is saved
only at commit time of reconfigurations because we don’t want to impose
transactions at the functional level.

Only the first problem presented in 2.2 is not completely adressed by our
approach because we do not fully modelise the functional execution flow of sys-
tems, we relies on the implementation of the component lifecycle operations with
interceptors on component interfaces to realize the synchronization. A solution
to the synchronization problem is to apply the hotswap protocol proposed in
[KM90]. The guarantee we can bring is that the order of operations in the pro-
tocol is respected. Among the ACID properties we will especially focus in the
following sections on two properties: consistency and isolation.

Reliability of dynamic reconfigurations 5

3.2 Integrity constraints to ensure system consistency

In our proposal, system consistency relies on integrity constraints and we want
to express these constraints both at the application and at the model level. An
integrity constraints is essentially a predicate which concerns the validity of an
assembly of architectural elements but it can also concern component state. Ex-
amples of such constraints at the component model level are hierarchical integrity
(bindings between components must respect the component hierarchy) or cycle-
free structure (a component cannot contain itself to avoid infinite recursion). On
the other hand, application specific constraints are used to specify invariants on
a given system either on component types or directly on component instances
designed by their names. Invariants can concern for example cardinality of sub-
components in a super-component, two component interfaces which can never
be unbound etc.

In an open world where reconfigurations are not anticipated at compile time,
some component models like Fractal are relying on reflexive architectures to
dynamically reconfigure systems by means of a runtime mapping between the
system which is really executed and its model. So integrity constraints verified on
the model will be also valid in the system. We represent the Fractal component
model as a typed graph and then each fractal-based application is also a graph
which is an instance of this typed graph. The instance graph is a more formal
representation of the system provided at runtime by the reflexivity of the com-
ponent model and is used to navigate in runtime applications. The vertexes are
elements from the component model: components, functional interfaces, con-
trollers, attributes and operations. The edges represent relations between the
elements: composition links, binding links etc. Then the instance graph must
always be well-typed regarding to the typed graph (i.e., conform to the compo-
nent model) and the instance graph must respect integrity constraints. Therefore
contraints at the model level can be specified on the typed graph and others on
the instance graph. As the model is extensible and new user-defined controllers
can be added, graphs should be also easily extensible in terms of elements and
relations.

To express integrity constraints, we propose to use a DSL based on an exten-
sion of the query language in Fractal configurations FPath [DL06] to transform it
into a real constraint language “à la OCL” [OCL05]. An advantage of the FPath
language is that it can navigate both in the ADL and in the runtime system and
it is already based on a graph representation of the system during execution. The
constraint language must just have introspection capacity without side effects
on the system. We want to express invariants, preconditions and postconditions
in this language and we want notably to have quantifiers, collection operations
and filters. The following basic example is a structural invariant constraint at
the application level expressed in FPath (with its XPath 1.0 syntax like) where
the component designed by the variable c can never be shared (it can only have
one parent at the same time):
size(c/parent::*)=1

Constraints must be checked both at compile time on the component static
configuration and at runtime. We consider checking constraints as far as possible

6 Marc Léger, Thierry Coupaye, and Thomas Ledoux

before applying the reconfiguration on the system, eventually by code analysis of
a dedicated reconfiguration language like FScript [DL06]. Constraints can also
be checked either directly during the execution of the reconfiguration of the real
system or by simulation on a local copy of the representation of the system (i.e.,
the instance graph) so as to limit the effect on the system in case of constraint
violation.

3.3 Isolation of reconfigurations to support concurrency

We take the hypothesis that not only application components are distributed
but also administrators. Furthermore, reconfiguration initiators are either hu-
mans (interactive reconfigurations) or the system itself (the system is able to
auto-reconfigure). Concurrency in reconfigurations comes from the fact that one
administrator can explicitely want to execute some operations in parallel, or
several administrators can reconfigure the same system at the same time. The
reconfiguration scheduler can also detect when it can launch parallel reconfigu-
ration tasks to optimize the reconfiguration process.

As seen in section 2.1, reconfiguration operations are composable but all
compositions are not valid. In Julia, operation semantics is hidden in controller
implementations and so we want to make it explicit and we want eventually
to be able to change it and to specify new primitive operations. So we need
to express operation semantics in terms of preconditions and postconditions
with our constraint language presented in section 3.2. We distinguish two types
of conflicts between operations: parallel conflicts and execution dependencies.
For two given reconfigurations R1 and R2 executed on the same system, a
parallel conflict occurs if R1 and R2 modify the same manageable elements in
the system model (e.g. bind and unbind operations). An execution dependency
occurs if R1 either need R2 to be executed first (e.g. stop before unbind)or if
R1 cannot be executed after R2. That is to say R2 postconditions cover or not
R1 preconditions.

// Example of a precondition for removing a component
operation: void removeSubComponent(Component sub);
preconditions :
// all interfaces of the sub-component are unbound (. is the current node)
not(exists(sub/interface::*[not(bound(.))]));

For concurrency management, we propose a pessimistic approach with lock-
ing. Our locking algorithm is based on operation semantics to avoid inconsistent
operation compositions. We see two different possibilities for the locking algo-
rithm. The first one is to lock directly reconfiguration operations. That is to
say, either conflicts between operations are automatically calculated thanks to
its preconditions and postconditions or it must define the operations with which
it is in conflict. The second one is to use a modified DAG locking algorithm on
our instance graph defined in 3.2. Then the lock granularity is defined by the

Reliability of dynamic reconfigurations 7

manageable elements in the graph representation and for example a lock acqui-
sition on a component also locks all its interfaces and every operations in each
interfaces.

Another approach to locking is to constrain the execution order of reconfig-
uration operations. We propose to use a simple language inspired of behavior
protocols in [PV02] to describe the desired execution order of reconfiguration
operations, what we call behavioral reconfiguration constraints. The protocol
compliance is checked at runtime by intercepting reconfiguration calls.

4 Related work

Many works on ADLs follow a static approach to check consistency of component-
based architectures by compilation but only a few are interested in dynamic
analysis of this consistency. We will focus here on other reflective component
models which allow non anticipated (also called ad-hoc) reconfigurations.

FORMAware [MBC04] is relatively close to our work. This framework to
program component-based application gives the possibility to constrain recon-
figurations with architectural style rules. A transaction service manages the re-
configuration by stacking operations. The main difference with our proposal is
our integrity constraints are more flexible than styles and they can be applied
to every element of our component model. Moreover we define more formally
reconfiguration operations to identify conflicts between them, our locking algo-
rithm is then more precise than a simple lock on components and we consider
introspection operations as reconfiguration operations.

Plastik [BJC05] is the integration of the OpenCOM component model and
the ACME/Armani ADL. As in our solution, architectural invariants can be
checked on ADL configuration or at runtime and constraints are expressed at
the style level and at the instance level. However, reconfiguration cannot be
generic composite reconfigurations with model elements in parameters and the
execution, the operation semantics is not explicit and not extensible and the
order of reconfiguration operation cannot be constrained as we can do with
reconfiguration protocols.

5 Conclusion

Dynamic reconfiguration in component-based systems raises reliability problems,
especially in open systems in which they are not anticipated. In this article, we
identified the three following global problems based on our experience with the
Fractal component model: synchronization between reconfiguration and the func-
tional execution of systems, consistency regarding component and application
models, and synchronization between reconfiguration operations. We focused
more on the two last problems: the first one concerns conformity at runtime of
systems with constraints and models, the second one deals with the validity of
composition of reconfiguration operations.

8 Marc Léger, Thierry Coupaye, and Thomas Ledoux

We propose to use integrity constraints to define consistency for dynamic
reconfigurations and to include these reconfigurations in transactions. We build a
graph representation of our application at runtime thanks to the reflexivity of the
Fractal component model and use a constraint language on this graph. Moreover
we want to detect execution conflicts between reconfiguration operation in order
to be able to compose them with reliability with eventually the specification of
reconfiguration protocols. We are currently implementing this proposal in Julia,
a Java implementation of the Fractal model.

References

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java. In
Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau,
editors, CBSE, volume 3054 of Lecture Notes in Computer Science, pages
7–22. Springer, 2004.

[BJC05] Tháıs Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing
dynamic reconfiguration in component-based systems. In Ronald Morri-
son and Flávio Oquendo, editors, EWSA, volume 3527 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2005.

[DL06] Pierre-Charles David and Thomas Ledoux. Safe dynamic reconfigurations of
fractal architectures with fscript. In Proceedings of the 5th Fractal Workshop
at ECOOP 2006, Nantes, France, July 2006.

[Fra] Fractal ADL. http://fractal.objectweb.org/fractaladl.
[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, 2003.
[KM90] J. Kramer and J. Magee. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[MBC04] Rui S. Moreira, Gordon S. Blair, and Eurico Carrapatoso. Supporting adapt-
able distributed systems with formaware. In ICDCSW ’04: Proceedings of
the 24th International Conference on Distributed Computing Systems Work-
shops, pages 320–325, Washington, DC, USA, 2004. IEEE Computer Society.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.
In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on
Foundations of software engineering, pages 3–14, New York, NY, USA, 1996.
ACM Press.

[OCL05] OCL 2.0 Specification. http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.
[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-

based runtime software evolution. In ICSE ’98, pages 177–186, Washington,
DC, USA, 1998. IEEE Computer Society.

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[TGGL82] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay.
Transactions and consistency in distributed database systems. ACM Trans.
Database Syst., 7(3):323–342, 1982.

E COMPOSITE PROBES

E Composite Probes

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 92

JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 3, May-June 2005

Cite this article as follows: Author’s name: “Paper title”, in Journal of Object Technology, vol. 4,
no. 3, May-June 2005, pp. …..

Composite Probes: a Generic
Monitoring Framework for Hierarchical
Management of Heterogeneous Data

Ada Diaconescu and Bruno Dillenseger, Orange Labs

Abstract
System monitoring has become an essential utility for managing software applications.
However, as software systems are becoming increasingly complex, analyzing collected
monitoring data is becoming progressively more difficult and costly a task. This article
presents Composite Probes, a generic monitoring framework for complex system
management. Composite Probes provides support for organizing heterogeneous data
into hierarchical constructs that process data at different granularity and abstraction
levels. Composite Probes represent building blocks that are instantiated, customized
and connected to form flexible hierarchies adapted to various application requirements.
System administrators configure each instance with specific data-processing functions,
including aggregation, filtering and scheduling. A Composite Probes prototype was
implemented and successfully tested on different distributed applications.

1 INTRODUCTION

System monitoring has become an essential utility for assisting the development,
configuration and runtime administration of software systems. Generic and specific
monitoring tools are being employed to test and calibrate software systems offline, as
well as to supervise, manage and adapt software systems during runtime. Performance
profiling, SLA-compliance verification and autonomic computing are only some of the
important industrial and research areas heavily relying on monitoring functions. Existing
monitoring utilities collect different data types from various managed entities (e.g. CLIF1,
LeWYS2, Compas3, Ganglia4, or JVMTI5). Collected data can range from a system's
hardware and software resource consumption, to a system's usage patterns and achieved
quality attributes. Monitored data is subsequently analyzed in order to determine various

1 CLIF: load-injection and monitoring framework for distributes applications (clif.objectweb.org)
2 LeWYS: monitoring framework for hardware and software resources (lewys.objectweb.org)
3 COMPAS: framework for performance management in J2EE applications (compas.sourceforge.net)
4 Ganglia: distributed monitoring for high-performance computing systems (ganglia.sourceforge.net)
5 JVMTI: JVM™ Tool Interface from Sun Microsystems (java.sun.com/j2se/1.5.0/docs/guide/jvmti)

2 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

properties, such as system correctness, performance, overall utilization, state, or SLA-
conformance levels. However, as systems are becoming increasingly complex and
monitoring tools more sophisticated, progressively larger amounts of heterogeneous data
are being collected for analysis and diagnosis operations. Examining accumulated
monitoring data is consequently becoming an increasingly complex and costly task,
especially when periodically required during system execution. Available monitoring
utilities generally provide data in the initially collected format and offer little support for
processing this data. Consequently, massive amounts of heterogeneous data are
represented at the same abstraction level, in a flat data structure. The responsibility for
organizing, aggregating and filtering monitoring data is left entirely to data consumers, or
clients. Meanwhile, multiple data-processing tasks are common to most clients,
regardless of client-specific management goals. For example, various high-level
indicators must be computed from low-level measurements in most complex management
applications. There is an emerging need for aggregated data to be readily available, to
represent high-level resource measurements or abstract indicators.

This paper proposes a novel monitoring framework called Composite Probes
(CPs) that aims at extending current monitoring utilities with support for hierarchical
data-organization and processing. CPs provides support for constructing flexible
monitoring hierarchies from reusable and configurable probes. Such hierarchies can be
configured to follow customized data processing and scheduling policies in order to
aggregate and filter incoming data, possibly from heterogeneous resources, at multiple
abstraction levels. In this manner, CPs instances in a hierarchy provide monitoring data at
various granularity and complexity levels, representing basic or abstract resources, fine-
grained measures or high-level indices. Namely, a CP can provide measures as different
as a system's CPU usage, a cluster's overall resource load, a system's SLA-compliance
level, or a an application's state. The main contributions of the CPs framework include:

1. Reusable applicative support for data assembly and event forwarding functions,
commonly required for building data association and processing chains.
Therefore, CPs helps decrease management costs by preventing replicated efforts,
expertise and development work from being conducted at multiple sites.

2. Highly-customizable and extensible data-processing elements, that can be
configured to use different aggregation, filtering and scheduling algorithms

Additionally, CPs features important characteristics required for a scaleable,
manageable and adaptable monitoring framework:

3. Support for integrating and using low-level monitoring data from heterogeneous
resources, at different system levels (e.g., OS, JVM, middleware and application).

4. Uniform data representation and control for all probe types
5. Standard external access via common communication and management protocols
6. Seamless extensibility, via new data-processing algorithms, new scheduling

policies, new probe types and additional communication protocols
7. Support for integrating legacy probes and third party data processing functions
8. Inherent scalability of monitoring hierarchies, as large amounts of data can be

collected and processed at multiple distributed sites.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 3

2 COMPOSITE PROBES

Framework Overview

Composite Probes (CPs) is a generic monitoring and analysis framework for large-scale,
distributed (LSD) applications. The framework's main goal is to provide support for
organizing and managing massive amounts of monitoring data collected from
heterogeneous resources. CPs aims at extending flat monitoring architectures with
flexible hierarchical constructs, in order to facilitate data understanding, provide different
information views and reuse data-processing functions.

