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Abstract Sizing and capacity planning are key issues that
must be addressed by anyone wanting to ensure a distributed
system will sustain an expected workload. Solutions typically
consist in either benchmarking, or modelling and simulating
the target system. However, full-scale benchmarking may be
too costly and almost impossible, while the granularity of mod-
elling is often limited by the huge complexity and the lack
of information about the system. We propose a methodology
that combines both solutions by first identifying a middle-grain
model made of interconnected black boxes, and then to sep-
arately characterize the performance and resource consump-
tion of these black boxes. We also propose a component-based
supporting architecture, introducing control theory issues in a
general approach to autonomic computing infrastructures.

I. INTRODUCTION

”Many organisations expensively invest to build dis-
tributed systems applications and web services and pay
a huge amount of money to maintain and keep the en-
vironment up-to-date. In most cases, the overall capac-
ity planning and procurement is done without a defined
methodology”[7].

This kind of situation is responsible for important loss of
incomes, ranging from losing customers on an on-line pur-
chase service to losing stock exchange transactions. Hence,
it shows the utility of an infrastructure’s capacity planning to
support the associated load. In this context, our work comes
from the problem of planning capacity of a distributed in-
frastructure to support a given load. While simulation tech-
niques are developed in order to predict the performances,
and to detect the bottlenecks and critical resources, the pre-
liminary modelling phase of the system typically encoun-
ters opacity problems when a certain level of granularity
is reached. Then, ”Black boxes” appear, either because
of a lack of information about their behaviour, or because
of their great complexity. However, the modelling of the
global system is impossible without a minimal model of
these black boxes, including resources consumption. In
this paper we deal with the problem of modelling parts of

the system as black boxes. Some works studied methods
for black boxes characterization. [6], [9] use an analytical
model by considering the whole system as a one black box.
We start in section 2 a discussion on the different approaches
concerning the estimation and the determination of perfor-
mance models. Then, we present the approach enabling the
determination of parameters influencing our system. In the
third section, we present the CLIF framework and this in-
tegration to our approach. Section 4 deals with problems
of stability and saturation. The next section experiments
our approach with a simple example. Finally, we give some
ideas to study in future work.

II. MODELS DISCUSSION

Our goal is to generate black boxes models. These black
boxes result from a lack of information concerning the be-
haviour and resource consumption, or a high level of com-
plexity of some parts of the global system. Then, the gener-
ated models will be integrated in the global system model.
With regard to this modelling problem, several approaches
may be adapted. To begin, we present these approaches:

• analytical modelling consists in reducing the system
in a mathematical model and analyzing it numerically.
Several mathematical tools enable such a modelling:
automata, Petri nets, probability approach (queuing
network), etc.;

• simulation consists in establishing a simplified model
for the system by using suitable software. This tech-
nique is commonly used to evaluate performance;

• with traffic emulation, direct measurements and analy-
sis are carried out on the system. It gives a better un-
derstanding of the system’s real behaviour. This kind
of modelling does not need detailed information about
the system. The model is generally built only by con-
sidering the outputs versus the inputs.

The software systems we want to qualify are distributed
and complex. In general, they suffer from a lack of informa-
tion describing their behaviours and interactions with their



environment. In addition, we cannot access their source
code. All these reasons make direct modelling a hard and
complex task and lead us to adopt a traffic emulation ap-
proach since it does not require such information.

III. METHODOLOGY

The traffic emulation approach gives the performance
model by considering the system output as a function of the
input load. Load is injected in the system in order to qual-
ify its capacities and to extract performances and resources
consumption before saturation.

A. Defining Black Boxes

This part consists in identifying the black boxes of a sys-
tem. Depending on the system, one tries to divide it into
as many black boxes as possible. When decomposition be-
comes too complex, the system must be kept fully. Other-
wise, we define mutual interactions among the black boxes
and other parts of system. In fact, interactions could be ex-
ternal invocations of other black boxes, system calls, access
to resources, etc.

