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Abstract

Consistent hashing is at the core of many P2P proto-
cols. It evenly distributes the keys over the nodes, thereby
enabling logarithmic routing effort ‘with high probability’.
However, consistent hashing incurs unnecessary overhead
as shown in this paper.

By removing consistent hashing from Chord, we derived
a protocol that has the same favorable logarithmic routing
performance but needs less network hops for updating its
routing table. Additionally, our Chord# protocol supports
range queries, which are not possible with Chord. Our
empirical results indicate that Chord# outperforms Chord
even under high churn, that is, when nodes frequently join
and leave the system.

1. Introduction

Many lookup protocols in Peer-to-Peer (P2P) networks
use consistent hashing [10] for assigning keys to nodes.
Consistent hashing distributes the keys equally among all
nodes, which allows to provide a lookup performance
of O(log N) in networks of N nodes ‘with high prob-
ability’. Unfortunately, consistent hashing is not order-
preserving: it randomly distributes lexicographically adja-
cent keys over all nodes. Hence, queries with partial key-
words, wildcards or ranges cannot be handled by lookup
protocols based on consistent hashing.

Taking Chord as a starting point, we devised an algo-
rithm that makes the hashing superfluous, but has the same
runtime overhead and is superior in a number of other as-
pects. Our algorithm, named Chord#,

• needs O(1) hops for updating an entry in the routing
table instead of O(log N) as in Chord,

• has a proven logarithmic lookup performance rather
than O(log N) just ‘with high probability’,

• supports more complex queries,

• does the routing in the node space rather than in the
key space.
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Figure 1. Chord routing hops from N0 to N15

2. Chord and Chord#

Fig. 1 illustrates a Chord ring with nodes N0, . . . , N15,
each of them responsible for a subset of keys 0, . . . , 28−1.
A finger table in each node holds the addresses of the peers
halfway, quarter-way, 1/8-way, 1/16-way, . . ., around the
ring. When a node (e.g. N0) receives a query, it forwards
it to the node in its finger table with the highest identifier
not exceeding hash(key). This halves the distance to the
target in each step, resulting in O(log N) hops in networks
with N nodes, because the DHT ensures a uniform distri-
bution of the keys and nodes with high probability [17].
This allows Chord to compute the finger placement in the
key space rather than the node space.

When substituting the hash function by a key-order pre-
serving function, the keys are no longer uniformly dis-
tributed over the node space but they follow some unknown
density function. To obtain the same logarithmic routing
effort as in Chord, the fingers must be placed in such a way
that they cross a exponentially increasing amount of nodes
in the ring. The following recursive finger placement algo-
rithm allows this, where the infix operator x . y means to
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retrieve y from the routing table of a node x:

finger i =
{

successor : i = 0
finger i−1 . finger i−1 : i �= 0

To calculate the ith finger in its finger table, a node asks
the remote node, to which its (i − 1)th finger refers to, for
its (i − 1)th finger. In general, the fingers in level i are set
to the fingers’ neighbors in the next lower level i−1. At the
lowest level, the fingers reference to the direct successors.

Routing in the node space rather than in the key space al-
lows us to remove the hash function and to arrange the keys
in lexicographical order so that no node is overloaded. The
following Figure illustrates how Chord# updates finger i in
the finger table of node n:

… …
… …

finger tables

fi-1 fin

nodes:

ring

keys

Figure 2. Finger update in Chord#

This finger placement has two advantages over Chord’s
algorithm: First, it works with any kind of key as long as a
total ordering over the keys exists, and second, updating of
fingers is cheaper than in Chord, because it needs just one
hop instead of a full search. Chord# adjusts local finger
table entries by utilizing the better informed remote finger
table entries.