CPs represent building blocks for constructing flexible and configurable
hierarchies, which can process monitoring data at various granularity and abstraction
levels. As depicted in Figure 1, in a CPs monitoring hierarchy data obtained from low-
level system probes flows upwards through the hierarchy and undergoes incremental
processing at each CP instance involved. CPs are classified into two major types, based
on their roles and functions (Figure 1 and Figure 2). The first probe type is the Basic
Probe (BP), whose role is to extract monitoring data from the managed system resources.
BPs represent leaf nodes in the hierarchy, meaning that they cannot be further composed
of other probes. BPs process collected monitoring data and subsequently forward it to
connected parent probes. The second probe type is the Composite Probe (CP), whose
role is to manage and organize incoming data from multiple data sources, or child probes.
CPs can contain other CPs or BPs, which constitute the CP's data sources (Figure 4). CPs
process incoming data and subsequently forward it to connected parent probes. Data
processing in BPs and CPs involves data aggregation and filtering procedures, as dictated
by well-specified scheduling policies. From an external perspective, clients have a
uniform view of all probes. Probe access is restricted to probe external interface(s), which
are identical for all probe types (Figure 2). For the scope of this paper, the term
Composite Probes (CPs) will be used to indicate any of the two probe types, Basic or
Composite, unless otherwise specified. The term also refers to the monitoring framework
proposed. The exact meaning of the term will be clear from the used context.

All CPs can be identified via a unique probe Id. Clients use probe Ids to access
any probe in a hierarchy, in order to retrieve monitoring data or send control commands.
Communication can be done directly with a targeted probe, or indirectly, via the probe’s
parents. Indirect communication requires the path to the targeted probe to be provided as
a request parameter, which allows the request to be routed to its destination probe.

Two main information flows characterize CPs hierarchies. These are the data
flow and the control flow (Figure 1). In short, the data flow transports monitoring data
upwards from lower-level BPs to higher-level CPs. The control flow transports control
commands downwards from CPs at higher hierarchical levels to lower-level BPs.

The proposed framework has a modular, configurable and extensible design,
which allows its main functions - aggregation, filtering, scheduling and communication -
to be individually tuned and modified for each CP instance.

4 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 1: General view of a Composite Probes hierarchy

Composite

Probes

Figure 2: Logical view of the main component types provided in the Composite Probes framework

Example of Composite Probes Hierarchy for Cluster Monitoring

An example scenario in which the CPs use is potentially beneficial involves monitoring a
distributed system, such as a computer cluster. Figure 3 provides a simplified example of
such clustered system with two interconnected machines. For monitoring this system, two
BPs are deployed on each machine for measuring their respective memory and CPU
consumption. In a realistic scenario, low-level monitoring probes from tens or hundreds
of clustered machines would produce a significant amount of fine-grained data, difficult
to analyze manually during runtime. To alleviate such difficulties, this example shows
how a CPs hierarchy is employed to aggregate monitoring data at different abstraction
levels, such as overall system and cluster levels. The example CPs hierarchy in Figure 3
organizes monitoring data as follows. Two system CPs represent the overall load on each
system (i.e. 'system1' and 'system2' probes). At a higher abstraction level, a cluster CP

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 5

aggregates data from all available system CPs and provides cluster-level measurements
(i.e. 'cluster' probe). Finally, a cluster CPU CP aggregates CPU data from all managed
machines and represent the overall CPU load of the entire cluster. Hence, the cluster CPU
probe simulates the existence of a single cluster CPU resource, hiding the fact that this
abstract resource is aggregated from multiple system-level CPU resources.

%CPU

%CPU

%used ram %used ram

Filter : <not used>
Scheduler : Threshold
Aggregator : Many Attributes
per Child Blade of Same Type

cluster

system2 system1

%CPU
%CPU user
%CPU kernel

% used ram
used ram [MB]
cached [MB]
buffers [MB]
% used swap
used swap [MB]

cpu2 memory2 cpu1 memory1

Filter : Single Attribute (first)
Scheduler : Threshold
Aggregator : Many Attributes
per Child Blade of Same Type

Filter : Transparent
Scheduler : Threshold
Aggregator : One Attribute per
Child Blade of Different Type

Filter : <not used>
Scheduler : Periodic
Aggregator : Many Attr ibutes per
Child Blade of Same Type

cluster_CPU

%CPU

%used ram %CPU

Figure 3: Sample Composite Probes hierarchy for monitoring a clustered system

Monitoring Data Flow

The monitoring data flow transports monitoring information through the CPs hierarchy.
Data is collected by BPs and propagated up towards CPs at the top of the hierarchy.
Figure 4 depicts a simplified view of the data flow through a monitoring probe. In short, a
probe receives data from one or multiple data sources. Incoming data is collected,
processed and stored as local data. From an external perspective, local data represents the
data that a probe 'monitors'. For BPs, local data is based on actual measures taken from
managed resources. For CPs, local data simulates measures taken from an abstract
resource that the probe represents. In all cases, local data is subsequently filtered and
forwarded to the probe's parents, or data sinks. In addition, external clients can access a
probe's local data via direct method calls or by listening to the probe’s events (Figure 4).

…

Generic

Probe

local data

…

incoming data

outgoing data

data sources

data sinks

clients
data requests

local data

Figure 4: Generic data flow through Composite Probes

6 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 5 details the data flow view for BPs and CPs. The main dissimilarity
between the two probe types is in the monitoring data source. Namely, BPs receive data
from a single data source, which is an instrumented managed resource. The resource
instrumentation code is represented in Figure 5 by the Insert component; it can be
provided by the BPs or reused as existing legacy code. CPs receive data from multiple
sources and aggregate this data into summary statistics or meaningful high-level
measurements. Statistics are used to summarize a set of observations, in order to
communicate concentrated or simplified information to external clients and parent CPs.
Possible statistical functions include mean or median functions, standard deviation and
variance, minimum or maximum functions. In addition, various aggregation algorithms
can be specified for correlating data of different types into meaningful high-level
indicators. For example, a system's congestion can be determined based on the individual
hardware and software resource loads. Administrators are responsible for selecting or
specifying the aggregation functions for each CP in the hierarchy. Aggregated results are
stored as probe local data and can optionally be persisted to a storage support.

Basic
Probe

loca l data

incoming data

outgoing data

Instrumented
system resources

Insert

Filter Composite
Probe

local data

…
incoming data

outgoing data

Other generic probes
(composite or basic)

Composite probes

Aggregator

Filter
Specifies which part of the local
data is forwarded to the sinks

Extracts data
from a targeted
system resource

Processes data
from multiple
data sources

Updates local data

Uses local data as input

… …

Composite probes

Figure 5: Data flow through Basic and Composite Probes

Control Commands

The control flow transports control commands for managing the probes' lifecycles.
Namely, control commands are used to initialize, start, stop, pause, resume or terminate
the execution of one probe or of a probes sub-graph. Namely, commands targeted at a
certain probe can be optionally propagated to affect uniformly the probe's sub-graph. This
facility simplifies hierarchy control processes by allowing an entire probe tree to be
controlled via a single command sent to the tree's root.

Architectural Overview

BPs and CPs provide identical external interfaces and feature very similar internal
architectures. The main architectural difference between the two probe types results from
their different roles in a monitoring hierarchy. Namely, BPs use a specific Insert
subcomponent for extracting monitoring data from the managed system. Conversely,
CPs are in charge of managing monitoring data received from multiple lower-level

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 7

probes. Consequently, CPs do not use an Insert subcomponent themselves, and obtain
their data via connections to their child probes instead. Besides the manner in which they
obtain their monitoring data, BPs and CPs contain identical subcomponents. Evidently,
the way some of these subcomponents inter-communicate is influenced by whether a
probe contains an Insert subcomponent or is merely connected to lower-level probes.

An overall view of the BP architecture is presented in Figure 6. The CP
architecture is identical, except for the missing Insert subcomponent and additional
connections to child probe components. The most important external interfaces include
the Probe Management, Data Collector Administration and Probe Control interfaces.
System administrators configure probes via their Probe Management interfaces.
Supported management operations include setting and configuring a probe's aggregator,
filter or scheduler functions, as well as connecting or disconnecting a probe from parent
or child probes. Administrators use the Probe Control interface to perform control
operations such as init, start, pause, resume, or stop on a targeted probe or probe sub-
graph. Clients have access to a probe's monitoring data via the probe's Data Collector
Administration interface. Probe interdependencies on external functionalities are
represented via client interfaces. The principal client interface is the Data Collector Write
Delegate, for forwarding data events to a probe's parents. Other client interfaces include
the Probe Response Delegate and Supervisor Information, for sending asynchronous
notifications, current probe state or abnormal events to parents.
 Basic Probe

cDC
Data collector m anager

Data collector write

Data collector administration

Probe

Management

Probe

management

DC manager

BA manager

Storage write

Child dc dele gation manager

Parent dc delegation manager

Insert

Probe control

Data collector write

Insert r esponse

Probe control composite
cBA

(b - basic /

c - composite)

Probe adapter m anager

Subordonate information

Probe insert response

Child ba delegation manager

Parent ba d elegation manager

Storage proxy administartion

Data collector write

Delegate data

collector write

Probe response

delegate

Supervisor
information

Data collector

administration

Probe

management

Probe control

Delegate data

collector administration

Insert control (b)

Child

Delegation

Manager

Data collector

delegation manager

Probe adapter

delegation manager

Probe response delegate

Supervisor information

Parent

Delegation

Manager

Delegate data

collector write

Data collector

delegation manager

Probe adapter

delegation manager

Figure 6: Basic Probe architecture (Composite Probe architecture is identical, except for the missing Insert)

Probe subcomponents common to both probe types are described as follows. The
Data Collector (DC) subcomponent receives monitoring data and processes it according
to specific aggregation, filtering and scheduling policies. Processed data is subsequently
forwarded to the probe's parents and optionally sent to a storage support for persistent

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

logging, or further processing purposes. The Blade Adapter (BA) subcomponent provides
asynchronous support for executing the probe's control commands. This prevents clients
from being blocked while their control commands are being executed, possibly on a
significantly large probe sub-graph. The Probe Management subcomponent represents a
portal for all management operations, redirecting requests to the specific subcomponents
capable of processing them, and shielding external clients from internal details. Finally,
the Child and Parent Delegation Manager subcomponents manage probe communication
with child and parent probes, respectively. Their role is to isolate probe inter-connection
logic from functional code, and facilitate eventual communication protocol changes.

3 DATA-PROCESSING IN COMPOSITE PROBES

A probe's Data Collector (DC) dictates the specific manner in which the probe handles
incoming monitoring data and makes it available to clients and parent probes. The
principal processes involved in collecting, processing and forwarding incoming data are
assigned to specialized DC subcomponents, namely the Aggregator, Filter and Scheduler.
Consequently, a DC's processing logic is highly configurable, as the algorithms and
policies of each of its subcomponents can be individually specified and configured. In
short, the DC Aggregator collects incoming data events over well-specified intervals. At
the end of each interval, the Aggregator uses the collected data events to calculate and
update the probe's local data. Intervals are dictated by the DC's Scheduler. Processed
local data is sent to the DC's Filter and the filtered result forwarded to the probe's parent
probes. This design enables administrators to create flexible hierarchies with custom
data-processing paths by setting the data-processing policies of each instantiated probe.

Data Aggregator

The Aggregator's role is to manage incoming data from multiple data sources. They
provide two major functions, namely, collecting incoming data and processing it to
calculate local data. The first function stores incoming data events according to a
specified policy. For example, data received from identical probe types can be mixed
together into a common storage (e.g. the 'cluster' and 'cluster CPU' probes in Figure 3),
while data received from sources of different types must be stored separately (the 'system'
probe in Figure 3). The second Aggregator function dictates how stored data is processed
to calculate local statistics (e.g. maximum or weighted average functions).

Data Filter

The Filter's role is to determine a probe's outgoing data for the probe’s data sinks. A
typical filter determines which subset of a probe's local data will be sent as output data. A
probe's Filter is unaware of whether the output data will be forwarded to one or multiple
data sinks, as all inter-probe communication is managed by probe Delegation Managers.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

Interval Scheduler

The Scheduler's role is to dictate a CP's data processing intervals. Intervals dictate the
exact instants at which a probe's Aggregator calculates local statistics based on the
collected monitoring data. Each Scheduler has an associated Task, which can be
implemented to trigger various data processing and forwarding functions. The Scheduler
will trigger the Task's execution at the end of each interval.

4 CURRENT IMPLEMENTATION

Implementation Overview

A CPs prototype was implemented for demonstrating the main capabilities and functions
proposed in the framework specification. The prototype implementation is based on
Julia6, a Java implementation of the Fractal7 component model, and on additional Fractal
utilities, including Fractal-ADL8, Fractal-RMI9 and Fractal-JMX10. Fractal is a
hierarchical component model suitable for building complex applications with high
modularity and adaptability requirements. The CPs framework is based on an existing
monitoring and load-injection application called CLIF11. CPs extends CLIF's monitoring
architecture and functions in order to add hierarchical data-management functions to the
flat data representation initially supported. CPs equally reuses some of the
instrumentation code provided in CLIF for monitoring UNIX, Windows and MacOS
resources, including CPU, memory and disk utilization. The CPs prototype implements
the BP and CP types, and provides several Aggregator, Filter and Scheduler
implementations. The framework implementation supports remote client access to CP
instances via the RMI12 and JMX13 protocols.

Implemented Aggregation Functions

Several Aggregator types are provided in the current CPs implementation. First, a "Many
per Identical Type" Aggregator was implemented to aggregate multiple parameters from
identical data sources. This implies that all data sources send data with identical formats
and semantics. Secondly, a 'One per Different Type' Aggregator was implemented to
aggregate a single data item from different source types. This implies that each source
sends a single parameter’s values, where each parameter is of a different type. A third
Aggregator type was implemented to process data on a managed element's state. The
'Component State' Aggregator receives state events from a single element and calculates

6 Julia: the reference Java implementation of the Fractal component model (fractal.objectweb.org/julia)
7 Fractal: component model (fractal.objectweb.org)
8 FractalADL: Fractal model's Architecture Description Language (fractal.objectweb.org/fractaladl)
9 FractalRMI: enables remote method calls between Fractal components (fractal.objectweb.org/fractalrmi)
10 FractalJMX: enables JMX management of Fractal applications (fractal.objectweb.org/fractaljmx)
11 CLIF: generic Java-based performance testing framework (clif.objectweb.org)
12 RMI: Java Remote Method Invocation from Sun Microsystems (java.sun.com/javase/technologies/core/basic/rmi)
13 JMX: Java Management Extensions from Sun (java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement)

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

its local data as the value of the last event in the interval. Finally, a 'Path State'
Aggregator was implemented to provide the overall state of an application call-path. Each
Path State Aggregator collects state data from the multiple elements (e.g. nodes and
connections) constituting the managed call path. At the end of each interval, the overall
path state is calculated based on the individual element states.

