THE ADVENTURES OF

SELFHAN

Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme
Priority 2, Information Society Technologies

The Adventures of Selfman - Year Four
(M37-M40)

Due date of deliverable: Nov. 15, 2009
Actual submission date: Nov. 15, 2009

Start date of project: June 1, 2006
Duration: 40 months
Dissemination level: PU

Contents

1 Introduction 6
2 D2.4: Simulation and emulation environment for the Kom-
pics P2P framework 8
2.1 Executive summary 8
2.2 Contractors contributing to the Deliverable 9
2.3 Overview of the evaluation environment 10
2.3.1 Defining an experiment scenario 10
2.3.2 Experiment profiles, 11
2.3.3 Summary 11
2.4 Papers and publications 12
3 D3.4: Optimizations for self-managing global storage ser-
vices 14
3.1 Executive summary 14
3.2 Contractors contributing to the Deliverable 16
3.3 Results. 17
3.3.1 Adapting the Storage Service to Data Centers 17
3.3.2 Load Balancing 18
3.3.3 Transaction Performance 19
3.4 Papers and Publications 20
4 DA4.5: Third report on self-configuration support 25
4.1 Executive summaryo 25
4.2 Contractors contributing to the Deliverable 26
43 Results. 27
4.3.1 NAT-resilient gossip peer-sampling 27
4.3.2 Adaptive deployment over unstructured overlays 28
4.4 Papers and publications 30

CONTENTS

5 D5.9: Distributed mobile application on gPhone 31
5.1 Executive summaryo o Lo 31
5.2 Contractors contributing to the Deliverable 32
5.3 Introduction 33
5.4 Specification 34
5.5 Architecture 35
5.6 Implementation L. 38

5.6.1 Porting Mozart on Android 40
5.6.2 Communication Oz-Java 43
5.6.3 Graphical toolkit for Android 44
5.6.4 Application structure 47
5.6.5 Screenshots of the applications 50
5.6.6 Locking mechanism 50
5.7 Conclusion and future work 54
5.8 Papers and publications 55

6 D5.10: Design and analysis of Beernet, the Mozart struc-
tured overlay network implementation 56
6.1 Executive summary 26
6.2 Contractors contributing to the Deliverable o7
6.3 Results. 58
6.4 Dissertation, Publications and Award 61

7 D5.11: Evaluation of security mechanisms 62
7.1 Executive summary 62
7.2 Contractors contributing to the Deliverable 64
7.3 Applications of the Wiki Credibility Infrastructure. 65

7.3.1 Reducing Wiki spam with Social Networks 65
7.3.2 Experiments Lo 67
7.4 Navigability in the Watts and Strogatz Small World Model . . 72
7.5 Papers and publications L. 73
A Publications 75
A.1 Software design with interacting feedback structures and its
application to large-scale distributed systems 76
A.2 Building and Evaluating P2P Systems using the Kompics Com-
ponent Framework 0oL 85
A.3 Gossip-based Topology Inference for Efficient Overlay Map-
ping on Data Centers 88
A.4 Self-Adaptation in Large-Scale Systems: A Study on Struc-
tured Overlays Across Multiple Datacenters 93

SELFMAN Deliverable Year Four (M37-M40), Page 3

CONTENTS

A.5 Enhanced Paxos Commit for Transactions on DHTs 99
A.6 Towards Explicit Data Placement in Scalable Key/Valaue-stores110
A.7 Active/Passive Load Balancing with Informed Node Place-

ment in DHTs 116
A.8 Generic Self-Healing via Rejuvenation: Challenges, Status Quo,

and Solutions 129
A.9 DHT Load Balancing with Estimated Global Information . . . 134
A.10 NAT-resilient gossip peer sampling 235
A.11 Adaptive Deployment on P2P systems 245
A.12 Decentralized Transactional Collaborative Drawing 274

A.13 Decentralized Transactional Collaborative Drawing (demo) . . 280
A.14 Beernet: A Relaxed-Ring for Self-Managing Decentralized Sys-

tems with Transactional Replicated Storage 283
A.15 Beernet: RMI-free peer-to-peer networks 451
A.16 From mini-clouds to Cloud Computing 460

A.17 Best Presentation Award: “Beernet: a relaxed-ring approach
for peer-to-peer networks with transactional replicated DHT” 466

A.18 Wiki credibility enhancement 469

A.19 Routing in the Watts and Strogatz Small World Networks Re-
visited 474

Bibliography 479

SELFMAN Deliverable Year Four (M37-M40), Page 4

List of Figures

3.1 Geographic distribution of replicas using prefix replication. . .

3.2 Geographic distribution of replicas using prefix replication. . .

3.3 Imbalance with decreasing levels of churn.

3.4 The systems load in standard deviation versus the amount of
load moved for variations of Karger with global estimates.

3.5 Timeline diagram of a fast transaction commit.

5.1 State diagram ofauser
5.2 On the left, the user is in Asking for locks state. On the right,
the user is in Got locks mode.
5.3 State diagram of an Android task
5.4 Structure of DeTransDrawid
5.5 Creation of javaaccess project in Eclipse
5.6 Creation of DeTransDrawld project in Eclipse
5.7 Eclipse environment after creating both projects
5.8 DeTransDrawid state diagram
5.9 DeTransDraw running on the desktop
5.10 DeTransDraw running on Android

7.1 Facebook subgraph with 1000 nodes visualized. The two pic-
tures at the bottom are the zoomed-in version of the red re-
gions of the graph.

7.2 Varying the number of Sybil nodes

7.3 Acceptance rate when there is no attack

7.4 Varying the number of vote collectors

Chapter 1

Introduction

This set of final deliverables for the SELFMAN project covers the four-month
extension (M37-M40). The main goal for this extension is to continue the
momentum of SELFMAN: to provide additional results, to complete existing
results, and to make a bridge toward future projects. We have made the
following additional deliverables in the extension:

D2.4: Simulation and emulation environment for Kompics P2P frame-
work (partner KTH). This deliverable is part of task T2.2 and extends
D2.1c.

D3.4: Optimizations for self-managing global storage services (partner
ZIB). This deliverable is part of task T3.2 and extends D3.2b.

D4.5: Third report on self-configuration support (partner INRIA). This
deliverable is part of task T4.1 and extends D4.1b.

D5.9: Distributed mobile application on gPhone (partner UCL). This
deliverable is part of task T5.8 and subsumes D5.8.

D5.10: Design and analysis of Beernet, the Mozart structured overlay
network implementation (partner UCL). This deliverable is part of task
T5.3 and consists of the Ph.D. dissertation of Boris Mejias.

D5.11: Self-protection mechanisms which provide spam resistance (part-
ner NUS). This deliverable is part of task T5.6 and extends D5.6.

D6.1d: Second project workshop. The workshop was held on Sept. 15,
2009 in conjunction with SASO 2009.

In addition to these deliverables, we have written an article that distills
many insights and results of SELFMAN: “Software design with interacting

6

CHAPTER 1. INTRODUCTION

feedback structures and its application to large-scale distributed systems”
(see Appendix A.1).! This article can be seen as a continuation of Deliver-
able D5.7 “Guidelines for building self-managing applications”. The major
insight is that large-scale distributed systems can be designed as a set of
weakly interacting feedback structures, where a feedback structure is a hier-
archy of interacting feedback loops that together maintain one global system
property. The overall system specification is the conjunction of these prop-
erties. This provides the foundation of a realistic methodology for building
self-managing applications. For example, the Scalaris design consists of six
weakly interacting feedback structures, which is an enlightening alternative
to the traditional layered approach where it is presented as three layers.

!Submitted to CACM on Oct. 1, 2009, upon invitation by editor-in-chief Moshe Vardi.

SELFMAN Deliverable Year Four (M37-M40), Page 7

Chapter 2

D2.4: Simulation and
emulation environment for the
Kompics P2P framework

2.1 Executive summary

In this deliverable we present the prototype of a simulation and emulation en-
vironment for the evaluation of peer-to-peer systems built using the Kompics
component framework. The prototype is released together with the Kompics
framework and can be downloaded from http://kompics.sics.se.

The evaluation environment comprises of (1) a Java-based domain-specific
language for specifying peer-to-peer experiment scenarios, (2) generic sup-
port for executing Kompics system in a reproducible simulation mode, (3)
a generic discrete-event simulator encapsulated in a Kompics component,
paired by an orchestrator component for the emulation mode, (4) system-
specific simulator components, and (5) component architectures and patterns
that enable the execution of Kompics P2P systems in either simulation, in
local real-execution/emulation mode, or in distributed deployment.

A few examples of experiment scenarios can be found and followed at
http://kompics.sics.se/trac/wiki/P2P. These include some scenarios for
experiments with Chord and Cyclon in both simulation and real-time execu-
tion mode, as well as some BitTorrent simulation experiments.

This evaluation environment was successfully used as a teaching tool in
the Distributed Computing, Peer-to-Peer and Grids course (ID2210) at KTH.
The framework was used as support for student assignments which required
the implementation and evaluation of P2P systems including a structured
overlay network, a gossip-based overlay, and a content distribution network.

CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.2 Contractors contributing to the Deliver-
able

KTH(P2) has contributed to this deliverable.

KTH(P2) KTH has implemented and tested and is still improving a pro-
totype of the simulation and emulation environment for P2P systems built
using the Kompics component framework. KTH gave a demonstration of
this evaluation environment at the P2P’09 conference in September 2009.

SELFMAN Deliverable Year Four (M37-M40), Page 9

CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.3 Overview of the evaluation environment

Kompics is a component model targeted at building distributed systems
by composing protocols programmed as event-driven components. Kompics
components are reactive state machines that are executed concurrently by
a set of workers. Components communicate by passing data-carrying typed
events through typed bidirectional ports connected by channels. Ports are
event-based component interfaces. A port type represents a service or a pro-
tocol abstraction. It specifies the types of events sent through the port in
each direction. Components may encapsulate subcomponents.

The Kompics runtime supports pluggable component schedulers. The
default scheduler is multi-threaded and executes components in parallel on
multi-core machines. We use a single-threaded scheduler for reproducible
simulation.

In this deliverable we present the prototype of a simulation and emulation
environment for the evaluation of peer-to-peer systems built using the Kom-
pics component framework. Kompics systems can be uniformly evaluated in
large-scale reproducible simulation and distributed deployment, using both
the same system code and the same experiment scenarios.

The evaluation environment comprises of (1) a Java-based domain-specific
language for specifying peer-to-peer experiment scenarios, (2) generic sup-
port for executing Kompics system in a reproducible simulation mode, (3)
a generic discrete-event simulator encapsulated in a Kompics component,
paired by an orchestrator component for the emulation mode, (4) system-
specific simulator components, and (5) component architectures and patterns
that enable the execution of Kompics P2P systems in either simulation, in
local real-execution/emulation mode, or in distributed deployment.

2.3.1 Defining an experiment scenario

We designed a Java domain-specific language (DSL) for expressing experi-
ment scenarios for P2P systems. We call a stochastic process, a finite random
sequence of events, with a specified inter-arrival time distribution. Here is
an example scenario composed of 3 stochastic processes:

StochasticProcess boot = new StochasticProcess() {{
eventInterArrivalTime (exponential (2000)); // 2s
raise(1000, chordJoin, uniform(16)); }}; // 1000 joins

StochasticProcess churn = new StochasticProcess() {{
eventInterArrivalTime (exponential (500));// 500ms
raise(500, chordJoin, uniform(16)); // 500 joins

SELFMAN Deliverable Year Four (M37-M40), Page 10

CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

raise(500, chordFail, uniform(16)); }}; // 500 failures
StochasticProcess lookups = new StochasticProcess() {{

eventInterArrivalTime (normal(50)); // 50ms

raise (5000, chordLookup, uniform(16), uniform(14)); }};
boot.start(); // start
churn.startAfterTerminationOf (2000, boot); // sequential
lookups.startAfterStart0f (3000, churn); // in parallel

terminateAfterTerminationOf (1000, lookups);// terminate

1000 peers join in a space of 0..2!%. The inter-arrival time between 2
consecutive joins is exponentially distributed with a mean of 2s. A churn
process starts 2s after. Every 500ms on average (exp), a new peer joins or
an existing peer fails. In parallel with the churn process, 5000 lookups are
initiated uniformly around the ring (0..2'6) for keys in the first ring quadrant
(0..211). The experiment terminates 1s after lookups are done.

2.3.2 Experiment profiles

We can reuse the same experiment scenario definition to drive simulation or
local real-time execution experiments, as well as remote experiments where
the system nodes are distributed over the machines of a cluster (possibly
running ModelNet) or a testbed like PlanetLab or Emulab.

During simulation and local execution we model the network at the
message-level. In simulation, we execute the same system code built for
deployment. Calls for the current system time are trapped and the cur-
rent simulation time is returned. Simulation enables deterministic replay,
debugging, reproducible results, and large-scale experiments without loss of
accuracy.

We developed an infrastructure for deploying and executing distributed
experiments. Experiment scenarios are locally interpreted by a Master com-
ponent which coordinates a set of remote Slaves. Each Slave resides on a
machine available for the experiment and it manages a set of system peers.

2.3.3 Summary

The prototype is released together with the Kompics framework and can be
downloaded from http://kompics.sics.se. Examples of experiment sce-
narios can be found at http://kompics.sics.se/trac/wiki/P2P. These
include some scenarios for experiments with Chord and Cyclon in both sim-
ulation and real-time execution mode, as well as some BitTorrent simulation
experiments.

SELFMAN Deliverable Year Four (M37-M40), Page 11

CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.4 Papers and publications

The simulation and emulation environment for the Kompics P2P framework
was demonstrated at the P2P’09 conference in Seattle, on Septemper 2009.

Building and Evaluating P2P Systems using the Kom-
pics Component Framework

Cosmin Arad, Jim Dowling, Seif Haridi.

A demonstration abstract [3] was published in the P2P’09 conference
proceedings. This demonstration abstract is included in Appendix A.2. The
abstract outlines the contents of the demonstration and briefly introduces
the Kompics component model and its simulation and evaluation framework
for peer-to-peer systems.

The demonstration was accompanied by a poster which is included on
the next page.

