
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D.1.1
Report on low-level self-management primitives for
structured overlay networks

Due date of deliverable: July 15, 2007
Actual submission date: July 15, 2007

Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor
for this deliverable: UCL
Revision: 1.0
Dissemination level: CO

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007

CONTENTS

Contents

1 Executive summary 1

2 Contractors contributing to the Deliverable 2

3 Results 3
3.1 Introduction . 3
3.2 Ring Topology . 4
3.3 Relaxed-Ring Topology . 5
3.4 Handling Network Partitions and Merges 8
3.5 Topology for Multi-Dimensional Queries 10
3.6 Future Work . 11

4 Papers and publications 12

A A Structured Overlay for Multi-Dimensional Range Queries 16

B Handling Network Partitions and Mergers in Structured Overlay
Networks 28

C PEPINO: PEer-to-Peer network INspectOr 37

D Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 40

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 1

1 EXECUTIVE SUMMARY

1 Executive summary

In order to build self-managing large-scale distributed systems, SELFMAN is aim-
ing for a combination of component models and structured overlay networks. The
goal is to achieve self management along four axes: self-configuration, self-healing,
self-tuning and self-protection. This deliverable presents results on low-level prim-
itives for structured overlay networks, providing self-configuration and self-healing
properties.

Structured overlay networks are used for building self-organising peer-to-peer
systems with efficient communication between them. The most popular network
topology is based on a ring where every peer knows its successor and predecessor,
and it knows a set of other peers that are used for efficient communication with any
other part of the network. The resources of the network are uniformly distributed
among the peers providing a Distribute Hash Table (DHT). If a uniform distribution
of the resources is not feasible, it is recommended to use a topology different to the
ring.

Results using the ring topology are achieved with DKS and P2PS, implemented
in J2EE and Mozart respectively. Research on P2PS offers a novel relaxed-ring
topology where the primitives for peers to join and leave the network are simplified.
The resulting network is able to handle high churn and multiple failures of peers.
Thanks to the correct failure handling, P2PS, as well as DKS, is able to survive
a network partition where two new rings will coexist. Even when nearly every
structured overlay network using ring topology is able to survive a network partition,
the problem of merging the network has been often ignored by all existing networks.
This deliverable presents results on how to efficiently merge rings using gossips based
algorithms. The result uses DKS as platform.

Being aware that some problems are not easy to model using a ring topol-
ogy, this deliverable also presents SONAR, a structured overlay network using a
multi-dimensional torus as network topology. This topology is more convenient for
resources using multi-dimensional keys, and that are not organised with a uniformly
distributed key-space. SONAR deals with this kind of resources by avoiding hashing
and working independently of the distribution.

In this deliverable, self-configuration is achieved by providing networks that self-
organise their peers independently of how and when they join or leave the network.
Different network topologies are provided in order to configure most adequately
every problem. Self-healing is achieved by correct failure handling mechanisms,
and by providing an efficient solution to network merges after network partitioning.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 1

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

Most of the contractors working on WP1 have contributed to this deliverable. Uni-
versité catholique de Louvain (UCL) has participated as the lead contractor for this
deliverable working closely with the Kungliga Tekniska Högskolan (KTH) and the
Zuse Institute Berlin (ZIB). The integration of the work has been discussed and
developed during several meetings hold during the first year. Contractor National
University of Singapore (NUS) has participated in deliverable D1.3a.

UCL(P1) has focused its work in the analysis of the ring topology for structured
overlay networks. As result, a new topology based on a relaxed-ring has been devel-
oped, providing better guarantees for self-organisation and self-healing properties.
This new ring maintenance is designed making realistic assumptions with respect
to failure detection. An application for network evaluation called PEPINO has also
been developed.

KTH(P2) has also contributed with important results on structured overlay net-
works based on the ring topology. The work solves the problem of efficiently merges
of rings for handling network partitioning. The solution is based on a gossip algo-
rithm, allowing system designer to adjust the trade-off between message complexity
and time complexity through a fanout parameter. The algorithm is highly scalable
with respect to the size of the networks, avoiding positive feedback loops.

ZIB(P5) has focused its works in a different topology for structured overlay net-
works. Since ring topology relies strongly on a uniform data distribution, SONAR,
the proposed solution, uses a multi-dimensional torus as overlay topology. The solu-
tions allows storing and retrieving objects addressed by multi-dimensional keys. It
avoids hashing and supports logarithmic routing. This solution allows the project
to address problems where the ring-based network does not perform well due to
skewed distributions or where one-dimensional keys are not sufficient.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 2

3 RESULTS

3 Results

This section summarises the results obtained during the first year of the project in
the context of low-level self-management primitives for structured overlay networks.
Section 3.1 gives a very brief introduction to decentralised systems and the chal-
lenges that motivate the work that is presented in this deliverable, which is focused
on structured overlay networks.

Section 3.2 describes the ring topology, the most representative network topol-
ogy used by existing structured overlay networks. This topology is quite robust and
efficient, but existing ring-based systems still let several open issues to be solved.
Sections 3.3 and 3.4 shows results on solving some of those issues, providing guar-
antees that are required by deliverable D3.1a. The work provides a new network
topology in the form of a relaxed-ring, derived from the original ring. The deliver-
able also includes an efficient algorithm for handling network partition and merges
of the ring. These solutions are designed having in mind the ideas presented in
deliverable D2.1a. But not all the open issues can be solved with a ring-alike topol-
ogy, for instance, the ring needs a uniform distribution of the key-space in order
to provide efficient routing. This is the main reason for the results presented in
section 3.5, where a multi-dimensional network topology is provided as a solution
to the problem of not having a uniform distribution of the key-space. More details
of these work can be found in the annexes of the this deliverable.

3.1 Introduction

Decentralised applications has rapidly increased their popularity in the last years
over the classical client-server architecture. Several phenomena have contributed to
remove from distributed applications the dependency on big servers. Among those
phenomena we can find the increase of computing-power of home computers, and
the increase in Internet bandwidth with a sufficient reliability. These facts have
led distributed applications to run on top of peer-to-peer networks. Every peer
provides and requests resources and services. Every peer acts as a client and as a
server. There is no central point of control or synchronisation, and hence, no single
point of failure, and no traffic bottleneck.

Despite the advantages of decentralised networks with respect to the classi-
cal client-server architecture, the complexity of the system is highly compromised,
ironically, due to the lack of a single point of control. Increasing self-management
of the system can help us to reduce this new complexity. One of our first ob-
jectives in order to reach self-management properties is to address the issues of
self-configuration and self-healing of the network. These are two of the four axes
tackled by SELFMAN. This deliverable presents results on self-organisation at the
level of the network topology, contributing to self-configuration. Results providing
self-healing are also presented. These results involve failure handling and merging
networks after network partitioning.

Within peer-to-peer networks is possible to observe many strategies for organi-
sation. Pioneer Internet applications for file sharing, such as Napster [9], organised
their networks using a mixed-architecture where servers were still needed for finding
other peers. File sharing applications evolved later to unstructured networks with

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 3

3 RESULTS

Figure 1: Structured Overlay Network using ring topology

random connections, as in Gnutella [6]. These networks formed an overlay network
with the ability to route messages on top of the Internet, but with a high amount
of message sending and an inefficient use of the bandwidth. In order to provide
scalability and efficient routing, peer-to-peer networks finally evolved to structured
overlay networks (SONs) [4] which is the subject of this research.

3.2 Ring Topology

One of the most popular network topology used by SONs is based on a ring intro-
duced by Chord [13]. This topology is also used by DKS [5] and P2PS [3], both
developed by SELFMAN’s partners. In the ring, every peer is connected to a pre-
decessor and a successor. The order is given by their identifiers which represent a
hash-key. Every peer is responsible for all keys between its predecessor and itself.
Like this, the ring provides a Distributed Hash Table (DHT) where values can be
stored and recovered using the correspondent key.

Figure 1 depicts a SON using the ring topology. The blue arrows represent
connections between successors and predecessors. Every peer is identified by a
hash-key, which in this case is an integer. Using the identifiers, successors and
predecessors, the network is able to route correctly any message to every responsible
of a particular key. To make routing efficient, extra connections to other peers in the
network are introduced following a particular algorithm [2, 1]. These connections
are called fingers, and correspond to the black arrows in Figure 1. Using this fingers
for routing, it is guaranteed to reach any peer in the network in maximum logk(n)
hops, where n is the size of the network, and k is the amount of fingers per peer.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 4

3 RESULTS

Even when the ring topology works correctly and efficiently, its maintainability
is not a trivial issue if fault tolerance and consistent lookup want to be guaranteed
in presence of high churn. Churn is a ratio that measures how many peer join and-
or leave the network in a given amount of time. By fault tolerance, we mean the
ability of the system to reconfigure and continue working despite the failure of some
peers. By consistent lookup, we mean that concurrent lookups for the responsible
of a particular key will not result in more than one responsible. Lookup consistency
is an important property required by deliverable D3.1.

To guarantee lookup consistency, the algorithms for maintenance of the ring
must handle correctly the cases of peers joining and leaving the network. It has
been shown in [5] that the join algorithm of Chord can generate inconsistencies in
the case of multiple joins, and this can happen even in fault-free scenarios. Due to
this fact, Chord runs a stabilisation algorithm periodically. Previous work on DKS
[5] has concluded that an atomic join/leave operation must be provided in order
to provide consistent lookup. To guarantee atomicity, the proposed solution uses
an algorithm based on a locking mechanism. But the use of locks in a distributed
environment generated several problems of efficiency, and makes maintainability of
the ring less tolerant to failures. One of the results of this deliverable is a novel
relaxed-ring topology that simplifies self-organisation of the peers, while keeping
consistent lookup.

3.3 Relaxed-Ring Topology

One of the main issues we have detected in the existing ring maintenance algo-
rithms, is that they require an agreement of three peers in order to finalise. This
synchronisation is not trivially achieve because the communication between peers is
asynchronous and expose to failures of nodes and communication channel. Problems
in the communication channel are quite difficult to handle because they generate
partial false suspicions, meaning that a node can appear as dead to some peers, but
as working fine to other set of peers. In such situation is very hard to achieve a
consensus between more than 2 peers.

The other issue with ring maintenance is that they try to guarantee reciprocity
of successor and predecessor pointers. We avoid this requirement by stating a
separate functionality for each pointer, allowing us to split the join algorithm into
two steps where only two peers are involved in each step. This approach is more
realistic because it only needs the agreement of two nodes in every step, which is
guaranteed with point-to-point communication.

We first state that every peer is in the same ring as its connected successor,
then, the successor pointer only tells a peer to which ring it is connected to. If
the successor fails, a new successor from the same ring must be found. The second
statement says that the responsibility of a peer is determined by the id of the peer
and its own id. Remember that the id of peers represents hash-keys from DHT.
The second statement describes how the responsibility of a peer is determined, but
it does not implies a connection between a peer and its predecessor. It only requires
the knowledge of its id.

When a peer wants to join the network, it triggers a lookup(q) message through
an access point searching for the responsible of its key, in this case q. When the

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 5

3 RESULTS

Figure 2: Join algorithm in a relaxed-ring. (1) The joining peer q contacts r, its
successor candidate. (2) r accepts q as predecessor and notifies it with a reference
to p. At this moment, q is in a branch of the ring. (3) q notifies p about its join,
and p accepts q as successor.

responsible answers back, the joining peer triggers a join message to its successor
candidate. Figure 2 depicts the join algorithm where q joins in between peers p
and r. When peer q contacts peer r, this one checks if the joining peer belongs to
its responsibility (p, r]. When peer r accepts peer q as predecessor, the key-range
(p, r] is split into (p, q] and (q, r]. At this stage, q has a valid successor r, and
then, it is considered inside the ring. It is not in the core ring, but in a branch.
Peer q also knows its predecessor, and therefore, it knows its range of responsibility
in the DHT. This happens even when the connection between p and q is not yet
established. Note that there is no overlapping of responsibilities, and this, lookup
requests are always resolved consistently. The algorithm finishes when q contacts
p presenting itself as new successor. Then, the branch is pruned and the core ring
becomes a perfect ring once again.

Figure 3: An extreme example of a relaxed-ring. The network is able to route
message correctly, and it is constantly converging towards a perfect ring. The red
circle represents the core ring.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 6

3 RESULTS

If the connection between peers p and q can never be establish, the ring continue
working correctly because the responsibility of the keys is correctly distributed. If
a node joins in between peers q and r, the branch grows and the network continues
working. If a new peer joins between p and q, it will fix the core ring if it is
able to establish connection with peer p. The branch will just grow otherwise.
This approach allows the system to handle multiple joins without stopping the
resolution of lookup requests, and it is also fault-tolerant as it will be explain later
in this section.

Figure 3 depicts a network with several problems to establish connections be-
tween peers. It is an extreme example of a relaxed ring topology. A situation like
this would not be possible in a ring requiring reciprocity of successor and predecessor
pointers.

Since the system must be fault-tolerant, there is no need for a leave algorithm,
because leaves are covered by the failure handling. In fact, it is not a good idea
that the correctness of the network maintenance relies on gentle leaves of the peers,
because the fact that peers will crash and leave the network without respecting any
leave algorithm is unavoidable.

In the relaxed ring, as in any structured overlay network, every peer keeps a
failure detector to identify crashes of other peers. The failure handling mechanism
works as follows. Every peer keeps a list of successors. When the successor is
detected to have crashed, the peer pics a successor candidate from the successor
list, and triggers a join message as it were joining the network. The main difference
is that the successor candidate has also identified that its predecessor has crashed,
and then, it accepts the join message from the predecessor of the crashed node, and
the ring is restored. If the successor candidate does not responds, a new candidate
is elected from the successor list. Note that the failure handling mechanism is only
triggered by the predecessor of the crashed node. The successor only waits the join
message. This is necessary to keep consistent lookup. More details can be found in
appendix D.