Application
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Black box 1 Black box 2 Black box 3

Figure 1. Example of J2EE application

Let us take the example of a J2EE web application, com-
posed of an application server, an EJB container and a
database. In such an architecture, an intuitive decomposi-
tion is possible that splits the system into three black boxes
(see figure 1). The first one is dedicated to the application
server, the second to the EJB container and the third to the
database. This way, we obtain a more detailed and precise
performance model.

B. Choosing the Performance Parameters

The parameters are the different characteristics that im-
pact system performance. They depend on the type of target
system and fixed goals. If we take the previous example
- J2EE application - parameters could be: end-to-end re-
sponse time, throughput in requests per second, number of
customers per time unit, etc.

Given the important number of parameters that could in-
fluence the system performance and the huge amount of
time needed for performances study, it looks more suit-
able to consider only relevant parameters which are directly

linked to the aim of the study. If the choice looks diffi-
cult, a ”factorial analysis” will enable to identify the actually
important factors, through some experiments. In our J2EE
example, we chose response time as the interesting perfor-
mance factor.

C. Defining Workload and Instrumenting

Once the black boxes are identified, we define the load
to apply through several uses cases and we execute the test.
In our case (J2EE application), the load is defined through a
number of typical usages consisting of interlaced sequences
of requests and think times, and a parallel execution of a
number of virtual users performing those usages.

However, since we want a good qualification of both the
black box and the global model, it’s necessary to apply a
load that is as close as possible to the real load. In order to
reach this goal, the testing platform may repeatedly replay
pieces of real execution traces. Instrumentation deals with
monitoring and measuring the use of resources (CPU, mem-
ory allocation and network occupation) by placing some
probes in different parts of the system under test.

D. Modelling

Once we have collected performance measures associ-
ated to the applied loads, we will extract performance model
based on these results. In order to model the system with
queuing networks, we model each black box with a queue.
Each queue is labeled by the performance characterization
obtained in previous step. These queues could be repre-
sented in three different ways depending on the type of the
black box. With load-dependent resources, queuing and ser-
vice times depend on the load D.

Figure 2. Queue for a load-dependent resource

The two other queue models are just particular cases of
this model: load-independent resources represent resources
where the service time does not depend on the load; de-
lay resources’ service time does not depend on the load and
there is no queuing.

We have to identify the type of each black box (load-
independent, load-dependent, etc.) according to the test re-
sults. The load test is executed on each black box. If our sys-
tem is composed of several interacting black boxes, we de-
fine software-plugs. They replace interactions of the tested
black box with other black boxes while conserving a con-
stant value for performance parameters of interest. Then,
one subtracts this constant from the value obtained from the
test and hence we get the black box characterization. Let us



return to our example of the J2EE application, to character-
ize black box 1 which interacts with box 2. One develops
a software-plug that replaces box 2 with constant response
times for each invocation. At the end of the tests, one with-
draws software-plug constant from the global response time
to obtain the first black box one.
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Figure 3. saturation point

After carrying out all tests, we draw response time as
a function of the applied load. The result, as we expect,
should be close to the one sketched in figure 3. In portion
1 in figure 3, response time linearly grows with load, which
is a correct behavior for resource-shared processing. In por-
tion 2, we observe the beginning of the effect of application
contention. Approaching the saturation point, the system
does not follow the imposed load any more, and its response
time tends to infinity.

IV. SATURATION AND STABILITY OF SYSTEMS

All measurements should be done when the system
reaches the limit just before saturation. However, if we wish
to reach saturation, load injection should be done in such a
manner that enables to be more and more close to this sit-
uation. First of all, one injects a minimum load and waits
for the system to become stable. Then, one progressively
increases the load to a higher level, waits for stability, and
so on (see figure 5). This method could take a huge time
depending on the system. This is why we propose in sec-
tion V an infrastructure to automatically find the saturation
point. To achieve this, the load injector is controlled through
a feedback loop that observes the system response to the
current load and makes the decision to increase or decrease
the load with reference to the measured performances (cf.
figure 4).

