
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D.1.3a
First report on Security in Structured Overlay Networks

Due date of deliverable: v1.0, July 15, 2007
Actual submission date: v1.1, November 30, 2007

Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor
for this deliverable: NUS(P7)
Revision: 1.1
Dissemination level: CO

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007

CONTENTS

Contents

1 Executive Summary 1

2 Contractors contributing to the Deliverable 2

3 Introduction 3
3.1 Peer-to-Peer Background . 4

4 Structured Overlay Networks and Distributed Hash Tables 5
4.1 DHT Concepts . 5
4.2 Chord . 6
4.3 Pastry . 7
4.4 DKS . 8
4.5 CAN . 8
4.6 Viceroy . 9
4.7 Kademlia . 10
4.8 Kelips . 10
4.9 SkipNet . 11

5 DHT Applications 13
5.1 File Sharing . 13

5.1.1 BitTorrent . 13
5.1.2 GNUNet . 14

5.2 Storage Systems . 14
5.2.1 PAST . 14
5.2.2 Ivy . 15
5.2.3 CFS . 15
5.2.4 Keso . 15
5.2.5 Mnemosyne . 16
5.2.6 PeerStore . 16
5.2.7 OceanStore . 16

5.3 Host Discovery and Mobility . 17
5.3.1 HIP . 17
5.3.2 P6P . 17
5.3.3 SIP . 17

5.4 Indirection Services . 18
5.4.1 Internet Indirection Infrastructure 18
5.4.2 Untangling the Web from DNS 18

5.5 Web Caching and Web Servers . 18
5.5.1 Squirrel . 18
5.5.2 FeedTree . 18

5.6 Content distribution . 19
5.6.1 SplitStream . 19
5.6.2 Coral . 19

5.7 Naming systems . 19

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 2

CONTENTS

5.7.1 CoDoNS . 19
5.7.2 SENS . 20

5.8 Communication . 20
5.8.1 POST . 20

5.9 Query and indexing . 20
5.9.1 XPeer . 20
5.9.2 PIER . 21

5.10 Chat services . 21
5.11 Application-layer multi-casting . 21

5.11.1 Bayeux . 21
5.11.2 Scribe . 21

5.12 Search Engines . 22

6 Other P2P systems 23
6.1 Napster . 23
6.2 Gnutella . 23
6.3 FastTrack . 24
6.4 Freenet . 25
6.5 BitTorrent . 25

7 General security issues 27
7.1 Comparing to traditional computer security 27

7.1.1 Confidentiality . 27
7.1.2 Integrity . 27
7.1.3 Availability . 28
7.1.4 Assumption and Effectiveness 29

7.2 Attacker Incentives . 29

8 Security in P2P Systems 30
8.1 Sybil Attack . 30

8.1.1 Centralised identifier assignment 30
8.1.2 ID Based On the Network Address 31
8.1.3 Resource Testing & Cryptographic Puzzles 31
8.1.4 Social Networks . 33
8.1.5 Others Approaches . 33

8.2 Routing Attacks . 33
8.3 Fairness & Load Balance . 35

8.3.1 Storage Fairness . 35
8.3.2 Bandwidth Fairness & Free Riding 37

8.4 Data Integrity . 38
8.5 Anonymity & Censorship Resilience 38
8.6 Trust and Reputation . 39

8.6.1 Considerations of Reputation Systems 39
8.6.2 Trust and Reputation Case Studies 42

8.7 Denial of Service . 43

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 3

CONTENTS

9 Possible Directions for SELFMAN 46
9.1 Attacks on SELFMAN Infrastructure and Applications 46

9.1.1 Routing Attacks: the Skype Outage 47
9.1.2 Essential Infrastucture Attacks: Network Bandwidth Throt-

tling/Traffic Shaping . 48
9.1.3 Denial of Service Attacks: the Storm Worm and Storm Botnet 48

9.2 Some Defence Mechanisms . 49
9.2.1 Trust and Authentication 49
9.2.2 Small World and Social Networks 50
9.2.3 Monitoring for Self-Protection + Tuning 51

9.3 Fairness and Free Riding . 52
9.4 API Issues . 53

9.4.1 Chord API . 53
9.4.2 OpenDHT API . 54

9.5 Application Issues . 55
9.5.1 Some M2M Application Issues 55
9.5.2 Some Wiki Application Issues 56
9.5.3 Some Media Content Delivery Issues 57

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 4

1 EXECUTIVE SUMMARY

1 Executive Summary

The goal in SELFMAN is to build large-scale distributed systems which are self or-
ganizing, scalable and self-managing. Self management means that the distributed
systems can exhibit self-configuration, self-healing and self-tuning. In addition,
self management also means that the system should have defence and reliability
mechanisms in case it is attacked. Thus, there is a self-protection aspect.

The overall goals of SELFMAN are not directly focused on self-protection since
one can still have usable and useful self managing distributed systems where secu-
rity is orthogonal, e.g. in a distributed system managed under a single owner such
as Google services. In fact, self-protection in the context of distributed, decentrali-
sation, self organisation and management raises very challenging security problems.
Nevertheless, specific applications often have certain security requirements and the
infrastructure should also support some security mechanisms suitable for SELF-
MAN.

This deliverable is in WP1 which is concerned with mechanisms for structured
overlay networks as well as basic management and security mechanisms. The goal
of this deliverable is two fold. Firstly, understand the existing work in Peer-to-
Peer (P2P) systems with an emphasis on security. Secondly, to serve as a guide
to point out promising security directions for SELFMAN. The work here is also
relevant to WP4 since security issues will impact on self configuration, self tuning
and self healing services. Security issues are clearer once the application is taken
into account. Thus, we will look ahead at the intended SELFMAN application
scenarios from WP5 to better identify the relevant self-protection mechanisms.

To meet our two goals, this deliverable is structured as a survey consisting of
three parts. The first is a general survey of P2P systems consisting of: a general
introduction (Section 3), structured overlay networks and distributed hash tables
(Section 4), applications using distributed hash tables (Section 5), and other P2P
applications (Section 6).

The second part of the survey is specifically on security and self-protection
issues. We split this into a general part which addresses the questions of what are
the general self-protection properties for P2P systems (Section 7). We then look
in depth at attacks and defences for P2P systems and structured overlay networks
(Section 8). and then specific attacks and defences in P2P systems (Section 8).

The third part of this deliverable, Section 9, serves both a survey which has
been tailored more towards what we feel are the more important self-protection
issues for SELFMAN, as well as, being a prescription for future self-protection work
in SELFMAN. We address security issues which might be useful for the planned
SELFMAN applications and also discuss some of the disturbing trends in distributed
malware and network attacks.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 1

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

The primary contractor contributing to the deliverable in WP1 deliverable D1.3a
is the National University of Singapore (NUS, P7). This work was developed with
the other partners as the initial security report is relevant to self protection and the
other self management services in WP4 and the applications in WP5. The report
incorporates discussion and inputs from KTH(P2), INRIA (P3), FT R&D (P4),
ZIB (P5) and Stakk (P8).

NUS contributors to this deliverable are (in alphabetical order): Felix Halim
(PhD Student), Wu Yongzheng (PhD Student), Roland Yap (Senior Researcher)

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 2

3 INTRODUCTION

3 Introduction

Peer-to-Peer (P2P) applications are very popular on the Internet particularly for
sharing content or files. In fact, They are so popular that a large proportion of
the Internet traffic [11, 1, 10] is due to such P2P applications. Rather than trying
to define P2P systems or applications, we will instead characterize them by some
general properties since it is hard to cover all systems. A peer-to-peer system or
application usually has a number of interacting and cooperating entities which are
called the peers. The peers are distributed and are decentralized. This means that
the resources of the peers such as bandwidth, storage and computation are also
distributed. (In the rest of this paper, we will use the term peers and nodes inter-
changeably). Unlike client-server systems, P2P systems tend to be self organizing
rather than having centralized control and coordination. Peers may be symmetric
with respect to their interaction, a peer might be both a client and server. Fur-
thermore, often the peers are autonomous. The peers are connected by a network,
usually the Internet, however there are dynamic and transient features which need
to be taken into account. Peers may or may not be available all the time, e.g. a
peer can simply fail or leave the system. Communication between peers may also
be transient, e.g. the communication may not be reliable or some peers may be
sometimes partially disconnected, etc. Thus the common elements of peer-to-peer
are sharing of distributed resources, decentralization, self-organizing and ability to
tolerate unavailability of resources and communications.

This deliverable is the first report on security in structured overlay networks
— essentially, it is an initial survey which investigates security and self protection
issues for SELFMAN. The survey describes general aspects of P2P systems and
architecture which are relevant to SELFMAN, focusing on those aspects of P2P
which relate to security. Other issues like the robustness and fault tolerance of
the P2P system or applications are also closely related security concerns and are
partly covered by this survey. The objective is that a better understanding of
the self protection issues makes it clearer what self protection issues will be more
important at the structured overlay and basic low level SELFMAN infrastructure
at WP1. The survey is also relevant to WP4 since self management and security
are coupled together. We will also survey various P2P applications since ultimately
P2P systems need to deal with security and robustness at the application level.
Thus, we will also address self protection issues which are relevant to WP5. The
final portion of this report proposes self protection directions and issues which we
think will be more important to the overall objectives of SELFMAN including the
application scenarios and these are the ones which we suggest are the more fruitful
areas for research.1

The report is organized as follows. The remainder of this section describes
the evolution of P2P systems. Section 4 surveys the work on structured overlay
networks focusing on Distributed Hash Tables (DHTs). P2P applications which
rely on DHTs are discussed in section 5. Other Peer-to-Peer applications which are

1The potential issues identified are broader than what might be eventually addressed since we
would like to have more choices for the research work.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 3

3 INTRODUCTION

not based on DHTs are described in section 6. Section 7 introduces the general
issues of security which are applicable to P2P systems and section 8 describes in
greater details various solutions to some of these security issues. Finally, Section 9
discusses self protection research directions for SELFMAN which links together the
relevant security portions of WP1, WP4 and WP5.

3.1 Peer-to-Peer Background

Peer-to-Peer was initially popularized as a mechanism for sharing content and files
by Napster. Napster provided a centralized index server where peers could publish
the locations of files which could also be searched. The centralized topology of
Napster was its weakness since it became a single point of failure and ultimately
was challenged by legal liability issues. Napster also assumed that files were not
updated thus relieving the need to update changes to replicas (this is not necessarily
the case for other applications). Although Napster is a P2P application, it is better
classified as Hybrid P2P since it is only partly decentralized and has a client/server
architecture for the central index.

The second generation P2P file sharing applications moved away from a central-
ized index server to purely decentralized mechanisms. A prime example of this is
the Gnutella P2P system. Every peer maintains its own files and peers can query
and serve requests among each other. Gnutella is completely decentralized since
each peer only maintains local information and communicates to its neighbours.

In order to search for a data item, a flooding mechanism is used. A query is
propagated between peers by flooding the peers which are reachable from it. A query
propagates until it has found a peer containing the data item or it stops because
of a timeout or node failure. The advantage of the completely decentralized and
unstructured nature of Gnutella is that very little effort is needed to maintain the
network of peers. Queries are anonymous and provide deniability since a peer only
knows its neighbours which can forwarding a query without being the originator of
a query. The drawbacks that Guntella does not give any search guarantees. The
flooding mechanism used does not scale and leads to a large number of messages
and bandwidth usage as the number of nodes increase,

The second generation P2P systems were characterized by decentralization with-
out structure on the topology of the peers. The third generation P2P systems differ
in that in addition to being decentralized, the peers (we will also call them nodes)
have a structure in how nodes communicate and where data items are placed. As
a “virtual” network is created over nodes connected by an underlying network, this
is usually called a structured overlay network. These are covered in more detail in
Section 4.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 4

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

4 Structured Overlay Networks and Distributed

Hash Tables

In order to understand the security issues for structured overlay networks which lie
at the bottom layer for SELFMAN, forming the basic self organizing communication
and storage layer, we now survey the work in structured overlay networks and
distributed hash tables.

Structured overlay networks are virtual networks which are meant to address
the problems of second generation P2P systems. The network consists of a possibly
large number of nodes (n) which are connected by a particular virtual network
topology which usually forms a distributed data structure. Many of the algorithms
are based on the organization of a distributed hash table (DHT). However, other
distributed data structures have also been used. Most of the structured overlay
networks are scalable in the sense that looking up a data item is better than the
linear time complexity in the second generation schemes while dealing with the
dynamism and failure in the nodes.

4.1 DHT Concepts

A DHT can be viewed as an abstract data type similar to a hash table. The
difference from a regular hash table is that it stores key-value pairs among the n
distributed nodes. The abstract generic DHT interface looks like that of a hash
table:

• put(key, data): inserts item data into the DHT

• data = get(key): lookup the item with the given key in the DHT

The nodes are usually identified using some node identifier (node ID). It is
common that node IDs and keys range over a common identifier space consisting
of the integers from {0, 1, . . . , N − 1}. This is also called a Global UID (GUID).
A get/put operation is routed through the overlay network to the node (or nodes)
which hold the data item.

Different DHTs vary in how they address the following implementation chal-
lenges:

• scalability of the lookup

• topology of the network

• space requirements for the local node routing information

• balancing of the resources or load: this includes the mapping of data items to
nodes

• maintenance of the DHT: how nodes joining and leaving the network

• handling of failures: this can also include resource replication

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 5

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

• awareness of the underlying network topology and performance

The remainder of this section surveys a variety of DHTs within the space of imple-
mentation possibilities.

In addition to the basic DHT algorithms, there are schemes which deal with
the security issues. For example, there may be malicious nodes in the network, can
the nodes be anonymous, are there trust mechanisms, etc. We will go into further
detail in Section 7 and 8. In Section 5, we will survey applications of DHTs as well
as particular application level security issues.

4.2 Chord

The Chord DHT uses an identifier space from 0 to 2L−1 where N = 2L. The nodes
are organized into a ring which can be viewed as a distributed circular list where
each node ID connects to the next higher ID modulo N . The mapping of node IDs
and data items is using a form of consistent hashing [67]. Node IDs are obtained
by hashing the node IP address. The key of the data is also hashed using the same
hash function such as SHA-1. The data item is stored at the successor node whose
identifier is equal to or follows the hash in the identifier space.

Consistent hashing is used so that dynamism caused by nodes entering and
leaving the network only minimally disrupts the movement of data items. When a
node leaves the network, its data items are transferred to its successor. Conversely, a
node joining the network is assigned the data items which would have been assigned
to its successor. Consistent hashing allows the data items to be load balanced among
the nodes.

Looking up a data item can be found simply by following the successor nodes,
e.g. following the distributed link list next pointer. To speedup the search by a
logarithmic factor, a routing table is used. The routing table in a node, called
the finger table, refers to: +1 (the successor), +2, +4, +23, +24, . . ., +2L−1 of
the successors of the node. Lookup simply uses the finger table to jump in an
exponential fashion to the nearest node that has its ID less than the key.

When nodes join and leave, the routing table needs to be maintained since the
pointers may no longer be correct. Chord chooses to maintain the single successor
pointer in the routing table correctly. The remaining pointers in the routing table
might not be correct either. However, rather than maintaining them at the time of
leave and join, Chord uses a periodic stabilization strategy. Periodically an entry
in the finger table is updated by a lookup for the successor ID for a finger pointer
at that level. Stabilization also deals with node failures.

In the steady state (no nodes joining or leaving the network), in an n-node
Chord system, each node maintains information about only O(log n) other nodes
(the size of the routing table), and resolves all lookups via O(log n) messages
to other nodes. Performance degrades gracefully when there are changes in the
network. This is important in practice because nodes will join and leave arbitrarily.
Only one successor node in the finger table need be correct in order for Chord to
guarantee correct (though possibly slow) routing of queries.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 6

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

Chord deals with failures by using replication of the ring pointers. In addition
to the routing table, each Chord node maintains a r-successor list to its nearest r
successors. This allows routing to succeed even when nodes have failed. Data can
also be replicated on the r successors.

An example application of Chord is CFS [41] which is described in Section 5.2.3.

4.3 Pastry

Pastry differs in the structured overlay network topology, Pastry uses numeric close-
ness of the key to locate where the request message should be forwarded while Chord
uses a fixed routing table (there are only O(log N) possible nodes to route a mes-
sage). Pastry also takes into account network metrics such as proximity of nodes,
latency, bandwidth, etc.

Like Chord, Pastry uses numbers in the range 0 to 2L − 1 for node IDs and
keys. IDs and keys are treated as numbers in base b with L/b digits. For example,
if L = 12 and b = 2 then the identifier space N = 2L = 212 (4096 possible node
IDs) and since the base is 2b = 22 = 4, so every node can be represented in
L/b = 12/2 = 6 digits (where each digit ranges from 0 to 3).

Each node maintains a routing table, neighbourhood set and leaf set. The neigh-
bourhood set is the set of nodes closest to the node by some network metric other
than the ID, e.g. network proximity. The leaf set are the nodes closest in the
identifier space, this is like a union of a successor and predecessor list. Keys are
mapped to the numerically closest node.

The routing table has L/b rows (exactly the same as the number of digits to
represent a Pastry node ID). The first row of the routing table contain links to node
IDs that differ at the first digit with the current node ID (i.e. no common prefix
digit), the second row contains links to node IDs that differ at the second digit (i.e.
one prefix matches), and so on until L/bth row which contain links to node IDs
that differ at the last digit (i.e. L/b− 1 prefix matches).

To route a key to a node responsible for it in Pastry, first a node checks whether
the key k is within the range of its leaf set. If it is covered by the leaf set then the
node forwards the query to the leaf set node numerically closest to k. In case it’s
the node itself, the routing process is finished. If k does not belong to leaf set nodes,
this node will route the query to a node which shares a longer common prefix with
k in the routing table. If there is no such entry in the routing table, the query is
forwarded to a node which shares a prefix with k of the same length as the node
but which is numerically closer to k. This scheme ensures that routing loops do not
occur because the query is routed strictly to a node with a longer common identifier
prefix than the current node, or to a numerically closer node with the same prefix.

Pastry has some advantages over Chord as it takes advantage of network locality.
The neighbourhood set is not involved in the routing itself but in maintaining
network locality in the routing information. By exploiting network locality, Pastry
routing optimizes not only the number of hops but also the cost of each individual
hop. The criteria to populate a node’s routing table allow a choice among a number
of nodes with matching ID prefixes for each routing table entry. By selecting nearby

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 7

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

nodes in term of network locality, the individual routing lengths are minimized.
Pastry allows the base b to be configurable which determines the size of the

routing table. The bigger the base, the faster the routing but it also increases the
amount of state that needs to be managed at each node. A Pastry implementation
can chose appropriate trade-off for specific applications. Pastry uses lazy detection
failure that only fixes an out-of-date routing table when it encounters failure.