3. Proving the Logarithmic Routing Perfor-
mance

Before we are going to prove the routing performance
of Chord# to be O(log2 N), we briefly motivate our line of
argumentation. Let the key space be 0 . . . 2m−1. In Chord,
the ith finger in the finger table of node n refers to the node
responsible for fi with1

fi = (n ⊕ 2i−1) for 1 ≤ i ≤ m

Hence, O(log N) hops are needed for updating a single en-
try in the routing table. The above equation can be rewritten

fi = (n ⊕ 2i−2) ⊕ 2i−2

1Let ⊕ be the addition modulo 2m.

Having split the right hand side into two terms, the re-
cursive structure becomes apparent and it is clear that the
whole calculation can be done in only 1 hop! The first
term represents the (i − 1)-th finger and the second term
the (i− 1)-th finger on the node pointed to by finger i− 1.

For proving the correctness, we describe the node distri-
bution by the density function d(x). It gives for each point
x in the key space the reciprocal of the width of the corre-
sponding interval. For a Chord ring with N nodes and a key
space size of K = 2m the density function can be approx-
imated by d(x) = N

2m (the reciprocal of K
N and K = 2m)

because it is based on consistent hashing:

Theorem 1 (Consistent Hashing [10]): For any set of N
nodes and K keys, with high probability:

1. Each node is responsible for at most (1 + ε)K
N keys.

2. When node (N + 1) joins or leaves the network, re-
sponsibility for O(K

N ) keys changes hands (and only
to or from the joining or leaving node).

The most interesting property of d(x) is the integral over
subsets of the key space:

Lemma 1 The integral over d(x) equals the number of
nodes in the corresponding range. Hence, the integral over
the whole key space is:

∫
keyspace

d(x) dx = N.

Proof. We first investigate the integral of an interval
from ai to ai+1, where ai and ai+1 are the left and the
right end of the key range owned by a single node.

ai+1∫
ai

d(x) dx
?= 1.

Because ai and ai+1 mark the begin and the end of an
interval served by one node, d is constant for the whole
range. The width of this interval is ai+1 − ai and therefore
according to its definition d(x) = 1

ai+1−ai
. Because we

chose ai and ai+1 to span exactly one interval the result is
1, as expected.

The integral over the whole key space therefore equals
the sum of all intervals, which is N :

∫
keyspace

d(x) dx =
N−1∑
i=0

ai+1∫
ai

d(x) dx = N
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3.1. Finger Placement in Chord

Both, Chord and Chord# use exponentially spaced fin-
gers, so that searching is done in O(log N). Chord, in con-
trast to our scheme, computes the placement of its fingers in
the key space. This ensures that with each hop the distance
in the key space to the searched key is halved, but it does
not ensure that the distance in the node space is also halved.
So, a search may need more than O(log N) network hops.
According to Theorem 1, the search in the node space still
takes O(log N) steps with high probability. In regions with
less than average sized intervals (d(x) � N

K ) the routing
performance degrades (see Sec. 4.1).

Chord places the i-th finger on the node that is respon-
sible for fi:

fi = (n ⊕ 2i−1), 1 ≤ i ≤ m

Using our integral approach from Lemma 1 and the den-
sity function d(x) we develop an equivalent finger place-
ment algorithm as follows. First, we look at the longest
finger fm. It points to n + 2m−1 if the key space is of size
2m. This corresponds to the opposite side of n in the Chord
ring. With a total of N nodes this finger links to the N

2 -th
node in clockwise direction with high probability due to the
consistent hashing theorem.

With Lemma 1 key fm, which is stored on the N
2 -th

node to the right, can be estimated by:

pm∫
n

d(x)dx =
N

2

Other fingers to the N
4 -th, . . . , N

2i -th node are calculated
accordingly and we can now formulate the following finger
placement algorithm of Chord:

Theorem 2 (Chord Finger Placement): For Chord, the
following two finger placement algorithms are equivalent:

1. fi = (n ⊕ 2i−1), 1 ≤ i ≤ m

2.

fi∫
n

d(x) dx =
2i−1

2m
N, 1 ≤ i ≤ m

Proof. To prove the equivalence, we set d(x) = N
2m

according to Theorem 1.

fi∫
n

d(x) dx =
2i−1

2m
N

fi∫
n

N

2m
dx =

2i−1

2m
N

N

2m
(fi � n) =

2i−1

2m
N

fi = n ⊕ 2i−1

We thereby derived two alternative methods to calculate
the fingers in Chord. The equivalence of these two algo-
rithms will be used in the following Section to prove the
correctness of Chord#’s algorithm.