Figure 4: Multiple failures and new peer joining the network just before the suc-
cessor candidate for recovery.

A situation with multiple failures and a new peer joining the network can be
observed in Figure 4. In this case, the new joining peer and the predecessor of the
crashed node competes for contacting the successor candidate as they were both
newly joining peers. Since the problem is already solved by the joining algorithm,
the system is also able to handle the problem of failure handling mixed with join
operations.

We can think about the relaxed-ring maintenance in terms of feedback loops as
they are described in deliverable D2.1a. Every peer is constantly monitoring the

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 7

3 RESULTS

network by receiving messages from other peers, and by running a failure detector
per every node it is connected to. Two event perturb the stability of the system:
the joining of a new peer, and the failure of a member of the ring. When these
events are detected, corrective actions are triggered in order to include the joining
peer in the correct range according to its id, or to find a new peer that takes over
the crashed peer. The system recovers in the form of a relaxed-ring, converging
finally to a perfect ring if all connections are working correctly.

As many other structured overlay network, the relaxed-ring topology can also be
used to build a grid networks on top of it. The relaxed ring presents the advantage
of being fault tolerance with a self-organising approach, requesting less preparation
and less administrative tasks from the grid users. Work done in this area is included
in appendix D and presented in [8]. This deliverable also contains a short paper
[7] included as appendix C, describing a tool for network analysis and evaluation,
called PEPINO. An official release of this tool, together with the release of the third
version of P2PS is planed to be done during the second year of the project.

3.4 Handling Network Partitions and Merges

As it has been described in the previous section, structured overlay networks, and in
particular using ring based topology, are able to handle simultaneous peers crashes.
In this section we analyse what happen when network partitions occur. From the
point of view of a single peer, it is impossible to distinguish massive simultaneous
node failures from network partitions. If the peer has a reference to another alive
node, the ring will survive self-organising and fixing the routing tables. Considering
that, almost every ring based network is able to survive to network partitions. But
the problem of merging two or more rings when the partition is gone has been
ignored. An efficient algorithm for merging rings [12] is presented in this deliverable,
and included as appendix B.

The algorithm works as follows. Every peer keeps a passive list to store a finite
amount of the peers detected to have crashed. If these peers did not crashed and are
correctly running in a different network, they will be detected to be alive once the
connection between the network is recovered. The merging of the ring is triggered
when two nodes from different partitions detect each other. Figure 5 depicts how
the algorithm works. In the figure, all peers from two different rings, black and
white, are arranged as they were in one ring having the peers distributed along
the key-space. When peer p from the black ring detects peer q from the white
ring, it triggers a mlookup(q) event in its own ring trying to get closer to id q.
Since rediscovering a peer is a reciprocal action, peer q also triggers mlookup(p)
in its own ring. When the lookup arrives to the responsible of the searched key,
trymerge(cpred, csucc) is triggered, where cpred and csucc are predecessor and
successor candidates for the merging. The merge proceed in clockwise and anti-
clockwise directions.

Even when the algorithm described above works correctly, it is not very efficient.
Augmenting mlookup with a gossip-based mechanism for propagation, the algo-
rithm improves considerably its efficiency. The idea is to trigger multiple merges to
work simultaneously, making the algorithm to converge faster. Every time a node
receives a mlookup(id) request, it picks randomly a peer r from its routing table

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 8

3 RESULTS

and starts a ring merger between id and r. Like this, peers from every ring can
find each other faster. To avoid congestion and high traffic, this cannot be trigger
eagerly. It has to be done periodically. One advantage of this is that the periodic-
ity can be controlled through a parameter, given the system more control over the
trade off between time and bandwidth consumption. More details about how this
parameter affects complexity and efficiency of the system can be found in appendix
B.

Looking at the system as a model using feedback loops as they are described
in deliverable D2.1a, we can identify the passive list as an important part of the
monitoring component. Once a peer in this list is detected to be alive, a corrective
action is triggered, using the merge algorithm as actuator for this correction. The
system converge to a stable ring avoiding positive feedback cycles which would
congest the network.

The algorithm can also be used to explicitly merge two networks. For instance, if
two institutions decide two join their networks without stopping them, it is enough
to introduce two nodes, one from each network, and that will trigger the merging
algorithm converging to one ring.

Figure 5: Black peers belong to one structured overlay network, and white peers
belong to a different one. Peer p from ring black and peer q from ring white have
detected each other. Both of them trigger mlookup and trymerge.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 9

3 RESULTS

Figure 6: Structured Overlay Network using two dimensions to store data. Every
peer in the network is responsible for one rectangle of the key-space distribution.
Denser areas gets more peers assigned.

3.5 Topology for Multi-Dimensional Queries

The work presented in the previous sections of this deliverable is based on the struc-
tured overlay networks using ring topology. Even when this topology is suitable for
many problems, it requires a uniform data distribution. If the network is build
with a skewed distribution of the key-space it behaves quite inefficiently. Then, an
alternative topology is needed in order to model problems such as a database for ge-
ographical locations, where the distribution of cities follows a Zipf distribution [14].
The proposed solution presented in this deliverable is to organise the network as a
multi-dimensional torus, where more dense areas get assigned more nodes, dealing
efficiently with skewed distributions. The structure overlay network built on top of
this topology is called SONAR [11], and detailed description of its functionality is
included in appendix A.

As any other structured overlay network, SONAR is used to store and retrieve
objects identified with a key. Instead of using a number for the key as in DKS or
P2PS, SONAR uses a vector of d components, called attributes. Every attribute is
stored in one dimension of the torus. Figure 6 depicts a two-dimensional key-space,
where every attribute can take a value in the interval [0,1]. The whole key-space is
split into hypercuboids. Each hypercuboid is assigned to a peer in the network in
order to share responsibilities and balance the load.

Neighbours are determined by adjacent areas, as in CAN [10], with the difference
that not only the neighbours are used for routing but also additional fingers as in
e.g. Chord. The routing table is generated with a set of successors and fingers.
Successors are chosen taken the peer to the middle of every adjacent side. Fingers
are taken following the successors in any dimension of the torus. This routing table
allows a routing of any message in O(logN), which is much better than O(d

√
N) of

CAN. Another innovation of SONAR is that it avoids hashing. Due to that, any
range query can be resolved in a logarithmic number of steps independent of the
number of query-dimensions.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 10

3 RESULTS

Figure 7: The graphical location data of 1,904,711 cities follows a Zipf distribution,
which can be modelled by SONAR overlay network. This examples represents a
network of 256 peers.

Figure 7 shows a use-case scenario to evaluate SONAR. The chosen example
corresponds to an overlay network storing the locations of 1,904,711 cities. The
graphical location of the cities follows a Zipf distribution. As it is observed in
the figure, some areas are more dense than others, and therefore, all areas have
different sizes. The figure shows a network of 256 nodes, but experiments were
run from 128 nodes and up to 214 nodes. All-to-all searches behaved as expected
following O(logN) complexity for routing messages.

3.6 Future Work

This deliverable is related with deliverable D1.2, D1.4 and D1.5, to be presented
at the end of next SELFMAN’s period (M24). All contributors are carrying work
towards high-level self-management primitives, to be presented in D1.2. KTH con-
tinues with the development of DKS, work to be included in D1.4. UCL will carry
on the work on the development of the relaxed-ring topology towards deliverable
D1.5. Releases of P2PSv3 and PEPINO are planed for the next period.

Even when the results for this deliverable are quite satisfactory, some work
directly related is still in progress. There will be another publication with more
results obtained with the multi-dimensional torus of SONAR. A formalisation of
the relaxed-ring topology is also expected to be published in the next period.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 11

4 PAPERS AND PUBLICATIONS

4 Papers and publications

Most of the work presented in section 3 has been accepted for publication in different
conferences and workshops. A list of these publications with their abstracts are
presented here. Full papers are provided in the respective appendices.

A Structured Overlay for Multi-Dimensional Range Queries . Thorsten
Schüt, Florian Schintke, and Alexander Reinefeld. In proceedings of Euro-Par 2007
(to appear).

Abstract: We introduce SONAR, a structured overlay to store and retrieve
objects addressed by multi-dimensional names (keys). The overlay has the shape of
a multi-dimensional torus, where each node is responsible for a contiguous part of
the data space. A uniform distribution of keys on the data space is not necessary,
because denser areas get assigned more nodes. To nevertheless support logarithmic
routing, SONAR maintains, per dimension, fingers to other nodes, that span an
exponentially increasing number of nodes. Most other overlays maintain such fingers
in the key-space instead and therefore require a uniform data distribution. SONAR,
in contrast, avoids hashing and is therefore able to perform range queries of arbitrary
shape in a logarithmic number of routing stepsindependent of the number of system-
and query-dimensions. SONAR needs just one hop for updating an entry in its
routing table: A longer finger is calculated by querying the node referred to by the
next shorter finger for its shorter finger. This doubles the number of spanned nodes
and leads to exponentially spaced fingers.

PEPINO: PEer-to-Peer network INspectOr . Donatien Grolaux, Boris
Mej́ıas, and Peter Van Roy. In proceedings of The Seventh IEEE International
Conference on Peer-to-Peer Computing (to appear).

Abstract: PEPINO is a simple and effective peer-to-peer network inspector.
It visualises not only meaningful pointers and connections between peers, but also
the exchange of messages between them, providing a useful tool for debugging
purposes. It can monitor running networks, simulate them and log them in order
to reproduce interesting case scenarios. Failures can be explicitly introduced to
study fault tolerant algorithms. The graphical representation of the network uses
a physical model to attract or repel peers, allowing the user to study the system
from different points of view. This demo aims to present the use of PEPINO in
the development of a novel relaxed-ring topology for fault tolerant networks, where
the representation of the ring based on predecessors may differ from the ring based
on successors. We show how PEPINO is also useful for visualising other network
topologies such as perfect ring or unstructured networks.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 12

4 PAPERS AND PUBLICATIONS

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids .
Boris Mej́ıas and Donatien Grolaux and Peter Van Roy. In CoreGRID Workshop
on Grid-* and P2P-*.

Abstract: Peer-to-peer networks are gaining popularity in order to build Grid
systems. Among different approaches, structured overlay networks using ring topol-
ogy are the most preferred ones. However, one of the main problems of peer-to-peer
rings is to guarantee lookup consistency in presence of multiple joins, leaves and
failures nodes. Since lookup consistency and fault-tolerance are crucial properties
for building Grids or any application, these issues cannot be avoided. We introduce
a novel relaxed-ring architecture for fault-tolerant and cost-efficient ring mainte-
nance. Limitations related to failure handling are formally identified, providing
strong guarantees to develop applications on top of the relaxed-ring architecture.
Besides permanent failures, the paper analyses temporary failures and broken links,
which are often ignored.

Handling Network Partitions and Mergers in Structured Overlay Net-
works . Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. In proceedings of The
Seventh IEEE International Conference on Peer-to-Peer Computing (to appear).

Abstract: Structured overlay networks form a major class of peer-to-peer sys-
tems, which are touted for their abilities to scale, tolerate failures, and self-manage.
Any long-lived Internet-scale distributed system is destined to face network parti-
tions. Although the problem of network partitions and mergers is highly related to
fault-tolerance and self-management in large-scale systems, it has hardly been stud-
ied in the context of structured peer-to-peer systems. These systems have mainly
been studied under churn (frequent joins/failures), which as a side effect solves the
problem of network partitions, as it is similar to massive node failures. Yet, the
crucial aspect of network mergers has been ignored. In fact, it has been claimed
that ring-based structured overlay networks, which constitute the majority of the
structured overlays, are intrinsically ill-suited for merging rings. In this paper, we
present an algorithm for merging multiple similar ring-based overlays when the un-
derlying network merges. We examine the solution in dynamic conditions, showing
how our solution is resilient to churn during the merger, something widely believed
to be difficult or impossible. We evaluate the algorithm for various scenarios and
show that even when false detecting a merger, the algorithm quickly terminates
and does not clutter the network with many messages. The algorithm is flexible as
the tradeoff between message complexity and time complexity can be adjusted by
a parameter.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 13

REFERENCES

References

[1] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. Dks (n, k,
f): A family of low communication, scalable and fault-tolerant infrastructures
for p2p applications. In CCGRID ’03: Proceedings of the 3st International
Symposium on Cluster Computing and the Grid, page 344, Washington, DC,
USA, 2003. IEEE Computer Society.

[2] Bruno Carton and Valentin Mesaros. Improving the scalability of logarithmic-
degree dht-based peer-to-peer networks. In Marco Danelutto, Marco Vanneschi,
and Domenico Laforenza, editors, Euro-Par, volume 3149 of Lecture Notes in
Computer Science, pages 1060–1067. Springer, 2004.

[3] DistOz Group. P2PS: A peer-to-peer networking library for Mozart-Oz.
http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[4] Sameh El-Ansary and Seif Haridi. An overview of structured overlay networks.
In Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-
to-Peer Networks. 2005.

[5] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH — Royal Institute of Technology, Stockholm, Sweden,
December 2006.

[6] Gnutella. http://gnutella.com, 2003.

[7] Donatien Grolaux, Boris Mej́ıas, and Peter Van Roy. PEPINO: PEer-to-Peer
network INspectOr. In The Seventh IEEE International Conference on Peer-
to-Peer Computing, 2007. To appear.

[8] Boris Mej́ıas, Donatien Grolaux, and Peter Van Roy. Improving the peer-to-
peer ring for building fault-tolerant grids. In CoreGRID Workshop on Grid-*
and P2P-*, july 2007.

[9] Napster. Open source napster server, 2002.

[10] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content addressable network. Technical Report TR-00-
010, Berkeley, CA, 2000.

[11] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. A structured
overlay for multi-dimensional range queries. In Euro-Par 2007, 2007. To ap-
pear.

[12] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Handling network partitions
and mergers in structured overlay networks. In The Seventh IEEE International
Conference on Peer-to-Peer Computing, 2007. To appear.