SELFMAN Deliverable Year Four (M37-M40), Page 12

THE ADVENTURES OF

GeLFHAN [Z1w]=]

Information Society

KOMPIES

Reactive Component Model for Distributed Computing

Kompics components Peer-to-Peer framework
» are reactive / event-driven programming model » reusable components and patterns
» are concurrent / readily exploit multi-core architectures - failure detection, bootstrap, monitoring

- communication, web-based interaction
» are decoupled by publish-subscribe ports and channels .
» implemented overlay systems

» can be composed out of encapsulated subcomponents - Chord, Kademlia, Gyclon, T-Man, BitTorrent

» form dynamically reconfigurable architectures » P2P experiment scenario definition DSL
» can form flexible fault supervision hierarchies - specify & compose “stochastic processes”
- churn, system-specific actions, termination
Experiment proﬁles » generic P2P simulator / orchestrator

- coupled with system-specific simulators
» local / distributed deployment: 1 peer / OS process

o . . » reusable latency and bandwidth models
» local / distributed execution: multiple peers / OS process

. . . » Java implementation
» local simulation: multiple peers / OS process
» the deployment code is executable in simulation mode

- using a deterministic single-threaded component scheduler Chord S

. . . StochasticProcess boot = new StochasticProcess() {{
- replay debugging, reproducible results, large experiments eventInterArrivalTime (exponential (2000));// -2
raise (1000, chordJoin, uniform(16)); }}; // 1000 joins
» the same experiment scenario can be used for local simu- StochasticProcess churn = new StochasticProcess() {{
eventInterArrivalTime (exponential (500)); // ~500ms
lation, local execution, or distributed execution ZED(EN, C t CEEE(EE))5 70 BN fEin
raise (500, ch , uniform(16)); }}; // 500 failures
StochasticProcess lookups = new StochasticProcess() {{
eventInterArrivalTime (normal (50)) ; // ~50ms
. raise (5000, chordL up, uniform(16), uniform(14)); }};
Chord deployment architecture boot .start ()}
churn.startAfterTerminationOf (2000, boot); // sequential
- - lookups.startAfterStartOf (3000, churn); // in parallel
Chord RomeARpIcaten JettyWebserver ChordMonitorServerMain terminateAfterTerminationOf (1000, lookups);// terminate
e wr] | etwebterer |
Main ordPeerPor = _W
ChordPeerPort Web +
—|\Web . . .
ChordPeer { Web |
o P Chord simulation architecture
ChordMonitorClient ChordWebApplication
Network}{Timer}-[& H L{cs }-{son}—{Fos] ChordSimulationMain (ChordExecutionMain)
+[1
—] JettyWebServer
Chord . Web
m " BootstrapServerMain = '_l L Wb}
= = —{ Failur A
JettyWebServer | " —]
[Bootsap] -[rammeoeeam}-(||| own] Luet
T i =Leh Chorcaset IChordMonitorServer|
BootstrapClient FailureDetector (OP) *Elle; m _ -
{Netword]—{fimer] {Network—[Tme] {web networid{Timer]
BootstrapServer
*[Network} :E— [Network] *[Web]
*Network] *imer i BootstrapServer
MinaNetwork | JavaTimer | MinaNetwork | | JavaTimer P2pSimulator (P2pOrchestrator) —{Network _

Documentation, examples, and source code at http://kompics.sics.se/

Distributed Computer Systems Group Cosmin Arad (cosmin@sics.se) Computer
A Unit for Software and Computer Systems Jim Dowling (jdowling@sics.se) ~ Systems SI‘ . S

Information and Communication Technology Seif Haridi (seif@sics.se) Laboratory

Chapter 3

D3.4: Optimizations for
self-managing global storage
services

3.1 Executive summary

The Global Storage Service developed within SELFMAN has been shown
to scale as a storage backend for complex applications such as Wikipedia.
Within this deliverable we present results from three different optimizations
to the service:

e Storage services deployed over multiple geographically distributed data
centers have recently been presented by companies such as Google, Ya-
hoo! and Amazon. Data centers typically exhibit a hierarchy, while the
SELFMAN storage service was originally developed for a flat topology.
We have adapted the Global Storage Service to work better for a hi-
erarchical structure by using a technique called prefix replication in
combination with a gossip-based ring management algorithm.

e Applications such as Wikipedia have a non-uniform distribution of both
storage and query workload. We have therefore investigated several
active load balancing algorithms for reducing the moved load. In addi-
tion, a passive algorithm was developed to improve the load imbalance
of the system by placing joining nodes according to the load.

e The distributed transaction algorithm used to guarantee strong consis-
tency on storage operation normally need six steps to execute a trans-
action. With the goal of reducing the latency and traffic necessary to

14

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

perform a transaction, we have been able to improve the algorithm to
four steps in the common case.

SELFMAN Deliverable Year Four (M37-M40), Page 15

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

3.2 Contractors contributing to the Deliver-
able

ZIB(P5) Worked on load balancing, replication and improvements to the
transaction layer on top of the structured storage.

SELFMAN Deliverable Year Four (M37-M40), Page 16

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

3.3 Results

This section reports on the optimizations performed to the global storage
service during the last phase of SELFMAN. We have mainly focused on
three sub-problems: load balancing, transaction performance and data center
detection and replication. The main results are summarized in this section
and accompanied by a short introduction to the respective publications in
Section 3.4.

3.3.1 Adapting the Storage Service to Data Centers

With the advent of cloud computing, applications and services are deployed
over multiple, geographically separated data centers to ensure availability.
Using the Global Storage Service in a multi-data center deployment is sub-
optimal due to several basic assumptions in Structured Overlay Networks. 1)
When a data center is unavailable the resulting node failures are correlated,
2) Bandwidth and latency between nodes inside a data center is often several
magnitudes better than between nodes in different data centers and 3) the
topology of a Structured Overlay Network is flat while a multi data center
architecture is hierarchical.

We have addressed these problem using three different methods. First,
we use item prefixes to be able to place replicas according to specific policies.
For example, a majority of replicas within the same data center improves
read /write performance. Second, we introduced a gossip-based ring mainte-
nance algorithm which improves the repair of a ring for correlated failures.
Finally, we developed a fully distributed data center detection algorithm to
minimize the number of unnecessary inter-data center links [25, 24].

Fig. 3.1 illustrates how replicas can be placed in a global ring structure to
ensure both, low latency and high availability for applications with different
geographical user communities, like several instances of Wikipedia in different
languages.

Fig. 3.2 shows the actual size and location (circles) and the estimated
locations of the data centers (diamonds) that were identified by our algorithm
after 1.5log, N communication rounds, with N being the number of nodes.
We simulated 100 nodes based on the Grid 5000 node distribution and plotted
all centroids identified by all nodes. After 1.5log, N rounds the error is
already relatively small.

SELFMAN Deliverable Year Four (M37-M40), Page 17

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

App2:3:* App2:1:*

US center 1 App2:2:*
US center 2

German center

Swedish center

Figure 3.1: Geographic distribution of replicas using prefix replication.

3.3.2 Load Balancing

The goal of load balancing is to improve the fairness regarding storage as
well as network and CPU-time usage between the nodes. Imbalance mainly
occurs due to: 1) non-uniform key distribution, 2) skewed access frequency
of keys and 3) node heterogeneity. First, by supporting range-queries as in
the SELFMAN global storage service, an order-preserving hash function is
used to map keys to the overlay’s identifier space. With a nonuniform key
distribution a node can become responsible for an unfair amount of items.
Second, keys are typically accessed with different popularity which creates
uneven workload on the nodes. The third issue, node capacity differences,
also impacts the imbalance. For example, a low capacity node gets overloaded
faster than a high capacity node.

A load balancing algorithm can have two modes: active, which triggers
a node already part of the overlay to balance with other nodes and passive,
which places a joining node at a position that reduces the overall system
imbalance. Without passive balancing, system churn continually deteriorates
the system balance since nodes are joining at random node IDs. We have
devised an algorithm for both passive and active mode which tries to place the
joining node at the best position depending on both storage and workload.
Figure 3.3 shows the imbalance for the passive/active algorithm with basic

SELFMAN Deliverable Year Four (M37-M40), Page 18

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

52

&

-
44}

42
-4 -2 0 2 4 6 8
Longitude [°]

Lattidude [°]

Figure 3.2: Geographic distribution of replicas using prefix replication.

hashing.

We continued to investigate the possible improvements to active load
balancing algorithms by adding global estimates [8]. Global estimates are
created through gossip and is including variations of the average load, the
standard deviation and both combined. This information was used to extend
Karger’s [11] active randomized load balancing algorithm. Figure 3.4 shows
the performance of the different algorithms using the load distribution from
all English Wikipedia page titles. We conclude that by using global estimates
we are able to move half the load or less as without the estimates. Further
results from this work is presented in [13]. We are currently improving the
simulation model by adding churn. In addition, we are also investigating a
new design that, unlike DHTS, separate the storage and routing layer [10].

3.3.3 Transaction Performance

In the transaction algorithm presented in Deliverable 3.1b and c, there are
six steps necessary to perform a transaction. We have improved this algo-
rithm such that in the common case only four steps are needed. For a fast
transaction validation, each node in the overlay permanently maintains a list
of » — 1 other nodes, that can be used as Replicated Transaction Managers
(RTMs). The location of these nodes could be according to the scheme of
symmetric replication. Once these nodes are located, they are maintained
through the use of failure detection. The short version of the protocol is
shown in Figure 3.5.

SELFMAN Deliverable Year Four (M37-M40), Page 19

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

active
passive

a+p
hash

Imbalance
o

MTTF (hours)

Figure 3.3: Imbalance with decreasing levels of churn.

3.4 Papers and Publications

Gossip-based Topology Inference for Efficient Overlay Mapping on
Data Centers

Thorsten Schiitt, Alexander Reinefeld, Florian Schintke, Marie Hoffmann.
Presented at the IEEE Internationl P2P Conference 2009 (see A.3, [25]).

We present a distributed algorithm for identifying the location of
data centers and their relative sizes. This topology information
can be used in P2P systems to improve the routing performance,
replica placement, or job scheduling.

The algorithm uses gossiping with local agglomerative clustering.
It is robust to failures and it correctly identifies outliers that are
caused, e.g., by temporarily overloaded nodes or network failures.
We present empirical results on the Grid 5000 testbed.

Self-Adaptation in Large-Scale Systems: A Study on Structured
Overlays Across Multiple Datacenters

Thorsten Schiitt, Alexander Reinefeld, Florian Schintke, Christian Hennig.
Presented at the IEEE SELFMAN Workshop at SASO 2009. (see A.4, [24]).

With the recent focus on cloud computing a new type of system
topology came up: clusters in geographically distributed data-

SELFMAN Deliverable Year Four (M37-M40), Page 20

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

450

karger
karger_avg[1,2]_stddev2
karger_avg3j_avg1

400 %

karger_avg3j_avg2
karger_avg3j_stddev2
karger_avg3j_avg[1,2]_stddev2
karger_self_avg2_stddev2

350

300 ¢

250

200 +

standard deviation

150

100

50 ¢

0 500000 1e+06 1.5e+06 2e+06
moved load

Figure 3.4: The systems load in standard deviation versus the amount of
load moved for variations of Karger with global estimates.

Step 1 Step 2 Step 3 Step 4
for each replica majority of replicas
wait for a majority for each key ‘prepared’?
™ of acceptors - commit, else abort
| \ .
acceptor, learner \ \initRTM registerTP + list of
\\ (-1 msg) accept(prepared/abort) [accepted(prepared/abort) commit/abort
i (k*r msg) (r-1 msg) (r-1 msg)
1
1
RTM,, ..., RTM,; -
acceptors %\‘ initTP registerTP +
_6‘\ (k*r msg) accept(prepared/abort) commit/abort
%I‘ (k*r? msg) (k*r msg)
<
TPs for k items * r replicas SV
proposers start consensus time

for each replica

Figure 3.5: Timeline diagram of a fast transaction commit.

centers that are connected by high-latency networks. Current
structured overlay networks (SONs) are not well prepared for
such environments with heterogeneous network performance and
correlated node failures.

We show how the beneficial features of SONs, namely selfman-
agement, scalability, adaptability, and fault tolerance can be ex-
ploited for multi-datacenter environments. We present selfadap-
tive replica placement policies and latency-optimized routing for
SONs on multiple datacenters. Empirical results of our gossip-
based ring maintenance protocol demonstrate its ability to cope
with correlated node failures and network partitioning.

SELFMAN Deliverable Year Four (M37-M40), Page 21

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

Enhanced Paxos Commit for Transactions on DHT's

Florian Schintke, Alexander Reinefeld, Seif Haridi, Thorsten Schiitt. ZIB
Technical Report ZR-09-28 (see A.5, [23]).

Key/value stores which are built on structured overlay networks
often lack support for atomic transactions and strong data consis-
tency among replicas. This is unfortunate, because consistency
guarantees and transactions would allow a wide range of addi-
tional application domains to benefit from the inherent scalability
and faulttolerance of DHTSs.

The Scalaris key /value store supports strong data consistency and
atomic transactions. It uses an enhanced Paxos Commit proto-
col with only four communication steps rather than six. This im-
provement was possible by exploiting information from the replica
distribution in the DHT. Scalaris enables implementation of more
reliable and scalable infrastructure for collaborative Web services
that require strong consistency and atomic changes across multi-
ple items.

Towards Explicit Data Placement in Scalable Key/Value-stores

Mikael Hogqvist, Stefan Plantikow. Presented at the IEEE SELFMAN Work-
shop at SASO 2009 (see A.6, [10])

Distributed key/value-stores are a key component of many large-
scale applications. Traditionally they have been designed using
Distributed Hash Tables (DHTs). DHTSs, however, setup a tight
coupling between the naming of nodes and assignment of keys to
nodes which limits application control over data placement.

We propose using small amounts of shared state in a semi-centralized
architecture for more flexible data placement by introducing ex-
plicit mapping between keys and nodes via an indirection layer
(blockspace). Our design is based on a membership layer that
provides O(1) routing thereby targeting interactive applications.
We evaluate a centralized and decentralized approach showing
that both have relatively low overhead and provide efficient load
balancing.

SELFMAN Deliverable Year Four (M37-M40), Page 22

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

Active/Passive Load Balancing with Informed Node Placement in
DHTSs

Mikael Hogqvist, Nico Kruber. To be presented at the IFIP International
Workshop on Self-Organizing Systems (IWSOS) 2009 (see A.7, [9])

Distributed key/value stores are a basic building block for large-
scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload
distribution can be non-uniform.

We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that
adapt to both the key and workload distribution. The algorithms
are evaluated in a simulated environment, focusing on the impact
of load balancing on scalability under normal conditions and in
an overloaded system.

Generic Self-Healing via Rejuvenation: Challenges, Status Quo,
and Solutions

Artur Andrzejak. Presented at the IEEE SELFMAN Workshop at SASO
2009 (see A.8, [1])

Software rejuvenation - in its simplest form a restart of a compo-
nent or a program - is an efficient and universal approach for ad
hoc healing of certain complex systems such as SOA components,
telecommunication systems, and servers in data centers. Despite
of its advantages this technique has not been widely deployed in
other scenarios. The reasons are several shortcomings including
loss of application availability and loss of working data due to
a restart, and a lack of standardized support in operating sys-
tems, middleware, and component frameworks. In this position
paper we argue that even partial remedies to these problems can
turn rejuvenation into a powerful self-healing tool applicable to a
larger variety of scenarios. We discuss rejuvenation-related prob-
lems, overview existing solutions, and propose a set of efficient
architectural approaches which can pave the way to a universal
adoption of this technique.

DHT Load Balancing with Estimated Global Information

Nico Kruber. Master Thesis at Humboldt University Berlin, 2009 (see A.9,
[13])

SELFMAN Deliverable Year Four (M37-M40), Page 23

CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

One of the biggest impacts on the performance of a Distributed
Hash Table (DHT), once established, is its ability to balance load
among its nodes. DHT's supporting range queries for example suf-
fer from a potentially huge skew in the distribution of their items
since techniques such as consistent hashing can not be applied.
Thus explicit load balancing schemes need to be deployed. Sev-
eral such schemes have been developed and are part of recent
research, most of them using only information locally available in
order to scale to arbitrary systems.

Gossiping techniques however allow the retrieval of fairly good
estimates of global information with low overhead. Such infor-
mation can then be added to existing load balancing algorithms
that can use the additional knowledge to improve their perfor-
mance. Within this thesis several schemes are developed that use
global information like the average load and the standard devia-
tion of the load among the nodes to primarily reduce the number
of items an algorithm moves to achieve a certain balance. Two
novel load balancing algorithms have then been equipped with
implementations of those schemes and have been simulated on
several scenarios. Most of these variants show better balance re-
sults and move far less items than the algorithms they are based
on.

The best of the developed algorithms achieves a 15-30% better
balance and moves only about 50-70% of the number of items its
underlying algorithm moves. This variation is also very robust to
erroneous estimates and scales linearly with the system size and
system load. Further experiments with self-tuning algorithms
that set an algorithms parameter according to the systems state
show that even more improvements can be gained if additionally
applied. Such a variant based on the algorithm described by
Karger and Ruhl shows the same balance improvements of 15-30%
as the variant above but reduces the number of item movements
further to 40-65%.