Implemented Filtering Functions

Two filter types are available in the current CPs implementation. First, a 'Single
Parameter' Filter selects a single data element from the input data set and sends it as the
output data set. Second, a 'Transparent' Filter sends the entire, unchanged input data set
as the output data set. This filter was provided in order to maintain a uniform data-
processing architecture across all CPs.

Implemented Scheduling Policies

Two Scheduler types are available in the current CPs implementation. First, a 'Threshold'
Scheduler determines intervals based on the number of monitoring data events received.
Namely, the scheduler dictates the end of an interval each time the number of received
events crosses a certain threshold. The second scheduler type, a 'Timer' Scheduler,
determines intervals in a strictly time-based manner. Specifically, it uses a configurable
period to determine the end of each interval. Both Scheduler implementations trigger the
statistics calculation process in the associated probe Aggregator, at the end of each
interval. New statistics are immediately filtered and forwarded to the probe's parents.

5 USAGE SCENARIOS AND PRELIMINARY RESULTS

Two example usage scenarios were tested to show the CPs framework benefits for
monitoring large-scale, distributed systems. In the first example, a CPs hierarchy was
built for monitoring various resource types in a clustered computer system. In the second
example, a different CPs hierarchy was constructed to monitor the state of component-
based data-processing applications, at various granularity levels. The goal of the two
usage scenarios was to demonstrate the correct functionality of various CPs hierarchies
and show the capacity of instantiating and inter-connecting different BPs and CPs,
configured with various Aggregator, Filter and Scheduler types. The tested scenarios
show the utility of using CPs when managing complex systems. Meanwhile, these initial
scenarios did not explicitly test performance and scalability issues, even though such
concerns were carefully considered in the framework's architecture specification.

Monitoring the Overall Load of a Clustered System

The CPs framework was used to create a monitoring hierarchy for supervising the
resource usage of large-scale distributed systems. The monitoring hierarchy used is
presented in the example in Figure 3. The following probe types were created to build the

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 11

monitoring hierarchy in the presented scenario. First, two BPs were used to monitor the
CPU and memory resources on the managed stations. One memory and one CPU probe
was instantiated to monitor the respective resources on each machine. The BPs were
configured to use Many per Identical Type Aggregators and Single Parameter Filters.
Consequently, even though multiple CPU and memory parameters are monitored and
made available at the BP level, only the values of one CPU and one memory parameter
are forwarded to parent CPs. The percentage memory usage was selected as the unique
forwarded measure for memory probes and the CPU percentage usage for CPU probes.

Secondly, a system load CP was prepared to represent the overall resource
consumption on each machine. Two such system CPs were instantiated and used in the
monitoring hierarchy, one for each managed station. Each system load probe collected
data from the corresponding CPU and memory BPs on the monitored station. The system
CPs were configured to use a One per Different Type Aggregator and a Transparent
Filter. This implies that system probes collect one measure from each distinct child probe
and forward all calculated values to parent probes. Concretely, a system probe collects
two different measures, one from its CPU child probe and one from its child memory
probe. Statistics calculated based on these measures are subsequently forwarded to parent
probes, in this case, to a cluster load CP. In the current scenario, the system CP maintains
the different collected measures separate from each other, as shown in Figure 7 (i.e. the
'system' probe in the bottom-right pane) and Figure 8 (i.e. 'system2' probe in the top
pane). Nonetheless, the Aggregator used can easily be modified to calculate a unique
system load measure, based on the separate measures collected. It is up to each system
administrator to define the actual function to use for calculating a global system load
measure based on discrete resource data (e.g., a max function considers the system load
as equal to the load on the most used resource, most likely to become a bottleneck).

Finally, a cluster load CP was created to represent the overall resource load on the
entire distributed system. A single probe of this type was instantiated and bound to collect
data from all system CPs of the managed machines in the cluster. The cluster load CP
was configured to use a Many per Identical Type Aggregator. This CP receives measures
on the average memory and CPU consumption of the two systems in the cluster. Based
on these measures, the Aggregator calculates the average CPU and memory consumption
at the overall cluster level, at the end of each monitoring interval. The two selected
stations had similar CPU and memory capacities, so that calculating the average resource
usage in percentages for the two stations made sense. The Aggregator used can easily be
modified to provide a unique cluster load measure, based on the separate CPU and
memory data collected from the individual systems involved. In addition, a different
Aggregator could equally be employed show the total resource usage in the cluster. Care
must be taken when creating monitoring hierarchies from probes with different
Aggregator and Filter types. System administrators should make sure that calculated
measures at higher hierarchical levels make sense with respect to data received from
probes in the lower hierarchical levels. All probes were configured to use Threshold
Schedulers, meaning that statistics were calculated every time the number of collected
monitoring events crossed a certain specified threshold.

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Figure 7 and Figure 8 present snapshots of monitoring data obtained via the CPs
hierarchy, at various abstraction levels. Figure 7 depicts data from monitoring probes
deployed on the first machine and Figure 8 data from the second machine in the cluster.

Figure 7: Composite Probes for System 1 and overall Cluster

Top-left: CPU 1 measures; bottom-left: memory 1 measures; top-right: cluster measures showing the
average CPU and memory consumption in the entire cluster; Bottom-right: centralized system 1 measures

Figure 8: Composite Probes for system 2

Top: overall system 2 measures; middle: memory 2 measures; bottom: CPU 2 measures

As shown in the figures, the CPU, memory and system load probes were deployed
on the respective stations they monitored. The cluster load CP was deployed on the first
station. Monitoring data from the seven probes in the monitoring hierarchy is presented in

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 13

the corresponding graphs in Figure 7 and Figure 8. Each graph is labeled with the unique
id of the corresponding probe. The graphs show how the system probes provide
centralized data on the overall CPU and memory consumption on the machines they
represent. In addition, the cluster probe provides average consumption values for the
managed cluster resources, based on values received from the constituent system probes.
Initial tests were successfully carried out to verify the framework's support for external
client access via the RMI and JMX protocols and for dynamic modifications on
hierarchies of probes of similar types. Specifically, CPU probes were dynamically added
and removed from a cluster CPU probe (Figure 3), without disrupting the monitoring
system's execution.

Monitoring the Overall Availability of a Data-Processing Graph System

The CPs framework was used to create a monitoring hierarchy for supervising
component-based data-processing applications. This type of applications involves several
interconnected nodes, or components, that form a graph-like architecture. The application
data-processing nodes are possibly distributed across multiple machines. Input data is
forwarded between the graph's nodes, following a well-defined data-processing path.
Each node contains a certain data-processing function, so that the node's output data is
the result of the node's function applied on the node's input data. An application can
provide several distinct processing paths, where different paths can share multiple nodes.

With respect to the performed testing scenarios, the central parameter of interest
in the data-processing application scenario was the application state. State values were
monitored at various granularity levels, such as node, data-processing path, overall node
availability and global application availability. The possible node states are Loaded,
Initialized, Started, Stopped and Unloaded. In order to display the nodes' states in
graphical formats, the possible node states are mapped to numeric values (i.e. the Loaded
state is mapped to value zero, Initialized to 1, Started to 2, Stopped to 3, and Unloaded to
4). A processing path's state depends on the respective states of the path's nodes. More
complex scenarios can be envisaged to also consider inter-node connections and
execution platform states when determining path states. Currently, a path is considered to
be in the Stopped state if any of its nodes is in the state Stopped and in the state Started if
all of its nodes are in the state Started. The overall node availability is calculated based
on the individual states of all nodes in the application. Similarly, the overall application
availability is considered based on the individual states of the available paths. Four probe
types were used to build the CPs hierarchy for providing state information at the
presented abstraction levels (Figure 9-a). With respect to the probes' internal
configuration, each probe type was configured with a different Aggregator, depending on
the probe's role and functions. Meanwhile, all probe types were configured to use the
same Filter and Scheduler types, specifically, Transparent Filters and Timer Schedulers.

The different roles and functionalities assigned to each of the four probe types are
described as follows. First, special-purpose BPs where employed to obtain information on
the nodes' states. One BP was instantiated for each data-processing node in the monitored
system (i.e., probes S1 to S10 in Figure 9-a). The BPs were configured to use State

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

Aggregators. In this testing scenario, the legacy instrumentation code provided by the
data-processing application was used to provide the BP's Insert functionality. This was
possible since the managed application already provided JMX-based monitoring events at
the node level. Therefore, the BPs were implemented as JMX adapters to the existing
instrumentation code, registering as listeners to node state-change events. At a higher
abstraction level, a second CP type was used for representing the overall node availability
in the application (i.e. the 'Ovrl Node States' probe in Figure 9-a). This CP is connected to
all BPs (i.e., S1 to S10) and aggregates all individual node states for providing an overall
view of the system node availability. A One per Different Type Aggregator was used for
this CP type. Consequently, the 'Ovrl Node States' CP currently displays all monitored
node states individually, providing a centralized view of the application state at node
level. This Aggregator can easily be extended to use the centralized data and calculate the
node availability, in percentages, as a unique measure of the system node state.

The remaining CP types are related to the application's data-processing paths. The
third CP type monitors and represents the state of individual data-processing paths. A
special Aggregator was implemented to calculate a path's state based on the individual
states of the nodes in that path. This Aggregator can be extended to consider additionally
the states of node inter-connections, or execution platforms. Finally, a fourth CP type was
introduced to centralize all path states in the system (i.e. the ‘Ovrl Path States’ in Figure
9-a), which it collects from the individual path probes (P1, P2, P3 and P4). This CP type
measures the global availability of the application, as experienced by external clients. The
current implementation uses a One per Different Type Aggregator for this CP, separately
maintaining the individual path states. This Aggregator could be extended to calculate the
percentage of available paths, as a unique measure of the overall system availability.

The data-processing application depicted in Figure 9-b was instantiated and
monitored using the CPs framework. This application consists of 10 data-processing
nodes, interconnected to form four distinct data-processing paths. For example, path 1 in
Figure 9 consists of the ordered nodes 1, 2, 3, 4 and 5; and path 4 consists of nodes 9, 3
and 10. As such, certain nodes are part of multiple data-processing paths. In the example,
paths 1, 2 and 3 all share node 3, while node 10 is only involved in path 4. A direct
consequence is that a node's failure can have different effects on the global system
functioning, depending on the node's utilization in processing paths. For instance, a
failure in node 10 will only disrupt the functioning of path 4, while a disruption in node 3
would affect all application paths and render the entire system unavailable. In this
example, the dysfunction of a single node in the system, or 10% node unavailability, can
have a considerably different impact on the overall system availability. More precisely,
10% unavailability at the node-level can result in 25% application unavailability if node
10 is disrupted and in 100% application unavailability if node 3 is disrupted. A
monitoring hierarchy that highlights such information was constructed using the CPs
framework, as shown in Figure 9-a. This CP hierarchy allows administrators to obtain
system state information at various granularity and abstraction levels, as monitoring data
is readily available on each node, path and global node and path availabilities.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

Two example scenarios were considered, starting with a fully functioning
application, where all nodes were in the 'Started' state. The first use-case scenario shows
how stopping node 10 affects the local and overall application availability (Figure 10).

Managed data -processing application

1

6

9

8 7

5 4 3 2

10

3

4

2

1

S1 S2 S3 S9 S8 S7 S6 S5 S4 S1
0

P1 P2 P3 P4

OvrlNodeStat
es

OvrlPathState
s

Composite Probes monitoring hierarchy

b)

a)

C

B Basic Probe

Composite Probe

Input data

Output data

N Call path N

 Data -processing node

Node interconnection

Figure 9: Using Composite Probes to monitor a data-processing application

a) CPs hierarchy, probe types: node BP (S1–S10), path CP (P1–P4), all paths CP (OvrlPathState), all nodes
CP (OvrlNodeState); b) Monitored application: ten nodes (1-10) and four paths (1-4)

At the node granularity level, the monitoring data shows node 10 changing its state from
Started to Stopped, while all other nodes remain in state Started. Path 4, which uses node
10, consequently changes its state from Started to Stopped, while all other paths remain
unaffected. This data is depicted in Figure 10, as follows. The top-right graph
corresponds to probe S10, for node 10; the top-left graph corresponds to probe ‘Ovrl
Node States’ and shows centralized data on all nodes states; the bottom-right graph
corresponds to probe P4 and shows the sate of path 4; the bottom left graph corresponds

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

to probe ‘Ovrl Path States’ and shows centralized data on all paths states. The two overall
Aggregators for probes ‘Ovrl Node States’ and ‘Ovrl Path States’ can seamlessly be
extended to indicate the overall node availability of 90% (i.e. 9 out of 10 available nodes)
and the global application availability of 75% (i.e. 3 out of 4 available paths). Similarly,
the second scenario shows how stopping node 3 affects the local and overall application
availability (Figure 11). In this case, the node's failure causes the entire application to
become unavailable, as all paths are using node 3. At the overall level, this translates in a
90% overall node availability and a 0% global application availability.

Figure 10: Local and overall impact on application availability when stopping node 10

Global node availability: 90%; Global data-processing application availability: 75%

The two scenarios indicate the important benefits of observing monitoring data at
different granularity levels. While in both cases a single node was observed to fail, the
actual impact on the overall application availability varied dramatically. Ultimately, from
an application management perspective, the global data-processing availability is of
major importance, as it is directly experienced by application clients. While significant,
such global availability information is difficult to detect by merely following fine-grain
measures at the individual node level. In addition, this difficulty increases dramatically
with the application's scale and distribution. This example scenario shows how a CPs
hierarchy can be used to alleviate such difficulties by providing aggregated monitoring
information irrespectively of the system's scale. Similar CPs hierarchies can be equally
employed to monitor the state and activity of different types of modular systems, such as
component or service-based applications.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

Figure 11: Local and overall impact on application availability when stopping node 3

Global node availability: 90%; Global data-processing application availability: 0%

6 RELATED WORK

Hierarchical monitoring systems, both freeware (e.g. Ganglia [1], Clumon14, Supermon15
[2], or Parmon [3]) or industrial (e.g. Big Brother16, or Cluster Systems Management17)
are available for monitoring clustered and grid systems. These tools represent mature,
scaleable and efficient monitoring solutions for the precise system types they were
designed for. On the Other hand, CPs’ significant advantage lies in its high flexibility and
extensibility features, as it provides support for creating and integrating customised
probes and probe hierarchies for a wide range of system types.

