

1

SIXTH FRAMEWORK PROGRAMME
PRIORITY 2

INFORMATION SOCIETY TECHNOLOGIES

Contract for:

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Annex I – “Description of Work”

Project acronym: SELFMAN
Project full title: Self Management for Large-Scale Distributed Systems based on Structured
Overlay Networks and Components
Proposal/Contract no.: 34084
Related to other Contract no.:

Date of preparation of Annex I: March 29, 2006

Operative commencement date of contract: June 1, 2006

Date of this revision: April 10, 2009

2

Table of Contents

Table of Contents .. 2
1. Project Summary ... 4
2. Project Objectives ... 5
3. Participant List .. 7
4. Relevance to the Objectives of the Specific Programme and/or Thematic Priority.. 8

4.1 Contributions with Respect to the State of the Art ... 8
4.1.1 Structured Overlay Networks and Peer-to-Peer Systems.. 9
4.1.2 Component-Based Programming .. 11
4.1.3 Autonomic Systems... 11

5. Potential Impact .. 13
5.1 Technological Impact ... 13
5.2 Scientific Impact ... 14
5.3 Contributions to Standards.. 15

6. Project Management and Exploitation/Dissemination Plans .. 16
6.1 Project Management ... 16

6.1.1 Top-level Management Structure .. 16
6.1.2 Internal Management Structure ... 16
6.1.3 Mechanisms for Assessment and Evaluation .. 17
6.1.4 Year-by-year Measurable Assessment and Evaluation Criteria .. 17

6.2 Plan for Using and Disseminating Knowledge... 18
6.2.1 Open Source Software... 19

6.3 Raising Public Participation and Awareness .. 20
6.4 Intellectual Property Rights .. 20

7. Detailed Implementation Plan... 21
7.1 Introduction – General Description and Milestones ... 21

Workpackage Organization .. 23
WP1: Structured Overlay Network and Basic Mechanisms... 24
WP2: Service Architecture and Component Model ... 24
WP3: Self-Managing Storage and Transactions... 25
WP4: Self-Management Services... 26
WP5: Application Requirements and Evaluations ... 27
Final project extension to Month 40... 28

7.2 Planning and Timetable .. 29
7.3 Graphical Presentation of Workpackages... 30
7.4 Workpackage List ... 31
7.5 Deliverables List ... 32
7.6 Workpackage Descriptions ... 36

Workpackage 1 Description ... 36
Workpackage 2 Description ... 38
Workpackage 3 Description ... 40
Workpackage 4 Description ... 42
Workpackage 5 Description ... 44
Workpackage 6 Description ... 47

8. Project Resources and Budget Overview .. 49

3

8.1 Efforts for the Full Duration of the Project... 49
8.2 Overall Budget for the Full Duration of the Project ... 50
8.3 Management Level Description of Resources and Budget... 51

8.3.1 AC Partners “Own” Contributions .. 51
9. Ethical Issues... 52
10. Other Issues ... 53

10.1 Gender Issues .. 53
10.2 Policy Issues ... 53

Appendix A – Consortium Description... 54
A.1 Project Roadmap.. 54
A.2 Participants and Consortium .. 55

Université catholique de Louvain (UCL) ... 56
UCL key personnel... 56
Royal Institute of Technology (Kungliga Tekniska Högskolan – KTH) ... 57
KTH key personnel... 57
Institut National de Recherche en Informatique et Automatique (INRIA) .. 58
INRIA key personnel.. 58
France Telecom Research & Development (FT R&D).. 59
FT R&D key personnel .. 59
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).. 60
ZIB key personnel .. 60
National University of Singapore (NUS) ... 60
NUS key personnel... 61
Stakk AB .. 61
Stakk key personnel.. 61

A.3 Sub-contracting .. 62
A.4 Third Parties... 62
A.5 Funding of Third Country Participants .. 62

References ... 63

4

1. Project Summary

The goal of SELFMAN is to make large-scale distributed applications that are self managing, by combining the strong
points of component models and structured overlay networks. One of the key obstacles to deploying large-scale
applications running on networks such as the Internet or company intranets is the issue of management. Currently many
specialized personnel are needed to keep large Internet applications running. SELFMAN will contribute to removing this
obstacle, and thus enable the development of many more Internet applications and Internet-based companies that depend
on such applications. In the context of SELFMAN, we define self management along four axes: self configuration
(systems configure themselves according to high-level management policies), self healing (systems automatically handle
faults and repair them), self tuning (systems continuously monitor their performance and adjust their behavior to optimize
resource usage and meet service level agreements), and self protection (systems protect themselves against security
attacks). SELFMAN will provide self management by combining a component model with a structured overlay network.
The component model will support dynamic configuration, the ability of part of the system to reconfigure other parts at
run-time, which is the key property that underlies the self-management abilities. Basing the system on a structured overlay
network enables SELFMAN to extend the abilities of the component model to large-scale distributed systems. Structured
overlay networks have made much progress since their origins in peer-to-peer file-sharing applications. In contrast to file-
sharing applications, structured overlay networks provide guarantees for efficient communication and reorganization in
case of failures. These are already low-level self-management properties. Combining this with the component model,
SELFMAN will build high-level self-management properties on top of these low-level properties. SELFMAN will do
both foundational research and applied research. The foundational research will design a distributed service architecture
that combines structured overlay networks (for communication and basic self management) with component models (for
the higher self management primitives). To make the research concrete we will target multi-tier applications, and
specifically we will build two-tier applications using a self-managing storage (database) service. We will use industrial
trace data to measure the effectiveness of our self managing architecture. We will do implementation work in two
directions: first, to explore how an industrial standard platform (J2EE) can be made self-managing, and second, to push
self management as far as we can, in terms of fundamental programming language research, without being restrained by
existing tools. The interplay between these two implementations will be to the benefit of both. The industrial partners
will use the results of SELFMAN to guide their strategic decisions for distributed systems development.

5

2. Project Objectives

The vision of SELFMAN is that distributed systems should be self managing. Self management, as a general concept,
means that the system should be able to reconfigure itself to handle changes in its environment or requirements without
human intervention but according to high-level management policies. As part of the SELFMAN project, we will give a
precise definition of self management that makes it clear what parts can be handled automatically and what parts need
application programmer or user (system administrator) intervention. The user then defines a self management policy and
the system implements this policy. Self management exists on all levels of the system. At the lowest level, self
management means that the system should be able to automatically handle frequent addition or removal of nodes, frequent
failure of nodes, load balancing between nodes, and threats from adversaries. For large-scale systems, environmental
changes that require some recovery by the system become normal and even frequent events. For example, failure
becomes a normal situation: the probability that at a given time instant some part of the system is failed approaches 1 as
the number of nodes increases. At higher levels, self management embraces many system properties. For SELFMAN, we
consider that these properties are classified in four axes of self management: self configuration, self healing, self tuning,
and self protection. An example of self configuration is upgrading part of the system from one version to a later version.
Because we expect the system to be a continuously running infrastructure, we require that this versioning can be done
without interrupting service.

To be effective, self management must be designed as part of the system from its inception. It is difficult or impossible to
add self management a posteriori. This is because self management needs to be done at many levels of the system. Each
level of the system needs to provide self management primitives (“hooks”) to the next level. This is why SELFMAN
makes self management its main goal. The key for enabling self management is the component model. It must have the
primitives needed to do all the system monitoring and system modification during its execution.

In the SELFMAN project we will design and build a service architecture that is a framework for building large-scale self-
managing distributed applications. The heart of the service architecture is a component model built in synergy with a
structured overlay network (see below). The project will start by focusing on the component model and the structured
overlay network, which are used together to provide the foundation of the service architecture. We then provide solutions
for the four axes of self management by building on this foundation. We consider the most important axis to be self
configuration, since it is necessary for the deployment of an application. This gives the following four specific objectives
for the self-management abilities:

1. Self configuration: We will provide all the necessary configuration primitives at all levels of this service
architecture, so that the system can reconfigure itself during execution. Specifically, we will provide primitives
so that the service architecture will continue to work when nodes are added or removed during execution. We
will provide primitives so that parts of the application can be upgraded without interrupting execution (on-line
upgrade) . We will also provide a component trading infrastructure that can be used for automating distributed
configuration processes.

2. Self healing: The service architecture will provide the primitives for continued execution when nodes fail or when
the network communication between nodes fails, and will provide primitives to support the repair of node
configurations. Specifically, the service architecture will continue to provide its basic services, namely
communication and replicated storage, and will provide resource trading facilities to support repair mechanisms.
Other services are application-dependent; the service architecture will provide the primitives to make it easy to
write applications that are fault-tolerant and are capable of repairing themselves to continue respecting service
level agreements.

3. Self tuning: The service architecture will provide the primitives for implementing load balancing and overload
management. We expect that both load balancing and on-line upgrade will be supported by the component
model, in the form of introspective operations (including the ability to freeze and restart a component and to
get/set a component’s state).

6

4. Self protection: In a project the size of SELFMAN, it is not possible to provide a general solution to the security
problem. That would be the subject of another project. Nevertheless, security is an essential concern that has to
be considered. In SELFMAN, we will consider a simple threat model, in which only the nodes of the service
architecture are considered trustworthy. We can extend this threat model with little effort for some parts, such as
the structured overlay network, for which we already know how to protect against more aggressive threat models.

We will measure the effectiveness of these objectives in three ways. First, by formal reasoning and proofs (e.g., proving
correctness of the algorithms as part of the research results). Second, by using industrial usage scenarios and evaluating
the qualitative effectiveness with these scenarios. Third, by using industrial trace data and generated traffic, and
evaluating the quantitative effectiveness.

An essential feature of self management is that it adds feedback loops throughout the system. A feedback loop consists of
(1) the detection of an anomaly, (2) the calculation of a correction, and (3) the application of the correction. These
feedback loops exist within one level but can also cross levels. For example, the low level detects a network problem, a
higher level is notified and decides to try another communication path, and the low level then implements that decision.
The primitives for self management at a given level are of two kinds: detectors and actuators. Because of the feedback
loops, it is important that the system behavior converges (no oscillatory, chaotic, or divergent behavior). One goal of the
project is therefore to model formally the feedback loops, to confirm convergent behavior (possibly changing the design),
and to validate the model with the system. The formal model of a computer system is generally highly nonlinear. It may
be possible to exploit oscillatory or chaotic behavior to enhance certain characteristics of the system. We will explore this
aspect of the feedback loops.

7

3. Participant List

Partic.
Role

Partic.
No.

Participant name Participant
short name

Country Date enter
project

Date exit
project

CO 1 Université catholique de
Louvain

UCL Belgium Month 1
(start of
project)

Month 40
(end of
project)

CR 2 Royal Institute of Technology
(Kungliga Tekniska Högskolan)

KTH Sweden Month 1
(start of
project)

Month 40
(end of
project)

CR 3 Institut National de Recherche
en Informatique et Automatique

INRIA France Month 1
(start of
project)

Month 40
(end of
project)

CR 4 France Telecom Research and
Development

FT R&D France Month 1
(start of
project)

Month 40
(end of
project)

CR 5 Konrad-Zuse-Zentrum für
Informationstechnik Berlin

ZIB Germany Month 1
(start of
project)

Month 40
(end of
project)

CR 6 E-Plus Mobilfunk GmbH & Co.
KG

E-Plus Germany Month 1
(start of
project)

Month 1

CR 7 National University of Singapore NUS Singapore Month 1
(start of
project)

Month 40
(end of
project)

CR 8 Stakk AB (called also Peerialism
AB)

Stakk Sweden Month 13
(start of
2nd year)

Month 40
(end of
project)

8

4. Relevance to the Objectives of the Specific Programme and/or
Thematic Priority

Let us examine the vision of self management, and our specific approach of combining structured overlay networks with a
component model, from the viewpoint of the IST 2005-2006 Workprogramme in Software and Services (IST Call 5,
Section 2.5.5). This workprogramme has five objectives. We explain how SELFMAN is relevant to these objectives.
We list the objectives with the most relevant first.

• The main objective addressed by SELFMAN is Foundational and applied research to enable the creation of
software systems with properties such as self-adaptability, flexibility, robustness, dependability and evolvability.
We provide self-adaptability at the lowest level by using structured overlay networks (which automatically
reorganize when nodes are added and removed), and with the component model we will extend it to cover the
whole system. The component model addresses the key enabling axis of self management, namely the ability to
monitor and modify the structure of the application at run-time. Flexibility and evolvability are made possible by
the monitoring and modification abilities of the component model. Robustness and dependability are explicitly
addressed by two other axes of self management, namely self healing and self protection.

• The second objective addressed is Research on the engineering, management and provision of services and
software, incorporating ambient intelligence-based features such as dynamic composability and adaptability,
context awareness, autonomy and semantic interoperability. Self management overlaps with context awareness
and adaptability: the system detects changes in its environment and must reconfigure itself for them. Self
management provides autonomy: for a system to be autonomous, it should be able to maintain itself in a useful
working condition despite environmental changes. Note that we do not specifically address dynamic
composability and semantic interoperability in this project. However, the results of the project can be applied to
these two areas.

• The third objective addressed is Principles, methodologies and tools for design, management and simulation of
complex software systems, viewing the user as part of the system. In a self-managed system, there are feedback
loops at all levels. Some of these feedback loops will contain a human being as part of the loop. In addition, the
feedback loops form a complex nonlinear system, in which properties such as convergence, oscillation, and
chaotic behavior are important. In SELFMAN we will make a first step toward studying these properties.

• The fourth objective addressed is Research into technologies specifically supporting the development,
deployment, evolution, and benchmarking of open source software. SELFMAN will do open source software
development. The structured overlay network and component model research are relevant for the open source
community. Project partners UCL and KTH have more than a decade of experience in open source community
activities, through the ongoing development of the Open Source Mozart Programming System. Partners France
Telecom and INRIA have experience in open source development through the ObjectWeb consortium.

• The fifth objective addressed is Support actions contributing to the achievement of this strategic objective or, in
particular, studying the evolution of the software industry into service-based organisations and identifying
strategies, and technological roadmaps. SELFMAN will target this area through its industrial partners who will
study how the self-management principles developed in the project can be applied in industrial setting. They will
evaluate the self-managing service architecture within an industrial standard platform (J2EE) and explore how a
self-managing multi-tier application can be written in it. They will apply the self-management principles and
algorithms to media-streaming. Finally, they expect to use the results of SELFMAN as input for their strategic
decisions on future software development.

To summarize, SELFMAN is highly relevant to three major objectives of the Software and Services workprogramme, and
is significantly relevant to the other two objectives as well.

4.1 Contributions with Respect to the State of the Art

SELFMAN will take a computer systems approach to self management. That is, we give a precise definition of self
management in terms of computer system properties, namely configuration, fault tolerance, performance, and security.
To make these properties self managing, we propose to design a system architecture and the protocols it needs. We
consider that our approach is an effective one and that our project is a realistic way to achieve self management according

9

to our definition. But in the research community self management is sometimes defined in a broader way, to touch on
various parts of artificial intelligence: learning systems, swarm intelligence (a.k.a. collective intelligence), biologically-
inspired systems, and learning from the immune system [HERR05]. We consider that these artificial intelligence
approaches are worth investigating in their own right. However, we consider that the computer systems approach taken
by SELFMAN is a fundamental one that has to be solved, regardless of these approaches.

Now let us characterize the projected advances of SELFMAN with respect to the state of the art in computer systems.
There are three areas to which we can compare SELFMAN:

1. Structured overlay networks and peer-to-peer systems. Current research on overlay networks focuses on
algorithms for basic services such as communication and storage. The reorganizing abilities of structured
overlay networks can be considered as low-level self management. SELFMAN will extend this to address high-
level self management such as configuration, deployment, on-line updating, and evolution, which have been
largely ignored so far in structured overlay network research.

2. Component-based programming. Current research on components focuses on architecture design issues and not
on distributed programming. SELFMAN extends this to study component-based abstractions and architectural
frameworks for large-scale distributed systems, by using overlay networks as an enabler.

3. Autonomic systems. Most autonomic systems projects study individual autonomic properties, specific self-
managed systems, or focus on specific elements of autonomic behavior. Little research has considered the overall
architectural implications of building self-managed distributed systems. The SELFMAN project is unique in this
respect, combining as it does component-based system construction with overlay network technology into a
service architecture for large-scale distributed system self management. The focus on both large-scale, loosely
coupled systems, and architectural issues is a key differentiator of the SELFMAN project with respect to most of
autonomic systems research.

We now present each of these areas in more detail and explain where the contribution of SELFMAN fits in.

The RAD Laboratory (Reliable, Adaptive, Distributed systems) was recently created at UC Berkeley and is funded by
Google, Microsoft, and Sun. RAD intends to use research from statistical learning theory, control theory, and machine
learning to improve the detection of problems in distributed systems, and to apply research from Recovery-Oriented
Computing to provide fast recovery and reaction mechanisms that tie in to this. As such, RAD’s vision overlaps with the
SELFMAN vision. RAD proposes a specific solution path for improving reliability and adaptability for distributed
systems. We consider that RAD and SELFMAN are complementary: RAD has a broad coverage of issues related to the
construction of distributed applications, including considerations for Internet architecture and network monitoring. Also,
RAD places a strong emphasis on statistical learning tools for assessing the behavior of distributed applications and
integrating those in development tools and middleware. In contrast, SELFMAN has a more restricted scope, with little
considerations for behavior assessment and diagnostics. SELFMAN will closely follow the RAD work and use its ideas
where possible.

