I mplementing Self-Adaptability in
Context-Aware Systems *

Boris Mejias' and Jorge Vallejos

L Universié catholique de Louvain, Louvain-la-Neuve, Belgium
boris. nej i as@icl ouvai n. be
2 Vrije Universiteit Brussel, Brussels, Belgium
jvallejo@ub. ac. be

1 Introduction

Context-awareness is the property that defines the ability computing system to
dynamically adapt to its context of use [1]. Systems thatufesthis property should be
able to monitor their context, to reason about the changisstontext and to perform
a corresponding adaptation. Programming this three #es\ian become cumbersome
as they are tangled and scattered all over in the systemamsgr

We propose to model context-aware systems using feedbapk [@]. A feedback
loop is an element of system theory that has been previous|yoged for modelling
self-managing systems. A context-aware system modelledfesdback loop ensures
that the activities of monitoring, reasoning and adaptothe context are modularised
in independent components. In this work, we take advanthgealh modularisation to
explore different programming paradigms for each compbagthe loop.

2 Feedback Loopsfor Self-Adaptable Context-Awar e Systems

Modelling software systems using feedback loops implieste developers to iden-
tify which kind of information needs to be monitored, dediicg particular agents for
this task. Once the monitored information is collected,taeocomponent is in charge
of deciding correcting actions, using an actuator agenpfmyathe corrections to the
system.

Consider the case of a computer-assisted system for man#dgnights of a so
calledintelligent houseThis system consists of a set of lights and sensors thattdbte
presence of people in the house. The detection of a persaonigared by a specialised
component that decides whether to turn on or off the lightssimply modify their
intensity. The loop is depicted at the left side of figure 1.

Since the use of mobile devices such as phones, PDAs, mediarplor GPSs are
becoming very common, we can expect that users will useisentibile device to com-
municate with the house. We also expect that these deviceadapt their behaviour
according to their context. The context can represent ityc&PU use, battery load,

* This work has been patrtially funded by the European projects EVERGRGWSELFMAN,
and by the flemish project of Context-Driven Adaptation of Mobile Ses/{€@oDAMOoS).

f— Calculate action (-\ F_ Context reasoner (—\

Modify Users Event/ Contlext
intensity detector Behaviour monitor

PN (e T i _J
movement sensors

Fig. 1. Feedback loops modelling an automated light system and a context awhile aevice.

or a particular situation such as being busy, in a meeting,Téte context is constantly
monitored by acontext reasonerwhich decides the behaviour of the device in order to
react to external events, or to trigger certain events tonconicate with other devices.

These simple loops already provide self-adaptability eohthuse lights system and
to the user’s mobile device. The former adapts light's isigraccording to the detec-
tion of users, and the later adapts its behaviour dependinigeocontext. Consider now
both models collaborating as a self-organising system. ¥edktend the house lights
system to also monitor context. Having a context reasoigéitsl are able to adapt their
behaviour not only to users’ movement, but also to partictdatext dependent scenar-
ios. For instance, you do not want to turn on the lights andengkthe kids when they
are in the sleeping context. We also add other sensors im mrdeceive message from
users’ devices.

Figure 2 depicts the interaction between both loops. Uskdce monitors the
intensity of the lights while still monitors context. Beinig the context ofarriving
homemay triggers an event to turn on the lights. The conteatiching a filmwith high
light intensitymay triggers the event of lowing the intensity of the lights.

Since the house lights system is enriched with a contexbresissome events trig-
gered from user’s device may not have always the same résulinstance, turning on
the lights when arriving home may not work as expected if kidsin the sleeping con-
text. Like this, two users can communicate through the $iglystems as stigmergy. We
can also observe that sensors and lights serve as stignmartlyef communication of
user’s device, and the controller of the house, becausedbtitem monitor the system,
and trigger events to modify the intensity of lights.

3 Implementing Feedback L oops

We have started to implement a prototype of the system usiogakt [3], a multi-
paradigm programming system implementing the Oz languélg&\le have identified
several ways of communicating components of a loop, which e done using an
event-driven approach, or stream communication, whiclacareve by pulling or push-
ing information (lazy or eager execution). To communicatgributed components,
message passing seems to be the most appropriated paradigm.

User’s devices follow naturally the actor model [5], butidesthe actor we can intro-
duce other paradigms as well. For instance, the contextneaspplies a set of rules to

Context reasoner

Modify Users Context
intensity detector monitor
House lights
and sensors
Modify Light's
intensity intensity
Context reasoner

Event/ Context

monitor
User's device

Behaviour

Fig. 2. Communicating two feedback loops.

the monitor information in order to determine the corresjgort rule. This component
fits better logic or declarative programming. To implemetdtive behaviour, we have
chosen a model representing roles [6], where split objédtarfe used as the general
architecture.

Since every component communicate with other by events esages, they are
quite independent, and the decision of the implementati@ach of them, do no affect
the implementation of the others. We still need to investigaore about the explicitness
of the components matching the design and the implementdtiecause sometimes
they appear clearly at the conceptual level, by they integréo other components in
the implementation.

References

1. Group, l.A.: Ambient intelligence: from vision to reality (2003)

2. Van Roy, P.: Self management and the future of software designFormal Aspects of
Component Software (FACS '06). (2006)

3. Consortium, M.: The mozart-oz programming systétp://www.mozart-0z.or¢e007)

4. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models ofpdten Programming. MIT
Press (2004)

5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor fism for artificial intelli-
gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235-245

6. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., MostinckxC8stanza, P.: The context-
dependent role model. In Indulska, J., Raymond, K., eds.: 7&# liernational Conference
on Distributed Applications and Interoperable Systems (DAIS '07). Lreciotes in Com-
puter Science, Springer-Verlag (2007) 277-299

7. Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegationiwi@®bjects. In:
Proceedings of the 11th Conference on Object-Oriented Programmgtgnss, Languages,
and Applications (OOPSLA96), San Jose, California, USA (1996137