4.4 DKS

The Distributed k-ary System (DKS) [23] is a generalization of Chord which allows
for faster routing with larger routing tables. In Chord, a node with ID p the
furthest jump in the routing table points to the successor at p+2L−1 mod N . So the
maximum partitioning of the identifier space in a single step is two. DKS generalises
this by partitioning the space in k ways rather than two as in Chord. Routing
becomes faster with O(logk N) hops and the routing table size is (k − 1)logk N .

Instead of using periodic stabilization, DKS maintains the routing table using
a correction-on-use technique. Routing messages contain information about the
sender so the receiver can determine that the sender has erroneous routing entries
and correct it. Later versions of DKS [52] use atomic ring maintenance and failure
detectors. This has the property of guaranteeing lookup consistency in the presence
of dynamism. Lookups in Chord, on the other hand, might fail even when the key
is present because the routing tables are not yet consistent.

4.5 CAN

Most DHTs use a one dimensional key and ID space. Content-Addressable Networks
(CAN) [93] use a topology based on a virtual d-dimensional torus which can be
thought of as a generalisation of a 1-dimensional ring. A node in CAN is a zone
which is responsible for a sub-space within the d-dimensional space (in ring-based
DHTs, a node is responsible for a ring segment). A key in CAN is represented as
a point which is obtained by mapping a hash of the key to a d-dimensional point.
Each node is responsible for the set of keys (points) which are contained in its zone.

The topology of the routing table is based on the neighbouring zones of a node.
CAN nodes have 2d neighbours which are adjacent zones. Note that the size of the
CAN routing table is based on d rather than N . A lookup in CAN works by routing
to the closest neighbour in the direction of the key. Intuitively, this is like following
a straight-line path from source to destination coordinates. For a d dimensional
space which is partitioned into n equal zones, the average routing path length is
O(dn1/d).

When a new node joins, it randomly picks a point in an existing zone. The zone
is split in two: one for the old node, the other is for the new node. Both nodes
update their neighbours and routing tables. When a node leaves, it hands its zone
to be merged with a takeover node, one of its neighbours if the merger produces
a single valid zone, Otherwise the takeover node temporarily handles the deleted
zone.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 8

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

CAN can be optimized to avoid bottlenecks and to improve the availability of the
system by having multiple instances (reality) of the DHT. Alternatively, by mapping
the key to more than one point, this also avoids hot spots, provides replication and
avoids bottlenecks as well as being faster by allowing parallel queries (additional
node state is needed). CAN also can incorporate routing metrics based on Round-
Trip Time (RTT) to neighboring nodes and use this information to forward to
messages to those neighbors with the best ratio of RTT and ID space to destination.

4.6 Viceroy

A network with a large routing table can reduce lookup path length but also increase
the periodic maintenance cost for the routing table itself, especially when a lot of
joins/leaves occur. The Viceroy DHT uses constant size routing tables which can
be advantageous in the following situations:

1. Practical costs for updating links far exceeding the normal lookup costs since
it involves coordination between nodes or might require locking to maintain
consistency of the overlay network.

2. It reduces the ambient traffic associated with pings and control information.
Maintaining a constant degree network relieves the concern about the cost of
opening too many connections at the nodes.

3. The degree of the network directly relates to the load incurred by join and
leaves.

Even though low degree networks are not suitable for failure-prone environments,
Viceroy justifies it by handling the issue separately from the routing design using
clustering techniques.

Viceroy’s structured overlay network topology combines an approximate butter-
fly network with a Chord ring. Nodes also have a new state called a level which
is chosen randomly from 1 to log n. Each node at level l maintains the following
links:

• two down edges to nodes at level l + 1: one at a distance roughly 1/2l away
and one close-by;

• an up edge to level l − 1 if l > 1;

• level-ring links to the next and previous nodes at the same level.

By using a random network construction, routing can be achieved in O(log n) hops
with high probability.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 9

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

4.7 Kademlia

Kademlia improves on the Pastry routing algorithm by removing the second routing
phase of Pastry which reduces performance, and complicates the analysis for the
worst case. A feature of Kademlia is that the configuration information spreads au-
tomatically as a side-effect of key lookups. Kademlia also introduces a concurrency
parameter α that is used in the routing process and lets the users trade a constant
factor in bandwidth for asynchronous lowest-latency hop selection and delay-free
fault recovery. Kademlia maintains a list of k-bucket in the routing table where k
is a system-wide replication parameter which is chosen such that any given k nodes
are unlikely to fail within an hour of each other.

Kademlia uses a 160-bit GUID for node identifier space. A binary tree topology
can be constructed from the bits (i.e. bit 0 corresponds to the left child, bit 1
correspond to the right child). The nodes are the leaves in the binary tree. Each
bit in the 160 bit node ID will have a subtree correspond to it. Links to the nodes in
the subtree are stored in a k-bucket which contains contact information to several
nodes in that subtrees, providing k replication of contacts to improve robustness as
well allowing α ≤ k concurrent queries for lookup. Kademlia protocol ensures that
every node knows of at least one other node in each of its subtrees, guaranteeing
that any node can locate (can be reach from) any other node.

When a node looks up an ID, it checks to which subtree does the id belong
and forwards the query to α randomly selected nodes from the k-bucket of that
subtree. Each node possibly returns back a k-bucket of a smaller subtree closer to
the id. If the node responsible is not found, other α randomly selected nodes are
contacted, and so on. The returned k-bucket information can be used to update
the node’s state thus a side-effect of the lookup is also an update for the node
state. The buckets are managed using a least-recently seen eviction policy, except
that live nodes are never removed from the list. Based on Gnutella trace data, the
longer a node has been up, the more likely it is to remain up for another hour. This
maximizes the probability that the nodes in a bucket will remain online. Another
benefit of k-buckets is that they provide resistance to certain DoS attacks (one
cannot flush the node’s state by flooding the system with new nodes).

Nodes in Kademlia ensure the persistence of key-value pairs by periodically
republishing keys. The reasons are some of the k nodes that initially get a key-
value pair when it is published may leave the network and new nodes may join
network with ID closer to some published keys than the key-value pair was originally
published.

4.8 Kelips

Kelips [55] allows increased efficiency and stability through increased memory usage
and communication overhead. The idea is that the presence of slow logical hops
in a logarithmically long path is likely if there are a significant fraction of nodes
with high latency/low bandwidth links. Kelips tries instead to avoid logarithmic
lookup and gives O(1) lookup cost with O(

√
N) space. Furthermore, it provides

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 10

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

for quick convergence after join/leaves and exhibits stability under churn. This
resilience is achieved through the use of a lightweight Epidemic multicast protocol
for replication of system membership data and file indexing data [31, 44].

Kelips consists of k virtual affinity groups, numbered 0 through k − 1. Each
node lies in an affinity group determined by using a consistent hashing function to
map the node ID into the integer interval [0, k − 1]. A node state consists of the
following entries:

• Affinity Group View: containing a set of nodes lying in the same affinity group
along with their round trip time, etc.

• Contacts: For each of the other affinity groups in the system, a small (constant-
sized) set of nodes lying in the foreign affinity group.

• Filetuples: A (partial) set of tuples, each detailing a file name and host IP
address of the node storing the file (called the file’s homenode). A node stores
a filetuple only if the file’s homenode lies in this node’s affinity group.

If a node wants to query for a file, it maps the file name to the appropriate affinity
group by using the same consistent hashing used to decide node’s affinity groups.
It then sends a lookup request to the topologically closest contact among those it
knows for that affinity group. A received lookup request is resolved by searching
among the filetuples maintained at the node, and returning to the querying node
the address of the homenode storing the file. This scheme returns the homenode
address to a querying node in O(1) time and with O(1) message complexity. Finally,
the querying node fetches the file directly from the homenode.

If a node wants to insert a file, it maps the file name to the appropriate affinity
group, and sends an insert request to the topologically closest known contact for
that affinity group. This contact picks a node h from its affinity group, uniformly
at random, and forwards the insert request to it. The node h is now the homenode
of the file. The file is transferred from the origin node to the homenode. A new
filetuple is created to map the file to homenode h, and is inserted into the gossip
stream (at a fixed interval, a node selects a small set of nodes to which information
is multicast). Thus, filetuple insertion also occurs in O(1) time and with O(1)
message complexity. The origin node periodically refreshes the filetuple entry at
homenode h in order to keep it from expiring.

4.9 SkipNet

SkipNet [60] focuses on data placement and access route path. Most DHTs do not
have control over the data placement. Thus data may be stored far away from its
users, perhaps outside its domain. Also the routing path to access local data may
leave the local organization. SkipNet is designed with content locality and path
locality in mind. Content locality provides the ability to explicitly place data on a
single node or on a set of nodes. Path locality guarantees that local traffic remains
local.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 11

4 STRUCTURED OVERLAY NETWORKS AND DISTRIBUTED HASH
TABLES

Data controllability is needed for organizations that want to control over their
data even if local data is globally available. They can manage data administration
easily by having the data constrained in a set of nodes (data center / cluster). Local
data can survive network partition providing local availability and performance
since data is stored near clients that use it also can be used as building blocks for
dealing with certain external attacks.

Useful consequence of SkipNet’s locality properties is that partition failures, in
which an entire organization disconnects from the rest of the system, can result in
two disjoint, but well-connected overlay networks. SkipNet can efficiently re-merge
these disjoint networks when the partition heals.

SkipNet achieves constraint placement and uniform data distribution by using
two separate ID spaces: a string name ID space and a numeric ID space. SkipNet
uses the Skip List [89] data structure as the structured overlay network topology.
The skip list is a sorted linked list with subset of nodes having additional links
to skip over some list nodes. The topology is similar to Chord’s ring topology
with finger tables replaced with links to skip over data records in Skip List. The
difference with Chord is that SkipNet leverages sorted name IDs in the list and thus
supports range queries on the keys.

SkipNet can route efficiently in both address spaces (name ID space and numeric
ID space) with a simple rule: forward the message to node that is closest to destina-
tion, without going too far by skipping as many nodes as possible. The complexity
is O(log N) with high probability (because SkipNet uses probabilistic Skip List thus
the search, insert, delete complexity is O(log N) with high probability).

The primary security benefit for SkipNet is that content locality ensures that
data stays within organization and path locality prevents malicious forwarders,
analysis of internal traffic and external tampering. However the weakness is that
it’s easier to target organizations, for example if someone creates one million nodes
with name prefixes ”a” and ”c”, most traffic to/from ”b” will go through ”a” or
”b” intermediate nodes.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 12

5 DHT APPLICATIONS

5 DHT Applications

Security issues are usually end-to-end, so they have to be understood and developed
in the context of the intended application. In this section, we survey various P2P
applications which utilise DHTs (Section 6 surveys other non-DHT P2P applica-
tions).

We have organized the survey with a classification of the applications. In some
cases, there is some overlap in the classification, e.g. file sharing, storage systems
and content distribution share some common properties. But file sharing focuses on
downloading and files are not persistent in the system. Storage systems focuses on
persistently storing files and files are named uniquely and persistently so that they
can be located easily. Content distribution focuses on efficient data dissemination.

The DHT applications are intended to highlight application level considerations
of P2P systems. In some cases, some of these applications will be further discussed
in the security sections. In others, the application survey will highlight common
issues which will come up later in the security and SELFMAN sections.

5.1 File Sharing

File sharing is the most successful and widely used among the various kinds of
DHT applications. File sharing provide a way to distribute large amounts of data
with P2P protocol thus the costs of hardware, hosting and bandwidth resources are
distributed among the peers, reducing the cost for the original distributor at the
same time providing redundancy against failure, and reducing dependence upon the
original distributor.

There are several P2P file sharing software and protocols such as BitTorrent,
eDonkey2000, Gnutella, FastTrack, etc. Some of them require a central server or a
few servers, others can be purely distributed. The original BitTorrent, for example,
requires a central server, also known as the tracker. Later, DHT was adopted into
BitTorrent and the tracker became unnecessary. In this section will see how DHT
helps file sharing protocols by keeping track of the status among peers as well as
the items.

5.1.1 BitTorrent

In the original form of BitTorrent, in order to publish a file in BitTorrent, a tracker
must be setup for the peers to find each other and coordinate the file transfer. More
details of BitTorrent can be found in Section 6.5. Here, we discuss the applications
of DHTs in BitTorrent.

The use of a centralized tracker is obviously a single point of failure and bottle-
neck. With help of DHT, the need for a centralized tracker can be eliminated. In
this case, the tracker-less torrents uses the Kademlia DHT. The information of all
the peers downloading a torrent is stored in a Kademlia node whose ID is “closest”
to the hash of the torrent.

When a node wants to find peers for a torrent, it uses the distance metric to
compare the infohash of the torrent with the IDs of the nodes in its own routing

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 13

5 DHT APPLICATIONS

table. It then contacts the nodes it knows about with IDs closest to the infohash and
asks them for the contact information of peers currently downloading the torrent. If
a contacted node knows about peers for the torrent, the peer contact information is
returned with the response. Otherwise, the contacted node must respond with the
contact information of the nodes in its routing table that are closest to the infohash
of the torrent. The original node iteratively queries nodes that are closer to the
target infohash until it cannot find any closer nodes. After the search is exhausted,
the client then inserts the peer contact information for itself onto the responding
nodes with IDs closest to the infohash of the torrent.

5.1.2 GNUNet

GNUnet is a framework for decentralized, secure peer-to-peer networking. The pri-
mary application is anonymous, censorship-resistant file-sharing, allowing users to
anonymously publish or retrieve information of all kinds. Anonymity is achieved by
obfuscating requests and responses through means of encryption and indirections.
We will discuss anonymity and censorship-resistant issues in Section 8.5. Prop-
erties of the content encoding and the routing protocol allow GNUnet to reward
contributing peers with better service using an excess-based economic model for
resource allocation. Peers in GNUnet monitor each others behavior with respect
to resource usage; peers that contribute to the network are rewarded with better
service. We will look at free riding attacks and reputation systems in Section 8.3.2
and Section 8.6.

GNUnet’s DHT implementation is based on ideas from Kademlia. There are
various differences between Kademlia and the implementation in GNUnet. The
primary difference results from the fact that GNUnet extends the protocol with
subtables. Other differences result from adaptations of the original work to GNUnet.

5.2 Storage Systems

5.2.1 PAST

PAST [99] is a peer-to-peer archival storage system implemented using the Pastry
DHT. Since PAST is used for archiving, files are immutable. Replicas of a file are
stored in the nodes whose IDs are “near” the file’s ID. File can be inserted, looked
up and reclaimed.

Each PAST node and each user of the system hold a smartcard (although read-
only clients do not need a card). A private/public key pair is associated with each
card. Each smartcard’s public key is signed with the smartcard issuer’s private
key for certification purposes. The smartcards generate and verify the various
certificates and they maintain storage quotas. We can see that the node identities
and quota management is done through the smartcard. We will see the two issues
in Section 8.1 and Section 8.3.1

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 14

5 DHT APPLICATIONS

5.2.2 Ivy

Ivy [81] is a multi-user read/write peer-to-peer file system. Ivy has no centralized or
dedicated components, and it provides useful integrity properties without requiring
users to fully trust either the underlying peer-to-peer storage system or the other
users of the file system.

An Ivy file system consists solely of a set of logs, one log per participant. Ivy
stores its logs in the Chord DHT (Ivy could in principle work also with other DHTs).
Each participant finds data by consulting all logs, but performs modifications by
appending only to its own log. This arrangement allows Ivy to maintain meta-data
consistency without locking. Ivy users can choose which other logs to trust, an
appropriate arrangement in a semi-open peer-to-peer system.

Ivy presents applications with a conventional file system interface. When the
underlying network is fully connected, Ivy provides NFS-like semantics, such as
close-to-open consistency. Ivy detects conflicting modifications made during a par-
tition, and provides relevant version information to application-specific conflict re-
solvers. Performance measurements on a wide-area network show that Ivy is two
to three times slower than NFS.

5.2.3 CFS

The Cooperative File System (CFS) [41] is a peer-to-peer read-only storage system
that provides provable guarantees for the efficiency, robustness, and load-balance of
file storage and retrieval. CFS does this with a completely decentralized architecture
that can scale to large systems.

CFS servers provide the DHash DHT for block storage. CFS clients interpret
DHash blocks as a file system. DHash distributes and caches blocks at a fine
granularity to achieve load balance, uses replication for robustness, and decreases
latency with server selection. DHash finds blocks using the Chord location protocol,
which operates in time logarithmic in the number of servers.

CFS bases quotas on the IP address of the publisher. More precisely, each IP
address is given a quota on each storage node. For example, each CFS node limits
any one IP address to using 0.1% of its storage. CFS does not support an explicit
delete operation. Publishers must periodically refresh their blocks if they wish CFS
to continue to store them. A CFS server may delete blocks that have not been
refreshed recently. More security issues on storage fairness and quota management
is discussed in Section 8.3.1.

5.2.4 Keso

Keso [24] is a distributed and completely decentralized file system based on the peer-
to-peer overlay network DKS. The main goals for the design of Keso has been that
it should make use of spare clients’ resources, avoid storing unnecessarily redundant
data, scale well, be self-organizing and be a secure file system suitable for a real
world environment.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 15

5 DHT APPLICATIONS

Keso provides means for access control and data privacy despite being built on
top of untrusted components. The file system utilizes the fact that a lot of data
stored in traditional file systems is redundant by letting all files that contains a
data block with the same contents reference the same data block in the file system.
(CFS also uses the same kind of data block sharing idea). This is achieved while
still maintaining access control and data privacy.

5.2.5 Mnemosyne

Mnemosyne [58] is a peer-to-peer steganographic storage service. Mnemosyne pro-
vides a high level of privacy and plausible deniability by using a large amount of
shared distributed storage to hide data. Blocks are dispersed by secure hashing,
and loss codes used for resiliency.

5.2.6 PeerStore

Backup is cumbersome. To be effective, backups have to be made at regular in-
tervals, forcing users to organize and store a growing collection of backup media.
PeerStore [73] allows the user to store his backups on other people’s computers
instead. The system consists of two layers: metadata layer and symmetric trading
layer.

Metadata management is accomplished by using a DHT. By storing the meta-
data records this way, duplicate detection can be done efficiently. At the same time
no real data needs to be migrated when nodes join and leave the network; only the
information contained in the metadata records needs to be transferred and updated
which largely saves the maintenance cost. Data storage, on the other hand, relies
on a symmetric trading scheme. A peer that wants to backup its data must also
store some data from each of its trading partners.