A relatively recent project, Test & Performance Tools Platform18 (TPTP) has
many similar goals and characteristics with the proposed CPs framework. TPTP provides
frameworks and services for developing test and performance tools, for system evaluation
and profiling. The Monitoring Tools Project extends the TPTP platform to provide
support for collecting, analyzing, aggregating, and visualizing data in detailed or

14 Clumon: cluster monitoring system, NCSA (clumon.ncsa.uiuc.edu)
15 Supermon: high performance cluster monitoring, Los Alamos National Laboratory
(supermon.sourceforge.net)
16 Big Brother : web-based system and network monitoring solution, Big Brother® Software (bb4.com)
17 Cluster System Management: management of distributed and clustered IBM servers, IBM
18 Eclipse Test & Performance Tools Platform Project (www.eclipse.org/tptp)

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

statistical views. Future work will follow the TPTP Project evolution and determine
functionalities that can be reused and/or integrated with the CPs framework.

Virtually all research and industry projects in the autonomic computing area
involve monitoring and analysis utilities for collecting, organizing and correlating data
from the managed domain [4]. Depending on each project’s goals, monitoring and
analysis are required for creating system models (e.g. [5]), establishing execution
contexts (e.g. [6]), evaluating and optimizing system performance (e.g. [6], or [8]),
detecting application faults and system failures (e.g. [9], or [10]), or determining
execution paths and performance anti-patterns (e.g. [11]). Most existing projects use
proprietary solutions for collecting, grouping, aggregating and filtering monitoring data.
CPs provides a reusable, scaleable and extensible framework for creating such
monitoring and analysis facilities and accessing them via standard protocols.

7 CONCLUSIONS AND FUTURE WORK

Autonomic management systems require complex monitoring and analysis
functions, which existing tools do not generally provide. This paper proposes Composite
Probes (CPs), a flexible, hierarchical monitoring framework for autonomic management
applications. CPs combines Basic Probes (BPs) that extract data from managed resources
with highly customizable Composite Probes (CPs) that aggregate and filter data at
various abstraction levels. CPs can be seamlessly extended with new instrumentation
BPs, data-processing algorithms, scheduling policies and communication protocols.
These characteristics make CPs suitable for a wide range of management applications and
reusable across a wide range of system types. A CPs prototype was implemented and
tested in two system management scenarios. The presented examples demonstrated how
the CPs prototype could be used to create special-purpose monitoring hierarchies,
combining the available aggregation, filtering and scheduling functions and integrating
third-party instrumentation code via JMX. The examples showed CPs’ suitability for
monitoring dissimilar system types at various abstraction levels. Using CPs, managers
have different views on a managed system, such as performance, architectural, or
availability views, and browse through CPs hierarchies to determine the exact cause of an
observed miss functioning. Future work will focus on integrating CPs with existing
monitoring and management frameworks (i.e. CLIF, Jade and Jasmine). CPs will be
extended as needed with new BP types, probe adaptors and data-processing functions.
Additional support for JMS-based communication is equally envisaged.

8 ACKNOWLEDGEMENTS

The authors would like to thank their colleagues at Orange Labs, Marc Leger, Mehdi
Kesis and Thomas Saillard for their valuable research ideas and technical support.

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

REFERENCES

[1] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience”, Parallel Computing, Vol. 30,
Issue 7, July 2004

[2] M.J. Sottile, R.G. Minnich, “Supermon: a high-speed cluster monitoring system”,
IEEE International Conference on Cluster Computing, pp 39-46, 2002

[3] R. Buyya, “Parmon: a portable and scalable monitoring system for clusters”,
Software Practice and Experience, pp 723-739, 2000

[4] “An Architectural Blueprint for Autonomic Computing”, IBM White Paper, 2005
www-128.ibm.com/developerworks/autonomic/library/ac-summary/ac-blue.html

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, "Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure,", IEEE
Computer Vol. 37, Num. 10, pp. 46-54, October 2004

[6] A. Diaconescu, J. Murphy, "Automating the Performance Management of
Component-Based Enterprise Systems through the use of Redundancy", ACM/
IEEE Conference on Automated Software Engineering, Long Beach, USA, , 2005

[7] A. Diaconescu, A. Mos and J. Murphy, "Automatic Performance Management in
Component Based Software Systems", International Conference on Autonomic
Computing, New York, USA, 2004

[8] S. Bouchenak, N. De Palma, D. Hagimont, S. Krakowiak, and C. Taton,
“Autonomic Management of Internet Services: Experience with Self-
Optimization”, International Conference on Autonomic Computing, Dublin,
Ireland, 2006.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, “Pinpoint: Problem
Determination in Large, Dynamic Internet Services”, International Conference on
Dependable Systems and Networks, pp 595 – 604, 2002

[10] S. Bouchenak, N. De Palma, D. Hagimont, and C. Taton, “Autonomic
Management of Clustered Applications”, IEEE International Conference on
Cluster Computing, Barcelona, Spain, 2006

[11] T. Parsons, J. Murphy, “Detecting Performance Antipatterns in Systems
Built using Contextual Component Frameworks”, Journal of Object Technology,
to appear.

[12] B. Dillenseger, E. Cecchet, “CLIF is a Load Injection Framework”,
Middleware Benchmarking workshop, OOPSLA, Anaheim, CA, USA, 2003

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

About the author(s)
Ada Diaconescu is a research engineer in the Adele/LSR group, University Joseph
Fourier, Grenoble, France. The presented work was carried out as part of her postdoctoral
work at Orange Labs. She obtained her PhD from the School of Electronic Engineering
and Computing at Dublin City University. Her main research interests include autonomic
computing and complex systems. Contact her at adadiaconescu@gmail.com. See also
adadiaconescu.there-you-are.com

F ECA RULES FOR COMPONENTS

F ECA rules for Components

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 113

Flexible Reactive Capabilities in Component-Based
Autonomic Systems

Jayaprakash

Nagapraveen
∗

HADAS Group, LIG
Saint Martin d’Hères, France
nagapraveen.jayaprakash@imag.fr

Thierry Coupaye
France Telecom R&D
Grenoble, France

thierry.coupaye@orange-ftgroup.com

Christine Collet
INP Grenoble
LIG Laboratory

Saint Martin d’Hères, France
Christine.Collet@imag.fr

Pierre-Charles David
†

OBASCO Group, EMN/INRIA
Nantes, France

pcdavid@gmail.com

ABSTRACT
Reactive behaviour, the ability to (r)eact automatically to
take corrective actions in response to the occurrence of sit-
uations of interest (events) is a key feature in autonomic
computing. In active database systems, this behaviour is
incorporated by Event-Condition-Action (ECA or active)
rules. Our approach consists in defining a mechanism for
the integration of these rules in component-based systems
to augment them with autonomic properties. The contribu-
tion of this article is twofold. First, we propose a rule model,
i.e. a rule definition model and a rule execution model, that
can be coherently integrated into a component model. Sec-
ond, we propose a graceful architecture for the integration
of active rules into component-based systems in which the
rules as well as their semantics (execution model, behaviour)
are represented/implemented as components, which permits
i) to construct personalized rule-based systems and ii) to
modify dynamically the rules and their semantics in the
same manner as the underlying component-based system by
means of configuration and reconfiguration. These founda-
tions form the basis of a framework/toolkit which can be
seen as a library of components to construct events, condi-
tions, actions, rules and policies (and their execution sub-
components). The framework implementation is extensible:
additional components can be added at will to the library to
render more elaborate and more specific semantics according
to certain applicative requirements.

∗This work was done while the author was a PhD student
at France Telecom R&D and IMAG-LSR
†This work has been done while the author was a post-
doctoral fellow at France Telecom R&D.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
D.2.13 [Software Engineering]: Reusable Software— ;
H.2 [Database Management]: Systems

General Terms
Design, Experimentation

Keywords
autonomic systems, component-based architectures, ECA /
active rules

1. INTRODUCTION
The overall motivation which underlies the emergence of au-
tonomic computing[9] is based, from an IT industrial point
of view, on the observation that the costs related to the
software infrastructures (TCO) currently move from costs
related to the development and licensing to costs related
to the deployment and exploitation. It appears also quite
clearly that a ”manual administration” of pervasive envi-
ronments such as ”machine to machine” (automotive, home
networking, etc.) software infrastructures or grid comput-
ing is, in practice, almost impossible. Autonomic computing
thus aims basically at, as much as possible, automating the
deployment and management (administration) of software
systems in order to decrease human interventions and asso-
ciated costs.

We consider in this work that an autonomic system is com-
posed of an autonomic infrastructure superimposed on a tar-
get component-based system. The upper layer or the auto-
nomic infrastructure, is responsible for implementing a con-
trol loop, i.e. instrumenting the components of the target
system for monitoring, detecting and notifying events, diag-
nosing the system based on these events, and making deci-
sions to determine what and how corrective actions need to
be executed, and finally, executing the corrective actions on
the components of the target system.

Our work focuses on the architecture and the behaviour of

control loops. We propose to use Event-Condition-Action
(ECA or active) rules[12], a mechanism widely used in ac-
tive database systems to provide a reactive behaviour (an
elaborated form of triggers as found in most commercial
DBMS). The fundamental idea is to ”extract” the reactive
functionality of active database systems[8], and to ”adapt
and inject” it in component-based systems so as to provide
them with autonomic capabilities.

Our objective is to realise a modular and extensible frame-
work/toolkit for the construction of ECA rule-based auto-
nomic architectures. In this framework, the rules as well
as their semantics (execution model, behaviour) are rep-
resented/implemented as components, which permits i) to
construct personalized rule-based systems and ii) to modify
dynamically the rules and their semantics in the same man-
ner as the underlying component-based system by means of
configuration and reconfiguration. In its basic version, the
framework is a library formed of basic components (and sub-
components) which permits to construct basic rules. The
framework is extensible, i.e, additional components can be
added at will to the library to render more elaborate and
more specific semantics according to certain applicative re-
quirements.

The main goal of this article is to introduce the design of this
framework (called Fractal ECA) through an illustrative ex-
ample used throughout the paper. Due to space constraints,
only the elements of the framework required for the compre-
hension and implementation of the example are discussed.

Sample Autonomic Scenario. Let us consider as a target
system, a minimal HTTP webserver with the sole function-
ality of retrieving HTML documents. It is made of two main
components, namely a Request Receiver and a Request Pro-
cessor. The request receiver component or front-end uses a
lower-level scheduler component that creates a new activity
(a thread in this case) for each request. The request pro-
cessor component or back-end analyses the request, logs it
and responds to it. Our Comanche web server1(shown in the
bottom of Figure 4), is a multi-threaded system in Java that
follows a prefork model - the parent process forks new child
thread for every request. Most of the action takes place in
the child threads - figuring out what the requests mean and
sending the requested content back to the client. Once the
processing is done, the child thread waits for the next one
from its parent. Multithreading avoids the server from being
idle until an I/O operation is finished. On the other hand,
it introduces an overhead on the CPU due to the creation
of new threads and to the commutation between existing
threads. The right trade-off between these two conflicting
factors reflects on the system performance. We propose a
simple active rule to maintain this compromise (in complete
informal format):

RULE DoubleThreadPoolSize
ON each webpage request
IF (no free threads in the thread pool)
DO { Double the thread pool size }

1which comes with the Fractal distribution. See
http://fractal.objectweb.org.

The above rule’s purpose is to extend the capacity of the
webserver by increasing the size of the thread pool, that is
the number of possible concurrent child threads. A comple-
mentary rule can be equally envisaged that reduces the size
of the thread pool, when the number of passive threads are
high, thus liberating unused ressources.

The overall semantics of an ECA rule is the following: when
an event of type E occurs, if condition C is satisfied then
execute action A. Behind this apparent simplicity hides a
great deal of complexity that raises many questions which
we shall illustrate based upon our concrete example. Indeed,
several questions are raised by the execution of this simple
rule, to list a few:

• Is a new instance of a rule triggered for every occur-
rence of a triggering event (webpage request)? or once
for several occurrences of the triggering event?

• When are the condition and action parts executed with
respect to the target system execution? before the
execution of the triggering operation or after?

• Is the rule executed in the same execution thread as
the triggering operation or in a separate one?

For the above questions, several options exist, each repre-
senting an execution strategy of the rule. In the sequel,
we discuss possible answers to these questions based on our
illustrative scenario. More generally, our core work is to
provide the rule programmer with an abstract framework
for reasoning about rules execution and an actual architec-
tural framework for practically programming rules and their
semantics.

The rest of the paper is organized as follows. Section 2 and 3
introduce our first contribution: the proposition of an ECA
rule model suited for component-based systems made of a
rule definition model (Section 2) together with a rule execu-
tion model (Section 3). Section 4 and 5 introduce our second
contribution: the proposal of an architectural design that
allows for the graceful integration of active rules into com-
ponent based-systems (Section 4) and some elements about
the actual implementation of rules as Fractal components
(Section 5). Section 6 discusses related works. Section 7
concludes the article.

2. RULE DEFINITIONMODEL
A definition (or knowledge) model specifies how the rules
are represented and manipulated. This section describes
the rule definition model we propose for component-based
autonomic systems.

Event. An event is a happening of interest at a given point
in time. It is characterized by an event type, i.e, an expres-
sion describing a class of significant occurrences of interest.
In our framework, we consider the following event types:
i) applicative - corresponds to inter-component interactions,
ii) structural - represents modifications (reconfigurations)
of the structure (topology) of the system, like adding or
removing a component, or creating new bindings between

components, iii) system-level - characterises events coming
from the external or underlying environment or context of
execution (e.g. JVM and OS events). In our illustrative
scenario, we have an applicative event type: an operation
(method) invocation on a component interface, and more
precisely calls on the interface of the frontend component of
our web server to request web pages.

Condition. Conditions are optional and express additional
constraints on the state of the system that must be satisfied
for the action part to be executed. For example, in our auto-
nomic scenario, the condition predicate checks the number
of available threads, These kinds of condition expressions
(e.g. whether an attribute’s value is bigger than a particu-
lar value or not) are simple boolean expressions built using
logical operators. More complex expressions can be formed
based on queries on the structure of the system as well as on
its behaviour. A query that selects the various components
linked to a particular one is one such example. In such a
case, the condition is considered to be true when the query
returns a non-empty result.