When looking for the saturation point, we must ensure
that the system is stable during all the load ramp-up in or-
der to get reliable and accurate results. The system is stable
if its performance remains the same whenever the workload
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Figure 4. Load injection feedback loop

keeps the same. If the load ramp-up is too steep, it may be
difficult to clearly identify the unstability area correspond-
ing to the saturation point. For this reason, we have to main-
tain a constant load during a sufficient duration for the sys-
tem to reach a stable state. Then, the duration as well as the
load level for the following step depend on the response of
the system to the current load level.

Stability criteria depend on the kind of system and the
quality of service that must be provided. These criteria must
be defined at the very beginning, just like the global perfor-
mance parameters of interest. For example, in the case of
a J2EE application, we may choose the maximum variation
of response time as a stability criterion.
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Figure 5. typical response time evolution un-
der a step-by-step workload

The first graph of figure 5 shows the progressive level of
load used to reach saturation. The applied load is a step-by-
step function that enables to wait for stability once the load
has been increased. If the stability condition is satisfied, we
proceed with the next step (higher level load). Otherwise,
we decrease the load until we obtain a stable situation. The
second graph illustrates this load injection policy through a
response time-based stability criterion. It sketches the vari-



ation of the system’s response time as a function of the ap-
plied load. The system clearly reacts to the different load
levels with an increase of the average response time and os-
cillations around the average that decrease while the load
remains constant. When the response time oscillations are
small enough to match the stability condition, we increase
the load once again. This is repeated until the saturation
point is reached.

V A component-based supporting infrastructure

A An architectural approach to autonomic computing

In order to experiment our methodology, we propose a
practical software infrastructure that fits, on the one hand,
genericity (our approach may be applied to any kind of
black box), and, on the other hand, autonomy (self-regulated
load injection). This is the reason why this work is carried
out in the context of architectural research on autonomic
computing. This approach has been proposed in [3], and is
currently being developed in collaborative projects Selfware
[2] and Selfman [8, 2].

As presented in [5], the basic idea of autonomic comput-
ing may be summarized as the principle of using comput-
ing power to automatically (autonomously) manage com-
puting systems complexity. Our architectural approach
to autonomic computing consists in relying on a uniform
component-based representation of the target computing
system, either in a native manner or a wrapper-based man-
ner. Then, a feedback loop is introduced, with sensors
at one end (observation), actuators at the other end (reac-
tion/feedback control), and a decision element in between.
The feedback loop relies on a communication middleware
to handle observation events coming from the sensors, as
well as reaction events coming from the decision elements
to the actuators. More than just a plain transport service,
this event middleware may also support aggregation, filter-
ing and a variety of message delivery models (e.g. pub-
lish/subscribe, group communication). All elements in this
architecture are uniformly represented and handled as com-
ponents, using the Fractal component model [1].

B CLIF Load Injection Framework

Starting from this component-based and feedback loop-
based architectural approach, we need to build a self-
regulated load injection system. We need components that
generate a workload on the System Under Test (SUT), and
components that give feedback information about the result-
ing SUT performance (response time, throughput) and com-
puting resource usage. Moreover, there should be a decision
component that closes the feedback loop between observa-
tion and reaction, in order to dynamically and autonomously
adapt the generated workload.

CLIF [4] provides a framework of Fractal components
that meets these requirements. Main components are: load
injectors for traffic generation and response times measure-
ment, probes for monitoring the consumption of arbitrary
computing resources, and a supervisor component which
is bound to all injectors and probes and provides a central
point of control and monitoring. While the typical CLIF us-
age consists in plugging a user interface on the supervisor,
we are simply going to bind an autonomic controller com-
ponent to the supervisor and discard the user interface. This
is actually done by developing this controller component
and slightly modifying an XML file describing the CLIF
application, using a commonly called Architecture Descrip-
tion Language. As shown by figure 6, this controller com-
ponent is bound to other components:

• a load injection policy component that computes the
control feedback on the load injection system;