4.1.1 Structured Overlay Networks and Peer-to-Peer Systems

Research on peer-to-peer networks has evolved into research on structured overlay networks, in particular on Distributed
Hash Tables (DHTs). The main differences between popular peer-to-peer systems and structured overlay networks are
that the latter provide strong guarantees on routing and message delivery, and are implemented with more efficient
algorithms [GHVR05]. The research on structured overlay networks has matured considerably in the last few years
[ABER05, ELAN03, GHOD05, GHVR05, KAAS03, ROWS01, STOI01, ZHAO04]. Hardware infrastructures such as
PlanetLab have enabled DHTs to be tested in realistically harsh environments [CHUN03]. This has led to structured peer-
to-peer communication and storage infrastructures in which failures and system changes are handled gracefully.

10

Peer-to-peer systems such as Napster and Gnutella were initially built to enable using the resources of machines located at
the edge of the network. For example, in Napster, music files were transferred directly between end users. Because of
legal issues, completely decentralized systems, such as Gnutella, were built and popularized. These systems facilitated
resource sharing in a completely decentralized way, i.e., there is no single point of failure. Much of the work up to this
point was naïve and made use of techniques and algorithms known in computer science for decades, e.g., Gnutella uses a
simple broadcast and converge-cast algorithm with limited horizon to search.

The technical inferiority of these systems started much interesting research on several frontiers. For instance, Adar and
Huberman showed already in 2000 that approximately 60-70% of the users were abusing Gnutella, without sharing any
resources. This opened up the field for research on using trust models efficiently in decentralized environments to
automatically value a node based on its previous behaviour. Others focused on security in general, for instance [ABER04]
showed how a system could protect itself from so called Sybil attacks, where one node joins the system many times with
the purpose of gaining majority or complete control over parts of the system. We believe much of this research is useful in
today’s IT solutions where the virtual organization is dynamic and spans multiple sites, where security and trust will be of
outmost importance. However, decentralized trust and security management has to be self managing, as the complexity
for large-scale systems is too great for human administrators. Hence, self-management techniques should be an integral
part of the infrastructure.

Another area of research on peer-to-peer systems that resulted in several self-managing properties is research on achieving
numeric, geographic, and administrative scalability.

Research on numeric scalability was motivated by the deficiency of the Gnutella search method, which prevented many
useful applications, as the search results were incomplete. Structured overlays, such as Chord, Pastry, P-Grid, Skipnet,
Koorde, and Viceroy, showed that search can be done in a number of steps logarithmic to the system size, at the cost of
relatively small routing tables. Some systems, such as Chord, DKS, and Pastry, need routing information logarithmic to
the size of the system, while others, such as Viceroy, Koorde, and D2B, only need a constant size routing table. While the
focus was on achieving numeric scalability, they all assumed the presence of churn, i.e. frequent joining, leaving, and
failure of nodes. This fact, which we believe is underestimated, provides self-management of nodes in the system. Any
peer-to-peer application, such as a file-server, will self-manage as servers are added or removed, without the need for any
manual configuration. The system automatically re-organizes the data on the servers to adjust to the current load and
capacity. This is what we call low-level self management.

Research on geographic scalability, under the name of proximity/locality awareness, has focused on making large-scale
distributed peer-to-peer systems route efficiently, considering the physical limitations of the network. For example, a
structured overlay should avoid routing from Europe to Japan and back to Europe to find a data item available on the
LAN. This became especially apparent when [GUMM03] showed that in practice the majority of queries can be answered
locally on the LAN. Today, most systems, such as Pastry, Tapestry, Kademlia, Land, and Tulip provide a stretch factor
below 2, meaning that routing on the overlay is bounded by twice the “cost” of routing between the end hosts directly.
Today, many distributed IT solutions, such as file systems or DNS, are manually and statically configured, and are not
suited for dynamically evolving organizations. For example, in an AFS server, the placement of volumes is manually
configured by system administrators. SELFMAN’s configuration and load-balancing management can make a
contribution in this area.

Research on administrative scalability has received less attention than many other research questions in peer-to-peer
computing. SELFMAN can make a contribution in this area, to provide content locality and middlebox traversal (NAT,
firewalls). Content locality means that information about resources should be physically stored near the resources
themselves. Consequently, information about resources can be found near the resources, minimizing the risk of a network
partition preventing access to the resource. Traversing middleboxes entails that the overlay should be constructed without
assuming that the network is fully connected, as firewalls and NATs might prevent connection being established between
certain nodes. [MIS04] show how these problems can be attacked by connecting multiple heterogeneous overlays to form
a hierarchy reflecting the organizational boundaries. SkipNet solves the problem by using order-preserving mappings in

11

the overlay, ensuring that nodes belonging to the same organization are neighbours on the overlay. More recently,
[MONT05] and [SHAK05] show how the whole overlay can be self-adapted and re-reconstructed from scratch
periodically, to form a topology that reflects the boundaries of the real world.

This brief summary of research on peer-to-peer overlays shows that they have indeed many low-level self-managing
properties. We believe that these self-managing properties are necessary in any dynamic distributed application, and IT
applications will greatly benefit from them. SELFMAN will extend this research by using a component model to make it
possible to provide high-level self-managing properties. Note that because the system architecture is based on the
component model, this means that the structured overlay network will itself be implemented in the component model.

4.1.2 Component-Based Programming

The main current de-facto standards in distributed software infrastructures, Sun's J2EE, Microsoft .Net, and OMG
CORBA, provide a form of component-based distributed programming. Apart from the inclusion of publish-subscribe
facilities (e.g. the JMS publish-subscribe services in J2EE), support for the construction of large-scale services is limited.
Management functions are made available using the traditional manager agent framework [DMTF] but typically do not
support online reconfiguration or autonomous behavior (which are left unspecified). Some implementations (e.g. JBoss
[[FLEU03]) have adopted a component-based approach for the construction of the middleware itself, but they remain
limited in their reconfiguration capabilities (coarse-grained, mostly deployment time, no support for un-planned software
evolution).

Component models supported by standard platforms such as J2EE (the EJB model) or CORBA (the CCM model) -- see
[SZYP02] for a recent survey -- are non-hierarchical (an assemblage of several components is not a component), and
provide limited support for component introspection and dynamic adaptation. These limitations have been addressed in
work on adaptive middleware (e.g. OpenORB [BLAI01], Dynamic TAO [KON00], Hadas [BENS01], that have
demonstrated the benefits of a reflective component-based approach to the construction of adaptive middleware). In
parallel, a large body of work on architecture description languages (e.g. ArchJava [ALDR02, ALDR03], C2 [MEDV99],
Darwin [MAGE95], Wright [ALLE97], Rapide [LUCK95], Piccola [ACHE02], Acme [GARL00] or CommUnity
[WERM01]) has shown the benefits of explicit software architecture for software maintenance and evolution. The
component models proposed in these experimental prototypes, however, suffer from several limitations:

1. They do not allow the specification of component structures with sharing, a key feature required for the
construction of software systems with resource multiplexing.

2. They remain limited in their adaptation capabilities, defining, for those that do provide such capabilities, a fixed
meta-object protocol that disallows various optimizations and does not support different design tradeoffs (e.g.
performance vs. flexibility).

3. Finally, and most importantly, they lack abstractions for building large distributed structures.
Compared to the current industrial and academic state of the art in component-based distributed system construction, the
SELFMAN project intends to extend a reflective component-based model that subsumes the capabilities of the above
models (it caters to points (1) and (2)) in order to address point (3).

4.1.3 Autonomic Systems

The main goal of autonomic system research is to automate the traditional functions associated with systems management,
namely configuration management, fault management, performance management, security management and cost
management [DMTF]. This goal is becoming of utmost importance because of increasing system complexity. It is this
very realization that prompted major computer and software vendors to launch major R&D initiatives on this theme,
notably, IBM's Autonomic Computing initiative and Microsoft's Dynamic Systems initiative.

12

The motivation for autonomic systems research is that networked environments today have reached a level of complexity
and heterogeneity that make their control and management by human administrators more and more difficult. The
complexity of individual elements (a single software element can literally have thousands of configuration parameters),
combined with the brittleness inherent of today's distributed applications, makes it more and more difficult to entertain the
presence of a human administrator in the “management loop”. Consider for instance the following rough figures
[GANE03]:

- One-third to one-half of a company's total IT budget is spent preventing or recovering from crashes.
- For every dollar used to purchase information storage, 9 dollars are spent to manage it.
- 40% of computer system outages are caused by human operator errors, not because they are poorly trained or do

not have the right capabilities, but because of the complexities of today's computer systems.
IBM's autonomic computing initiative [IBM], for instance, was introduced in 2001 and presented as a “grand challenge”
calling for a wide collaboration towards the development of computing systems that would have the following
characteristics: self configuring, self healing, self tuning and self protecting, targeting the automation of the main
management functional areas (self healing dealing with responses to failures, self protecting dealing with responses to
attacks, self tuning dealing with continuous optimization of performance and operating costs). Since then, many R&D
projects have been initiated to deal with autonomic computing aspects or support techniques. For example, we mention
the following projects that are most relevant to SELFMAN:

- The Recovery-oriented Computing project [ROC] at UC Berkeley, which studies techniques for fault recovery
through micro-reboot techniques.

- The OceanStore project [OCEANSTORE], also at UC Berkeley, which seeks to build a persistent, highly
available and consistent data store able to scale to billions of users, is built upon a collection of untrusted servers.

- The Kinesthetics project [KINESTHETICS], at Columbia University, which seeks to develop a meta-architecture
for building autonomic systems, including systems comprising legacy components.

- The Darwin project [DARWIN], at Imperial College, London, that develops a software architecture-based
approach to the construction of self-monitoring and self-healing systems.

- The Smartfrog project [SMARTFROG], at HP Research Labs in Bristol, UK, that targets automatic deployment
and configuration of distributed systems.

- The Swan project [SWAN], at INRIA, Alcatel, and France Telecom R&D, that develops novel models and
algorithms for automated fault diagnosis and supervision.

- The Oceano project [OCEANO], at IBM J. Watson research center, which targets performance self-tuning for
clusters, with dynamic resource allocation and the management of differentiated levels of services.

- The onCall project [NORR04], at Stanford University, which focuses on automatic performance and overload
management in clusters.

- The BioOpera project [BAUS02], at ETH Zurich, which deals with fault management and automatic recovery of
application workflows in cluster environments.

Compared to these projects, the uniqueness of SELFMAN is that it combines structured overlay networks with component
models for the development of an integrated architecture for large-scale self-managing systems. Each complements the
other: overlay networks support large-scale distribution, and component models support reconfiguration. None of the
abovementioned projects provide such a combination, which gives a uniform architectural model for self-managing
systems. Note also that many of the abovementioned projects are based on cluster architectures, whereas SELFMAN
targets distributed systems that may be loosely coupled.

13

5. Potential Impact

We divide the potential impact of SELFMAN into technological impact and scientific impact. The technological impact
mainly concerns the two industrial partners, France Telecom R&D and Stakk, and the Grid research community. The
scientific impact concerns the foundational aspects of the project, the relationships with other European projects, and the
dissemination activities.

5.1 Technological Impact

One of the key obstacles to deploying large-scale applications running on networks such as the Internet or company
intranets is how to keep the application running despite changes in its computing environment, i.e., application
management as defined in SELFMAN. Currently many specialized personnel are needed to keep large Internet
applications running. SELFMAN will remove this obstacle, and thus enable the development of many more Internet
applications and Internet-based companies that depend on such applications. In particular, France Telecom and Stakk are
both interested in this aspect of SELFMAN.

France Telecom R&D expects the results of SELFMAN to support the future decisions of France Telecom on large-scale
network architectures and service and IT platforms. France Telecom is currently confronted with the increasing software
complexity and diversity of these architectures and platforms. The administration and exploitation of such systems is
relatively labour-intensive due to round-the-clock monitoring and trouble-shooting in order to guarantee continuous high
availability of the system as a whole. If the system itself becomes more autonomous and is able to take charge of its own
monitoring and (re)configuration, this will represent important gains in operating costs for telcos (and ISPs). Of course,
one might say that peer-to-peer VoIP systems such as Skype already have reduced costs because there is no centralized
administration by specialist teams. This hides the fact that end-users of such systems take on some of the burden of
administration of their individual system and also that guaranteeing end-to-end connectivity and availability in such peer-
to-peer systems is still an open problem.

Stakk works in the area of P2P video streaming. Stakk is built on advances in P2P networks as well as optimization
techniques. The main model adopted by Stakk is that P2P techniques are used to gather global information about peers
watching live streams, e.g., bandwidth, delays, physical location, peer capacity, NATs, etc. A server farm is used to
optimize the network connectivity between peers based on the gathered global information. Stakk sees in SELFMAN an
opportunity to architect its server farm in a scalable and self-managed way. The traditional approaches for building such a
server farm are inadequate for the desired functionality since there is more than one server farm in different network
location, i.e. Point of Presence (POP). SELFMAN results would be beneficial to Stakk for architecting the scalability and
management inside each POP as well as for inter-POP connectivity. Stakk will provide as input to the project information
such as expected load scenarios and user collective user behavior and participate in the evaluation of he novel
architectures developed in SELFMAN.

The main connections between SELFMAN and Grid research are through the CoreGrid 6FP Network of Excellence (of
which UCL, KTH, INRIA, and ZIB are partners) and through the special expertise of ZIB, which is a major player in the
Grid community. We expect to influence Grid research through these two channels. ZIB participated in the FP5 projects
DataGrid, FlowGrid, and GridLab, and is participating in the 6FP SSA GridCoord and in numerous expert groups and
workshops related to the Grid. In the DataGrid project, ZIB designed and implemented some primitive self-managing
features, like the injection of so-called maintenance jobs. In the FlowGrid project, ZIB realized a complex Grid
environment with distributed clusters, remote monitoring and control for the execution of computational fluid dynamics
jobs for industrial use. Within GridLab, ZIB designed and implemented part of the Grid Application Toolkit, namely all

14

functions dealing with data handling (moving, copying, extraction, etc). All of these tasks are directly related to the goals
of SELFMAN.

5.2 Scientific Impact

SELFMAN will build on the results of the PEPITO and SARDES projects. PEPITO is a 5FP project that involved several
SELFMAN partners (UCL, KTH, INRIA) [GHOD05, GHVR05, ABER05]. PEPITO started with ideas from the peer-to-
peer community and developed a mature technology for structured overlay networks. The structured overlay networks
provide basic routing, communication, and storage services on top of a self-managing framework. This framework is
scalable (any number of nodes) and handles node failures, node removals, and node additions automatically. SARDES is
an INRIA project that is developing an advanced component model, the Fractal model, in collaboration with France
Telecom R&D [BRUN04]. Both are SELFMAN partners. The Fractal model has advanced reflection and reification
abilities. This allows applications to do self configuration. SELFMAN combines the technologies for structured overlay
networks developed in PEPITO and for component models developed in SARDES, with the goal of doing self
management for large-scale distributed systems. The service architecture built by SELFMAN on this combination should
constitute one of the first comprehensive architectures for large distributed autonomic systems.

Several SELFMAN partners (UCL, KTH, France Telecom) are partners in the EVERGROW 6FP Integrated Project,
which will run from 2004 to 2007. EVERGROW is exploring large scale-free networks, with two main foci. First, traffic
analysis and simulation using its high-performance computing infrastructure (8 clusters). Two SELFMAN partners have
EVERGROW clusters. Second, its collaboration with physicists for the analysis of large networks as complex systems.
SELFMAN will exploit its connections to EVERGROW in both these areas.

SELFMAN will exploit the expertise of ZIB in data management for building the storage service of WP3. The ZIB Data
Management System (ZIBDMS) is a strategic research project of the Computer Science Research group at ZIB. The
project was started two years ago with the goal to provide a truly scalable, reliable and user-friendly access to distributed
data in the Grid. ZIBDMS neither builds on databases nor on proprietary data formats. Rather, the basic unit of data is a
file – hence it can be deployed in all kinds of environments (Unix, Windows). To provide user-friendly access to data,
ZIBDMS has a means to handle attribute/value pairs. Hence, data is not retrieved via a hierarchical name space where
files are identified through their location in a directory tree, but by means of specifying attribute/value pairs. Any amount
and any type of attributes may be associated to a file, which makes it easy to adapt ZIBDMS to the various existing file
systems. For true scalability in distributed environments, ZIBDMS builds on peer-to-peer architecture rather than existing
environments (e.g. Globus, Unicore) with their inherent bottlenecks.

