
Reliability of dynamic reconfigurations in
component-based software systems

Marc Léger1, Thierry Coupaye1, and Thomas Ledoux2

1 France Telecom R&D
28, chemin du Vieux Chêne

F-38243 Meylan
{marc.leger, thierry.coupaye}@orange-ftgroup.com

2 OBASCO Group, EMN / INRIA, LINA
Ecole des Mines de Nantes

4, rue Alfred Kastler
F-44307 Nantes Cedex 3
thomas.ledoux@emn.fr

Abstract. This article is an analysis based on our experience with the
Fractal component model of the need of reliability for dynamic reconfig-
urations in component based systems. We make a proposal to ensure this
reliability, which can applied to concurrent reconfigurations. We started
from the definition of ACID properties in the context of component mod-
els and we propose to use integrity constraints to define system consis-
tency and transactions for guaranteeing the respect of these constraints
at runtime. To deal with concurrency, we have to detect potential con-
flicts when composing reconfiguration operations.

1 Introduction

Dynamic reconfigurations in component-based software applications [MK96] are
central to promissing approaches like autonomic computing [KC03]. There are
many motivations to introduce modifications in a system at runtime: correction
of security flaws or functional bugs, improvement of systems (e.g., performance
optimizations), or adaptions to execution context changes.

Thanks to properties of component models like loosely coupling, reconfigu-
rations can rely on component-based architectures [OMT98]. However, runtime
modifications can let the system in an inconsistent state. From a structural point
of view, the architecture of the system once reconfigured can be not in confor-
mity with the component model or eventually system specific constraints (e.g.
architectural invariants) anymore. From a functional point of view, a reconfig-
uration must not perturb the execution of the system (i.e., functional and non
functional aspects need to be synchronized). Furthermore, in case of concurrent
reconfigurations, reconfiguration must be synchronized between themselves.

In this paper, we focus to the reliability of runtime adaptations and we
chose to base our work on the Fractal component model [BCL+04] because
of its support of dynamic and opened reconfigurations. In our approach, we



2 Marc Léger, Thierry Coupaye, and Thomas Ledoux

tried to define each of the ACID properties [TGGL82] in the specific context
of component-based systems an show how it can solve this reliability problem
during adaptations. These properties are unifying concepts of transactions for
distributed computation used essentially for supporting concurrency and recov-
ery. We specify the consistency property by using integrity constraints about
system structure and state. An example of a structural constraint at the level
of component model is cycle-free component structure. Moreover we must avoid
wrong execution flow of reconfiguration operations according to their semantics
to ensure the isolation property.

This paper is organized as follows. Section 2 is an overview of dynamic re-
configurations in component models, with a focus on Fractal, and it shows what
problems it raises regarding reliability. Then section 3 describes how transac-
tions combined with integrity constraints can be a solution to these problems.
Finally section 4 presents some related works before concluding in section 5.

2 The need of reliability for dynamic reconfigurations in
component-based systems

2.1 Dynamic reconfigurations in component models

Dynamic reconfigurations allow modifications of a part of a system during its
execution without stopping it entirely to keep the system partly available. Ac-
tually, maximization of the availability time is essential for some systems like
entreprise application servers. Dynamic reconfigurations can involve every man-
ageable element defined in the component model and reified at runtime, they
can be:

– structural (e.g., addition or removal of elements like components, interfaces
etc. and interconnection modifications with bind unbind operations),

– behavioral (e.g., lifecycle modification used to synchronize component activ-
ity with the rest of the system),

– linked to component deployment (e.g., component instantiation, destruction,
migration),

– linked to component state (e.g., change of component attribute values),

Fractal [BCL+04] is a recursive component model with sharing and reflexive
control. It is based on classic concepts of component (as a runtime entity), inter-
face (an interaction point between components expressing provided and required
services) and binding (a communication channel between component interfaces).
A component consists of a membrane which can show and control a causaly con-
nected representation of its encapsulated content. An Architecture Description
Language (Fractal ADL [Fra]) is used to specify component configurations and
there is notably a Java implementation of the model, Julia. Several controllers
are defined to control bindings, the hierarchical structure, component lifecycle,
attributes and names, but other controllers can be user-defined.