[13] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 14

REFERENCES

[14] G. K. Zipf. Relative frequency as a determinant of phonetic change. In Harvard
Studies in Classical Philology, volume 15, pages 1–95, 1929.

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 15

A A STRUCTURED OVERLAY FOR MULTI-DIMENSIONAL RANGE
QUERIES

A A Structured Overlay for Multi-Dimensional

Range Queries

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 16

A Structured Overlay for Multi-Dimensional
Range Queries?

Thorsten Schütt, Florian Schintke, Alexander Reinefeld

Zuse Institute Berlin

Abstract. We introduce SONAR, a structured overlay to store and re-
trieve objects addressed by multi-dimensional names (keys). The overlay
has the shape of a multi-dimensional torus, where each node is respon-
sible for a contiguous part of the data space. A uniform distribution of
keys on the data space is not necessary, because denser areas get assigned
more nodes. To nevertheless support logarithmic routing, SONAR main-
tains, per dimension, fingers to other nodes, that span an exponentially
increasing number of nodes. Most other overlays maintain such fingers
in the key-space instead and therefore require a uniform data distribu-
tion. SONAR, in contrast, avoids hashing and is therefore able to per-
form range queries of arbitrary shape in a logarithmic number of routing
steps—independent of the number of system- and query-dimensions.
SONAR needs just one hop for updating an entry in its routing table: A
longer finger is calculated by querying the node referred to by the next
shorter finger for its shorter finger. This doubles the number of spanned
nodes and leads to exponentially spaced fingers.

1 Introduction

The efficient handling of multi-dimensional range queries in Internet-scale dis-
tributed systems is still an open issue. Several approaches exist, but their lookup
schemes are either expensive (space-filling curves) [2] or use probabilistic ap-
proaches like consistent hashing [10] to build the overlay.

We propose a system for storing and retrieving objects with d-dimensional
keys in a peer-to-peer network. SONAR (Structured Overlay Network with Ar-
bitrary Range-queries) directly maps the multi-dimensional data space to a d-
dimensional torus. It supports range queries of arbitrary shape, which are useful,
for example, in geo-information systems where objects in a given distance of a
position are sought. SONAR can also be employed in Internet games with mil-
lions of online-players who concurrently interact in a virtual space and need quick
access to the local surroundings of their avatars. In a broader context, SONAR
can be employed as a hierarchical publish/subscribe system, where published
events are categorized by several independent attributes. The category of pub-
lished events addresses a data point in the d-dimensional space and consumers
subscribing to subareas will receive all events published in their subarea.
? Part of this work was carried out under the SELFMAN and XtreemOS projects

funded by the European Commission.

The paper is organized as follows: First, we discuss related work. Then, in
Section 3, we introduce SONAR. In Section 4, we present empirical results and
in Section 5 we conclude the paper with a brief summary.

2 Related Work

Several systems [1] have been proposed that support complex queries with multi-
dimensional keys and ranges. They can be split into two groups.

a) Space filling curves. These systems [2,9,16] use locality preserving space-
filling curves to map multi-dimensional to one-dimensional keys. They provide
less efficient range queries than the space partitioning schemes described below,
because a single range query may cover several parts of the curve, which have
to be queried separately (Fig. 5a). Chawathe et al. [7] present performance re-
sults of a real-world application using Z-curves on top of OpenDHT. The query
performance (≈ 2 sec. for ≤ 30 nodes) is rather low due to the layered approach.

b) Space partitioning. The schemes using space partitioning split the key-space
among the nodes. SONAR belongs to this group of systems. The proposed sys-
tems mainly differ by their routing strategies.

CAN [14] was one of the very first DHTs. It hashes the key-space onto a multi-
dimensional torus. While the topology resembles that of SONAR and MURK
(see below), CAN uses just the neighbors for routing and it does not support
range queries.

SWAM [4] employs a Voronoi-based space partitioning scheme and uses a
small-world graph overlay with routing tables of size O(1). The overlay is not
built by some regular partitioning scheme (e.g. kd-tree [5]) but uses a sample
technique to place the fingers.

Multi-attribute range queries were also addressed by Mercury [6] which needs
a large number of replicas per item to achieve logarithmic routing performance.
SWORD [12] uses super-peers and query-caching to allow multi-attribute range
queries on top of the Bamboo-DHT [15].

Ganesan et al. [9] proposed two systems for multi-dimensional range queries
in peer-to-peer systems: SCRAP and MURK. SCRAP uses the traditional ap-
proach of mapping multi-dimensional to one-dimensional data with space-filling
curves which destroys the data locality. Consequently, each single multi-dimen-
sional range-query is mapped to several one-dimensional queries. MURK is more
similar to our approach, as it divides the data space into hypercuboids with each
partition assigned to one node. In contrast to SONAR, MURK uses a heuristic
approach based on skip graphs [3] to set routing fingers.

3 System Design

We first present the overlay topology of SONAR and then discuss its routing and
lookup strategy. Thereafter we present mechanisms that make SONAR robust
under churn.

0.0 1
0.0

1

a

b c

d

e

i

hf

g j

k

l

Fig. 1: Example two-dimensional overlay with attribute domains [0, 1].

SONAR is used to store and retrieve objects. It works on a d-dimensional
torus, the key-space. Objects have a name, the key, which is a vector of d com-
ponents, the attributes of the key. Each dimension of the torus is responsible for
one attribute domain. Figure 1 illustrates a two-dimensional key-space ([0, 1]2).
Arbitrarily located computers, the nodes, are each responsible for a dedicated
area (hypercuboid) in the key-space of the overlay (rectangles in Fig. 1). The
node-space has the same extent as the key-space, but is completely filled with
nodes. Two nodes in the node-space are adjacent (or neighbors) when their key-
space is adjacent. The direct mapping between key-space and node-space guar-
antees adjacent keys to be stored on the same or adjacent nodes, which enables
efficient range queries across node boundaries by local query propagation.

Nodes are dynamically assigned to the key-space such that each node serves
roughly the same number of objects. Load-balancing is done by changing the
responsibility of nodes instead of moving around objects in the key-space. That
becomes necessary when the number of objects or nodes in the system changes
(Sect. 3.4).

3.1 Overlay Topology

As illustrated in Figure 1, the two-dimensional key-space is covered by rectangles,
each of them containing about the same number of objects. Because the keys
are generally not uniformly distributed, the rectangles have different sizes and
thus may have more than one neighbor per direction. The neighbors are stored
in neighbor lists, one per dimension.

The overlay described so far resembles that of CAN [14] except for the hash-
ing in CAN, which prevents efficient range queries. Consequently, SONAR would
also need O(d

√
N) network hops if it would just use the neighbors for routing. In

the following, we introduce routing tables to achieve logarithmic routing perfor-
mance.

3.2 Routing

For routing, SONAR uses separate routing tables, one per dimension. Each rout-
ing table contains fingers spanning an exponentially increasing number of nodes

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

Node n y x

Routing-
table

Successors
are the
nodes
adjacent
to these
markers.

Fig. 2: Routing table for the two-dimensional case

(Fig. 2). With a total of log N routing fingers, the average number of hops is
reduced to O(log N) [17].

To calculate its ith finger in the routing table, a node looks at its (i − 1)th

finger and asks the remote node listed there for the (i−1)th finger. At the lowest
level, the fingers point to the successor.

finger i =
{

successor : i = 0
finger i−1.getFinger(i − 1) : i 6= 0

This update process works in a running system, but also during startup.
Initially, all fingers are set to unknown except for the finger to the successor.
Filling the second entry will always succeed, because the successor knows its
successor. Filling further entries may fail (result unknown), because the remote
node may not have determined the corresponding entry yet. But with subsequent
periodic updates, eventually all nodes will get their entries filled. The resulting
structure is similar to skip lists [13], but the behavior is more deterministic.

Successor used for routing. A node may have more than one neighbor per direc-
tion. We define the node adjacent to the middle of the respective side to be the
successor. Successors are marked by small ticks in Figure 2.

Due to the different box sizes and the calculation of longer fingers from
shorter ones, fingers are not necessarily straight in one direction. Slight devi-
ations in y-direction might occur when following the fingers of the x-direction
(and vice versa), as shown in Figure 2. Our empirical results indicate, however,
that this does not affect the logarithmic routing performance (Sect. 4).

// calculates the entries of a routing table
void updateRoutingTable(int dim) {
int i = 1;
bool done = false;

rt[dim][0] = this.Successor[dim];

while (!done) {
Node candidate = rt[dim][i - 1].getFinger(dim, i - 1);
if (IsBetween(dim, rt[dim][i - 1].Key, candidate.Key, this.Key)){
rt[dim][i] = candidate;
i++;

} else
done = true;

}
}

// checks whether the resp coordinate of pos lies between start and end
bool IsBetween(Dim dim, Key start, Key pos, Key end);

Fig. 3: Finger calculation for dimension dim.

Routing table size. Each node holds approximately log N fingers in its routing
tables. However, not knowing the total number of nodes N , how many fingers
should a node put into each of its d routing table so that the total is log N?
Mercury [6] predicts the system size N by estimating the key density. SONAR
uses a simpler, deterministic solution with less overhead.

For each dimension dim, SONAR’s finger update algorithm (Fig. 3) inserts
an additional finger finger i as long as its position is between that of the last
routing table entry finger i−1 and that of the node itself. Otherwise the new
finger circles around the ring and is not inserted.

Our results in Section 4 confirm that each node holds indeed log N fingers.
The construction process guarantees—in contrast to Chord [18]—that no two
fingers point to the same node. Since the fingers in the routing tables span an
exponentially increasing number of nodes, the routing table of each dimension
has a total of dlog De entries on the average, where D is the number of nodes in
this direction on the torus.

Cost of a finger update. Our periodically running finger update algorithm needs
just one network hop to determine an entry in the routing table. Chord in con-
trast needs O(log n) for the same operation, because it performs a DHT lookup
to calculate a finger.

3.3 Lookup and Range Queries

As in other DHTs, SONAR uses greedy routing. In each node the finger that
maximally reduces the Euclidean distance to the target in the key-space is fol-
lowed, independently of the dimension (see Fig. 4).

SONAR supports range queries with multiple attributes. In its most basic
form a range query is defined by d intervals for the d attribute domains. The

// find the responsible node for a given key
Node find(Point target) {
Node nextHop = findNextHop(target);
if (nextHop == this)
return this;

else
return nextHop.Find(target);

}

double getDistance(Node a, Point b);

Node findNextHop(Point target) {
Node candidate = this;
double distance = getDistance(this, target);

if (distance == 0.0)
// found target
return this;

for (int d = 0; d < dimensions; d++) {
for (int i = 0; i < rt[d].Size; i++) {
double dist = getDistance(rt[d][i], target);
if (dist < distance) {
// new candidate
candidate = rt[d][i];
distance = dist;

}
}

}
// will never happen:
Assert(candidate != this);
return candidate;

}

Fig. 4: Lookup for a target.

range query finds all keys whose attributes match the respective intervals and
returns the corresponding objects. Because of their shape, such range queries
are called d-dimensional rectangular range queries.

In practice, users sometimes need to define circles, polygons, or polyhedra in
their queries. Figure 5 illustrates a two-dimensional circular range query defined
by a center and a radius. Here, we assume a person located in the governmental
district of Berlin searching for a hotel in ‘walking distance’ (circle around the
person). The query is first routed to the node responsible for the center of the
circle and then forwarded to all neighbors that partially cover the circle (Fig. 5b).
The query is checked against the local data and the results are returned to the
requesting node. Figure 6 shows the pseudocode of this algorithm. Note that
redundant messages are eliminated. op is an additional check for objects in the
queried area—in this case for type hotel.

SONAR performs a range query with a single lookup. When the target node
does not hold the complete key range, the query is locally forwarded. Systems
with space-filling curves, in contrast, usually require more than one lookup for
a single range query because they map connected areas to multiple independent
line segments, see Figure 5a.

(a) Z-curve (8 line segments): 8 · log2(N) (b) Neighborhood broadcast: log2(N)+6

Fig. 5: Circular range query.

// perform a range query
void queryRange(Range r, Operation op) {
Node center = Find(r.Center);
center.doRangeQuery(r, op, newId());

}

void doRangeQuery(Range r, Operation op, Id id) {
// avoid redundant executions
if (pastQueries.Contains(id))
return;

pastQueries.add(id);

foreach (Node neighbor in this.Neighbors)
if (r ∩ neighbor.Range != ∅)
neighbor.doRangeQuery(r \ this.Range, op, id);

// execute operation locally
op(this, r);

}

Fig. 6: Range query algorithm.

3.4 Topology Maintenance to Handle Churn

Node Join. When a node joins the system, the key-space of a participating
node has to be split and the key responsibilities subdivided. To achieve this, two
things must be done (we first describe random splitting and then include load
balancing):

1. Select a random target node: A random position in the key-space is routed
to and a random walk is started from there. The final target node of this is
the candidate to be split. The random walk ensures that nodes responsible
for larger areas of the key-space are not preferred over smaller ones.

2. Split the key-space and transfer one part to the new node: Splits are parallel
to one of the coordinate system axes. The selection of the axis to be split
should not strictly favor one dimension over the others because the number
of nodes to be contacted for a range query could become disproportionately
high, when a large interval for the favored dimension is specified in the query.
Also, node leaves could become more expensive.

Node Leave. Handling a leaving node is more difficult, because it is not always
obvious which node can fill the area of the leaving node. For example, in Figure 1,
the area of node f cannot be merged with any of its neighbors, because this would
result in a non-rectangular node-space.

Therefore the node-space is constructed in such a way that the splitting plane
forms a kd-tree [5]. KD-trees are used only for topology maintenance, similar as
in MURK [9], but not as index structures like in database systems. The space of
a leaving node can be taken over by a neighboring node which is also a sibling
in the kd-tree. By keeping the tree balanced the probability of having a sibling
as a neighbor increases. Each node must remember its position in the kd-tree, a
bit-string describing the path from the root of the tree to the node itself.