SELFMAN will demonstrate the benefits of its service architecture for self management by applying it to J2EE systems
and by realizing one realistic two-tier application. For this application, SELFMAN will build on the results of the
GORDA project, a recent IST project that studies replication protocols for database management systems, to cater for the
needs of the database tier. One of the SELFMAN partners (INRIA) is a member of the GORDA project.

For its research implementation, SELFMAN will use the Mozart Programming System, which is a good representative of
a disruptive technology. It is an example of advanced language design and implementation in which Europe has a
leadership position [MOZART, MOZ04]. Two SELFMAN partners (KTH and UCL) are developers of Mozart. The
Mozart system has a world-wide influence. It is downloaded several thousand times per year. It is featured in a
comprehensive textbook and reference work published by MIT Press in 2004, which is already used for teaching in many
universities worldwide [CTM04]. Mozart can be compared with other advanced programming systems whose
development is primarily European, such as Erlang, Haskell, and Curry [ERLANG, HASKELL, CURRY]. Compared to
these other systems, Mozart has a much broader support for programming concepts. Mozart has strong support for
concurrent programming, for fault-tolerant distributed programming, and for constraint programming. In this regard,
Mozart can be compared only to Erlang, which also has strong support for concurrent programming and fault-tolerant
distributed programming. In our experience as programming language researchers, it is clear that an important direction

15

for the future is component-based programming using concurrent components. By extending Mozart with an advanced
component model, SELFMAN will take a decisive step in this direction and advance the state of the art of language
research in Europe. Work on the research implementation will build also on results obtained as part of the IST MIKADO
project that provide a formal foundation for the Fractal model, in the form of new process calculi with localities.
MIKADO is a 5FP IST project that involved two of the SELFMAN partners (INRIA, FT R&D). SELFMAN will build on
these results for its work on component models.

5.3 Contributions to Standards

We expect that SELFMAN will influence standards in two areas:

1. First, SELFMAN will investigate to what degree self managing properties can be added to large-scale distributed
systems built with J2EE. One approach we will use is to implement self-managing J2EE libraries with the same
API as standard Java libraries. For example, a DHT library can be built with the Java Map interface. This will
maximize the influence of our work on the Java community. The Java community can also benefit, through
SELFMAN’s contributions to the ObjectWeb consortium, from the extended Fractal model and ADL, and from
the Java-based implementation of the SELFMAN service architecture. For instance, the results of the project on
self-configuring components can influence standardization on Java modules and J2EE deployment.

2. Second, SELFMAN will influence Grid research through CoreGrid (partners UCL, KTH, INRIA, and ZIB) and
through the special role of ZIB in the Grid community, as explained in Section 5. We expect that the addition of
self management to the Grid standard will be strongly influenced by the results of SELFMAN.

16

6. Project Management and Exploitation/Dissemination Plans

6.1 Project Management

6.1.1 Top-level Management Structure

The project will be managed globally by a coordinator:

• The coordinator is Prof. Peter Van Roy from UCL. He is responsible for the scientific progress of the project, the
coordination between workpackages, and all conflict resolution in the project.

• The coordinator will be assisted by Stéphanie Landrain from UCL. She will help the coordinator with all
contractual obligations with respect to the Commission. This includes timely submission of contract information,
cost statements and timetables, deliverables, progress and management reports, financial arrangements between
the partners and the Commission, and information dissemination (Web sites, documents, etc.).

The coordinator may delegate specific tasks to other persons and inform the Commission of these delegations. In
particular, the administrative work will be assisted by a part-time secretary paid for by the UCL management budget.

In cases where there is a clear conflict, its resolution will be done by a Project Board that consists of the coordinator, his
administrative assistant, and one representative per partner (typically the partner manager). This representative will be
chosen by each partner who will then distribute the name of this representative to all partners. After discussion of the
problem and different possible solutions, the decision will be taken by a simple majority vote in the Project Board. In case
of a tie, the coordinator has the casting vote. This decision will then be followed by all partners. The discussions and
possible solutions will be documented in written form, as well as the final decision. This document will be distributed to
all partners.

6.1.2 Internal Management Structure

Each workpackage has a lead contractor, which is the partner responsible for the correct operation of the workpackage.
The lead contractor reports to the administrative and scientific coordinators. The lead contractors are as follows:

• WP1: KTH
• WP2: UCL
• WP3: ZIB
• WP4: INRIA
• WP5: FT R&D
• WP6: UCL

Each partner has one person, the partner manager, who is responsible for the correct operation of the partner with respect
to all its tasks including that of lead contractor. The partner manager reports to the administrative and scientific
coordinators. The partner managers are as follows (E-Plus has no partner manager):

• UCL: Peter Van Roy
• KTH: Seif Haridi
• INRIA: Jean-Bernard Stefani
• France Telecom R&D: Thierry Coupaye
• ZIB: Alexander Reinefeld
• Stakk: Sameh El-Ansary
• NUS: Roland Yap

17

6.1.3 Mechanisms for Assessment and Evaluation

The Project Board communicates regularly (by email, telephone, or meetings if necessary) to assess the progress of the
project and to discuss corrective measures if the progress is insufficient. Objective evaluation of the project will be done
according to the criteria listed in Section 2, supplemented by several other criteria. We consider the following criteria:

1. Evaluation according to the effectiveness of the self management mechanisms. This evaluation will mainly
be done in WP5. We will evaluate the four axes of self management, namely configuration/upgrading, fault
tolerance, performance, and security. This evaluation will be done in three ways:

a. The first evaluation will be theoretical. We will do formal reasoning and proofs for the algorithms
used in the self-managing architecture.

b. The second evaluation will be a qualitative evaluation of industrial usage scenarios. These scenarios
will primarily come from the industrial partners France Telecom R&D and Stakk, although we expect
that the industrial experience of the other partners will provide more scenarios.

c. The third evaluation will be a quantitative evaluation of industrial trace data. This will use the traffic
generator of France Telecom R&D and the Stakk trace data to make quantitative verifications of the
ability of the system.

2. Scientific results. We will evaluate the project according to the number and quality of publications in
international journals and conferences and how these publications are cited.

3. Software results. We will evaluate the project according to the Open Source software that is released. This
includes answering the following questions. Is the software of good quality? Can third parties use it and do
third parties in fact use it?

4. Industrial impact. We will evaluate the influence of the project results on the strategic decisions of France
Telecom and Stakk. This includes answering the following questions. Are project partners part of this
decision process? Did the decisions, as far as can be ascertained, use project results and insights?

6.1.4 Year-by-year Measurable Assessment and Evaluation Criteria
The following gives a summary of the criteria to be used to evaluate the project each year. The consortium will show
running demonstration software at each reviewing period including Month 12. The project will release software each year
(including the first) and will show the functionality of the software with a demonstration. In general, all results of the
project can be demonstrated at each reviewing period.

Month 12: The project has generated the following results:

1. The project website and Wiki are operational and satisfactory.
2. The low-level self-management mechanisms are part of the structured overlay network.
3. The basic component model is designed.
4. The architectural framework for the application architecture is designed.
5. The user requirements for managing application servers are known.
6. The results are published in high-quality scientific venues.

Month 24: The project has generated the following results:

1. The high-level self-management mechanisms are part of the structured overlay network.
2. The security architecture is part of the structured overlay network.
3. The J2EE and Mozart implementations of the structured overlay network are released.
4. The component model and the architectural framework for applications are released.
5. The reports on the four self properties are released.
6. The replicated storage service is released.
7. A simple database query mechanism is part of the storage service.
8. The specification of the demonstrator application is known.
9. The results are published in high-quality scientific venues.

18

Month 36: The project has generated the following results:

1. The software for the four self properties is released.
2. The self-managing dynamic WWW server is released for J2EE and Mozart.
3. The guidelines for development of self-managing applications are known.
4. The qualitative and quantitative evaluation of the self-management properties is done.
5. The results are published in high-quality scientific venues.
6. Evidence exists of satisfactory dissemination, e.g., influence on industrial partners’ strategic decisions.

6.2 Plan for Using and Disseminating Knowledge

SELFMAN will disseminate its results in three main directions.
1. First, the software developed by SELFMAN will be released under an Open Source license. The Mozart system is

already released under an Open Source license and we have found that this helps to spread its use and increase
collaboration. The developments around a Java-based Architecture Description Language (ADL) will be disseminated
as part of the Fractal project of the ObjectWeb open source middleware consortium [OBJE05]. Likewise, the
implementation of the SELFMAN service architecture for J2EE systems will be made available through a new project
of the ObjectWeb consortium.

2. Second, SELFMAN will publish its scientific results in major international conferences and journals. Major
international conferences that are relevant to SELFMAN include P2P200X (IEEE International Conference on Peer-
to-Peer Computing), IPDPS (IEEE International Parallel and Distributed Processing Symposium), PODC (Principles
of Distributed Computing), ICDCS (International Conference on Distributed Computer Systems), Middleware
(ACM/IFIP/USENIX International Middleware Conference), EuroPar (European Conference on Parallel
Computing), CBSE (Component-Based Software Engineering), ICAC (International Conference on Autonomic
Computing), SelfMan (IFIP/IEEE International Workshop on Self-Managed Systems & Services), SRDS
(Symposium on Reliable Distributed Systems), DSN (International Conference on Dependable Systems and
Networks), GPCE (International Conference on Generative Programming and Component Engineering), ICSE
(International Conference on Software Engineering), OOPSLA (SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications), ECOOP (European Conference on Object-Oriented
Programming), POPL (Principles of Programming Languages), CONCUR (Concurrency Theory). Major journals
relevant to SELFMAN include IEEE Distributed Systems Online, Distributed Systems, ACM TOCS (Transactions
on Computer Systems), ACM TOPLAS (Transactions on Programming Languages and Systems), IEEE TSE
(Transactions on Software Engineering), SPE (Software: Practice and Experience), HOSC (Higher-Order and
Symbolic Computation).

3. Third, SELFMAN will organize annual workshops. We intend to tie these workshops to major European conferences
such as the P2P200X series of conferences on peer-to-peer research, the EuroPar series of conferences, the
Middleware series of conferences, and especially the ECOOP series. ECOOP is interesting because it is a major force
in object-oriented programming in Europe and because it encourages satellite workshops.

Concertation clause. The project will actively participate in the activities organised at programme level relating to the
IST area with the objective of providing input towards common activities and receiving feedback (e.g. from clusters),
offering advice and guidance and receiving information relating to IST programme implementation, standards, policy and
regulatory activities, national or international initiatives, etc. The project participants will also commit themselves to
support the organisation of an annual conference by providing papers, participating in technical programme committee,
chairing sessions, reporting, etc. The project participants will help in developing dissemination material that can be used
for communication towards the general public. For instance by developing a video demonstrating the results of the
project, by having articles about the project in local newspapers, featuring the benefits of the research carried out for the

19

community reading the newspaper, or contributing to the development of public relations and state-of-the-art brochures.
The project should set up a project website. This work is part of Task 6.4.

In addition, the project will create a project Wiki to encourage collaboration with all interested third parties. The project
will also collaborate in technical Weblogs, such as Lambda the Ultimate, to discuss technical issues and disseminate its
results. The project will identify other IST projects with common interests and study possible collaborations. The project
will identify other projects at an international level with overlapping interests, such as the RAD Lab recently created at
UC Berkeley. This will increase the critical mass of the research results.

We will encourage partners to commercialize results developed in SELFMAN when this is feasible. This will normally
happen through contact with Innovation Centers in the partners’ geographic regions. For example, at UCL this role is
played by the Sopartec (the knowledge transfer and the seed capital investment fund of UCL). In Stockholm, KTH is
working closely with STING (Stockholm Innovation & Growth).

6.2.1 Open Source Software

As mentioned above, a privileged exploitation path for the SELFMAN project is through the dissemination of its more
mature software results as open source software (i.e. software made available under an open source license, as per the
definition of the Open Source Initiative, see http://www.opensource.org). There are three stages in Open Source
development: (1) seed software, (2) community building, and (3) active community. The goal of SELFMAN is to achieve
(1): to have software of sufficient quality and ability that it is a true seed for further development. A useful seed will
attract a user community. We will then initiate (2), but this process will go on beyond the end of the project since the
software seeds will be released during and at the end of the project. The risk of SELFMAN to achieve (1) is that the
software should be of sufficient quality when it is released into the Open Source community. Two open source consortia
are of particular relevance: the Object Web consortium and the Mozart consortium.

The ObjectWeb consortium, hosted by one of the project partners (INRIA), focuses on the development of open source
middleware. One of its flagship products is the JOnAS J2EE application server. The self management capabilities
developed by the SELFMAN project should directly benefit the JOnAS code base, extending it with functionality it
currently lacks, and opening opportunities to deploy JOnAS in new application scenarios such as so-called edge
computing J2EE where application server tiers are duplicated and distributed across a wide-area network (in contrast,
current application server tiers are merely distributed across local area networks, typically in PC cluster configurations).
INRIA has a project with a French national research agency that involves application servers and includes Bull, who are
interested in improving the management abilities of JOnAS. There are other companies who will be actively courted,
such as a local SME in Grenoble interested in software management issues. More generally, the managed overlay
network technology can benefit the ObjectWeb code base as a whole, in particular for integration in higher level
middleware such as middleware for Web service orchestration or enterprise application integration, which typically lacks
both scalability and management capabilities.

The Mozart consortium focuses on the development of the open source Mozart programming system, a multi-paradigm
distributed programming platform which will be used by the SELFMAN project as the basis for one of its
implementations. Two partners of the SELFMAN project (KTH and UCL) are members of the board that manages the
Mozart consortium. We expect the results of the SELFMAN project in the area of distributed, component-based
programming models and abstractions (such as e.g. reflective components, distributed connectors and operators) to benefit
directly the Mozart platform, providing enhancements to the Mozart language, to the Mozart library, and to the Mozart
distributed implementation.

20

6.3 Raising Public Participation and Awareness

In SELFMAN we intend to push a variety of techniques for public participation and awareness. The project participants
will help in developing dissemination material that can be used for communication towards the general public. We intend
to develop a video demonstrating the results of the project, by having articles about the project in local newspapers,
featuring the benefits of the research carried out for the community reading the newspaper, or contributing to the
development of public relations and state-of-the-art brochures. We intend to target activities such as national science fairs,
small industry forums, educational institutes, expositions in public libraries, and technological museums to present
popularized versions of the work. We consider that self management has a natural public appeal, because it leads to
systems that have a more “life-like” or “proactive” behavior. This ties in to the public thirst for new and innovative
technologies.

6.4 Intellectual Property Rights

Intellectual property is owned by the partner or partners that have generated it. Partners are required to inform their
workpackage’s lead contractor of any intellectual property rights acquired or applied for resulting from work in
SELFMAN. All intellectual property rights generated within the project can be used by the partners for the purposes of
the project. Nevertheless, we will encourage all partners to develop Open Source software when possible. The issues
related to new knowledge will be addressed in the Consortium Agreement.

21

7. Detailed Implementation Plan

7.1 Introduction – General Description and Milestones

Multi-tier applications are the mainstay of industrial applications. A typical example is a two-tier application, consisting
of a client talking to a server, which itself interfaces with a database (see top of the figure). The business logic is executed
at the server and the application data and metadata are stored on the database. But multi-tier applications are brittle: they
break when exposed to stresses such as failures, heavy loading (the “slashdot effect”), network congestion, and changes in
their computing environment. In practice, these applications require intensive care by human managers to provide
acceptable levels of service. This becomes especially cumbersome for large-scale systems. For example, deploying a
distributed file system across several organizations requires much manual configuration, as does adding another file server
to the existing infrastructure. If a file server crashes, most file systems will stop functioning or fail to provide full service.
Instead, the system should reconfigure itself to use another file server. This desirable behavior is an example of self
management.

In the SELFMAN project, we will show how to make large-scale distributed applications self managing. We will
implement a general architecture for these applications by combining research on structured overlay networks together
with research on component models. These two areas each provide what the other lacks: structured overlay networks
provide a robust communications infrastructure and low-level self-management properties, and component models
provide the primitives needed to support dynamic configuration and enable high-level self-management properties. To
show the effectiveness of this architecture, we will develop a J2EE demonstrator, where standard J2EE functions are
deployed over a large scale network and are extended with self-management capabilities (see bottom part of the figure).
We will evaluate the usefulness of the self-management abilities both quantitatively and qualitatively using industry data.

The foundation of SELFMAN will be a combination of a structured overlay network with a component model. Both areas
have much matured in recent years, but they have been studied in isolation. It is a basic premise of SELFMAN that their
combination will enable achieving self-management in large-scale distributed systems. This is first of all because

22

structured overlay networks already have many low-level self-management properties. Structured overlay network
research has achieved efficient routing and communication algorithms, fault tolerance (automatically reconfiguring when
a node fails), dynamic behavior (automatically reconfiguring when adding and removing nodes), proximity awareness,
and distributed storage with replication (DHTs: Distributed Hash Tables). The reconfiguration and replication algorithms
in fact are doing self management. However, almost no research has been done on deployment, upgrading, continuous
operation, and other high-level self-management properties. By using components, we can add these high-level self-
management properties. Recent research on component models, such as the Fractal model, is adding exactly those
abilities that are needed for doing self management (such as reification and reflection abilities). But this research is still
limited mostly to single machines or simple client/server applications.

