
Advanced Topic (1):
Systems with Discontinuities

Joseph L. Hellerstein, Jie Liu

Microsoft

Feb. 25, 2008

CSE 590K: Analysis and Control of Computing
Systems Using Linear Discrete-Time System Theory

Announcements
• Paper Reviews and Discussions

• If you registered for 2 credits, let us know by the end of today which
paper(s) you’d like to present. We may overrule your choices and assign
you a paper if you don’t pick one.

Paper Reviews
due date topics <2 credits 2 credits

2/29/2008Performance Control pick 2 all 3
3/7/2008Resource provisioning pick 2 all 3

3/14/2008Network/distributed sys pick 2 pick 3
Presentations

data topics 2 credits
3/3/2008Performance Control 3

3/10/2008Resource provisioning 3
3/17/2008Network/distributed sys 4

Paper discussion topics

• 3/3/08 (Performance Control):
– Sujay Parekh, Kevin Rose, Yixin Diao, Victor Chang, Joseph L.

Hellerstein, Sam Lightstone, Matthew Huras, "Throttling Utilities
in the IBM DB2 Universal Database Server," American Control
Conference, 2004.

– S Parekh, N Gandhi, JL Hellerstein, D Tilbury, TS Jayram, J Bigus,
"Using Control Theory to Achieve Service Level Objectives in
Performance Management," Real Time Systems Journal, Vol.23,
No. 1-2, 2002.

– Ying Lu, Tarek F. Abdelzaher, Avneesh Saxena. "Design,
Implementation, and Evaluation of Differentiated Caching
Services." IEEE Transactions on Parallel and Distributed Systems
Vol. 15, No. 5, pp. 440-452, May 2004..

http://www.research.ibm.com/PM/rc23163.pdf
http://www.research.ibm.com/PM/rc23163.pdf
http://citeseer.ist.psu.edu/parekh01using.html
http://citeseer.ist.psu.edu/parekh01using.html
http://www.cs.uiuc.edu/homes/zaher/ying-tpds.ps
http://www.cs.uiuc.edu/homes/zaher/ying-tpds.ps
http://www.cs.uiuc.edu/homes/zaher/ying-tpds.ps

Paper discussion topics

• 3/10/08 (Resource provisioning)
– Jin Heo, Dan Henriksson, Xue Liu, Tare Abdelzaher, "Integrating

Adaptive Components: An Emerging Challenge in Performance-
Adaptive Systems and a Server Farm Case-Study," in Proceedings of
the 28th IEEE Real-Time Systems Symposium (RTSS'07), Tucson,
Arizona, 2007.

– Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui
Wang, Sharad Singhal, Arif Merchant, Kenneth Salem. “Adaptive
Control of Virtualized Resources in Utility Computing," Eurosys, 2007

– Dara Kusic and Nagarajan Kandasamy, “Risk-Aware Limited Lookahead
Control for Dynamic Resource Provisioning in Enterprise Computing
Systems” IEEE International Conference on Autonomic Computing
(ICAC '06), June 2006, pp 74-83.

http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.cs.uiuc.edu/homes/jinheo/papers/heo-integratingadaptcomp.pdf
http://www.hpl.hp.com/research/ssp/papers/2007-03-Eurosys-Silos.pdf
http://www.hpl.hp.com/research/ssp/papers/2007-03-Eurosys-Silos.pdf
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702
http://idea.library.drexel.edu/handle/1860/1702

Paper discussion topics

• 3/17/2008 (Network and distributed systems)
– C. V. Hollot, Vishal Misra, Don Towsley, and Weibo Gong. A control theoretic

analysis of RED. In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), Anchorage, AK, USA, April 22–26 2001. IEEE

– Srinivasan Keshav. "A control-theoretic approach to flow control." In
Proceedings of the ACM Conference on Communications Architecture &
Protocols (SIGCOMM ’91), pages 3–15, Zurich, Switzerland, September 1991.
ACM, ACM Press.

– Hieu Le Khac, Dan Henriksson, and Tarek F Abdelzaher, “A Control Theory
Approach to Throughput Optimization in Multi-Channel Collection Sensor
Networks”, IPSN 2007, Cambridge, MA,