If no neighboring nodes are siblings in the kd-tree, another node must be
found to fill the gap. Either a neighboring node additionally takes over the re-
sponsibility of the separate area until a free node can be found, or two completely
independent nodes that are siblings in the kd-tree have to be found to merge
them and thus free a node that takes over the free area. The former concept,
called virtual nodes, is also used for load-balancing in other systems.

Load Balancing. Load-balancing can be implemented by either adjusting the
boundaries of the responsibilities locally or freeing nodes in underloaded areas
and moving them to overloaded areas. The former has similar issues as a node
leave—the boundaries are interlocked with limited room for adjustments. The
latter was shown to be converging [11] with predictable performance.

The balancing can be based on different metrics for load, like object or query
load or a combination of both. To avoid thrashing effects a threshold for per-
forming a load-balancing round must be introduced.

4 Empirical Results

For testing the performance of SONAR we used a traveling salesman data set
with 1,904,711 cities1. The cities’ geographical locations follow a Zipf distribu-
tion [19] which is also common in other scenarios.

We assigned the responsibility of nodes by recursively splitting the key-space
at the longer side, so that each part gets half of the cities until enough rectangles
are created. Figure 7 shows a sample splitting for 256 nodes.

The coordinates were mapped onto a doughnut-shaped torus rather than a
globe, because in a globe all vertical rings meet at the poles. This would not only
1 http://www.tsp.gatech.edu/world

Fig. 7: 1,904,711 cities split evenly into 256 rectangular nodes.

 3

 4

 5

 6

 7

 8

 9

 10

 64 256 1024 4096 16384 65536 262144

number of nodes

avg hops (up to 2^14 nodes)
routing table size (x)
routing table size (y)

0.5 log N

Fig. 8: SONAR results for increasing system sizes (2-dimensional).

cause a routing bottleneck at the poles but would also result in different ring
directions for the western and eastern hemisphere (southwards vs. northwards).

Figure 8 shows the results for various all-to-all searches in networks of differ-
ent sizes. The routing performance, depicted by the ‘+’ ticks, almost perfectly
matches the expected 0.5 log2 N hops. Only in the larger networks the expected
value slightly deviates.

We also checked whether the number of fingers in the routing tables, which
are calculated without global information (Fig. 4), meets our expectations. The
‘�’ ticks give the routing table sizes in horizontal direction, and the ‘∗’ ticks
represent the sizes in vertical direction. As expected, both graphs have the same

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

-4 -3 -2 -1 0 1 2

fre
qu

en
cy

routing table size deviation

27 nodes
28 nodes
29 nodes

210 nodes
211 nodes

0 0 1 17 33 40 370 0 6 30
93 122

50 0 9
78

175 176

74
0 1

49 77

382

515

01
52 49

248

535

927

236

Fig. 9: Routing table size deviation from the expected value.

slope of 0.5 log2 N : One lies consistently above, the other below. This is at-
tributed to the different domain sizes of the coordinate system (360 versus 180
degrees) and to the uneven number of splitting planes.

Figure 9 gives further insight into the characteristics of SONAR’s routing
tables. It shows—again for various network sizes—the deviation of the table
sizes from their expected size log2 N (denoted by ‘0’). As can be seen, the same
pattern applies for all network sizes: About 50% of the tables contain one extra
entry, about 25% meet the expected size of log2 N , while there is a decreasing
number of tables with fewer entries. These deviations are caused by the uneven
key distribution and by SONAR’s finger update algorithm which has a tendency
to insert in some cases an extra finger that is more than halfway around the ring
(but still ‘left’ of the own node).

5 Conclusion

SONAR efficiently supports range-queries on multi-dimensional data in struc-
tured overlay networks. It needs O(log N) routing steps for processing range-
queries of arbitrary shapes and an arbitrary number of attribute domains. The
finger calculation needs just one hop for updating an entry in the routing table.

We presented empirical results from a Zipf distributed data set with approxi-
mately two million keys. The results confirm that SONAR does its routing with a
logarithmic number of hops—even in skewed data distributions. Additional tests
with other practical and uniform distributions (not shown here) gave the same
logarithmic routing performance. Furthermore, we observed that the sizes of the
distributed routing tables are always O(log N) although they are autonomously
maintained by the nodes with local information only.

Acknowledgements

Thanks to the anonymous reviewers for their valuable comments. The topo-
graphic images were taken from the ’Blue Marble next generation’ project of
NASA’s Earth Observatory. Thanks to Slaven Rezić for the street map of Berlin.

References

1. K. Aberer, L. Onana Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and M.
Hauswirth. The essence of P2P: A reference architecture for overlay networks.
P2P 2005, 2005.

2. A. Andrzejak and Z. Xu. Scalable, efficient range queries for Grid information
services. P2P 2002, 2002.

3. J. Aspnes and G. Shah. Skip graphs. SODA, Jan. 2003.
4. F. Banaei-Kashani and C. Shahabi. SWAM: A family of access methods for

similarity-search in peer-to-peer data networks. CIKM, Nov. 2004.
5. J. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, Vol. 18, No. 9, 1975.
6. A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-

attribute range queries. ACM SIGCOMM 2004, Aug. 2004.
7. Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and J.

Hellerstein. A Case Study in building layered DHT applications. SIGCOMM’05,
Aug. 2005.

8. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30 (2), 1998.

9. P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: Multi-
dimensional queries in P2P systems. WebDB 2004.

10. D. Karger, E. Lehman, T. Leighton, R. Panigrah, M. Levine, and D. Lewin. Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. ACM Sympos. Theory of Comp., May 1997.

11. D. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-to-peer
systems. IPTPS 2004, Feb. 2004.

12. D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and imple-
mentation tradeoffs for wide-area resource discovery. 14th IEEE Symposium on
High Performance Distributed Computing (HPDC-14), Jul. 2005.

13. W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM, June 1990.

14. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. ACM SIGCOMM 2001, Aug. 2001.

15. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.
Proceedings of the USENIX Annual Technical Conference, Jun. 2004.

16. C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in P2P
systems. IEEE Internet Computing, 19-26, May/June 2004.

17. T. Schütt, F. Schintke, and A. Reinefeld. Structured overlay without consistent
hashing: Empirical results. GP2PC’06, May. 2006.

18. I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet application. ACM SIGCOMM
2001, Aug. 2001.

19. G. Zipf. Relative frequency as a determinant of phonetic change. Harvard Studies
in Classical Philiology, 1929.

B HANDLING NETWORK PARTITIONS AND MERGERS IN
STRUCTURED OVERLAY NETWORKS

B Handling Network Partitions and Mergers in

Structured Overlay Networks

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 28

Handling Network Partitions and Mergers in Structured Overlay Networks ∗

Tallat M. Shafaat† Ali Ghodsi‡ Seif Haridi†

†Royal Institute of Technology (KTH), ‡Swedish Institute of Computer Science (SICS)
{tallat,haridi}(at)kth.se ali(at)sics.se

Abstract

Structured overlay networks form a major class of peer-
to-peer systems, which are touted for their abilities to
scale, tolerate failures, and self-manage. Any long-lived
Internet-scale distributed system is destined to face net-
work partitions. Although the problem of network parti-
tions and mergers is highly related to fault-tolerance and
self-management in large-scale systems, it has hardly been
studied in the context of structured peer-to-peer systems.
These systems have mainly been studied under churn (fre-
quent joins/failures), which as a side effect solves the prob-
lem of network partitions, as it is similar to massive node
failures. Yet, the crucial aspect of network mergers has been
ignored. In fact, it has been claimed that ring-based struc-
tured overlay networks, which constitute the majority of the
structured overlays, are intrinsically ill-suited for merging
rings. In this paper, we present an algorithm for merging
multiple similar ring-based overlays when the underlying
network merges. We examine the solution in dynamic condi-
tions, showing how our solution is resilient to churn during
the merger, something widely believed to be to be difficult or
impossible. We evaluate the algorithm for various scenar-
ios and show that even when false detecting a merger, the
algorithm quickly terminates and does not clutter the net-
work with many messages. The algorithm is flexible as the
tradeoff between message complexity and time complexity
can be adjusted by a parameter.

1 Introduction

Structured Overlay Networks (SONs)—such as
Chord [28], Pastry [26], and SkipNet [13]—are touted for
their ability to provide scalability, fault-tolerance, and self-
management, making them well-suited for Internet-scale
distributed applications. Such Internet-scale systems will
always come across network partitions, especially if the

∗This research has been funded by the European Project SELFMAN,
VINNOVA 2005-02512 TRUST-DIS, and SICS Center for Networked
Systems (CNS).

system is long-lived. Although the problem of network
partitions and mergers is highly related to fault-tolerance
and self-management in large-scale systems, it has, with
few exceptions, been ignored in the context of structured
overlays. This is peculiar, as the importance of the problem
has long been known in other problem domains, such
as those of distributed databases [5] and distributed file
systems [29].

It is our firm belief that a crucial requirement for practi-
cal SONs is that they should be able to deal with network
partitions and mergers. As we show in Section 2, most
SONs cope with network partitions, but not with network
mergers. We believe that this is because a network parti-
tion, as seen from the perspective a single node, is identical
to massive node failures. Since SONs have been designed
to cope with churn, they can self-manage in the presence
of such partitions. However, most SONs cannot cope with
network mergers.

In fact, it has been claimed that ring-based structured
overlays, which constitute the absolute majority of the
SONs, are inherently poorly fit for dealing with network
mergers. Datta et al. [4] focus on the merging of multi-
ple SONs after a network partition ceases (network merger).
They argue that ring-based SONs “cannot function at all un-
til the whole merge process is complete”. Birman [2] argues
that ring-based SONs are inherently ill-suited for dealing
with network partitions.

The merging of SONs gives rise to problems on two dif-
ferent levels: routing level and data level. The routing level
is concerned with healing of the routing information after a
partition merger.

The data level is concerned with the consistency of the
data items stored in the SONs. The solutions to this prob-
lem might depend on the application and on the semantics
of the data operations, e.g. immutable key/value pairs or
monotonically increasing values. It is also known that it
is impossible to achieve strong (atomic) data consistency,
availability1, and partition tolerance in SONs [11, 3, 9].

1By availability we mean that a get/put operation should eventually
complete.

1

We focus on the problem of dealing with partition merg-
ers at the routing level. Given a solution to the problem
at the routing level, it is generally known how to achieve
weaker types of data consistency, such as eventual consis-
tency [29, 6].

In this paper, we present an algorithm for merging any
number of similar structured overlays. We will limit our-
selves to ring-based overlays, since they constitute the ma-
jority of the SONs. It is desirable that a solution to the
problem of merging rings takes minimum amount of time
to complete (time complexity). At the same time, it is desir-
able that the solution has a minimal bandwidth consumption
(message and bit complexity). These two goals are conflict-
ing, as shown by the following two extreme cases. On the
one hand, it is possible to construct an algorithm that com-
pletes in minimal time by having all the nodes repeatedly
spreading all their routing information to every other node
through an overlay broadcast [7, 10, 9]. On the other hand,
it is possible to construct an algorithm which tries to min-
imize the bandwidth consumption by passing a “merging”
token around each of the rings. Hence, it is desirable to find
an algorithm which strikes a balance between time, bit, and
message complexity.

The contribution of this paper is a ring merging algo-
rithm, which allows the system designer to adjust, through a
fanout parameter, the tradeoff between message complexity
and time complexity. Through experimental evaluation, we
show typical fanout values for which our algorithm com-
pletes quickly, while keeping the bandwidth consumption
at an acceptable level. We examine the solution in dynamic
conditions, showing how our solution is resilient to churn
during the merger, something widely believed to be to be
difficult [2] or impossible [4]. We verify that the algorithm
works efficiently even if only a single node detects the parti-
tion merger. We show that even with large rings with thou-
sands of nodes, our solution is lean as it avoids positive-
feedback cycles and, hence, avoids congesting the network.

Outline Section 2 serves as a background by motivating
and defining our choice of ring-based SONs. Section 3 in-
troduces the simple ring unification algorithm, as well as
the gossip-based ring unification algorithm. Since the lat-
ter algorithm builds on the previous, we hope that this has
a didactic value. Thereafter, Section 4 evaluates different
aspects of the algorithms in various scenarios. Section 5
presents related work. Finally, Section 6 concludes.

2 Background

The rest of the paper focuses on ring-based structured
overlay networks. Next, we motivate this choice, and there-
after briefly define ring-based SONs. Finally, we show how
Chord deals with network partitions and failures.

Motivation for the Ring Geometry The reason for con-
fining ourselves to ring-based SONs is twofold. First, ring-
based SONs constitute a majority of the SONs, includ-
ing Chord [28], Pastry [26], SkipNet [13], DKS [9], Ko-
orde [16], Viceroy [23], Mercury [1], Symphony [24], Epi-
Chord [17], and Accordion [18]. Second, Gummadi et al.
[12] diligently compared the geometries of different SONs,
and showed that the ring geometry is the one most resilient
to failures, while it is just as good as the other geometries
when it comes to proximity.

Our results apply to all ring-based SONs. Nevertheless,
we assume a SON similar to Chord [28] to simplify the un-
derstanding of our algorithms.

A Model of a Ring-based SON A SON makes use of an
identifier space, which for our purposes is defined as a set of
integers {0, 1, · · · , N − 1}, where N is some apriori fixed,
large, and globally known integer. This identifier space is
perceived as a ring that wraps around at N − 1.

Every node in the system, has a unique identifier from
the identifier space. Node identifiers are typically assumed
to be uniformly distributed on the identifier space. Each
node keeps a pointer, succ, to its successor on the ring. The
successor of a node with identifier p is the first node found
going in clockwise direction on the ring starting at p. Simi-
larly, every node also has a pointer, pred, to its predecessor
on the ring. The predecessor of a node with identifier q is
the first node met going in anti-clockwise direction on the
ring starting at q. A successor-list is also maintained at ev-
ery node r, which consists of r’s c immediate successors,
where c is typically set to 2 log2(n) in an n node system.