• a saturation policy component, that detects whether the
SUT is saturated or not.

that computes the control feedback on the load injection sys-
tem according to the observation of response times, resource
usage and possible alarms. Both components rely on the
observation of response times, resource usage and possible
alarms.
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Figure 6. A CLIF assembly for self-regulated
load injection

In order to vary the load level during the saturation look-
up process, we use the classical virtual user concept sup-
ported by CLIF. A virtual user is a computer program that
invokes the SUT in a similar way that a real user would do.
Load testing consists in massively and concurrently running
virtual users. Each CLIF load injector is actually an execu-
tion engine for such virtual users. Then, the workload reg-
ulation performed by the controller component simply con-
sists in adjusting the number of virtual users run by the load
injectors according to the observation. Here, it must be un-
derlined that the load injection policy can be generic, since
it may only handle the concept of virtual user whatever the



actual SUT is. Pure control theory-based algorithms may
apply there. As far as the saturation policy is concerned,
it may be defined in a generic manner also, but it may be
chosen or parameterized in adequacy with the SUT. Simple,
generic saturation detectors are: response time threshold, er-
ror or alarm occurrence, or request throughput stagnation.

VI An experiment

A Rationale

We propose a self-regulated load injection experiment
based on our component-based architectural approach to au-
tonomic computing, using the Fractal model and CLIF load
testing framework. The target system under test is an En-
terprise Service Bus (ESB), a kind of request broker used
in Service Oriented Architectures to support mediation fea-
tures such as accounting, routing, logging, security, man-
agement of service level agreement, etc. This ESB is the
black box we want to characterize from the performance
point of view. The system clients are emulated by virtual
users running in CLIF load injectors and generating SOAP
requests. Real services are replaced by software plugs, i.e.
dummy services that reply to requests with a constant re-
sponse time, whatever the incoming workload. Of course,
the plugs’ performance must be qualified before, to deter-
mine this response time and the correct operating range with
regard to the incoming traffic throughput.

With this simple experiment, we are just going to show
how the looped load injection system is going to find the
ESB saturation limit, in terms of maximum sustainable
number of virtual users and request throughput, according
to a given saturation criteria. The behavior of our virtual
users consists in generating 20 requests during 20 seconds
before exiting, with random think times between consecu-
tive requests, which gives an average of 1 request per second
per virtual user. The ESB is based on a dedicated hardware
platform, which offers load percentage information through
the SNMP protocol. We have defined a new CLIF probe to
get this information.

The controller starts with one virtual user per load in-
jector. Then, it proceeds through 20 seconds iterations, ob-
serving the ESB’s average load percentage, comparing it to
a given threshold (80% here), and deciding a new number
of virtual users: increase that number when the threshold is
passed, decrease when it is unreached. We see that we ac-
tually implement a control feedback function, with all the
associated issues in terms of stability and reactiveness. This
control feedback is rendered by the load injection and satu-
ration policy, provided as simple algorithmic rules here, but
this may be easily replaced in the architecture by arbitrarily
complex and advanced computations relying on the obser-
vations from the load injectors and probes. For instance,
the iterations duration shall not be constant but computed at
runtime. Of course, more probes would be necessary, in the

general case, not only for the sake of saturation lookup, but
also to go further towards our final goal of full characteriza-
tion for system simulation and sizing.

B Results

The results presented below have been produced with 4
load injectors and a controller distributed on 5 distinct com-
puters (Intel bi-Xeon or AMD bi-Opteron, 2 or 3 GB RAM,
Gb/s Ethernet, Linux kernel 2.6.15-1-686-smp). The ESB
load probe is hosted on a 6th computer and simply gets
information from the ESB platform’s SNMP agent. The
observation (see figure 7) shows promising results, partic-
ularly because this ESB platform had already been “manu-
ally” benchmarked with CLIF’s common user interface on
the same infrastructure, giving similar results. After 3-4
minutes, we see a rather quick and good stabilization of the
number of virtual users around 400 and an ESB load around
80%. As expected, the request throughput is roughly follow-
ing the number of virtual users (just a little smaller), with
some sudden drops at time 270s and 390s, that can be ex-
plained by the occurrence of garbage collector on the load
injectors. To be more accurate about this phenomenon, we
should add CLIF’s probes on the load injectors, and espe-
cially the JVM probe which detects occurrences of garbage
collection. Garbage collection is the typical kind of phe-
nomenon that must be taken into account to prevent unsta-
bility problems.
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Figure 7. Automatic saturation of an ESB platform