Action. The corrective (re)actions that the target system
can be subjected to are expressed in the action part of the
rule. The event and condition parts of the rule serve to
analyse the symptoms affecting the system. In our scenario,
a method call to the Request Receiver component triggers
the rule. Its condition part evaluates if the number of free
threads is below a limit. If yes, the action that increases
twofold the size of the thread pool is performed. To rectify
the anomalies, the action can range from simple parameter-
izations of component attributes, for example, an increase
in the size of a cache or pool, to complex structural recon-
figuration operations, which can include addition, removal
or replacement of one or several components. Other types
of actions can be envisaged, like external notifications, for
example, an email or SMS notification to an administrator.

3. RULE EXECUTION MODEL
A rule execution model specifies the behavioural semantics
of rules. This section introduces the design of our proposed
execution model and discusses the main dimensions of this
model on our illustrative scenario.

The entire execution of a single rule is comprised of the
following three phases and various states:

1. Triggering and Event Processing Phase R(E): this phase
begins with the notification of the event(s) that trig-
gers (”wakes up”) the rule. The notification is per-
formed by the entity on which the event occurs. It
consists in processing the event(s) based on the vari-
ous rule execution parameters. The rule goes from the
triggerable state to the triggered state.

2. Condition Evaluation Phase R(C): the second phase
of the execution evaluates the condition expression. If
the condition is satisfied then the rule transits from
the evaluable state to evaluated state.

3. Action Execution Phase R(A): the last phase of the

rule execution corresponds to the execution of the ac-
tion part of the rule. It takes the rule from the exe-
cutable state to the final state of executed state (gener-
ally confonded with the initial triggerable state), thus
inducing a positive feedback change in the system be-
haviour.

It is worth mentioning that the condition of a triggered rule
is not always evaluated immediately (hence the two sepa-
rate states triggered and evaluable), and that a triggered
rule with a satisfied condition is not always executed im-
mediately (hence the two separate states evaluated and ex-
ecutable). When and how (e.g. which activity/thread) a
rule is processed depends on the various dimensions of the
rule execution model. Some of the most important ones are
discussed later in the context of our illustrative scenario. Of
course, when multiple rules are concerned, which is the case
in real autonomic systems, an execution model also specifies
when and how rules triggered simultaneously (by same or
different events) (a.k.a. multiple rules)and rules triggered
by other rules (a.k.a. cascading rules) are executed. This
is handled by rule execution strategies (or policies) which
basically specify the scheduling of rules (e.g. depth-first or-
der, width-first order, flat order, by cycles in sequential or
parallel settings). Due to space limitation, this article does
not detail these aspects. The reader may refer to [4]. Prior
to that and more fundamentally, if rules have an execution
model of their own, it has to be stated that the introduction
of active rules in a system (be it a database or a component-
based system) has also a non negligible impact on the be-
haviour of that system. Indeed, there exists a dependency
between the execution of the system and the execution of
rules, for it is the former that triggers the latter and also
the two executions are interwoven/intertwined together.

3.1 From active database systems to active com-

ponent based systems
Active rule execution models in database systems have been
extensively studied but cannot be directly applied to component-
based systems. First, events that trigger a rule in an active
DBMS are query (SQL) statements on a global data schema,
so are the condition and action parts. But this it is not the
case in component-based systems where we have a variety of
events, condition predicates and actions (as defined in the
rule knowledge model). In active database systems, all rule
operations are performed on a single database, whereas in
a component-based system, they may have to be performed
on different components. Indeed, in a component-based sys-
tem, situations of interest can happen on any component of
the system. To gain a thorough understanding of the com-
ponent and its execution environment, we might have to
perform additional queries on it or on its neighbours and
finally execute the corrective actions elsewhere. So, the dis-
tributed characteristic of component-based systems is one of
the distinguishing factors.

Execution units and execution points in component-
based execution models. Finally, besides the two differ-
ences we have just mentioned, a key difference between ac-
tive database systems and active component-based systems
is that execution models in active database systems are

based on a central concept, that of transaction, which is
(generally) inexistant in component-based systems. A trans-
action in database systems is a sequence of operations that
constitutes a unit of concurrency and recovery thanks to
the well-known ”ACID properties” (Atomicity, Consistency,
Isolation and Durability). Transaction is a core and foun-
dational concept of active database systems because, thanks
to transaction demarcations (start, commit, abort/rollback),
they provide a natural and convenient execution unit for the
execution of active rules. An execution unit specifies an in-
terval (between two execution points in a sequential flow or
basically between two points in time) during which events
can be detected/notified to interested rules and rules can
be evaluated and executed. Hence, an execution unit spec-
ifies the granularity of rules execution. On the one hand,
component-based systems generally do not consider trans-
actions. On the other hand, the behaviour of a component-
based system generally refers to interaction through inter-
faces only, thanks to operation (methods in Java) invocation.
Hence, we define the execution unit in component-based sys-
tems as delimited by the interval between the reception of an
operation invocation on a server interface and the emission
of a response onto a client interface. For method invocations
on a component’s functional interfaces (produces applicative
events), and operations that modify the structure of the sys-
tem (produces structural events), we may signal two events:
begin and end. Other forms of events (e.g. system events)
can be integrated in the model that by considering their be-
gin and end events are merged (i.e. they both represent the
same execution point or point in time).

3.2 Rule execution dimensions
Based on these hypotheses, we consider our approach for
defining a rule execution model, similar to the one followed
in active database systems[4], where it is defined as a set
of dimensions, with each dimension being attributed a par-
ticular value. The differences/issues outlined above, have
been addressed in the form of a flexible rule execution model
for component-based systems, adapted from rule execution
models defined in active DBMS. The sequel discusses rule
execution dimensions in the context of the autonomic sce-
nario introduced earlier.

Event Processing Mode. On every webpage request, the
Comanche webserver requests the scheduler service for an
execution thread. So, if an instance of the thread man-
agement rule is triggered for every call, then the system
ressources would be spent unnecessary resulting in a lower
performance. Ideally, a rule needs to be triggered once at
the appropriate moment to rectify the situation. The event
processing dimension addresses this issue, with the possibil-
ity of triggering a rule for several occurrences of the event
type. A rule may handle either only one event at a time
or a set of events. This is specified in the event processing
mode, having an instance-oriented semantics for the former,
and a set-oriented semantics for the latter. In other words,
an instance-oriented semantics suggests that a rule will be
triggered for every occurrence of a triggering event. Such
a kind of event processing strategy is interesting whenever
each event has to be treated individually, e.g. when an ex-
ception is raised, or on every attack or on every forced entry
by a malicious user which requires preventive measures to

be triggered in the form of a rule. If several rules are trig-
gered with the same purpose, system resources are bound to
get depleted, affecting the performance of the application.
Therefore, this strategy is beneficial when a single execution
of a rule is enough to resolve the anomaly in the system. We
shall opt for a set-oriented value to the rule’s event process-
ing mode: as said earlier, a single execution of the rule is
sufficient to retain the performance level of the system.

Coupling Modes. Once a rule is triggered, we have to de-
termine when and how it will continue its execution for it
should not affect the system’s execution. If we consider our
thread management rule, should our rule be executed be-
fore processing the request or after? Should it be done in
the same execution thread or in a separate one? Several
options exist for the above. This is taken care of by the
coupling mode dimension characterized by the couple : <
execution mode, activity mode>.

The execution mode specifies when the condition and action
parts of a rule are evaluated and executed with respect to
the execution of the triggering operation. The triggering op-
eration is the method invocation on a component’s interface
which produces events that trigger a rule. Such a rule that
is activated and is ready for execution, is called a triggered
rule. The commonly supported execution modes include (cf.
Figure 1):

• immediate (or as soon as possible - ASAP): the trig-
gered rule is processed immediately - its condition is
evaluated, if true, the action is executed without any
pause.

• defered: the triggered rule is processed later, await-
ing the end of the triggering operation. The rule is
triggered when an event indicating the beginning of
the triggering operation is received. But the condition
evaluation and action execution of the rule are pro-
cessed only on receiving an event indicating the end of
the triggering operation.

• delayed: here, the condition is evaluated immediately
after the rule has been triggered, but the action part
is executed only on the completion of the triggering
operation.

Rules dealing with security issues have generally a high pri-
ority, and may typically take the immediate value in order to
execute instantly before the damage is done. Defered rules
are typically used in situations in which the action has to
be executed on the final state of the system. In this respect,
immediate rules might embed pre-conditions, while defered
rules might embed post-conditions. Delayed rules are in-
termediary with a condition evaluated at the beginning of
the triggering operation (i.e. before the state of the system
might be changed by other rules for instance) and the action
executed at its end. Our rule concerns the performance of
the system. It permits the system to take preventive mea-
sures in order to maintain its performance levels. So, it is
not so crucial, and can be executed once the initial task is
completed, a defered value will be attributed to our rule’s
execution mode.

!"#$$%"#&$
'()%"*+#,&

-+*"+

%&.

! %/%&+
)",0%--#&$

12%/*34*+#,&

52%6%04+#,&

+#7%

!

-+*"+

%&.

52%6%04+#,&

12%/*34*+#,&

%/%&+
)",0%--#&$

!"#$$%"#&$
'()%"*+#,&

%&.

-+*"+

!

!"#$$%"#&$
'()%"*+#,&

12%/*34*+#,&

52%6%04+#,&

!""#$%&'# (#)#*#$ (#+&,#$

%/%&+
)",0%--#&$

Figure 1: Execution Mode

An execution thread represents a sequential flow of control.
The activity mode dimension determines whether the trig-
gered rule is executed in the same thread as the triggering
operation or in a separate thread. It is recommended to
create a separate flow of control for aspects related to the
administration of the system, e.g, logging. Thus, separat-
ing the system under control and its administration, so that
its normal execution is not too disturbed. On the other
hand, some administration scenarios might require the sys-
tem to be paused, to enable some modification, and to re-
sume later its execution. Depending upon the scenarios, the
best method of executing the rule has to be judged and em-
ployed. For our thread management rule, we shall follow
the conventional choice of executing the rule in a separate
thread because there is no risk due to concurrency on the
usage of threads in the pool since the rule creates only new
threads.

Focus on interactions between a couple of dimensions.
Since there exist some dependancies and intricacies among
these dimensions, the individual semantics of the dimensions
might slightly differ which one could guess at a first glance
when considered as a whole. To illustrate such intricacies,
we now focus on the interactions between event processing
and execution modes.

Prior to presenting the possible combinations for the couple
< event processing mode, execution mode > (including the
ones that match the above choice in our example) , the fol-
lowing notations are employed in the sequel and in Figure 2:

• bn: the event corresponding to the beginning of the
nth method invocation

• en: the event corresponding to the end of the nth op-
eration (method) invocation

• Rn(E): depicts the event processing phase of the nth

occurrence of the considered triggered rule R

• Rn(C): depicts the condition evaluation phase of the
nth occurrence of the considered triggered rule R

• Rn(A): depicts the action execution phase of the nth

occurrence of the considered triggered rule

The events bn and en are representative of the nth occur-
rence of a triggering event type.

1. < Immediate, Instance > : on every event bn, a rule
is triggered and processed immediately in its entirety.
All en events are ignored.

2. < Immediate, Set > : on the event indicating the be-
ginning of the first triggering operation, i.e, on b1, a
rule is triggered and continues processing till its com-
pletion. All bis that occur till the triggered rule com-
pletes evaluation, are consumed by the rule, i.e, the
triggering operations are taken into consideration by
the rule in execution. The next bi when the rule is in
Rn(A) or after, triggers the next rule. Similarly, this
rule also consumes all bi that occurs till it completes
evaluation. Two similar rules can coexist when one
is in the action execution phase and the other begins
execution.

3. < Defered, Instance > : on every bn, a rule is triggered,
it processes the event and waits for a complementary
en event to continue evaluating - Rn(C) and complete
execution - Rn(A).

4. < Defered, Set >: all bis trigger each a rule. The
rules complete the Rn(E) phase, and wait for an end
event ei. When a ei event is received, all rules trig-
gered after Ri are discarded and their corresponding
triggering operations consumed by the rule Ri. All
events ej where j > i received later, are discarded. For
any ek where k < i, the corresponding rule Rk resumes
execution, and consumes all triggering operations that
have triggered rules Rj where k < j < i.

5. < Delayed, Instance > : on every bn, a rule is trig-
gered, processes its event part - Rn(E), evaluates its
condition part Rn(C) and waits for the en event to
execute the last part of the rule - Rn(A).

!"

!#

$#

!%

$"

&" &# &%

&"'()

&#'()&"'*)

&"'+)
&#'*)

&#'+)

&%'()

&%'*)

!"

!#

$#

!%

$"

&" &# &%

&"'()

&"'*)

&"'+)

&%'()

!"#$%&&'(")*'$+$%,-*),.' !""#$%&&'(")*'$+$/'*

&%'*)

&" &# &%

&"'()

&#'()

&#'*)

&#'+)

&%'()

&%'*)

&%'+)

!"

!#

$"
&"'*)

&"'+)!%

$#

!,

!"""#$0'1'2'($+$%,-*),.'

&" &# &%

&"'()

&#'()

&%'()

&%'+)

!"

!#

$"
&"'*)

&"'+)!%

$#

!,

!"3#$0'1'2'($+$/'*

!"

!#

$"

!%

$#

$,

!3#$0'4)5'($+$%,-*),.'

&"'()

&#'()

&%'()

&"'*)

&#'*)

&#'+)

&#'+)

&%'+)

&%'*)

&"- &#- &%-

$#

$,

!3"#$0'4)5'($+$$/'*

&"- &#- &%-

!"

!#

$"

!%

&"'()

&"'*)

&"'+)

&"'()

&"'*)

&"'+)

Figure 2: Execution Models

6. < Delayed, Set > : on b1, i.e, event indicating the start
of the triggering operation, a rule R1 is triggered and
stops after condition evaluation. All bis that occur in
this period, are consumed by the R1. Once the event e1

is received, rule R1 resumes execution and completes
its last phase R1(A). All eis, whose complementary
bis have been consumed by the rule R1. The next bi

that occurs, a rule is triggered and the same strategy
is followed.