SELFMAN Deliverable Year Four (M37-M40), Page 24

Chapter 4

D4.5: Third report on
self-configuration support

4.1 Executive summary

This deliverable reports on a preliminary study towards a framework and in-
frastructure for component deployment in a WAN-based unstructured over-
lay network. It first describes a NAT-resilient gossip peer-sampling protocol
which is key to build unstructured overlays in a realistic Internet environ-
ment, with multile forms of NAT coexisting. It then describes a peer-to-peer
middleware, called Salute, which aims to support the concurrent deployment
of distributed applications on heterogeneous computing resources distributed
over the Internet. Salute combines new and well-known gossip protocols to
build and maintain its application supporting infrastructure.

25

CHAPTER 4. D4.5: THIRD REPORT ON SELF-CONFIGURATION
SUPPORT

4.2 Contractors contributing to the Deliver-
able

INRIA(P3)has contributed to this deliverable.

SELFMAN Deliverable Year Four (M37-M40), Page 26

CHAPTER 4. D4.5: THIRD REPORT ON SELF-CONFIGURATION
SUPPORT

4.3 Results

The work reported in this deliverable finds inspiration from the Managing
Clouds manifesto [4], which describes the challenge of building a general-
purpose framework for delivering and supporting in a self-organized fashion
distributed applications running independently over a large scale dynamic
pool of computing resources. The Managing Clouds paper also highlights key
elements of such a framework: application suite descriptions, whose purpose
is “to define what applications are running on the network and what resources
should be assigned to these applications”, and a middleware that is “respon-
sible for keeping the system in a state that corresponds to the description”,
and that typically should comprise the following services: a bootstrapping
service, responsible for starting up and application from scratch, a chrun
handling service for assisting the application in handling chrun and failures,
and a slicing service for assigning the right subset of nodes to aplications,
according to application requirements specified in application descriptions.

In this report we present two pieces of works that contribute to the Man-
aging Clouds challenge. The first one aims to build an (unstructured) over-
lay network in a realistic Internet environment with NAT (Network Address
Translation) devices. Such an overlay can in turn be used as the network
basis for delivering applications on clouds (i.e. dynamic pools of comput-
ing resources). The second one presents indeed a preliminary study towards
a peer-to-peer middleware that supports the deployment and execution of
independent applications on an unstructured overlay network. The central
function of our peer-to-peer middleware, called Salute, is a dynamic slicing
service that relies on a peer sampling service to maitain the overlay network
of computing resources.

4.3.1 NAT-resilient gossip peer-sampling

Gossip protocols have received an increasing attention over the past decade
because they are robust, simple and highly resilient to churn. Gossip peer-
sampling protocols are extensively used to build and maintain unstructured
overlay networks. They typically provide peers with a random sample of the
network and maintain connectivity in highly dynamic settings. They rely on
the assumption that, at any time, each peer is able to establish a communi-
cation with any of the peers of the sample provided by the protocol. Yet, this
ignores the fact that there is a significant proportion of peers that now sit
behind NAT devices (70% is a fair ratio in the current Internet), preventing
direct communication without specific mechanisms. This has been largely
ignored so far in the community. Our experiments (reported in Appendix

SELFMAN Deliverable Year Four (M37-M40), Page 27

CHAPTER 4. D4.5: THIRD REPORT ON SELF-CONFIGURATION
SUPPORT

A.10) demonstrate that the presence of NATS, introducing some restrictions
on the communication between peers, significantly hurts both the random-
ness of the provided samples and the connectivity of the p2p overlay network,
in particular in the presence of high rate of peers arrivals, departures and
failures (aka churn).

To deal with these issues we have developed a NAT-resilient peer sampling
protocol, called Nylon, which is described in Appendix A.10. Nylon is a
fully decentralized protocol, that spreads evenly among peers the extra load
caused by the presence of NATs (to relay messages to nodes located behind
NAT). NMylon also ensures that a peer can always estbalish a communication,
and therefore intiate a gossip, with any peer in its sample. This is achieved
through a variant of the hole punching method (which is traditionally used
to traverse NATSs) that establishes a path of relays (rendez-vous peers, i.e.
public peers that can exchange messages with both a source and a destination
peer) between peers.

Simulation results show that AMylon is highly resilient to churn (it tolerates
the departure of 50% of the peers without partitioning), and that it fulfills its
objective of evenly spreading the overhead induced by NATs between public
and natted peers.

4.3.2 Adaptive deployment over unstructured overlays

The Salute framework manages the deployment of multiple independent ap-
plications over an unstructured overlay network (the reserve overlay), built
and maintained by a gossip peer sampling protocol. Essentially, Salute pro-
vides each application with a dynamic subset of of nodes from the underlying
overlay network, called a slice, where the application can be deployed and
executed.

A request to deploy an application with Salute contains a slice specifica-
tion, which describes the required number of nodes in the slice, together with
their characteristics (capacities and availability profile). Salute comprises
two key elements: a resource reservation service and a resource profiling ser-
vice. The resource profiling service provides a categorization of nodes based
on their capacities and their availability history. The resource reservation
service itself relies on three services:

e The request propagation service, that broadcasts the reservation re-
quest among the nodes in the reserve overlay, so as to book enough
resources to build the requested slice (a booked peer cannot belong
to more than one slice). The request propagation service is typically
implemented by an epidemic broadcast.

SELFMAN Deliverable Year Four (M37-M40), Page 28

CHAPTER 4. D4.5: THIRD REPORT ON SELF-CONFIGURATION
SUPPORT

e The counting service is used during the lifecycle of a slice: it is used
during request propagation to decide when the requested slice is com-
plete, and during the lifetime of the slice in order to detect if the slice
size falls under a certain threshold because of churn. The counting
service is typically implemented using a gossip aggregation protocol.

e The peer sampling service in charge of maintaining the supporting over-
lay and the slices.

The protocol that implements the resource reservation service builds, mon-
itors and maintains dynamic slices matching requested slice specifications.
The reservation protocol also avoids deadlocks between concurrent slice re-
quests by means of a priority mechanism.

The Salute framework, presented in more detail in Appendix A.11, consti-
tutes only a preliminary design. We have not evaluated it yet, but Appendix
A.11 discusses the evaluation criteria.

SELFMAN Deliverable Year Four (M37-M40), Page 29

CHAPTER 4. D4.5: THIRD REPORT ON SELF-CONFIGURATION
SUPPORT

4.4 Papers and publications

The work on NAT-resilient gossip peer-sampling reported in this deliverable
has been published as the following paper:

e Anne-Marie Kermarrec, Alessio Pace, Vivien Quéma and Valerio Schi-
avoni. NAT-resilient Gossip Peer Sampling. 29th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE Computer
Society, June 20009.

SELFMAN Deliverable Year Four (M37-M40), Page 30

Chapter 5

D5.9: Distributed mobile
application on gPhone

5.1 Executive summary

This deliverable presents the development of DeTransDrawid, a collaborative
drawing application showcasing the Beernet P2P network with transactional
support [15]. DeTransDrawid allows several users to simultaneously edit the
same drawing while guaranteeing both the coherence of the drawing and high
performance of the application. We call the resulting application DeTrans-
Drawid since it is based on the original DeTransDraw application presented
in Appendix A.12. This deliverable describes the work done to implement
DeTransDrawid on the gPhone, which in our case is an HTC Magic smart-
phone running Google’s Android operating system. We explain each step,
problem and choice taken during the development of the application.

A major problem we have had to face is the separation between Oz and
Java. The application is running half in a Mozart emulator and half with
the Android API. The communication between both parts is an important
key factor for the performance of the application. The more communications
there are, the worse is the performance.

31

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.2 Contractors contributing to the Deliver-
able

UCL(P1) has contributed to this deliverable.

UCL(P1) hasported the Mozart environment to Android and implemented
a collaborative graphic drawing application in Mozart which runs on the An-
droid operating system.

SELFMAN Deliverable Year Four (M37-M40), Page 32

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.3 Introduction

We present the development of DeTransDrawid, a distributed, decentralized,
interactive application for collaborative drawing, running on an Android op-
erating system. We first present the specification that we want this applica-
tion to fulfill, essentially a coherent state and good responsiveness and how
to achieve them. We move on to describe the architecture of the solution
retained and the structure of the Android target platform. We then high-
light some of the most interesting parts of the implementation. Finally, we
conclude by showing what remains to be done in term of polishing in order
to provide a fully functional application.

SELFMAN Deliverable Year Four (M37-M40), Page 33

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.4 Specification

DeTransDrawid is a collaborative drawing tool that can be used by several
users simultaneously on the same drawing. The operation of the tool is
explained in Appendix A.12. In this section we explain why DeTransDrawid
is an interesting case study for the Beernet transactional storage.

As a distributed collaborative and interactive drawing application, De-
TransDrawid has two goals: (1) keeping a coherent state and (2) being re-
sponsive. These two goals seem to be in conflict as the obvious solution for
coherent state is to do a time-consuming global lock on the state to be mod-
ified while the obvious solution for responsiveness is to optimistically allow
the user to do any modification she wants without regard for coherence.

In DeTransDrawid the drawing is made of a set of shapes. Each shape
has its own set of parameters such as position, size, color, etc. An edit cycle
consist of the user selecting a first shape, repeatedly modifying parameters
and selecting more shapes and finally deselecting all shapes. For the drawing
to remain coherent for all users, each edit cycle is made into a transaction
on the global, distributed storage.

The tension between the two goals is now converted into a choice of
scheduling policy. An optimistic scheduling will give adequate reponsiveness
and coherence but at the price of aborted transactions, which can be very
frustrating for the user when her very complex transaction involving lots of
different shapes and fine-tuning of the parameter is aborted in favor of a
trivial change to one shared shape by another user. A pessimistic scheduling
will of course frustrate the user that will have to wait for locks before she
can make any change, as insignificant as it could be (e.g., correcting a typo).

The transactions used in DeTransDrawid are both optimistic and pes-
simistic. They are optimistic in that the user is immediately allowed to
select and modify shapes and her edits can be aborted. They are pessimistic
in that as soon as the user select a shape, the correponding lock is requested
and edits are aborted as soon as a lock is known to be unavailable. Figure
5.1 shows the precise state diagram. A user is initially holding no locks and
therefore in the No lock state. When she selects some shapes, she sends re-
quests for the corresponding locks and waits for them in the Asking for locks
state. On abort, all locks are released ans she returns to the No lock state.
If all locks are received, she moves on to the Got locks state from which she
can commit her transaction (by unselecting all shapes) and return to the No
lock state or ask for more shapes to be locked and return to the Asking for
locks state, re-exposing herself to the risk of an aborted edit.

This optimistic-with-eager-locking approach is complemented by visual
feedback to the user which can therefore know wheter the edit he is making

SELFMAN Deliverable Year Four (M37-M40), Page 34

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

lock()

lock()

{nb_wait=1}
<event> abort

Asking for locks

1

"\ {nb_wait>1}
/'<event> locked

/.‘ ..
"—"{nb_wait>1}
<event> abort

{nb wait=1} .7
<event> locked /

{nb_lock=1}

releasel) lock()

{nb_lock>1}release()

Figure 5.1: State diagram of a user

is still susceptible to rollback. This feature puts the user in control. He
can decide to optimistically edit a shape to correct a simple mistake without
delays or to pessimistically wait for the guarantee to be able to complete a
major reorganisation of the drawing. Figure 5.2 shows the visual feedback.
The user on the left as just selected the big rectangle and can optimistically
modify it since the handles for it are red. However we know that this trans-
action will be aborted as the user on the right as the lock for this rectangle
(as indicated by the black handles).

Finally, it was decided to structure the participants in two classes, since
the cost and feeble bandwidth of smartphones makes them bad candidates for
routing, only computers are participating as full peers. The smartphones at-
tach themselves to one of these peers and do all their communication through
it. However, this link is as reconfigurable as the links in the P2P network
itself and the phone can reconnect to other peers should its connection be
broken.

5.5 Architecture

Since the Beernet framework provides decentralized, replicated storage with
a transactional layer supporting both eager-locking and notification of the
locking status, it was choosen as the underlying platform for DeTransDrawid.
The application is thus written in Oz and runs on the Mozart platform.

SELFMAN Deliverable Year Four (M37-M40), Page 35

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

O Editor15490

ol

st/ s

setf mo|

Status: select rect Status: select rect

Figure 5.2: On the left, the user is in Asking for locks state. On the right,
the user is in Got locks mode.

DeTransDrawid was ported to two different platforms. The first one is
traditional desktop computers and similar platforms. The second is Android
[20], the new cell-phone operating system developed by Google. Although
based on a Linux kernel, this operating system is quite different from a
standard Linux distribution.

An Android application is structured as a set of user visible screens (called
tasks), background services, content providers, and event listeners. All of
them are instantiated by the system based on user requests or environmen-
tal changes. All of them can be destroyed at certain points and recreated
later without any visible change to the user. This is not transparent for the
developer. As an example, Figure 5.3 illustrates the lifecycle of a task.

The current version of DeTransDrawid is made of a main task showing the
drawing and a few accessory tasks to allow the user to connect to a drawing.

Upcoming versions should allow the application to be launched from other
contexts such as the user clicking a link in a webpage or email, on receiving
a special text message or by scanning special barcodes.

SELFMAN Deliverable Year Four (M37-M40), Page 36

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON

GPHONE

User navigates
back to the

activi

onCreate()

——

ansStart()

——

onRestart() '

onResume()

[Gmer applications
need memory

B —

Anather activity comes
in front of the activity

The activity |
comes to the
foreground

onPause()

(The activity is no longer visible)

The activity N
comes to the
foreground

onStop()

——

onDestroy()

——
(&)

Figure 5.3: State diagram of an Android task

SELFMAN Deliverable Year Four (M37-M40), Page 37

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.6 Implementation

In the very beginning of the development of the application, we first needed
to port the Mozart environment on the platform. The application will be
architecture in a Model-View-Controller pattern. The model and controller
will be implemented in Mozart environment on top of the Beernet and the
view will be displayed thanks to the Android APIL.

DeTransDrawid uses the Beernet ring. It first connects to a node of the
ring and use it for network communication. DeTransDrawid may connect to
an existing node of the ring or create a new node and join the ring. The first
example appears in the Figure for node P3 while the second is like node P7.
As you can see on Figure 5.4, only the Oz part receives network messages.
The GUI part is network independent. There is communication between the
logic part and the ring, and between the logic part and the GUI part.

DTD-DTDid
connection

(P7) P1 DTDId)
oz |

Java
P6 DHT P2
P5 P3 DTD S;:ﬁunicatimn G UI
P4 > | /object)
: \renderer|

_state /

Figure 5.4: Structure of DeTransDrawid

The desktop version of DeTransDrawid is implemented in Oz using QTk
for the graphical user interface and Beernet for the decentralized storage and
transactional support.

The Android version of DeTransDrawid is implemented in Oz but since
Tk is not available on Android, the GUI part has to be rewritten. The only
supported language for user interfaces on Android is Java, running on the
Dalvik virtual machine.

Porting DeTransDraw to Android thus required the following subtasks:

SELFMAN Deliverable Year Four (M37-M40), Page 38

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

e Porting the Mozart environment to Android. This in turn was made
more difficult by the following constraints:

— Need to cross-compile the executable. The Google supported way
to develop native application for the Android platform is only by
using a specific cross-compiler. The build system for Mozart had
only some support for cross-compilation for the Windows target
platform.

— Need to integrate in the Android build-system. Developement
of native application for Android is only possible by using the
Google provided build infrastructure which relies on non-recursive
makefiles.

While this is a more modern approach, it required adapting the
whole build infrastructure of the Mozart platform.

— Lack of a complete implementation of C++. The supported lan-
guages for native developement on Android are C and C++ but
the C++ language is provided with extremely minimal library
support, no runtime type information and no exception support.