Ring-based SONs also maintain additional routing point-
ers on top of the ring to enhance routing. To keep things
concrete, assume that these are placed as in Chord. Hence,
each node p keeps a pointer to the successor of the identifier
p + 2i (modN) for 0 < i < log2(N). Our results can eas-
ily be adapted to other schemes for placing these additional
pointers.

Dealing with Partitions and Failures in Chord Chord
handles joins and leaves using a protocol called periodic
stabilization. Leaves are handled by having each node pe-
riodically check whether pred is alive, and setting pred :=
nil if it is found dead. Moreover, each node periodically
checks to see if succ is alive. If it is found to be dead, it is
replaced by the closest alive successor in the successor-list.

Joins are also handled periodically. A joining node
makes a lookup to find its successor s on the ring, and sets
succ := s. Each node periodically asks for its successor’s
pred pointer, and updates succ if it finds a closer succes-
sor. Thereafter, the node notifies its current succ about its
own existence, such that the succ node can update its pred

2

pointer if it finds that the notifying node is a closer prede-
cessor than pred. Hence, any joining node is eventually
properly incorporated into the ring.

As we mentioned previously, a single node cannot dis-
tinguish massive simultaneous node failures from a network
partition. As periodic stabilization can handle massive fail-
ures [20], it also recovers from network partitions, making
each component of the partition eventually form its own
ring. Our simulation results confirm this, though they are
omitted due to space constraints. The problem that remains
unsolved, which is the focus of the rest of the paper, is how
several independent rings efficiently can be merged.

3 Ring Merging

For two or more rings to be merged, at least one node
needs to have knowledge about at least one node in another
ring. This is facilitated by the use of passive lists. Whenever
a node detects that another node has failed, it puts the failed
node, with its routing information, in its passive list. Every
node periodically pings nodes in its passive list to detect
if a failed node is again alive. When this occurs, it starts
a ring merging algorithm. Hence, a network partition will
result in many nodes being placed in passive lists. When
the underlying network merges, this will be detected and
rectified through the execution of a ring merging algorithm.

A ring merging algorithm can also be invoked in other
ways than described above. For example, it could occur
that two SONs are created independently of each other, but
later their administrators decide to merge them due to over-
lapping interests. It could also be that a network partition
has lasted so long, that all nodes in the rings have been re-
placed, making the contents of the passive lists useless. In
cases such as these, a system administrator can manually
insert an alive node from another ring into the passive lists
of any of the nodes. The ring merger algorithm will take
care of the rest.

The detection of an alive node in a passive list does not
necessarily indicate the merger of a partition. It might be the
case that a single node is incorrectly detected as failed due
to a premature timeout of a failure detector. It might also
be the case that a node with the same address and identifier
as a failed node joins the ring. The ring merging algorithm
should be able to cope with the first case, by trying to en-
sure that such false-positives will terminate the algorithm
quickly. The latter case can be dealt with by associating
with every node a globally unique random nonce, which is
generated each time a node joins the network. Hence, a new
node can always be differentiated from an old node with the
same address.

3.1 Simple Ring Unification

In this section we present the simple ring unification al-
gorithm (Algorithm 1). As we later show, the algorithm
will merge the rings in O(n) time for a network size of n.
Though we believe that the problem of dealing with net-
work mergers is crucial, we think that such events happen
more rarely. Hence, it might be justifiable in certain applica-
tion scenarios that a slow paced algorithm runs in the back-
ground, consuming little resources, while ensuring that any
potential problems with partitions will eventually be recti-
fied. Later, we show how the algorithm can be improved to
make it complete the merger in substantially less time.

Algorithm 1 Simple Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at n
2: id := detqueue.dequeue()
3: sendto n : MLOOKUP(id)
4: sendto id : MLOOKUP(n)
5: end event

6: receipt of MLOOKUP(id) from m at n
7: if id 6= n and id 6= succ then
8: if id ∈ (n, succ) then
9: sendto id : TRYMERGE(n, succ)

10: else if id ∈ (pred, n) then
11: sendto id : TRYMERGE(pred, n)
12: else
13: sendto closestprecedingnode(id) : MLOOKUP(id)
14: end if
15: end if
16: end event

17: receipt of TRYMERGE(cpred, csucc) from m at n
18: sendto n : MLOOKUP(csucc)
19: if csucc ∈ (n, succ) then
20: succ := csucc
21: end if
22: sendto n : MLOOKUP(cpred)
23: if cpred ∈ (pred, n) then
24: pred := cpred
25: end if
26: end event

Algorithm 1 makes use of a queue called detqueue,
which will contain any alive nodes found in the passive
list. The queue is periodically checked by every node n,
and if it is non-empty the first node p in the list is picked
to start a ring merger. Ideally, n and p will be on two dif-
ferent rings. But even so, the distance between n and p on
the identifier space might be very large, as the passive list
can contain any previously failed node. Hence, the event
MLOOKUP(id) is used to get closer to id through a lookup.
Once MLOOKUP(id) gets near its destination id, it triggers
the event TRYMERGE(cpred, csucc), which tries to do the
actual merging by updating succ and pred pointers.

3

p

q

1: mlookup(q)

2: mlookup(p)

3: trymerge4: trymerge

5: trymerge6: trymerge

progress

clockwise progress
anti−clockwise

anti−clockwise
progress

clockwise
progress

Figure 1: Filled circles belong to SON1 and empty circles be-
long to SON2. The algorithm starts when p detects q, p makes an
MLOOKUP to q and asks q to make an MLOOKUP to p. Steps 3− 6

execute in parallel.

The event MLOOKUP(id) is similar to a Chord lookup,
which tries to do a greedy search towards the destination id.
One difference is that it terminates the lookup if it reaches
the destination and locally finds that it cannot merge the
rings. More precisely, this happens if MLOOKUP(id) is ex-
ecuted at id itself, or at a node whose successor is id. If an
MLOOKUP(id) executed at n finds that id is between n and
n’s successor, it terminates the MLOOKUP and starts merg-
ing the rings by calling TRYMERGE. Another difference
between MLOOKUP and an ordinary Chord lookup is that
an MLOOKUP(id) executed at n also terminates and starts
merging the rings if it finds that id is between n’s predeces-
sor and n. Thus, the merge will proceed in both clockwise
and anti-clockwise direction.

The event TRYMERGE takes a candidate predecessor,
cpred, and a candidate successor csucc, and attempts to
update the current node’s pred and succ pointers. It also
makes two recursive calls to MLOOKUP, one towards cpred,
and one towards csucc. This recursive call attempts to con-
tinue the merging in both directions.

In summary, MLOOKUP closes in on the target area
where a potential merger can happen, and TRYMERGE at-
tempts to do local merging and advancing the merge process
in both directions by triggering new MLOOKUPs.

3.2 Gossip-based Ring Unification

The simple ring unification presented in the previous sec-
tion has two disadvantages. First, it is slow, as it takes O(n)
time to complete the ring unification. Second, it cannot re-
cover from certain pathological scenarios. For example, as-
sume two distinct rings in which every node points to its
successor and predecessor in its own ring. Assume fur-
thermore that the additional pointers of every node point to
nodes in the other ring. In such a case, an mlookup will im-
mediately leave the initiating node’s ring, and hence termi-
nate. We do not see how such a pathological scenario could
occur due to a partition, but the gossip-based ring unifica-
tion algorithm (Algorithm 2) rectifies both disadvantages of
the simple ring unification algorithm.

Algorithm 2 Gossip-based Ring Unification Algorithm
1: every γ time units and detqueue 6= ∅ at n
2: 〈id, f〉 := detqueue.dequeue()
3: sendto n : MLOOKUP(id, f)
4: sendto id : MLOOKUP(n, f)
5: end event

6: receipt of MLOOKUP(id, f) from m at n
7: if id 6= n and id 6= succ then
8: if f ≥ 1 then
9: r := randomnodeinRT()

10: at r : detqueue.enqueue(〈id, f〉)
11: f := f − 1
12: end if
13: if id ∈ (n, succ) then
14: sendto id : TRYMERGE(n, succ)
15: else if id ∈ (pred, n) then
16: sendto id : TRYMERGE(pred, n)
17: else
18: sendto closestprecedingnode(id) : MLOOKUP(id, f)
19: end if
20: end if
21: end event

22: receipt of TRYMERGE(cpred, csucc) from m at n
23: sendto n : MLOOKUP(csucc, F)
24: if csucc ∈ (n, succ) then
25: succ := csucc
26: end if
27: sendto n : MLOOKUP(cpred, F)
28: if cpred ∈ (pred, n) then
29: pred := cpred
30: end if
31: end event

Algorithm 2 is, as its name suggests, partly gossip-based.
The algorithm is essentially the same as the simple ring
unification algorithm, but it starts multiple such mergers at
random places on the rings. The basic idea is to augment
MLOOKUP(id), such that the current node randomly picks

4

a node r in its current routing table and starts a ring merger
between id and r. This change alone would, however, con-
sume too much resources.

Two mechanisms are used to avoid that the algorithm
consumes too many messages, and therefore gives rise to
positive feedback cycles which congest the network. First,
instead of immediately triggering an MLOOKUP at a ran-
dom node, the event is placed in the corresponding node’s
detqueue, which only is checked periodically. Second, a
constant number of random MLOOKUPs are created. This is
regulated by a fanout parameter called F . Thus, the fanout
is decreased each time a random node is picked, and the
random process is only started if the fanout is larger than
or equal to 1. The detqueue, therefore, holds tuples, which
contain a node identifier and the current fanout parameter.
Similarly, MLOOKUP takes the current fanout as a parame-
ter.

4 Evaluation

In this section we evaluate the two algorithms from var-
ious aspects and in different scenarios. There are two mea-
sures of interest: message complexity, and time complexity.
We differentiate between the completion and termination of
the algorithm. By completion we mean the time when the
rings have merged. By termination we mean the time when
the algorithm terminates sending any more messages. If
not said otherwise, message complexity is until termination,
while time complexity is until completion.

We first evaluate the message and time complexity of
the algorithms in the typical scenario where many nodes si-
multaneously detect alive nodes in their passive lists. For a
worst case scenario, we evaluate the algorithms when only
a single node detects the existence of another ring. There-
after, we evaluate the performance of the algorithms while
joins and failures are taking place during the ring merging
process. Finally, we evaluate message complexity of the al-
gorithms when a node falsely believes that it has detected
another ring.

The evaluations are done in a stochastic discrete event
simulator, in which we implemented Chord. The simulator
uses an exponential distribution for the inter-arrival time be-
tween events (joins and failures). To make the simulations
scale, the simulator is not packet-level. The time to send
a message is an exponentially distributed random variable.
The values in the graphs indicate averages of 20 runs with
different random seeds.

Each simulation scenario had the following structure.
Initially nodes join and fail. After a certain number of nodes
are part of the system, we insert a partition event, on which
the simulator divides the set of nodes into as many compo-
nents as requested by the partition event. A partition event is
implemented using lottery scheduling [31] to define the size
of each partition. The simulator then drops all messages

 18

 20

 22

 24

 26

 28

 30

 32

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
un

its

Fanout

2000 nodes
4000 nodes

Figure 2: Evaluation of a typical scenario with multiple nodes
detecting the merger for various network sizes and fanouts.

sent from nodes in one partition to nodes in another parti-
tion, thus simulating a network partition in the underlying
network and therefore triggering the failure handling algo-
rithms (see Section 2 and 3). Thereafter, a network merger
event simply again allows messages to reach other network
components, triggering the detection of alive nodes in the
passive lists, and hence starting the ring unification algo-
rithms.

We simulated the simple ring unification algorithm and
the gossip-based ring unification algorithm for partitions
creating two components, and for fanout values from 1 to
7. For our simulation graphs, a fanout of 1 represents the
simple ring unification algorithm. As the simulations show,
fanout values less than 5 create very few messages even
with thousands of nodes in the system.

Figure 2 and 3 show the time and message complexity
for a typical scenario where after a merger, multiple nodes
detect the merger and thus start the unification algorithm.
As can be seen in Figures 2 and 3, the simple ring unifica-
tion algorithm (F = 1) consumes minimum messages but
takes maximum time. For higher values of F , the time com-
plexity decreases while the message complexity increases.
Increasing the fanout after a threshold value (around 3−4 in
this case) will not considerably decrease the time complex-
ity, but will just generate many messages. Figure 4 shows a
tradeoff between time complexity and message complexity.
Choosing to have less time for completion of mergers will
create more messages, and vice versa.

For the rest of the evaluations, we use a worst case sce-
nario where only a single node detects the merger.

Next, we evaluate rings unification under churn, i.e.
nodes join and fail during the merger. The algorithm may
fail to complete and the merged overlay may not converge
under churn, especially for simple ring unification and low

5

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
es

sa
ge

s

Fanout

2000 nodes
4000 nodes

Figure 3: Evaluation of a typical scenario with multiple nodes
detecting the merger for various network sizes and fanouts.

fanouts. The reason being intuitive: for simple unifica-
tion, the two MLOOKUPs generated by the node detecting
the merger while traveling through the network may fail as
the node forwarding the MLOOKUP may fail under churn.
Thus, if only one node detects the merger, with churn, there
is a non-zero probability that the rings will not converge.
With higher values of F , the algorithm becomes more ro-
bust to churn as it creates multiple MLOOKUPs. The results
presented in Figure 6 and 7 are only when the rings suc-
cessfully converge. For simulation, after a merge event, we
generate events of joins and fails until the unification algo-
rithm terminates. With high churn, we mean that the inter-
arrival time between events of joins and fails is less, thus
representing highly dynamic conditions. Choosing a high
inter-arrival time between events will create less joins and
fails and thus churn will be less. For the simulations pre-
sented here, we choose inter-arrival time between events of
joins and failures to be 30 units for high churn and 45 units
for low churn, and an equal probability for a event to be a
join or a fail. Figure 6 and 7 show how different values of
F affect the convergence of the rings under different levels
of churn.