Conclusion. To sum up on our example, the rule execution
dimensions of the thread management rule take the follow-
ing values: Event Processing Mode : set, Execution Mode :
defered, Activity Mode : separate. In other words, the rule
is executed once for a set of events, after the triggering op-
eration’s execution returns, in a separate execution thread.
In our simple scenario with only one rule and the three di-
mensions (including one with 3 values) that we consider in
this article, we already get 12 combinations of values, i.e.
potentially twelve different ways of executing the rule. Note
that this does not have a big impact with our sample basic
rule but think of a real system with many rules. To the
rule programmer facing the complexity of rules semantics
(execution model), we propose a architectural framework in
which rule semantics is explicitely programmed/embodied
into software components.

4. ARCHITECTURAL INTEGRATION OF

ECARULES INCOMPONENT-BASED SYS-

TEMS
As advocated by IBM in its autonomic computing manifesto
[9], a supervision loop (or known as control loop in control
theory terminology [11]) has to be realized in order to pro-
vide autonomic behaviour to a target system. On similar
lines, we define an autonomic system as composed of an
autonomic infrastructure superimposed on a target system,
where the autonomic insfrastructure is responsible for imple-
menting the control loop. At the heart of the control loop
are reaction mechanisms that, on analysis of the events of
interest, determine the action operations needed to achieve
the objectives. Our reaction mechanism is formed of active
rules, whose structure and execution have been explained
thoroughly in the previous section. The thread management
rule, defined in the introduction section, is one such active
rule. This section details how such rules are architecturally
integrated with an underlying target system.

If it is legitimate to work towards adding autonomic be-
haviour a posteriori to any system and even more to tackle
explicitly existing legacy systems, we believe it is likely more
advantageous to build explicitly, a priori, the system in a
”certain way” to be able to make them autonomous in a flex-
ible and generic way. This ”certain way” is the component-
based approach - and more precisely the Fractal component
model [2], which has, according to us, interesting proper-
ties for the realization of autonomic systems. It has been
mentioned before that our webserver - Comanche - is imple-
mented as Fractal components.

4.1 Canonical Autonomic Architecture
An architecture for autonomic computing[14] must accom-
plish some fundamental goals, outlined in IBM’s autonomic
computing manifesto[9]:

1. It should possess knowledge about itself and about its
execution environment in order to be able to detect
modifications taking place externally in its environ-
ment, or in its behaviour to subsequently undertake
corrective actions. It must describe how to compose
these components so that the components can cooper-
ate toward the goals of system-wide self-management.

2. It should be adaptable, i.e., its construction should be
based on a structuring model which can isolate its con-
stituting elements, and subject them to adaptations
- and on operational techniques to actually perform
these adaptations (interception, programs transforma-
tion, etc.). It should be able to dynamically adapt
or reconfigure itself to varying and unpredictable en-
vironments without any explicit user intervention.

These key features are present in the Fractal component
model, and we believe Fractal/Julia (its implementation in
Java) is a suitable substrate framework for autonomic sys-
tems development as illustrated in the sequel.

Fractal Component Model. The Fractal[2] initiative aims
at supporting component-based development, deployment
and management (monitoring and dynamic reconfiguration)
of complex software systems, including in particular operat-
ing systems and middleware. It includes several extensions
coming from research works, for management (e.g. Fractal
JMX), security, transactions support, etc. Fractal is also
used for developing several middlewares such as Speedo -
a Java Data Object implementation, CLIF - a load injec-
tion framework, etc2. The Fractal component model relies
on some classical concepts in CBSE: components are run-
time entities that conforms to the model, interfaces are the
only interaction points between components that express de-
pendencies between components in terms of required/client
and provided/server interfaces, bindings are communication
channels between component interfaces that can be primi-
tive, i.e. local to an address space or composite, i.e. made
of components and bindings for distribution or security pur-
poses. Fractal also exhibits more original concepts. A com-
ponent is the composition of a membrane and a content.
The membrane exercices an arbitrary reflexive control over
its content (including interception of messages, modification
of message parameters, etc.). A membrane is composed of
a set of controllers that may or may not export control in-
terfaces accessible from outside the considered component.
For runtime information on the component system, the con-
trol interfaces provide with (meta) information about the
its structure and also means to manipulate this structure.
The model is recursive (hierarchical) with sharing at arbi-
trary levels. The recursion stops with base components that

2CLIF, Speedo and other middleware engineered
with Fractal are available in open source at
http://www.objectweb.org/.

have an empty content. Base components encapsulate enti-
ties in an underlying programming language. A component
can be shared by multiple enclosing components. Finally,
the model is programming language independent and open:
everything (e.g. controllers, type system) is optional and ex-
tensible3 in the model, which only defines some ”standard”
API for controlling bindings between components, the hier-
archical structure of a component system or the components
life-cycle (e.g. start, stop).

The Julia Implementation. Julia is an execution support
for Fractal components written in Java. It is a full-fledged
implementation of Fractal that supports the highest confor-
mance level. More fundamentally, Julia is a software frame-
work dedicated to components membrane programming. It
is a small run-time library together with bytecode genera-
tors that relies on an AOP-like mechanism based on mixins
and interceptors. A component membrane in Julia is ba-
sically a set of controller and interceptor objects. A mixin
mechanism based on lexicographical conventions is used to
compose controller classes. Julia comes with a library of
mixins and interceptor classes, the component programmer
can compose and/or extend. It is worth mentioning that
Julia’s membranes are particularly suited to insert sensors
for observing and actuators for controlling components.

(Re)Configuration Languages. For the configuration and
deployment of a Fractal-based system, an Architecture De-
scription Language (ADL), known as Fractal ADL, is used
to describe the system architecture. It is XML-based and
strongly typed. It describes the interfaces of components
(names and signatures), the subcomponents, the bindings
between the various components, the initial values of compo-
nent properties and the implementation of primitive compo-
nents(e.g., the name of a Java class). All static information
on a component is provided by the Fractal ADL. FScript
is a scripting language used to describe architectural recon-
figurations of Fractal components. FScript includes a spe-
cial notation called FPath (loosely inspired by XPath) to
query, i.e. navigate and select elements from Fractal ar-
chitectures (components, interfaces...) according to some
properties (e.g. which components are connected to this
particular component? how many components are bound to
this particular component?). FPath is used inside FScript
to select the elements to reconfigure, but can be used by
itself as a query language for Fractal.

Most of our approach relies on the Fractal component model.
Of course, in realistic industrial settings, we cannot assume
a whole distributed system to be Fractal-based; but we ar-
gue that those non-Fractal parts (legacy components) can be
wrapped into Fractal components, and extended with auto-
nomic behaviours. In the same line of thought, we believe
that it would be very advantageous to carry out the devel-
opment of the autonomic infrastructure itself in the form of
Fractal components so as to consider the autonomic man-
agement of the autonomic infrastructure itself. (Our work

3This openness leads to the need for conformance levels and
conformance test suites so as to compare distinct implemen-
tations of the model.

!""#$%&'$()*
+(,"()-)'.

!"#"$%&'

/0#-*1-&%'$2-*%(,"()-)'.
-)%&".0#&'-*

32-)'4+()5$'$()*6*!%'$()
*%(,"()-)'.7

!"#"$%('

!"#"$%)'

32-)'4*+()5$'$()*6*!%'$()*
1-&%'$2-*%(,"()-)'.

-)%&".0#&'-*
&""#$%&'$()*%(,"()-)'.7

8(#$%9*1-&%'$2-*%(,"()-)'.
-)%&".0#&'-*

10#-*1-&%'$2-*%(,"()-)'.7

!"#"$%*'

!

"

#

"# !

#

$

$

% %

$

Figure 3: Architectural Vision

can be considered as the first steps in this direction.)

4.2 Reactive part of the Canonical Autonomic

Architecture
The architecture of the autonomic infrastructure is inspired
from the fundamental management notion of domain[13],
which consists in grouping the components on which the
various reactive operations can be carried out. More for-
mally, a domain is:

• a unit of composition to enable physical or logical par-
titioning of the application components, and

• a unit of control to define the type of control that needs
to be carried out on these components.

The similarities between a Fractal component and the con-
cept of domain suggest that a domain can be aptly modelised
as a Fractal component. To incorporate reactive behaviour,
several types of domains have been defined, each with a
particular type of control unit applied onto its composition
unit. They are each represented by a Fractal component,
known as a reactive component. The autonomic infrastruc-
ture is formed by these reactive components. The various
reactive components with their specific functionalities are
listed below and illustrated by Figure 3.

• An Event (E) reactive component encapsulates appli-
cation components where events of interest need to be
detected. The membrane of this reactive component is
responsible for identifying the application components
that would belong to the content, instrumenting them
appropriately. Further, on the occurrence of events
of interest, they are notified to the appropriate con-
troller inside the membrane of the component which
processes them as defined in the rule execution model.

• A Condition (C) reactive component contains applica-
tion components that represent the scope the queries

!

!"#$%&$'($)*
+,-.#$/

&$'($)*
0")1,*23$/

4566$/&$'($)*%
7-,#89$/

&$'($)*%+,-.#$/

&$'($)*%%
&2":$/

;23$.(#$/

<//5/%&$'($)*
+,-.#$/

=5>,-23$
?,2@$-.

!/5-*$-.

"

#

$

Figure 4: Thread Management Rule

that are to be evaluated. The functionnalities of its
membrane include identifying the application compo-
nents that would be in its jurisdiction, and evaluating
queries on them.

• An Action (A) reactive component encapsulates ap-
plication components, on which actions are executed.
The type of control enforced by the Action compo-
nent’s membrane involves identifying its content’s con-
stituents, and executing some corrective operations on
request.

• A Rule (R) reactive component coordinates the pro-
cessing of a rule. It contains (exactly) one instance of
the 3 above reactive components, i.e, Event, Condi-
tion (optional) and Action. The control applied by its
membrane is the execution coordination of these re-
active components. It is responsible for the execution
of the rule embodying on a particular rule execution
model.

• A Policy (P) reactive component’s sole purpose is to
coordinate the execution of the rules based on an ex-
ecution strategy for a set of rules. The content part
of the policy reactive component contains rule compo-
nents, and its membrane controls the rights to their
execution. Only, on explicit notification by the pol-
icy membrane, can the rules, once triggered, continue
processing.

Figure 3 shows the relationships between the various reac-
tive components. The architecture employs key features of
the Fractal Component Model [2], notably: the containment
relationship - which can be found in components in the top
three levels, where each component has components from the
lower level as sub-components, e.g, the Policy component at
level 3 contains the Rule components of level 2; and over-
lapping of reactive domains, thanks to the sharing property,
e.g, an application component can belong to several reac-
tive components. Figure 4 represents the implementation of
our thread management rule. The Event reactive compo-
nent encapsulates the request receiver component, because

Figure 5: Extended Fractal Component

the event of interest for the rule occurs on it. The condi-
tion and action parts encapsulate the scheduler component.
For their respective operations, that of verifying whether the
thread pool is empty and increasing the size of the thread
pool occurs on the same component. Finally, we have the
Rule composite that encapsulates the reactive components
(Event, Condition & Action) to coordinate their execution.
The Policy reactive component is inexistant in the figure
since, due to space limitations, only a single rule has been
taken as an example to illustrate the framework.

5. AUTONOMIC INFRASTRUCTURE
This section presents the extensions in the prototypal imple-
mentation of our proposed framework, that offers the flexi-
bility feature of our autonomic infrastructure.

Each of the reactive components presented above encapsu-
late either application components or other reactive compo-
nents, where structurally both these types of components are
similar. But the controller unit of each of these reactive com-
ponents differs from one another because they implement
different dimensions of the rule execution model. Therefore,
the generic structure of a reactive component is a standard
Fractal component - a composite component to be precise,
with a flexible membrane formed by a set of newly defined
and existing controllers (cf. Figure 5). The Fractal specifica-
tion contains several examples of useful forms of controllers,
which can be combined and extended to yield components
with different reflective features. Likewise, additional con-
trollers, not defined in the Fractal specification, can also be
defined and incorporated in the membrane of a component.
This permits the reactive components to have a membrane
adapted to its respective rule execution dimensions. The
membrane of a reactive component is composed of the fol-
lowing types of controllers : i) standard Fractal controllers
as defined in the Fractal specification, ii) standard Fractal
controllers represented as classical Fractal components with
extended operations and finally iii) new controllers repre-
sented as Fractal components.

For instance, the membrane of the Event reactive compo-
nent is composed of: i) an extended attribute controller to
specify the parameters of the rule execution dimensions, ii)
a content controller to add/remove the application compo-
nents and iii) a event processing controller to process the

events of interest and notify its enclosing rule component.
The event processing controller is a newly defined controller
represented as a Fractal component. It is a composite com-
ponent with corresponding sub-components for the follow-
ing dimensions: execution mode, activity mode and event
processing mode. However, at the time our framework was
developed, the set of controllers that constitute the mem-
brane of a component could not be dynamically modified
in the Julia implementation, nor could the functionalities
of the existing controllers be modified. We have thus ex-
tended the Julia implementation to support these necessary
features.

6. RELATED WORKS
Decision-making/reaction mechanisms form the core of an
autonomic control loop, several systems use rules that spec-
ify conditions to be monitored and operations that should
be executed when certain conditions are detected. Produc-
tion rules (or deductive rules) have the following format -
”IF condition expression THEN action list”. These rules
can also been extended, as in the DIOS++ framework[10],
where an ”ELSE” part as been added at the end - ”IF
condition expression THEN action list ELSE action list”.
ACEEL [3] uses adaptation rules which are couplets of the
form ”OnEvent : Action” with the first part defining the
triggering event and the latter describing what actions to
be performed. Inspired by triggers, we use active rules,
which can be considered as a combinaison of the above two
broad types of rules: ”ON event expression IF condition
expression THEN action list”. Beyond these syntaxical dif-
ferences, the main differences between production (or adap-
tation) rules and active rules concen their execution model.
The execution model of production rules is based on the
Rete algorithm: events are seen as facts which are added to
the knowledge base; rules infer new facts from these facts
; the process stop when a fixed point is reached (no new
facts can be inferred). Production or adaptation rule ex-
ecution models are thus fixed and invariant. By contrast,
active rules models are much more powerful and flexible.
Also active rules models encompass the connection between
the target system and the reaction mechanism while pro-
duction rules systems do not (inference by production rules
is disconnected from the actual execution of the target sys-
tem).