— Deficient loader. The loader of native application on the An-
droid platform, part of the Bionic C library, is still in its infancy.
This implies that certain constructs generated by the compiler are
unusable and need to be worked around. It also means that dy-
namic library support is extremely limited. Mozart uses dynamic
libraries to reduce it’s startup time by offloading many modules to
external libraries. Another consequence of this defficient linker is
the requirement to use Android version 1.5 or better. The linker
in previous versions is completely unusable.

e Creating a bridge to access the Java API for user interfaces from an
Oz application.

This bridge makes available the complete Java API accessible through
reflection in the Java language by providing an Oz API at the same level
of abstraction. Internally, all operations are serialized, the communi-
cation between the Oz virtual machine and the Java virtual machine
is done over a TCP link and the two garbage collectors are made to
cooperate.

e Developing a GUI for DeTransDraw using the primitives provided by
the Java API. Since the level of abstraction in QTk is much higher than
the one provided by the Java API of Android for the developement

SELFMAN Deliverable Year Four (M37-M40), Page 39

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

of user interfaces, the GUI of DeTransDraw is less powerful on the
Android version than on the desktop version. For now the Android
version offers a read-only access to the drawing. Also, as a concession
to speed and due to the parallel developement of all these parts, some
elements of the GUI are developed directly in Java and not in Oz.

5.6.1 Porting Mozart on Android

The Mozart environment’s porting was the first step of the development
of DeTransDrawid. To allow Mozart interacting with the device, we need
communication between Mozart and the Java API.

The application starts Mozart emulator and open a port to allow commu-
nication between both parts. We have created a project named javaaccess
which implements the reflection mechanism for the communication.

We have developed the application in Eclipse environment, with the An-
droid Development Toolkit (ADT) plugin. To run an application you then
need two projects.

The first project is a Java project that we have called javaaccess. You
can see on Figure 5.5 how to create this project.

New Java Project

Create a Java Project >
Create a Java project in the workspace or in an extemal location.

Project name: | javaaccess |

© Create new project i

@ Create project from

ource
jor/Thesis/distoz/DTD_DTDid/javaaccess | [Browse..

Directory: | /home/jmelc

Working set
T Add project to working sets

The wizard will automatically configure the JRE and the project layout based on the
existing source.

@

@ <Back |[Next> | [cancel || Finish

Figure 5.5: Creation of javaaccess project in Eclipse

You also need the Android project that we have called DeTransDrawld.
You can see on Figure 5.6 how to create this project.

SELFMAN Deliverable Year Four (M37-M40), Page 40

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

New Android Project

New Android Project
Creates a new Android Project resource. CI

Project name: | DeTransDrawid

© Create new project in workspace ‘
® Create project from existing source

=

Location: | /home/imelchior/Thesis/distoz/DTD_DTDIA/DTDId]

© Create project from existing sample

Target Name | vendor |platform AP Lev ‘
Android 1.5 Android Open Source Project 15 3
O Android 1.6 Android Open Source Project 1.6 4
[Android 2.0 Android Open Source Project 20 5

Properti

Application name: | GenericActivity

Package name: |
¥ T

=)

Min SDK Version: |3

@ <Back || Mext> | [cancel | [Finish

Figure 5.6: Creation of DeTransDrawld project in Eclipse

The result of the creation of this project is shown on figure 5.7.

To run Mozart on the device, we need to use the Java API to copy the
cross-compiled environment on the device and then to run it before trying
to use it. The first part is implemented in ZipEzxpander.java file. While the
second part is implemented in GenericApplication.java file. The expander is
started with the following command :

ZipExpander.expand(dir, getAssets().open("emu.zip"));

The file emu.zip contains the cross-compiled environment of Mozart. We
put it in the assets of the project to ensure that the application will always
find the environment to copy, unzip and run it on the device. After the
environment has been unzipped from this file, Mozart emulator is started
with the following commands :

ServerSocket s = new ServerSocket (4545);
File emu = new File(dir, "ozEmulator");
if (emu.exists()) {
0zP = Runtime.getRuntime() .exec(
new String[] { emu.getCanonicalPath(), "-init",
new File(dir, "Init.ozf").getCanonicalPath(), "-u",
"x-o0z://system/android/Main.ozf", "--" },

SELFMAN Deliverable Year Four (M37-M40), Page 41

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

Java - Eclipse

h Project Wi

rEE | BB | srovar |8 e e | ®o | By div oy ey = [ava)

[3 Hiemrchy} =g =0] Task List &2 =n

/igal ndow Help

5 %le ¥ Ov vk 8 |49 7

v 2 DeTransDrawid » All b Activate...

¥ @sic &% Uncategorized
¥ f be.uclouvain.ingi.distoz.genericAndroid0z

P [J] Assetloaderjava
[4] ColorPickerDialog.java

b
b [f] DeTransView.java
B [I) GenericActivityjava
P [1) GenericApplication.java
b [J] Sample.java
> (1 ZipExpanderjava = outlne 12 ® =0
b @&gen [Generated Java Files]
b 4 Android 1.5
v @ assets
> (= p2ps
[Connection.ozf
[emu.zip

An outline is not available.

[Main.oz
[E Main.ozf
[QTk.ozf b
[QTKA.0z
thbxt
b @res [E Problems 2 @ Javadoﬂl@s Declarationw e ¥ =0
‘@ AndroidManifest.xml 0items
default.properties Description ‘ Resource Path Location |Type
v 2 javaaccess
> @src
b =4 JRE System Library [java-6-sun-1.6.0.15]

B

e DeTransDrawld I

Figure 5.7: Eclipse environment after creating both projects

SELFMAN Deliverable Year Four (M37-M40), Page 42

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

new String[] {
"0Z_ANDROID_PORT=4545" }, dir);

5.6.2 Communication Oz-Java

When there are interactions from Mozart environment, the classes and ob-
jects are brought to Mozart in a lazy way. For example the following com-
mand :

{{{J.c ’java.lang.System’}.get err}.p println(
string("ELSE *:* Hello World/Activity."#{Label Msg}))}

The first statement is {J.c 'java.lang.System’} which mean that we want
the access the System class from java.lang package. For example, if we got
the result in a variable named R1, the second statement is {R1.get err}. We
want to get the object stored in the err variable from the class. This new
result, R2, is now part of the third statement which is {R2.p println(Str)}.
The method println from err is now called with the parameter Str. The
variable Str is the Oz string

"ELSE *:* Hello World/Activity."#{Label Msg}

which needs to be converted to a Java string by the reflection process. In
order to help this convertion, we need to explicitly note that Str is a string
with string(Str) statement. This complex command in Oz correspond in Java
to this statement (i.e : with onCreate method as label) :

System.err.println("ELSE *:* Hello World/Activity.onCreate");

To create a Mozart application on the device, you need a file named
Main.oz. This file has to be a functor importing at least ’z-android:///J’
which is a Java object to access the Java part. It also need to export the
MainActivity procedure that will be called when the application is created
from Android.

functor
import

J at ’x-android:///J’
export

MainActivity

SELFMAN Deliverable Year Four (M37-M40), Page 43

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

The MainActivity procedure is called every time the Java part of the
application notifies the Oz part with a handler. The procedure get the Msg
as parameter. The code should look like that :

fun{MainActivity Msg}
case Msg
of onCreate(!BundleC#SavedInstanceState) then

(] éﬁéwnMethodl(_#Varl) then

] éﬁdwnMethod2(_#Var2 _#Var3) then
(] éﬁbestroy() then

[] onStop() then

else
{{{J.c ’java.lang.System’}.get err}.p
println(string("ELSE *:* Hello World/Activity."#{Label Msgl}))}
end % End of case
void(x)
end % End of MainActivity

Here is as example, the onDestroy method from Java part. It will called
the MainActivity procedure thanks to the handler A and invoke method :

@0verride
public void onDestroy() {
super .onDestroy() ;
try {
h.invoke(this, GenericActivity.class.getMethod(
"onDestroy",
new Class[] {}),
new Object[] {1});
} catch (Throwable e) {
throw new RuntimeException(e);

3

5.6.3 Graphical toolkit for Android

While developing we wanted to have the most generic Oz application. We first
started by implementing logic and graphical parts in Oz. The graphical user

SELFMAN Deliverable Year Four (M37-M40), Page 44

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

interface (GUI) part was created thanks to a QTk like toolkit. It simplifies
the way to create application for Android because the GUI part is just the
same as using QTk.

But when we have been able to use our toolkit for GUI in Android, we
have noticed that we had a big performance issue. Creating the GUI from
Oz part takes about between 10 and 20 seconds. As in this example :

W/System.err(310): Hello World/Activity.onCreate

W/System.err(310): ’begin : ’#8080# ’miliseconds’

D/dalvikvm(310): GC freed 8599 objects / 494272 bytes in 150ms
D/dalvikvm(167): GC freed 5510 objects / 321824 bytes in 225ms
D/dalvikvm(310): GC freed 6295 objects / 499288 bytes in 149ms
W/System.err(310): ’Creation time for canvas+window : ’#11.57#
> seconds’

As this part is only executed once, it was still possible to create applica-
tion in Oz part but the main concern appeared when drawing objects on the
canvas :

W/System.err(310): going through onDraw

W/System.err(310): ’begin : ’#75870# ’miliseconds’
W/System.err(310): ’Creation time for both rectangles : ’#0.81
W/System.err(310): ’Time for setARGB : ’#0.81

W/System.err(310): ’Time for drawing the object : ’#0.17
W/System.err(310): ’begin : ’#79650# ’miliseconds’
W/System.err(310): ’Creation time for both rectangles : ’#0.81
W/System.err(310): ’Time for setARGB : ’#0.82

W/System.err(310): ’Time for drawing the object : ’#0.17
W/System.err(310): ’Time for the complete draw : ’#3.95

The time for creating an object is about two seconds and it growth linearly
with the number of objects. In the example above, it took about four seconds
to complete the drawing part. The code used for this benchmark is :

local Begin = {Property.get time}.total in

{System.show ’begin : ’#Begin#’miliseconds’}

RectF1 = {RectFC.new i(float({IntToFloat (Object.xb+1)})
float ({IntToFloat (Object.yb+1)})
float ({IntToFloat (Object.xe-1)})
float ({IntToFloat (Object.ye-1)}))}

RectF2 = {RectFC.new i(float({IntToFloat Object.xb})
float ({IntToFloat Object.yb})

SELFMAN Deliverable Year Four (M37-M40), Page 45

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

float ({IntToFloat Object.xe})
float ({IntToFloat Object.ye}))}
{System.show ’Creation time for both rectangles : ’#
{Float.’/’ {IntToFloat {Property.get timel}.total-Begin} 1000.0}}
end

local Begin = {Property.get timel}.total in
{P1.p setARGB(int(255) int(Redl) int(Greenl) int(Bluel))}
{P2.p setARGB(int(255) int(Red2) int(Green2) int(Blue2))}
{System.show ’Time for setARGB : ’#
{Float.’/’ {IntToFloat {Property.get time}.total-Begin} 1000.03}}
end

local Begin = {Property.get time}.total in
case Object.form
of rect then {Canvas.p drawRect(RectF2 P2)}{Canvas.p drawRect(RectF1 P1)}
[] oval then {Canvas.p drawOval(RectF2 P2)}{Canvas.p drawOval(RectFl1 P1)}
[] text then {Canvas.p drawText(string(Object.text)
float ({IntToFloat Object.xb})
float ({IntToFloat Object.yb}) P1)}
else {{{J.c ’java.lang.System’}.get err}.p
println(string("error unkown object to draw"))}
end
{System.show ’Time for the complete draw : ’#
{Float.’/’ {IntToFloat {Property.get time}.total-Begin} 1000.0}}
end

What we can understand from this code is that there is too much commu-
nication between Mozart and Java leading to multiple environment switches.
In the first part, the creation of the rectangles is realized in six steps. The
conversion of floats from Oz to Java in order to create the instance of Rect-
angle, the creation of the instance and the transport from Java to Oz of the
instance. These three steps are repeated twice. It takes almost a second
to compute this part. We experience the same duration for the setARGB
method.

The performance issue would only be a minor problem if we were using
most of the graphical libraries provided by the platforms. But with the Java
API provided for Android, we have to face with another kind of library.
The way the GUI works in Android is by refreshing the screen regularly.
But communication between Oz and Java parts happens while the screen is
refreshed. Thus, the drawing part has to be processed a lot of time. Which

SELFMAN Deliverable Year Four (M37-M40), Page 46

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

means that the refresh time also grows linearly with the number of objects
to draw.

5.6.4 Application structure

In the Oz part, the following network messages may come from the ring :
e (fingerChanged(... ... unit)#...)
e (join(< N >)#...)
o

lock’(...)#...)
msg(locked(,,,))#...)
e (msg(update(,,,))#...)
e (onRing(...)#...)

(
(
(
(
o (
(
(
o (‘prepare’(id:... itemiitem(,,,) tid:...)#...)
o (prepared(key:... tkey:... tid:...)#...)
o (predSetChanged(,,,—,,, nil)#...)
o (rangeChanged(... ...)#...)
o (registerRTM(... tid:...)#...)
o (succChanged(... ...)#...)
o (succListChanged(,,,—,, ,s—,)#E...)
o (update(id:... item:item(,,,) tid:...)#...)
(

o (voteAck(key:... rkey:... rtm:... tid:... vote:prepared)#...)

But we are only interested in message corresponding to the pattern msg(M).
We only have these messages :

e (msg(locked(dt))#...)

e (msg(update(id:... item:item(,,,) tid:...))#...)

SELFMAN Deliverable Year Four (M37-M40), Page 47

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

The message that is interesting for the state of the application is update
which can be for an object or for the list of object. If the id is dt, it means
that an object has been created or deleted. When the id is a number, an
object has been modified. In both cases, we need to update the status of the
application.

The logic part need to interact with the graphical part when update hap-
pens on the system. This communication works using the reflection mech-
anism. When Java gets the canvas to draw something on the screen, it
propagates the event through Oz. The following methods are provided for
this communication:

e draw(...) : object to draw (creation or modification)

e unDraw(...) : object that has to be removed

The first method is the reaction to the messages update(id:dt) and
update(id:... ...). If dt is updated, a new object has to be drawn. The logical
part will find the new objects and then ask the GUI part to draw this new
object.

If an object is modified, we got the second messages and the application
draw the same object but with different values. The GUI part will erase the
old information for the object with the new ones.

If an object is removed, we need to notify the GUI part with the unDraw
method. The GUI stores the state of objects that are currently drawn. When
the method unDraw is called, the GUI will remove this object from the Java
store.

For the GUI part, we need to notify the logic part when new objects
are drawn from the device, when objects are moved and when objects are
removed. The two last operations need the selection of objects, the logic
part have to be notified in order to lock the selected object. The following
methods are provided for this communication:

e onConnect(String ticket) : when the user asks to connect to a ticket
e onSelect(Int id, ...) : reaction to the selection of an object

e onDraw(...) : refresh drawing on the screen

e newObject(...) : reaction to the creation of an object

e updateObject(...) : reaction to the modification of an object

SELFMAN Deliverable Year Four (M37-M40), Page 48

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

in JavA-draw

in JAVA-unDraw
aw %

dra

w un|
in OZ-onDraw

update

setlockRefused

newobject

n 0Z-newObject
ewlD

i
lock : DT, newiD

—> jawa0z O lock

—_ Ozjava
—_—> javadava O unlock

Figure 5.8: DeTransDrawid state diagram

These methods propagate from Java to Oz the information that the ap-
plication state have been modified.

Figure 5.8 shows the state diagram of DeTransDrawld.

In the initial state, the application starts. The user needs to press menu
button to access to functionalities of the application. The connect button
will help to call onConnect method. It means that the application will try
to connect to the ring thanks to a ticket that the user should enter in the
textfield. If the connection is established, the application goes to idle state.
In case where something wrong happened, the application exit abruptly.

The idle state is in Java and change state only if something happens
there. Most of the time, the current state switches from idle to in Oz-on
draw. This cycle allows the logic part to notify the Java part if objects have
been created or removed. As we know that Android is constantly refreshing
the screen, we know that the application will be sufficiently responsive to
give visual feedback to application updates.