3.2. Finger Placement in Chord#

Theorem 3 (Chord# Finger Placement): The following
finger placement algorithm computes exponentially spaced
fingers and therefore allows routing in O(log N).

finger i =
{

successor : i = 0
finger i−1 . finger i−1 : i �= 0

Proof. We first analyze Chord’s finger placement (ref.
Theorem 2) in more detail.

fi∫
n

d(x) dx =
2i−1

2m
N, 1 ≤ i ≤ m (1)

First we split the integral into two equal parts by introduc-
ing an arbitrary point X between n (the key of the local
node) and fi (the key of finger i):

X∫
n

d(x) dx =
2i−2

2m
N (2)

fi∫
X

d(x) dx =
2i−2

2m
N (3)

In Eq. 2 and Eq. 3, the only unknown is X . Compar-
ing Eq. 2 to Theorem 2, we see that X is fi−1. To calcu-
late finger i we go to the node addressed by finger i−1 in
our finger table (Eq. 2), which crosses half of the nodes to
finger i. From this node the (i− 1)th entry in the finger ta-
ble is retrieved, which refers to finger i according to Eq. 3.
Eq. 1 is equivalent to

finger i = finger i−1 . finger i−1

Instead of approximating d(x) for the whole range be-
tween n and fi, we split the integral into two parts and treat
them separately. The integral from n to fi−1 is equivalent
to the calculation of finger i−1 and the remaining equation
is equivalent to the calculation of the (i − 1)-th finger of
the node at finger i−1. We thereby proved the correctness
of the finger placement algorithm in Theorem 3.
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Table 1. Parameters used in the experiments forming a 6-tuple.

Parameter Description Value
1. Base Branching factor of finger table entries 2, 8, 16, 32
2. Successors Number of direct successors stored in the successor list 4, 8, 16, 32
3. Succ. Stabilization Interval Time spent between two successor list updates 30, 60, 90s
4. Finger Update Interval Time spent between two finger table updates 30, 60, 300, 600, 900, 1200s
5. Latency Optimizer Proximity routing methods for latency optimization 0, 1, 2
6. Piggybacking piggy back routing information on queries true, false

With this new routing algorithm, the cost for updating
the complete finger table has been reduced from O(log2 N)
in Chord to O(log N) in Chord#.

4. Empirical Evaluation

In order to compare the performance of Chord# with
that of Chord, we implemented a discrete event simulator
that simulates dynamic P2P systems under churn. Previ-
ous performance studies focused mostly on static proper-
ties like the average number of routing hops or the size of
the routing table. Li et al. [12, 13] went one step further
and compared the bandwidth and latency of P2P protocols
under churn, which gives a more realistic picture on the
practical usefulness.

Following their approach as closely as possible, we run
about 2000 experiments with various parameter sets. Both
algorithms, Chord and Chord#, were simulated with a ring
of 1024 nodes. The latencies between the nodes are given
by the King [8] dataset2 which is based on real data ob-
served in the Internet.

To simulate churn, each node joins and leaves once per
hour. Each node issues a lookup for a random key every ten
minutes. All intervals are distributed exponentially. Mes-
sages have a length of 20 bytes plus 4 bytes for each node
address contained in the message. Each experiment runs
for six hours of simulated time.

The parameter combinations listed in Tab. 1 gave a total
of 1728 experiments for Chord#. We ran less Chord exper-
iments because it does not support e.g. piggybacking. As
a performance measure we used the average (resp. median)
latency per key lookup and as a cost measure the bandwidth
consumed by each node (bytes per node per second).