The SELFMAN project will combine research on structured overlay networks and research on component models to
achieve self management for large-scale distributed systems. The project partners have complementary expertise in these
two areas. The project partners also have complementary expertise in data and storage management, which underlies a
key service that we need for our core scenario, namely multi-tier applications. Note that since SELFMAN will
investigate general principles of self management, it is not limited to two-tier or even multi-tier applications. Given their
importance in industry, however, we consider that they are good targets for our work. With the business logic of the
application and the application data and metadata, as before, our service architecture will run the application in a
distributed setting over a structured overlay network. A main goal of the project is that very little changes are needed to
the business logic’s implementation or the data; we just have to change the infrastructure on which they run. In classical
implementations of large multi-tier applications, the server and the database are implemented on dedicated servers or a
cluster. This cluster architecture is tightly coupled, runs on one administrative domain, and is not scalable. On the other
hand, SELFMAN proposes a loosely coupled architecture that runs on multiple administrative domains and is scalable.
As a proof of concept, SELFMAN will implement a complete two-tier application based on a realistic storage/transaction
service.

An important question for SELFMAN is on what platform do we build our implementation. The important issue is that
the research results of SELFMAN must not be language or platform-specific. We require generic solutions, for example
to fit both traditional object-oriented platforms (such as Java and C#) and recent disruptive platforms (such as Python,
Ruby, and Mozart/Oz). Traditional platforms are designed for programming in the large and they encourage traditional
software development processes. Disruptive platforms emphasize readability, small code size, and rapid development
(e.g., extreme and agile programming). Both families have an important role for application development. In
SELFMAN, we require that our results be scientifically well-founded and not be limited to a single family. In addition,
we would like to compare the suitability of each family for build self-managing systems. We would like an answer to the
question whethere there are inherent advantages or disadvantages to each family? A final reason for two implementation
languages is that advanced component models already introduce a second language, an ADL (Architecture Description
Language). We choose therefore to exploit this second language to our advantage.

We will choose one member of each family for the SELFMAN implementation. This choice has been done according to
several criteria. One important criterium is that we would like to exploit the results of partner research in previous
projects (such as the Fractal component model, developed by INRIA and France Telecom, the DKS middleware
developed by KTH, and Mozart/P2PS system developed by UCL and others). This leads naturally to the following
choice:

1. We choose Java and the J2EE platform to represent the traditional family. This will leverage all the work leading
to DKS and Fractal. In addition, there already exist application servers that we can use as a base.

2. We choose Mozart as the representative of the disruptive family [MOZART]. We have complete control over the
Mozart implementation including its virtual machine. That will allow us, for example, to implement migration for
self tuning. An important property of Mozart and some other disruptive technologies is the support for
lightweight thread concurrency. This tremendously simplifies the design of services as compared to the
traditional event-driven model. A final point is the language itself: with Mozart we can extend the language to
support self management directly and invisibly. With Java, this must be done with library calls and the addition
of an architectural description language. With Mozart therefore we have the potential to do self management

23

without complicating the program and the development process, which is not possible with Java. That is, in
Mozart the ADL has the potential to merge with the platform’s language and “disappear”.

It is interesting to compare the two approaches in terms of performance, readability, code size, and so forth. Task T6.5
will give the results of this comparison. In addition, we expect that these two implementations will provide synergy in
other directions. Ideas will pass between the two implementations, thus strengthening both.

Workpackage Organization

SELFMAN is organized into six workpackages:

1. Structured overlay network and basic mechanisms. This workpackage will design and build a structured overlay
network that provides basic self-management primitives (node failure/removal/addition) and that provides hooks
for building self-managing applications on top of it. The structured overlay network will be built using the
architecture of WP2.

2. Service architecture and component model. This workpackage will design and build an architecture for
application development that has the ability to support self management. The architecture will be built using the
structured overlay network of WP1 to provide the basic communication and self-management primitives.

3. Self-managing storage and transactions. This workpackage will design and build a storage service on top of the
service architecture of WP2 and the structured overlay network of WP1. The storage service will do replication
(implemented on the structured overlay network), provide a transactional interface, and provide a simple database
interface. The storage service will support its own self management (node failure/removal/addition) using the
primitives of WP4. The storage service will enable the applications of WP5.

4. Self-management services. This workpackage will implement the primitive services necessary for self-managing
applications to be built using the architecture of WP2. These primitive services will be implemented using the
detectors and actuators provides by the architecture of WP2. The primitive services will be used by the storage
service of WP3 and the applications of WP5.

5. Applications and evaluation. This workpackage will implement a multi-tier application, in both a traditional
format and a self-managing format. The application will be built using an advanced programming platform and
an industrial platform. Comparisons and evaluation will be done between the traditional and self-managing
formats, and between the advanced platform and the industrial platform.

6. Project management. This workpackage will ensure the smooth operation of the project. It will do progress
assessment and evaluation, and conflict resolution.

We now discuss the important points of this organization. First of all, there is a close interaction between WP1 and WP2.
It is one of the main premises of SELFMAN to exploit the synergy between structured overlay networks (WP1) and
component models (WP2). Briefly, implementing a structured overlay network in a component model provides
deployment, versioning, and upgrading facilities. In the other direction, the component model will incorporate the
communication, routing, monitoring, and storage facilities of the structured overlay network as basic abstractions for the
construction of large-scale self-managing systems.

A second point is the importance of WP3: the storage service. There are many possible services that could be
built on top of the architecture of WP2. We have selected one service, a storage service with transactional interface,
because of its importance for multi-tier applications. Given the limited size of SELFMAN, we consider that selecting one
service and implementing it in depth is the most cost-effective way to use the project resources. There will be a close
interaction between WP4, the self-management services, and WP3. The services of WP4 will be required by WP3, and
the storage service from WP3 will be used to support the trading services developed in WP4

A third point is the importance of the implementation work and of WP5 on applications. The implementation
work will be done in two platforms: an advanced research platform, Mozart, and a standard industrial platform, J2EE.
The Mozart work will let us do more foundational work and explore the limits of our approach. The J2EE work will let us
see in how far our work can be applied in an industrial setting. Having both in one project will let us do both foundational
work and apply it in an industrial setting. For J2EE, it is important to see what could be done (in Mozart) in order to plan
future developments. For Mozart, it is important to maintain a connection with an industrial platform, so that we can see
how to migrate the work to that platform.

24

WP1: Structured Overlay Network and Basic Mechanisms

The main objective of this workpackage is to design and build a structured overlay network with two properties. First, it
provides basic self-management primitives that are part of its own operation (node failure/removal/addition). Second, it
provides the hooks for building self-managing applications on top of it (detectors and actuators). The structured overlay
network will be built using the component model of WP2. Starting points for the work on this workpackage include the
following implementations:

1. The DKS library, a structured overlay network built in J2EE [DKS05].
2. The P2PS library, a structured overlay network built in Mozart [PSPS05].

WP1 extends DKS and P2PS with the self-management hooks and by using the component model of WP2.

This workpackage is organized into five tasks:

1. Basic self management for structured overlay networks. This task will design the self-management mechanisms
that are normally part of a structured overlay network. Note that these mechanisms will be implemented using the
service architecture of WP2, in a factored way using component programming.

2. Self-management primitives in structured overlay networks. This task will design the detectors and actuators that
are needed when building self-management mechanisms on top of structured overlay networks.

3. Security for structured overlay networks. This task has three parts: identifying threats, integrating security
mechanisms into the overlay network, and building a monitoring system to detect security violations. Regarding
security mechanisms, we need the ability to handle certificates at a fine grain (similar to capabilities) for the
operations of the overlay network. We can also use the overlay network to store the revocation lists (which can
become very large). Regarding monitoring, the LBOX system [WU05] is an example that provides high-level
monitors which can interface in a secure fashion to the operating system kernel.

4. Structured overlay network in a standard component model. This task will implement the full structured overlay
network, with both sets of primitives, in an industrial standard component model, namely J2EE.

5. Structured overlay network in an advanced component model. This task will implement the full structured
overlay network in an advanced component model based on the Mozart system and designed in WP2.

WP2: Service Architecture and Component Model

The main objective of this workpackage is to design and implement the SELFMAN service architecture, a component-
based architecture for large, self-managing distributed systems. The architecture relies on the structured overlay networks
developed in WP1 for its basic distributed services. The component-based architecture shall comprise: (1) a reflective
component-based computational model, (2) together with its formal semantics, and (3) a component-based architectural
framework, comprising abstractions, design patterns, and basic infrastructure services.

The reflective component computational model will be defined as a programming language independent model for which
two implementations will be studied as part of this workpackage: one based on Java and a complementary architecture
description language (ADL), and one based on an extension of the multi-paradigm Mozart programming language. While
the Java-based ADL approach is probably better for the dissemination and exploitation of the project software results in
the medium term, the Mozart implementation will allow us to study more innovative programming language support and
the combination of distributed component-based programming with other programming paradigms supported in Mozart.

Design patterns defined in the architectural framework will rely both on the structured overlay networks studied in WP1
and control and management patterns that begin to emerge as part of studies on autonomic systems architecture, greatly
extending and generalizing the traditional Manager/Agent architecture at the heart of classical network and system
management standards [DMTF]. Infrastructure services identified as part of the architecture will rely on basic structured
overlay services studied in WP1.

25

Starting points for the work on this workpackage are well identified:

1. The Fractal component model [BRUN 04] designed and developed by INRIA and France Telecom, will provide
an initial contribution to the SELFMAN computational model.

2. The Kell calculus [SCHM 04], developed by INRIA as part of the work on the IST MIKADO project, and the
Mozart formal multi-paradigm computational model will serve as inputs to the definition of the formal semantics
of the computational model.

3. The Jade framework, an architecture for self-managed cluster-size J2EE systems [BOUC 05] developed by
INRIA, and the P2Pkit [P2PK05], a simple distributed component architecture built in Mozart using P2PS
[P2PS05], will provide input to the development of the SELFMAN component-based architectural framework.

The workpackage is organized into three tasks, corresponding to the three elements of the SELFMAN service
architecture:

1. Computation model. This task is responsible for defining the SELFMAN component-based computational model,
and for developing its associated linguistic support, in Java and in Mozart. The key features we expect from the
computation model include: notions of components and component connections as first-class elements, the ability
to express component sharing (essential for expressing shared libraries and resources), reflective features allowing
introspection and intercession at run-time, the ability to define and constraint component behavior (for self-
management policies), and abstractions for handling partial failures including recovery actions.

2. Architectural framework. This task is responsible for specifying the architectural framework that embodies the
SELFMAN service architecture, and for developing associated supporting tools such as e.g. specific ADL
modules. We expect to include architectural patterns that cover at least the following: elements for the
construction of distributed feedback and feedforward control loops (which are at the heart of management
behavior) and elements for the construction of distributed self-healing services (including possible failures in the
control loops themselves). We also expect some tools, including tools for automatically generating helper
functions and components, e.g., for automatic deployment, system instrumentation, and dynamic reconfiguration.
We expect to complement the linguistic support of the first task with more specialized languages and
programming abstractions.

3. Formal semantics. This task is responsible for defining the formal semantics of the SELFMAN computational
model. In our experience, it is essential to have a simple formal semantics when developing new abstractions
(such as a computation model and architectural framework). This guarantees that there is no unexpected bad
behavior.

Two of the important questions that this workpackage will provide answers to are concurrency and communication. How
will concurrency be managed between components: when should components be sequential and when should they be
concurrent? How does this fit with the concurrency abilities of the underlying implementation platform? I.e., J2EE is
built using Java and supports only coarse-grain concurrency (few threads). Mozart supports fine-grain concurrency
(thousands of threads). For communication, we will determine to what degree the communication will be synchronous or
asynchronous, and tightly coupled or loosely coupled. For example, we may use a tuple space abstraction, which allows
components to communicate in a very loose fashion, where the source and destination components do not even know the
identity of the other component.

WP3: Self-Managing Storage and Transactions

The main objective of this workpackage is to design and build a storage service on top of the service architecture of WP2
and the structured overlay network of WP1. The storage service will do replication (implemented over the structured
overlay network), provide a transactional interface, and provide a simple database interface. The storage service will
build on previous work by project partners:

1. The ZIBDMS database management system that is being developed by ZIB.
2. The experience in designing transaction protocols over structured overlay networks of KTH and UCL [MESA05].

26

The simple database interface is not intended to be a competitor to commercial databases (that would be impossible in a
project of the size of SELFMAN) but to provide a proof-of-concept of a distributed database built on top of a structured
overlay network. Such a distributed database does not yet exist and will be one of the contributions of SELFMAN. The
storage service will support its own self management (node failure/removal/addition) using the primitives of WP2 and
WP4. The storage service will enable the applications of WP5. Note that the storage service is an example of a realistic
self-managing service built on top of the service architecture defined by WP1 and WP2. As such, the storage service will
serve to validate this architecture even before we build applications with it. The storage service will also be used for the
component trading service that will be built in WP4.

WP4: Self-Management Services

The main objective of this Workpackage is to develop support for the implementation of selected autonomic services,
namely self-configuration, self-healing, and self-tuning services. We believe self-healing and self-tuning services require
a good deal of knowledge of the system behavior. Self tuning in particular requires a knowledge of the system
performance under various conditions, especially overload situations. For this reason, self healing and self tuning aspects
will be studied in close relation with the application scenarios developed as part of WP5. Also, the project will focus only
on certain key mechanisms pertaining to these two services, namely fault-tolerance and repair management mechanisms
for self-healing, and load balancing and overload management mechanisms for self tuning.

The workpackage is organized in four tasks, corresponding to the services we have targeted:

1. Support for self configuration. This task is responsible for developing mechanisms and infrastructure support for
the development of self-configurable systems, including support for on-line system upgrade at both middleware
and application levels. Configuration, as understood in this task, covers both traditional distributed deployment
and installation, as well as dynamic update and on-line reconfiguration. In the general case, configuration
processes can embody quite complex distributed workflows, since they must take into account partial failures,
distributed synchronization and consistency constraints, as well as various constraints such as versioning
constraints, capacity constraints for component placement, component dependencies, etc. Because of this, support
for self configuration should contain: a meta-model for component packages (packages as first-class entities), a
distributed trading service (selection of component packages on a large scale), and linguistic support for
deployment and reconfiguration workflows.

2. Support for self healing. This task is responsible for developing mechanisms and infrastructure support for the
development of self-healing and self repairing systems, including support for multi-level fault tolerance and repair
management. The task will comprise the following: fault detection and fault tolerance algorithms and tools,
algorithms for configuration repair, replication algorithms, and policies for self repair. This task will study the
construction of self-healing systems by means of replicated control loops for configuration repair.

3. Support for self tuning. This task is responsible for developing mechanisms and infrastructure support for the
development of self-tuning and self-optimizing systems, including support for multi-level load balancing and
overload management. The task will comprise the following: empirical performance models and profiling,
algorithms for load balancing and load adaptation, and formal analysis of stability.

4. Support for self protection. We will investigate what kind of higher-level security mechanisms are appropriate for
self management. This links up to what kinds of end-to-end security requirements are needed at the application
level. Some of the basic security questions at the overlay network level are discussed in [SIT02] but this does not
deal with higher level mechanisms. Clearly some kind of detection system is important. [SUF05] shows that
many intrusion detection systems can suffer from subtle attacks against the intrusion system itself. So one line of
investigation is whether a reliable detection mechanism can be built at the self management level. This would also
need to integrate with a self monitoring infrastructure (as will be provided by WP1).

These services will be built using the detectors and actuators provided by the architecture of WP2. The primitive services
will be used by the storage service of WP3 and the applications of WP5. This workpackage will involve many partners to
build the primitive self-managing services, each partner contributing its expertise in collaboration with INRIA, which has
the most expertise in self management. This workpackage will build on the previous experience of INRIA and France

27

Telecom R&D on building self-managing services on top of a component model in the SARDES project. This
workpackage goes beyond SARDES in that it is based on a structured overlay network, which is designed and
implemented in WP1. This workpackage will also build on the experience of KTH in formally analyzing structured
overlay networks using techniques from theoretical physics, in the EVERGROW project [AURE04]. We expect to
understand the interactions between self-management services and how to ensure stability in application execution.

WP5: Application Requirements and Evaluations

This workpackage has two important roles. First, it will study the requirements for management of application-hosting
environments, also called application servers, with the goal of scaling it up to large numbers of machines that may be
loosely coupled. Second, it will implement a multi-tier application, in both a traditional format and a self-managing
format. The application will be built using an advanced programming platform and an industrial platform. We propose a
dynamic serverless WWW server, which is a two-tier application in which software components can be changed at run-
time, as the application. One of the project partners, KTH, already has experience implementing a static WWW server on
top of the DKS platform. This static server has no self-management mechanisms beyond those of the structured overlay
network DKS itself. In this workpackage we will compare the traditional and self-managing design for the WWW server.
We will also compare the advanced Mozart platform and the industrial J2EE platform. Finally, we will use the traffic
generator of France Telecom R&D and the trace data of Stakk to measure the effectiveness of the application and also of
the service architecture.