When interaction happens from Android user, there are other method
calls. If the user draws an object, the newObject will propagate from Java to
Oz in order to logically create this new item. Then, the application simply
returns to Java. During this method, DT and a new id are locked to commit
the creation of the object. The lock is released as soon as the change is
commited.

SELFMAN Deliverable Year Four (M37-M40), Page 49

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

The most interesting part of the application is in the last methods :
onSelect and updateObject. When the user want to modify the position of
an object, he needs to change from drawing mode to select mode. This is
possible by going through the menu and push the select button. A click on an
object will try to select it. While waiting for result about the lock, red dots
will appear on the object. The application is now in in Oz-onSelect state
waiting for the lock. If the lock is accepted, the application stores the lock
and returns to Java part with setLocked method. Otherwise, the application
cancels changes and returns to Java with setLockRefused method.

The lock begins in in Oz-onSelect state and is still active in in Java-
setLocked. When Java parts has been notified about the lock, the application
returns to idle state keeping the lock. Now the object appears with black
dots as visual feedback that the lock has been accepted. The lock is released
after the application is ready to commit the changes (when the user has
clicked outside the object).

To release the lock, the first step is to propagate updateObject from Java
to Oz. The logic part will then commit the changes, release the lock and
then returns to Java part in idle state.

5.6.5 Screenshots of the applications

Figure 5.9 shows the application running on a desktop while Figure 5.10
shows it running on the Android platform. For evident reasons of readability,
the picture is a screenshot of the application running in an emulator rather
than a photograph of it running on the actual device.

5.6.6 Locking mechanism

In DeTransDrawid, the application also works over transactions. As the GUI
part is separated from the logic part, transacations are implemented in Oz
reusing the work done for DeTransDraw.

The first use is for loading the system when joining a Beernet ring. In
procedure LoadDT, we only need to read data. We first get the list stored
with key DT. Then, we get the object corresponding to each value in the list.

Here is the method :

%kt Post : Load the work already done if it exists
LoadDT =
proc{$?}
S
ProcS = proc {$ Li}

SELFMAN Deliverable Year Four (M37-M40), Page 50

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

il

st/ o]

Status:

Figure 5.9: DeTransDraw running on the desktop

M8 4:45pm

Figure 5.10: DeTransDraw running on Android

SELFMAN Deliverable Year Four (M37-M40), Page 51

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

case Li of nil then skip
[] LIR then M
in
M = {GetVal L}
{DrawObject M}
{ProcS R}
else {System.show ’bug’}
end
end
in
{Conn.exTrans Trans _}
S = {GetVal DT}
{ProcS S}
LastDT:=S
end

The DHT is accessed with the procedure GetVal, with the code :

hhth Pre : Key is the key of the value to get
holol Post : Val will store the value corresponding to Key
GetVal =

proc{$ Key Val}
Trans = proc {$ Obj}
{0bj read(Key Val)}
end
in
try
{Conn.exTrans Trans _}
catch _ then Val = error
end
end

When we create an object, we need to access the DHT to add the object
and the id the list. The method in DeTransDraw is :

Dl Pre : Id is the key of the new object
hooto Val is the value of the new object
%kl Post : The new object is added in the DHT
AddItem =

proc{$ Id Val}

SELFMAN Deliverable Year Four (M37-M40), Page 52

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

DTval
KeyRing % lock on DT
in
DTval = {GetVal DT}
{Conn.locks [DT Id] KeyRing}
if KeyRing == error then
thread
{Delay 500}
{System.show ’retrying’}
{AddItem Id Val}
end
else
LastDT := {Append DTval [Id]}
{Conn.commit KeyRing [DT#@LastDT Id#Valll} %%% Commit new value
end
{Conn.reader Id}
end

The method asks the lock for keys DT and Id to get the list and create
the new key. The KeyRing is the key to commit new values for DT and Id.

The method ends with { Conn.reader Id} statement which means that the
application is now a reader of Id key in the DHT. Everytime this key is locked
or updated, the application receives msg(locked(...)) and msg(update(..))
messages.

If the lock is refused, we can retry to ask for the lock until we are able
to add the item. Indeed, this operation does not modify any existing object.
We are only adding a new value to the list and a new key and value in the
DHT.

When objects are selected and updated, we also need to lock them. They
are first locked when there are selected and when they are unselected, the
lock is released. Here is the method to release a selected object :

hhth Pre : Id is the key of the object to release
hhlh Post : Release the object with the key Id and commit the changes
ReleaseObject =

proc{$ Id}

Val#_ = {Dictionary.get VDict Id}

Key = {Dictionary.get KeyDict Id}
in

{Conn.commit Key [Id#Vall}

Selected := {List.subtract @Selected Id}
end

SELFMAN Deliverable Year Four (M37-M40), Page 53

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.7 Conclusion and future work

In its current incarnation, the DeTransDraw application is little more than
a proof-of-concept. However, most of the major technical problems are now
solved. What remains to be done is a better integration of the application in
its environment, particularly on Android. Some features such as removing
object, multi-selection and changing size still needs to be implemented. The
application also needs some end-user polishing, e.g., an application icon and
availability on the Android market.

DeTransDraw and DeTransDrawid already show that an interactive appli-
cation, running fully distributed on small embedded platforms can be made
efficient, fast and reliable thanks to the principles outlined in the SELFMAN

project.

SELFMAN Deliverable Year Four (M37-M40), Page 54

CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.8 Papers and publications

Decentralized transactional collaborative drawing

Jérémie Melchior, Boris Mejias, Yves Jaradin, Peter Van Roy, Jean Vander-
donckt. Submitted to COPS’09 (see Appendix A.12).

This paper proposes a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with replicated stor-
age. As a consequence, there is a gain in fault-tolerance and the transac-
tional protocol eliminates the problem of network delay improving usability
and network transparency. The same technique can be used for collaborative
text editing and other collaborative tasks.

Decentralized transactional collaborative drawing - Demo

Boris Mejias, Jérémie Melchior and Yves Jaradin. Demonstrator at Collab-
oration Meeting for FP6 and FP7 projects. (see Appendix A.13).

This is a description of the demonstration we gave of DeTransDraw in the
Internet of Services 2009 Collaboration Meeting for FP6 and FP7 projects.

SELFMAN Deliverable Year Four (M37-M40), Page 55

Chapter 6

D5.10: Design and analysis of
Beernet, the Mozart structured
overlay network
implementation

6.1 Executive summary

This deliverable presents the analysis of Beernet [15], the structured overlay
network developed using the Mozart programming system. It is the suc-
cessor of P2PS [21], presented in deliverable D1.5, in WP1, during year 2
of the SELFMAN project. Beernet implements the Relaxed-Ring [17] net-
work topology presented as result of year 1, and it includes the high level
layer for transactional DHT, which is the result of WP3, providing consistent
symmetric replication.

The deliverable is presented as the draft of Boris Mejias’s Ph.D. disser-
tation, and it is included in Appendix A.14. The dissertation makes an
extensive review of existing structured overlay networks. It explains the con-
tribution of the Relaxed-Ring, making not only an experimental evaluation
of the algorithm, but also an analysis of it using feedback loops, which are
part of the results of WP2. It also details the algorithms used for atomic
transaction commits, contributing with an eager protocol for synchronous
collaborative applications. It presents a set of applications built on top of
Beernet to show the impact of it, and to emphasise its contribution.

26

CHAPTER 6. D5.10: DESIGN AND ANALYSIS OF BEERNET, THE
MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

6.2 Contractors contributing to the Deliver-
able

This deliverable is in the form of a dissertation written by a researcher of
UCL(P1). UCL is the main developer and author of the papers leading to
this dissertation.

SELFMAN Deliverable Year Four (M37-M40), Page 57

CHAPTER 6. D5.10: DESIGN AND ANALYSIS OF BEERNET, THE
MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

6.3 Results

Beernet stands for pbeer-to-pbeer network, where words peer and beer are
mixed to emphasise the fact that this is a peer-to-peer network built on top of
a relaxed-ring topology, considering that beers are usually a mean to achieve
relaxation. This deliverable presents the draft of Boris Mejias’s Ph.D. disser-
tation as the main result. The dissertation makes the analysis of Beernet by
describing in detail the algorithm of the Relaxed-Ring, which is the network
topology on which Beernet is implemented. The Relaxed-Ring is one of the
results of WP1, beign part of the first two years of the project. The Relaxed-
Ring is compared to other structured overlay networks by making a summary
of the state-of-the-art in peer-to-peer networks. The main contribution of the
Relaxed-Ring is that introduces non-transitive connectivity in the design of
the protocols that provides self-organization of the ring. Beernet also in-
cludes the results on transactional DHT from WP3, by implementing the
Paxos consensus algorithm, and also by developing the Eager Paxos protocol
that is more suitable for synchronous collaborative applications. Four appli-
cations are also presented on this dissertation emphasizing the impact of the
contribution of Beernet. The applications are Sindaca, a community-driven
recommendation system described in Deliverable D5.3; DeTransDraw, a col-
laborative drawing tool, presented in detail in deliverables D5.8 and D5.9 5;
and two applications designed and implemented by third parties, beign a
decentralized wiki, and a decentralized version of Twiteer.
The contributions of this deliverable can be listed in detail as follows:

e The design of a protocol for self-organizing peer-to-peer networks cre-
ating a network topology called relaxed-ring. The network is able to
deal with false suspicions in failure detection and with non-transitive
networks such as the Internet, improving lookup consistency with re-
spect to existing peer-to-peer networks. The relaxed-ring also provides
self healing by triggering a failure recovery mechanism when the crash
of a peer is detected.

e The relaxed-ring protocol is cost-efficient because it does not rely on
periodic stabilization to repair the network when it is affected by churn.
The relaxation introduces branches to the ring topology, but it keeps
the routing algorithm competitive with log(N) hops to reach any peer.

e We provide a self-adaptable routing topology that allows the relaxed-
ring to take advantage of full connectivity in small networks, and loga-
rithmic routing in large networks. The system can scale up and down

SELFMAN Deliverable Year Four (M37-M40), Page 58

CHAPTER 6. D5.10: DESIGN AND ANALYSIS OF BEERNET, THE
MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

making it suitable for many different applications independent of the
size of the network.

e We present the algorithms of the relaxed-ring using feedback loops
to analyse and validate its self-management properties. The feedback
loops help us to understand how the system monitors itself, analyses
the information, and triggers the needed action to modify the system.

e We study and validate the Paxos consensus algorithm for atomic trans-
actions on a replicated DHT, and we compare it with the well known
solution for distributed transactions called Two-phase commit.

e We adapt Paxos consensus algorithm to provide eager locking of the
transaction participants, and we extend it with a notification layer to
make other peers aware of the modifications. This new protocol allows
us to design application where users can collaborate synchronously.

e As proof-of-concepts, we have implemented Beernet, the pbeer-to-pbeer
network, a relaxed way of doing peer-to-peer. It is an implementation
of the relaxed-ring where peers are organized as a set of distributed-
transparent actors. These actors represents components with encapsu-
late state and that communicates only via message passing, avoiding
share state concurrency. Beernet also takes advantage of the fault-
stream model for failure handling improving its modularity and net-
work transparency. These characteristics provide a better programming
framework for self configuration of components.

e We have implemented and presented to the research community three
different demonstrators to introduce the concepts of the relaxed-ring,
atomic transactional DHT, and synchronous collaboration with eager
transactions.

e We develop two applications on top of Beernet to exploit optimistic and
pessimistic transactions, and the notification layer. These application
provide a community-driven recommendation system, and a collabora-
tive drawing tool. Two other applications designed and developed by
third parties are also presented so as to emphasize the impact of the
contribution of the relaxed-ring and its transactional layer.

The dissertation is organized as follows. After the introduction, there is
a review of all three generations of peer-to-peer systems, being structutured
overlay networks the most important focus of the analysis. The systems we
reviewed are not only studied from the point of view of their overlay graph,

SELFMAN Deliverable Year Four (M37-M40), Page 59

CHAPTER 6. D5.10: DESIGN AND ANALYSIS OF BEERNET, THE
MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

but also from their self-managing properties. We also review distributed
storage and the connection of peer-to-peer with Grid and Cloud Computing.
The following chapter presents the protocols and algorithms of the Relaxed-
Ring, being an important part of the contribution of this dissertation. The
Relaxed-Ring is also studied using feedback-loops so as to understand its
self-managing properties from a architectural and software design point of
view. Note that feedback-loops are part of the results in WP2. Evaluation
of the Relaxed-Ring, specially in comparison with other overlay graphs, is
done experimentally using a concurrent multi-agent simulator.

Once we have presented the Relaxed-Ring, the dissertation continues with
the study of distributed storage. We analyse Two-Phase commit, Paxos con-
sensus algorithm, and we describe our contribution with Eager Paxos and the
notification layer. Then, the dissertation describes the design decisions and
implementation details of Beernet, which implements the Relaxed-Ring and
its layer for transactional distributed hash tables using symmetric replica-
tion. Before the concluding the dissertation, we present a set of applications
designed and developed using Beernet and the ideas of the Relaxed-Ring.
Some of the applications are developed by the authors, and some of them are
contributions of third parties, emphasizing the impact of this dissertation.

Apart from the contributions presented in the dissertation, there are other
results included on this deliverable. We have presented the paper “Beernet:
RMI-free peer-to-peer networks” [16] in the Workshop on Distributed Objects
for the 21st Century (DO21) at ECOOP’09. This paper presents the architec-
ture and programming concepts used in the implementation of Beernet. We
have also published the paper “From mini-clouds to Cloud Computing” [18§]
at the SELFMAN SASO Workshop 2009. This paper is a proposal for future
work of this deliverable.

The author has won the “Best Presentation Award” in the Doctoral Sym-
posium of the “XtreemOS Summer School”, held at the Wadham College of
the University of Oxford, Oxford, UK, on September 10, 2009. The presenta-
tion was entitled “Beernet: a relaxed-ring approach for peer-to-peer networks
with transactional replicated DHT” [14], and it summarized the contribution
of the dissertation.

SELFMAN Deliverable Year Four (M37-M40), Page 60

CHAPTER 6. D5.10: DESIGN AND ANALYSIS OF BEERNET, THE
MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

6.4 Dissertation, Publications and Award

This section is dedicated to give a brief introduction to the documents in-
cluded as appendices on this deliverable. They correspond to a Ph.D. dis-
seration, a workshop paper, and the abstract of a presentation that won an
award in a Doctoral Symposium.

Beernet: A Relaxed-Ring for Self-Managing Decentralized Systems
with Transactional Replicated Storage

The core of this deliverable corresponds to this Ph.D. disseration. The full
version of the draft is to be found in Appendix A.14. Its content and con-
tribution have been already introduced in Section 6.3 and in the Excutive
Summary of this deliverable.

Beernet: RMI-free peer-to-peer networks

This paper is included in the proceedings of the Workshop on Distributed
Objects for the 21st Century (DO21) at ECOOP’09. The paper describes
the architecture of Beernet, and discusses language abstractions that are
useful in distributed object, mainly for development of peer-to-peer system.
The position is that RMI is considered harmful. The paper is included in
Appendix A.15.

From mini-clouds to Cloud Computing

This paper has been accepted and presented in the Workshop on Architec-
tures and Languages for Self-Managing Distributed Systems, SELFMAN at
SASO09. The paper describes a proposal to apply the results of this disser-
tation in Cloud Computing. The paper is included in Appendix A.16.

Best Presentation Award: “Beernet: a relaxed-ring approach for
peer-to-peer networks with transactional replicated DHT”

Boris Mejias, author of the Ph.D. dissertation, presented the main contri-
bution of his work in the Doctoral Symposium of the “XtreemOS Summer
School”, held at the Wadham College of the University of Oxford, Oxford,
UK, on September 10, 2009. He won the “Best Presentation Award”. The
abstract of the presentation, together with a copy of the certificate are in-
cluded in Appendix A.17.