By decoupling the metadata management from data storage, the system offers
a significant reduction of the maintenance cost and preserves fairness among peers.
PeerStore also realizes fairness because of the symmetric nature of the trades.

5.2.7 OceanStore

Oceanstore [71] provides a large-scale, incrementally-callable persistent storage fa-
cility for mutable data objects with long-term persistence and reliability in a con-
stantly changing network and computing resources. It’s intended to be used as an
implementation of NFS file service, email service (MINO), web caching (Reptide),
databases (Palm database), Anonymous file storage (Nemosyne) and other appli-
cations involving persistent storage of large number of data objects. Privacy and
integrity are achieved through encryption and Byzantine agreement protocol for
updates to replicated objects.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 16

5 DHT APPLICATIONS

5.3 Host Discovery and Mobility

Previous applications focus on data storage and sharing. DHTs can be applied on
host discovery or to support mobility. Participants in a system may be identified
using a permanent symbolic name instead of its network address. There must
be a mechanism to translate the symbolic name in to the network address. The
translation is known as host discovery. In case that the network address is dynamic,
host discovery can be used to provide mobility. For example, the identity of a web
server is usually represented as its DNS name. In this case, the DNS protocol
provides both host discovery and mobility.

In this section we will look at some systems which use DHT to provide host
discovery and mobility.

5.3.1 HIP

An IP address describes a topological location of a node in the network. The
address is used to route the packet from the source node to the destination. At the
same time the IP address is also used to identify the node, providing two mixed
functions in a same thing. This works well with static network topology. However
when network topology changes, (for example, links are added/removed, or hosts
are moved to other locations) It is difficult to achieve both stability and dynamic
changes at the same time.

The Host Identity Protocol (HIP) [64] is proposed to separate the location and
identity roles of IP addresses by introducing a new name-space, the Host Identity.
In HIP, the Host Identity is basically a public cryptographic key of a public-private
key-pair. The public key identifies the party that holds the only copy of the private
key. A host possessing the private key of the key pair can directly prove that it
“owns” the public key that is used to identify it in the network. The separation also
provides a means to handle mobility and multi-homing in a secure way. Nikander
et al. [85] proposed the Host Identity Indirection Infrastructure (Hi3) which uses
DHT to implement HIP.

5.3.2 P6P

P6P [116] is another host discovery system built on top of a DHT overlay. P6P
helps the migration of IPv6 by translating an IPv6 address into an IPv4 address.
One can consider the IPv6 address as the Host Identity in HIP or the domain name
in DNS. Thus the key in the DHT is the IPv6 and the value is the IPv4 address.

5.3.3 SIP

DHTs can be used in IP telephony systems to map an IP phone number to an
host’s IP address. Kundan Singh et al. [103] proposed an distributed version of
the Session Initiation Protocol using DHTs. In their system, peers register their
identities, known as “screen names”, by putting their IP address under the hash of

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 17

5 DHT APPLICATIONS

their identities in the DHT. Peers call other peers by looking up their IP address
in the DHT.

5.4 Indirection Services

5.4.1 Internet Indirection Infrastructure

Attempts to generalize the Internet’s point-to-point communication abstraction to
provide services like multicast, anycast, and mobility have faced challenging tech-
nical problems and deployment barriers. The Internet Indirection Infrastructure
(i3) [107] offers a rendezvous-based communication abstraction in order to ease the
deployment of such services. Instead of explicitly sending a packet to a destination,
each packet is associated with an identifier; this identifier is then used by the re-
ceiver to obtain delivery of the packet. This level of indirection decouples the act of
sending from the act of receiving, and allows i3 to efficiently support a wide variety
of fundamental communication services.

5.4.2 Untangling the Web from DNS

The Web relies on the Domain Name System (DNS) to resolve the hostname portion
of URLs into IP addresses. While the use of DNS has made URLs easy to use, the
Web is also constrained by the limitations of the web. Semantic Free Referencing
(SFR) [110] is a reference resolution infrastructure for URLs based on DHTs which
provides location and contention independence.

5.5 Web Caching and Web Servers

5.5.1 Squirrel

Squirrel [62] is a distributed web cache system designed to share the web caches
of participating users. It uses the Pastry DHT to store cached Web objects and
directory information. When a user requests a file, Squirrel contacts the member of a
DHT who should be the owner of that file, and gets it from that member (referred
to as home-store). Alternately, it can lookup, from that ”owning” member, and
return a list of other users who have recently downloaded the file, and get it from
them (referred to as directory-store).

5.5.2 FeedTree

FeedTree [6] is a peer-to-peer system for distributing Web feeds. Instead of polling
feeds from the publisher independently, FeedTree uses the Scribe multicast in Pastry
to disseminate Web feeds. Comparing to traditional Web feeds, FeedTree saves the
bandwidth of the publisher.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 18

5 DHT APPLICATIONS

5.6 Content distribution

5.6.1 SplitStream

SplitStream [34] is a high-bandwidth content distribution system based on application-
level multicast. It distributes the forwarding load among all the participants, and
is able to accommodate participating nodes with different bandwidth capacities.
The key idea in SplitStream is to split the content into k stripes and to multicast
each stripe using a separate tree. Peers join as many trees as there are stripes they
wish to receive and they specify an upper bound on the number of stripes that they
are willing to forward. The challenge is to construct this forest of multicast trees
such that an interior node in one tree is a leaf node in all the remaining trees and
the bandwidth constraints specified by the nodes are satisfied. This ensures that
the forwarding load can be spread across all participating peers. For example, if all
nodes wish to receive k stripes and they are willing to forward k stripes, SplitStream
will construct a forest such that the forwarding load is evenly balanced across all
nodes while achieving low delay and link stress across the system.

5.6.2 Coral

CoralCDN [50] is a peer-to-peer content distribution network that allows a user
to run a web site that offers high performance and meets huge demand, all for the
price of a cheap broadband Internet connection. Volunteer sites that run CoralCDN
automatically replicate content as a side effect of users accessing it. Web viewers
can access the webpage by appending “.nyud.net:8080” to hostname of a URL.
For example, one can use http://www.cnn.com.nyud.net:8080/index.html to
view http://www.cnn.com/index.html. A peer-to-peer DNS layer transparently
redirects browsers to nearby participating cache nodes, which in turn cooperate to
minimize load on the origin web server. One of the system’s key goals is to avoid
creating hot spots that might dissuade volunteers and hurt performance. It achieves
this through Coral, a latency-optimized hierarchical indexing infrastructure based
on a novel abstraction called a distributed sloppy hash table, or DSHT.

The Coral DSHT differs from DHTs in several ways. First, Coral’s locality
and hot-spot prevention properties are not possible for DHTs. Second, Coral’s
architecture is based on clusters of well-connected machines. Clusters are exposed
in the interface to higher level software, and in fact form a crucial part of the
DNS redirection mechanism. Finally, to achieve its goals, Coral provides weaker
consistency than traditional DHTs.

5.7 Naming systems

5.7.1 CoDoNS

CoDoNS [4] is a high-performance, failure-resilient, and scalable name service for the
Internet. It serves as both an alternative and a safety-net for the legacy Domain
Name System (DNS). Built on top of Beehive (a general replication framework
that operates on top of any DHT that uses prefix-routing), it provides clients low

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 19

5 DHT APPLICATIONS

latencies for name resolution, automatic load-balancing during flash-crowds and
denial of service attacks, and quick dissemination of changes in DNS mappings. It
is currently deployed across the globe on Planet-Lab.

5.7.2 SENS

SENS [84] is a scalable and expressive naming system which can retrieve information
of computing and content resources distributed widely on the Internet by exact
queries and multi-attribute range queries over resource names. SENS utilizes a
descriptive naming scheme to name resources and a multi-dimensional resource
ID space for message routing through the overlay network of name servers (NSs).
The resource ID space is constructed on the overlay network based on CAN routing
algorithm. For example, the resource ID representing a computer can be: (string OS
= “linux”, string CPU-name = “Pentium 4”, int CPU-clock = 1000, int memory =
1024, int harddisk-unusedspace = 20, int network-bandwidth = 1000). And a query
can be: (string OS = “linux”, string CPU-name = “Pentium 4”, int CPU-clock ≥
1000 and int CPU-clock ≤ 1200, int memory ≥ 512, int harddisk-unusedspace ≥
10, int network-bandwidth ≥ 100). It uses multicast routing algorithm to deliver
resource information and a broadcast routing algorithm to route query messages to
corresponding NSs at minimum cost.

5.8 Communication

5.8.1 POST

POST [79] is a decentralized messaging infrastructure that supports a wide range
of collaborative applications, including electronic mail (ePOST), instant messaging,
chat, news, shared calendars and whiteboards. POST is built on top of Pastry
overlay network with desktop computers as the peers. POST offers three simple
and general services: (i) secure, single-copy message storage, (ii) metadata based
on single-writer logs, and (iii) event notification.

POST assumes the existence of a certificate authority. This authority signs
certificates binding a user’s unique name (e.g., her email address) to her public
key. The POST infrastructure allows users to create messages and insert them in
encrypted form into the system. To send a message to another user or group, the
notification service is used to provide the recipient(s) with the necessary information
to locate and decrypt the message. The recipients are then notified on message
arrival.

5.9 Query and indexing

5.9.1 XPeer

XPeer [92] is an XML-based content query system built on DHT systems in this
case XPeer is based on Pastry. XPeer utilizes XML to implement content-based
query using XPath as the query language so that it can query more than just the

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 20

5 DHT APPLICATIONS

simple keyword searching. XML data in XPeer can be totally heterogeneous and
support range query over DHT.

5.9.2 PIER

The largest database systems in the world scale up to at most a few hundred nodes
which is a lack of scalability. Database technology has not become ”an integral
part” of massively distributed systems like the Internet.

PIER [61] is designed as a query engine that comfortably scales up to thousands
of participating nodes. It is built on top of a DHT. PIER presents a ”technology
push” and ”application pull” for massive distribution: the querying of Internet-
based data in situ, without the need for database design, maintenance or integration.

5.10 Chat services

DHT can be used as chat services to bootstrap the friends, finding and sending
messages to people who are not currently online, create channels, etc. Example of
chat services applications are Retroshare Instant Messenger [14] and The Circle [3].

5.11 Application-layer multi-casting

5.11.1 Bayeux

The demand for streaming multimedia applications is growing at an incredible rate.
Bayeux [118] provides an efficient application-level multicast system that scales to
arbitrarily large receiver groups while tolerating failures in routers and network
links. Bayeux also includes specific mechanisms for load-balancing across replicate
root nodes and more efficient bandwidth consumption. The simulation results in-
dicate that Bayeux maintains these properties while keeping transmission overhead
low. To achieve these properties, Bayeux leverages the architecture of Tapestry.

5.11.2 Scribe

Scribe [35] is a scalable application-level multicast infrastructure. Scribe supports
large numbers of groups, with a potentially large number of members per group.
Scribe is built on top of Pastry, and leverages Pastry’s reliability, self-organization,
and locality properties. Pastry is used to create and manage groups and to build
efficient multicast trees for the dissemination of messages to each group. Scribe
provides best-effort reliability guarantees, and has extensions for applications to
provide stronger reliability. Simulation results, based on a realistic network topology
model, show that Scribe scales across a wide range of groups and group sizes. Also,
it balances the load on the nodes while achieving acceptable delay and link stress
when compared to IP multicast.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 21

5 DHT APPLICATIONS

5.12 Search Engines

Search Engine applications can be built on top of DHT allowing anonymous, un-
censored search in a distributed network of search-engine peers. Peers, which au-
tomatically or manually crawled the Internet and every web page visited, will be
automatically included in the distributed index. Rank could be assigned based on
the distributed usage statistics of the web page visited by users. Examples of these
applications are YaCy [20] and FAROO [5].

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 22

6 OTHER P2P SYSTEMS

6 Other P2P systems

This section surveys other popular P2P applications which are not necessarily based
on DHTs and do not necessarily deal with some of the scalability, dynamism and
fault tolerant issues. Nevertheless, it is important to consider these applications
since they are some of the most significant or popular P2P applications. We have
selected P2P systems which are relevant to the security issues in this survey. Fur-
thermore, as we will see later, other non-DHT P2P mechanisms may be more robust
when self protection issues become more imporant.

6.1 Napster

The earliest P2P application, Napster, was built to capitalise on the interest of
users in getting mp3 files from the Internet. Before Napster, the main distribution
mechanism for mp3 files was using client/server architecture: users upload their
mp3 files on a server/website and other users search for the website and content
there. Since the process of finding websites and content was not very reliable and
often search results had broken links, a common mp3 search engine and file sharing
like Napster became popular very rapidly.

Napster introduced a new way for distributing mp3 files by having the mp3 files
stored on users’ computers and maintaining a central server that lists the locations
of users having a particular mp3 files. Thus, a user (peer) can locate other peers
who have the mp3 files by querying the central server. The actual file is transferred
directly between the peers.

The architecture of Napster is a hybrid P2P since there is the centralized server
which still behaves more like a client-server and it was only the content transfer
itself which was between the peer machines. Napster did not attempt to directly
address P2P issues like scalability, bandwidth management, load balancing, fault
tolerance, etc. However, the demise of Napster was less because of technical issues
but stemmed rather from the legal problems of copyrighted content served by the
Napster index.

From a technical perspective, the problem which Napster did not deal with and
led to its demise was that it did not address P2P security issues which arise from P2P
systems. The primary ones which arise naturally in a content distribution context
are anonymity and censorship resistance. For example, Napster’s centralized index
lists which users have what mp3 files.

6.2 Gnutella

As Napster became popular, they faced the problem that the content residing on
Napster indexes included copyrighted material. Eventually Napster had to shut
down its network due to legal challenges. Gnutella gained popularity from the
demise of Napster as it providing anonymity to its users.

Gnutella works in a decentralized way without a central index. A peer (node)
that wants to join a Gnutella network first finds a live node in the network and

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 23

6 OTHER P2P SYSTEMS

connects to it (the bootstrap phase). After it is connected it will broadcast about
its existence by using a flooding to the nodes connected to it. The same technique
is applied when a peer wants to search for a file in the network. The search query
is broadcasted into the network as a flood request. Nodes that receive the flood
request can forward it to other reachable nodes. It can also consume/process the
request. Messages have a message identifier which is used to prevent loops. A
time-to-live field in messages which is decremented at every hop limits the spread
of messages in the network.

Anonymity is achieved by through deniability: no node knows who requested
the information since decentralization makes it difficult to determine whether a user
requested the data for himself or simply requested the data on behalf of another
user. Every node in the network acts as a universal sender and universal receiver to
maintain anonymity. The anonymity can be broken if all nodes cooperate to break
it, e.g. by saving local logs and correlating them.

This protocol initially could not scale to handle large number of peers but later
it was improved by promoting some nodes as Ultrapeers. Ultrapeers work by con-
necting to other Ultrapeers and routing search and query hit packets. The idea is
that the Ultrapeers’ internet connection is sufficiently fast that it can serve to route
search for a number of non Ultrapeers (called Leaf nodes) connected to it. A leaf
node keeps only a small number of connections open to Ultrapeers. An Ultrapeer
acts as a proxy to the Gnutella network for the leaf nodes connected to it.

A drawback of Gnutella is that search results are often unreliable. Nodes that
are far away and have rare items cannot be reached from certain nodes because of
the timeout limit. The bandwidth cost of searching on Gnutella is inefficient as it
grows quadratically to the number of connected nodes. Slow connections are also a
problem and may cause search requests to be dropped.

Gnutella has a number of security problems when it comes to malicious nodes.
Malicious nodes can spoof responses, advertise inaccurate content and topology
information. Queries can also be easily spoofed since requests are anonymous,
which leads to DoS flooding attacks.

6.3 FastTrack

FastTrack is similar to Napster where the central server is replaced by powerful
nodes (supernodes) to improve scalability. The supernode functionality is built
into the client. If a powerful computer with a fast network connection runs the
client software, it will automatically become a supernode, effectively acting as a
temporary indexing server for other, slower clients.

The bootstrap process contains a list of supernode IP addresses to be contacted
stored in the program and updates the supernodes list if possible. Nodes connected
to a supernode upload a list of files it intends to share to that supernode and
they also send search requests to that supernode. The supernode communicates
with other supernodes in order to process search requests. Nodes then can connect
directly to a hosting node to download the file.

One major vulnerability is the use of UUHash as a quick checksum for files. The

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 24

6 OTHER P2P SYSTEMS

UUHash algorithm is flawed as it only covers a fraction of the file. This makes it
trivial to create a hash collision which allows a large portion of the file to be altered
without altering the checksum. Thus it is easy to corrupt the FastTrack network.

Applications that uses FastTrack network are Kazaa and its variants. Another
security problem is that many of these applications are usually bundled with some
form of malware.

6.4 Freenet

Freenet [38] provides a decentralized file-storage. It concentrates more on providing
anonymity and security. Freenet was designed to work in untrustworthy and unre-
liable P2P environment with assumption that participants can operate maliciously
or fail without warning at anytime thus Freenet implements strategies to protect
data integrity and prevent privacy leaks and also provide graceful degradation and
redundant data availability.

Privacy in Freenet is maintained using a variation of Chaum’s mix-net scheme
[36] for anonymous communication. Messages travel trough node-to-node chains
with each link is individually encrypted until the message reaches the recipient.
Routing in Freenet uses a steepest-ascent hill-climbing search: it forwards request
to node that is believed to be the closest to the target. It’s similar with Gnutella
flooding search, except in Freenet the flood is not a blind flood but using a routing
table with a key closeness heuristic.

Each node on the search route stores a replica of the file to be able to process
future search queries more quickly. When node storage exceeds the capacity, files
are deleted according to the least-recently used principle. This results in a corre-
spondingly large number of replicas of popular files being created in the network,
whereas, over time, files which are requested less often are removed.

Freenet searches/stores files within the network using a document routing model.
Files are not stored in the providing peers but are intentionally stored at other
locations in the network. The reason is to create a network in which information
can be stored and accessed anonymously. This requires that the owner of a node
does not know what documents are stored on the local storage of the node. The
document routing model has been shown to be suitable for use in large communities,
however it can result in network partitioning.

6.5 BitTorrent

BitTorrent was designed as a P2P file sharing system to cope with flash crowds, for
example, a new popular file can be in high demand very quickly but after some time
the demand dies down. In its original form, BitTorrent was a hybrid P2P system.
BitTorrent used centralized servers called trackers which manage the file sharing
process. To participate in a BitTorrent network to share files (either to download
or upload files), a ”torrent” which contains the information about the file, its length,
name, hash, and the tracker’s URL file must be created. Peers can get together in
the same network by using the ”torrent” file and locate the tracker. The tracker

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 25

6 OTHER P2P SYSTEMS

keeps track of which peers are uploading/downloading the file and whether they
contain partial or complete copies of the file.