There will be continuous feedback between WP5 and the two workpackages WP3 and WP4. The needs of WP5 that are
felt directly during the demonstrator application will affect both the storage service (WP3) and the high-level self
management mechanisms (WP4). Although we will do our best to make the results of WP3 and WP4 be the needed ones,
practice shows that feedback between applications and service development is essential for getting best results.

As an addition in the project’s third year, we propose to build a distributed theater demonstrator application for mobile
devices. It has become possible to add this application because of the successful deployment of the self-managing
transactional storage in the second year. The application supports two kinds of users: actors and spectators. Spectators
mostly receive information while actors both send and receive information. Actors interact through a simple shared
virtual space that resembles a user interface canvas. The number of actors remains relatively small whereas the number of
spectators can become extremely large. To avoid the accessibility and load problems of client/server architectures, we
propose to make the application serverless and based on a structured peer-to-peer network. The application will use the
Mozart implementation of the scalable storage service of WP3. We will port Mozart to gPhone mobile devices and use
Wifi and Bluetooth for the lower-level communication layer. The application requires up to 10 gPhone mobile devices
(HTC Dream G1) taken from the UCL budget for the proof-of-concept. The gPhone software development kit is free of
charge.

This application is an opportunity to test and improve the dynamic connectivity and robust communication of our P2P
storage subsystem while it maintains coherence of a shared updated virtual space. We will use three tests at different
scales: small (simple communication), medium (small P2P network with less than 10 devices), and large (10 or more
devices as actors together with many external networked computers as spectators).

28

Final project extension to Month 40

The project is extended to Month 40. It will perform additional dissemination and exploitation and deliver extended
versions of the several deliverables explained as follows:

• D2.4: Simulation and emulation environment for Kompics P2P framework (partner KTH). This deliverable is
part of task T2.2 and extends D2.1c.

• D3.4: Optimizations for self-managing global storage services (partner ZIB). This deliverable is part of task T3.2
and extends D3.2b.

• D4.5: Third report on self-configuration support (partner INRIA). This deliverable is part of task T4.1 and
extends D4.1b.

• D5.9: Distributed mobile application on gPhone (partner UCL). This deliverable is part of task T5.8 and extends
D5.8.

• D5.10: Design and analysis of Beernet, the Mozart structured overlay network implementation (partner UCL).
This deliverable is part of task T5.3 and consists of the Ph.D. dissertation of Boris Mejias.

• D5.11: Self-protection mechanisms which provide spam resistance (partner NUS). This deliverable is part of task
T5.6 and extends D5.6.

• D6.1d: Third project workshop. This deliverable will be held later because of constraints on the conference dates.

29

7.2 Planning and Timetable

WP1: Structured overlay network and basic mechanisms
T1.1 Low-level self-management
T1.2 High-level self-management primitives
T1.3 Security for structured overlay networks
T1.4 Structured overlay network in a standard component model
T1.5 Structured overlay network in an advanced component model

WP2: Service architecture and component model
T2.1 Component-based computation model
T2.2 Self-management architectural framework
T2.3 Formal semantics of computation model

WP3: Self-managing storage and transactions
T3.1 Formal models for transactions
T3.2 Replicated storage service
T3.3 Simple database query layer

WP4: Self-management services
T4.1 Support for self configuration
T4.2 Support for self healing
T4.3 Support for self tuning
T4.4 Support for self protection

WP5: Application requirements and evaluations
T5.1 User requirements for application servers
T5.2 Self-managing dynamic WWW server on industrial platform
T5.3 Self-managing dynamic WWW server on research platform
T5.4 Testing and evaluation using industrial trace data
T5.5 Traffic generation for WWW server evaluation
T5.6 Evaluation of security mechanisms
T5.7 Guidelines for third-party developers
T5.8 Self-managing distributed theater app on mobile devices

WP6: Management, dissemination, and exploitation
T6.1 Project management
T6.2 Workpackage management
T6.3 Dissemination and exploitation
T6.4 Synergies and collaborations
T6.5 Assessment, evaluation, and lessons learned

0 12 24 36 40

30

7.3 Graphical Presentation of Workpackages

WP1
Structured overlay
network and basic

mechanisms

WP2
Service architecture

and component
model

WP3
Self-managing

storage and
transactions

WP4
Self-management

services

WP5
Application

requirements and
evaluations

WP6
Management,

dissemination, and
exploitation

Is input to

31

7.4 Workpackage List

Work-
package

No

Workpackage title Lead
contractor

No

Person-
months

Start
month

End
month

Deliverable
No

WP1 Structured overlay
network and basic

mechanisms

2 51 0 24 D1.1, D1.2,
D1.3a, D1.3b,
D1.4, D1.5

WP2 Service architecture
and component model

1 76 0 40 D2.1a, D2.1b,
D2.1c, D2.2a,
D2.2b, D2.2c,
D2.3a, D2.3b,
D2.4

WP3 Self-managing storage
and transactions

5 48 0 40 D3.1a, D3.1b,
D3.1c, D3.2a,
D3.2b, D3.3a,
D3.3b, D3.4

WP4 Self-management
services

3 76 12 40 D4.1a, D4.1b,
D4.1c, D4.2a,
D4.2b, D4.2c,
D4.3a, D4.3b,
D4.3c, D4.4a,
D4.4b, D4.5

WP5 Application
requirements and

evaluations

4 47 0 40 D5.1, D5.2a,
D5.2b, D5.3,
D5.4a, D5.4b,
D5.6, D5.7,
D5.8, D5.9,
D5.10, D5.11

WP6 Management,
dissemination, and

exploitation

1 30 0 36 D6.1a, D6.1b,
D6.1c, D6.1d,
D6.3, D6.5a,
D6.5b, D6.5c

 TOTAL 328

32

7.5 Deliverables List
Note: for WP6 the effort (pm) for the management part (5 pm) does not add up to the total man-power (16 pm)
because most of the management work does not result in numbered deliverables (e.g., the administrative work).
Deliverables D6.1a-d are management deliverables. The deliverables D6.1b-d are concerned with workshops;
they will consist of the workshops themselves and a report on the workshop and its conclusions either in paper or
electronic format (e.g. CD). The deliverables of the 4-month final extension (until M40) are listed at the end of
this section. They are extended versions of previous deliverables as explained in section 7.1.

 Deliv.

No
Deliverable title Effort

(PM)
Deliv.
date

Natu
re

Dissem.
level

D1.1 Report on low-level self-management primitives for
structured overlay networks

12 12 R PU

D1.2 Report on high-level self-management primitives for
structured overlay networks

16 24 R PU

D1.3a First report on security for structured overlay networks 6 12 R PU

D1.3b Final report on security for structured overlay networks 5 24 R PU

D1.4 J2EE library of SELFMAN structured overlay network 4 24 P PU

D1.5 Mozart library of SELFMAN structured overlay network 8 24 P PU

D2.1a Report on basic computation model 6 12 R PU

D2.1b Report on computation model with self-management
primitives

6 24 R PU

D2.1c Component-based computation model 12 24 P PU

D2.2a Report on architectural framework specification 9 12 R PU

D2.2b Report on architectural framework tool support 9 24 R PU

D2.2c Architectural framework 19 24 P PU

D2.3a Report on formal operational semantics (component and
reflection)

4 12 R PU

33

Deliv.

No
Deliverable title Effort

(PM)
Deliv.
date

Natu
re

Dissem.
level

D2.3b Report on formal operational semantics (distributed
abstractions)

5 24 R PU

D3.1a First report on formal models for transactions over structured
overlay networks

3 12 R PU

D3.1b Second report on formal models for transactions over
structured overlay networks

3 24 R PU

D3.1c Final report on formal models for transactions over structured
overlay networks

2 30 R PU

D3.2a Replicated storage service over a structured overlay network 18 24 P PU

D3.2b Report on replicated storage service over a structured overlay
network

6 36 R PU

D3.3a Simple database query layer for replicated storage service 8 24 P PU

D3.3b Report on simple database query layer for replicated storage
service

3 36 R PU

D4.1a First report on self-configuration support 4 24 R PU

D4.1b Second report on self-configuration support 2 36 R PU

D4.1c Self-configuration support 12 36 P PU

D4.2a First report on self-healing support 3 24 R PU

D4.2b Second report on self-healing support 3 36 R PU

D4.2c Self-healing support 8 36 P PU

D4.3a First report on self-tuning support 5 24 R PU

D4.3b Second report on self-tuning support 5 36 R PU

D4.3c Self-tuning support 11 36 P PU

D4.4a First report on self-protection support 10 24 R PU

34

Deliv.

No
Deliverable title Effort

(PM)
Deliv.
date

Natu
re

Dissem.
level

D4.4b Self-protection support 11 36 P PU

D5.1 Report on user requirements for application servers 3 12 R PU

D5.2a Design specification of self-managing dynamic WWW
application

4 24 R PU

D5.2b Self-managing dynamic WWW server application for J2EE 6 36 P PU

D5.3 Self-managing dynamic WWW server application for Mozart 4 36 P PU

D5.4a Qualitative evaluation of self-management properties 7 36 R PU

D5.4b Quantitative evaluation of self-management properties 8 36 R PU

D5.6 Evaluation of security mechanisms 2 36 R PU

D5.7 Guidelines for developing self-managing applications 8 36 R PU

D5.8 Self-managing distributed theatre app on mobile devices 2 36 P PU

D6.1a Project website and Wiki. (After M6, continuously updated) 2 1, 6,
...

P PU

D6.1b First project workshop 1 12 O PU

D6.1c Second project workshop 1 24 O PU

D6.1d Third project workshop 1 36 O PU

D6.3 Dissemination and use report 4 36 R PU

D6.5a First progress and assessment report with lessons learned 3 12 R PU

D6.5b Second progress and assessment report with lessons learned 3 24 R PU

D6.5c Final progress and assessment report with lessons learned 4 36 R PU

35

Deliv.

No
Deliverable title Effort

(PM)
Deliv.
date

Natu
re

Dissem.
level

D2.4 Simulation and emulation environment for Kompics P2P
framework

6 40 P PU

D3.4 Optimizations for self-managing global storage services 5 40 R PU

D4.5 Third report on self-configuration support 2 40 R PU

D5.9 Distributed mobile application on gPhone 1 40 P PU

D5.10 Design and analysis of Beernet, the Mozart SON 1 40 R PU

D5.11 Self-protection mechanisms which provide spam resistance 1 40 R PU

36

7.6 Workpackage Descriptions

Workpackage 1 Description

Workpackage number WP1 Start date or starting event: 0
Workpackage title: Structured overlay network and basic mechanisms
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 14 10 8 0 0 0 17 2

Objectives
To design and implement a structured overlay network that provides the basic self management abilities of
node failure/removal/addition, and that provides the self management primitives (detectors and actuators)
needed by the service architecture of WP2.

Description of work

T1.1 Low-level self-management for structured overlay networks (UCL:4, KTH:2, INRIA:2 NUS:4) This
task will design the self-management mechanisms and their algorithms that are normally part of a structured
overlay network. These mechanisms will handle node failure, node removal, node addition, state monitoring,
and a simple threat model.

T1.2 High-level self-management primitives in structured overlay networks (UCL:4, KTH:2, INRIA:6,
NUS:4) This task will design the required primitives for configuration, versioning, updating. These primitives
are detectors and actuators; they are needed for systems built on top of the structured overlay network. These
will be used by the service architecture of WP2 when interacting with the structured overlay network, by the
storage service of WP3, and by the self management services of WP4.

T1.3 Security for structured overlay networks (NUS:9, KTH:2) This task will look at (1) identifying the
relevant threats, (2) integrating security mechanisms into the overlay network, and (3) building a distributed
monitoring system for detection of security violations.

T1.4 Structured overlay network in a standard component model (KTH:2, Stakk:2) This task will design
and implement the above structured overlay network in an industrial standard component model, namely J2EE.

T1.5 Structured overlay network in an advanced component model (UCL:6, KTH:2) This task will
design and implement the above structured overlay network in an advanced component model based on the
Mozart system.

37

Deliverables

D1.1 Report on low-level self-management primitives for structured overlay networks. This deliverable reports
on the first 12 months of T1.1 and T1.2. (M12)

D1.2 Report on high-level self-management primitives for structured overlay networks. This deliverable reports
on the second 12 months of T1.1 and T1.2. (M24)

D1.3a First report on security in structured overlay networks. (M12)

D1.3b Final report on security in structured overlay networks. (M24)

D1.4 J2EE library of SELFMAN structured overlay network. (M24)

D1.5 Mozart library of SELFMAN structured overlay network. (M24)

Milestones and expected result

M12: Understand how to do structured overlay network with component model.

M24: Finished structured overlay network with component model.

38

Workpackage 2 Description

Workpackage number WP2 Start date or starting event: 0
Workpackage title: Service architecture and component model
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 17 18 19 11 11 0 0 0

Objectives
To design and implement a distributed component architecture with the basic primitives needed for self
management. The component architecture uses the structured overlay network of WP1 as its foundation.

Description of work

T2.1 Component-based computation model (UCL:6, INRIA:7, KTH:6, FT R&D:5) This task will define
the computation model used in the project and will develop linguistic support for it in the form of architecture
description and programming languages and tools. The basic assumption is that the computation model needs
to be component-based to allow the construction of self-configurable systems, with components being units of
deployment, configuration, and fault confinement. One of the starting points for the task will be the Fractal
component model [BRUN04] developed by two of the project partners (INRIA and FT R&D). For linguistic
support, the task will study the extension of the Mozart programming language and environment with first class
components, and will define in parallel an architecture description language and a Java mapping for the
computation model.

T2.2 Self-management architectural framework (UCL:6, INRIA:8, KTH:12, ZIB:11, FT R&D:6) This
task will develop the SELFMAN self-management architecture in the form of a software architectural
framework together with associated tools. The core of the framework should consist in a set of architectural
patterns and identified supporting services from the work in WP1.

T2.3 Formal semantics of computation model (INRIA:4, UCL:5) This task will develop a formal
operational semantics for the SELFMAN computation model. A formal operational semantics is necessary to
ensure a consistent definition of the model and to allow reasoning about the properties of a system built
according to the model. Starting points for the task will include the Kell calculus [SCHM04] developed by one
of the partners (INRIA) as part of the IST project Mikado, and ongoing work at one of the partners (UCL) for
the introduction of a notion of membrane in Mozart. We expect the results from this task to provide an
extension of the formal multi-paradigm computation model at the heart of the Mozart system.

39

Deliverables

D2.1a Report on basic computation model. (M12)

D2.1b Report on computation model with self-management primitives. (M24)

D2.1c Component-based computation model. (M24)

D2.2a Report on architectural framework specification. (M12)

D2.2b Report on architectural framework tool support. (M24)

D2.2c Architectural framework. (M24)

D2.3a Report on formal operational semantics (component and reflection). (M12)

D2.3b Report on formal operational semantics (distributed abstractions). (M24)

D2.4 Simulation and emulation environment for Kompics P2P framework. (M40)
(task T2.2, extension of D2.1c)

Milestones and expected result

M12: Understand architectural framework with component model using SON.

M24: Finished architectural framework with component model using SON.

40

Workpackage 3 Description

Workpackage number WP3 Start date or starting event: 0
Workpackage title: Self-managing storage and transactions
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 6 11 0 8 20 0 0 3

Objectives
To design and build a self-managing storage service that provides data replication and the ability to perform
transactions. This service will be built on top of the structured overlay network of WP1 and using the
component model of WP2. This service is the foundation of the multi-tier application of WP5.

Description of work

T3.1 Formal models for transactions over a structured overlay network (ZIB:3, UCL:3, FT R&D:2)
This task will investigate how to do transactions over a structured overlay network. These will likely be
different from classical transactions. One of the important research questions is to resolve the tension between
the distributed system and the needs of the application. We will design different compromises and see which
are appropriate for applications.

T3.2 Replicated storage service over a structured overlay network (ZIB:14, KTH:6, UCL:3, Stakk:2, FT
R&D:4) This task will design a replicated storage service using the component model of WP2, running over
the structured overlay network of WP1. This task will do both a J2EE and a Mozart implementation.

T3.3 Simple database query layer (KTH:5, ZIB:3, Stakk:1, FT R&D:2) This task will implement a simple
database query layer on top of the replicated storage service. This will let us build the applications of WP5 at
little effort. Note that full database functionality is not needed for the proof of concept.

41

Deliverables

D3.1a First report on formal models for transactions over structured overlay networks. (M12)

D3.1b Second report on formal models for transactions over structured overlay networks. (M24)

D3.1c Final report on formal models for transactions over structured overlay networks. (M30)

D3.2a Replicated storage service over a structured overlay network. (M24)

D3.2b Report on replicated storage service over a structured overlay network. (M36)

D3.3a Simple database query layer for replicated storage service. (M24)

D3.3b Report on simple database query layer for replicated storage service. (M36)

D3.4 Optimizations for self-managing global storage services. (M40)
(task T3.2, extension of D3.2b)

Milestones and expected result

M12: Understand how to do transactions over structured overlay network.