SELFMAN Deliverable Year Four (M37-M40), Page 61

Chapter 7

D5.11: Evaluation of security
mechanisms

7.1 Executive summary

Deliverable 5.11 reports on a self-protection mechanism for Wikipedia to
identify spam and reduce the effect of spam (Section 7.3). The spam detec-
tion system builds on the general self-protection infrastructure for Wikipedia
developed in Deliverable 5.6 where it was used to enhance the credibility of
articles and edits in Wikipedia.

The particular spam problem we address is to identify the users who
are spammers in Wikipedia. Often these are the anonymous contributors
but nevertherless we can still identify them by requiring that they need to
have an identity in a social network through the use of a trusted proxy in
the infrastructure. The most difficult kind of attack to defend against is
where the user creates multiple virtual identities in the social network and
employs a large number of identities to make it easier to distribute the spam
contribution among the virtual users (the sybil users). This stategy tries
to make difficult to distinguish between an honest user from a spammer.
We map the sybil spam identification problem to one where edits correspond
to votes and we want to be able to measure the votes given that there are
sybil voters. The approach used is to measure the maximum flow in the
graph which can be used to identify the bottlenecks which are typically the
connections from the sybil region to the honest region of the graph. Initial
experiments using data collected from Facebook show that the effect of spam
can be effectively limited to the actual number of honest users the spammer

'We do not deal with approaches which try to understand the underlying semantics of
the edit which would lead to difficult natural language understanding problems.

62

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

is connected to in the social network. The results show that an automatic
and transparent mechanism for identifying spammers which is one of the
challenges to the growth of Wikipedia is feasible.

We also report on an extension to Deliverable 5.6 in Section 7.4 which
was not reported earlier as we had only stumbled upon the phenomena at
the time of the report. Only certain small world networks are known to be
navigable, meaning have routing algorithms which have short routes. Such
small world network models however do not resemble actual social networks
as their graph structure is much more sparse and less clustered. Conversely,
models such as the Watts and Strogatz small world networks which can
produce more clustered networks and have statistics closer to real world
networks are believed to be not navigable using greedy routing algorithms.
We discovered by enhancing local routing with local neighbourhood topology,
Watts and Strogatz networks become much more navigable and the routing
length approaches known navigable networks like the Kleinberg small world
networks. We believe this may be applicable to real world networks which
are more difficult to route than artificial small world networks.

SELFMAN Deliverable Year Four (M37-M40), Page 63

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

7.2 Contractors contributing to the Deliver-
able

NUS(P7) contributed to this deliverable.

NUS(P7) enhanced the self-protection infrastructure for Wikipedia in De-
liverable D5.6 to deal with the problem of spam.

SELFMAN Deliverable Year Four (M37-M40), Page 64

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

7.3 Applications of the Wiki Credibility In-
frastructure

7.3.1 Reducing Wiki spam with Social Networks

In Deliverable D5.6, we introduced a mechanism to enhance Wikipedia using
existing and reputable third party services. The philosophy of Wikipedia is to
allow anybody to contribute which includes anonymous users.? It turns out
that high quality contributions come from the vast number of anonymous
users who may only contribute once [2]. Such high quality (anonymous)
authors may be experts or have established reputation elsewhere. Although
their edits may be of high quality, it is desirable that such edits can be associ-
ated with a credibility measure which is indicative of the quality particularly
when it is anonymous. This can be achieved using our Wikipedia enhance-
ment [7] in Deliverable D5.6 to transfer the reputation from a third party
to Wikipedia in a possibly anonymous fashion. In Deliverable D5.11, we
will introduce another application of our Wikipedia enhancement framework
which is targeted at the problem of how to reduce spam in Wikipedia.

A recent study found that Wikipedia growth is slowing down [26]. On the
other hand the amount of spam or vandalism attempts continues unabated.
An important trend identified in [26] is a new positive trend which shows that
Wikipedia is losing editors. This is very significant since it is precisely the
work of human editors which is the main spam and vandalism mechanism
in Wikipedia. Although the use of human editors cannot be regarded as
scalable, in practice, it was effective simply because the number of editors
could keep pace with the spammers or vandals. Now, however, we may have
come to a point when the existing Wikipedia development will gradually be
threatened by the scale of the spam.

As such, this may be a good time to reevaluate how Wikipedia should
work in the future — perhaps by accepting less edits and accepting only
from reputable authors. The approach in Deliverable D5.6 is to make use
of third party services if they exist to transfer credibility information into
Wikipedia [7]. However, this does not deal with users who do not have any
credibility or reputation, in particular, virtually created identities. In order
to distinguish virtual identities, we leverage the power of social networks
and the availability of extensive social networking sites such as Facebook,
MySpace, etc. We focus on the problem of spammers which try to create
fake identities of editors to take over an article. Fake identities are used to
hide their activities and create an artificial community of editors.

2 Anonymous users are users who do not register and are listed by their IP address.

SELFMAN Deliverable Year Four (M37-M40), Page 65

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

In today’s increasingly connected world, a user in Wikipedia is likely to
be connected to other users in one of the social network. The social network
can be viewed as a big graph which shows relationships between users in the
network, i.e. the friends of a user. An honest user is expected to correspond
to a single node in the graph. Spammers which try to exploit multiple iden-
tities can be analyzed to see how their relationships differ from honest users.
Although spammer can create new virtual identities, the corresponding nodes
in the graph are limited in what friends they can know.

One of the largest social networking sites is Facebook with more than 300
million active users [5]. Furthermore, much of the graph is publically visible.
In Deliverable D4.4b, we developed a social network crawler for extracting
the graph from sites like Facebook. We build upon those tools here for the
Wikipedia spam prevention infrastructure.

If we use Facebook as the third party service for our Wikipedia enhance-
ment, we will be able to use it to limit the number of probable spammers
as well as detecting the presence of spammers from a certain period of time
thus can be used as a tool to fight spams.

As mentioned above, given the slow growth of Wikipedia and ever high
number of spams it may be a good time to moderate the edits. We can
use the Wikipedia enhancement to link every edits in Wikipedia to a user
in social networking site (e.g. Facebook) via trusted proxy. This requires
any (anonymous) users to use their Facebook account to make an edit in
Wikipedia. However, to maintain the anonymity, the trusted proxy can be
setup to anonymize the account but still be able to map back the edit to the
particular user whenever requested. Therefore, users can remain anonymous
and their edits can still be redarded as qualtiy edit if they linked the edits
with reputable third parties.

The linkage of Wikipedia edits to a user in a social network gives more
information to Wikipedia admins to fight for spammers. A typical spammers
can no longer do edit freely due to the linkage to the social networking
account. If the spammers do the spam using the same social networking
account, it will be easy for the Wikipedia admin to revert back all his edits.
On the other hands, and attempt to use different social networking account
will be easily captured by analyzing the social network graph.

Originally, we had intended to explore various Sybil defence approaches
in the literature in the Wikipedia context. However, recently, the SumUp
approach [27] has been shown to be very promising and more effective than
existing approaches Thus, we decided to base our Wikipedia spam mechanism
on vote collection using SumUp.

Analyzing the social networking graph to determine the spammers re-
quires substantial compute effort which may not be feasible for real-time

SELFMAN Deliverable Year Four (M37-M40), Page 66

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

editing response given the load of Wikipedia. We propose to collect all edits
during a specific period of time. Then Wikipedia contacts the trusted prox-
y/proxies using our credibility infrastructure to map the edits to users in the
social network graph. The problem of analyzing the social network structure
is reduced to a problem of Sybil Voting. We treat the users who do the edit
as voters and select some trusted users (in the social network) as the vote
collectors. The number of accepted Sybil votes can then be limited using
SumUp algorithm [27]. The maximum-flow from each voters to the vote col-
lectors is calculated. Once the flow is saturated, the Sybil region becomes
disconnected from the honest region as there is no more flow from the Sybil
to honest region. At this time, those voters that cannot be collected are
likely to be the Sybil voters who may reside in (several) “disconnected from
honest” regions. By using this assumption, the remainder of the sybil nodes
can be found by graph connectivity tests on the Sybil voters. One limitation
of our approach is that it only deals with edits from virtual nodes, the sybil
users.

In summary, our Wikipedia enhancement [7] has several potential ap-
plications that can improve the trust of content and edits in Wikipedia by
associating the edits with existing third party services to transfer the repu-
tation as well as a potential tool for the Wikipedia administrators to fight
spams by associating the edits with social networking sites such as Facebook.
The association between edits and a user in a social network can be used to
analyze potential spam attacks as well as to rate-limit the number of edits
made by the Sybil attacker to the number of attack edges (friends) the at-
tacker has in the social network graph. One advantage of this approach is
that it can be integrated easily into Wikipedia without much effort and pro-
vides transparent and automatic self protection mechanisms for Wikipedia.

7.3.2 Experiments

We evaluated the effectiveness of our proposed Wikipedia self-protection
mechanism by testing it with real social network data from Facebook. First,
we crawled a subset of Facebook graph, using an approach similar to [22].
The subgraph extracted from Facebook consists of 73719 nodes and 5992544
edges. The average node degree is 81.289 and average clustering coefficient
is 0.364. It is not possible to visualize the whole graph here, so we show the
first 1000 collected nodes in Figure 7.1.

SumUp [27] is a resilient vote aggregation system that leverages the trust
network among users to defend against Sybil attacks. Sybil attacks is an
attack where adversaries creates many identities in the trust network to out-
vote the honest users. Defending against non Sybil attack is easy if there

SELFMAN Deliverable Year Four (M37-M40), Page 67

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

Figure 7.1: Facebook subgraph with 1000 nodes visualized. The two pictures
at the bottom are the zoomed-in version of the red regions of the graph.

SELFMAN Deliverable Year Four (M37-M40), Page 68

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

is only one attacker using the same identity. The hardest defense is against
many different (independent) real attackers.

SumUp works by assuming that a single user in the trust network can
only have limited number of friends, typically hundreds. To limit the number
of votes from Sybil users, SumUp select a trusted user as the vote collector
in the trust network and run a maximum-flow algorithm from the voters to
the vote collector. This way, the number of Sybil votes can be limited to the
number of friends (called the number of attack edges) that the Sybil node
has. SumUp further reduces the number of attack edges by employing link
pruning and reducing the capacity along the path from the voter to vote
collector via negative feedback.

We reduce the Wiki spam prevention problem into a voting problem em-
ploying SumUp. All edits in Wikipedia from a certain period of time are
mapped to user/nodes in the social network. The users in the social network
are the voters. We then pick a trusted node in the social network as the
vote collector for the SumUp algorithm. We can also manually inspect the
edits and use negative feedback as well as link pruning. The voting result
will tell us which edits in Wikipedia are likely to be coming from the same
Sybil attacker.

This experiment uses the collected graph from Facebook with N = 74K
nodes. We assume that the edits are already mapped to users in the Facebook
graphs. The edit model is that the users are randomly selected from the
graph. Thus, some are honest users while others are Sybil users. We then
measure how effective is SumUp in identifying the Sybil users that did the
edits. We will then also identify the rest of the Sybil users linked from the
rejected Sybil user since they are in the same region but didn’t vote. This
further captures all other Sybil nodes in the graph that haven’t been used by
the Sybil user. We purposedly created several Sybil regions in the Facebook
graph so that we are able to measure how the effectiveness against Sybil
attacks.

Figure 7.2 shows the number of accepted Wikipedia edits (Sybil votes)
as the number of Sybil nodes is varied in the social network. We assume
that we have a single attacker that has 200 friends (this is substantially
higher than the average node degree). There is a single vote collector that
can receive up to 700 edits/votes by distributing the 700 tickets as in [27].
The experiment shows that initially the number of edits accepted from sybil
nodes is proportional to the number of sybil nodes in the trust network as
the number of nodes increases. However, after 200 sybil nodes, the number
of Sybil votes is limited to 200 which is the number of attack edges. What
this means is that it is feasible to limit the number of Wikipedia edits to the
maximum number of attack edges of the attacker.

SELFMAN Deliverable Year Four (M37-M40), Page 69

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

260
A |
3 _
T 150
E 100
-E .
2 _
50—
u} T
a 100 200 200 400 400 600
Humber of Sybil nodes
Figure 7.2: Varying the number of Sybil nodes
1z

Fraction of honest votes collected
=]
=]
|

0.0 T T T T T T T T T T
0.000 0.005 0.010
Humber of honest votes f total nodes

Figure 7.3: Acceptance rate when there is no attack

SELFMAN Deliverable Year Four (M37-M40), Page 70

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

The next experiment in Figure 7.3 shows the fraction of the honest edits
accepted when there is no attack. What we would like is that all honest
edits are acceepted when there are no attacks, i.e. the edits only come from
honest nodes. We can see that the acceptance rate is around 100%, thus, the
protection mechanism doesn’t affect the honest users.

=
[l

-
o

o
=

Fraction of wotes collected
[=]
]

PRI T NN TR T N AN TN N TR N N N

=
In
1

o
ka
T T R T

o
=1

L) 5 =] T g a 10
Mumber of wvote collector

o
=
b
Lex)

Figure 7.4: Varying the number of vote collectors

Vote collectors plays a crucial role in this framework. Having more vote
collectors can give rise to more robustness. Figure 7.4 shows an experiment
to explore the importance of having robust vote collectors. In this experi-
ment, we create 250 sybil nodes with 200 attack edges from the sybil region
to the honest region. A single vote collector may suffer from the problem
that it may lose some edits/votes because of overcapacity on some edge. The
experiment shows that having more vote collectors reduces this problem as
the fraction of votes collected becomes stable after two vote collectors. Only
about 95% of the edits are allowed because the sybil region is limited to
about 200 edits.

To summarize, the experiments show that it is feasible to limit the effect
of spam edits to the number of attack edges of the sybil nodes. Once the sybil
region is identified, an adminstrator could remove all the spam including the
spam which was not rejected since SumUp allows some spam to get through.

SELFMAN Deliverable Year Four (M37-M40), Page 71

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

7.4 Navigability in the Watts and Strogatz
Small World Model

We report on an extension of the work in Deliverable 5.6. This work is re-
ported in Deliverable 5.11 as it is some new results we discovered around
the end of Deliverable 5.6 and thus was not yet ready to go into the Deliv-
erable 5.6 report at the time. The results are also reported in the SELF-
MAN@SASO09 workshop [6].

The study of small-world networks (SWNs) has become popular with the
growth of social networking sites such as Facebook. SWNs were first studied
by Stanley Milgram [28] who showed experiments forwarding letters that the
length of the chain was between five and six. This is also popularly known
as “six degrees of separation”. This suggests that SWNs should have a small
diameter. Furthermore, SWNs are not just random graphs but they have
other properties, most notably, small diameter. A well studied model of a
SWN is the one proposed by Watts and Strogatz [29]. Their model (WS
SWN) has the virtue of simplicity, while capturing the two properties.

We investigate the problem of finding effective routes between nodes (also
known as navigability), in WS SWN [6]. The property of small diameter en-
sures the existence of a short route, but it does not mean that finding a short
route is easy, especially in a distributed setting. Ideally, the routing length
should be polylogarithmicly bounded and the routing algorithm should not
require global information about the whole SWN graph. We revisit the issue
of routability for two reasons. Firstly, WS SWN makes it easy to construct
SWNs with different amounts of clustering which makes it useful as a model
for social networks. Secondly, a number of papers [12] have promoted the
idea that WS SWN is not navigable.