– X. Wang, D. Jia, C. Lu and X. Koutsoukos, "DEUCON: Decentralized End-to-End
Utilization Control for Distributed Real-Time Systems," IEEE Transactions on
Parallel and Distributed Systems, 18(7):996-1009, July 2007

http://citeseer.ist.psu.edu/hollot01control.html
http://citeseer.ist.psu.edu/hollot01control.html
http://citeseer.ist.psu.edu/keshav91controltheoretic.html
http://citeseer.ist.psu.edu/keshav91controltheoretic.html
http://citeseer.ist.psu.edu/keshav91controltheoretic.html
http://faculty.cs.tamu.edu/stoleru/courses/spring08/cpsc689/papers/p31-le.pdf
http://faculty.cs.tamu.edu/stoleru/courses/spring08/cpsc689/papers/p31-le.pdf
http://faculty.cs.tamu.edu/stoleru/courses/spring08/cpsc689/papers/p31-le.pdf
http://faculty.cs.tamu.edu/stoleru/courses/spring08/cpsc689/papers/p31-le.pdf
http://faculty.cs.tamu.edu/stoleru/courses/spring08/cpsc689/papers/p31-le.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf
http://www.ece.utk.edu/~xwang/papers/tpds_deucon.pdf

Today

• Lyapunov stability

• Systems with Discontinuities

– Model discontinuity using state machines

– Hybrid systems

• Timed automata

• Switched linear systems

• Markov jump linear systems

• ITA Software example (Carl de Marcken)

Stability

• Why are control people so obsessed with stability?

– It’s a safety property for feedback systems.

– Stability is about convergence.

– Disturbance rejection

– Reference tracking

– Robustness

• Classes of stability

– Bounded-input-bounded-output (BIBO) stability

– State-based (Lyapunov) stability

Recall: State Trajectories

Mathematical tools for analyzing
stability

• Vector Norm
For vector space , satisfying:

– For

– For

–

• Examples:
– p-norm:

• p=1, Manhattan Norm

• p=2, Euclidean Norm

– �∞-norm:

• All norms are equivalent (for finite n):

.
n

 0:. n

xxx n   ,,

yxyxyx n  ,,

0xx  0

p

pn

i

ip
xx /1

1

)(




),...,max(21 nxxxx 


ABA
xDxxC 

Definitions of Stability

• f is continuous at c iff for all , there exists a , such that
for all x,

– Locally continuous (wrt c)

– Globally continuous (for all c)

– Uniformly continuous (wrt k)

• f is Lyapunov stable at c iff for all , there exists a , such
that for all x, , for all
– n = 1, contraction map

))(()1(kxfkx 

0 0

 )()(cfxfcx

0 0

 )()(cfxfcx nn n

c x1

x2

Definitions of Stability

• f is asymptotically stable at c iff there exists a , such that
for all x,

– Convergence.

• f is exponentially stable at c iff there exists a and ,
such that for all x,

– There is a bound on convergence rate.

))(()1(kxfkx 

0

 ncfxfcx nn as0)()(

0
nnn acfxfcx )()(

n

x

0a

LTI System Stabilities

• For LTI system,
– local stability = global stability

– asymptotically stability = exponential stability.

– State stability BIBO stability

• To see this: recall

)()()1(kBukAxkx 



PPA  1

yxyx 

xAAx)(max

Lyapunov Stability Theorem

• A continuous function f is positive definite if f(0) = 0
and f(x) > 0 for every nonzero x.
– A matrix A is positive definite if

• Lyapunov direct method: is stable if
there exists a positive definite function V(x)，such
that:

• Remarks:
– In general,
– This is a sufficient condition
– Works for any system.

0for0  xAxxT

))(()1(kxfkx 

0)()1()( kVkVkV

IP 

x1

x2

Lyapunov Stability Theorem
• Can be shown, for LTI systems can choose:

• So, look for Q positive semi-definite, such that

• A discrete-time LTI system is asymptotic stability
if and only if for all Q positive definite, we can
find a unique positive definite P.

)())((

)()()1()1(

)()1()(

kxPAPAkx

kPxkxkPxkx

kVkVkV

TT

TT







QPAPAT 
Algebraic Lyapunov

Equation

PxxxV T)(

Validating Example

IQA 







 ,

0

0

2

1





IPAPAT Solve:
















































10

01

0

0

0

0

43

21

2

1

43

21

2

1

pp

pp

pp

pp



































10

01

)1()1(

)1()1(

4

2

1321

2211

2

1

pp

pp




























2

1

2

1

1

1
0

0
1

1




P

1and1iff0 21  P

Assume:

Systems with Discontinuities

• State machines

• Hybrid systems

– Timed automata

– Switched linear systems

– Markov jump linear systems

(Mealy) State Machines

• StateMachine = (States, Inputs, Outputs, update, initialState)

• Stutter:

absent ()  Inputs, and absent  Outputs

Update(s, ) = (s, )

• Finite State Machine: if States set is finite.

