
Implementing Self-Adaptability in
Context-Aware Systems ⋆

Boris Mej́ıas1 and Jorge Vallejos2

1 Universit́e catholique de Louvain, Louvain-la-Neuve, Belgium
boris.mejias@uclouvain.be

2 Vrije Universiteit Brussel, Brussels, Belgium
jvallejo@vub.ac.be

1 Introduction

Context-awareness is the property that defines the ability of a computing system to
dynamically adapt to its context of use [1]. Systems that feature this property should be
able to monitor their context, to reason about the changes inthis context and to perform
a corresponding adaptation. Programming this three activities can become cumbersome
as they are tangled and scattered all over in the system programs.

We propose to model context-aware systems using feedback loops [2]. A feedback
loop is an element of system theory that has been previously proposed for modelling
self-managing systems. A context-aware system modelled asa feedback loop ensures
that the activities of monitoring, reasoning and adapting to the context are modularised
in independent components. In this work, we take advantage of such modularisation to
explore different programming paradigms for each component of the loop.

2 Feedback Loops for Self-Adaptable Context-Aware Systems

Modelling software systems using feedback loops implies for the developers to iden-
tify which kind of information needs to be monitored, dedicating particular agents for
this task. Once the monitored information is collected, another component is in charge
of deciding correcting actions, using an actuator agent to apply the corrections to the
system.

Consider the case of a computer-assisted system for managing the lights of a so
calledintelligent house. This system consists of a set of lights and sensors that detect the
presence of people in the house. The detection of a person is monitored by a specialised
component that decides whether to turn on or off the lights, or simply modify their
intensity. The loop is depicted at the left side of figure 1.

Since the use of mobile devices such as phones, PDAs, media players or GPSs are
becoming very common, we can expect that users will use her/his mobile device to com-
municate with the house. We also expect that these devices can adapt their behaviour
according to their context. The context can represent locality, CPU use, battery load,

⋆ This work has been partially funded by the European projects EVERGROWand SELFMAN,
and by the flemish project of Context-Driven Adaptation of Mobile Services (CoDAMoS).



2

Fig. 1. Feedback loops modelling an automated light system and a context aware mobile device.

or a particular situation such as being busy, in a meeting, etc. The context is constantly
monitored by acontext reasoner, which decides the behaviour of the device in order to
react to external events, or to trigger certain events to communicate with other devices.

These simple loops already provide self-adaptability to the house lights system and
to the user’s mobile device. The former adapts light’s intensity according to the detec-
tion of users, and the later adapts its behaviour depending on the context. Consider now
both models collaborating as a self-organising system. We first extend the house lights
system to also monitor context. Having a context reasoner, lights are able to adapt their
behaviour not only to users’ movement, but also to particular context dependent scenar-
ios. For instance, you do not want to turn on the lights and wake up the kids when they
are in the sleeping context. We also add other sensors in order to receive message from
users’ devices.

Figure 2 depicts the interaction between both loops. User’sdevice monitors the
intensity of the lights while still monitors context. Beingin the context ofarriving
homemay triggers an event to turn on the lights. The contextwatching a filmwith high
light intensitymay triggers the event of lowing the intensity of the lights.

Since the house lights system is enriched with a context reasoner, some events trig-
gered from user’s device may not have always the same result.For instance, turning on
the lights when arriving home may not work as expected if kidsare in the sleeping con-
text. Like this, two users can communicate through the lights systems as stigmergy. We
can also observe that sensors and lights serve as stigmergy for the communication of
user’s device, and the controller of the house, because bothof them monitor the system,
and trigger events to modify the intensity of lights.

3 Implementing Feedback Loops

We have started to implement a prototype of the system using Mozart [3], a multi-
paradigm programming system implementing the Oz language [4]. We have identified
several ways of communicating components of a loop, which can be done using an
event-driven approach, or stream communication, which canachieve by pulling or push-
ing information (lazy or eager execution). To communicate distributed components,
message passing seems to be the most appropriated paradigm.

User’s devices follow naturally the actor model [5], but inside the actor we can intro-
duce other paradigms as well. For instance, the context reasoner applies a set of rules to



3

Fig. 2. Communicating two feedback loops.

the monitor information in order to determine the correspondent rule. This component
fits better logic or declarative programming. To implement adaptive behaviour, we have
chosen a model representing roles [6], where split objects [7] are used as the general
architecture.

Since every component communicate with other by events or messages, they are
quite independent, and the decision of the implementation of each of them, do no affect
the implementation of the others. We still need to investigate more about the explicitness
of the components matching the design and the implementation, because sometimes
they appear clearly at the conceptual level, by they integrated to other components in
the implementation.

References

1. Group, I.A.: Ambient intelligence: from vision to reality (2003)
2. Van Roy, P.: Self management and the future of software design. In: Formal Aspects of

Component Software (FACS ’06). (2006)
3. Consortium, M.: The mozart-oz programming system.http://www.mozart-oz.org(2007)
4. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT

Press (2004)
5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelli-

gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235–245
6. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., Mostinckx, S., Costanza, P.: The context-

dependent role model. In Indulska, J., Raymond, K., eds.: 7th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS ’07). Lecture Notes in Com-
puter Science, Springer-Verlag (2007) 277–299

7. Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegation within Objects. In:
Proceedings of the 11th Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96), San Jose, California, USA (1996) 122–137