The file distribution protocol uses “equivalent retaliation” (tit for tat): a node
using this strategy will initially cooperate (see also Section 8.3.2), then respond in
kind to other node’s previous action. If the other node previously was cooperative,
the node is cooperative. If not, the node is not. The protocol is designed to
discourage free riding by having the peers respond to other peers that send some
data (cooperation among peers). Thus peers which upload more content (portions
of files) to other peers are more likely to also download more content.

Since TCP congestion control behaves poorly when a node sending too many
connections, flow control is needed by choking the file transfer process. Choking
also helps in achieving tit-for-tat protocol ensuring peers to have consistent down-
load rate. Choke algorithm is designed to keep good TCP performance and avoid
fibrillation (frequent choking and un-choking) and also should reciprocate to peers
who are cooperating.

As the torrent file contains a hash of the contents, BitTorrent has some self-
certification of authenticity of file contents as long as the tracker information is
correct. This makes it harder to corrupt the network.

More recent BitTorrent implementations take advantage of DHTs to create a
tracker-less BitTorrent system (see Section 5.1.1).

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 26

7 GENERAL SECURITY ISSUES

7 General security issues

We now turn to self protection and security issues for distributed P2P systems. We
begin by first asking what are the security questions in the context of distributed
P2P systems or applications.

7.1 Comparing to traditional computer security

In this section, we look at security issues in P2P (distributed) systems by comparing
them to their counterparts in traditional server-client (centralized) systems. Con-
fidentiality, integrity and availability are three fundamental objectives of security.
We will categorize the security issues in P2P systems into these three fundamental
security objectives.

7.1.1 Confidentiality

Generally speaking, confidentiality is assurance of data privacy. Only the intended
and authorized recipients: individuals, processes or devices, may read the data. In
the P2P context, there are some system, such as Freenet [38] and Tarzan [49, 51]
which focus on the confidentiality of their users. These systems provide anonymous
storage or anonymous communication channels where participants cannot be easily
identified. There are also hybrid (partially distributed) systems, such as the onion
routing [53], which provides the same functionality. Interestingly, the hybrid system
can be modified to a distributed system by replacing the server with DHT-based
peers. However, there are some security precautions which need to be taken into
account with this modification. We will look at them in Section 8.5.

7.1.2 Integrity

Integrity ensures that the information is authentic and complete. In DHTs, for
example, a “get” on a value of a key should produce the value of the most recent
“put” on the key. In P2P storage systems, the receiver should download the file
uploaded by the publisher and not anything else. Because the adversary model in
a P2P system is different from a centralized system, the mechanism used to ensure
integrity is also different. In a centralized system, clients implicitly have to trust
the integrity of the server. In a P2P system, on the other hand, it might not be
reasonable for participants to make any assumptions about the integrity of other
participants unless there are reasons to do so.

Integrity of data, e.g. files, key-value pairs, routing information etc., in a P2P
system can be achieved with replication. In particular, the data value which most
replicas have is used. The assumptions are that most of the peers are honest and the
replicas are evenly distributed among all the peers. As we discussed in Section 5.2,
various distributed file systems use replication for both availability and integrity. In
Section 8.2, some of the methods use replication to prevent routing attack. Here,
you can think routing attacks as integrity problem of routing tables.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 27

7 GENERAL SECURITY ISSUES

While integrity of data can be achieved by replication, integrity of participants
in a P2P system can be achieved with a reputation system. In the real world, trust
is often based on personal or corporate reputations. The higher the reputation of an
entity, the more trustworthy and reliable it is believed to be. The same idea can be
applied on P2P systems. For example, in P-Grid [63], the reputations are expressed
as complaints. The number of complaints a peer receives is inversely proportional to
its trustworthiness. We will look at reputation systems in Section 8.6. Replication
can be used to ensure the integrity of data.

7.1.3 Availability

An significant advantage of P2P system is availability or fault tolerance. Thus many
of P2P systems are designed to maximize availability. There are a few security issues
related to availability:

• Sybil Attack
The security of P2P systems often relies on assumptions that most of the
participants are legitimate. Even when one assume that most users (people)
are legitimate, a problem can still arise because users and participants do
not have one to one correspondence. A malicious user may appear as many
participants in the system. We will expand on this attack (also known as the
Sybil attack) in Section 8.1.

• Denial-of-Service Attack
A Denial-of-Service (DoS) attack is one which is designed to exhaust a resource
in such a way as to make the system to be either unusable or cause excessive
latency to occur. Generally speaking, DoS attacks can be classified into two
types: targeting at some specific nodes using traditional DoS methods, and
targeting at the whole distributed system using the mechanisms (e.g. node
join, leave) of the system itself. We will expand on DoS attack in Section 8.7.

• Robust Routing
In a P2P system, each node only knows a fraction of the whole system. This
fraction is usually called the node’s neighbor set. Even when most of the
nodes are correct, it may be possible for a small number of malicious nodes to
dominate the neighbor sets of other correct nodes. This means that the correct
nodes can be isolated from the system or even controlled by the malicious
nodes. We will expand on this attack (also known as the Eclipse attack) in
Section 8.2.

• Redundancy
Redundancy plays an important role in fault tolerance. Not only data can be
replicated, query, routing, can also be replicated. We will see that redundancy
appears in many forms in the following discussion.

• Fairness & Load Balance
In an ideal case of distributed file sharing systems, a file that is downloaded by

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 28

7 GENERAL SECURITY ISSUES

a peer is automatically opened for sharing with other peers. However, peers
can, and frequently do, turn off this property and stop sharing a downloaded
file to economize on their own resources such as bandwidth. Therefore, the
primary advantage of P2P file sharing systems, the implicit or explicit func-
tional cooperation and resource contribution of peers, may fail and lead to
a situation called free riding. We will look at some countermeasures in Sec-
tion 8.3.

• Censorship Resilience
It may be not difficult to block a single server or identify and block docu-
ments for centralized or well known servers. P2P systems however can be
much harder to block as they lack a single point of attack to block or destroy
documents. In Section 8.5 we will look at some censorship resilience systems.

7.1.4 Assumption and Effectiveness

The adversary model of traditional centralized systems is very different from decen-
tralized systems. In centralized systems, the border between trusted and untrusted
entities is clear. In decentralized systems, it is usually not clear whether a peer can
be trusted. Trustworthy can sometimes be measured probabilistically.

In centralized systems, the server is usually assumed to be trusted. For example,
in PKI, the certificate authority is assumed to be trustworthy. In decentralized
systems, usually we assume at least some fraction of peers to be trusted. For
example, in a distributed file sharing system with replication, more than half of the
nodes need to be correct in order to produce or retrieve the correct file.

Since the adversary model is probabilistic, the correctness of a distributed system
is also statistical. For example, given that 7/8 of the nodes are correct in a DHT,
a key lookup with 4-hop route will succeed with probability 58.6%.

7.2 Attacker Incentives

Over the last few years, attacks as a means of financial gain are becoming more
common.2 Since money is involved, the attackers tend to have larger resources
at their disposal. For instance, media owners can try to pollute the content in the
overlays by putting up nodes with corrupt chunks of data but with correct file names
to degrade the service. One intent would be to frustrate users and get them to stop
using the service. An example is MediaDefender which is a company which offers
services designed to prevent and stop people who engage in peer-to-peer copyright
infringement. It floods peer-to-peer networks with decoy files with the same title or
description as the pirated copies but with garbled data. MediaDefender is estimated
to have between 2000 servers around the world using 9GBps of bandwidth.[12]
Similar companies include OverPeer and MediaSentry. There are also patents [7,
17, 8] on such decoying techniques.

2This does not necessarily refer to criminal activities but merely activities which result in
monetary incentives.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 29

8 SECURITY IN P2P SYSTEMS

8 Security in P2P Systems

We are now ready to go in depth into self protection issues for P2P systems, namely
various specific security related attacks and defenses.

8.1 Sybil Attack

A Sybil attack [46] is a attack where an attacker can present multiple identities, and
uses them gain a disproportionately large influence in the system.3 Although the
Sybil attack in the P2P context has been recently named by Douceur, this flavour of
attack appears in many forms both in academia and in the real world. For example,
it is possible to rig Internet polls by using multiple IP addresses to submit votes.
Trying to manipulate the Google Pagerank rating of a page is also another form of
Sybil attack.

Many P2P systems assume an upper bound on the fraction of corrupted par-
ticipants. For example, in the Byzantine Generals Problem, the number of traitors
must be less than one third of the total number of generals. Many systems repli-
cate computational or storage tasks among several remote sites to protect against
integrity violations (data loss). If a certain fraction of the replicas are corrupted,
the system cannot provide the correct data. Others fragment tasks among several
remote sites to protect against privacy violations (data leakage). If a certain frac-
tion of the fragments are controlled by a single entity, that entity is able to discover
the data by itself.

Levine et al. [75] surveyed 90 papers on Sybil attack and categorized then
into eleven categories. Approximately half of the published papers either suggest
certification as a solution to the Sybil attack, following [46]’s approach, or simply
state the problem without giving a solution. He concluded that there is no general
solution to the Sybil attack, but there are a variety of solutions that can limit or
prevent the attack in several individual application domains.

In the following sub-sections, we look at different approaches to prevent the
Sybil attack.

8.1.1 Centralised identifier assignment

In this approach, participants use an identity authority, a trusted common third
party, to authenticate other participants’ identity. Usually the authentication is
done using public key infrastructure (PKI). This approach has several problems:

• The identity authority has to ensure each entity is assigned exactly one iden-
tity. However, this may itself be an issue for P2P systems.

• It uses a centralised mechanism which results in a single point of failure.

• The identity authority can be the performance bottleneck as it needs to be
contacted during enrollment, revocation checking.

3It is named after the subject of the book “Sybil” by Flora Rheta Schreiber, a case study of a
woman with multiple personality disorder.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 30

8 SECURITY IN P2P SYSTEMS

Castro et al. [33] suggests the use of certificate authorities (CAs) to issue cer-
tificates of identities. They propose two ways to prevent the attacker from easily
obtaining certificates of identities. One way is to require an attacker to pay money
for certificates. The money can also fund the operation of the CAs. The other way
is to bind node identities to real-world identities. However, both of the methods
raise a barrier which discourages users from joining the system.

8.1.2 ID Based On the Network Address

One way to prevent the Sybil attack is to only allow one identity per IP address (or
using the IP address as the identity). The reason of choosing the IP address is i)
that it is easy to verify the participant’s IP address4 and ii) the fact that attacker
usually has only a few IP addresses. This approach has several problems:

• The attacker can control many IP addresses, e.g a zombie network.5

• In IPv6 nodes can obtain a huge number of IP addresses, e.g. through using
the privacy extensions defined in RFC3041.

• Computers behind Network Masquerading or Network Address Translation
(NAT) share IP addresses with other computers in the same NAT domain. If
one identity per IP address is required, only one of the computers in the same
NAT domain can join the system.

• Dynamic IP causes a problem when the IP address itself is used as the identity.

The Chord DHT [105, 106] uses a hash of the node’s IP address as the node identity.
In the Tarzan system, Freedman et al. [49, 51] observes that a single machine is

likely to control only a contiguous range of IP addresses. This is typically achieved
by promiscuously receiving packets addressed to any IP address on a particular
LAN or by acting as a gateway router. Therefore, when selecting relays, one should
consider distinct prefix of IP addresses (the first n bits of the address), instead of
distinct IP addresses.

8.1.3 Resource Testing & Cryptographic Puzzles

If we assume the attacker has limited computing power,6 cryptographic challenges
can be used prevent Sybil attacks. In this approach, each node challenges it peers
by sending cryptographic puzzles and expecting correct solutions within a time
threshold. A genuine node should have no difficulty computing the solution. How-
ever, a Sybil node receives a large number of challenges and is assumed not to be
able to compute all the solutions. The challenges can be performed simultaneously

4Of course, there is IP spoofing, but it is another issue.
5A zombie network is a collection of zombie computers which have been compromised, e.g. by

a virus.
6Besides computing power, other resources include bandwidth and storage. However those

resources are rarely used for testing purposes. One can consider also IP addresses as the resource.
In this case, it broadens this approach to include the previous one.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 31

8 SECURITY IN P2P SYSTEMS

and periodically, randomly, or during node joining. Calculating the inverse of a
cryptographic hash function7 is commonly used as the puzzle.

Douceur [46] models this approach in two ways: accept identities which have
been directly challenged (direct test); and accept identities vouched for by other
already accepted identities (transitive accept). Unfortunately it is shown that both
are ineffective:

• For the “direct test” case, each entity has to simultaneously challenge its
peers. A faulty entity can counterfeit a constant number of multiple identi-
ties. Otherwise, if it is not simultaneous, a faulty entity can counterfeit an
unbounded number of identities.

• For the “transitive accept” case, Each entity also has to simultaneously chal-
lenges its peers. A single faulty entity can counterfeit a constant number of
multiple identities. A sufficiently large set of faulty entities can counterfeit an
unbounded number of identities.

One difficulty in the approach is deciding the time threshold on solving the
puzzle. The computing power of peers can vary significantly by one or more orders
of magnitude. Network delay in the Internet also varies. It is difficult to come up
with a time threshold which permits genuine users and limits the Sybil identities.

Aspnes et al. [26] propose two algorithms: Democracy and Monarchy. In Democ-
racy, each node i first broadcasts a random string si to every other node. Each node,
after collecting all the the si, calculates as many xj as possible, where the first w
bits of Hash(s1|s2|...|sn|xj)

8 are 0. Each node then broadcast all its xj and vali-
dates the xj received from other nodes. The Monarchy algorithm is different from
Democracy in the sense that the challenges are separated into n rounds instead on
one round. In each round, one node, called the king node, challenges every other
node. The reason for separating the challenges is that the cost of solving the hash
puzzle in Democracy is not deterministic. In Monarchy, the time-lock puzzle [97]
which has a fixed running cost can be used. Both of the algorithms cannot scale
well because each node sends and receives O(n) messages, and in total there will
be O(n2) messages.

Rowaihy et al. [98] propose an admission control system to mitigate Sybil at-
tacks by adaptively constructing a hierarchy of cooperative admission control nodes.
Implemented by the peer-to-peer nodes, the admission control system vets joining
nodes via client puzzles. A node wishing to join the network is serially challenged
by the nodes from a leaf to the root of the hierarchy. Nodes completing the puzzles
of all nodes in the chain are provided a cryptographic proof by the root node. This
approach is not fully decentralized, because the root node imposes a single point of
failure.

Jaffe et al. [63] developed a protocol called Sisyphus to prevent the Sybil attack.
There are two roles in the Sisyphus protocol, player and voucher. Each node plays

7Aspnes et al. [26] suggest using problems such as the time-lock puzzle [97] which cannot be
computed faster in parallel.

8“|” denotes string concatenation.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 32

8 SECURITY IN P2P SYSTEMS

a player role and may or may not play a voucher role. Each player is challenged
by k vouchers. The k vouchers for the player is determined by the IP address of
the player, e.g. generate k random node IDs using the player’s IP address as the
random seed. When node A wants to determine whether node B is a Sybil node,
A will consult B’s vouchers. They claim that when the random k vouchers are
uniformly generated, an adversary cannot become its own voucher.

8.1.4 Social Networks

Yu et al. [114] proposed a protocol named SybilGuard to prevent Sybil attacks
using a social network. In the social network, an edge between two nodes indicates
a human-established trust relationship. While malicious users can create many
Sybil identities and it might even be easy to do so, the same does not hold for trust
relationships. The assumption is that malicious users can only create a few trust
relationships. The basic insight is that if a malicious users create too many Sybil
identities, the graph becomes “strange” in the sense that it has a small quotient
cut i.e. a small set of edges (the attacker’s human relationships, also called attack
edges) whose removal disconnects a large number of nodes (all the Sybil identities
created by the attacker) from the rest of the graph.

However, it is not trivial to find the small cut without the complete topology.
In SybilGuard, each node performs a random route9 (starting from itself) of a
certain length w (w is suggested to be 2000 for the one-million node topology).
The honest node only accepts another node whose random route intersects with the
honest node’s random route. Because of the limited number of attack edges, with
an appropriate w, the verifier’s route will remain entirely within the honest region
with high probability.

8.1.5 Others Approaches

Instead of assuming a computation bound on attackers, S-Chord [48], a variant of
Chord, makes no assumption on their computation power. More precisely, S-Chord
assumes there is an omniscient and computationally unbounded adversary control-
ling the Byzantine peers and that the IP-addresses of all the Byzantine peers and
the locations where they join the network are carefully selected by this adversary.
The assumption that S-Chord makes on attackers is on the rate which attackers
join the network. For any fixed ε0 > 0, it is resilient to (1/4− ε0)z Byzantine nodes
joining the network over a time period during which: (i) there are always at least z
total nodes in the network; and (ii) the number of correct peers joining and leaving
is no more than zk for some tunable parameter k.

8.2 Routing Attacks

A robust routing protocol should ensure the correct message is routed to the correct
destination with high probability even when a small fraction of nodes do not follow

9In the full protocol, each node performs multiple random routes.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 33

8 SECURITY IN P2P SYSTEMS

the protocol. Here, we discuss some attacks and defenses to the routing protocol.
Atul Singh et al. [102] defined the Eclipse attack10 and proposed a way to

prevent Eclipse attacks. In an Eclipse attack, the attacker controls a large fraction
of the neighbor sets of correct nodes, it can “eclipse” correct nodes by dropping
or rerouting messages that attempt to reach them. In the extreme, the Eclipse
attack provides the attacker with full control over all overlay traffic. One might
think that Eclipse attack requires the attacker to have large number of nodes (or
identities), thus solving the Sybil attack solves the Eclipse attack. However, even
if attackers control only a small fraction of overlay nodes, they may still be able
to launch an Eclipse attack by exploiting the overlay maintenance algorithm. For
example, in an overlay like Gnutella, nodes replace faulty neighbors with nodes
obtained by traversing neighbor links. If the attacker controls a fraction f of the
nodes in the overlay, attacker nodes can return other compromised nodes whenever
they are asked to for a neighbor and correct nodes may still return a compromised
node with probability at least f . Therefore, the fraction of neighbors of correct
nodes that is controlled by the attacker tends to grow until the attacker has full
control over all overlay traffic.