For incorporating these active rules, the approach followed
in SAFRAN[5], K-Components[7] consists in enhancing the
computational component model with rule abstractions, where
all rules concerning a particular component are injected into
to it. Another approach, followed in Autonomia[6] or Au-
tomate[1], consists in implementing an autonomic comput-
ing infrastructure that acts as a control layer superimposed
on the application, that provides the application as well as
its individual components with the basic autonomic services
to make it autonomic. In our approach, rules are not ad-
hoc features injected into components but are themselves
first-class components which can be manipulated as such.
Thanks to the domain concept, the architectural connec-
tion between the application components and the rules are
through containment relationships (hence a rule is not tied
to a single component). Enabling thus, easy modification of
the rule constituents (Event, Condition & Action).

In summary, to our knowledge, several works have tackled
the architectural issues involved in the implementation of a
control loop for autonomic features but none make such an
explicit and extensive use of component programming for
implementing the autonomic features themselves as in our
proposition. As a consequence, these approaches often result
in ad-hoc and not flexible management of the autonomic
features. In most approaches that consider rules of a sort
or another (deductive, active, etc.) as the core mechanism
for autonomic features, rules execution issues have not been
addressed in depth. Their execution strategy/methodology
have been taken for granted, and many issues have been left
under specified and ambiguous (we only find a brief mention
of rule execution model in SAFRAN).

7. CONCLUSION
This article focuses on the architecture and behaviour of
autonomic control loops. It proposes to use active rules as a
decision-making mechanism, for which we have proposed i)
a rule model, which is composed of a rule definition model
and a rule execution model, to provide a clear semantics for
the integration of rules, and ii) a flexible architecture that
permits to dynamically add/delete new rules, to modify the
rule definition model as well as the rule execution model
of rules. Our rule execution model comprises of a set of
dimensions, which we claim is not fully comprehensive, other
dimensions can be envisaged. But we do claim that our
generic architecture can incorporate new dimensions not yet
identified. Further, our autonomic infrastructure takes into
consideration the evolution of the target system. We would
like to add that our work being positioned on components,
i.e, our autonomic infrastructure as well as the underlying
target system being component-based, has permitted us to
benefit from CBSE properties.

The proposed autonomic infrastructure was developed in
a Java implementation of the Fractal component model.
The dimensions outlined in the article have been imple-
mented, and experimented on the Fractal-based Comanche
webserver. Some other execution dimensions, e.g. those
related to the execution of multiple rules, which have not
been discussed here due to space constraints have also been
implemented.

Several future research directions are envisaged. In order to
assess the validity of our proposition, we wish to apply it on
more realistic applications. This would eventually permit us
to determine the set of execution dimensions that are most
relevant for component-based systems. Further, to enrich
our proposition, we foresee a formalism for the definition
of active rules that would typically be an extension of the
Fractal ADL. This extension should be quite straitforward,
for Fractal ADL is actually modular and extensible. On
a longer term, we shall study the problem of interference
between the behaviour of a control loop (i.e. the rules in our
case) and the target system and the stability of the global
system (target system and rules).

Acknowledgments. This work is partially supported by
the French RNTL Selfware project and the European IST
Selfman project. The authors thank A. Lefebvre and B.
Dillenseger for their careful reading and comments.

8. ADDITIONAL AUTHORS
9. REFERENCES
[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty,

C. Schmidt, G. Zhang, L. Zhen, M. Parashar,
B. Khargharia, and S. Hariri. Automate: Enabling
autonomic applications on the grid. Autonomic
Computing Workshop, pages 48–57, 2003.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. The FRACTAL component model
and its support in Java: Experiences with
Auto-adaptive and Reconfigurable Systems. Softw.
Pract. Exper., 36(11-12):1257–1284, 2006.

[3] D. Chefrour. Developing component based adaptive
applications in mobile environments. In SAC ’05:
Proc of the 2005 ACM symposium on Applied
computing, pages 1146–1150, New York, NY, USA,
2005. ACM Press.

[4] T. Coupaye and C. Collet. Detailed sketch of a
parametric execution model for active database
systems. Technical report, LSR - IMAG Laboratory,
University of Grenoble. France, 1997.

[5] P.-C. David and T. Ledoux. An Aspect-Oriented
Approach for Developing Self-Adaptive Fractal
Components. In 5th International Symposium on
Software Composition (SC’06), Lecture Notes in
Computer Science, Vienna, Austria, march 2006.
Springer-Verlag.

[6] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang,
S. Pavuluri, and S. Rao. Autonomia: an autonomic
computing environment. In Proc of the 2003 IEEE
Int’l Conf on Performance, Computing, and
Communications, pages 61–68, 2003.

[7] J. Dowling and V. Cahill. The k-component
architecture meta-model for self-adaptive software. In
Proceedings of the Third Int’l Conf on Metalevel
Architectures and Separation of Crosscutting
Concerns, pages 81–88, London, UK, 2001.
Springer-Verlag.

[8] S. Gatziu, A. Koschel, G. von Bültzingsloewen, and
H. Fritschi. Unbundling active functionality. SIGMOD
Record, 27(1), Mar. 1998.

[9] P. Horn. Autonomic computing: Ibm’s perspective on
the state of information technology. Technical report,
IBM Corporations, October 2001.

[10] H. Liu and M. Parashar. Dios++: A framework for
rule-based autonomic management of distributed
scientific applications. In Euro-Par, pages 66–73, 2003.

[11] M. Kokar and K. Baclawski and Y. Eracar. Control
Theory Based Foundations of Self Controlling
Software. IEEE Intelligent Systems, 14(3):37–45, 1999.

[12] N. W. Paton, F. Schneider, and D. Gries, editors.
Active Rules in Database Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1998.

[13] M. Sloman and K. Twidle. Domains: a framework for
structuring management policy. Network and
distributed systems management, pages 433–453, 1994.

[14] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess,
and J. O. Kephart. An Architectural Approach to
Autonomic Computing. In Int’l Conf in Autonomic
Computing, pages 2–9, New York, NY, 2004.

G AUTONOMIC PERFORMANCE CHARACTERIZATION OF
COMPONENTS

G Autonomic Performance Characterization of

Components

SELFMAN Deliverable D.5.1(v0.5), July 15, 2007, Page 124

Performance characterization of black boxes with self-controlled load injection
for simulation-based sizing

Ahmed Harbaoui!
France Telecom R&D

Grenoble, France

Bruno Dillenseger†
France Telecom R&D

Grenoble, France

Jean-Marc Vincent‡
Laboratoire LIG, Projet MESCAL

Grenoble, France

Abstract Sizing and capacity planning are key issues that
must be addressed by anyone wanting to ensure a distributed
system will sustain an expected workload. Solutions typically
consist in either benchmarking, or modelling and simulating
the target system. However, full-scale benchmarking may be
too costly and almost impossible, while the granularity of mod-
elling is often limited by the huge complexity and the lack
of information about the system. We propose a methodology
that combines both solutions by first identifying a middle-grain
model made of interconnected black boxes, and then to sep-
arately characterize the performance and resource consump-
tion of these black boxes. We also propose a component-based
supporting architecture, introducing control theory issues in a
general approach to autonomic computing infrastructures.

I. INTRODUCTION

”Many organisations expensively invest to build dis-
tributed systems applications and web services and pay
a huge amount of money to maintain and keep the en-
vironment up-to-date. In most cases, the overall capac-
ity planning and procurement is done without a defined
methodology”[7].

This kind of situation is responsible for important loss of
incomes, ranging from losing customers on an on-line pur-
chase service to losing stock exchange transactions. Hence,
it shows the utility of an infrastructure’s capacity planning to
support the associated load. In this context, our work comes
from the problem of planning capacity of a distributed in-
frastructure to support a given load. While simulation tech-
niques are developed in order to predict the performances,
and to detect the bottlenecks and critical resources, the pre-
liminary modelling phase of the system typically encoun-
ters opacity problems when a certain level of granularity
is reached. Then, ”Black boxes” appear, either because
of a lack of information about their behaviour, or because
of their great complexity. However, the modelling of the
global system is impossible without a minimal model of
these black boxes, including resources consumption. In
this paper we deal with the problem of modelling parts of

the system as black boxes. Some works studied methods
for black boxes characterization. [6], [9] use an analytical
model by considering the whole system as a one black box.
We start in section 2 a discussion on the different approaches
concerning the estimation and the determination of perfor-
mance models. Then, we present the approach enabling the
determination of parameters influencing our system. In the
third section, we present the CLIF framework and this in-
tegration to our approach. Section 4 deals with problems
of stability and saturation. The next section experiments
our approach with a simple example. Finally, we give some
ideas to study in future work.

II. MODELS DISCUSSION

Our goal is to generate black boxes models. These black
boxes result from a lack of information concerning the be-
haviour and resource consumption, or a high level of com-
plexity of some parts of the global system. Then, the gener-
ated models will be integrated in the global system model.
With regard to this modelling problem, several approaches
may be adapted. To begin, we present these approaches:

• analytical modelling consists in reducing the system
in a mathematical model and analyzing it numerically.
Several mathematical tools enable such a modelling:
automata, Petri nets, probability approach (queuing
network), etc.;

• simulation consists in establishing a simplified model
for the system by using suitable software. This tech-
nique is commonly used to evaluate performance;

• with traffic emulation, direct measurements and analy-
sis are carried out on the system. It gives a better un-
derstanding of the system’s real behaviour. This kind
of modelling does not need detailed information about
the system. The model is generally built only by con-
sidering the outputs versus the inputs.

The software systems we want to qualify are distributed
and complex. In general, they suffer from a lack of informa-
tion describing their behaviours and interactions with their

environment. In addition, we cannot access their source
code. All these reasons make direct modelling a hard and
complex task and lead us to adopt a traffic emulation ap-
proach since it does not require such information.

III. METHODOLOGY

The traffic emulation approach gives the performance
model by considering the system output as a function of the
input load. Load is injected in the system in order to qual-
ify its capacities and to extract performances and resources
consumption before saturation.

A. Defining Black Boxes

This part consists in identifying the black boxes of a sys-
tem. Depending on the system, one tries to divide it into
as many black boxes as possible. When decomposition be-
comes too complex, the system must be kept fully. Other-
wise, we define mutual interactions among the black boxes
and other parts of system. In fact, interactions could be ex-
ternal invocations of other black boxes, system calls, access
to resources, etc.

!""#$%&'$()
*+,-+,

./0
%()'&$)+, 1&'&2&*+

0#&%342(546 0#&%342(547 0#&%342(548

Figure 1. Example of J2EE application

Let us take the example of a J2EE web application, com-
posed of an application server, an EJB container and a
database. In such an architecture, an intuitive decomposi-
tion is possible that splits the system into three black boxes
(see figure 1). The first one is dedicated to the application
server, the second to the EJB container and the third to the
database. This way, we obtain a more detailed and precise
performance model.

B. Choosing the Performance Parameters

The parameters are the different characteristics that im-
pact system performance. They depend on the type of target
system and fixed goals. If we take the previous example
- J2EE application - parameters could be: end-to-end re-
sponse time, throughput in requests per second, number of
customers per time unit, etc.

Given the important number of parameters that could in-
fluence the system performance and the huge amount of
time needed for performances study, it looks more suit-
able to consider only relevant parameters which are directly

linked to the aim of the study. If the choice looks diffi-
cult, a ”factorial analysis” will enable to identify the actually
important factors, through some experiments. In our J2EE
example, we chose response time as the interesting perfor-
mance factor.

C. Defining Workload and Instrumenting

Once the black boxes are identified, we define the load
to apply through several uses cases and we execute the test.
In our case (J2EE application), the load is defined through a
number of typical usages consisting of interlaced sequences
of requests and think times, and a parallel execution of a
number of virtual users performing those usages.

However, since we want a good qualification of both the
black box and the global model, it’s necessary to apply a
load that is as close as possible to the real load. In order to
reach this goal, the testing platform may repeatedly replay
pieces of real execution traces. Instrumentation deals with
monitoring and measuring the use of resources (CPU, mem-
ory allocation and network occupation) by placing some
probes in different parts of the system under test.

D. Modelling

Once we have collected performance measures associ-
ated to the applied loads, we will extract performance model
based on these results. In order to model the system with
queuing networks, we model each black box with a queue.
Each queue is labeled by the performance characterization
obtained in previous step. These queues could be repre-
sented in three different ways depending on the type of the
black box. With load-dependent resources, queuing and ser-
vice times depend on the load D.

Figure 2. Queue for a load-dependent resource

The two other queue models are just particular cases of
this model: load-independent resources represent resources
where the service time does not depend on the load; de-
lay resources’ service time does not depend on the load and
there is no queuing.

We have to identify the type of each black box (load-
independent, load-dependent, etc.) according to the test re-
sults. The load test is executed on each black box. If our sys-
tem is composed of several interacting black boxes, we de-
fine software-plugs. They replace interactions of the tested
black box with other black boxes while conserving a con-
stant value for performance parameters of interest. Then,
one subtracts this constant from the value obtained from the
test and hence we get the black box characterization. Let us

return to our example of the J2EE application, to character-
ize black box 1 which interacts with box 2. One develops
a software-plug that replaces box 2 with constant response
times for each invocation. At the end of the tests, one with-
draws software-plug constant from the global response time
to obtain the first black box one.

! "!! #!! $!! %!! &!! '!!

!

&

"!

"&

#!

#&

$!

$&

%!

%&

&!

&&

'!

'&

(!

)*+,-./0123+4-356157

8
6+
9-
:6
5;
*9
56
-<
0=
6

>
+
23
1+
2 0
*
9
-;
*
09
2

! "#

Figure 3. saturation point

After carrying out all tests, we draw response time as
a function of the applied load. The result, as we expect,
should be close to the one sketched in figure 3. In portion
1 in figure 3, response time linearly grows with load, which
is a correct behavior for resource-shared processing. In por-
tion 2, we observe the beginning of the effect of application
contention. Approaching the saturation point, the system
does not follow the imposed load any more, and its response
time tends to infinity.

IV. SATURATION AND STABILITY OF SYSTEMS

All measurements should be done when the system
reaches the limit just before saturation. However, if we wish
to reach saturation, load injection should be done in such a
manner that enables to be more and more close to this sit-
uation. First of all, one injects a minimum load and waits
for the system to become stable. Then, one progressively
increases the load to a higher level, waits for stability, and
so on (see figure 5). This method could take a huge time
depending on the system. This is why we propose in sec-
tion V an infrastructure to automatically find the saturation
point. To achieve this, the load injector is controlled through
a feedback loop that observes the system response to the
current load and makes the decision to increase or decrease
the load with reference to the measured performances (cf.
figure 4).