Finally, we evaluate the scenario where a node may
falsely detect a merger. Figure 5 shows the message com-
plexity of the algorithm in case of a false detection. As can
be seen, for lower F values, the message complexity is less.
Even for higher fanouts, the number of messages generated
are less, thus showing that the algorithm is lean. We be-
lieve this to be important as most SONs do not have perfect
failure detectors, and hence can give rise to inaccurate sus-
picions.

Our simulations show that a fanout value of 4 is good for
a system with several thousand nodes, even with respect to
churn and false-positives.

 10000

 100000

 1e+06

 1e+07

 18 20 22 24 26 28 30 32

M
es

sa
ge

s
(lo

g)

Time units

2000 nodes
4000 nodes

Figure 4: Evaluation of a typical scenario with multiple nodes
detecting the merger for various network sizes and fanouts.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7

M
es

sa
ge

s

Fanout

3000 nodes
6000 nodes

Figure 5: Evaluation of message complexity in case a node
falsely detects a merger for various network sizes and fanouts.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 1 2 3 4 5 6 7

M
es

sa
ge

s

Fanout

no churn
high churn
low churn

Figure 6: Evaluation of message complexity under churn

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7

T
im

e
un

its

Fanout

no churn
high churn
low churn

Figure 7: Evaluation of time complexity under churn

5 Related Work

Much work has been done to study the effects of churn
on a structured overlay network [22], showing how over-
lays can cope with massive node joins and failures, thus
showing how overlays are resilient to partitions. Datta et
al. [4] have presented the challenges of merging two over-
lays, claiming that ring-based networks cannot operate un-
til the merger operation completes. In contrast, we show
how unification can work under churn while the merger op-
eration is not complete. Birman [2] argued that ring-based
SONs are inherently ill-suited for dealing with network par-
titions, while we show how ring-based SONs can be modi-
fied to deal with partitions.

The problem of constructing a SON from a random
graph is, in some respects, similar to merging multiple
SONs after a network merger, as the nodes may get ran-
domly connected after a partition heals. Shaker et al. [27]
have presented a ring-based algorithm for nodes in arbitrary
state to converge into a directed ring topology. Their ap-
proach is different from ours, in that they provide a non-
terminating algorithm which should be used to replace all
join, leave, and failure handling of an existing SON. Re-
placing the topology maintenance algorithms of a SON
may not always be feasible, as SONs may have intri-
cate join and leave procedures to guarantee lookup consis-
tency [21, 19, 9]. In contrast, our algorithm is a terminating
algorithm that works as a plug-in for an already existing
SON.

Montresor et al. [25] show how Chord [28] can be cre-
ated by a gossip-based protocol [14]. However, their al-
gorithm depends on an underlying membership service like
Cyclon [30], Scamp [8] or Newscast [15]. Thus the un-
derlying membership service has to first cope with net-
work mergers (a problem worth studying in its own right),

whereafter T-Chord can form a Chord network. We believe
one needs to investigate further how these protocols can be
combined, and their epochs be synchronized, such that the
topology provided by T-Chord is fed back to the SON when
it has converged. Though the general performance of T-
Chord has been evaluated, it is not known how it performs
in the presence of network mergers when combined with
various underlying membership services.

The problem of network partitions and mergers has
been studied in other distributed systems like in distributed
databases [5] and distributed file systems [29]. These stud-
ies focus on problems created by the partition and merger
on the data level, while we focus on the routing level.

6 Conclusion

We have argued that the problem of partitions and merg-
ers in structured peer-to-peer systems, when the underlying
network partitions and recovers, is of crucial importance.
We have presented a simple and a gossip-based algorithm
for merging similar ring-based structured overlay networks
after the underlying network merges. Our algorithm is quite
fast compared to the basic linear solution presented by Datta
et al. [4]. We have shown how the algorithm can be tuned
to achieve a tradeoff between the number of messages con-
sumed and the time before the overlay converges. We have
evaluated our solution in realistic dynamic conditions, and
showed that with high fanout values, the algorithm can con-
verge quickly under churn. We have also shown that our so-
lution generates few messages even if a node falsely starts
the algorithm in an already converged SON.

We tried many variations of the algorithms before reach-
ing those that are reported in this paper. Initially, we had
an algorithm that was not gossip-based, i.e. was not pe-
riodic and did not have any randomization. Albeit the al-
gorithm was quite fast, it heavily overconsumed messages,
making it infeasible for a large scale network. For that rea-
son, we added the fanout parameter, and made it run peri-
odically. Without randomization, we could construct patho-
logical scenarios, in which that algorithm would not be able
to merge the rings.

References

[1] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In Proceedings of the ACM
SIGCOMM 2004 Symposium on Communication, Architecture, and
Protocols, pages 353–366, Portland, OR, USA, March 2004. ACM
Press.

[2] Ken Birman. Gossip Algorithms and Emergent Shape. Invited talk at
the Workshop on Gossip-based Computer Networking at the Lorentz
Center, Leiden, Netherlands, December 2006.

[3] E. Brewer. Towards Robust Distributed Systems, invited talk at the
19th Annual ACM Symposium on Principles of Distributed Comput-
ing (PODC’00), 2000.

7

[4] A. Datta and K. Aberer. The Challenges of Merging Two Sim-
ilar Structured Overlays: A Tale of Two Networks. In Proceed-
ings of the First International Workshop on Self-Organizing Systems
(IWSOS’06), volume 4124 of Lecture Notes in Computer Science
(LNCS), pages 7–22. Springer-Verlag, 2006.

[5] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a
partitioned network: a survey. ACM Computing Surveys, 17(3):341–
370, 1985.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms
for Replicated Database Maintenance. In Proceedings of the 7th
Annual ACM Symposium on Principles of Distributed Computing
(PODC’87), pages 1–12, New York, NY, USA, 1987. ACM Press.

[7] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient Broad-
cast in Structured P2P Netwoks. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03), volume
2735 of Lecture Notes in Computer Science (LNCS), pages 304–314,
Berkeley, CA, USA, 2003. Springer-Verlag.

[8] A. J. Ganesh, A.-M. Kermarrec, and L Massoulié. SCAMP: Peer-to-
Peer Lightweight Membership Service for Large-Scale Group Com-
munication. In Proceedings of the 3rd International Workshop on
Networked Group Communication (NGC’01), volume 2233 of Lec-
ture Notes in Computer Science (LNCS), pages 44–55, London, UK,
2001. Springer-Verlag.

[9] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed
Hash Tables. PhD dissertation, KTH—Royal Institute of Technol-
ogy, Stockholm, Sweden, December 2006.

[10] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. Self-
Correcting Broadcast in Distributed Hash Tables. In Proceedings of
the 15th International Conference, Parallel and Distributed Comput-
ing and Systems, Marina del Rey, CA, USA, November 2003.

[11] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM Spe-
cial Interest Group on Algorithms and Computation Theory News,
33(2):51–59, 2002.

[12] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of DHT routing geometry on resilience
and proximity. In Proceedings of the ACM SIGCOMM 2003 Sym-
posium on Communication, Architecture, and Protocols, pages 381–
394, New York, NY, USA, 2003. ACM Press.

[13] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality proper-
ties. In Proceedings of the 4th USENIX Symposium on Internet Tech-
nologies and Systems (USITS’03), Seattle, WA, USA, March 2003.
USENIX.

[14] M. Jelasity and Ö. Babaoglu. T-man: Gossip-based overlay topology
management. In Proceedings of 3rd Workshop on Engineering Self-
Organising Systems (EOSA’05), volume 3910 of Lecture Notes in
Computer Science (LNCS), pages 1–15. Springer-Verlag, 2005.

[15] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast Computing.
Technical Report IR–CS–006, Vrije Universiteit, November 2003.

[16] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal
Distributed Hash Table. In Proceedings of the 2nd Interational Work-
shop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of Lecture
Notes in Computer Science (LNCS), pages 98–107, Berkeley, CA,
USA, 2003. Springer-Verlag.

[17] B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the
Chord Lookup Algorithm with Reactive Routing State Management.
In 12th International Conference on Networks (ICON’04), Singa-
pore, November 2004. IEEE Computer Society.

[18] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-
efficient management of DHT routing tables. In Proceedings of the
2nd USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

[19] X. Li, J. Misra, and C. G. Plaxton. Brief Announcement: Concurrent
Maintenance of Rings. In Proceedings of the 23rd Annual ACM Sym-
posium on Principles of Distributed Computing (PODC’04), page
376, New York, NY, USA, 2004. ACM Press.

[20] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observations
on the Dynamic Evolution of Peer-to-Peer Networks. In Proceed-
ings of the First International Workshop on Peer-to-Peer Systems
(IPTPS’02), volume 2429 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag, 2002.

[21] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access
in Distributed Hash Tables. In Proceedings of the First Intera-
tional Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes
in Computer Science (LNCS), pages 295–305, London, UK, 2002.
Springer-Verlag.

[22] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of
Reliability in Peer-to-Peer Overlays. In Proceedings of the 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’03), volume
2735 of Lecture Notes in Computer Science (LNCS), pages 21–32,
Berkeley, CA, USA, 2003. Springer-Verlag.

[23] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and
dynamic emulation of the butterfly. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing
(PODC’02), New York, NY, USA, 2002. ACM Press.

[24] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed
Hashing in a Small World. In Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS’03), Seattle,
WA, USA, March 2003. USENIX.

[25] A. Montresor, M. Jelasity, and Ö. Babaoglu. Chord on Demand.
In Proceedings of the 5th International Conference on Peer-To-Peer
Computing (P2P’05). IEEE Computer Society, August 2005.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems. In Proceed-
ings of the 2nd ACM/IFIP International Conference on Middleware
(MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer
Science (LNCS), pages 329–350, Heidelberg, Germany, November
2001. Springer-Verlag.

[27] A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring Topol-
ogy P2P Systems. In Proceedings of the 5th International Con-
ference on Peer-To-Peer Computing (P2P’05), pages 39–46. IEEE
Computer Society, August 2005.

[28] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Transactions
on Networking (TON), 11(1):17–32, 2003.

[29] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer,
and C. Hauser. Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95), pages 172–
183. ACM Press, December 1995.

[30] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal of
Network and Systems Management, 13(2), 2005.

[31] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the
First Symposium on Operating Systems Design and Implementation
(OSDI’94), pages 1–11. USENIX, November 1994.

8

C PEPINO: PEER-TO-PEER NETWORK INSPECTOR

C PEPINO: PEer-to-Peer network INspectOr

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 37

PEPINO: PEer-to-Peer network INspectOr ∗

Donatien Grolaux, Boris Mejı́as, and Peter Van Roy
Universit́e catholique de Louvain, Belgium

firstname.lastname@uclouvain.be

Abstract

PEPINO is a simple and effective peer-to-peer network
inspector. It visualises not only meaningful pointers and
connections between peers, but also the exchange of mes-
sages between them, providing a useful tool for debugging
purposes. It can monitor running networks, simulate them
and log them in order to reproduce interesting case scenar-
ios. Failures can be explicitly introduced to study fault tol-
erant algorithms. The graphical representation of the net-
work uses a physical model to attract or repel peers, al-
lowing the user to study the system from different points of
view. This demo aims to present the use of PEPINO in the
development of a novel relaxed-ring topology for fault tol-
erant networks, where the representation of the ring based
on predecessors may differ from the ring based on succes-
sors. We show how PEPINO is also useful for visualising
other network topologies such as perfect ring or unstruc-
tured networks.

1. Introduction

Developing peer-to-peer systems requires the ability of
visualising the network in terms of the designed algorithms.
The more dynamic the case-studies become, the harder is
to keep track of all interaction between peers. The obvi-
ous solution is to use a software to graphically represent the
network, and thus, nearly every developer group creates its
own network viewer to study their algorithms. Then, why
do we present yet another viewer? The reason to do it is
because existing tools are so ad-hoc to each network that
studying a different network topologies in such tools did
not allowed us to visualise our concrete issues.

We developed PEPINO, a PEer-to-Peer network INspec-
tOr that adapts its graphical representation to several net-
work topology such as ring, relaxed-ring, unstructured net-
works or even client-server. The graphical representation

∗This research is mainly funded by EVERGROW (contract num-
ber:001935) and SELFMAN (contract number: 034084), with additional
funding by CoreGRID (contract number: 004265).

uses a physical model to attract and repel connected nodes
depending on the weight of each kind of connection. This
is how the viewer is able to dynamically adapt itself to dif-
ferent network architectures, without making any previous
assumption on the topology.

Another crucial information for debugging is the ex-
change of messages between peers. PEPINO displays si-
multaneously with the representation of the network, the
communication between peers and the events triggered by
each one of them. Messages and events are annotated with
different categories, allowing filters in order to get more
meaningful information.

Figure 1. Message exchange between peers

2. PEPINO and P2PS

We use PEPINO in the development of P2PSv3 [2], a
Chord-like platform to develop fault-tolerant peer-to-peer
applications. P2PS uses a network topology based on a
relaxed-ring where only the predecessor links form a per-
fect ring, guaranteeing a correct distribution the responsi-

bility of the keys. Successors follow a different invariant
allowing the presence of branches in the ring. The topology
and the algorithms of P2PS provide a network that can sur-
vive efficiently to failures of nodes and also to broken links
(inaccurate failure detection), which are often ignored.

P2PS is implemented using a software architecture based
on tiers, where the lowest tier implements point-to-point
communication. The relaxed-ring maintenance is another
layer placed upper in the architecture. As we previously
mentioned, PEPINO can display messages between peers
in different categories. In the particular case of P2PS, ev-
ery tier is represented by a category. Figure 1 depicts how
messages are represented, and how one category is high-
lighted. The figure is shown in grey scale, but it is possible
to distinguish that every category has its own colour. Ev-
ery category can be enabled or disabled in order to avoid
unnecessary verbosity.