M24: Finished replicated storage service over structured overlay network.

M24: Finished query layer for replicated storage service.

42

Workpackage 4 Description

Workpackage number WP4 Start date or starting event: 12
Workpackage title: Self-management services
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 6 14 19 3 15 0 17 2

Objectives
To design and implement the self-management services needed by multi-tier applications. This includes
service configuration, reconfiguration, deployment, upgrading during execution, and so forth. We will
formalize the self-management services and investigate under what conditions their behavior is convergent.

Description of work

T4.1 Support for self configuration (INRIA:5, UCL:6, FT R&D:3, KTH:5, Stakk:1) This task will
develop support for the implementation of self-configuring distributed systems, in the form of distributed
services and tools refining the generic self-management architectural framework developed in WP2.
Configuration, as understood in this task, covers traditional distributed deployment and installation, as well as
dynamic update and on-line reconfiguration.

T4.2 Support for self healing (INRIA:5, KTH:9) This task will develop support for the implementation of
self-healing distributed systems, in the form of distributed services and tools refining the self-management
architectural framework developed in WP2. The task will consider hardware and software faults.

T4.3 Support for self tuning (INRIA:5, ZIB:15, Stakk:1) This task will develop support for the
implementation of self-tuning systems. Considering the vast scope of performance management, the task will
be driven primarily by the needs of application scenarios developed in WP5, and will develop performance
management functions and self-tuning features primarily dedicated to the handling of these scenarios.

T4.4 Support for self protection (INRIA:4, NUS:17) This task will develop support for simple self-
protection mechanisms and policies, based on a simple threat model and trust model. This task is necessary to
achieve realistic results in the project. The final results of this task will be reported in D5.6.

43

Deliverables

D4.1a First report on self-configuration support. (M24)

D4.1b Second report on self-configuration support. (M36)

D4.1c Self-configuration support. (M36)

D4.2a First report on self-healing support. (M24)

D4.2b Second report on self-healing support. (M36)

D4.2c Self-healing support. (M36)

D4.3a First report on self-tuning support. (M24)

D4.3b Second report on self-tuning support. (M36)

D4.3c Self-tuning support. (M36)

D4.4a First report on self-protection support. (M24)

D4.4b Self-protection support. (M36)

D4.5 Third report on self-configuration support. (M40)
(task T4.1, extension of D4.1b)

Milestones and expected result

M24: Understand how to incorporate self-* services on architectural framework.

M36: Finished self-* services on architectural framework.

44

Workpackage 5 Description

Workpackage number WP5 Start date or starting event: 0
Workpackage title: Application requirements and evaluations
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 9 5 6 9 11 0 3 4

Objectives
To build a two-tier application using the service architecture of WP2 and the storage service of WP3, self-
managed using the services of WP4. To evaluate and compare standard and self-managing versions of the
application. To evaluate and compare the J2EE and Mozart implementations of the application.

Description of work

T5.1 User requirements for application servers (FT R&D:3 Stakk:1) In this task, the industrial partners
will study the requirements for managing the hosting environments used to host applications. These
requirements will be input for the self-management architecture of the project.

T5.2 Self-managing dynamic WWW server on industrial platform (ZIB:4, KTH:4) This task will
implement a WWW server as a self-managing application using the extended J2EE environment. The task will
then evaluate the usefulness of the self-management infrastructure. The application will be based on the same
business logic and data as a non-self-managing application. Note that we may change the application if a more
advantageous one appears.

T5.3 Self-managing dynamic WWW server on research platform (UCL:2, INRIA:5) This task will
implement the WWW server on the Mozart platform. The task will then compare the J2EE and the Mozart
implementations and make conclusions over future development of self management and the future evolution
of each platform.

T5.4 Testing and evaluation using industrial trace data (Stakk:2, ZIB:3) This task will evaluate the
efficiency of self management using trace data on P2P video streaming usage from Stakk. This task will start
early so as to guide the development of workpackages WP3 and WP4.

T5.5 Traffic generation for WWW server evaluation (FT R&D:6, ZIB:1, KTH:1, UCL:1, INRIA:1) This
task will provide a traffic generator and relevant probes, based on the CLIF load injection framework. This
will be used to emulate the actual usage of the WWW server applications to observe their behavior. The results
will be part of deliverables D5.4a and D5.4b.

T5.6 Evaluation of security mechanisms (NUS:3) This task will evaluate the security mechanisms of WP1
(overlay networks) and WP4 (higher level) in the context of the application and the threat model defined in
WP1.

T5.7 Guidelines for third-party developers (ZIB:3, UCL:3, Stakk:1) This task will provide a document
explaining to third-party developers how to develop self-managing applications using the software developed

45

in SELFMAN.

T5.8 Self-managing distributed theater application on mobile devices (UCL: 3) This task will build an
application for mobile devices (specifically, gPhones and laptop computers) that demonstrates the self-
managing transactional storage of WP3.

Deliverables

D5.1 Report on user requirements for application servers. (M12)

D5.2a Design specification of self-managing dynamic WWW server application. This deliverable reports on
the design specification for both T5.2 and T5.3. (M24)

D5.2b Self-managing dynamic WWW server application for J2EE. (M36)

D5.3 Self-managing dynamic WWW server application for Mozart. (M36)

D5.4a Qualitative evaluation of self-management properties based on usage scenarios. (M36)

D5.4b Quantitative evaluation of self-management properties. (M36)

D5.6 Evaluation of security mechanisms. (M36)

D5.7 Guidelines for developing self-managing applications. (M36)

D5.8 Self-managing distributed theater application on mobile devices. (M36)

D5.9 Distributed mobile application on gPhone. (M40)
(task T5.8, extended version of D5.8)

D5.10 Design and analysis of Beernet, the Mozart implementation of SON. (M40)
(task T5.3, Ph.D. dissertation of Boris Mejias)

D5.11 Self-protection mechanisms which provide spam resistance. (M40)
(task T5.6, extension of D5.6)

46

Milestones and expected result

M12: Understand requirements for application servers.

M24: Understand application structure for dynamic WWW server application.

M36: Finished dynamic WWW server applications.

M36: Understand effectiveness of self-* services for the application.

M36: Understand how to build self managing applications.

47

Workpackage 6 Description

Workpackage number WP6 Start date or starting event: 0
Workpackage title: Management, dissemination, and exploitation
Participant id 1 2 3 4 5 6 7 8
Person-months per participant: 10 3 3 5 3 0 3 3

Objectives
To manage the project scientifically and administratively. To maximize the scientific progress. To disseminate
the results, including as Open Source software. To collaborate with other projects.

Description of work

T6.1 Project management (UCL:7) This task will carry out the administrative management of the project,
define the project standards and guidelines in relation to deliverables, presentations, and dissemination. The
task will organize official project meetings and reviews. The task will coordinate, compile, and distribute
project reports.

T6.2 Workpackage management (UCL:1, KTH:1, INRIA:1, FT R&D:3, ZIB:1, Stakk:1, NUS:1) This
task will carry out the technical project management. The task will coordinate developments in the different
workpackages. The task will ensure overall coordination of the project and resolve technical conflicts.

T6.3 Dissemination and exploitation (UCL:0.5, INRIA:0.5, FT R&D:1, Stakk:1, NUS:1) This task will
implement a project website and Wiki with presentations, reports, publications, and deliverables. The task will
organize project workshops. The task will explore potential applications of project results and potential
partnerships with other projects and companies. This task will organize the Open Source dissemination of the
project software. The ongoing work of this task (except for M36 which as D6.3) will be reported in the
deliverables D6.5a, D6.5b, and D6.5c and the Periodic Activity Reports.

T6.4 Synergies and collaborations (UCL:0.5, INRIA:0.5, KTH:1, ZIB:1) This task will identify synergies
and collaborations with other projects, old and new, in the IST portfolio. For description of this task, see the
concertation clause in section 6.2. The work of this task will be reported in the deliverables D6.5a, D6.5b, and
D6.5c and the Periodic Activity Reports.

T6.5 Assessment, evaluation, and lessons learned (UCL:1, KTH:1, INRIA:1, ZIB:1, FT R&D:1, Stakk:1,
NUS:1) This task will evaluate the technical results of the project according to the assessment criteria for each
workpackage. This task will give the lessons learned in the project, including general principles, insights
gained, and the assessment of the use of two platforms and their comparison. The workpackage coordinators
will report to the project coordinators. The evaluation will be done at months 12, 24, and the final evaluation at
month 36 according to the measurable objectives given in section 6.1.3.

48

Deliverables

D6.1a Project website and Wiki. (M1, M6, then continuously updated)

D6.1b First project workshop. (M12)

D6.1c Second project workshop. (M24)

D6.1d Third project workshop. (M40)

D6.3 Dissemination and use report. (M36)

D6.5a First progress and assessment report with lessons learned. (M12)

D6.5b Second progress and assessment report with lessons learned. (M24)

D6.5c Final progress and assessment report with lessons learned. (M36)

Milestones and expected result

M12: Project making good progress (all deadlines respected).

M24: Possible synergies and collaborations are realized.

M36: Understand general principles of self management.

M36: Understand effectiveness of two platform implementation.

49

8. Project Resources and Budget Overview

8.1 Efforts for the Full Duration of the Project

STREP/STIP Effort Form - Full duration of project
Project number (acronym): 34084 (SELFMAN)

STREP/STIP Activity type
 UCL KTH INRIA FT

R&D
ZIB E-

Plus
NUS Stakk TOTAL

ACTIVITIES

RTD/Innovation activities
WP1 Structured overlay network and
basic mechanisms

14 10 8 0 0 0 17 2 51

WP2 Service architecture and
component model

17 18 19 11 11 0 0 0 76

WP3 Self-managing storage and
transactions

6 11 0 8 20 0 0 3 48

WP4 Self-management services 6 14 19 3 15 0 17 2 76
WP5 Application requirements and
evaluations

9 5 6 9 11 0 3 4 47

WP6 Management, dissemination, and
exploitation (Tasks T6.3, T6.4, T6.5)

2 2 2 2 2 0 2 2 14

Total research/innovation 54 60 54 33 59 0 39 13 312

Consortium management activities
WP6 Management, dissemination, and
exploitation (Tasks T6.1 and T6.2)

8 1 1 3 1 0 1 1 16

Total consortium management 8 1 1 3 1 0 1 1 16

TOTAL per Participant 62 61 55 36 60 0 40 14

Overall TOTAL EFFORTS 328

50

8.2 Overall Budget for the Full Duration of the Project

51

8.3 Management Level Description of Resources and Budget

The following table gives an overview of the budget utilisation for each partner in Euros. The numbers in this table are
given as orientative for how each partner will split his/her budget. For each partner, we give the rate (Euros/month) for
the personnel, the travel and subsistence budget, and the equipment budget. All these numbers are for the duration of the
project. The rates, travel and subsistence budget, and equipment budget are calculated with respect to the numbers in the
“Requested” column of the table. For example, for INRIA this means that we have 4367*54 + 20000 + 10000 = 265818.

Audit costs of 4000 per partner have been included in management costs. For UCL, the management costs also include
2868 equipment costs for management equipment.

8.3.1 AC Partners “Own” Contributions

AC
Partner

Names of persons Total
PM

Euros/
PM

Total

UCL Peter Van Roy, Stéphanie Landrain 14.4 4500 64800
KTH Seif Haridi 7.2 10300 74160
ZIB Alexander Reinefeld 7.2 8500 61200

NUS Roland Yap 7.2 6500 46800

Each AC partner will dedicate a part of its permanent staff to the project. UCL. Peter Van Roy (professor) and Stéphanie
Landrain (administrative assistant) will dedicate 20% of their time to the SELFMAN project. In addition, we will use the
university resources (the staff of the personnel service, the financial service, the research administration) to help with the
cost statements, the contract preparations, and the ongoing project management. KTH. KTH will contribute 20% of a
senior staff member to the project. ZIB. ZIB will contribute 20% of a senior staff member to the project. NUS. NUS
will contribute 20% of the time of a senior staff member to the project.

 RTD/Innovation activities Management activities

Partner Model

Rate/PM
(incl OH) PM

Travel
+subs. Equip. Costs Req. PM Costs Req.

Total
Req.

UCL AC 6080 54 21000 13050 362370 362370 8 55508 55508 417878
KTH AC 6120 60 20000 10000 397200 397200 1 10800 10800 408000
INRIA FC 4367 54 20000 10000 531636 265818 1 8367 8367 274185
FT R&D FC 7377 33 9000 4000 512882 256441 3 26131 26131 282572
ZIB AC 5187 59 20000 10000 336018 336018 1 9667 9667 345685
E-Plus FC 6000 0 0 0 0 0 0 0 0 0
NUS AC 2417 39 20000 9000 123263 123263 1 6417 6417 129680
Stakk FC 6000 13 10000 4000 184000 92000 1 10000 10000 102000
Total 2447369 1833110 126890 126890 1960000

52

9. Ethical Issues

Table A. Proposers are requested to fill in the following table:

Table B. Proposers are requested to confirm that the proposed research does not involve:

1 Research relating to cancer treatment of the gonads can be financed

Does your proposed research raise sensitive ethical
questions related to:

YES NO

Human beings X

Human biological samples X

Personal data (whether identified by name or not) X

Genetic information X

Animals X

Research activity aimed at human cloning for reproductive purposes,

Research activity intended to modify the genetic heritage of human beings which could make such changes heritable1

Research activity intended to create human embryos solely for the purpose of research or for the purpose of stem cell
procurement, including by means of somatic cell nuclear transfer.

YES NO
Confirmation: the proposed research involves none
of the issues listed in Table B

X

53

10. Other Issues

10.1 Gender Issues

The SELFMAN project is gender-neutral. We will hire the best people independent of their gender. Nevertheless, we
recognize the underrepresentation of women in computer science research. This is a perennial problem that has no
recognized solution. For SELFMAN, we will encourage women to apply to the project and given equal qualifications we
will give preference to woman candidate researchers.

10.2 Policy Issues

The SELFMAN project will facilitate increased use of the Internet by making it easier to construct self-managing
applications. In addition, we will encourage dissemination of the software results of the project as Open Source software.
Both of these activities taken together give us the expectation that the SELFMAN project will increase the use of the
Internet in all layers of society, including the Third World and other entities that do not have the material resources to do
systems management. Self management, by its very nature, is much less expensive than human management. With our
software, one of the goals of SELFMAN is that self management should also not require advanced technical knowledge.

54

Appendix A – Consortium Description

A.1 Project Roadmap
This roadmap is extended to M40 with additional deliverables that are extensions of existing deliverables: improved
Kompics component framework for P2P (D2.4), optimizations for self-managing storage services (D3.4), improved self-
configuration support (D3.4), improved distributed mobile application (D5.9), design and analysis of the Mozart
implementation of the SELFMAN structured overlay network, called now Beernet (D5.10), and self-protection
mechanisms which provide spam resistance (D5.11). See section 7.1 for more detailed explanations.

M0 M12 M24 M36

Design of structured
overlay network (SON)
with components (WP1)

Design of
component model for

self management
over a SON (WP2)

Design of transaction
model and semantics
over a SON (WP3)

Requirements for self-
managing application

servers (WP5)

Implemented SON
using component

model (WP1)

Implemented
architectural framework
on top of SON (WP2)

Implemented replicated
storage service with

database interface (WP3)

Design of self-*
mechanisms in the

arch. framework (WP4)

Application structure of
dynamic WWW

application server (WP5)

Finished implementation
of self-* services in

arch. framework (WP4)

Finished implementation
of dynamic app.

server (WP5)

Measured effectiveness
of self-* services (WP5)

Guidelines for building
large self-managing
applications (WP5)

= main dependencies between achievements in roadmap

55

A.2 Participants and Consortium

The SELFMAN project requires four special areas of scientific expertise, namely structured overlay networks, component
models, transactional storage, and programming languages. In addition, we require technological expertise in the J2EE
model and we require industrial usage scenarios and trace data. We now present a table with the partners’ expertise in
these areas and show their complementarity.

