
P. Van Roy, UCL, Louvain-la-Neuve

Self Management
and

the Future of Software Design
September 20, 2006

Invited talk at FACS 06 (updated version)

Peter Van Roy

Coordinator, SELFMAN project

Université catholique de Louvain

Louvain-la-Neuve, Belgium

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 2

Software and the Red Queen

 Software is fragile!
 A single bit error can cause a catastrophe

 Hardware has been reliable enough so that this has not
unduly hampered the quantity of software being written
 We are in a Red Queen situation: running as hard as we can to

stay in the same place

 New techniques (structured programming, OOP, the usual bunch
of modern methodologies – agile, extreme, etc.) have arguably
kept pace so far

 So what is the next challenge and the next technique that will
keep pace with it?

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 3

The next challenge (1)

 Software complexity is ramping up quickly due to:
 The sufficient bandwidth and reliability of the Internet to support

distributed applications

 The increased connection of small devices to the Internet

 Many new applications are appearing: file-sharing (Napster,
Gnutella, Morpheus, Freenet, etc.), collaborative tools
(Skype, various Messengers), MMORPGs (World of
Warcraft, Dungeons & Dragons, etc.), research testbeds
(SETI@home, PlanetLab, etc.)

 A mix of client/server and peer-to-peer architectures

 These applications are still rather conservative: they do not take
advantage of the new complexity space

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 4

The next challenge (2)

 The main problem that comes from the increase in complexity
is that software errors cannot be eliminated [Armstrong 2003]
 We have to cope with them

 In addition, programming large-scale distributed systems
introduces other problems
 Scale: large numbers of independent nodes
 Partial failure: part of the system fails
 Security: multiple security domains
 Resource management: resources are localized
 Performance: harnessing multiple nodes or spreading load
 Global behavior: emergent behavior of the system as a whole

 Global behavior is particularly relevant
 Example: the power grid [Fairley 2005]

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 5

The next technique

 Now that we have set the stage, what solution do we
propose?

 We go back fifty years, to the first work on cybernetics and
general system theory
 Designing systems that regulate themselves (self-managing

systems) [Wiener 1948, Ashby 1956, von Bertalanffy 1969]

 A system is a set of components (called subsystems) that are
connected together to form a coherent whole

 No general theory has emerged (yet) from this work
 We do not intend to develop such a theory

 Our aim is narrower: to build self-managing software systems
 Such systems have a chance of coping with the new complexity

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 6

Recent work

 IBM’s Autonomic Computing initiative (2001)
 Reduce management costs by removing humans from

system management loops

 The role of humans is then to manage policy and not to
manage the mechanisms that implement it

 Structured overlay networks ([Stoica et al 2001], …)
 Inspired by popular peer-to-peer applications

 Provide low-level self management of routing, storage, and
smart lookup in large-scale distributed systems

 Is there a bigger role for self management?

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 7

Types of systems

 This diagram is from
[Weinberg 1977] An
Introduction to General
Systems Thinking

 The discipline of
computing is pushing the
boundaries of the two
shaded areas inwards

 Software development
methodologies are the
vanguards of system
theory

computing

computing

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 8

Designing self-managing
software systems

 From system theory, we take the fundamental principles
 Programming with feedback loops
 Global (emergent) properties
 Architectural framework

 We will use these principles as a basis for practical software
development
 This talk will give a few ideas on how to do this; our work in this

area is just starting
 All comments welcome!

 We will emphasize how to program with feedback loops
 Slogan: no open-ended software

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 9

Feedback loops

 A feedback loop consists of three elements that interact with a
subsystem: a monitoring agent, a correcting agent, and an actuating
agent

 Feedback loops can interact in two ways:
 two loops that affect interdependent system parameters (stigmergy)
 one loop that directly controls another loop (management)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 10

Feedback loops are everywhere

 Feedback loops are literally everywhere, if you look
at a system with the right mindset

 A single-user application is a simple example

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 11

Feedback loops
are needed at all levels

 Application level
 User interaction
 Self-describing components/software
 "Autonomic Computing" techniques: removing

humans from the loop
 Service levels

 Loosely-coupled service infrastructure
 Search and discovery of resources
 Robust, self-organizing communication
 Data management and replication
 Redundancy-based fault tolerance

 Cluster level
 Tightly-coupled infrastructure
 Self-management services (e.g., demand

prediction)
 Scheduling services
 Node replication and replacement

 Process/OS level
 Node protection mechanisms (e.g., intrusion

detection)
 Software rejuvenation
 Fault detection and alerting

Process/OS

Cluster

Services

Application

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 12

Complexity of interacting
feedback loops

 Problems of global behavior
 Does it converge or diverge?

 Does it oscillate or behave
chaotically?

 Analysis not always easy
 Linear and monotonic loops are

easy; unfortunately software is
usually nonlinear

 What are the rules of good
feedback design?
 We need to understand how to

program with feedback loops

 Analogous to structured and
object-oriented programming

 Let us start by looking at some
real systems

Level 1

Level 2

Level 3

Level 4

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 13

Example of stigmergy (Wiener)

 This system is unstable!