Initial state indicator guard1/output1

guard2/output2

guard3/output3

else/absent

update: States X Inputs  States X Outputs

Example: Parking Meter

• States = {0, 1, 2, ..., 60}
• Inputs = {coin5, coin25, tick, absent}
• Outputs = { expired, safe, absent }
• initialState = 0

– where safe simply indicates that there is still money in the meter. The update function is given
by the following table:

• Example:
– InputSequence = coin25, tick20, coin5, tick10, ...
– StateResponse = 0, 25, 24, ..., 6, 5, 10, 9, 8, ..., 2, 1, 05

– OutputSequence = expired, safe, safe, ..., safe, safe, safe, safe, safe, ..., safe, safe, expired5

if then update(s, x) =

x = tick and (s = 0 or s = 1) (0, expired)

x = tick and s > 1 (s - 1, safe)

x = coin5 (min(s + 5, 60), safe)

x = coin25 (min(s + 25, 60), safe)

x = absent (s, absent)

Valid Trajectories
• Receptiveness: The machine can always react to an input symbol.

• Determinism: For a deterministic machine, the guards on the arcs
emerging from any state are mutually exclusive (they have no
common elements).

• Nondeterminism: When multiple updates (arcs) are enabled by an
input symbol, the machine is free to choose any enabled transition.

InputSequence: 0, 1, 0, 1, 0, 1, ...

StateSequence1:a, a, b, a, b, a, b, ...
OutputSequence1: 0, 1, 0, 1, 0, 1, ...

StateSequence2:a, a, b, b, b, a, b, ...
OutputSequence2: 0, 1, 1, 1, 0, 1, ...

StateSequence3:a, a, b, b, b, b, b, ...
OutputSequence3: 0, 1, 1, 1, 1, 1, ...

…

Abstraction Using Nondeterminism

Parking meter example

deterministic

nondeterministic

Simulation of FSM

• Intuitively, it is a game:
– Consider a game, where each machine starts in its initial state. Then, given an input, A

reacts, and B tries to react in such a way as to produce the same output (given the same
input). If B can always do this, B is said to simulate A.

• Bisimulation: The game can be played at any state in any
order. E.g. A moves for one step, B matches. Then B moves for
one step and A matches. And so on.

• A simulates B and B simulates A  A bisimulates B.
– Simulation is an abstraction relation

– Bisimulation is an equivalence relation

Machine A Machine B

Composition of FSM
• Synchrony: Consider a set of interconnected components, where each component

is a state machine, as in:

• We construct a state machine model for the composition that is synchronous and
reactive:
– The reaction of the composite consists of exactly one reaction of each component.
– The reaction of the composite is triggered by an input to the composite.
– The component reactions are simultaneous and instantaneous.
– The output of each component is simultaneous with its input.
– The output of the composite is simultaneous with the input to the composite.
– The output of each component is visible to its destination in the same reaction.

Side-by-side Composition

• Let the composition be given by StateMachine = (States, Inputs, Outputs, update,
initialState)

• Definition of the composition:
– States = StatesA x StatesB

– Inputs = InputsA x InputsB

– Outputs = OutputsA x OutputsB

– initialState = (initialStateA, initialStateB)
– update((sA, sB), (xA, xB)) = ((s'A, s'B), (yA, yB))
– where

• (s'A, yA) = updateA(sA , xA)
• (s'B, yB) = updateB(sB , xB)

• Stuttering element: stutter = (absent, absent)

xA

xB

yA

yB

Cascade Composition

• Assumption: OutputsA  InputsB

• Definition of the composition:
– States = StatesA x StatesB

– Inputs = InputsA

– Outputs = OutputsB

– initialState = (initialStateA , initialStateB)
– update((sA , sB), x) = ((s'A , s'B), yB)
– where

• (s'A , yA) = updateA (sA, x)
• (s'B , yB)= updateB (sB, yA)

• Stuttering element: stutter = absent

Example: Differential CODEC

States = {(0, 0), (0, 1), (1, 0), (1, 1)}
Inputs = Outputs = {0, 1, absent }
initialState = (0, 0)

current state
(next state, output) for input

0 1 absent

(0, 0) ((0, 0), 0) ((1, 1), 1) ((0, 0), absent)

(0, 1) ((0, 0), 1) ((1, 1), 0) ((0, 1), absent)

(1, 0) ((1, 1), 1) ((0, 0), 0) ((1, 0), absent)

(1, 1) ((1, 1), 0) ((0, 0), 1) ((1, 1), absent)

• Remarks:
• The output is always equal to the input. (It works!)
• States (0, 1) and (1, 0) are not reachable. (This is a form of control!)
• Can be reduced to a simpler machine that bisimulate the composition.

Feedback Composition

• Assumption:
– OutputsA  InputsB

– OutputsB2  InputsA2

• Definition of the composition:
– States = StatesA ´ StatesB

– Inputs = InputsA1

– Outputs = OutputsB1

• updates function is found by iteration to a fixed point:
– Start with unknown on the feedback arc

– Foreach state machine:

• If output can be determined, produce it

• If state transition can be determined, take it

– Repeat until no progress is made.