VII. EXTENSIONS

This work is being applied to current R&D projects in
France Telecom, where the characterization of black boxes
performance and resource consumption is key to develop
and to keep good working conditions for many infrastruc-
tures. Sizing and capacity planning are essential.

For example, in the case of Machine to Machine (M2M)
services, a large number of machines (teller machines, de-
tectors, cameras, boilers, etc.) exchange events and a variety
of data. The M2M middleware also controls its own execu-
tion by observing resources usage. Such infrastructures are



typically overlay networks, that are widely distributed, gen-
erate huge amount of events and connect a great number of
devices together. Breakdowns may be frequent in such sys-
tems, and the manual supervision and management of such
big infrastructures is almost impossible. Here, autonomic
computing (see section A) research becomes fundamental to
support self-optimization, self-healing or self-configuration
features.

An M2M overlay network is basically a set of nodes,
performing arbitrary computations that produce events, con-
nected together through an arbitrary network topology. The
nodes typically perform arbitrary business computations
that are unknown to the network operator. As a conse-
quence, the queuing model and our approach applies quite
well to the global M2M system, where nodes are black
boxes. The nodes must be tested one by one with our self-
regulated load injection platform in order to produce the
necessary performance characterization. Then, we will be
able to simulate the global system and provide M2M sys-
tems with support for sizing and capacity planning. More-
over, in the context of autonomic computing, it will be pos-
sible to evaluate self-reconfiguration decisions through sim-
ulation, before actually performing them, to prevent unex-
pected performance defects.

VIII. RELATED WORK

Two previous works in black boxes modelling could be
used as references in this work. The first deals with black
boxes modelling in a particular context which is storage
environment and the second proposes a method to deter-
mine relevant and necessary parameters to estimate a per-
formance model of black boxes.

In [9], the authors evaluate the most popular techniques
used in black box modelling in storage environment and
measure the precision of each technique to obtain the best
of them. [6] tries to determine necessary properties to esti-
mate performance model for black box when it is used in a
feedback loop.

These papers use an analytical model by considering the
system as a one black box unlike our method which decom-
poses the system in several black boxes and hence gives a
more detailed model. If we have to do a factorial analysis
to determine relevant parameters, we can use results of the
second article which proved that the method of least squares
does not give the best estimation any more when a control
loop is used. Furthermore, a regression method can not be
used since we are looking for performance before saturation
which means we are not in the linear range.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the general issue of sizing
and capacity planning of distributed systems, by proposing
a combination of global system modelling and real testing

of small, unknown elements (black boxes). The proposed
methodology consists in characterizing the performance and
computing resource consumption of the black boxes, by
generating a variable workload on them and observing their
behaviour, and to use these results as an input in the global
system model. Then, this model will be used to predict the
adequate sizing of the execution support as well as the ex-
pected performance. To achieve this prediction, we chose a
queuing network model and a simulation-based approach.

We also presented a component-based software architec-
ture to support the autonomous characterization of black
boxes. Springing from architectural research for auto-
nomic computing infrastructures, it relies on a load injec-
tion framework with a feedback control loop. We partly im-
plemented end experimented this architecture in a real test
case with an Enterprise Service Bus. The promising first re-
sults still require more research work in several directions,
such as: identifying the black boxes, factorial analysis, sat-
uration and stability criteria, control theory, and of course
simulation to achieve our ultimate goal in terms of sizing
and capacity planning. Our future work will be guided by
this goal, in the context of Machine-to-Machine applications
and related middleware.
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