 But each loop is stable in
isolation
 Combining stable loops

can result in instability

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 14

Correct solution

 Instead of stoking a fire, the tribesman simply adjusts
the thermostat. The resulting system is stable.

 This uses management instead of stigmergy
 Design rule: use the system, don’t try to bypass it

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 15

The human respiratory system

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 16

Discussion of respiratory system

 Four feedback loops: two inner loops (breathing reflex and laryngospasm),
a loop controlling the breathing reflex (conscious control), and an outer
loop controlling the conscious control (falling unconscious)
 This design is derived from a precise textual medical description [Wikipedia

2006: “Drowning”]

 Holding your breath can have two effects
 Breath-hold threshold is reached first and breathing reflex happens

 O2 threshold is reached first and you fall unconscious, which reestablishes the
normal breathing reflex

 Some plausible design rules inferred from this system
 Conscious control is sandwiched in between two simpler loops: the breathing

reflex provides abstraction (consciousness does not have to understand details
of breathing) and falling unconscious provides protection against instability

 Conscious control is a powerful problem solver but it needs to be held in check

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 17

Program design
with feedback loops

 The style of system design
illustrated by the
respiratory system can be
applied to programming

 Programming then
consists of building
hierarchies of interacting
feedback loops

 This example shows a
reliable byte stream
protocol with congestion
control (a variant of TCP)

 The congestion control
loop manages the reliable
transfer loop

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 18

Interaction between feedback
loops and distribution

 The previous slide only showed what happens at the source node
 We expand the inner loop to show execution on both nodes. This shows

two feedback loops interacting through stigmergy, one running at the
source and one running at the destination.

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 19

Feedback loops and
distribution
 The interaction between feedback loops and

distribution is not well understood

 Distributed algorithmics has studied special cases of
this interaction
 Fault tolerance

 Self-stabilizing systems

 Structured overlay networks

 But feedback loops are useful for more than fault
tolerance!

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 20

Structured overlay networks:
inspired by peer-to-peer

 Hybrid (client/server)
 Napster

 Unstructured overlay
 Gnutella

 Structured overlay
 Exponential network
 DHT (Distributed Hash

Table), e.g., Chord

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 21

Properties of
structured overlay networks

 Scalable
 Works for any number of nodes

 Self organizing
 Finger tables updated with node joins/leaves
 Finger tables updated with node failures

 Provides guarantees
 If operated inside of failure model, then communication is guaranteed

with an upper bound on number of hops
 Broadcast can be done with a minimal number of messages

 Provides basic services
 Name-based communication (point-to-point and group)
 DHT (Distributed Hash Table): efficient storage and retrieval of

(key,value) pairs

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 22

Feedback loops in
a structured overlay network

 The primitive functionality of a
SON is to self-organize its nodes
to provide reliable and efficient
routing, despite nodes
continuously joining, leaving, and
failing

 Study of SONs has blossomed
since the development of Chord
in 2001 [Stoica et al 2001]

 SON operation is based on two
convergence properties:
 Within each node, the finger table

converges to a correct content
 Among nodes, a message in

transit converges to its destination
node

 Proving correctness:
 Need atomic join/leave/fail

operations
 Need ability to work with strongly

complete failure detection
 First proved in [Ghodsi 2006]

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 23

Self organization

 Maintaining the finger tables
 Correction-on-use (lazy approach)
 Periodic correction (eager approach)
 Guided by assumptions on traffic

 Cost
 Depends on structure
 A typical algorithm, DKS (distributed k-ary search),

achieves logarithmic cost for reconfiguration and for key
resolution (lookup)

 Example of lookup for Chord, the first well-known
structured overlay network

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 24

Lookup illustrated in Chord

0

8

412

2

610

14

1

3

5

79

11

13

15

Indicates presence of a node

Given a key, find the value
associated to the key
(here, the value is the IP address of the
node that stores the key)

Assume node 0 searches for the
value associated to key K with virtual
identifier 7

Interval node to be contacted
 [0,1) 0
 [1,2) 6
 [2,4) 6
 [4,8) 6
 [8,0) 12

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 25

Related work
in self-managing systems

 Erlang fault-tolerance architecture [Armstrong 2003]
 Erlang is designed explicitly to build applications that survive

software faults
 Software faults are considered to be inevitable

 The Erlang system has been used to build highly available
products: AXD301 ATM switch, Bluetail Mail Robustifier, SSL
accelerator

 Subsumption architecture [Brooks 1986]
 To build systems that show “intelligent” behavior by

decomposing into simpler behaviors
 Used successfully to program physical robots

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 26

Erlang

 Erlang is a language used to
develop highly reliable software
systems

 An Erlang program consists of a
set of running “processes”
(lightweight threads with
independent address spaces) that
send messages asynchronously

 Fault tolerance consists of three
levels:
 Primitive failure detection through

process linking: when one process
fails, another is notified

 Supervisor trees to structure the
program

 Stable storage to restart after
crashes (single or multiple disk)

P4

P3

P1

P2

process

message

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 27

Primitive failure detection

 Two processes can be linked: if
one fails then both are
terminated
 Failure is a permanent crash

failure, detected by the run-time
system

 “Let it fail” philosophy: if anything
goes wrong, just crash and let
another process correct the
problem