When looking for the saturation point, we must ensure
that the system is stable during all the load ramp-up in or-
der to get reliable and accurate results. The system is stable
if its performance remains the same whenever the workload

!"#$%"&&'%

())&*+,$*"#
-'%.'%

/01
+"#$,*#'% 2,$,3,-'

45-$'678#9'%7:'-$

;",97<#='+$"%

>?7*#='+7@'7&",9

A?7"3-'%.'76',-B%'6'#$-

C?7<#+%',-'7"%79'+%',-'7
$@'7&",9

Figure 4. Load injection feedback loop

keeps the same. If the load ramp-up is too steep, it may be
difficult to clearly identify the unstability area correspond-
ing to the saturation point. For this reason, we have to main-
tain a constant load during a sufficient duration for the sys-
tem to reach a stable state. Then, the duration as well as the
load level for the following step depend on the response of
the system to the current load level.

Stability criteria depend on the kind of system and the
quality of service that must be provided. These criteria must
be defined at the very beginning, just like the global perfor-
mance parameters of interest. For example, in the case of
a J2EE application, we may choose the maximum variation
of response time as a stability criterion.

! "# "! $# $! %# %! &# &! !#

#

#'"

#'$

#'%

#'&

#'!

#'(

#')

#'*

#'+

"

"'"

"'$

"'%

"'&

"'!

,-./

0
/
1
2
3
4
1
/
5,
-.
/

! "# "! $# $! %# %! &# &! !#

#

"#

$#

%#

&#

!#

(#

)#

*#

+#

"##

""#

"$#

"%#

"&#

"!#

,-./1

6
3
7
8
59
:
-;
<=
7
>5
=
1
/
;1
?

Figure 5. typical response time evolution un-
der a step-by-step workload

The first graph of figure 5 shows the progressive level of
load used to reach saturation. The applied load is a step-by-
step function that enables to wait for stability once the load
has been increased. If the stability condition is satisfied, we
proceed with the next step (higher level load). Otherwise,
we decrease the load until we obtain a stable situation. The
second graph illustrates this load injection policy through a
response time-based stability criterion. It sketches the vari-

ation of the system’s response time as a function of the ap-
plied load. The system clearly reacts to the different load
levels with an increase of the average response time and os-
cillations around the average that decrease while the load
remains constant. When the response time oscillations are
small enough to match the stability condition, we increase
the load once again. This is repeated until the saturation
point is reached.

V A component-based supporting infrastructure

A An architectural approach to autonomic computing

In order to experiment our methodology, we propose a
practical software infrastructure that fits, on the one hand,
genericity (our approach may be applied to any kind of
black box), and, on the other hand, autonomy (self-regulated
load injection). This is the reason why this work is carried
out in the context of architectural research on autonomic
computing. This approach has been proposed in [3], and is
currently being developed in collaborative projects Selfware
[2] and Selfman [8, 2].

As presented in [5], the basic idea of autonomic comput-
ing may be summarized as the principle of using comput-
ing power to automatically (autonomously) manage com-
puting systems complexity. Our architectural approach
to autonomic computing consists in relying on a uniform
component-based representation of the target computing
system, either in a native manner or a wrapper-based man-
ner. Then, a feedback loop is introduced, with sensors
at one end (observation), actuators at the other end (reac-
tion/feedback control), and a decision element in between.
The feedback loop relies on a communication middleware
to handle observation events coming from the sensors, as
well as reaction events coming from the decision elements
to the actuators. More than just a plain transport service,
this event middleware may also support aggregation, filter-
ing and a variety of message delivery models (e.g. pub-
lish/subscribe, group communication). All elements in this
architecture are uniformly represented and handled as com-
ponents, using the Fractal component model [1].

B CLIF Load Injection Framework

Starting from this component-based and feedback loop-
based architectural approach, we need to build a self-
regulated load injection system. We need components that
generate a workload on the System Under Test (SUT), and
components that give feedback information about the result-
ing SUT performance (response time, throughput) and com-
puting resource usage. Moreover, there should be a decision
component that closes the feedback loop between observa-
tion and reaction, in order to dynamically and autonomously
adapt the generated workload.

CLIF [4] provides a framework of Fractal components
that meets these requirements. Main components are: load
injectors for traffic generation and response times measure-
ment, probes for monitoring the consumption of arbitrary
computing resources, and a supervisor component which
is bound to all injectors and probes and provides a central
point of control and monitoring. While the typical CLIF us-
age consists in plugging a user interface on the supervisor,
we are simply going to bind an autonomic controller com-
ponent to the supervisor and discard the user interface. This
is actually done by developing this controller component
and slightly modifying an XML file describing the CLIF
application, using a commonly called Architecture Descrip-
tion Language. As shown by figure 6, this controller com-
ponent is bound to other components:

• a load injection policy component that computes the
control feedback on the load injection system;

• a saturation policy component, that detects whether the
SUT is saturated or not.

that computes the control feedback on the load injection sys-
tem according to the observation of response times, resource
usage and possible alarms. Both components rely on the
observation of response times, resource usage and possible
alarms.

load injection

system

probes

controller

system
under test

probes

invocation

alarms, resource
consumption, profiling

 alarms, response
times, errors

saturation criteria

control (feedback)

load injection policy

Figure 6. A CLIF assembly for self-regulated
load injection

In order to vary the load level during the saturation look-
up process, we use the classical virtual user concept sup-
ported by CLIF. A virtual user is a computer program that
invokes the SUT in a similar way that a real user would do.
Load testing consists in massively and concurrently running
virtual users. Each CLIF load injector is actually an execu-
tion engine for such virtual users. Then, the workload reg-
ulation performed by the controller component simply con-
sists in adjusting the number of virtual users run by the load
injectors according to the observation. Here, it must be un-
derlined that the load injection policy can be generic, since
it may only handle the concept of virtual user whatever the

actual SUT is. Pure control theory-based algorithms may
apply there. As far as the saturation policy is concerned,
it may be defined in a generic manner also, but it may be
chosen or parameterized in adequacy with the SUT. Simple,
generic saturation detectors are: response time threshold, er-
ror or alarm occurrence, or request throughput stagnation.

VI An experiment

A Rationale

We propose a self-regulated load injection experiment
based on our component-based architectural approach to au-
tonomic computing, using the Fractal model and CLIF load
testing framework. The target system under test is an En-
terprise Service Bus (ESB), a kind of request broker used
in Service Oriented Architectures to support mediation fea-
tures such as accounting, routing, logging, security, man-
agement of service level agreement, etc. This ESB is the
black box we want to characterize from the performance
point of view. The system clients are emulated by virtual
users running in CLIF load injectors and generating SOAP
requests. Real services are replaced by software plugs, i.e.
dummy services that reply to requests with a constant re-
sponse time, whatever the incoming workload. Of course,
the plugs’ performance must be qualified before, to deter-
mine this response time and the correct operating range with
regard to the incoming traffic throughput.

With this simple experiment, we are just going to show
how the looped load injection system is going to find the
ESB saturation limit, in terms of maximum sustainable
number of virtual users and request throughput, according
to a given saturation criteria. The behavior of our virtual
users consists in generating 20 requests during 20 seconds
before exiting, with random think times between consecu-
tive requests, which gives an average of 1 request per second
per virtual user. The ESB is based on a dedicated hardware
platform, which offers load percentage information through
the SNMP protocol. We have defined a new CLIF probe to
get this information.

The controller starts with one virtual user per load in-
jector. Then, it proceeds through 20 seconds iterations, ob-
serving the ESB’s average load percentage, comparing it to
a given threshold (80% here), and deciding a new number
of virtual users: increase that number when the threshold is
passed, decrease when it is unreached. We see that we ac-
tually implement a control feedback function, with all the
associated issues in terms of stability and reactiveness. This
control feedback is rendered by the load injection and satu-
ration policy, provided as simple algorithmic rules here, but
this may be easily replaced in the architecture by arbitrarily
complex and advanced computations relying on the obser-
vations from the load injectors and probes. For instance,
the iterations duration shall not be constant but computed at
runtime. Of course, more probes would be necessary, in the

general case, not only for the sake of saturation lookup, but
also to go further towards our final goal of full characteriza-
tion for system simulation and sizing.

B Results

The results presented below have been produced with 4
load injectors and a controller distributed on 5 distinct com-
puters (Intel bi-Xeon or AMD bi-Opteron, 2 or 3 GB RAM,
Gb/s Ethernet, Linux kernel 2.6.15-1-686-smp). The ESB
load probe is hosted on a 6th computer and simply gets
information from the ESB platform’s SNMP agent. The
observation (see figure 7) shows promising results, partic-
ularly because this ESB platform had already been “manu-
ally” benchmarked with CLIF’s common user interface on
the same infrastructure, giving similar results. After 3-4
minutes, we see a rather quick and good stabilization of the
number of virtual users around 400 and an ESB load around
80%. As expected, the request throughput is roughly follow-
ing the number of virtual users (just a little smaller), with
some sudden drops at time 270s and 390s, that can be ex-
plained by the occurrence of garbage collector on the load
injectors. To be more accurate about this phenomenon, we
should add CLIF’s probes on the load injectors, and espe-
cially the JVM probe which detects occurrences of garbage
collection. Garbage collection is the typical kind of phe-
nomenon that must be taken into account to prevent unsta-
bility problems.

20 60 100 140 180 220 260 300 340 380 420 460 500
0

100

200

300

400

500

vUsers # throughput /s ESB load % time (s)

Figure 7. Automatic saturation of an ESB platform

VII. EXTENSIONS

This work is being applied to current R&D projects in
France Telecom, where the characterization of black boxes
performance and resource consumption is key to develop
and to keep good working conditions for many infrastruc-
tures. Sizing and capacity planning are essential.

For example, in the case of Machine to Machine (M2M)
services, a large number of machines (teller machines, de-
tectors, cameras, boilers, etc.) exchange events and a variety
of data. The M2M middleware also controls its own execu-
tion by observing resources usage. Such infrastructures are

typically overlay networks, that are widely distributed, gen-
erate huge amount of events and connect a great number of
devices together. Breakdowns may be frequent in such sys-
tems, and the manual supervision and management of such
big infrastructures is almost impossible. Here, autonomic
computing (see section A) research becomes fundamental to
support self-optimization, self-healing or self-configuration
features.

An M2M overlay network is basically a set of nodes,
performing arbitrary computations that produce events, con-
nected together through an arbitrary network topology. The
nodes typically perform arbitrary business computations
that are unknown to the network operator. As a conse-
quence, the queuing model and our approach applies quite
well to the global M2M system, where nodes are black
boxes. The nodes must be tested one by one with our self-
regulated load injection platform in order to produce the
necessary performance characterization. Then, we will be
able to simulate the global system and provide M2M sys-
tems with support for sizing and capacity planning. More-
over, in the context of autonomic computing, it will be pos-
sible to evaluate self-reconfiguration decisions through sim-
ulation, before actually performing them, to prevent unex-
pected performance defects.

VIII. RELATED WORK

Two previous works in black boxes modelling could be
used as references in this work. The first deals with black
boxes modelling in a particular context which is storage
environment and the second proposes a method to deter-
mine relevant and necessary parameters to estimate a per-
formance model of black boxes.

In [9], the authors evaluate the most popular techniques
used in black box modelling in storage environment and
measure the precision of each technique to obtain the best
of them. [6] tries to determine necessary properties to esti-
mate performance model for black box when it is used in a
feedback loop.

These papers use an analytical model by considering the
system as a one black box unlike our method which decom-
poses the system in several black boxes and hence gives a
more detailed model. If we have to do a factorial analysis
to determine relevant parameters, we can use results of the
second article which proved that the method of least squares
does not give the best estimation any more when a control
loop is used. Furthermore, a regression method can not be
used since we are looking for performance before saturation
which means we are not in the linear range.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the general issue of sizing
and capacity planning of distributed systems, by proposing
a combination of global system modelling and real testing

of small, unknown elements (black boxes). The proposed
methodology consists in characterizing the performance and
computing resource consumption of the black boxes, by
generating a variable workload on them and observing their
behaviour, and to use these results as an input in the global
system model. Then, this model will be used to predict the
adequate sizing of the execution support as well as the ex-
pected performance. To achieve this prediction, we chose a
queuing network model and a simulation-based approach.

We also presented a component-based software architec-
ture to support the autonomous characterization of black
boxes. Springing from architectural research for auto-
nomic computing infrastructures, it relies on a load injec-
tion framework with a feedback control loop. We partly im-
plemented end experimented this architecture in a real test
case with an Enterprise Service Bus. The promising first re-
sults still require more research work in several directions,
such as: identifying the black boxes, factorial analysis, sat-
uration and stability criteria, control theory, and of course
simulation to achieve our ultimate goal in terms of sizing
and capacity planning. Our future work will be guided by
this goal, in the context of Machine-to-Machine applications
and related middleware.

References

[1] E. Bruneton and al. The fractal component model and its sup-
port in java. Software Practice and Experience, special issue
on Experiences with Auto-adaptive and Reconfigurable Sys-
tems, 36(11-12), 2006.

[2] S. F. R. collaborative project. Déploiement, config-
uration et administration autonome de systmes rpartis.
http://www.rntl.org/projet/resume2005/selfware.htm, 2005.

[3] T. Coupaye, F. Horn, and al. Principes généraux darchitecture
logicielle pour la construction dapplications autonomiques
ouvertes. L’autonomie dans les réseaux (Traité IC2 série
Réseaux et télécommunications), pages 1–34, September
2006.

[4] B. Dillenseger. Flexible, easy and powerful load injection
with clif version 1.1. In Fifth Annual ObjectWeb Conference,
http://objectwebcon06.objectweb.org/xwiki/bin/Main/DetailedSession,
January 2006. ObjectWeb.

[5] IBM. An architectural blueprint for autonomic computing.
http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White
Paper V7.pdf, June 2005.

[6] M. Karlsson and M. Covell. Dynamic black-box performance
model estimation for self tuning regulators.

[7] D. A. Menasc and V. A. F. Almeida. capacity planning for
web services: Metrics, Models and Methods. 2002.

[8] P. V. Roy and al. Self management of large-scale distributed
systems by combining peer-to-peer networks and compo-
nents. Technical Report TR-0018, CoreGRID, December
2005.

[9] L. Yin, S. Uttamchandani, and R. Katz. An empirical of black-
box performance models for storage systems. 14th IEEE In-
ternational Symposium on Modelling, Analysis and simulation
of computer and Tlcommunication Systems (MASCOTS ’06),
October 2006.