Figure 2. Fingers on a ring network

During the demonstration, different networks will be
presented in order to observe their dynamic behaviour. Fig-
ure 2 is a screenshot of PEPINO visualising a network using
ring topology. On the left side of the screenshot is possible
to observe the frame with messages between peers. On the
right side, in the graphical representation of the ring, the
finger of a particular peer are highlighted. On the bottom
right corner, there is a set of buttons allowing the election
of the strongest connector between peers for the graphical
representation. The underlay physical model will adapt the
parameter for attraction or repulsion of nodes according to
these settings. Like this, it is possible to observe the net-
work from different points of view. For instance, putting
the focus on the predecessors or successor links.

To check how the network reacts to network failures, it
is possible to explicitly inject temporary or permanent fail-
ures on nodes. Failures can also be injected in the commu-
nication channel between peers, which is one way to study
inaccuracy of failure detection.

Figure 3. Relaxed-ring topology

Figure 3 depicts the visualisation of the relaxed-ring
topology of P2PS, our main focus of interest for the demon-
stration. The information given by PEPINO helps the de-
veloper to understand why branches are created, and how
the network recovers from crashed peers and broken links.
P2PS implements different algorithms for the election of
fingers such as Chord [5], Tango [1] and DKS [3], allowing
the comparison between them.

PEPINO is also useful for bug reports. The history of a
visualised network can be saved in a log file to be sent to
developers. The log can be visualised at different speeds.
In figures 2 and 3, a set of arrows can be seen at the bottom
left corner. The speed of visualisation can be tuned with
those buttons. It is also possible to run the visualisation
until a particular event identified by a number, or matching
a pattern.

PEPINO is implemented with Mozart [4], and it can be
run on Linux, MacOSX and other Unix systems. It also runs
on Windows 98/NT/XP.

References

[1] B. Carton and V. Mesaros. Improving the scalability of
logarithmic-degree dht-based peer-to-peer networks. In
M. Danelutto, M. Vanneschi, and D. Laforenza, editors,Euro-
Par, volume 3149 ofLecture Notes in Computer Science,
pages 1060–1067. Springer, 2004.

[2] DistOz Group. P2PS: A peer-to-peer networking library for
Mozart-Oz.http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[3] A. Ghodsi. Distributed k-ary System: Algorithms for Dis-
tributed Hash Tables. PhD dissertation, KTH — Royal Insti-
tute of Technology, Stockholm, Sweden, Dec. 2006.

[4] Mozart Community. The Mozart-Oz programming system.
http://www.mozart-oz.org, 2007.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. InProceedings of the 2001 ACM SIG-
COMM Conference, pages 149–160, 2001.

D IMPROVING THE PEER-TO-PEER RING FOR BUILDING
FAULT-TOLERANT GRIDS

D Improving the Peer-to-Peer Ring for Building

Fault-Tolerant Grids

SELFMAN Deliverable D.1.1(v1.0), July 15, 2007, Page 40

IMPROVING THE PEER-TO-PEER RING FOR
BUILDING FAULT-TOLERANT GRIDS

Boris Mejı́as and Donatien Grolaux and Peter Van Roy
Université catholique de Louvain, Belgium∗

{bmc|ned|pvr}@info.ucl.ac.be

Abstract
Peer-to-peer networks are gaining popularity in order to build Grid systems.

Among different approaches, structured overlay networks using ring topology
are the most preferred ones. However, one of the main problems of peer-to-peer
rings is to guarantee lookup consistency in presence of multiple joins, leaves
and failures nodes. Since lookup consistency and fault-tolerance are crucial
properties for building Grids or any application, these issues cannot be avoided.
We introduce a novel relaxed-ring architecture for fault-tolerant and cost-efficient
ring maintenance. Limitations related to failure handling are formally identified,
providing strong guarantees to develop applications on top of the relaxed-ring
architecture. Besides permanent failures, the paper analyses temporary failures
and broken links, which are often ignored.

Keywords: Peer-to-peer, relaxed-ring, fault-tolerance, lookup consistency, ring maintenance.

1. Introduction

Classical approaches for building Grid systems using resource and service
discovery are mainly centralised or hierarchical. Since centralised networks
present the weakness of having single point of failure, peer-to-peernetworks
are gaining popularity as an alternative decentralised choice. Building decen-
tralised applications requires several guarantees from the underlay peer-to-peer
network. Fault-tolerance and consistent lookup of resources are crucial proper-
ties that a peer-to-peer system must provide. Structured overlay network pro-
viding a Distributed Hash Table (DHT) using Chord-like ring topology [10]are a
popular choice to solve the requirements of efficient routing, lookup consistency
and accessibility of all resources. But all these properties are compromised in

∗This research is mainly funded by EVERGROW (contract number:001935) and SELFMAN (contract
number: 034084), with additional funding by CoreGRID (contract number: 004265).

2

presence of failure or high churn (multiple peers joining or leaving in very short
time).

The benefits of using peer-to-peer systems have been already stated in previ-
ous CoreGRID results [12, 11], but the problems related to fault-tolerance has
not been deeply addressed. A high level approach is proposed in [2], where
the failure detection and self-organisation of the network is entirely delegated
to the peer-to-peer system. Since this work addresses these issues precisely at
the low level, it can be seen as a complementary result.

Despite the self-organising nature of the ring architecture, its maintenance
presents several challenges in order to provide lookup consistency atany time.
Chord itself presents temporary inconsistency with massive peers joining the
network, even in fault-free systems. A stabilisation protocol must be run period-
ically to fix these inconsistencies. Existing analyses conclude that the problem
comes from the fact that joins and leaves are not atomic operations, and they
always need the synchronisation of three peers. Synchronising threepeers is
hard to guarantee with asynchronous communication, but this is inherent to
distributed programming.

Existing solutions [7–8]introduce a locking system in order to provide atom-
icity of join and leave operations. Locks are also hard to manage in asyn-
chronous systems, and that is why these solutions only work on fault-freesys-
tems, which is not realistic. A better solution is provided by DKS [5], simplify-
ing the locking mechanism and proving correctness of the algorithms in absent
of failures. Even when this approach offers strong guarantees, we consider locks
extremely restrictive for a dynamic network based on asynchronous communi-
cation. Every lookup request involving the locked peers must be suspended in
presence of join or leave in order to guarantee consistency. Leaving peers are
not allowed to leave the network until they are granted with the relevant locks.
Given that, peers crashing can be seen as peers just leaving the network without
respecting the protocol of the locking mechanism breaking the guaranteesof
the system. Another critical problem for performance is presented when apeer
crashes while some joining or leaving peer is holding its lock. Then, locks in a
distributed system can hardly present a fault-tolerant solution.

We have developed an algorithm that only needs the agreement of two nodes
at each stage, which is easier to guarantee given point-to-point communication.
This decision leads us to a relaxed-ring topology, simplifying the joining algo-
rithm and becoming fault tolerant to permanent or temporary failures of nodes,
and also to broken links, which are often ignored by existing approaches.

The following section describes the relaxed-ring architecture and its guar-
antees. We continue with further analysis of the topology and its fault tolerant
behaviour, ending with conclusions.

Improving the Peer-to-Peer Ring forBuilding Fault-Tolerant Grids 3

2. P2PS’s relaxed-ring

The relaxed-ring topology is part of the new version of P2PS [4], which is
designed as a modular architecture based on tiers. The whole system is imple-
mented using the Mozart-Oz programming system [9], where the lowest level
tier implements point-to-point communication between peers. Some layer up-
per to this one, we implement the maintenance of the relaxed-ring topology,
which is the focus of this paper. This layer can correctly route lookup re-
quests providing consistency. Other layers built on top of this one are in charge
of providing efficient routing, reliable message sending, broadcast/multicast
primitives and naming services. All these layers provide efficient support for
building decentralised systems such as grid based on services architectures like
P2PKit [6].

As any overlay network built using ring topology, in our system every peer
has a successor, predecessor, and fingers to jump to other parts of thering
providing efficient routing. Ring’s key-distribution is formed by integers from
0 to N growing clockwise. For the description of the algorithms we will use
event-driven notation. When a peer receives a message, the message istriggered
as an event in the ring maintenance tier.

Range between keys, such as(p, q] follows the key distribution clockwise, so
it is possible thatp > q, and then the range goes fromp to q passing through 0.
Parentheses ‘()’ excludes a key from the range and square brackets ‘[]’ includes
it.

2.1 The relaxed-ring

As we previously mentioned, one of the problem we have observed in existing
ring maintenance algorithms is the need for an agreement between three peers
to perform a join/leave action. We provide an algorithm where every step
only needs the agreement of two peers, which is guaranteed with a point-to-
point communication. In the specific case of a join, instead of having one step
involving 3 peers, we have two steps involving 2 peers. The lookup consistency
is guaranteed between every step and therefore, the network can still answer
lookup requests while simultaneous nodes are joining the network. Another
relevant difference is that we do not rely on graceful leaving of peers, because
anyway, we have to deal with leaves due to network failures.

Our first invariant is thatevery peer is in the same ring as its successor.
Therefore, it is enough for a peer to have connection with its successorto be
considered inside the network. Secondly, the responsibility of a peer starts with
the key of its predecessor plus 1, and it finishes with its own key. Therefore, a
peer does not need to have connection with its predecessor, but it must know its
key. These are two crucial properties that allow us to introduce the relaxation
of the ring. When a peer cannot connect to its predecessor, it forms a branch

4

from the“perfect ring” . Figure 1 shows a fraction of a relaxed ring where peer
k is the root of a branch, and where the connection between peersh andi is
broken.

Having the relaxed-ring architecture, we in-

Figure 1. The relaxed-ring archi-
tecture

troduce a new principle that modifies the rout-
ing mechanism. The principle is thata peer
can never indicate another peer as responsi-
ble for a key. This implies that even when the
successor of a peer seems to be the responsi-
ble of a key, the request must be forwarded to
the successor. Considering the example in fig-
ure 1,h may think thatk is the responsible for
keys in the interval(h, k], but in fact there are three other nodes involved in this
range. Note that the forwarding of a lookup request can be directed forward
of backward with respect to the key distribution. It has been proved thatthis
modification to the usual routing mechanism does not creates cycles and always
converge.

Before starting the description of the algorithms that maintain the relaxed-
ring topology, we first define what do we mean by lookup consistency.

Def. Lookup consistency implies that at any time there is only one respon-
sible for a particular keyk, or the responsible is temporary not available.

When a new peer wants to join the ring, first, it gets its own identifier from a
random key-generator. At this starting point, the node does not have a successor
(succ), then, it does not belong to any ring, and it does not know its predecessor
(pred), so obviously, it does not have responsibilities. Having an access point,
that can be any peer of the ring, the new peer triggers a lookup requestfor
its own key in order to find its best successor candidate. This is quite usual
procedure for several Chord-alike systems. When the responsible ofthe key
contacts the new peer, it begins the join algorithm that will be discussed in the
next section.

2.2 The join algorithm

As we have previously mentioned, the relaxed-ring join algorithm is divided
in two steps involving two peers each, instead of one step involving three peers
as in existing solutions. The whole process is depicted in figure 2, where node
q joins in between peersp andr. When peerr replies the lookup request toq,
andq send thejoin message tor triggering the joining process.

The first step is described in algorithm 1, and following the example, it
involves peerq and r. This step consists of two events,join and join ok.
Since this event may happen simultaneously with other joins or failures,r must

Improving the Peer-to-Peer Ring forBuilding Fault-Tolerant Grids 5

verify that it has a successor, respecting the invariant that every peer is in the
same ring as its successor. If it is not the case,q will be requested to retry later.

If it is possible to perform the join, peerr

Figure 2. The join algorithm.

verifies that peerq is a better predecessor.
FunctionbetterPredecessor just checks
if the key of the joining peer is in the range
of responsibility of the current peer in the
case of a regular join. If that is the case,p

becomes the old predecessor and is added
to thepredlist for resilient purposes. The
pred pointer is set to the joining peer, and
the messagejoin ok is send to it.

It is possible that the responsibility ofr

has change between eventsreply lookup

and join. In that case,q will be redi-
rected to the corresponding peer with the
goto message, eventually converging to the
responsible of its key.

When the eventjoin ok is triggered in
the joining peerq, thesucc pointer is set to
r andsucclist is initialised. Then,q must

set itspred pointer top acquiring its range of responsibility. At this point the
joining peer has a valid successor and a range of responsibility, and then, it is
considered to be part of the ring, even ifp is not yet notified about the existence
of q. This is different than all other ring networks we have studied.

Note that before updating the predecessor pointer, peerq must verify that its
predecessor pointer isnil, or that it belongs to its range of responsibility. This
second condition is only used in case of failure recovery and it will be described
in section 3. In a regular join,pred pointer at this stage is alwaysnil.

Onceq setpred top, it notifiesp about its existence with messagenew succ,
triggering the second step of the algorithm.

The second step of the join algorithm basically involves peersp andq, closing
the ring as in a regular ring topology. The step is described in algorithm 2. The
idea is that whenp is notified about the join ofq, it updates its successor pointer
to q (after verifying that is a correct join), and it updates its successor list with
the new information. Functionally, this is enough for closing the ring. An extra
event has been added for completeness. Peerp acknowledges its old successor
r, about the join ofq. Whenjoin ack is triggered at peerr, this one can remove
p from the resilientpredlist.

