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Last Time

• Basic Control System Architecture

• Typical Control Goals:
– Regulatory control
– Disturbance rejection
– Optimization

• SASO properties: 
– Stability, Accuracy, Settling, Overshot
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Queuing System

m
Service Requests

(arrivals)

Infinite  size buffer (queue)

Service Completions

(departures)

l

Operation
• Arrival of a service request

• Request enters service if buffer is empty
• Enter queue if server is busy

• Completion of a service request
• Next request in buffer enters the server
• If buffer is empty, the system goes idle

M/M/1 Assumptions & Key Result
• Assumptions

• Inter-arrival times are 
exponentially distributed
• Service times are exponentially 
distributed

• Key result for steady state
•N = expected number in system
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Today: Modeling

Signals, Systems, and Models

• Purpose of modeling

• Types of models

Model Construction

• Modeling from first principles

• Modeling from data

Hybrid System Models

Paper Discussion



Why bother modeling?

• Analysis 

– prove formal properties (e.g. stability)

• Prediction

• Diagnostics

• Simulation



Queuing Model Revisit

m
Service Requests

(arrivals)

Infinite  size queue

l Service Completions

(departures)
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State is number of customers in the system
Arrows indicate rate at which transitions occur
Arrival increases state by 1; departure decreases state by 1
Probability of being in state n is pn
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Good for steady-state analysis



Input-Output Models

• Examples of non-IO models

-- Automata                                   -- Circuits

system

inputs outputs



Signals     

• A signal is a function on a (usually ordered) set. 
Some signals may be partial functions.

Examples

• Continuous-Time Signals

– Functions on R+

• Discrete Events

– Partial functions on R+

• Discrete-Time signals

– Partial functions on R+

– Functions on N

• Signals on partially ordered sets

t

t

t (k)

t2

t1

t



Systems

• Systems are functions from signals to signals.
– Note: Input and output signals do not necessarily have the same 

domain or type.

• System composition

Serial: y = B(A(u))

Parallel: y = C(A(u1), B(u2))

A
u

B
x y

A

B

C

u1

u2

y

A

B

yu

Feedback: y = A(B(y))



An I/O Model for a Queue

Service Requests

(arrivals)
Service Completions

(departures)

queue
u y

t0 t0

Is this model good for the purpose of controlling queue length?

What is it good for?



Another I/O Model for a Queue

Service Requests

(arrivals)
Service Completions

(departures)

queue
u y

t0 0

Check the queue length every T seconds. 
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Is this right?
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Difference equation
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General View of Difference Equations

Term for the input-output models used General form

Relates current output to past outputs and inputs
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Linear Time-Invariance

• Linearity:

– f(x + y) = f(x) + f(y)

– f(αx) = αf(x) for all α

• Time-Invariance

– f(x(k+d))(k)=f(x)(k+d)

• Check
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LTI only if y starts from 0!



• The behavior of linear time invariant system is 
uniquely defined by it impulse response

Impulse Response



Non-Linear System Example
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Modeling Using First Principles

• Construct systems from components

– E.g. two queues

Auth. Service

retry
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Modeling Using First Principles

• Pros:

– Can be accurate

– Have strong system implications

• Cons:

– Requires strong domain knowledge

– Can be complicated



Modeling Using Data

• There is a whole field called machine learning!

• Pros:

– Weak dependency on domain knowledge

– Can be adaptive

• Cons:

– Requires data

– Only as good as data
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Estimating Parameters of Difference 
Equations

• Statistical approach---Use linear least squares 
regression
– Computations are simple

– Lots of software computes regression estimates (e.g., 
MatLab, Excel)

• Not a purely mechanical procedure
– Need to determine a model structure (e.g. order)

– Need to validate inputs

– Need checks to ensure that models make sense

– Plots are very important tools
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Linear Least Squares Regression Basics

y ax b Univariate linear regression equation:

LSR chooses a and b so as to minimize the sum of the square of the 
distances from data to line
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Regression Metrics

Fraction of variance in data explained by the regression line.

2 [0,1]R 

RMSE = Square root of the mean square of the estimation error
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Examples of Regressions and 
Regression Metrics
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Lies, Damn Lies, and Regression Metrics

Outlier distorts regression line Functional bias

Both models are very poor.



Estimating Parameters
1. Choose order of model

Typically requires a multivariate regression model
2. Run experiments in which control input is varied systematically
3. Use least squares regression to estimate model parameters
4. Assess the results
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Probe Further

• Recursive Least Square

– On-line parameter estimation

• Closed-loop system identification

• Reference: 
Lennart Ljung, System Identification: Theory for the User, 
Prentice Hall, 1999



Example



Hybrid System Models

queue
u y

t0 0

Check the queue length every T seconds. 
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Is this right?
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Hybrid System Models
• Composition of state machines and differential(difference) equations.

“Normal”
x(k+1) = x(k) + u(k)-y(k)

x(k+1) > 0
x(k+1) < C

“Empty”
x(k+1)=0

u(k) < =y(k)

x(k+1)=0

x(k+1)>=C | C:=2*C

discrete state

“continuous” dynamics

guard condition

invariance

action

A queue with increasing buffer size C



Behavior of Hybrid Systems

• a sequence of flows and jumps

• Properties about behavior
– Safety: Do not enter “bad” states
– Liveness: Behavior extends to infinity
– Stability:

• Many properties are undecidedly in general



Be Careful about Hybrid Systems

• Zeno behavior

– Never-empty water 
tanks

• Stability is not composable

– switching between two stable 
systems can be unstable

w < v1 + v2



Probe Further

• Hybrid system lecture notes:
http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf

• Hybrid system modeling and simulation:

Google: HyVisual

http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf
http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf
http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf


Summary

• Many model structures for difference purposes

• Models can be constructed from first principles 
or data

• System identification for LTI systems

• Hybrid systems



Paper discussion

• Lu, Lu, Abdelzaher, Stankovic, Son, “Feedback 
Control Architecture and Design Methodology 
for Server Delay Guarantees in Web Servers” 
IEEE Tran. on Parallel and Distributed Systems, 
17(9), Sept. 2006, pp.1014~1027