Partner Background Role Foreground (see also section
6.1.4)

UCL P2PKit architecture and P2PS library (from
PEPITO, EVERGROW), Mozart
component model, Mozart system

Expertise in structured
overlay networks and
Mozart implementation

Component model for
structured overlays, Mozart
implementation

KTH DKS protocol and middleware (from
PEPITO, EVERGROW), J2EE and Grid
implementation, Mozart system

Expertise in structured
overlay networks and
J2EE implementation

Structured overlay for
component model, J2EE
implementation

INRIA Fractal model (from SARDES), data
replication management (from GORDA),
self management for component models

Expertise in component
models and self
management

Service architecture for self
management, self management
services

FT
R&D

Fractal model (from SARDES), use and
management requirements for application
hosting, traffic generation

Expertise in component
models, use scenarios,
and traffic generation

Application requirements and
evaluation

ZIB ZIB Data Management System (from
ZIBDMS), Grid implementation

Expertise in storage
services and Grid

Storage service

E-Plus Use and management requirements for
application hosting, trace data, low-level
self management (from FLEXINET)

Expertise in use
scenarios and trace data

Application requirements and
evaluation

NUS Security auditing and monitoring Expertise in security Security requirements,
mechanisms, and evaluation

Stakk Media streaming technologies Expertise in media
streaming scenarios and
trace data

Application requirements and
evaluation

We now explain the content of this table in more detail. KTH and UCL provide expertise in structured overlay networks;
they were both project partners in the PEPITO project, which developed this area. KTH has developed the DKS protocol
and a Java middleware also called DKS based on this protocol [DKS05, GHOD05]. UCL has developed a Mozart library,
P2PS [P2PS05], based on the Tango protocol, which is a more scalable variant of the DKS protocol [CART05]. In
addition, UCL has started work on a service architecture, P2PKit [P2PK05], which is able to run applications on top of
P2PS. This preliminary work will be the starting point for WP1. INRIA and France Telecom R&D have jointly
developed an advanced component model, the Fractal model [BRUN04]. This model will be the starting point for WP2.
ZIB is developing a data management system for distributed data that will run on a peer-to-peer base [SCHU04,
SCHU05]. This system will be the starting point for WP3 and a basis for the development of the trading services in WP4.
UCL has also designed a transaction model for structured overlay networks [MESA05]. INRIA is working on self
management as part of its work on component models in the SARDES project, and has developed a first architecture for
self managing cluster-size systems [BOUC05]. This work will be the starting point for WP4, which will extend it to self
management over the service architecture. France Telecom and INRIA have an ongoing cooperation on distributed
configuration management whose results will be a starting point for the self-configuration task in WP4. NUS brings
valuable experience in security and in programming languages to the project; since they have already collaborated with

56

KTH this will facilitate their integration into the project. Stakk is a start-up company working on a media streaming
application. This work will give us realistic usage scenarios and trace data for evaluating the self-management services.

Université catholique de Louvain (UCL)

The Catholic University of Louvain, founded in 1425, was bifurcated in 1971, giving birth to two independent entities,
UCL and its sister university KUL (Katholieke Universiteit Leuven). While the KUL remained in Louvain, UCL
established itself in the new town of Louvain-la-Neuve. UCL currently has more than 20000 students (including 4000
foreign students), 3000 teaching and research personnel, and 1800 technical and administrative personnel. UCL hosts
more than 1000 external research contracts with an annual turnover of 70 million Euros and is the nucleus of an industrial
park containing almost 100 companies. UCL is an active participant in the ERASMUS (now SOCRATES) and TEMPUS
programs, and is a founding member of MED-CAMPUS, the Coimbra Group, CLUSTER, FIUC, NATURA, CEMS, etc.

The Department of Computing Science and Engineering at UCL (INGI) is part of the Faculty of Applied Science. INGI
has around 50 teaching and research personnel, with a twofold mission: education (offering engineering and doctoral
degrees) and research. The department is recognized worldwide for its contributions to dependable distributed computing,
networking, constraint and logic programming, programming languages, and software engineering. Major releases by the
department include the KAOS methodology and its tools for requirements engineering, and the Mozart Programming
System for distributed application development and constraint programming. INGI collaborates closely with research
groups in many areas of the world including the USA, France, Germany, Sweden, and the third world. INGI personnel are
major contributors and catalyzers of computer technology and applications in Belgium. For example, INGI is a key player
in the creation and continuing development of the CEDITI s.a., a software consulting and services company specializing
in multimedia and Web development and software engineering, in the WIN, the Wallonia High-performance Intranet.
Current INGI projects include EVERGROW (European IP), CoreGrid and E-Next (European NoE), MILOS, TOTEM,
BioMaze, TransMaze, ReQuest, APPAREIL (funded by Walloon Region of Belgium), and many smaller projects.

UCL key personnel

Peter Van Roy is professor in the Dept. of Computing Science and Engineering at UCL, where he heads the research
group on Programming Languages and Distributed Computing. He holds a Ph.D. from the University of California at
Berkeley and a Habilitation à Diriger des Recherches from the Université Paris VII. He has been involved in several
European projects including ACCLAIM, PEPITO, and EVERGROW, as well as the regional projects PIRATES and
MILOS. He has been on the program committee and invited speaker for numerous international conferences. He was a
member of the International Scientific Council of the IRCICA research institute in Lille, France. He was the first Belgian
Executive Committee representative when Belgium joined ERCIM in 2004. He developed Aquarius Prolog, the first
Prolog compiler to generate code competitive in performance with C compilers. He holds one patent in graphic design
and developed the commercial Macintosh application FractaSketch based on this patent. He is a developer of the Mozart
Programming System, an advanced platform for distributed intelligent applications, and is currently a member of the
Mozart Board. He is codesigner (with Seif Haridi and Per Brand) of the distribution model of Mozart. With Seif Haridi
he has written a comprehensive textbook, “Concepts, Techniques, and Models of Computer Programming”, that was
published by MIT Press in 2004. He is currently working on tools and techniques for simplifying the development of
robust collaborative applications on the Internet. In the PEPITO project he worked on structured overlay networks and
started the design of an architecture for building applications on top of them. This work is continuing in the
EVERGROW project and is using the PlanetLab infrastructure for testing and deployment purposes. The SELFMAN
project will greatly extend and expand this work into the area of self management.

57

Royal Institute of Technology (Kungliga Tekniska Högskolan – KTH)

KTH is one of the major engineering schools in Sweden. KTH will participate through the Laboratory of Electronics
and Computer Systems (LECS) in the IMIT department. The activities of LECS concern Computer Systems at large, but
in particular parallel computer systems, computer architecture, and distributed computer systems including programming
systems. The research is mainly motivated by technical challenges in distributed and parallel systems. In all of our
projects, we focus as well on experimental design and evaluation as on sound design principles.

Prof. Haridi's group in LECS co-develops the programming system Mozart for transparent programming of distributed
and mobile applications. The system greatly simplifies the development of net-based services. The research is now
focused on aspects such as scalability, security and support for fault tolerance (in cooperation with SICS and Ericsson).
There is also work on adaptation of Mozart to small mobile units (PDAs) and algorithms for distributed systems and fault-
tolerant systems, in particular work on self-stabilizing algorithms and also program analysis of parallel and concurrent
systems.

In 1994, LECS researchers developed an extensible object-oriented platform NUTS for distributed computing. The
language of NUTS is a concurrent object-oriented programming language with coarse-grained parallelism and distributed
shared memory model implemented on a distributed memory architecture, e. g., a network of workstations. NUTS
processes can be arranged into structured collections: grids that enable to program data-parallel computations on a high
level. The distributed layer of NUTS supports passing objects, classes and scripts among distributed NUTS processes, and
is based on serialization technique similar to the Java object serialization developed later at SUN Microsystems.

KTH key personnel

Seif Haridi is professor at KTH of the computer systems chair and Chief Scientist of SICS. He is currently involved on
research in the area of Peer-to-Peer overlay computing, high availability, and large-scale agent-based simulations. Haridi
is the scientific coordinator of the EU project PEPITO (see http://www.sics.se/pepito) that finished in June 2005, a project
devoted to Peer-to-Peer computing. He is the scientific coordinator of the EU/FET project EVERGROW (see
http://www.evergrow.org). Previously he led the subproject on research in Peer-to-Peer computing in EVERGROW. His
research group has designed DKS, an architecture based on structured Distributed Hash Table overlay networks for large-
scale distributed applications. Demonstrator applications done with DKS include including global file systems, media
distribution, and GRID computing applications (see http://dks.sics.se). Already the architecture has been used for mobile
weblogs with Ericsson, and as the reference architecture for a project with Swedish Defense on Network-based Defense.
The research group is also designing a language-independent middleware for distributed and peer-to-peer computing
based on the experience of the Mozart system developed by my research group together with German and Belgian
researchers. We have also developed a large-scale agent based simulation in the EU project ICITIES on multiprocessor
clusters. Haridi is also a co-designer of the programming language Oz and the Mozart programming platform (see
http://www.mozart-oz.org). Earlier research includes implementation of logic and constraint-based languages, and
scalable cache-coherent parallel computers. He led the development of SICStus Prolog, a high-quality Prolog system that
is the most widely used worldwide for education and research on UNIX workstations. He was a team member of the
Aurora project generating the first parallel Prolog on shared memory machines. He was a co-leader of the Andorra Kernel
Language (AKL) team and co-designer of the concepts of AKL, the first existing complete concurrent constraint
language. He is a co-inventor of COMA architectures, a scalable cache-coherent multiprocessor with only caches. This
concept has been taken by SUN Microsystems (see publication list). One important recent work is the book published by
MIT-Press: Concepts Techniques and Models of Computer Programming
(http://www.info.ucl.ac.be/people/PVR/book.html) The book is used in several universities for teaching computer
programming, and is considered by many as the main 'bible' in the area.

58

Institut National de Recherche en Informatique et Automatique (INRIA)

INRIA (National Institute for Research in Computer Science and Control) is a French public-sector scientific and
technological institute operating under the dual authority of the Ministry of Research and the Ministry of Industry.
INRIA's missions are "to undertake basic and applied research, to design experimental systems, to ensure technology and
knowledge transfer, to organize international scientific exchanges, to carry out scientific assessments, and to contribute to
standardization" The research carried out at INRIA brings together experts from the fields of computer science and
applied mathematics covering the following areas: Networks and Systems; Software Engineering and Symbolic
Computing; Man-Machine Interaction; Image Processing, Data Management, Knowledge Systems, Simulation and
Optimization of Complex Systems.

INRIA's ambition is to be a world player, a research institute at the heart of the information society. INRIA aims to
network skills and talents from the fields of information and computer science and technology from the entire French
research system. This network allows scientific excellence to be used for technological progress, for creating employment
and wealth and for new uses in response to socio-economic needs. INRIA's decentralized organization (6 Research Units),
its small autonomous teams, and regular evaluation enable INRIA to develop its partnerships, with 95 research projects
shared with universities, grandes Ecoles and research organizations. It is also strengthening its involvement in the
development of research results and technology transfer.

INRIA gathers in its premises around 3000 persons: 900 INRIA permanent employees (400 researchers, 500 engineers
and technicians), 750 post-docs, engineers and visitors, 700 doctoral candidates, 450 Researchers and professors from
other organizations and 200 "Expert engineers" (on research contracts). The Institute has extensive collaborations with
industrial partners. 600 contracts with industrial partners are currently active, 40% of them being European funded ones.
In addition, the Institute is very active in promoting high-tech start-up companies through its INRIA transfer and I-Source
subsidiaries. INRIA is a member of ERCIM EEIG, European Research Consortium for Computer Science and
Mathematics. Outside Europe, INRIA also has a significant activity: it has created joint research laboratories (Russia and
China), signed cooperation agreements (NSF, India, Brazil, etc.) and promotes intensive scientific exchanges. INRIA
Web: http://www.inria.fr/

INRIA key personnel

Jean-Bernard Stefani is a Research Director at INRIA, where he leads the Sardes project. From 1990 to 2000, he was
Head of the Distributed Systems research laboratory at France Telecom R&D. During that period, he was also Chairman
of the Working Party in ITU-T Study Group 7, responsible for the development of open distributed processing standards.
He has been involved in several Esprit, ACTS and IST projects, including Esprit ISA, ACTS RetINA, and IST Mikado.
He is one of the initiators and a past Chairman of the Board of the ObjectWeb Consortium. He has served on the program
committee of several international conferences (Middleware, DOA, Forte/PSTV, FMOODS, SRDS, etc). His current
research interests include: dynamically configurable distributed systems, formal models for component-based distributed
programming, large-scale distributed systems monitoring and management.

Noel de Palma is an Assistant Professor at Institut National Polytechnique de Grenoble (INPG) since September 2002,
and a member of the Sardes project. From 2001 to 2002, he has been a postdoctoral researcher at France Telecom R&D.
His main research interests include distributed system construction, configuration management, autonomous distributed
management, and component-based systems. Noel de Palma holds a PhD from INPG.

Alan Schmitt is a Researcher at INRIA since January 2004, and a member of the Sardes project. From September 2002 to
January 2004, he has been a postdoctoral researcher at the University of Pennsylvania, USA. His main research interests
cover distributed, component-based, and functional programming, programming language semantics, type systems, and
concurrency theory. Alan Schmitt holds a PhD from Ecole Polytechnique.

59

France Telecom Research & Development (FT R&D)

France Telecom R&D is Europe's leading telecommunications R&D center, with areas of research including human-
machine interactions, mobility, network architecture, fixed/mobile/Internet convergence, and very high throughput
transmission and access networks. With more than 3,400 engineers, researchers and technicians spread in 14 sites in
Europe, North America and Asia, France Telecom R&D is implemented at international level that enables cooperation
with influent industrial groups, the international scientific community and regulatory bodies. Responsible for the Group's
strategic targets and critical technical areas,

France Telecom R&D has been contributing to numerous collaborative R&D actions, both at national and international
level: RNRT (National Research Network in Telecommunications), IST projects, EUREKA, etc. In addition, France
Telecom Research & Development maintains a close relationship with public-sector laboratories, such as the French
National Center for Scientific Research (CNRS), the INRIA and the CEA. It is also a founding member of the ObjectWeb
Consortium (http://www.objectweb.org/).

France Telecom R&D contributes to SELFMAN through its Software Techniques and Engineering division, specifically
the laboratory MAPS/AMS, which is an active contributor in the ObjectWeb Consortium. Research projects cover topics
such as the design and development of flexible distributed object-oriented platforms and component-based systems. In
particular, France Telecom R&D developed the Fractal model conjointly with the Sardes INRIA team. Fractal is a
modular and extensible component model that can be used to design, implement, deploy, and reconfigure various systems
and applications, from operating systems to middleware platforms), persistence and transaction frameworks (Jorm, Medor
and Speedo), generic load injection platform for benchmarking middleware (Cliff), and applications of distributed
systems, in particular, the design of enterprise information systems.

FT R&D key personnel

Thierry Coupaye heads the Distributed Software Architectures & Infrastructures Research Pole in the France Telecom
R&D Division. He completed his Ph.D. in Computer Science from the UJF Grenoble University, France, in 1996 in the
area of active databases (Event-Condition-Action rules) and worked afterwards as a teaching and research assistant at
INPG Technological University. Then he worked as a researcher at the European Bioinformatics Institute (EMBL-EBI) in
Cambridge, U.K., in the area of semi-structured data management for genomics, and then in the Dassault Systems and
University of Grenoble Joint Laboratory where he worked on large-scale software deployment. He joined France Telecom
in 2000. He led several R&D projects in the database and software architecture areas and then took lead of the Distributed
Software Architectures & Infrastructures Research Pole in 2003. He has been involved in several collaborative projects
(Esprit Goodstep, ITEA Osmose, IST Artist). He is the author of more than 30 refereed articles and has participated in
several program and organization committees of conferences in these areas (IDEAS, ETAPS, Euromicro, etc.). His
current research interests include software architecture, component-based systems, aspect-oriented programming,
reflexive systems, and autonomic computing.

Bruno Dillenseger has been working for France Telecom R&D in the field of object-oriented distributed systems and
communication middleware for more than 13 years. His main contributions focus on mobile and intelligent agent
technology, with a number of platforms and publications. Three years ago, he launched the CLIF project in the context of
ObjectWeb open source consortium's JMOB initiative (Java Middleware Open Benchmarking), to provide the
benchmarking community with a component-based distributed framework for generating load on, and measuring
performance of, arbitrary systems (see CLIF project at http://clif.objectweb.org/). One year ago, he got involved in
autonomic computing related research from a software architecture and performance perspective.

Nicolas Rivierre completed his Ph.D. in Computer Science from the Paris VI University, France, in 1998 in the area of
real-time scheduling. He joined INRIA in 1992, working as a research engineer in the area of real-time and fault tolerant

60

systems. He joined France Telecom in 1997, working in several R&D projects in the area of Distributed Software
Architectures & Infrastructures. His research interests include software component-based systems, system management
and formal methods.

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

The Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) is a non-university research institute of the State of
Berlin for applied mathematics and computer science. Within the CS department, which is headed by Prof. Alexander
Reinefeld, ZIB operates high-performance computers that are among the most powerful in Germany. As a major driving
force in science and science-politics, ZIB pushed the establishment of the German E-Science initiative D-Grid, the GGF
and E-Grid. ZIB has demonstrated its excellence in Grid research in the EU projects DataGrid, GridLab, FlowGrid,
CoreGrid, and GridCoord.

Our research focuses on parallel and distributed systems, more specifically on distributed data management in Grids,
scalable services, and autonomous computing. With providing consulting services to high performance computing users
and developing parallel and distributed systems for clusters and Grids, we are in the unique position to be able to evaluate
designs from both perspectives, from the HPC users’ point of view and from the point of view of Grid researchers.