Rather than strict greedy routing, we will look at local routing algorithms
which are greedy-routing like so as to get better navigability in WS SWN. We
employ the NoN-Greedy [19] routing strategy to help reducing the average
routing length. In NoN-Greedy routing, each node knows the link informa-
tion of its neighbors (1-lookahead). With more (but still local) information,
the routing can be better guided towards the target and reduces the unnec-
essary routes to the wrong paths early in the routing thus significantly cut
down the routing length.

Preliminary results shows that WS SWN is more navigable than it was
suggested. With 1-lookahead, the routing length approaches that of the
Kleinberg SWN which is known to be navigable. Increasing the lookahead
beyond 1-lookahead appears to give only small gains but substantially in-
creases the storage needed.

SELFMAN Deliverable Year Four (M37-M40), Page 72

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

7.5 Papers and publications

Wiki credibility enhancement?

Felix Halim, Wu Yongzheng and Roland H.C. Yap, Fifth International Sym-
posium on Wikis and Open Collaboration (WikiSym), 2009 (see Appendix
A.18).

Wikipedia has been very successful as an open encyclopedia which
can be edited by anybody. However, the anonymous nature of
Wikipedia means that readers may have less trust since there is no
way of verifying the credibility of the authors or contributors. We
propose to transfer external information from outside Wikipedia
to Wikipedia pages. These additional information is meant to
enhance the credibility of the content. For example, it could
be the education level, professional expertise or affiliation of the
author. We do this while maintaining anonymity. In this paper,
we present the design and architecture of such system together
with a prototype.

Routing in the Watts and Strogatz Small World Net-
works Revisited

Felix Halim, Yongzheng Wu, Roland H.C. Yap, Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2009 (see
Appendix A.19).

Routing in small world networks (SWNs) have mainly been stud-
ied in the context of Kleinberg-like SWNs because of their nav-
igability. If one wants to employ real world SWNs such as so-
cial networks for self-managing overlay networks, we believe that
models like the Watts and Strogatz’s SWN (WS-SWN) may be
more suitable because the resulting graphs from the WS-SWN
construction have properties closer to real world SWNs. Further-
more, WS-SWN provides a parameter p to adjust the clustering
coefficient and the diameter of the graph.

The drawback is that WS-SWN is not navigable using greedy
routing. We demonstrate some preliminary experiments which
suggest that WS-SWN may be more navigable than previously

3An earlier draft of this paper appears in the Deliverable D5.6. This paper is the one
which is published in WikiSym’09.

SELFMAN Deliverable Year Four (M37-M40), Page 73

CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

thought. Using additional routing information (such as 1-lookahead),
routing performance in WS-SWN seems to approach greedy rout-
ing performance in the Kleinberg SWN model. This is interesting
since it suggests that various graphs such as the WS-SWN may
be more usable for routing than previously thought.

SELFMAN Deliverable Year Four (M37-M40), Page 74

Appendix A

Publications

75

APPENDIX A. PUBLICATIONS

A.1 Software design with interacting feedback
structures and its application to large-
scale distributed systems

SELFMAN Deliverable Year Four (M37-M40), Page 76

Software design with interacting feedback structures and
its application to large-scale distributed systems

Peter Van Roy
Univ. catholique de Louvain
Place Sainte Barbe, 2
B-1348, Louvain-la-Neuve
peter.vanroy@uclouvain.be

ABSTRACT

As Internet programs become larger and more complex, de-
signing them and predicting their behavior become daunt-
ing. In addition to users coming and going and acting con-
currently, “abnormal” events such as software errors, par-
tial failures, attacks, and hotspots become normal. To ad-
dress this problem, we propose that these programs should
be designed from the start as a set of interacting feedback
structures. Each feedback structure consists of one or more
feedback loops and continuously maintains one system prop-
erty. In a well-designed system, no part should exist outside
of a feedback structure. We motivate this approach with
examples of robust systems from biology and computing.

To show the power of the approach, we have built the
open-source Scalaris transactional store, which combines a
structured peer-to-peer network, a replicated storage layer,
and a transaction layer. Scalaris consists of six feedback
structures working together in a harmonious way. Scalaris
scales smoothly and efficiently to hundreds of nodes, han-
dles node and network failures, and performs load balancing.
Scalaris uses a modified Paxos uniform consensus algorithm
to implement atomic commit. A distributed Wiki built with
Scalaris won first prize in the IEEE International Scalable
Computing Challenge (SCALE 2008).

In this approach, a system’s specification consists of a con-
junction of properties, each of which is implemented by one
feedback structure. This achieves separation of concerns by
defining the concerns in terms of the feedback structures
that naturally implement them. We are currently studying
how to design with this approach and we are extending the
approach to design for a desired global behavior using re-
versible phase transitions. Such systems will be much easier
to design, predict, and manage, and will be less subject to
global problems such as multicast storms, chaotic behavior,
and cascading failures. They will provide well-defined be-
havior for a wide range of environmental conditions, even
extremely hostile ones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Seif Haridi
Royal Institute of Technology
Box 1263
S-164 28 Kista
seif@it.kth.se

Alexander Reinefeld
Zuse Institute Berlin
Takustr. 7
D-14195 Berlin-Dahlem
ar@zib.de

Keywords

software design, complex systems, distributed systems, feed-
back loops, self management, transactions, replication, peer-
to-peer

1. INTRODUCTION

It is now possible to build Internet applications that are
more complex than ever before. The Internet has reached a
higher level of availability and scale than ever before using
computing nodes that are more powerful than ever before.
Experience shows that it is difficult to build applications
that take advantage of this complexity: they are hard to
design, predict, and manage. They are subject to hostile
environmental conditions with frequent node failures and
communication problems. They are subject to global prob-
lems such as hotspots, attacks, multicast storms, chaotic
behavior, and cascading failures [4].

To address these problems, we propose to design applica-
tions from the start as a set of feedback structures. Fach
feedback structure is designed to manage one (global) sys-
tem property. It consists of a collection of feedback loops,
often organized as a hierarchy where each feedback loop may
control an inner loop and be controlled by an outer loop.
Interaction between feedback structures is limited and well-
defined. In a well-designed system, no part exists outside
of a feedback structure. Each feedback loop continuously
tries to achieve one specific (local) goal by means of an al-
gorithm at its core that is integrated into the system with
detection and actuation components. It is important to dis-
tinguish between the system level (feedback structures) and
the building block level (feedback loops).

We claim that by using design rules and patterns for feed-
back structures, it is practical to build large-scale systems
that are robust, adaptable, easy to understand, and easy to
maintain. We motivate the use of feedback structures with
examples of real systems taken from both biology and com-
puting. To substantiate the claim, we have built Scalaris as
part of the SELFMAN project [28, 34]. Scalaris is a self-
managing transactional store built on top of a structured
peer-to-peer network. We use a structured peer-to-peer net-
work as the foundation because it already provides scalabil-
ity and robustness with a design based on feedback and self
organization. Scalaris uses an improved variant of the Paxos
uniform consensus algorithm at the heart of its transaction
manager. Scalaris contains a large number of interacting
feedback loops, organized as six feedback structures, that
perform self healing to maintain connectivity, do merging
of split rings, manage replicas, and implement transactions,

and self tuning to achieve efficient routing and to spread
load.

Calculate corrective action

Actuating agent Monitoring agent

Subsystem

Figure 1: A feedback loop

1.1 Feedback loops and feedback structures

A feedback loop in its general form consists of four parts: a
monitor, a corrector, and an actuator, attached to a subsys-
tem. We assume without loss of generality that the parts are
concurrent components (agents) communicating by asyn-
chronous message passing, as depicted in Figure 1. A part
can perform either a global or local action. For example,
a global monitor can use gossip-based aggregation to con-
tinuously calculate global information and a global actuator
can use a broadcast or publish/subscribe mechanism. The
corrector contains an abstract model of the subsystem and
a goal. The feedback loop runs continuously, monitoring the
subsystem and applying corrections in order to approach the
goal. The abstract model should be correct in a formal sense
(e.g., according to the semantics of abstract interpretation
[9]) but there is no need for it to be complete.

A simple example of a feedback loop is a transaction man-
ager. It manages system resources according to a goal, which
can be optimistic or pessimistic concurrency control. The
monitor accepts lock requests and the actuator gives the
response according to the concurrency control algorithm.
The transaction manager contains a model of the system:
it knows at all times which parts of the system have exclu-
sive access to which resources.

A feedback structure is a collection of interacting feedback
loops that together manage one system property. The feed-
back loops are typically organized to use both hierarchy and
stigmergy, the two basic mechanisms of loop interaction.
Through stigmergy, loops act on a shared subsystem, and
through hierarchy, one loop directly controls another.

Very little systematic work exists on how to design with in-
teracting feedback loops. In real systems, however, interact-
ing feedback loops are the norm. But these feedback loops
do not interact haphazardly. As far as we can tell, they are
always organized as weakly interacting feedback structures.
We can therefore study feedback structures separately from
their interactions. This is why the study of feedback struc-
tures is invaluable for designing and understanding real sys-
tems. The system specification then consists of a conjunc-
tion of system properties, each of which is implemented by
one feedback structure. We find that dividing system func-
tionality into feedback structures is a natural way to define
and to separate concerns in real systems.

1.2 Interdisciplinary nature

Using feedback loops for system design is an old idea that
dates back at least to Norbert Wiener’s work on cybernetics
[37]. It is being used successfully in many areas both inside
and outside of computing:

e Artificial intelligence. For example, Brooks’ subsump-
tion architecture implements intelligent systems by de-

composing complex behaviors into layers of simple be-
haviors, each of which controls the layers below it [5].

e Management of computer systems. This is done at
many levels. A simple example is automatic mem-
ory management (garbage collection), in which a pro-
grammer manages not individual memory blocks but
rather the garbage collection policy. Another exam-
ple is IBM’s Autonomic Computing initiative, which
reduces management costs by removing humans from
low-level management loops [16]. It is used primarily
for clusters and databases.

e Telecommunications. Armstrong et al show how to
build reliable telecommunications software in Erlang
using the principle of supervisor trees [3]. Each inter-
nal node in a supervisor tree corresponds to a feedback
loop that monitors part of the system.

e Control theory. Hellerstein et al show how to design
computing systems with feedback control, to optimize
global behavior such as maximizing throughput [14].
Hellerstein gives two examples of adaptive systems with
interacting feedback loops: gain scheduling (with dy-
namic selection among multiple controllers) and self-
tuning regulation (where controller gain is continu-
ously adjusted).

e Distributed algorithms. These algorithms can be for-
mulated as feedback structures. For example, fault-
tolerance algorithms use a feedback loop based on a
failure detector [12]. The implementation of the fail-
ure detector itself requires a feedback loop.

o Structured overlay networks, also called structured peer-
to-peer networks. They are inspired by previous gen-
erations of peer-to-peer networks with random neigh-
bors but provide guaranteed lookup and performance
[32]. They use principles of self organization to guaran-
tee scalable and efficient storage, lookup, and routing
despite volatile computing nodes and networks. Our
work in the SELFMAN project is in this area.

e Social systems and biological systems. Senge et al show
how to debug problems in human organizations by
modeling them as feedback structures [29]. Many nat-
ural and biological systems use feedback structures and
do self organization [11, 7, 22].

We have taken ideas from many of these disciplines to forge
our approach. Some disciplines are needed to design a feed-
back loop’s core algorithm. Others are needed to understand
design rules and patterns for interacting feedback loops.

1.3 Structure of the article

This article presents our methodology in a condensed form,
supported with many examples.

e Section 2 gives two nontrivial examples of feedback
structures, from biology and computing, and derives
several design rules from them.

e Section 3 presents the open-source Scalaris transac-
tional storage library, its design, and the Distributed
Wikipedia application we have built with it. We also
present the Beernet library, which differs in important

ways from Scalaris. We contrast two ways of present-
ing the Scalaris architecture: a conventional presenta-
tion as a layered system and a novel presentation as a
set of six interacting feedback structures.

Section 4 explains how to design Scalaris and similar
systems by giving a set of guidelines for the design of
one feedback structure and for the decomposition and
orchestration of multiple feedback structures.

e Finally, Section 5 recapitulates the approach and points
to two important future directions: designing robust
systems with reversible phase transitions and justify-
ing and completing the methodology through formal
techniques.

2. FEEDBACK STRUCTURES

We study working systems to gain insight in how to con-
struct feedback structures. It is important to understand
the basic design rules and patterns before attempting a for-
mal analysis. We give two examples out of many nontrivial
systems that consist of multiple interacting feedback loops.
Our first example comes from biology: the human respira-
tory system, which was designed by evolutionary processes.
Our second example comes from software design: the TCP
protocol family, which was designed by human designers over
several decades in response to the exponentially growing In-
ternet. Other interesting examples are given in [33] (sub-
sumption architecture, fault tolerance in Erlang) and [34]
(human endocrine system, Hill equations, collective intelli-
gence).

Trigger unconsciousness

when O2 falls to threshold

Render unconscious
(and reduce CO2 threshold to base level)

Conscious control
of body and breathing

Other inputs

Increase or decrease breathing rate
and change CO2 threshold
(maximum is breath—hold breakpoint)

Trigger breathing reflex
when CO?2 increases to threshold

Trigger laryngospasm temporarily
when sufficient obstruction in airways
Detect Measure
Co2

Breathing Luwngéspusm obstruction t
reflex (seal air tube) in airways in blood breathing in blood

\ L» Breathing apparatus Q J/

in human body

. Measure
Monitor 02

Actuating agents Monitoring agents
Figure 2: The human respiratory system as a feed-
back structure

2.1 The human respiratory system

Successful biological systems survive in natural environ-
ments, which can be particularly harsh. We study them
to gain insight in how to design robust software. Figure 2
shows the parts of the human respiratory system and how
they interact. We derived this figure from a precise medi-
cal description of the system’s behavior [38]. The figure is
slightly simplified when compared to reality, but it is com-
plete enough to give many insights. There are four feedback
loops: two inner loops (breathing reflex and laryngospasm),
a loop controlling the breathing reflex (conscious control),
and an outer loop controlling the conscious control (falling

unconscious). Three loops make a hierarchical tower which
interacts using stigmergy with the fourth loop. From this
figure we can deduce what happens in many realistic cases.
For example, holding one’s breath increases the CO4 thresh-
old so that the breathing reflex is delayed. Eventually the
breath-hold threshold is reached and the breathing reflex
happens anyway. For a trained person the Oz threshold is
reached first and they fall unconscious without breathing.
When unconscious the breathing reflex is reestablished.

We can infer some plausible design rules from this system.
The innermost loops (breathing reflex and laryngospasm)
and the outermost loop (falling unconscious) are based on
negative feedback using a monotonic parameter. This gives
them stability. The middle loop (conscious control) is not
stable: it is highly nonmonotonic and may run with both
negative or positive feedback. It is by far the most com-
plex of the four loops. For example, if a person falls into a
lake, conscious control of breathing is part of a swimming
movement to get to the shore. We can justify why conscious
control is sandwiched in between two simpler loops. On the
inner side, conscious control manages the breathing reflex,
but it does not have to understand the details of how this
reflex is implemented. This is an example of using nesting
to implement abstraction. On the outer side, the outermost
loop overrides the conscious control (a fail safe) so that it is
less likely to bring the body’s survival in danger. Conscious
control seems to be the body’s all-purpose general problem
solver : it appears in many of the body’s feedback structures.
This very power means that it needs a check.