In [102], the “degree bounding” method is proposed to prevent Eclipse attacks
against unstructured overlays such as Gnutella where the degree of nodes is not
constrained. The degree of a node is also referred to as the size of the routing
table or the size of the neighbor set. The basic rational behind the method is: the
degree of attacker nodes must be much higher than the average degree of nodes in
the overlay during an Eclipse attack. Thus, one way to prevent the Eclipse attack
is to bound the degree. The way to bound the degree is to periodically audit the
degree of its neighbor. Each node X periodically audits its neighbors for their list
of neighbors. If X is not in the list or the list is too large, the neighbor is considered
performing an Eclipse attack. Note that auditing needs to be anonymous, i.e. the
neighbor does not know that it is X who is auditing. Otherwise, the attacker can
simply give a list consisting only the auditor.

Castro et al. [33] proposed redundant routing at routing failure. They used
a general method which can be applied to different DHTs. In the model, each
node maintains a routing table with node IDs of other nodes and their associated
IP addresses. Moreover, each node maintains a neighbor set, consisting of some
number of nodes with node IDs near the current node in the ID space. In addition,
data is stored at more than one node in the overlay. A replica function maps an
object’s key to a set of replica keys. They provided a method to: (i) detect routing
failure; and (ii) if the routing is considered failed, redundant routing is applied.

Condie et al. [40, 39] proposed the use of induced churn as a defense against
Eclipse attacks. Induced churn consists of three techniques: periodic reset of routing
tables to less efficient but more attack-resistant ones, forced unpredictable identifier
changes, and rate limitation on routing table updates.

Reidemeister et al. [94] proposed three alternative routing protocols for the
CAN DHT to defense against Eclipse attacks.

10It is also called routing-table poisoning in other papers. Actually, this attack is not specific
to DHTs. For example, there are similar attacks to the link-state routing protocol.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 34

8 SECURITY IN P2P SYSTEMS

1. Multiple Identities
Each node joins as k identities independently. When issuing a query, the node
issues the query using all k identities. It is hard for the attacker to eclipse all
query routes.

2. Multi-Path Routing
A node issues the query using k independent routes.

3. Proximity Routing
The route is randomized so that it can not be predicted by the attacker.

Danezis et al. [43] proposed a Sybil-resistant routing strategy. In the proposed
strategy, lookup routing is implemented iteratively (instead of recursively). When
choosing the next hop, both the distance to the destination and the level of trust-
worthy are considered. In the original Chord, the next hop is the closest node in
the finger table to the key. I.e. Only the distance to the destination is consid-
ered. However, that node may be an malicious node because either the node id
is carefully chosen by the attacker or the finger table is “poisoned” by means of
“eclipse” attack. Because the “eclipse” attacker usually appears in many nodes’
neighbor-list, the level of trustworthy of a node is measured by the number of times
the node appeared in other nodes’ neighbor-list. The larger the number, the less
trustworthy.

Harvesf et al. [59] proposed an equally-spaced replication scheme and showed
that it can be tuned to produce any desired number of disjoint routes. More specif-
ically, they showed that d disjoint routes can be produced by placing 2d−1 replicas
around a fully populated Chord ring in an equally-spaced fashion. In this situation,
there exists a route to at least one replica, which contains only compromised nodes,
even if an attacker controls more than a quarter of the contiguous identifier space
in the system.

8.3 Fairness & Load Balance

8.3.1 Storage Fairness

In P2P systems which deal with storage, it is obvious that the amount of storage
consumed by a given node must be in proportion to the amount of storage space
they will provide to the network. Otherwise, free riding will result in too much data
for the storage space available. One way to ensure fairness is to have a centralized
quota administrator. However this results single point of failure and does not scale
well. We shall look at several different decentralized methods.

CFS [41] bases quotas on the IP address of the publisher. For example, if each
CFS server limits any one IP address to using 0.1% of its storage, then an attacker
would have to mount an attack from about 1000 machines for it to be successful.
This mechanism also limits the storage used by each legitimate publisher to just
0.1%, assuming each publisher uses just one IP address.

CFS stores data for an agreed-upon finite time interval. Publishers that want
indefinite storage periods can periodically ask CFS for an extension; otherwise, a

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 35

8 SECURITY IN P2P SYSTEMS

CFS server may discard data whose guaranteed period has expired. CFS has no
explicit delete operation, instead, a publisher can simply stop asking for extensions.
In this area, as in its replication and caching policies, CFS relies on the assumption
that large amounts of spare disk space are available.

If a system offers the persistent storage semantics typical of traditional file sys-
tems, the system will eventually fill up with orphaned data. OpenDHT [95] offers
storage with a definite time-to-live (TTL) which is specified during the put proce-
dure. The system discards the data after TTL is expired. OpenDHT uses a storage
allocation policy which ensures fairness in the sense that (i) upon overload, each
client has equal access to storage; (ii) it prevents starvation by ensuring a minimal
rate at which puts can be accepted at all times. The fairness is ensured at indi-
vidual nodes instead of globally in the whole system. This means a node can take
advantage of storing data under many keys (nodes) instead of one key. In order
to prevent starvation, the system always reserves space for future puts which is
estimated based on the minimal rate. A proposed put is rejected if the reservation
condition is violated. Figure 1 shows two proposed puts, a large one (in terms of the
number of bytes) with a short TTL in (a) and a small one with a long TTL in (b).
The large-but-short proposed put violates the condition, whereas the small-but-long
proposed put does not.

minmin

now

C

0

sum

put
potential

(a) (b)

future puts
(slope=r

potential
put

sum

now

C

0

future puts

now+max_ttl time now+max_ttl time

space space

))(slope=r

Figure 1: Storage allocation policy used by OpenDHT [95]

Ngan et al. [82] proposed a random peer auditing method to enforce storage
fairness. In their model, each node puts a list (called the remote list) of files in other
remote nodes. From the other node’s point of view, each node stores a list (called
the local list) of file for other nodes. Each node advertises its storage capacity (called
the advertised capacity) provided to the system. The rule is that a node can put
new files into the system only if its advertised capacity is larger than the size of its
remote list. Intuitively, this means if a node provides k bytes to the system, it can
put at most k bytes into the system. In order to ensure this, every node X audits
the nodes Y in its local list by asking them their remote list periodically. The file
which X stores for Y must appear in Y ’s remote list, otherwise, Y is cheating, and
X can delete the file. Note that the auditing must be performed anonymously, i.e.
Y does not know it is X who is auditing.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 36

8 SECURITY IN P2P SYSTEMS

8.3.2 Bandwidth Fairness & Free Riding

In the ideal case, a file that is downloaded by a peer is automatically opened for
sharing with other peers. However, peers can, and frequently do, turn off this
property and stop sharing a downloaded file to economize on their own resources
such as bandwidth. Therefore, the primary advantage of P2P file sharing systems,
the implicit or explicit functional cooperation and resource contribution of peers,
may be negated. Such selfish behavior leads to a situation called free riding.

An analysis [22] of user traffic on Gnutella shows a significant amount of free
riding in the system. By sampling messages on the Gnutella network over a 24-
hour period, Adar et al. established that almost 70% of Gnutella users share no
files, and nearly 50% of all responses are returned by the top 1% of sharing hosts.
Furthermore, they found out that free riding is distributed evenly between domains,
so that no one group contributes significantly more than others, and that peers that
volunteer to share files are not necessarily those who have desirable ones. They
argue that free riding leads to degradation of the system performance and adds
vulnerability to the system.

Ramaswamy et al. [90] suggested using a utility function based on contribution
and consumption to prevent free riding. The utility function determines whether
the P2P network will permit a peer to search and download a file or just reject
its request. The function is based on two parameters; the total size of the files
downloaded and shared11 by the peer. The difference of two values determines the
utility of the user to the system. If the user requests a file to download with a
size less than the utility value, then it is permitted to download. Otherwise, it is
refused. There are two ways to increase the utility value, either by sharing new files
or by waiting for some time for a bonus utility value. When a peer downloads a
file, its utility is decreased by the amount of the size of the downloaded file.

In [109], Vishnumurthy et al. suggested using a single scalar value, called Karma,
to evaluate a peer’s utility to a system like in [90]. Each peer has an account with
some Karma. When a peer uploads a file to a requesting peer, it gets some amount
of Karma from the requesting node. On the other hand, if it downloads, it gives
some amount of its Karma to the source peer. The account of a peer is replicated by
a group of peers, called the bank-set, in order to ensure the Karma against loss and
tampering. The transfer of Karma between peers is executed through the bank-set
of each peer.

Ledlie et al. [74] proposed that node should select their logical identifier so that
the fraction of the ID space for which they are responsible more closely matches
their fraction of the total system bandwidth. Their experiment shows that low-
bandwidth nodes obtain a 35% improvement in productivity when nodes perform
random block downloads on a 256-node network.

11The utility of a shared file is moderated by the popularity which is measured by the number
of times it is downloaded.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 37

8 SECURITY IN P2P SYSTEMS

8.4 Data Integrity

In some systems, such as BitTorrent, the downloader knows the cryptographic hash
of the data. It is easy for the reader to know whether the received data is correct.
However, in many distributed systems, it is more complicated for the reader to
ensure the authenticity of the data. We will look at a few systems on how they
provide data authenticity.

In CFS [41], a file can only be updated by its publisher. CFS authenticates
updates by checking that the new file is signed by the same key as the old one. A
time-stamp prevents replays of old updates.

In OpenDHT [95], a hash value of a secret is associated with each key-value pair.
To remove a key-value pair in the DHT, a client must supply the secret associated
with the key-value pair. To change a value, a client simply removes the old value
and puts a new one.

8.5 Anonymity & Censorship Resilience

It is not uncommon for file sharing P2P networks to contain copies of copyrighted
material. There are several companies such as NetPD, BayTSP and Cyveillance
which provide monitoring on the sharing copyrighted materials. On the other
hand, there are also systems which provide anonymity or censorship-resistance.
Anonymity plays a central role in private communication. Its applications range
from file sharing to military communication, and include anonymous email, private
web browsing and online voting. We will look at some of these systems.

Onion routing [53] provides anonymous and private Internet connections through
onion-routers. When a node X wants to talk a node Y , but does not want Y to
know X’s identity, X creates a route through a list of onion-routers R1, R2, ..., Rn.
Messages are passed from X through R1, R2, ..., Rn to Y . Replies are passed back
from Y through Rn, Rn−1, ..., R1 to X. For performance reasons, the same route
is used throughout the session. All packets are recursively encrypted using inter-
mediate onion-routers’ public keys so that none of the onion-routers know both X
and Y ’s identity. In other words, if some of the onion-routers are compromised, the
identity of X and Y are not revealed. Note that onion routing relies on PKI, which
is a centralized system. If the CA, in this case the directory server, is compromised,
the whole system is compromised. It has also been shown that if the first or last
onion-router is compromised the source or destination is revealed [108].

Tarzan [49, 51], also uses layered encryption and multi-hop routing. The source
chooses a set of relays to act as a path and iteratively establishes a tunnel through
these relays with symmetric keys between them. Tarzan is different from onion
routing in the sense that Tarzan use a distributed peer discovery protocol instead
of a centralized directory server.

In onion routing, a static route is selected to be used throughout a communi-
cation session. Wright et al. [111] shows that during long-period communication
sessions, intermediate onion-routers are likely to fail, thus routes are reconstructed
using a different list of onion-routers. After a large number of resets, the sender has

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 38

8 SECURITY IN P2P SYSTEMS

much higher probability of being a path member than other nodes. Assume that
the “first” attacker on each path (of the same session) logs its predecessor. After
a number of path resets, the identity of the sender can be guessed with increasing
probability. Cashmere [117] addresses the problem by replacing each onion-router
with a relay group. Thus a route consists of a list of relay group. A relay group
is a set of nodes which share a public/private key pair. Packets are forwarded
by any of the nodes in the relay group. It is shown that Cashmere reduces route
reconstruction and improves anonymity over onion routing.

Instead of PKI, Katti et al. [68] takes another approach by splitting a message
into many small pieces. Recall that PKI is used for hiding the route from inter-
mediate routers. Without PKI encryption, the first router R1 knows whole route
including the sender X and the receiver Y . With PKI encryption, the first router
R1 only knows X and R2. During the path construction in [68], the sender X,
instead of encrypting the remaining route after R2, splits the remaining route after
R2 into pieces and send each piece to R2 through different routers.

While previous systems provide anonymous communication channels, Freenet
[38] provides anonymous storage. In Freenet, both the publisher and retriever’s
identity are protected from censorship. It consists of a network of peers that host
encrypted documents. Like previous anonymous communication channels, files in
Freenet are passed through a chain where each peer knows only the adjacent peers.
Peers use keys to locate and access the encrypted documents on the network. There
are several types of keys. One of them is just a hash of the document itself. Another
one is keyword strings describing the document. As all documents in the system
are encrypted with some type of key, the host node does not know what documents
it is serving at any point. This allows the use of plausible deniability as a defence
against legal attacks against the owner of a node.

8.6 Trust and Reputation

Reputation is often used as a proxy for establishing trust. For example, transactions
in the real world are based on personal or corporate reputations. The higher the
reputation of an entity, the more trustworthy and reliable it is believed to be.
Similarly, in distributed systems, the higher the online reputation of a peer, the
more trustworthy it might be believed to be. By employing a reputation-based trust
mechanism, a decentralized network attempts to motivate honest participation and
promote cooperation in the system.

8.6.1 Considerations of Reputation Systems

• Peer Reputation v.s. Data Reputation
Depending on the requirement, reputation can be applied to the peers, data
or both.

For example, in an online transaction system like eBay, both peers can give
feedback to rate the other peer in the transaction. The received feedbacks are
aggregated to represent the reputation of the peer.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 39

8 SECURITY IN P2P SYSTEMS

In the BitTorrent file sharing context, shared files may be decoys posted by
attackers to distrrupt file sharing. In order to tell the useful ones from the
decoys, BitTorrent indexing websites allows users to rate the files. In this case
the reputation system is applied on data (files) but not the peers (users).

There are also systems which consider reputation of both peers and data.
Those systems can correlate the reputation of the data and the reputation of
the peers who provide the data. In other words, the peer who gives bad data
is a bad peer and it is likely to give bad data again.

• Reputation Store
The reputation can be centralized or decentralized stored. In this report, we
are only interested in decentralized storage. For example, in BambooTrust
[70], the reputation can be simply stored in the DHT. This raises another
problem: Should the reputation store be trusted?

• Reputation Values
The reputation can be represented as a continuous quantity or a binary deci-
sion. The binary value is simple, but partial satisfaction cannot be expressed.

• Adjusting the Reputation, Praise v.s. Blame
After a transaction bewteen two peers, both of the participants may give
feedback to the reputation system to adjust each other’s reputation. Feedback
to the system can be praise, blame or both. In the praise case, the initial
reputation starts with a low value and increases on praise feedback. Note
that, in this case, a user can create multiple identities and praise each other
in order to gain a high reputation. In the blame case, it starts with a high
value and decreases afterwards. Note that, in such case, peers can re-enter the
system with a new identity and its reputation is high again. Thus, the identity
must be controlled such that peer cannot arbitrarily create new identity. In
the third case, the reputation can go up and down. It suffers both of the
attacks in previous cases.

• Bandwidth, Storage and Computation Cost
Reputation lookup and feedback causes additional resources such as band-
width, storage and compution time. The additional resources sometimes can
be even larger than the original itself. For example, in order to prevent the
Denial-of-Service attack in a DHT system, one may only respond to those
peers with high reputation. However, response to a key lookup does not incur
much resources, the reputation lookup can incur much more source. For an
other example, in order to generate proof of transactions, which is commonly
needed by reputation systems, one needs to do public key sign/verification.
More over, certificate chain has to be verified. This may incur additional
lookups which may require additional transaction verifications. A reputation
system with high resource cost is vulnerable to DoS attacks.

There can be a tradeoff between efficiency and security. For example, reputa-
tion can be applied to a distributed file sharing system similar to BitTorrent

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 40

8 SECURITY IN P2P SYSTEMS

to prevent free riding. Suppose that the data receiver will pay the data sender
some form of token. Since paying the token, which requires public key signing
and verifying, is expensive, it is not feasible to pay after each byte is received.
Thus, payment should be after enough amount of data12 in order to be effi-
cient. On the other hand, if the amount of data is too large, the receiver may
simply get enough data and leave without paying.

• Anonymity
Based on the definition, reputation and anonymity may seem like conflicting
properties. However, sometime both properties need to hold at the same
time. For example, in a presidential election scenario, we need to know the
reputation of the candidates while keep the voters anonymous.

• Proof of Transaction
In order to make sure the feedback is honest, a proof of the transaction should
be given. For example, in a distributed file sharing system, the uploader
should give a proof of sending the correct file in order to raise its reputation. If
the downloader finds the file incorrect, he/she should give a proof of receiving
the wrong file in order to decrease the uploader’s reputation.

• Attacks
Depending on the reputation system, there are different types of attacks.

– Based on Sybil Attack
As we mentioned previously, the attacker can create a large number of
identities in order to increase his/her reputation or decrease other peer’s
reputation. If the reputation of the attacker becomes too low, he/she can
change to a new identity and his/her reputation resets to the default.

– Lie
If the reputation system does not have a proof mechanism for transac-
tions, the attacker can lie to the system. Firstly, the attacker can create
fake transactions to accuse honest nodes. Secondly, the attacker can cre-
ate fake transactions increase his/her reputation. Lastly, the attacker
can deny his/her transactions done previously.

– Denial of Service
If the cost of the reputation mechanism is too high, the attacker can
use the reputation mechanism to DoS the system. As we mentioned
previously, the cost of the reputation mechanism can be higher than
the transaction itself. For example, a public key signing is much more
expensive than a hashtable lookup. The attacker can repetitively ask
a honest node to do proof of transaction or verify the proof and bring
down the reputation system.

12Exchanging the amount of data for each payment is usually called transaction in reputation
systems.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 41

8 SECURITY IN P2P SYSTEMS

8.6.2 Trust and Reputation Case Studies

XenoTrust [47] is a centralized reputation based system. In XenoTrust, clients
can submit the assessment of the performance of other clients to the server. For
example, “Client X says client Y ’s honesty is 0.6.” Clients can, later on, query
the server for the performance of other clients. For example, “Tell me (X) what
is the average honesty of Y .” A more complicated example, “Tell me (X) what is
the average honesty of Y , computed based on statements made by clients whose
honesty I (X) valued to be larger than 0.5”. In this case, only the opinions of
the clients whom X trusted are averaged. In all the examples, X is known as the
advertiser and Y is known as the subject.

BambooTrust [70] implements XenoTrust as a distributed system. In Bam-
booTrust, the server is replaced by the OpenDHT [95]. All the assessments with
the same subject are stored under one OpenDHT node. All the queries requesting
the subject’s honesty are routed to the node.