ZIB key personnel

Alexander Reinefeld heads the computer science department at Konrad-Zuse-Zentrum für Informationstechnik Berlin
(ZIB) and holds a chair for Parallel and Distributed Systems at the Berlin Humboldt University. He co-founded the
European Grid Forum and the Global Grid Forum, where he is a member of the Advisory Committee (GFAC). He was
one of the major driving forces in the establishment of the German E-Science initiative D-Grid, which got funded by the
Federal Ministry of Education and Research (BMBF) with more than 100 million Euros. Alexander Reinefeld acts as an
advisor at a national and international level – e.g. for the 7th FP and the EU NGG and NGG-2 group. He organized
international conferences on Grid computing like CCGrid in 2002 and GGF in 2004, and co-organized several workshops
on Grid and Cluster computing. He participates in editorial boards (FGCS, JoGC, IJGUC) and published numerous
scientific papers and some books.

National University of Singapore (NUS)

NUS (National University of Singapore) is the premier university in Singapore and is acknowledged as one of the finest
universities in the Asia-Pacific region. In the 2004 global survey of universities by the Times of London, NUS was placed
among the world's 20 top universities. The NUS mission is to provide quality education with a broad-based curriculum
and engage in high impact research. There are approximately 30,000 students split into 22,000 undergraduate students
and 8,000 graduate students. NUS has a strong research culture and close tie-up between teaching and research with 13
national-level, 12 university-level and more than 60 faculty-based research centers.

There are 13 faculties and schools at NUS, which includes Engineering, Computing, Science, Arts and Social Sciences,
Business, Law, Medicine, Dentistry, Public Policy and Design and Environment, and the School of Computing. The
School of Computing encompasses the field of information technology and comprises of two departments: the
Department of Computer Science, and the Department of Information Systems. The former focuses on the fundamental
and technical aspects of computer science and technology, while the latter is centered on combining aspects of computing

61

with practical applications in management. The School of Computing has approximately 2,000 students, which includes
500 graduate students.

The Department of Computer Science has strong research groups in the areas of Programming Languages and Software
Engineering, Systems, Networking, Databases, Artificial Intelligence, Computational Biology and Multimedia. In the
2004/2005 period, the department received close to SGD$10M of external funding for research. The overall research
profile has high impact and this can be seen in the citation ranking under the ISI Web of Knowledge where the
Department of Computer Science, NUS, is ranked 33 globally.

NUS key personnel

Roland Yap Hock Chuan is an associate professor at the National University of Singapore in the Department of
Computer Science, School of Computing. He is well known as one of the primary authors of the CLP(R) system, which is
the first Constraint Logic Programming (CLP) language and system. His work on CLP(R) has been influential in
programming language research and also constraint systems. He has served on the program committee of numerous
international conferences. Some recent conferences are: PADL06, ICLP06, PRICAI06, CP05, IJCAI05, and SAC05. His
current research interests include: concurrent and distributed computing, constraint programming, systems security, and
software engineering. In the area of systems security, he has an existing research funded by the Defence Science
Technology Agency, Singapore, which focuses on application and operating systems infrastructure for increasing security
and trust in Unix and Windows. He has worked on auditing and monitoring (including intrusion detection) mechanisms,
at both high and low levels, for secure systems. One of the issues is that the monitoring mechanism itself is subject to
attack. This work will be extended in SELFMAN to become a self monitoring infrastructure built on top of a structured
overlay network.

Stakk AB

Stakk AB is a Swedish company offering distribution solutions for online video and other media. Stakk’s objective is to
establish a leading distribution network for real time streaming and for on demand content by providing high quality
services at significantly lower costs.

Stakk's uses a p2p solution to distribute online video. The p2p solution is easily embedded in services and hardware for
internet video and IPTV, making consumer applications and appliances part of Stakk's or the customer's own p2p-based
network. By embedding its software, Stakk provides built-in, high quality video distribution capabilities to other products.
The benefits can be made available to many participants in the value chain including consumers and companies that
already make use of video streaming services.

Stakk works closely with the p2p group at the Distributed Systems Lab at the Swedish Institute for Computer Science
(SICS) and their collaborators at KTH, in Stockholm. SICS, KTH, and the Stakk research team have provided the
foundation for building a p2p communication network for streaming of video that is robust, highly scaleable and to a large
degree self-managed.

Stakk key personnel

Mohammed El-Beltagy has extensive experience applying optimization, machine learning, simulation, modeling and
agent-based models to a variety of business and engineering problems. He has a Bachelor's degree in Mechanical
engineering design from the American University in Cairo, a Master's degree in Mechatronics from Lancaster University,
and a PhD in Mechanical Engineering from the University of Southampton, England. After obtaining his PhD degree, he

62

honed his consulting expertise as Senior Scientist at BiosGroup, Inc., where he helped optimize various aspects of the
operations of Fortune 50 companies. Later he returned to Egypt where he became the principal of Optomatica, an analytic
business consulting concern. He holds an assistant professor position at Cairo University where he lectures on
Computational Intelligence, Game Theory and Network Optimization.

Sameh El-Ansary is a well-recognized researcher in the area of large-scale distributed systems with emphasis on peer-to-
peer structured overlay networks. He has a Bachelor's and a Master's degree in Computer Science from the American
University in Cairo, and a PhD in the same discipline from the Royal Institute of Technology in Stockholm. Sameh El-
Ansary has often sought business applications for his ideas. He was the winner of the PROGKOM2 Contest for the best
ideas with commercialization potential stemming from research. He was also part-time software architecture consultant
for the largest IT development company in Egypt (ITWorx). El-Ansary is currently an assistant professor at Nile
University. He lectures on distributed algorithms, peer-to-peer systems, and network programming.

Sameh El-Ansary and Mohammed El-Beltagy work together at Stakk, combining expertise in distributed computing and
optimization to seek a novel approach to peer-to-peer video streaming.

A.3 Sub-contracting

The project will do no sub-contracting.

A.4 Third Parties

None of the project work will be carried out by third parties.

A.5 Funding of Third Country Participants

The National University of Singapore (NUS) in Singapore is included as a project partner. We will use the expertise of the
NUS in security and in programming language and system design. The key person at NUS who we will collaborate with
is Roland Yap. Several project partners have a long history of fruitful collaboration with Roland Yap and with other
researchers at NUS. NUS will contribute at a level of 40 person-months over the whole project. We expect to have one
project meeting in Singapore over the duration of the project.

63

References

[ABER04] K. Aberer, A. Datta, and M. Hauswirth. Efficient, Self-Contained Handling of Identity in Peer-to-Peer
Systems. IEEE Transactions on Knowledge and Data Engineering 16(7), July 2004, pages 858-869.

[ABER05] K. Aberer, L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi. The essence of P2P: A
reference architecture for overlay. In 5th International Conference on Peer-to-Peer Computing (P2P 05), IEEE Computer
Society, 2005.

[ACHE02] F. Acherman. Forms, Agents, and Channels. PhD dissertation, U. of Bern, Switzerland, 2002.

[ALDR02] J. Aldrich and C. Chambers and D. Notkin. Architectural Reasoning in ArchJava. Proceedings 16th European
Conference on Object-Oriented Programming (ECOOP), 2002.

[ALDR03] J. Aldrich and V. Sazawal and C. Chambers and David Notkin. Language Support for Connector
Abstractions. Proceedings 17th European Conference on Object-Oriented Programming (ECOOP), 2003.

[ALLE97] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3), 1997.

[AURE04] Erik Aurell and Sameh El-Ansary. A physics-style approach to scalability of distributed systems. SICS
Technical Report T2004:01, 2004.

[BAUS02] W. Bausch, C. Pautasso, R Schaeppi, and G. Alonso. BioOpera: Cluster-Aware Computing. In Proc. IEEE
International Conference on Cluster Computing (CLUSTER 2002). IEEE Computer Society, 2002.

[BENS01] I. Ben-Shaul and O. Holder and B. Lavva. Dynamic Adaptation and Deployment of Distributed Components in
Hadas. IEEE Transactions on Software Engineering, 27(9), 2001.

[BLAI01] G. Blair and G. Coulson and A. Andersen and L. Blair and M. Clarke and F. Costa and H. Duran-Limon and T.
Fitzpatrick and L. Johnston and R. Moreira and N. Parlavantzas and K. Saikoski. The Design and Implementation of
OpenORB v2. IEEE Distributed Systems Online, 2(6), Special Issue on Reflective Middleware, 2001.

[BOUC05] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos, N. de Palma, V. Quema, and J. B. Stefani.
Architecture-Based Autonomous Repair Management: An Application to J2EE Clusters. Proceedings of 24th IEEE
Symposium on Reliable Distributed Systems (SRDS), Orlando, Florida, October 2005.

[BRUN04] E. Bruneton, V. Quéma, T. Coupaye, M. Leclercq, and J.B. Stefani. An Open Component Model and its
Support in Java. Proceedings 7th International Symposium on Component-Based Software Engineering (CBSE 2004),
Springer LNCS 3054, 2004.

[CAND 04] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. A Microrebootable System: Design,
Implementation, and Evaluation. In Proceedings OSDI ‘04, 2004.

[CART05] Bruno Carton and Valentin Mesaros. Improving the Scalability of Logarithmic-Degree DHT-based Peer-to-
Peer Networks. Euro-Par 2004, Pisa, Italy, August-September 2004.

64

[CHUN03] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman. PlanetLab: An
Overlay Testbed for Broad-Coverage Services. In ACM SIGCOMM Comp. Comm. Review, 33(3), 2003.

[CTM04] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming. MIT Press, 929
pages, March 2004.

[CURRY] The Functional Logic Language Curry. http://www.informatik.uni-kiel.de/~mh/curry/

[DARWIN] The Darwin Project, Imperial College. http://www-dse.doc.ic.ac.uk/

[DKS05] Distributed K-Ary System: A Peer-to-Peer Middleware. http://dks.sics.se/, 2005.

[DMTF] Distributed Management Task Force. http://www.dmtf.org//

[ELAN03] S. El-Ansary, L. Onana Alima, P. Brand, and S. Haridi. Efficient Broadcast in Structured P2P Networks. In
2nd International Workshop on Peer-to-Peer Systems (IPTPS 03), Berkeley, CA, Feb. 2003.

[ERLANG] Open Source Erlang, http://www.erlang.org/

[FLEU03] M. Fleury and F. Reverbel. The Jboss Extensible Server. Middleware 2003, Springer LNCS 2672, 2003.

[FLEX05] FlexiNET: Flexible Network Architecture for Enhanced Access Network Services and Applications. IST
Summit, Dresden, June 2005.

[GANE03] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM Systems Journal, 42(1),
2003.

[GARL00] D. Garlan and R. Monroe and D. Wile. Acme: Architectural Description of Component-Based Systems.
Chapter 3 in [LEAV00].

[GHOD05] A. Ghodsi, L. Onana Alima, and S. Haridi. Low-Bandwidth Topology Maintenance for Robustness in
Structured Overlay Networks. In 38th HICSS Conference, Best Paper Award in Software Track, Hawaii, Jan. 2005.

[GHVR05] Ali Ghodsi, Seif Haridi, Peter Van Roy, Thomas Sjöland, Peter Sewell, Luc Onana Alima, Per Brand, Kevin
Glynn, Rachid Guerraoui, and James Leifer. Building Internet-scale Distributed Systems Using Self-managing Overlays.
Submitted to IEEE Computer, July 2005.

[GUMM03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of DHT routing
geometry on resilience and proximity. ACM SIGCOMM'03.

[HASKELL] Haskell: A Purely Functional Programming Language. http://www.haskell.org/

[HERR05] Klaus Herrmann, Gero Mühl, and Kurt Geihs. Self Management: The Solution to Complexity or Just Another
Problem? IEEE Distributed Systems Online, 6(1), Jan. 2005.

[IBM] Autonomic computing: IBM’s perspective on the state of information technology.
http://researchweb.watson.ibm.com/autonomic/

[KAAS03] F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS 03), Berkeley, CA, Feb. 2003.

65

[KINESTHETICS] Columbia University Programming Systems Lab, Kinesthetics eXtreme,
http://www.psl.cs.columbia.edu/kx/

[KON00] F. Kon and M. Roman and P. Liu Mao and T. Yamane and L.C. Magalhaes and R. Campbell. Monitoring,
Security and Dynamic Configuration with the dynamicTAO Reflective ORB. Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware 2000), 2000.

[LEAV00] G. Leavens and M. Sitaraman (eds). Foundations of Component-Based Systems. Cambridge University Press,
2000.

[LUCK95] D. Luckham and J. Vera. An Event-based Architecture Definition Language. IEEE Transactions on Software
Engineering, 21(9), 1995.

[MAGE95] J. Magee and N. Dulay and S. Eisenbach and J. Kramer. Specifying Distributed Software Architectures.
Proceedings 5th European Software Engineering Conference, Springer LNCS 989, 1995.

[MEDV99] N. Medvidovic and D. S. Rosenblum and R. N. Taylor. A Language and Environment for Architecture-Based
Software Development and Evolution. Proceedings of the 21st International Conference on Software Engineering
(ICSE'99), 1999.

[MESA05] Valentin Mesaros, Raphaël Collet, Kevin Glynn, and Peter Van Roy. A Transactional System for Structured
Overlay Networks. Research Report RR2005-01, Department of Computing Science and Engineering, Université
catholique de Louvain, March 2005.

[MIS04] A. Mislove and P. Druschel. Providing administrative control and autonomy in peer-to-peer overlays. 3rd
International Workshop on Peer-to-Peer Systems, San Diego, CA, Feb. 2004.

[MONT05] Alberto Montresor and Mark Jelasity and Ozalp Babaoglu. Chord on Demand. 5th International Conference
on Peer-to-Peer Computing, Aug. 2005.

[MOZART] Mozart Programming System release 1.3.1. http://www.mozart-oz.org/ , July 2004.

[MOZ04] Multiparadigm Programming in Mozart/Oz. Second International Conference (MOZ 2004), Springer LNCS
volume 3389, Charleroi, Belgium, Oct. 2004.

[OBJE05] The ObjectWeb Open Source Middleware Consortium. http://www.objectweb.org/.

[OCEANO] The Oceano Project. http://www.research.ibm.com/oceanoproject/

[OCEANSTORE] The OceanStore Project. http://oceanstore.cs.berkeley.edu/

[P2PK05] P2PKit: A Services Based Architecture for Deploying Robust Peer-to-Peer Applications.
http://p2pkit.info.ucl.ac.be/, 2005.

[P2PS05] P2PS: A Peer-to-Peer Networking Library for Mozart/Oz, http://p2ps.info.ucl.ac.be/, 2005.

[ROC] The Recovery-Oriented Computing Project. http://roc.cs.berkeley.edu/

[ROWS01] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing for Large-Scale
Peer-to-Peer Systems. Springer LNCS 2218, 2001.

66

[SARD05] Sardes: System Architecture for Reflective Distributed EnvironmentS, http://sardes.inrialpes.fr/, 2005.

[SCHM 04] A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order Distributed Process Calculi. In
Global Computing, LNCS 3267, Springer, 2004.

[SCHU04] T. Schütt, A. Merzky, A. Hutanu, F. Schintke. Remote Partial File Access Using Compact Pattern
Descriptions. IEEE/ACM Intl. Symp. on Cluster Computing and the Grid (CCGrid2004), pp. 1-8, April 2004.

[SCHU05] T. Schütt, F. Schintke, A. Reinefeld. Chord#: Structured Overlay Network for Non-Uniform Load
Distribution. Technical Report ZR-05-40, August 2005.

[SHAK05] Ayman Shaker and Douglas S. Reeves. Self-Stabilizing Structured Ring Topology P2P Systems. Peer-to-Peer
Computing 2005.

[SIT02] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Distributed Hash Tables, 1st International
Workshop on Peer-to-Peer Systems, 2002.

[SMARTFROG] The Smartfrog project. http://www.hpl.hp.com/research/smartfrog/

[SZYP02] Clemens Szyperski, with Dominik Gruntz and Stephan Murer. Component Software–Beyond Object-Oriented
Programming. Addison-Wesley/ACM Press, Second Edition, 2002.

[STOI01] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In ACM SIGCOMM 2001, pages 149-160, San Diego, CA, Aug. 2001.

[SUF05] Sufatrio and R.H.C. Yap. Improving Host-Based IDS with Argument Abstraction to Prevent Mimicry Attacks.
8th International Symposium on Recent Advances in Intrusion Detection, 2005, 146-164.

[SWAN] SWAN: Self-aWare mAnagemeNt. French RNRT exploratory project, http://swan.elibel.tm.fr/

[WERM01] M. Wermelinger and A. Lopes and J. Fiadeiro. A Graph Based Architectural (Re)configuration Language.
Proceedings ESEC/FSE `01, V. Gruhn (ed), ACM Press, 2001.

[WU05] Y. Wu and R.H.C. Yap. A User-level Framework for Auditing and Monitoring. 21st Annual Computer Security
Applications Conference, 2005, pages 84-94.

[ZHAO04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A Resilient
Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications, 22(1), Jan. 2004.