2We observed an inconsistency in the data given in Li et al. [12, 13],
who seem to have also used the first 1024 node entries of the King dataset,
which actually have an average round-trip latency of 197 ms. They claim,
however, a latency of 178 ms which is only true when taking the whole
set of 1740 nodes.
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Figure 3. Hop frequency for Chord and
Chord#. Note that Chord# needs at most 10
hops compared to 42 hops needed by Chord.
Parameters: (2, 4, 30, 60, 0, false)

4.1. Median versus Average

In their first paper [12], Li et al. plotted the average
of their results and in the second one [13], they took the
median. Since it was not clear to us why they switched
from average to median, we checked both cases and found
that they differ substantially. Averaging over all lookups
in an experiment gave larger latencies, because there are
a few instances with a considerably higher latency than the
large majority (ref. Fig. 3). The few extreme points – Chord
needs at maximum 42 compared to 10 hops by Chord# –
result in a higher average value. The median, in contrast,
has a smaller latency because the the extreme points do not
change the result. In our opinion, the average should be
taken for comparing P2P algorithms, because it represents
all cases and not only the one in the middle. Nevertheless,
to allow comparison with the results of Li et al., we also
plotted the median values in Fig. 4 as discussed in the fol-
lowing Section.
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resp. 1728 experiments. The convex hull (bottom line) illustrates the best parameter combinations.
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Figure 5. Chord and Chord# under churn (average latency). Each ‘+’ represents one of the parameter
sets. The convex hull (bottom line) illustrates the best parameter combinations.

4.2. Management Overhead

Certain management tasks must be done at regular time
instances to keep the system operational. We distinguish
the following activities:

Successor stabilization. Each node has a list of succes-
sors which are periodically checked whether they can
still be reached.If a node has crashed, the successor
list is updated accordingly.

Finger updates. To keep the routing table up to date, the
fingers are periodically validated and updated.

Join, leave, and fail. Nodes may join or leave the system,
that is, they register or unregister themselves to the

system. They may also fail, e.g. leave without unreg-
istering.

Key search. The load caused by a key search is – com-
pared to the other tasks – the only load triggered by
the actual use of the system. All other tasks in this list
are needed for maintaining the system.

4.3. Comparing Chord with Chord#

Fig. 4 shows for different parameter combinations of
Chord and Chord# the median latencies versus bandwidth,
while Fig. 5 gives the same data for the average latencies.
Each ‘+’ represents one parameter combination. The in-
teresting combinations are those on the convex hull: They
represent the favorable combinations with a low latency at
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Figure 6. Chord# configurations with the lowest average (left) and lowest median latency (right).

low maintenance cost. All other data points are inferior
in terms of performance and can be ignored. Nonetheless,
we plotted them as well, because the configurations on the
convex hull are more fragile, meaning that there is a risk
for the ring to break under extremely high churn.

Comparing the convex hulls in either of Fig. 4 or 5, it
is obvious that Chord# is superior to Chord in terms of
latency. Most interesting is the lower left hand corner of the
plots which contains parameter combinations with a low
bandwidth and low latency.

As expected, the advantage of Chord# is more pro-
nounced when comparing the median latencies rather than
the average. In the latter case, latencies of all nodes are
taken into account, not just the middle one. The results in
Fig. 5 clearly demonstrate that Chord# requires less band-
width and lower latencies than Chord.

4.3.1. Analyzing Parameters with Lowest Latency.
For Chord# we further analyzed the ten combinations with
the lowest latency (Fig. 6) and split their bandwidth usage
into four categories: finger updates, successor stabilization,
search, and join and leave as described in Section 4.

Most of the bandwidth is used by the finger updates,
as illustrated in the left part of the figure which shows the
ten combinations with the lowest average latencies. This
is a remarkable result, considering that Chord# needs only
O(1) hops per finger update as compared to log(N) hops in
Chord. Even with this little update effort, the finger updates
dominate the overall bandwidth of Chord#!