PeerTrust [112] is a reputation-based trust supporting framework, which in-
cludes a coherent adaptive trust model for quantifying and comparing the trustwor-
thiness of peers based on a transaction-based feedback system. It is decentralized
and implemented over a structured P2P network.

In PeerTrust, a peer’s trustworthiness is defined by an evaluation of the peer it
receives in providing service to other peers in the past. The reputation reflects the
degree of trust that other peers in the community have on the given peer based on
their past experience. There are five important factors in this evaluation:

1. the feedback a peer obtains from other peers,

2. the feedback scope, such as the total number of transactions that a peer has
with other peers,

3. the credibility factor for the feedback source,

4. the transaction context factor for discriminating mission-critical transactions
from less or noncritical ones, and

5. the community context factor for addressing community-related characteris-
tics and vulnerabilities.

EigenTrust [66] is a reputation management system proposed for P2P file shar-
ing networks such as Gnutella to identify inauthentic files (or poisoned content) in
the network. In a file sharing network, attacker can publish inauthentic files under
attractive descriptions. These files waste bandwidth and storage. EigenTrust pro-
vides an algorithm to decrease the number of downloads of inauthentic files in a
peer-to-peer file-sharing network that assigns each peer a unique global trust value,
based on the peer’s history of uploads. A distributed and secure method is used
compute global trust values, based on Power iteration.

PRIDE [45] is a peer-to-peer reputation infrastructure that uses an elicitation-
storage protocol for exchange of recommendations. Each peer runs its own certifi-
cate authority which signs the identity certificate of the peer. In order to prevent

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 42

8 SECURITY IN P2P SYSTEMS

Sybil attack where an attacker creates a “liar farm”, IP Based Safeguard (IBS) is
used to ensure that a single IP address cannot act as two nodes.

Similar to EigenTrust, XRep [42] is proposed for preventing inauthentic files
from spreading in file sharing networks such as Gnutella. In XRep, reputation shar-
ing is realized through a distributed polling algorithm by which resource requestors
can assess the reliability of a resource owned by a participant before initiating the
download.

In P-Grid [21], reputations are expressed in the form of complaints. The more
the complaints a peer gets, the less trustworthy it could be. This assumes that most
of the peers in the network are honest.

OpenPrivacy Distributed Reputation System [72] is based on a web-of-trust
style network of peer certifications. Every certificate stores the value of the target’s
reputation and the confidence of the certificate creator. The reputation network is
composed of identities (nodes) and evaluation certificates (edges). The trustwor-
thiness of the nodes can be estimated from a visible sub-graph of the reputation
network.

RCertPX [86] is a reputation system which addresses the integrity of reputation
store. Each peer manages its own reputation using a reputation certificate (RCert).
A RCert consists of the peer’s public key and a list of signed feedbacks given by
other peers after previous transactions. After each transaction between two peers
PA and PB, the feedback given by PB is signed by PB and appended to PA’s RCert,
so does PB’s RCert. In order to prevent duplicating feedbacks, a time stamp and a
transaction serial number are included in the feedbacks.

TrustMe [101] addresses the anonymity issue of reputation systems. In TrustMe,
each peer does not know which peers gave it reputation, and what is the reputation.
Also, each peer does not know its reputation store. For example, if a peer knows
which peers gave it bad reputation, the peer can selectively deny service to them or
give them bad reputation as reponse. TrustMe assumes there is a trusted bootstrap
server which controls the identities of all the peers. The bootstrap server keeps a
public-private key pair which signs all the valid identities and public keys of all peers.
The reputation store (Trust-Holding Agent peers) of each peer Pi is chosen by the
bootstrap server and not known by any peers. Each peer queries and updates Pi’s
reputation through broadcasting, and the Trust-Holding Agent peers reply through
an anonymous communication channel.

8.7 Denial of Service

Denial of service attacks (DoS) to distributed systems can be classified in to two
types. The first type is similar to traditional DoS attacks which target at a single
host or a specific set of hosts. The adversary generates a large amount of traffic
to overload the targeted nodes. This will cause the nodes to appear to fail and a
well designed distributed system should be able to adapt to this as if the nodes
had failed in some normal manner. In this case, the system must use some degree
of data replication to handle it. This attack may be effective if the replication is
weak (i.e. the malicious nodes can target all replicas easily) or if the malicious node

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 43

8 SECURITY IN P2P SYSTEMS

is one of the replicas or colluding with some of the replicas. Sit and Morris [104]
suggested that, in order to prevent attacks on replicas, node identifiers must be
uniformly assigned and replicas should be located in physically disparate locations.
These would prevent a localized attack from preventing access to all replicas of a
given key. If an adversary wanted to shut out all replicas of a key, it would have to
flood packets all over the Internet.

Maniatis et al. [78] propose a set of counter measures against DoS attacks in
the context of the LOCKSS [77] digital preservation system. However, the ideas
can be applied on other distributed systems also. Here, we talk about the general
ideas without the knowledge of of LOCKSS.

• [Effort Balancing] It should cost more resource for the service requester
than the service provider. Otherwise the system is vulnerable to an attack
that consists simply of large numbers of ostensibly valid service requests.

• [Rate Limitation] Peers should satisfy requests no faster than necessary
rather than as fast as possible.

• [Admission Control] Under DoS attacks, some requests have to be dropped.
One way of doing so is to uniformly drop certain fraction of requests from
each requester. A better strategy would discriminate against the attacker by
selectively dropping his/her requests. Identifying an attacker can be based on
previous interaction or a reputation system.

• [Redundancy] A good replication strategy would force the attacker to DoS
attack every nodes in order to bring down a data item.

• [Compliance Enforcement] There is usually some cost for a legitimate
requester to process the result of its request, which an attacker would like to
avoid. It is possible for a requester to prove to the service provider that the
operation for which the request was made has actually been performed via an
unforgeable evaluation receipt.

• [Desynchronization] Synchronized operations should be used only when
necessary, because they enable the attacker to delay all participants.

Awerbuch and Scheideler [29] propose a DoS resistant DHT which is robust
against so-called past insider attacks. In a past insider attack, an adversary knows
everything about the system up to some time point t0 not known to the system.
After t0, the adversary can attack the system with a massive DoS attack in which
it can block a constant fraction of the servers of its choice. They show that their
system is able to survive such an attack in a sense that for any set of lookup requests,
one per non-blocked (i.e., non-DoS attacked) server, every lookup request to a data
item that was last updated after t0 can be served by the system, and processing all
the requests just needs polylogarithmic time and work at every server.

The other type of DoS attacks target at the whole distributed system by making
use of the mechanisms of the distributed system itself. The mechanisms can be

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 44

8 SECURITY IN P2P SYSTEMS

joining, leaving (including both proper leaving and silent leaving), query, update,
etc. Since each mechanism causes resources of the system, rapidly invoking these
mechanisms may bring the whole system down.

The rapid join-leave attack is discussed in [104]. As nodes join and leave the
system, the rules for associating keys to nodes imply that new nodes must obtain
data (from replicas) that was stored by nodes that have left the system. This
re-balancing is required in order for the lookup procedures to work correctly. A
malicious node could trick the system into re-balancing unnecessarily causing excess
data transfers and control traffic. This will reduce the efficiency and performance
of the system; it may even be possible to overload network segments. This attack
would work best if the attacker could avoid being involved in data movement since
that would consume the bulk of the bandwidth. Therefore, the system should force
the newly joined node (attacker) to be involved in data movement thus consuming
the bandwidth of the attacker.

Awerbuch and Scheideler [28] look at some types of join-leave and lookup-insert
attacks, I.e. the join-leave attacks which are used to isolate honest peers in the sys-
tem, and the lookup-insert attacks which are used to create a high load-imbalance.
More precisely, the proposed DHT is able to separate both peers and keys in the
ID space evenly even if a constant fraction of the peers in the system is adversarial.

In order to prevent join-leave attacks from intensively occupying a small interval
of the ID space, they introduce the cuckoo rule. In the cuckoo rule, when adding
(joining) a node at ID x, other nodes in in the region (called k-region) surrounding
x are moved (i.e. change ID) to other places randomly. They prove that nodes are
separated evenly. More precisely, any interval I contains Θ(|I| · n) nodes, and the
honest nodes in I are the majority (given that honest nodes are the majority in the
whole system).

In order to prevent lookup-insert attacks from overloading a small fraction of
honest nodes, a quorum strategy is used in the lookup-insert protocol, where a key is
replicated in 2c−1 = Θ(log n) nodes, and each lookup or insert will contact c nodes
among the 2c− 1 nodes. They prove that for any collection of lookup requests for
data items out of a set U of polynomial size with one request per node, the lookup
protocol can serve all of these requests correctly and reliably in polylogarithmic
time so that each node is passed by at most O(log5 n) requests.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 45

9 POSSIBLE DIRECTIONS FOR SELFMAN

9 Possible Directions for SELFMAN

The security issues in Section 7 and 8 are generally relevant to any distributed
and P2P system including SELFMAN. SELFMAN emphasis the self properties for
distributed systems and we would like such systems to be decentralized. The self
protection goals for SELFMAN are interlinked with self configuration, self tuning
and self healing. So the difference in this section is that we survey additional existing
work to what was earlier discussed with a view of in terms of the SELFMAN self
management objectives, i.e. both WP1 and WP4 and also possibly some influence
to WP2. Furthermore, we also discuss potential and promising research directions
for SELFMAN which have a security or self management aspect which links with
other components of SELFMAN.

We discuss some recent attacks on distributed and P2P systems. These at-
tacks have been prominent recently and we want to learn lessons and trends for
SELFMAN both for the basic infrastructure and also at the application level.

Finally, the intended SELFMAN applications must be considered in order to
get application level security. We discuss specific issues which we have identified as
being relevant to the intended driving applications for SELFMAN.

9.1 Attacks on SELFMAN Infrastructure and Applications

We now consider some recent attacks. These attacks have been highlighted be-
cause they are recent and have been of significant concern because of their general
impact. Skype and BitTorrent are two of the most widely used P2P applications.
Furthermore, they work because they do have have features which provide various
self properties.

The Skype outage is interesting as it did not seem to be a conventional malicious
or targeted attack but rather an accidental disruption of the Skype P2P network.
In a sense, this could be thought of as a kind of self-inflicted attack. It is significant
also in that it is a form of routing attack on the self healing features of Skype.
Although, ultimately, the details are probably only known to Skype, the relevance
to SELFMAN is that before this incident, Skype seemed to be one of the most
successful P2P networks employing overlay networks. It was also rather robust and
had not previously been brought down by any other circumstances or attacks.

We are also now seeing massive infrastructure attacks. One is the network
itself attacking distributed applications. The other is the difficulty of dealing with
distributed malware.

BitTorrent is perhaps one of the main contributors to the use of bandwidth on
the Internet. This is a testimony to the success of BitTorrent. Once an applica-
tion/protocol/service becomes successful, it tends to lead to new kinds of attacks.
Recently, a novel attack against BitTorrent emerged from an unlikely source – the
network itself. It appears from the reports that this can be seen as the network,
the internet service provider, thus, it can be thought of as a denial service attack
by the underlying network infrastructure against BitTorrent. Since is considered to
be unreliable in the sense that the communications service is best effort. However,

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 46

9 POSSIBLE DIRECTIONS FOR SELFMAN

one may not have earlier considered the network itself, as being the originator of
attacks. Now it appears that large scale attacks from the underlying infrastructure
are realistic.

Another source of distributed infrastructure attack is the massive distributed
attacks from zombie botnets. The Storm botnet shows how botnets are becoming
increasingly sophisticated to employ P2P-style techniques to hide themselves. They
seem to also seem to incorporate self management techniques, The difficulty of tak-
ing down the Storm botnet shows that distributed P2P self managing infrastructure
can be extremely robust and effective. (It seems that thus far, the Storm botnet
has resistent attempts to trace and take it down. The purpose of the botnet and
the Storm worm is also not well understood). It seems unfortunate that distributed
P2P malware with self management including self protection mechanisms may be
even more effective than legitimate applications.

9.1.1 Routing Attacks: the Skype Outage

On 16th August 2007, the Skype peer-to-peer network became unstable and suffered
a critical disruption. On Skype’s blog[18], the explanation for the disruption was
said to be caused by a bug related to the network resource allocation algorithm.
This bug was triggered by a massive restart of Skype computers caused by a monthly
Windows Update.

“The disruption was triggered by a massive restart of our users’ com-
puters across the globe within a very short timeframe as they re-booted
after receiving a routine set of patches through Windows Update. The
high number of restarts affected Skype’s network resources. This caused
a flood of log-in requests, which, combined with the lack of peer-to-peer
network resources, prompted a chain reaction that had a critical im-
pact. Normally Skype’s peer-to-peer network has an inbuilt ability to
self-heal, however, this event revealed a previously unseen software bug
within the network resource allocation algorithm which prevented the
self-healing function from working quickly.”

One might question, how come previous Microsoft Windows updates did not
cause disruption. The answer given by Skype [9] is that in order to cause the
disruption, both conditions must be met: “enough supernodes reboot” and “high
usage load”. During previous Windows updates, the second condition was not met.

There seems to various degrees of skeptism about the true reason for the Skype
outage. Ultimately, only Skype knows the details but since the Skype protocol and
implementation are not disclosed, it is rather difficult to verify the true cause of the
outage.

Some potential lessons can be identified here. Firstly, it shows that self healing
and management mechanisms can themselves be effective as ways of attacking a
system. Furthermore, the Skype example shows that an inadverdent and non-
malicious attack can nevertheless be quite successful. Secondly, churn attacks with
spikes in the joins and leaves in a distributed system might lead to instability. For

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 47

9 POSSIBLE DIRECTIONS FOR SELFMAN

example, a high load causes some node to fail, this places an even higher load on
other loads, which might cause a runaway failure of all the distributed nodes.

9.1.2 Essential Infrastucture Attacks: Network Bandwidth Throttling/Traffic
Shaping

Bandwidth throttling is useful for limiting the quantity of data sent/received for
resource intensive applications. It helps avoiding congestion and provides certain
Quality of Service. Peer-to-Peer applications are good candidates where bandwidth
throttling may be used to reserve bandwidth for other applications. One mechanism
by which bandwidth throttling is implemented is with traffic shaping to control the
volume of traffic being sent into a network, i.e. a form of rate limiting. This
mechanism is acceptable as long as the packets are not altered.

Recently it has been reported that Comcast, an Internet service provider (ISP)
in the United States, was modifying the behavior of the network for P2P traffic.
Apparently they were using Sandvine13 to specifically shape the P2P network traffic
of their subscribers.

There seems to differences in what is reported by users of Comcast versus the
official position of Comcast. It is alleged that Comcast have been applying band-
width throttling to target BitTorrent traffic by disrupting the network connections.
Rather than to use the IP mechanisms for flow control a more disruptive mech-
anism was used which is to “forge” the TCP reset packet. This attack is where
malicious nodes send TCP reset packets to both ends of peers so that they both
close the connection. This ends the traffic by disrupting the TCP connection of the
application.

It is interesting that with such an attack, the network takes the role of a mali-
cious attacker. Forging the TCP reset packet is a man in the middle attack which
injects special packets to the nodes in the network. It is challenging to deal with such
attacks since in the worst case, the attacker has full control over all the communica-
tion links of all the nodes in the distributed system. Identifying and distinguishing
the source of the attacks also becomes difficult. Such attacks may also pose to be
creative ways of getting around network service level agreements and quality of ser-
vice guarantees. In the worst case, it seems that no mechanism can effectively deal
with attacks which originate from the underlying communication infrastructure.

9.1.3 Denial of Service Attacks: the Storm Worm and Storm Botnet

The Storm worm is a Trojan horse which is estimated to have infected between 1
to 50 million [16] computers in 2007. Strictly speaking, the Storm Worm is not
an attack on distributed systems. Rather, it is rather an attack from a distributed
system. We discuss the Storm worm for two reasons. Firstly, the resulting Storm
botnet is extremely successful since it has resisted attempts at disrupting it, the
purpose of the botnet is not understood and the control mechanisms as well as the
originators of the worm are also unknown. Secondly, the infected computers which

13http://en.wikipedia.org/wiki/Sandvine

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 48

9 POSSIBLE DIRECTIONS FOR SELFMAN

make up the Storm botnet make use of peer-to-peer techniques to make monitoring
and disabling such a distributed system very difficult. From a SELFMAN perspec-
tive, it may be instructive to learn from the success of such malware.14 The trend
seems to be that such botnets will become increasingly common, so one may have
to come up with effective techniques for surviving from such a massive distributed
system.

The Storm Worm, also known as Small.dam, W32/Zhelatin and Win32/Nuwar,
was discovered on January 17, 2007. The worm propagates through email attach-
ments, web downloads and web browser exploits. Once a computer is infected, it
becomes a bot. This bot then performs automated tasks (anything from gathering
data on the user, to attacking web sites, to forwarding infected email) without its
owner’s knowledge or permission.

The location of the remote servers which control the botnet are hidden behind
a constantly changing DNS technique called “fast flux”, making it difficult to find
and stop virus hosting sites and mail servers. The simplest type of fast flux, referred
to as “single-flux”, is characterized by multiple individual nodes within the network
registering and de-registering their addresses as part of the DNS A (address) record
list for a single DNS name. This combines round robin DNS with very short TTL
values to create a constantly changing list of destination addresses for that single
DNS name. The list can be hundreds or thousands of entries long.

The botnet encrypts its traffic. More interestingly, around October 15, 2007
it was uncovered that portions of the Storm botnet and its variants were for sale
[2, 13]. This is being done by using unique security keys in the encryption of the
traffic. The unique keys will allow each segment, or sub-section of the Storm botnet,
to communicate with a section that has a matching security key.

The Storm botnet was observed to be defending itself, and attacking computer
systems that scanned for Storm virus-infected computer systems online. The botnet
is set up to launch a DDoS attack against any computer that is scanning a network
for vulnerabilities or malware [15].

9.2 Some Defence Mechanisms

We discuss some of the defence mechanisms and research challenges which are rel-
evant for self protection and management.

9.2.1 Trust and Authentication

In distributed systems such as SELFMAN where management is decentralized issues
of trust and authentication naturally arise. Trust and reputation has already been
discussed in Section 8.6. Here, we discuss some other related issues which can be
relevant for SELFMAN.