If there is a communication problem betweenp andq, the eventnew succ

will never be triggered. In that case, the ring ends up having a branch,but it
is still able to resolve queries concerning any key in the range(p, r]. This is

6

Algorithm 1 Join step 1 - adding a new node
1: upon event 〈 join | i 〉 do
2: if succ == nilthen
3: send 〈 try later | self 〉 to i

4: else
5: if betterPredecessor(i)then
6: oldp := pred
7: pred := i
8: predlist :={oldp} ∪ {predlist}
9: send 〈 join ok | oldp, self, succlist〉 to i

10: else if (i < pred) then
11: send 〈 goto | pred〉 to i

12: else
13: send 〈 goto | succ〉 to i

14: end if
15: end if
16: end event

17: upon event 〈 join ok | p, s, sl〉 do
18: succ := s
19: succlist :={s} ∪ sl \ getLast(sl)
20: if (pred == nil) ∨ (p ∈ (pred, self)) then
21: pred := p
22: send 〈 new succ | self, succ, succlist〉 to pred

23: end if
24: end event

25: upon event 〈 goto | j 〉 do
26: send 〈 join | self 〉 to j

27: end event

Improving the Peer-to-Peer Ring forBuilding Fault-Tolerant Grids 7

becauseq has a valid successor and its responsibility is not shared with any
other peer. It is important to remark the fact that branches are only introduced
in case of communication problems. Ifq can talk top andr, the algorithm
provides a perfect ring.

Algorithm 2 Join step 2 - Closing the ring
1: upon event 〈 new succ | s, olds, sl〉 do
2: if (succ == olds) then
3: oldsucc := succ
4: succ := s
5: succlist :={s} ∪ sl \ getLast(sl)
6: send 〈 join ack | self 〉 to oldsucc

7: send 〈 upd succlist | self, succlist〉 to pred

8: end if
9: end event

10: upon event 〈 join ack | op 〉 do
11: if (op ∈ predlist) then
12: predlist := predlist\ {op}
13: end if
14: end event

No distinction is made concerning the special case of a ring consisting in only
one node. In such a case,succ andpred will point to self and the algorithm
works identically. The algorithm works with simultaneous joins, generating
temporary or permanent branches, but never introducing inconsistencies. Fail-
ures are discussed in section 3. Note that messageupdsucclist is for resilient
purposes. It updates the list of successors that will be used for the recovery of a
failure detected in the successor. The following theorem states the guarantees
of the relaxed ring concerning the join algorithm.

Theorem 2.1 The relaxed-ring join algorithm guarantees consistent lookup
at any time in presence of multiple joining peers.

Proof 1 Let us assume the contrary. There are two peersp andq responsible
for keyk. In order to have this situation,p andq must have the same predecessor
j, sharing the same range of responsibility. This means thatk ∈ (j, p] and
k ∈ (j, q]. The join algorithm updates the predecessor pointer upon events
join and join ok. In the eventjoin, the predecessor is set to a new joining
peerj. This means that no other peer was havingj as predecessor because it is
a new peer. Therefore, this update does not introduce any inconsistency. Upon
eventjoin ok, the joining peerj initiates its responsibility having a member

8

of the ring as predecessor, sayi. The only other peer that hadi as predecessor
before is the successor ofj, sayp, which is the peer that triggered thejoin ok

event. This message is sent only afterp has updated its predecessor pointer
to j, and thus, modifying its responsibility from(i, p] to (j, p], which does not
overlap withj’s responsibility(i, j]. Therefore, it is impossible that two peers
has the same predecessor.

3. Failure Recovery

In order to provide a robust system that can be used on the Internet, it isunre-
alistic to assume a fault-free environment or perfect failure detectors, meaning
complete and accurate. We assume that every faulty peer will eventually be
detected (strongly complete), and that a broken link of communication does
not implies that the other peer has crashed (inaccurate). To terminate failure
recovery algorithms we assume that eventually any inaccuracy will disappear
(eventually strongly accurate). This kind of failure detectors are feasible to
implement on the Internet.

Every node monitors the communi-

Figure 3. Simple crashes.

cation with every peer it is connected to.
If a failure is detected, thecrashevent is
triggered as it is described in algorithm
3. The detected node is removed from
the resilient setssucclist andpredlist,
and added to acrashed set. If the de-
tected peer is the successor, the recov-
ery mechanism is triggered. Thesucc

pointer is set tonil to avoid other peers
joining while recovering from the fail-
ure, and the successor candidate is taken
from the successors list. The function
getF irst returns the peer with the first key found clockwise, and removes it
from the set. It returnsnil if the set is empty. FunctiongetLast is analogue.
Note that as every crashed peer is immediately removed from the resilient sets,
these two functions always return a peer that appears to be alive at this stage.
The successor candidate is contacted using thejoin message, triggering the
same algorithm as for joining. If the successor candidate also fails, a new
candidate will be chosen. This is verified in theif condition.

When the detected peerp is the predecessor, no recovery mechanism is
triggered becausep’s predecessor will contact the current peer. The algorithm
decides a predecessor candidate from thepredlist to recover from the case
when the tail of a branch is the crashed peer. We will not explore this case
further in this paper because it does not violate our definition of consistent

Improving the Peer-to-Peer Ring forBuilding Fault-Tolerant Grids 9

lookup. To solve it, it is necessary to set up a time-out to replace the faulty
predecessor by the predecessor candidate.

Thealive event is triggered when a link recovers from a temporary failure.
This can be implemented by using watchers or a fault stream per distributed
entity [3]. If the peer is alive, it is enough to remove it from thecrashed set.
This will terminate any pending recovery algorithm.

Algorithm 3 Failure recovery
1: upon event 〈 crash | p 〉 do
2: succlist := succlist\ {p}
3: predlist := predlist\ {p}
4: crashed :={p} ∪ crashed
5: if (p == succ) ∨ (p == succ candidate) then
6: succ := nil
7: succcandidate := getFirst(succlist)
8: send 〈 join | self 〉 to succ candidate

9: else if (p == pred) then
10: if (predlist 6= ∅) then
11: predcandidate := getLast(predlist)
12: end if
13: end if
14: end event

15: upon event 〈 alive | p 〉 do
16: crashed := crashed\ {p}
17: end event

Figure 3 shows the recovery mechanism triggered by a peer when it detects
that its successor has a failure. The figure depicts two equivalent situations.
Using thecrashed set, functionbetterPredecessor can check fault status.
Since thejoin event is used both for a regular join and for failure recovery, the
function will decides if a predecessor candidate is better than the currentone if
it belongs to its range of responsibility, or if the currentpred is detected as a
faulty peer.

Knowing the recovery mechanism of the relaxed-ring, let us come back to
our joining example and check what happens in cases of failures. Ifq crashes
after the eventjoin, peerr still hasp in its predlist for recovery. Ifq crashes
after sendingnew succ to p, p still has r in its succlist for recovery. Ifp
crashes before eventnew succ, p’s predecessor will contactr for recovery,
and r will inform this peer aboutq. If r crashes beforenew succ, peersp
andq will contact simultaneouslyr’s successor for recovery. Ifq arrives first,
everything is in order with respect to the ranges. Ifp arrives first, there will be

10

two responsible for the ranges(p, q], but one of them,q, is not known by any
other peer in the network, and it fact, it does not have a successor, and then, it
does not belong to the ring. Then, no inconsistency is introduced in any case
of failure.

Since failures are not detected by all peers at the same time, redirection
during recovery of failures may end up in a faulty node. Then, thegoto event
must be modified such that if a peer is redirected to a faulty node, it must insist
with its successor candidate. Since failure detectors are strongly complete,the
algorithm will eventually converge to the correct peer.

Cases hard to handle are broken links

Figure 4. The failure of the root of a
branch triggers two recovery events

and crashes at the tail of a branch. In the
case of the broken link (inaccuracy), the
failure recovery mechanism is triggered,
but the successor of the suspected node will
not accept the join message. The described
algorithm will eventually recover from this
situation when the failure detector reaches
accuracy. In the case of the crash of the
node at the tail of a branch, there is no pre-
decessor to trigger the recovery mechanism. In this case, the successorcould
use one of its nodes in the predecessor list to trigger recovery, but thatcould
introduce inconsistencies if the suspected node has not really failed. If the tail
of the branch has not really failed but it has a broken link with its successor,
then, it becomes temporary isolated and unreachable to the rest of the network.
Having unreachable nodes means that we are in presence of network partition-
ing. The following theorem describes the guarantees of the relaxed-ringin case
of temporary failures with no network partitioning.

Theorem 3.1 Simultaneous failures of nodes never introduce inconsistent
lookup as long as there is no network partition.

Proof 2 Every failure of a node is eventually detected by its successor, pre-
decessor and other peers in the ring having a connection with the faulty node.
The successor and other peers register the failure in thecrashed set, and re-
move the faulty peer from the resilient setspredlist andsucclist, but they do
not trigger any recovery mechanism. Only the predecessor triggers failure re-
covery when the failure of its successor is detected, contacting only one peer
from the successor list at the time. Then, there is only one possible candidate
to replace each faulty peer, and then, it is impossible to have two responsible
for the same range of keys.

With respect to network partitions, there are two important cases we want to
analyse. The crash of a branch’s root, and the isolation of a set of nodes from

Improving the Peer-to-Peer Ring forBuilding Fault-Tolerant Grids 11

the rest of the ring. The isolation problem can occur in any system using ring
topology, and it can involve consecutive peers or peers distributed all over the
ring. Network partitioning introducing temporary uncertainty has been proved
by Ghodsi [5], and it is related to the proof provided in [1]about limitations of
web services in presence of network partitioning.

Figure 4 depicts a network partition that can occur in the relaxed-ring topol-
ogy. The proof of theorem 3.1 is based on the fact that per every failure detected,
there is only one peer that triggers the recovery mechanism. In the case ofthe
failure of the root of a branch, peerr in the example, there are two recovery
messages triggered by peersp andq. If message from peerq arrives first to peer
t, the algorithm handle the situation without problems. If message from peerp

arrives first, the branch will be temporary isolated, behaving as a network parti-
tion introducing a temporary inconsistency. This limitation of the relaxed-ring
is well defined in the following theorem.

Theorem 3.2 Let r be the root of a branch,succ its successor,pred its
predecessor, andpredlist the set of peers havingr as successor. Letp be any
peer in the set, so thatp ∈ predlist . Then, the crash of peerr may introduce
temporary inconsistent lookup ifp contactssucc for recovery beforepred. The
inconsistency will involve the range (p, pred], and it will be corrected as soon
aspred contactssucc for recovery.

Proof 3 There are only two possible cases. First,pred contactssucc before
p does it. In that case,succ will considerpred as its predecessor. Whenp
contactssucc, it will redirect it to pred without introducing inconsistency. The
second possible case is thatp contactssucc first. At this stage, the range of
responsibility ofsucc is(p, succ], and ofpred is(p′, pred], wherep′ ∈ [p, pred].
This implies thatsucc andpred are responsible for the range(p′, pred], where
in the worse casep′ = p. As soon aspred contactssucc it will become the
predecessor becausepred > p, and the inconsistency will disappear.

Theorem 3.2 clearly states the limitation of branches in the systems, helping
developers to identify the scenarios requiring special failure recoverymecha-
nisms. Since the problem is related to network partitioning, there seems to be
no easy solution for it. An advantage of the relaxed-ring topology is that the
issue is well defined and easy to detect, improving the guarantees providedby
the system in order to build fault-tolerant applications on top of it.

4. Conclusion

The amount of Grid systems built on top of peer-to-peer networks is increas-
ing. Since Grid users design their application at a higher level, it is reasonable
to assume that failure handling will the delegated to the peer-to-peer system.
This is why its crucial to provide a robust fault-tolerant network.

12

In this paper we have presented a novel relaxed-ring topology for fault-
tolerant and self-organising peer-to-peer networks. The topology is derived
from the simplification of the join algorithm requiring the synchronisation of
only two peers at each stage. As a result, the algorithm introduces branches
to the ring. These branches can only be observed in presence of connectivity
problems between peers, allowing the system to work in realistic scenarios,
providing fault-tolerant ring maintenance.

The guarantees and limitations of the system are clearly identified and for-
mally stated providing helpful indications in order to build fault-tolerant ap-
plications on top of this structured overlay network. Having these guarantees,
solving issues related to network partitioning become more addressable.

References

[1] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC âŁ™00: Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributed computing,
page 7, New York, NY, USA, 2000. ACM Press.

[2] Denis Caromel, Alexandre di Costanzo, and Christian Delbé . Peer-to-peer and fault- e
tolerance: Towards deployment-based technical services. Future Generation Computer
Systems, 2007. To appear.

[3] Raphaël Collet and Peter Van Roy. Failure handling in a network-transparent distributed
e programming language. In Advanced Topics in Exception Handling Techniques, pages
121-140, 2006.

[4] DistOz Group. P2PS: A peer-to-peer networking library for Mozart-Oz.
http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[5] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD dis-
sertation, KTH - Royal Institute of Technology, Stockholm, Sweden, December 2006.

[6] Kevin Glynn. P2PKit: A services based architecture for deploying robust peer-to-peer
applications. http://p2pkit.info.ucl.ac.be/index.html, 2007.

[7] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and concurrent topology main-
tenance. In DISC, pages 320-334, 2004.

[8] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concurrent maintenance of rings.
Distributed Computing, 19(2):126-148, 2006.

[9] Mozart Community. The Mozart-Oz programming system. http://www.mozart-oz.org.

[10] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable Peer-To-Peer lookup service for internet applications. In Proceedings of the
2001 ACM SIGCOMM Conference, pages 149-160, 2001.

[11] Domenico Talia, Paolo Trunfio, Jingdi Zeng, and Mikael Heqvist. Apeer-to-peer frame-
work for resource discovery in large-scale grids. In Proc. of the 2nd CoreGRID Integration
Workshop, pages 249-260, Krakow, Poland, October 2006.

[12] Paolo Trunfio, Domenico Talia, Paraskevi Fragopoulou, CharisPapadakis, Matteo Mor-
dacchini, Mika Pennanen, Konstantin Popov, Vladimir Vlassov, and Seif Haridi. Peer-to-
peer models for resource discovery on grids. In Proc. of the 2nd CoreGRID Workshop on
Grid and Peer to Peer Systems Architecture, Paris, France, January 2006.