 If a linked process has its
supervisor bit set, then it is sent
a message instead of failing

 This primitive failure detection
can be seen as monitoring in a
feedback loop

Link

Link

supervisors=1

s=0 s=0

supervised processes

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 28

Supervisor trees

 The program consists of a
large number of processes

 Program processes are
organized in pools
 Each pool is observed by a

supervisor process linked to all
of them

 An AND supervisor stops and
restarts all its children if one
crashes

 An OR supervisor restarts just
the crashed child

 The supervisors themselves
are observed by a root
supervisor

 Each internal node in the
supervisor tree corresponds to
a feedback loop

program processes

supervisor
processes

root supervisor

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 29

Subsumption architecture

 The subsumption architecture is a way to
implement complex, “intelligent” behaviors by
decomposing them into simpler behaviors

 The system consists of layers where each
layer provides an ability

 Layers are given priorities: when a layer can
act, it disables the lower layers

 Layers interact through stigmergy

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 30

An obstacle-avoiding robot

 Each layer provides a competence
 Each layer can override the lower layers
 If a higher layer fails, some competence remains

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 31

General architectural
framework
 What can we deduce from these examples?

 A self-managing software system can be organized as a set of agents
(instances of concurrent components) that communicate through
asynchronous message passing
 Event-based and publish/subscribe communication are adequate mechanisms

 The system is a hierarchy of interacting feedback loops, where each loop is
implemented by several concurrent agents

 To allow the system to monitor and reconfigure itself, components must be
first-class entities that allow higher-order component programming (e.g., the
Fractal model [Bruneton et al 2004])

 Global properties of the system (total effect of all feedback loops) need to be
monitored, e.g., using diffusion algorithms or belief propagation
 There is a close relationship between global property monitoring and feedback

monitoring

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 32

Programming
with feedback loops

 We can build feedback loops with a component combinator
 We need different combinators depending on whether C or F is explicit or

implicit (e.g., environment) and whether the loop is managed or not
 The semantics must take into account the input and output interleaving

and the feedback delay

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 33

Programming
with feedback loops in Mozart
 We have programmed this in Mozart using higher-order functions,

lightweight concurrency, and dataflow synchronization
 Component interface: one input port (accepts input events) and

one output stream (produces ordered sequence of output events)
 Component behavior:

 State × Event → State × Event* × (R+,Event)*
 Given an input state and an input event, create an output state, new

output events, and new time-delayed input events
 Time delaying is important when interacting with the external world; it

is not needed internally to a program

 Component creation and component combinators can be written
in a few lines of code

 All the examples we have shown can be programmed easily

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 34

Programming
with feedback loops in Mozart
 In SELFMAN, the Mozart distribution support will be redone to support

self management of distributed systems
 Redesign peer-to-peer library as concurrent components with event-

based communication (Boris Mejias)
 Support for programming with feedback loops
 Language support (Yves Jaradin, Jean-Bernard Stefani)

 Redesign peer-to-peer library using Mozart DSS
 Mozart Distribution Subsystem (Ph.D. work of Raphaël Collet and Erik

Klintskog)
 Network-transparent distribution of programming language
 Choice of distribution protocols for language entities
 Event-based interface to failure detection
 Kill operation
 Support for temporary failures

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 35

Where do we go from here?

 There is a research agenda to be set up!
 Self management has a role to play in general software

development, not just in autonomic computing

 The SELFMAN project, an EU 6FP project that
started in 2006, will make a first cut at using self
management for general software
 We will combine a structured overlay network (which is

already self managing at a low level) with an advanced
component model, to achieve a self-management
architecture

 We will build a self-managing three-tier application with a
replicated transactional store as proof of concept

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 36

Month 12 deliverables
(on Wiki Community Portal)
 Structured overlay networks (Boris Mejias)

 D1.1: Low-level self-management primitives for SON (node failure / removal /
addition, state monitoring, configuration, versioning, updating)

 D1.3a (Roland Yap): First report on security for SON (threat model, security
mechanisms, monitoring system)

 Programming framework (Peter Van Roy)
 D2.1a: Basic computation model (components and architectural description

language)

 D2.2a: Architectural framework specification

 D2.3a: Formal operational semantics (components and reflection)

 Transaction model (Monika Moser)
D3.1a: First report on formal models for transactions over SON (resolve
tension distributed system ↔ application)

 User requirements (Thierry Coupaye?)
D5.1: User requirements for application servers (from industrial experience)
Next meeting in Grenoble on Nov. 20 and 21

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 37

Conclusions

 Self management is useful for all software design, not just for tasks
done by a human manager
 Self management can overcome the fragility of software

 Self-managing software systems consist of hierarchies of interacting
feedback loops
 Programming with feedback loops becomes common and should be

supported by the language
 All parts of the system (except a small kernel) should be inside a

feedback loop (slogan: no open-ended code!)
 It should be feasible to design for a desired global behavior

 We are realizing these ideas in the SELFMAN project, which started
in June 2006
 We are combining ideas from structured overlay networks and advanced

component models