14Note that we are not advocating to understand how specific malware like the Storm worm
works. In the case of the Storm worm and botnet, the attackers seem to have been overwhelmingly
successful against the defenders.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 49

9 POSSIBLE DIRECTIONS FOR SELFMAN

SELFMAN WP3 is concerned with storage services. We illustrate special issues
which can arise with verifying data in P2P networks. In a distributed storage
system, peers (storage providers) store data belonging to other peers (owners). In
order to make it fair, the owners usually pay some form of tokens to the storage
providers. Owners may periodically check whether the data are still available and
authentic. If the data is not available or corrupted, the owners will invalidate the
tokens.

Integrity checking is easy if the owner has a local copy of the data. However, the
owner may no longer have the data, e.g. consider the case of recovering data from
a distributed P2P backup service. A naive solution is where the owner generates a
random key and a Message Authentication Code (MAC) of the data using that key.
During integrity checking, the owner sends the key to the storage provider and the
storage provider replies with the MAC for verification. The problem of this solution
is that the integrity checking can only be performed once. After that, the storage
provider can keep the MAC instead of the file. Thus, the storage provider can
correctly pass the integrity check even if the data is thrown away. The challenges
then are efficient and provably secure systems which can provide remote integrity
checks.

Some of the problems in a distributed system are simplified if there is an au-
thentication mechanism in place. Of course, in the case systems which want to
maintain anonymity, then one might not have authentication. The simplest is just
a centralized authentication server but that is not scalable.

Cornell Single Sign On (CorSSO) [65] provides a way to relocate the authenti-
cation mechanism from an application server to their clients and to new application
servers. They partition the functionality between authentication server and clients
to support scalability and distribute trust to tolerate attacks and failures.

The benefits of single sign on is that the user has a single persistent identity
and be authenticated once in a distributed manner and access any participating
service. This removes the need to create multiple identities for different services.
The application server is not burdened with authentication since the authentication
is handled elsewhere (outsourced). The single identity can be used to link action
between applications.

An example of single sign-on service is Microsoft’s passport.com but passport.com
is still managed by a single administrative entity. CorSSO delegates the authentica-
tion to a set of servers which may be operated by different administrators. However,
the set of servers must work together under an authentication policy so that they
can trust the result of checking a user identity.

9.2.2 Small World and Social Networks

We have already seen that DoS attacks, churn attacks and Sybil attacks can easily
occur in distributed systems without centralized control or management. Unfor-
tunately, it is impractical or impossible to fully secure systems like the ones in
SELFMAN against such attacks. We propose that rather than relying on struc-
tured overlay networks where there is little control over admission and routing,

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 50

9 POSSIBLE DIRECTIONS FOR SELFMAN

that more robust mechanisms based on small world networks can be investigated.

We have already seen in section 8.1.4 that although there is no general solution to
Sybil attacks, its possible to leverage on human social networks to make it difficult
for Sybil nodes to add additional trust relationships. Thus, the attacker can only
control a limited number of actual nodes in the social network. A social network is
usually modeled as a kind of small world network, i.e. a graph with low diameter.

In a social network, churn attacks may not be applicable since the social network
doesn’t need to maintain any special network topology. The topology of the nodes
in the social network is already fixed so stabilization algorithms are not needed.

Since there is a limited knowledge of the rest of the nodes in the network, this
also makes it more difficult for malicious nodes to attack other nodes. It also
provides a certain degree of anonymity to nodes in the network.

Nodes in a social network only know very local information. Nevertheless, be-
cause of the small diameter of the network, very simple greedy routing mechanisms
can be used. In the case of small world network based on Kleinberg’s model, which
is based on a d-dimensional torus with long range links, greedy routing can route in
in O(log2(n)) steps [69]. By adding more random links within log(n)2/d manhattan
distance from a node, routing can be improved to O(log(n)) steps [115].

Greedy routing relies on the nodes knowing some global positional information.
While it might be possible to obtain such information, the question is whether
a decentralized routing algorithm can work in a small world graph without such
global information. Sandberg [100] shows that greedy routing can be applied to
social networks without a proper global node position once the node identifiers
have been rearranged. They use a Metropolis-Hastings algorithm, a Markov Chain
Monte-Carlo technique, to rearrange the social network.

The small world network approaches we believe have potential since such net-
works are more difficult to attack. On the other hand, routing is probabilistic and
may fail. The experiments in Sandberg [100] show that after rearranging the net-
work, the number of steps in successful queries was close to that of the ideal model.
However the failure rate was higher than the ideal model. Thus there are challenges
in making routing efficient and robust as well as better decentralized mechanisms.

9.2.3 Monitoring for Self-Protection + Tuning

Monitoring of properties and behavior of the nodes is needed in order to do self
management. It is also needed to determine whether the system might be under
attack, i.e. some kind of intrusion detection system, and to respond. An example
is the Storm botnet which has an active monitoring defense mechanism to launch
DDoS attacks once attempts are made to probe a node in the botnet.

We highlight that monitoring requires a suitable infrastructure. At the node
level, a monitoring infrastructure which is robust and external to the applica-
tion/service being monitored is necessary. Typically, the monitoring is done at the
OS level in order to ensure that it cannot be subverted by the monitoree [32, 113, 91].
We have built two such monitoring systems, WinResMon [91] for Windows systems
and LogBox [113] for Linux. There are however issues as to make such monitoring

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 51

9 POSSIBLE DIRECTIONS FOR SELFMAN

higher level and the practical issues of dealing with large continuous monitor event
streams.

The distributed system level also needs a suitable monitoring infrastructure.
An example is [30] which proposed a distributed, self-organized, generic testing and
QoS monitoring architecture for IP networks. The architecture uses Distributed
Network Agents (DNA) and the Kademlia DHT 4.7 to self-organize. The DNAs
constantly monitor the network in a distributed way and send a message back to the
central server for some events. The central server also can query the current state on
demand. If the central server failed, the DNAs will still be working and gathering
information. The DNA has a Mediator component which runs as a daemon to
communicate to the user and test modules. The test modules (local or distributed)
can be added/removed by the user.

A DNA can communicate with other DNA to do distributed test module such
as user can ask random DNAs to see whether they can reach particular services
by doing port-scan. Another example is test throughput between two DNAs to
check whether it meets the service level agreement or to measure bandwidth or to
determine possible bottleneck in the network.

For a distributed test to be executed, a DNA must be able to transfer and run
the test module on other DNAs. This imposes a security risk for untrusted test
module and can be used as a DDoS attack. A central trusted server can be used
to distribute the test modules for small networks. For larger network, a distributed
single sign-on service [65] can be used as the trust model for the DNA.

Visualization may also be a complementary mechanism to automated self man-
agement. It may also be very useful in the development and debugging of distributed
SELFMAN-type systems. There is not much work done with visualization except
for network monitoring [25, 27, 37, 30]. This we think could have potential since
the amount of data being monitored can be huge and thus very difficult to make
sense of. Visualization is one way of enhancing the understanding.

9.3 Fairness and Free Riding

In order to ensure fairness, P2P applications need mechanisms to implement fairness
and discourage free riding. We will look at these issues in BitTorrent. From the
BitTorrent experience, one can see that building robust incentive mechanisms is
difficult. However, even if incentive mechanisms are not sufficiently robust, the
system may still be able to work well because of sufficient altruistic behavior. We
will also discuss free riding in Section 9.5.3.

BitTorrent implements a tit-for-tat (TFT) protocol to discourage free riding.
The implicit assumption is that BitTorrent is successful because TFT suppresses
free riding. This seems to be a widely held belief [87]. We discuss the problems
with TFT and why BitTorrent can still be successful even with the problems from
free riding. The TFT protocol can be attacked in a number of ways. BitTorrent
is susceptible to Sybil type attacks. BitThief [76] demonstrates that free riding in
BitTorrent is cheap. If the client peers are configured to accept multiple connections
from the same IP then one can create multiple identities (a form of Sybil attack)

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 52

9 POSSIBLE DIRECTIONS FOR SELFMAN

and exploit the ”initial cooperation” of the tit-for-tat protocol. The other weakness
that can be exploited is the “optimistic unchoking” where a peer will transfer free
data to other peers for free in order to get their cooperation. Many identities can be
created as long as trackers do not allow online identity checks (based on IP addresses
and ports) and support clients connecting from behind a firewall. Authentication
or maintaining identities is hard to do for BitTorrent unless it is supplemented by
other mechanisms and it is hard to do this in a distributed setting without central
servers.

Piatek et al. [87] explain that the reason why BitTorrent works is not because
the TFT protocol is a robust incentive mechanism but because there are a small
fraction of high performant peers that are sufficiently altruistic. This altruism can
be exploited by a selfish peer. Moreover, the upload from a peer doesn’t directly
affect the download performance. This can also be exploited strategically by a peer
to download more (a median performance gain of 70%) with the same amount of
upload size.

Another explanation [57] is that despite of the weakness of the TFT protocol,
BitTorrent still survives because there is another incentive that suppresses the sig-
nificance of free riders. By leaving the meta-data (.torrent files) search outside of
the BitTorrent system, this may have the side-effect of promoting peer altruism. An
example is that peers in the same community (this is called tribal systems) that re-
ally want to share files usually have incentives to share by building a bulletin board
or website dedicated for indexing torrents related to the community. If the commu-
nity is popular, the “tribe” will last for a long time since many peers will download
and contribute especially those who have excess bandwidth. They conclude that
the presence of free riders in this community will not significantly hurt file sharing.
However, BitTyrant [87] shows that if strategic peers improve their download rate
and significantly reduce their contribution, it can hurt the swarm. Thus, free riding
in BitTorrent is certainly possible. It is unclear if incentive mechanisms can build
robustness in BitTorrent.

9.4 API Issues

Security extends to the APIs or services provided in SELFMAN. In this section, we
will review how security can be incorporated in the API of an overlay network.

9.4.1 Chord API

We start by using the Chord API as a reference. Chord only provides a routing
mechanism which includes node join/leave, key based routing and routing table
maintaince. It does not provide data storage, replication, authentication or encryp-
tion. The API of Chord can be viewed as a simple one, namely the following three
functions which encapsulate the underlying routing table and query routing:

• join(bootstrap node)
Given the IP address of another node already in the Chord DHT, the join

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 53

9 POSSIBLE DIRECTIONS FOR SELFMAN

function joins the calling node in the Chord DHT. Since node ID is derived
from its IP address, there is no need to specify node IDs as parameters.

• IP address = lookup(key)
The lookup function is the core of the Chord DHT. It tells you which node
is in charge of the given key.

• leave()
The leave function is used to disassociate the node with the DHT properly.
One can also force the node to disconnect immediately and let other nodes
gradually fix their routing table.

The Chord API does not have any provision for security. This means that
security of the overlay network has to be handled by other means.

9.4.2 OpenDHT API

OpenDHT provides a simple API to store and lookup three types of data: normal
key-value entries, immutable entries and signed entries. It provides some basic
security at the DHT level.

In OpenDHT, every entry is associated with a time-to-live (TTL) value (see
Section 8.3.1). An entry is automatically removed from the system when TTL ex-
pires. An entry can also be removed explicitly by the owner of it, except immutable
key-value entries.

Normal entries are put into the system with the hash value of a secret which is
used in explicit removal. Immutable entries are special entries which satisfy key =
H(value). These entries are robust against squatting and drowning. Squatting
means that malicious users can occupy the namespace before honest users. Note
that, in OpenDHT, there can be multiple entries under a single key, thus squatting
is not a problem. Drowning refers to putting a vast number of values under a key,
forcing other clients to retrieve a vast number of such “chaff” values in the process
of retrieving legitimate ones. The “immutable” idea can be found in other content
addressable databases such as CFS [41] and Pond [96]. A signed entry is one which
is certified by a particular public key. OpenDHT assumes that the readers, i.e.
callers of get-auth(), have the public key of the entry. How they get and store the
public key is not specified by OpenDHT.

Here, we briefly describe the functions of the API. Each function is designed to
work with a specific type of entries.

• put(k, v,H(s), t)
Write (k, v) pair for TTL t. It can be removed with secret s.

• {(v, H(s), t), . . .} = get(k)
Read all v stored under k. The returned value is unauthenticated.

• remove(k,H(v), s, t)
Remove the (k, v) pair put with secret s, and t is greater than the remaining

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 54

9 POSSIBLE DIRECTIONS FOR SELFMAN

TTL. OpenDHT stores removes like puts, and a DHT node discards a put
for which it has a corresponding remove. To prevent the DHT’s replication
algorithms from recovering this put when the remove’s TTL expires, clients
must ensure that the TTL on a remove is longer than the TTL remaining on
the corresponding put.

• put-immut(k, v, t)
Write (k, v) for TTL t. Immutable means k = H(v).

• (v, t) = get-immut(k)
Read v stored under k. The returned value is immutable and thus is authen-
ticated.

• put-auth(k, v, n, t, KP , σ)
Write k as the key, v as the value and KP as the public key for TTL t. The
private key KS can be used to remove it by supplying σ = {H(k, v, n, t)}KS,
where n is a nounce.

• {(v, n, t, σ), . . .} = get-auth(k,H(KP))
Read all v stored under (k,H(KP)). The returned value is authenticated.

• remove-auth(k,H(v), n, t, KP , σ)
Remove (k, v) with nonce n parameters as for put-auth.

9.5 Application Issues

Security ultimately needs to be at an application level if one is going to have some
forms of security guarantees, either theoretical or perhaps pragmatics/experimental-
based ones. Much of the issues discussed thus far might be relevant to many appli-
cations but of course it would need to make sense in the context of the application.
In this section, we have looked around to see if there might be some specific security
issues which would be relevant to the intended applications for WP5. These issues
are meant to ones which are specific to the applications in question.

In our discussion, more special application needs arise in the Wikipedia and
content distribution applications since these are quite specific applications with
special needs. The M2M application is more general, thus, there are not very much
special application needs. Rather much of the the earlier part of this report, as well
as, this section can be applicable.

9.5.1 Some M2M Application Issues

The M2M application is primarily a distributed monitoring application with dis-
tributed collection and processing data together with self management. Unlike the
other applications, the M2M application focuses more on monitoring so the generic
issues are more applicable here. For example, DDoS attacks against nodes in the
M2M network or spoofing attacks which try to fake sensor data. We describe some
of the potential security concerns based on the use cases.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 55

9 POSSIBLE DIRECTIONS FOR SELFMAN

Since the primary objective is monitoring, the more important security issues
are those related to quality of service (QoS) and logging. It is generally difficult
to deal with DoS attacks in an open system but ultimately if QoS guarantees are
needed, then some partial mitigation or quantifying the impact of DoS may be
needed. This may be of particular importance in critical monitoring services like
the fire alarm service. It may mean that the design of the system may be more
closed.

Accountability and trust may also be important with logging services. Again
it will depend on how open will the application be which will shape the nature
of the security threats. Authentication services will also probably be needed. As
data is collected from many nodes and fused together, the quality of the data may
need to be assessed. Some form of reputation together with probabilistic models
of sensor data correctness can be used to assess the quality of context information
transmitted in the M2M system.

A more conservative architecture for the M2M application is as a closed system
for the primary data routing and processing and a P2P network for other services
such as logging. However, even when the system is closed, there are often specific
security threats or exploits which may be launched against nodes. In Skype, even-
though Skype is a closed system with a closed protocol, the implementation takes
care to ensure that it is difficult to make use of Skype by using obsfucation and
code checking to ensure that the code hasn’t be tampered with.

The sensors may also pose problems for security at the sensor network level.
In many sensor networks, one of the difficulties is that security can be difficult to
achieve simply because the sensor nodes have too little computation power which
restricts the use of encryption techniques.

9.5.2 Some Wiki Application Issues

Wikipedia has special issues because of the way Wikis work and how they are
managed. We discuss some of these as they may be relevant to SELFMAN.

In Wikipedia, some editors, also known as administrators [19], have access to
special features that help with maintenance. Wikipedia grants administrator status
to anyone who has been an active and regular Wikipedia contributor for at least
a number of months, is familiar with and respects Wikipedia policy, and who has
gained the trust of the community. They can protect and delete pages, block other
editors, and undo these actions as well.

Some of administrators’ additional privileges are:

1. blocking an IP address, user name, or range of IPs, from editing;

2. deleting a page;

3. viewing the history of a deleted page or a user’s deleted contributions;

4. locking or unlock a page, and editing locked pages.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 56

9 POSSIBLE DIRECTIONS FOR SELFMAN

Administrators are promoted by bureaucrats who are promoted by stewards who
are elected annually. Administrators are not employees of the Wikimedia Founda-
tion, while bureaucrats and stewards are.

As we can see, editors do not have equal privileges. Wikipedia uses a manual and
hierarchical system instead of automatically using a reputation system. However,
they are able to manage a huge number of editors and articles by controlling a small
fraction at the top level of the hierarchy. As of 2007, there are only 30 stewards.
However, there are 1381 administrators and more than 5 million registered users.

We can see that the challenge here would be to improve the management of a
more distributed Wikipedia in more untrusted environments. Trust management
issues (see Section 8.6) would be useful as part of such a distributed scenario.

9.5.3 Some Media Content Delivery Issues

The details of the Stakk P2PTV application for WP5 are not well understood yet.
A preliminary view might be that it will exhibit a combination of the features of
Skype combined with BitTorrent but for live media content. Two approaches are
envisaged: (a) a closed implementation like Skype which uses proprietary encrypted
protocols; and (b) an open protocol. The focus is intended to be a closed imple-
mentation so the security threats would be more the standard attacks which are
possible on a distributed system.

Since this application will be concerned about content distribution for video
and such kinds of media content, we will discuss some P2P issues which exploit the
semantics of the media.

One issue is the free riding problem for video-on-demand. As discussed, the
TFT protocol in BitTorrent works in practice but perhaps for other reasons and not
because it’s a robust incentive mechanism. Another way to discourage free riding
in P2P Video-on-Demand is Give-to-Get [80]. In Give-to-Get, each peer forward
video data to its neighbours according to their forwarding ranks. Peers with a
higher forwarding rank receive video data at a higher priority. A peer’s forwarding
rank is computed based on the number of chunks it has forwarded during the last δ
seconds. A peer checks the number of forwarded chunks of its neighbours by asking
its neighbours’ neighbours.

Another way to avoid free riding issue and provides resilience at the same time
is by using Multiple Description Coding (MDC) [54] on the video data stream
splits the video stream into several sub-streams (referred to as descriptions) which
are bartered among the peers. The video quality improves with the number of
descriptions received in parallel. MDC is also used to provide error resilience to
media streams where network congestion or packet loss will not interrupt the stream
but only cause a temporal loss of quality for that particular chunk of data stream.
This technique is employed by P2P-TV [88]. For this to work, every peer must
forward streams to others. Tit-for-tat scheme cannot be used in this case due to
asymmetry in connections (Internet connections are often assymetric, a peer often
cannot donate as much bandwidth as it can consume). They used a debt and credit
mechanism between peers to solve this problem where peer can obtain a full capacity

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 57

9 POSSIBLE DIRECTIONS FOR SELFMAN

video stream and repay their debt later. Lossy light-weight reputation mechanisms
from [56] and [83] are also used.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 58

REFERENCES

References

[1] Bittorrent continues to dominate internet traffic. http://torrentfreak.

com/bittorrent-dominates-internet-traffic-070901/.