Operations in controllers constitute primitive reconfiguration operations and
do either introspection or intercession (modifications) in the system. To compose



Reliability of dynamic reconfigurations 3

operations, we consider sequences or parallel executions of intercession opera-
tions with conditions expressed by means of introspection operations in com-
ponent configurations. An example of composite reconfiguration is component
hotswap, a mechanism used to update a system where an old version of a com-
ponent is replaced by a new one. In Fractal, this reconfiguration is composed
of a sequence of several primitive reconfiguration operations, it implies to stop
the component, unbind all its interfaces, remove it, add the new instantiated
component, bind its interfaces and start it (a state transfert operation is used
in case of stateful component).

2.2 The reliability problem with dynamic reconfiguring applications

A first problem when modifying a system at runtime is the synchronization
between reconfigurations and the functionnal execution of the system. Actually,
the part of the system which is modified could be unavailable for functional
execution during the reconfiguration time. To take the hotswap example with
a stateful component, calls on the old component must be blocked until a a
“quiescent state” [KM90] is reached, then the state must be transfered, finally
previous calls are forwarded towards the new component.

A second problem at the model level is about consistency violation by re-
configurations. First of all, we must make clear what exactly consistency is for
component-based systems. Component models and application models should
define what this consistent system is, especially in term of structure. For instance,
we may want to add a structural constraint about the number of subcomponents
of a composite component. In Fractal, the specification of the component model
is not always sufficient and we want to express some integrity constraints on
systems. So we must ensure the conformity of the system to the model and
constraints after reconfigurations.

The third and last problem we identified is linked to the composition of re-
configuration operations. A prerequisite is the separation of concerns between
the functional part and the control part of systems. Then separation between in-
trospection operations and intercession operations must be explicit. Once these
operations have been identified, the semantics of reconfiguration operations im-
plies there can be some conflicts between them in case of compostion and for
synchronization between several reconfigurations (e.g., in Fractal it is manda-
tory to unbind all component interfaces before removing the component from its
super-component).

3 A transactional approach to ensure reliable
reconfigurations

3.1 ACID properties in the context of dynamic reconfigurations

We think that well-defined transactions associated with structural and behav-
ioral constraints verification is a means to guarantee the reliability of reconfigu-
rations in component models, i.e. to solve problems we identified in the section



4 Marc Léger, Thierry Coupaye, and Thomas Ledoux

2.2. As any reconfiguration operation could lead the system to an inconsistent
state, each reconfiguration must always be included in a transaction. In this
context, we define the meaning of ACID properties as follows:

– Atomicity: either all happen or none happen, that is to say either the
system is reconfigured or it is not. A reconfiguration transaction can be
a single primitive reconfiguration operation or a more complex operation
composed of several operations. Each reconfiguration operation must specify
its reversible operation. Thus if a reconfiguration transaction goes badly and
is rollbacked, it is possible to come back in a previous stable state by undoing
operations. Transactions demarcation is either programmed in the language
or automatic (a reconfiguration script corresponds to a transaction).

– Consistency: a transaction must be a correct transformation of the sys-
tem state. So the reconfigured application must be conform to the compo-
nent model and application specific constraints. That is to say consistency
is given by integrity constraints essentially architectural invariants. A recon-
figuration transaction can be commited only if the resulting system respects
the constraints. Other faults like software and hardware failures (network
and machines) are the responsibility of the commit protocol (e.g., 2 phase
commit protocol).

– Isolation: several reconfiguration transactions are independant and any
schedule of reconfiguration operations must be equivalent to their serial-
ization. The scheduling must respect the operation semantics and conflicts.
This property relies on the knowledge of the semantics of reconfiguration
operations.

– Durability: once a reconfiguration completes with success (commit), the
new state is persistent. For every transaction, operation are logged in a jour-
nal so that reconfigurations can be redone in case of failure. The application
state (architecture and component state) is periodically checkpointed basi-
cally with ADL dumps and component state is saved in databases. So any
component can be recovered in its last stable state resulting from the last
successful reconfiguration. However, the only functional state we capture
is the state which is well identified in the component model and is saved
only at commit time of reconfigurations because we don’t want to impose
transactions at the functional level.

Only the first problem presented in 2.2 is not completely adressed by our
approach because we do not fully modelise the functional execution flow of sys-
tems, we relies on the implementation of the component lifecycle operations with
interceptors on component interfaces to realize the synchronization. A solution
to the synchronization problem is to apply the hotswap protocol proposed in
[KM90]. The guarantee we can bring is that the order of operations in the pro-
tocol is respected. Among the ACID properties we will especially focus in the
following sections on two properties: consistency and isolation.