The right part of the figure shows the same data, but with
the ten combinations having the lowest median latency re-
sults. Here more effort is spent for stabilizing the succes-

sors and less for updating the fingers3.

4.3.2. Proximity Routing. The standard finger place-
ment algorithm in Chord and Chord# determines just one
specific target node for each finger in the finger table. By
checking the nodes nearby the goal and selecting the one
with the lowest network latency, the average access latency
to the target can be reduced. Common candidates for this
so-called proximity routing are nodes from the successor
list. In our experiments we found that proximity routing
reduces the average latency by about 200 ms.

4.3.3. Finger Update Interval. Fig. 7 compares the
performance of Chord and Chord# with the twenty best
parameter sets. Each line connects the two results for one
parameter set. For the majority of the cases Chord# per-
forms better in terms of latency and bandwidth. The points
in the upper left corner have long successor stabilizations
and long finger update intervals. Here Chord#’s latency
degrades because routing entries are forwarded between
nodes and therefore stale entries need some time to prop-
agate which causes more routing failures. The bandwidth
usage is similar because it is no longer dominated by the
finger updates.

5. Related Work

Since Chord [17] and CAN [15] were introduced in
2001, several P2P protocols with similar capabilities came

3For the lowest latency combinations the bandwidth tends to be higher
than the mean, whereas for the low bandwidth combinations the latency
tended to be higher.
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up. Many publications focus on their improvement. Range
queries belong to a group of challenges for which, to our
knowledge, no satisfactory solutions are known yet [5, 14].

SkipNet and Skip Graph [9, 3] both support range
queries, but as in Chord performance guarantees can only
be given with high probability.

Mercury [4] is an attempt that tries to support range
queries. Similar to Chord# it does not use consistent hash-
ing and therefore has to deal with load imbalance. Mer-
cury determines the density function with random walk
sampling which generates much more communication traf-
fic for maintaining the finger table. Chord#, in contrast,
never computes the density function and therefore incurs
less overhead. Multi-attribute range queries, which were
also addressed by Mercury, can be introduced analogously
to Chord#.

Other approaches [2, 16] use space-filling curves to map
multi-dimensional keys to the nodes and to allow range
queries. Space-filling curves are locality preserving, but
they incur more maintenance overhead and larger routing
costs.

6. Summary

We simulated Chord and Chord# under churn. The re-
sults confirm that Chord# outperforms Chord. Comparing
the best parameter combinations of both protocols (repre-
sented by the convex hull in Fig. 8) shows that the queries
in Chord# have a lower latency and incur less bandwidth
for maintaining the system.

In practice, one would chose one of the ten best config-
urations listed in Fig. 6. In each of these cases, the finger
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Figure 8. Chord and Chord# under Churn

update dominates the overall node bandwidth. This is even
more remarkable when considering that Chord#’s finger
update needs only one hop versus log(N) hops in Chord –
still the finger update dominates Chord#’s overall cost.

Our experimental setup, which follows that of Li et
al. [12, 13] as closely as possible, simulates a dynamic sys-
tem with nodes joining, leaving and crashing. However,
it does not take into account new key insertions, multiple
copies and traffic caused by load balancing [11, 6]. Espe-
cially the latter should be considered to obtain a more re-
alistic picture on the practical usefulness, because Chord#

must re-balance the keys from time to time to ensure an
equal load over all nodes when non-randomly distributed
keys are inserted. This is the price to be paid for support-
ing range queries. In the future we plan to extend our em-
pirical analysis by examining more realistic usage patterns
with key insertions and key duplications.

Many publications in the recent past focused on opti-
mizing the bandwidth usage of P2P protocols. They mainly
concentrated on the successor stabilization process [1, 7].
Our results support the importance of this research. But
Fig. 6 shows that for low latency scenarios with high churn
rates the finger stabilization dominates the bandwidth us-
age. Chord# reduces the finger update traffic significantly
as shown in Fig. 6 and 7.
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