[2] The changing storm. http://www.secureworks.com/research/blog/

index.php/2007/10/15/the-changing-storm/.

[3] The circle homepage. http://thecircle.org.au/.

[4] Codons homepage: Cooperative domain name system. http://www.cs.

cornell.edu/people/egs/beehive/codons.php.

[5] Faroo homepage: Peer-to-peer web search engine. http://www.faroo.com/.

[6] Feedtree homepage: collaborative rss and atom delivery. http://feedtree.

net/.

[7] Method and apparatus for limiting unauthorized copying of copyrighted works
over the internet. http://www.freepatentsonline.com/6732180.html.

[8] Method to inhibit the identification and retrieval of proprietary media via
automated search engines utilized in association with computer compatible
communications network. http://www.freepatentsonline.com/6732180.

html.

[9] The microsoft connection clarified. http://heartbeat.skype.com/2007/08/
the microsoft connection explained.html.

[10] P2p remains dominant protocol. http://www.slyck.com/story1502 P2P

Remains Dominant Protocol.

[11] P2p traffic still dominates the net. http://www.networkworld.com/news/

2005/082905-p2p.html.

[12] Peer-to-peer poisoners: A tour of mediadefender. http://arstechnica.com/
articles/culture/mediadefender.ars.

[13] Researcher: Storm worm botnet up for sale.
http://tech.blorge.com/Structure:/2007/10/15/

researcher-storm-worm-botnet-up-for-sale/.

[14] Retroshare homepage. http://retroshare.sourceforge.net/.

[15] Storm botnet puts up defenses and starts attacking back. http://www.

informationweek.com/news/showArticle.jhtml?articleID=201800635.

[16] Storm worm botnet more powerful than top supercomputers. http://www.

informationweek.com/story/showArticle.jhtml?articleID=201804528.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 59

REFERENCES

[17] System for distributing decoy content in a peer to peer network. http://

www.freepatentsonline.com/20060034177.html.

[18] What happened on august 16. http://share.skype.com/sites/en/2007/

08/what happened on august 16.html.

[19] Wikipedia administrators. http://en.wikipedia.org/wiki/Wikipedia:

Administrators.

[20] Yacy homepage: P2p web search engine. http://www.yacy.net/yacy/.

[21] Karl Aberer, Philippe Cudre-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-grid: A
self-organizing structured p2p system. ACM SIGMOD Record, 2003.

[22] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First
Monday, 2002.

[23] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. Dks: A
family of low communication, scalable and fault-tolerant infrastructures for
p2p applications. 3rd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGRID), 2002.

[24] Mattias Amnefelt and Johanna Svenningsson. Keso - a scalable, reliable and
secure read/write peer-to-peer file system. Master Thesis, KTH/Royal Insti-
tute of Technology, 2004.

[25] C Arad, O Kafray, A Ghodsi, R Yap, P Brand, V Vlassov, and S Haridi.
Gods: Global observatory for distributed systems. 2006.

[26] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Expos-
ing computationally-challenged byzantine impostors. Technique Report,
YALEU/DCS/TR-1332, Yale University Department of Computer Science,
2004.

[27] Giuseppe Ateniese, Chris Riley, and Christian Scheideler. Survivable moni-
toring in dynamic networks. 2004.

[28] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust
dht. Proceedings of the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures, 2006.

[29] Baruch Awerbuch and Christian Scheideler. A denial-of-service resistant dht.
Distributed Computing, 2007.

[30] Andreas Binzenhofer, Kurt Tutschku, Bjorn auf dem Graben, Markus Fiedler,
, and Patrik Arlos. A p2p-based framework for distributed network manage-
ment. Wireless System / Network Architect, 2005.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 60

REFERENCES

[31] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
and Yaron Minsky. Bimodal multicast. ACM Transactions on Computer
Systems (TOCS), Volume 17 , Issue 2 (May 1999) Pages: 41 - 88, 1999.

[32] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic in-
strumentation of production systems. USENIX Annual Technical Conference,
2004.

[33] M Castro, P Druschel, A Ganesh, A Rowstron, and DS Wallach. Secure rout-
ing for structured peer-to-peer overlay networks. ACM SIGOPS Operating
Systems Review, 2002.

[34] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth content
distribution in cooperative environments. International Workshop on Peer-
to-Peer Systems, 2003.

[35] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-
stron. Scribe: A large-scale and decentralised application-level multicast in-
frastructure. IEEE Journal on Selected Areas in Communications (JSAC)
(Special issue on Network Support for Multicast Communications), 2002.

[36] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 1981.

[37] Yan Chen, David Bindel, Hanhee Song, and Randy H. Katz. An algebraic
approach to practical and scalable overlay network monitoring. SIGCOMM
04, 2004.

[38] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg, and Bran-
don Wiley. Protecting free expression online with freenet. IEEE Internet
Computing, 2002.

[39] Tyson Condie, Varun Kacholia, Sriram Sankararaman, Joseph M. Hellerstein,
and Petros Maniatis. Induced churn as shelter from routing-table poisoning.
Network and Distributed System Security, 2006.

[40] Tyson Condie, Varun Kacholia, Sriram Sankararaman, Petros Maniatis, and
Joseph M. Hellerstein. Maelstrom: Churn as shelter. 13th Annual Network
and Distributed System, 2005.

[41] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with cfs. 18th ACM Symposium on
Operating Systems Principles, 2001.

[42] Ernesto Damiani, Sabrina De Capitani di Vimercati, and Stefano Paraboschi.
A reputation-based approach for choosing reliable resources in peer-to-peer
networks. 9th ACM conference on Computer and communications security,
2002.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 61

REFERENCES

[43] George Danezis, Chris Lesniewski-Laas, M. Frans Kaashoek, and Ross An-
derson. Sybil-resistant dht routing. European Symposium On Research In
Computer Security, 2005.

[44] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algo-
rithms for replicated database maintenance. Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, 1987.

[45] Prashant Dewan and Partha Dasgupta. Pride: Peertopeer reputation infras-
tructure for decentralized environments. 13th international World Wide Web
conference on Alternate track papers and posters, 2004.

[46] John R. Douceur. The sybil attack. 1st International Workshop on Peer-to-
Peer Systems (IPTPS’02), 2002.

[47] Boris Dragovic, Evangelos Kotsovinos, Steven Hand, and Peter R. Pietzuch.
Xenotrust: Event-based distributed trust management. 14th International
Workshop on Database and Expert Systems Applications, 2003.

[48] Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzantine
attacks. European Symposium on Algorithms (ESA), 2005.

[49] Michael J. Freedman. Tarzan: A peer-to-peer anonymizing network layer.
First International Workshop on Peer-to-Peer Systems, 2002.

[50] Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing
content publication with coral. Proceedings of the 1st Symposium on Net-
worked Systems Design and Implementation (NSDI 2004), 2004.

[51] Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris. Introduc-
ing tarzan, a peer-to-peer anonymizing network layer. First International
Workshop on Peer-to-Peer Systems (IPTPS 02), 2004.

[52] A Ghodsi. Distributed k-ary system algorithms for distributed hash tables.
2007.

[53] David Goldschlag, Michael Reedy, and Paul Syversony. Onion routing for
anonymous and private internet connections. Communications of the ACM,
1999.

[54] Vivek K Goyal. Multiple description coding: Compression meets the network.
IEEE Signal Processing Magazine, 2001.

[55] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van
Renesse. Kelips: Building an efficient and stable p2p dht through increased
memory and background overhead (2003). 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), 2003.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 62

REFERENCES

[56] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system for
peer-to-peer networks. Proceedings of the 13th international workshop on
Network and operating systems support for digital audio and video, 2003.

[57] David Hales and Simon Patarin. How to cheat bittorrent and why nobody
does. 2005.

[58] Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-peer steganographic
storage. First International Workshop on Peer-to-Peer Systems (IPTPS 02),
2002.

[59] Cyrus Harvesf and Douglas M. Blough. The effect of replica placement on
routing robustness in distributed hash tables. 6th IEEE International Con-
ference on Peer-to-Peer Computing, 2006.

[60] Nicholas J.A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and
Alec Wolman. Skipnet: A scalable overlay network with practical locality
properties. USENIX Symposium on Internet Technologies and Systems, 2003.

[61] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the internet with pier. Proceedings of 19th
International Conference on Very Large Databases (VLDB), 2003.

[62] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A decentralized
peertopeer web cache. 21th ACM Symposium on Principles of Distributed
Computing (PODC 2002), 2002.

[63] Elliot Jaffe, Dahlia Malkhi, and Elan Pavlov. Limiting duplicate identities
in distributed systems. 2nd Workshop on Future Directions in Distributed
Computing, 2004.

[64] Petri Jokela, Pekka Nikander, Jan Melen, Jukka Ylitalo, and Jorma Wall.
Host identity protocol: Achieving ipv4 - ipv6 handovers without tunneling.
Wireless World Research Forum (WWRF8bis), 2004.

[65] William Josephson, Emin Gun Sirer, and Fred B. Schneider. Peer-to-peer
authentication with a distributed single sign-on service. iptps04, 2004.

[66] Sepandar D. Kamvar, Mario T. Schlosser, and Hector GarciaMolina. The
eigentrust algorithm for reputation management in p2p networks. 12th inter-
national conference on World Wide Web, 2003.

[67] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin,
and Rina Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web. ACM Sym-
posium on Theory of Computing, 1997.

[68] Sachin Katti, Dina Katabi, and Katarzyna Puchala. Slicing the onion: Anony-
mous routing without pki. HotNets IV, 2005.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 63

REFERENCES

[69] Jon Kleinberg. The small-world phenomenon: An algorithmic perspective.
32nd ACM Symposium on Theory of Computing, 2000.

[70] Evangelos Kotsovinos and Aled Williams. Bambootrust: Practical scalable
trust management for global public computing. ACM symposium on Applied
computing, 2006.

[71] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. ACM SIGPLAN Notices, 2000.

[72] Fen Labalme and Kevin Burton. Enhancing the internet with reputations, an
openprivacy white paper. 2001.

[73] Martin Landers, Han Zhang, and Kian-Lee Tan. Peerstore: Better perfor-
mance by relaxing in peer-to-peer backup. Fourth International Conference
on Peer-to-Peer Computing, 2004.

[74] Jonathan Ledlie, Jeff Shneidman, Matt Amis, and Margo Seltzer. Reliability-
and capacity-based selection in distributed hash tables. Technical report,
Harvard University Computer Science, 2004.

[75] BN Levine, C Shields, and NB Margolin. A survey of solutions to the sybil
attack. Tech report 2006-052, University of Massachusetts Amherst, 2006.

[76] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free
riding in bittorrent is cheap. Fifth Workshop on Hot Topics in Networks
(HotNets-V) (29-30 November 2006), 2006.

[77] Petros Maniatis. Preserving peer replicas by rate-limited sampled voting. Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles,
2003.

[78] Petros Maniatis, TJ Giuli, Mema Roussopoulos, David S. H. Rosenthal, and
Mary Baker. Impeding attrition attacks in p2p systems. ACM SIGOPS
European, 2004.

[79] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel,
Dan S. Wallach, Xavier Bonnaire, Pierre Sens, Jean-Michel Busca, and Lu-
ciana Arantes-Bezerra. Post: A secure, resilient, cooperative messaging sys-
tem. 9th IEEE Workshop on Hot Topics in Operating Systems (HotOS-IX),
2003.

[80] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema, and H.J. Sips.
Give-to-get: An algorithm for p2p video-on-demand. Fifteenth Annual Mul-
timedia Computing and Networking conference, 2008.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 64

REFERENCES

[81] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen.
Ivy: A read/write peer-to-peer file system. USENIX Symposium on Operating
Systems Design and Implementation, 2002.

[82] Tsuen-Wan Johnny Ngan, Dan S. Wallach, and Peter Druschel. Enforcing
fair sharing of peer-to-peer resources. 2nd International Workshop of Peer-
To-Peer Systems (IPTPS03), 2003.

[83] Tsuen-Wan Johnny Ngan, Dan S. Wallach, and Peter Druschel. Enforcing
fair sharing of peer-to-peer resources. 2nd International Workshop on Peer-
to-Peer Systems (IPTPS), 2003.

[84] Hoaison NGUYEN, Toshio OKA, Hiroyuki MORIKAWA, and Tomonori
AOYAMA. Sens: A scalable and expressive naming system using can rout-
ing algorithm. Advanced Information Networking and Applications (AINA),
2006.

[85] Pekka Nikander, Jari Arkko, and Borje Ohlman. Host identity indirection in-
frastructure (hi3). Second Swedish National Computer Networking Workshop
(SNCNW), 2004.

[86] Beng Chin Ooi, Chu Yee Liau, and Kian-Lee Tan. Managing trust in peer-
to-peer systems using reputation-based techniques. International Conference
on Web Age Information Management, 2003.

[87] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy,
and Arun Venkataramani. Do incentives build robustness in bittorrent?
4th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2007), 2007.

[88] J.A Pouwelse, J.R Taal, R.L Lagendijk, D.H.J Epema, and H.J.Sips. Real-
time video delivery using peer-to-peer bartering networks and multiple de-
scription coding. Systems, Man and Cybernetics, 2004 IEEE International
Conference on Volume 5, 2004.

[89] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Work-
shop on Algorithms and Data Structures, 1990.

[90] Lakshmish Ramaswamy and Ling Liu. Free riding: A new challenge to
peer-to-peer file sharing systems. Multimedia Computing and Networking
(MMCN), 2002.

[91] Rajiv Ramnath, Sufatrio Sufatrio, Roland H. C. Yap, and Wu Yongzheng.
Winresmon: A tool for discovering software dependencies, configuration and
requirements in microsoft windows. 20th conference on Large Installation
System Administration Conference, 2006.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 65

REFERENCES

[92] Weixiong Rao, Hui Song, and Fanyuan Ma. Querying xml data over dht
system using xpeer. Third International Conference on Grid and Cooperative
Computing, 2004.

[93] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. Special Interest Group on
Data Communication (SIGCOMM), 2001.

[94] Thomas Reidemeister, Klemens Bohm, Erik Buchmann, and Paul A.S. Ward.
Man-in-the-middle attacks in distributed hash-tables. IEEE Journal on Se-
lected Areas in Communication, 2006.

[95] S Rhea, B Godfrey, B Karp, J Kubiatowicz, S Ratnasamy, S Shenker, I Stoica,
and H Yu. Opendht: A public dht service and its uses. conference on Applica-
tions, technologies, architectures, and protocols for computer communications,
2005.

[96] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao,
and John Kubiatowicz. Pond: the oceanstore prototype. 2003.

[97] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and
timed-release crypto. Technical Report MIT/LCS/TR-684, MIT LCS, 1996.

[98] Hosam Rowaihy, William Enck, Patrick McDaniel, , and Thomas La Porta.
Limiting sybil attacks in structured peer-to-peer networks. IEEE Infocom
Mini-Symposium, 2005.

[99] Antony Rowstron and Peter Druschel. Storage management and caching in
past, a large-scale, persistent peer-to-peer storage utility. 18th ACM Sympo-
sium on Operating Systems Principles, 2001.

[100] Oskar Sandberg. Distributed routing in small-world networks. The Eighth
Workshop on Algorithm Engineering and Experiments (ALENEX06), 2006.

[101] Aameek Singh and Ling Liu. Trustme: Anonymous management of trust
relationships in decentralized p2p systems. Third International Conference
on Peer-to-Peer Computing, 2003.

[102] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. Defend-
ing against eclipse attacks on overlay networks. the 11th workshop on ACM
SIGOPS European workshop, 2004.

[103] Kundan Singh and Henning Schulzrinne. Peer-to-peer internet telephony us-
ing sip. Columbia University Technical Report CUCS-044-04, 2004.

[104] E Sit and R Morris. Security considerations for peer-to-peer distributed hash
tables. International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 66

REFERENCES

[105] I Stoica, R Morris, D Karger, MF Kaashoek, and H Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. Special Interest
Group on Data Communications (SIGCOMM), 2001.

[106] I Stoica, R Morris, D Liben-Nowell, DR Karger, MF Kaashoek, F Dabek, and
H Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON), 2003.

[107] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
Internet indirection infrastructure. Special Interest Group on Data Commu-
nications (SIGCOMM), 2002.

[108] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an
analysis of onion routing security. Workshop on Design Issues in Anonymity
and Unobservability, 2001.

[109] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. Karma
: A secure economic framework for peer-to-peer resource sharing. Workshop
on Economics of Peer-to-Peer Systems, 2003.

[110] Michael Walfisha, Hari Balakrishnana, and Scott Shenkerb. Untangling the
web from dns. Networked System Design and Implementation (NSDI), 2004.

[111] Matthew Wright, Micah Adler, Brian N. Levine, and Clay Shields. An analysis
of the degradation of anonymous protocols. Network and Distributed System
Security Symposium, 2002.

[112] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust in peer-
to-peer communities. IEEE Transactions on Knowledge and Data Engineering
(TKDE), Special Issue on Peer-to-Peer Based Data Management, 2004.

[113] Wu Yongzheng and Roland H. C. Yap. A user-level framework for auditing
and monitoring. 21st Annual Computer Security Applications Conference,
2005.

[114] H Yu, M Kaminsky, PB Gibbons, and A Flaxman. Sybilguard: Defending
against sybil attacks via social networks. conference on Applications, tech-
nologies, architectures, and protocols for computer communications, 2006.

[115] Jianyang Zeng and Wen-Jing Hsu. Optimal routing in a small-world net-
work. Sixth International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2005), 2005.

[116] Lidong Zhou and Robbert van Renesse. P6p: A peer-to-peer approach to
internet infrastructure. 3rd Interational Workshop on Peer-to-Peer Systems
(IPTPS), 2004.

[117] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. Cashmere:
Resilient anonymous routing. USENIX Symposium on Networked Systems
Design and Implementation, 2005.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 67

REFERENCES

[118] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and
John D. Kubiatowicz. Bayeux: An architecture for scalable and fault tolerant
widearea data dissemination. Network and Operating System Support for
Digital Audio and Video (NOSSDAV), 2001.

SELFMAN Deliverable D.1.3a(v1.1), v1.1, November 30, 2007, Page 68