• Two possible outcomes:

• All outputs are
determined

• Some signals are still
unknown. The
composition is ill-formed.

Examples

(A) (B)

(C) (D)

Examples

(A): false, true, false, true, false, ... (B): ill-formed (no enabled transitions)

(C): ill-formed (multiple enabled transitions) (D): false, false, false, false, false, ...

Systems with Discontinuities

• State machines

• Hybrid systems

– Timed automata

– Switched linear systems

– Markov jump linear systems

Hybrid System Review

• Automata refined into differential/difference equations.

Hybrid System Review

0;0

;

21

2211





yy

dydy



• In general,
– Refinements can have different state variables;
– Guard can be defined on state variables;
– State variables can be assigned to new values on the arcs.

• Lyapunov method is probably your best hope.

apart together

)/()/)(/)(()(

);()(/)()(

212211

121

mmmtymtyty

tytytyty







yyyyyyyy

stickinesspkpktykk

 



2121

112221

;;;

/)()()(

22222

11111

/))(()(

/))(()(

mtypkty

mtypkty









21

212211)()(
)(

mm

tykkpkpk
ty






Systems with Discontinuities

• State machines

• Hybrid systems

– Timed automata

– Switched linear systems

– Jump linear systems

Timed Automata

• Introduce clock variables to FSM.
x(k+1)=x(k)+c

1)()1( kxkx 1)()1( kxkx

0)(,/1)( kxtickkx

0)(kx 0)(,/2)( kxtickkx

Generate a sequence of ticks at k={1, 3, 4, 6, 7, …}

To avoid confusion, we shall call discrete states modes or locations from now on.

Example: Parking Meter

Timed automata are particularly useful for modeling timeouts, like in
communication protocols, real-time systems, and digital circuits.

)()1(ksks  1)()1( ksks

u(k)

s(k)

s(k) s(k)

s(k)

s(k) s(k)

(u(k), s(k)) u(k) s(k)

Remarks

• Timed automata do not need (explicit) inputs to
run. Time is an (implicit) input.

• Transitions do not take time.
– The trajectory of a timed automaton is an alternation

between continuous time elapses and discrete
transitions.

• Multi-rate timed automata may have multiple
clock variables and they evolve at different rate.

• Composition: similar to FSM, also takes the
synchrony assumptions.

Reachability Analysis Basics

• Given a timed automaton A, and a set LF  L of target locations, the
reachability problem is to determine whether some target location is
reachable.

• Assume guards involves clock variables have the form:

• Stability in the BIBO sense (on clock variables) can be defined as a
reachability problem by introducing “unstable” states with x > Bound.

• Basic idea for reachability analysis:
– A TA typically has infinite states

– Classify states into equivalent classes (called stable quotients).

– Ensure the equivalent relationship does not pollute non-target locations with target
locations.

– Only need to track a finite set of equivalent classes.

• Time complexity:
– n locations, k clocks, every clock constraints of A is bounded by c.

• Tools: Timed COSPAN, KRONOS, UPPAAL.

21||||   xccxxccx

))log((2 kckOn 

Systems with Discontinuities

• State machines

• Hybrid systems

– Timed automata

– Switched linear systems

– Markov jump linear systems

Switched Linear Systems

• Remarks:
– Same set of variables, continuous states：

Given x(k), x(k+1) is computed with q(k)

– Piecewise linear
– Switching decision  is discontinuous wrt x.

• Lyapunov Stability:
– Consider Lyapunov functions
– The switching system is stable if
– Can find switching sequence automatically.

))(),(()1(

},...,1{),()()1(

kxkqkq

NQqkuBkxAkx qq






 xWxV qq)(

,...2,1)),(())1(( ikxVkxV iqiq ii

X. Koutsoukos, P. Antsaklis, “Design of Stabilizing Switching Control Laws for Discrete and Continuous-Time Linear Systems Using Piecewise-Linear
Lyapunov Functions”, International Journal Control, 75(12), 932-945, 2002

Systems with Discontinuities

• State machines

• Hybrid systems

– Timed automata

– Switched linear systems

– Markov jump linear systems

Markov Jump Linear Systems

• Stochastic jumps
• Use second momentum as Lyapunov function:

M = E(xTx)

• Can show that the system is asymptotically stable if
there exists real, positive definite matrices Q1, …QN,
s.t.

Njikpikqjkq

kuBkxAkx

ij

qq





,1),(})(|)1(Pr(

)()()1(





N

j

i

T

jjjji iQAQAp
1

allfor,

Summary
classes Hybrid

systems
Timed
automata

Switched
linear sys

Jump
linear sys

Same flow variables
in every location

No No Yes Yes

Guards on
transitions

f(x) x < c f(x) pij

Reset flow variables
on transitions

Yes Yes No No