Reliability of dynamic reconfigurations 5

3.2 Integrity constraints to ensure system consistency

In our proposal, system consistency relies on integrity constraints and we want
to express these constraints both at the application and at the model level. An
integrity constraints is essentially a predicate which concerns the validity of an
assembly of architectural elements but it can also concern component state. Ex-
amples of such constraints at the component model level are hierarchical integrity
(bindings between components must respect the component hierarchy) or cycle-
free structure (a component cannot contain itself to avoid infinite recursion). On
the other hand, application specific constraints are used to specify invariants on
a given system either on component types or directly on component instances
designed by their names. Invariants can concern for example cardinality of sub-
components in a super-component, two component interfaces which can never
be unbound etc.

In an open world where reconfigurations are not anticipated at compile time,
some component models like Fractal are relying on reflexive architectures to
dynamically reconfigure systems by means of a runtime mapping between the
system which is really executed and its model. So integrity constraints verified on
the model will be also valid in the system. We represent the Fractal component
model as a typed graph and then each fractal-based application is also a graph
which is an instance of this typed graph. The instance graph is a more formal
representation of the system provided at runtime by the reflexivity of the com-
ponent model and is used to navigate in runtime applications. The vertexes are
elements from the component model: components, functional interfaces, con-
trollers, attributes and operations. The edges represent relations between the
elements: composition links, binding links etc. Then the instance graph must
always be well-typed regarding to the typed graph (i.e., conform to the compo-
nent model) and the instance graph must respect integrity constraints. Therefore
contraints at the model level can be specified on the typed graph and others on
the instance graph. As the model is extensible and new user-defined controllers
can be added, graphs should be also easily extensible in terms of elements and
relations.

To express integrity constraints, we propose to use a DSL based on an exten-
sion of the query language in Fractal configurations FPath [DL06] to transform it
into a real constraint language “à la OCL” [OCL05]. An advantage of the FPath
language is that it can navigate both in the ADL and in the runtime system and
it is already based on a graph representation of the system during execution. The
constraint language must just have introspection capacity without side effects
on the system. We want to express invariants, preconditions and postconditions
in this language and we want notably to have quantifiers, collection operations
and filters. The following basic example is a structural invariant constraint at
the application level expressed in FPath (with its XPath 1.0 syntax like) where
the component designed by the variable c can never be shared (it can only have
one parent at the same time):
size(c/parent::*)=1

Constraints must be checked both at compile time on the component static
configuration and at runtime. We consider checking constraints as far as possible



6 Marc Léger, Thierry Coupaye, and Thomas Ledoux

before applying the reconfiguration on the system, eventually by code analysis of
a dedicated reconfiguration language like FScript [DL06]. Constraints can also
be checked either directly during the execution of the reconfiguration of the real
system or by simulation on a local copy of the representation of the system (i.e.,
the instance graph) so as to limit the effect on the system in case of constraint
violation.

3.3 Isolation of reconfigurations to support concurrency

We take the hypothesis that not only application components are distributed
but also administrators. Furthermore, reconfiguration initiators are either hu-
mans (interactive reconfigurations) or the system itself (the system is able to
auto-reconfigure). Concurrency in reconfigurations comes from the fact that one
administrator can explicitely want to execute some operations in parallel, or
several administrators can reconfigure the same system at the same time. The
reconfiguration scheduler can also detect when it can launch parallel reconfigu-
ration tasks to optimize the reconfiguration process.

As seen in section 2.1, reconfiguration operations are composable but all
compositions are not valid. In Julia, operation semantics is hidden in controller
implementations and so we want to make it explicit and we want eventually
to be able to change it and to specify new primitive operations. So we need
to express operation semantics in terms of preconditions and postconditions
with our constraint language presented in section 3.2. We distinguish two types
of conflicts between operations: parallel conflicts and execution dependencies.
For two given reconfigurations R1 and R2 executed on the same system, a
parallel conflict occurs if R1 and R2 modify the same manageable elements in
the system model (e.g. bind and unbind operations). An execution dependency
occurs if R1 either need R2 to be executed first (e.g. stop before unbind)or if
R1 cannot be executed after R2. That is to say R2 postconditions cover or not
R1 preconditions.

// Example of a precondition for removing a component

operation: void removeSubComponent(Component sub);

preconditions :

// all interfaces of the sub-component are unbound (. is the current node)

not(exists(sub/interface::*[not(bound(.))]));

For concurrency management, we propose a pessimistic approach with lock-
ing. Our locking algorithm is based on operation semantics to avoid inconsistent
operation compositions. We see two different possibilities for the locking algo-
rithm. The first one is to lock directly reconfiguration operations. That is to
say, either conflicts between operations are automatically calculated thanks to
its preconditions and postconditions or it must define the operations with which
it is in conflict. The second one is to use a modified DAG locking algorithm on
our instance graph defined in 3.2. Then the lock granularity is defined by the



Reliability of dynamic reconfigurations 7

manageable elements in the graph representation and for example a lock acqui-
sition on a component also locks all its interfaces and every operations in each
interfaces.

Another approach to locking is to constrain the execution order of reconfig-
uration operations. We propose to use a simple language inspired of behavior
protocols in [PV02] to describe the desired execution order of reconfiguration
operations, what we call behavioral reconfiguration constraints. The protocol
compliance is checked at runtime by intercepting reconfiguration calls.

4 Related work

Many works on ADLs follow a static approach to check consistency of component-
based architectures by compilation but only a few are interested in dynamic
analysis of this consistency. We will focus here on other reflective component
models which allow non anticipated (also called ad-hoc) reconfigurations.

FORMAware [MBC04] is relatively close to our work. This framework to
program component-based application gives the possibility to constrain recon-
figurations with architectural style rules. A transaction service manages the re-
configuration by stacking operations. The main difference with our proposal is
our integrity constraints are more flexible than styles and they can be applied
to every element of our component model. Moreover we define more formally
reconfiguration operations to identify conflicts between them, our locking algo-
rithm is then more precise than a simple lock on components and we consider
introspection operations as reconfiguration operations.

Plastik [BJC05] is the integration of the OpenCOM component model and
the ACME/Armani ADL. As in our solution, architectural invariants can be
checked on ADL configuration or at runtime and constraints are expressed at
the style level and at the instance level. However, reconfiguration cannot be
generic composite reconfigurations with model elements in parameters and the
execution, the operation semantics is not explicit and not extensible and the
order of reconfiguration operation cannot be constrained as we can do with
reconfiguration protocols.

5 Conclusion

Dynamic reconfiguration in component-based systems raises reliability problems,
especially in open systems in which they are not anticipated. In this article, we
identified the three following global problems based on our experience with the
Fractal component model: synchronization between reconfiguration and the func-
tional execution of systems, consistency regarding component and application
models, and synchronization between reconfiguration operations. We focused
more on the two last problems: the first one concerns conformity at runtime of
systems with constraints and models, the second one deals with the validity of
composition of reconfiguration operations.



8 Marc Léger, Thierry Coupaye, and Thomas Ledoux

We propose to use integrity constraints to define consistency for dynamic
reconfigurations and to include these reconfigurations in transactions. We build a
graph representation of our application at runtime thanks to the reflexivity of the
Fractal component model and use a constraint language on this graph. Moreover
we want to detect execution conflicts between reconfiguration operation in order
to be able to compose them with reliability with eventually the specification of
reconfiguration protocols. We are currently implementing this proposal in Julia,
a Java implementation of the Fractal model.

References

[BCL+04] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java. In
Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau,
editors, CBSE, volume 3054 of Lecture Notes in Computer Science, pages
7–22. Springer, 2004.

[BJC05] Tháıs Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing
dynamic reconfiguration in component-based systems. In Ronald Morri-
son and Flávio Oquendo, editors, EWSA, volume 3527 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2005.

[DL06] Pierre-Charles David and Thomas Ledoux. Safe dynamic reconfigurations of
fractal architectures with fscript. In Proceedings of the 5th Fractal Workshop
at ECOOP 2006, Nantes, France, July 2006.

[Fra] Fractal ADL. http://fractal.objectweb.org/fractaladl.
[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, 2003.
[KM90] J. Kramer and J. Magee. The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990.

[MBC04] Rui S. Moreira, Gordon S. Blair, and Eurico Carrapatoso. Supporting adapt-
able distributed systems with formaware. In ICDCSW ’04: Proceedings of
the 24th International Conference on Distributed Computing Systems Work-
shops, pages 320–325, Washington, DC, USA, 2004. IEEE Computer Society.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures.
In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on
Foundations of software engineering, pages 3–14, New York, NY, USA, 1996.
ACM Press.

[OCL05] OCL 2.0 Specification. http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.
[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-

based runtime software evolution. In ICSE ’98, pages 177–186, Washington,
DC, USA, 1998. IEEE Computer Society.

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Trans. Softw. Eng., 28(11):1056–1076, 2002.

[TGGL82] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and Bruce G. Lindsay.
Transactions and consistency in distributed database systems. ACM Trans.
Database Syst., 7(3):323–342, 1982.