Send Send
stream acknowledgement

Outer loop

(congestion control)

Calculate policy modification

(modify throughput)
Inner loop l
(reliable transfer)
Calculate bytes to send
'ﬁ_/ (sliding window protocol) ‘ﬁ

Actuator Monitor Monitor
(send packet) (receive ack) throughput

[1 T
[|
Subsystem
(network that sends packet to
destination and receives ack)

Figure 3: TCP as a feedback structure

2.2 Transmission Control Protocol (TCP)

The TCP family of network protocols has been carefully
tailored over many years to work adequately for the Internet.
We consider therefore that its design merits close study. We
explain the heart of TCP as two feedback loops that interact
hierarchically to implement a reliable byte stream transfer
protocol with congestion control [15]. The protocol sends a
byte stream from a source to a destination node. Figure 3
shows the two feedback loops as they appear at the source
node. The inner loop does reliable transfer of a stream of
packets: it sends packets and monitors the acknowledge-
ments of the packets that have arrived successfully. The
inner loop implements a sliding window: the actuator sends
packets so that the sliding window can advance. The slid-

ing window can be seen as a case of negative feedback using
monotonic control. The outer loop does congestion control:
it monitors the throughput of the system and acts either
by changing the policy of the inner loop or by changing the
inner loop itself. If the rate of acknowledgements decreases,
then it modifies the inner loop by reducing the size of the
sliding window. If the rate becomes zero then the outer loop
may terminate the inner loop and abort the transfer.

These two loops are part of a much larger feedback struc-
ture, in which the individual TCP connections all share a
common network. Congestion is felt by all congestion con-
trol loops, which will all reduce their window sizes. This
is an example of collaboration using stigmergy. It causes
the overall throughput to increase, since the network no
longer wastes its resources transmitting packets that will
be dropped before reaching their destination.

WiKIPEDIA
English Deutsch
The Free Encyclopedia Die freie Enzykiopécie
500 000+ artices 210 000+ Artkel
A& Francais
FU—EBRER f AR Liencyclopédie libre
105 coo+ BB ' 9 90 oo+ erticies
AAS
Svenska Lo 1 Polski
Den fria encyklopedin Woina Encyklopedia
66,000+ antkiar 50 000+ hasct

Nederlands = Espaiiol
De ryclopedie o La enciclopedia libi .
TSt e <31 strong data consistency

“ atomicity, consistency,
isolation, durability

{2 availability

{3 scalability

Figure 4: Distributed Wikipedia built on top of
Scalaris

3. SCALARIS

Scalaris is an open-source library providing a self-managing
data management service for Web 2.0 applications [27, 25,
24]. Web 2.0 initiated a business revolution: service providers
offer Internet services for many activities, shopping, online
banking, information, social networking, and recreation. In
today’s society Web 2.0 is no longer a convenience, but cus-
tomers rely on its continuous availability, regardless of time
and space. Even the shortest interruption, caused by system
downtime or network partitioning, may cause huge losses in
reputation and revenue. In addition to 24/7 availability,
providers face another challenge: they must, for a good user
experience, be able to respond within milliseconds to in-
coming requests, regardless whether thousands or millions
of concurrent requests are currently being served. Continu-
ous availability, high performance, and scalability were key
requirements in the design of Scalaris. To satisfy these re-
quirements, we designed Scalaris to be self managing.

As a challenging benchmark for Scalaris, Figure 4 shows
how we implemented the core of Wikipedia, the “free ency-
clopedia, that anyone can edit”. Wikipedia is among the ten
most frequently accessed websites. It handles about 50,000
requests per second, of which 48,000 are cache hits in the
proxy server layer and 2,000 are processed by ten servers in

the master/slave MySQL database layer [39]. The proxy and
web server layers are embarrassingly parallel and therefore
trivial to scale. From a scalability point of view, only the
database layer is challenging. Because our implementation
uses Scalaris to replace the database layer, it inherits all the
favorable properties of Scalaris such as scalability and self
management. Instead of using a relational database, we map
the Wikipedia content to the Scalaris key/value store. On a
page update, a transaction across all affected keys (content,
backlinks, categories, etc.) and their replicas is done. With
a synthetic benchmark, Scalaris achieves 14,000 read+write
transactions per second on 15 servers, increasing almost lin-
early with the number of servers [26]. This number cannot
be directly compared to the Wikipedia number since the
work and the processors are not the same, but it does show
that Scalaris is a credible implementation.

We have built a second library, Beernet, that differs from
Scalaris in some important points. Whereas Scalaris is based
on a Chord# overlay network, Beernet uses a relaxed ring
structure [21, 20]. We relax the connectivity condition, re-
quiring only that a node be in the same ring as its successor
(instead of both its successor and predecessor). Ring main-
tenance then does not need periodic stabilization and does
not rely on transitive connectivity. The relaxed ring has a
“bushy” structure that converges with local operations to a
perfectly connected ring. We also modify the transaction
manager to request locks quickly and to notify all nodes of
modified state. We need these modifications for our col-
laborative drawing application, DeTransDraw, which uses
transactions to overcome network delays while maintaining
a coherent global drawing.

11,15,7,3

Figure 5: The Scalaris transaction protocol

3.1 Transactions on an overlay network

Scalaris is a structured overlay network extended with a
transaction layer using a replicated key/value storage. Its
architecture provides the traditional ACID properties of trans-
actions in a scalable decentralized setting. It does not at-
tempt to replace current database management systems with
their general, full-fledged SQL interfaces. Instead our tar-
get is to support transactional Web 2.0 services like those
needed for Internet shopping, banking, or multiplayer online
games. Figure 4 shows the three layers of the system:

1. At the bottom, an enhanced structured peer-to-peer
network, with logarithmic routing performance, pro-

vides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other
overlays, our implementation stores the keys in lex-
icographical order. Lexicographical ordering instead
of random hashing enables control of data placement
which is necessary for low latency access in multi data
center environments.

2. The middle layer implements data replication. It en-
hances the availability of data even under harsh con-
ditions such as node crashes and physical network fail-
ures. We use symmetric replication, in which the data
is replicated symmetrically around the ring.

3. The top layer provides transactional support for strong
data consistency in the face of concurrent data opera-
tions. It uses a fast consensus protocol with low com-
munication overhead that has been optimally embed-
ded into the peer-to-peer network.

Figure 5 shows how the transaction protocol works on a
structured peer-to-peer network with 16 nodes. A client
initiates a transaction by asking its nearest node, which be-
comes a transaction manager. Other nodes that store data
are transaction participants. Given symmetric replication
with degree f (4 in the figure), we have f transaction man-
agers (TM and rTM in the figure) and f replicas for the
other participating nodes. A modified version of Lamport’s
Paxos uniform consensus algorithm is used for node agree-
ment [19, 12]: each replicated transaction manager (r'TM)
collects votes from a majority of participants and locally de-
cides on abort or commit. The transaction manager (TM)
then collects a majority from the replicated transaction man-
agers and sends its decision to all participants. This algo-
rithm achieves commitment if more than f/2 nodes of each
replica group are alive. The algorithm’s operation seems
simple; things are actually more subtle because it is correct
even if nodes can at any time be falsely suspected of having
failed. All we know is that after some unknown finite time,
the failure suspicions are correct (eventually perfect failure
detection). In our experience, this failure detector is ade-
quate for an Internet setting, where nodes may crash and
communication may be interrupted.

3.2 Feedback structures in Scalaris

Instead of the conventional layered presentation of the pre-
vious section, we can present the architecture of Scalaris in
a more enlightening way as a set of six feedback structures
and their interactions:

1. Connectivity management. This feedback structure
maintains the connectivity of the ring using periodic
successor list stabilization.

2. Merge management. This feedback structure monitors
when it is possible to merge the ring after it has split
into several rings due to network partitioning or other
network problems. It uses the merge algorithm to con-
verge continuously to a single ring [30].

3. Routing management. This feedback structure main-
tains efficient routing tables using periodic finger sta-
bilization.

4. Load balancing. This feedback structure balances load
by monitoring each node and moving nodes when nec-
essary to distribute load evenly.

5. Replica management. This feedback structure main-
tains the invariant that there will always eventually
be f replicas of each data item. Whenever there is a
potential new replica, it uses consensus to propose a
new replica set.

6. Transaction management. This feedback structure uses
consensus among replicated transaction managers and
storage nodes to perform atomic commit. If the trans-
action manager TM fails, then one of its replicas r'TM
takes over. Multiple takeovers are tolerated by con-
sensus.

The Scalaris specification then consists of the conjunction
of the six properties implemented by these feedback struc-
tures. Interactions between the feedback structures are pos-
sible when the perceived set of correct nodes changes, due
to nodes joining, leaving, failing, or suspected of failing. We
handle the interactions as follows:

e Connectivity management, replica management, and
routing management interact when the set of nodes
changes. This does not affect correctness because each
manager always converges towards its ideal solution.
Oscillations do not occur because there are no cyclic
dependencies (connectivity management is not affected
by the other two). We choose the time delays of the
different managers to improve efficiency.

e Replica management and transaction management in-
teract because the number of replicas can change. This
may affect consistency if there are temporarily more
than f replicas. This is an extremely rare situation,
but it can be handled by changing the majority cri-
terium of the consensus algorithm.

e Covert stigmergy between feedback structures may oc-
cur because the network is a shared resource. Connec-
tivity and merge management messages must be given
priority over other messages, since otherwise the over-
lay network may become disconnected at high loads.
To minimize other bad effects due to stigmergy, the
management load on the network should be kept as
constant as possible. If connectivity management does
less work, then routing management takes up the slack.

Because these six feedback structures act at all layers of
the system, we can say that the Scalaris implementation is
self managing in depth. For many Web 2.0 services, the to-
tal cost-of-ownership is dominated by the costs needed for
personnel to maintain and optimize the service. In tradi-
tional database systems, changing system size and tuning
require human interference which is error prone and costly.
In both these situations, the same number of administrators
in Scalaris can operate much larger installations.

4. DESIGN GUIDELINES

A self-managing application consists of a set of interact-
ing feedback structures, each of which manages one system
property [36]. For this reason, we sometimes call a feed-
back structure a “manager”. We first explain how to design
one feedback structure and then we explain how to combine
feedback structures to make the complete system. This sec-
tion gives a partial methodology; the complete methodology
is still a subject of future research.

4.1 Designing one feedback structure

A feedback structure consists of a set of feedback loops
that collaborate together. An important design rule is that
each feedback loop should target a separate part of the man-
agement. In the TCP example, the inner loop implements
the sliding window and the outer loop does congestion con-
trol by changing a parameter of the inner loop. Each feed-
back loop can then be designed and optimized separately
using control theory [14] or discrete systems theory [8]. This
works well for feedback loops that are mostly independent.
If the feedback loops interact in a stronger way, then the
design must take these interactions into account. In a well-
designed feedback structure, the interactions will be small
and can be handled by small changes to each of the par-
ticipating feedback loops. It can happen that parts of the
feedback structure do not fit into the “mostly separable sin-
gle feedback loops” pattern. We have encountered several
examples of this in the SELFMAN project. In that case we
recommend the following approach:

e In the case of a large number of agents that collaborate,
the best approach is to design a distributed algorithm
[12] or a multi-agent system [31] to perform the task.
For example, in SELFMAN we needed an algorithm to
perform atomic commit for distributed transactions, in
the face of possible node failures and communication
interruptions (imperfect failure detection). We found
that a modified version of the Paxos uniform consen-
sus protocol was an essential part of the solution. This
is a complex algorithm whose correctness is not trivial
to prove [12, 23]. Instead of trying to reinvent it in
terms of interacting feedback loops, we used the exist-
ing knowledge about this algorithm.

e In the case when the feedback structure consists of
more than one loop intimately tied together, the global
behavior must be determined by analyzing the struc-
ture as a whole and not by trying to analyze each loop
separately. To our knowledge, no general methodology
for doing this exists. We have made progress on two
fronts: design rules and patterns for common feedback
structures. We have made a comprehensive survey of
feedback loop patterns [6]. Some commonly occurring
patterns, such as “ITragedy of the Commons”, have
been extensively studied in the literature. Unfortu-
nately, the literature is extremely fragmented. Studies
of feedback loop patterns exist in widely different dis-
ciplines, such as business management [29], biology [7,
22|, and computer science [14]. Complete classification
of these patterns is still future research.

4.2 Combining feedback structures

We now explain how to build a system as a set of feedback
structures. This is done in two steps, decomposition and
orchestration [2]. Decomposition divides the overall man-
agement into separate feedback structures. Orchestration
handles the interactions between these feedback structures.

In decomposition, each task focuses on a single property of
the system and is performed by a single feedback structure.
For example, in the distributed store we distinguish connec-
tivity, efficient routing, load balance, replicated storage, and
transactions. Each of these is done by a different feedback
structure. Connectivity is done through ring maintenance
and the merge algorithm. Efficient routing is done through

finger table maintenance. Load balancing is done through
a load distribution algorithm. Replicated storage is done
through the symmetric replication algorithm. Transactions
are done through the replicated transaction managers.

For a successful orchestration, it is crucial to perform the
right decomposition. The managers should be independent
or interact only in a simple way. Because interactions can
be subtle (see Section 3.2), it is important to simplify them
as much as possible at design time. For the different kinds
of interactions, we give design rules to achieve this. We then
enumerate all possible interactions and modify the system
so they do not result in undesirable behavior.

4.2.1 Handling interactions

We identify three ways in which managers can interact
and we explain how to handle them [1]:

e Stigmergy. This occurs when managers make changes
to a shared subsystem. Each change made by a man-
ager may be sensed by another manager. This is the
most common and is often hard to control. It is a
powerful way to communicate for managers that oth-
erwise have no direct communication channel, such as
the TCP congestion control loops. Since stigmergic
communication tends to be noisy, the managers must
be designed to tolerate this.

e Hierarchy. This occurs when one manager directly
controls another. This situation often occurs inside
a single feedback structure, when an outer loop con-
trols an inner loop. For example, it occurs inside the
TCP structure and in the human respiratory system.
To handle this, we choose the control parameter to be
a natural parameter of the system being controlled and
we model the control in terms of this parameter.

e Direct interaction. This occurs when two managers
interact as peers. It does not mean that one man-
ager controls the other, but one manager may interact
with another. Direct interaction is sometimes needed
since two independent managers affecting the same re-
source may cause undesired behavior, such as races or
oscillation. It must be handled carefully to avoid re-
placing one kind of undesired behavior by another. We
can avoid many problems by designing each manager
around a monotonic function with a limiting value that
corresponds to perfect behavior. Each manager then
increases its own function in discrete steps.

4.2.2 Build the system in the right order

An important technique to reduce the interaction of feed-
back structures is to add the different properties in the right
order. In this way, each new property can be added in (al-
most) orthogonal fashion to the system. For the transac-
tional store, we propose the following order:

e The first property is self healing: the structured peer-
to-peer network is based on a ring structure and uses
feedback loops to repair the ring if a node joins, leaves,
or fails, or to repair network partitioning.

e We add self tuning in two steps. The first step is to
add extra routing links to the nodes (called “fingers”
in the literature) to make the routing efficient. This

is done through a feedback loop that continuously cor-
rects the fingers depending on the changing structure
of the ring. The second step is to update the ring dy-
namically to remove hotspots. This is done through a
feedback loop that periodically collects node load in-
formation and performs balancing operations in which
an unloaded node leaves the ring and rejoins near a
loaded node to take over some of the load.

We add self configuration. Components use the effi-
cient routing to communicate, in particular to inform
nodes when to add or remove new components.

e Finally, we add self protection. We continuously mod-
ify the ring’s topology to approach a small-world net-
work, which is resistant to certain kinds of collusion.
We also add an observer of node behavior that can
eject bad nodes from the ring. This form of self pro-
tection protects against malicious users; it does not
protect against attacks to the infrastructure itself.

S. CONCLUSIONS AND PROSPECTS

To tame the complexity of Internet applications, we pro-
pose to build them using feedback structures. Each feedback
structure consists of a hierarchy of feedback loops that to-
gether monitor and correct one system property. Feedback
structures interact minimally and in a well-defined way. No
part of the system should exist outside of a feedback struc-
ture. We motivate this approach by giving examples of real
systems taken from biology and software (the human respi-
ratory system and the Internet TCP protocol family). In
our own work in the SELFMAN project [27, 20, 28, 34],
we have built structured peer-to-peer networks that survive
in realistically harsh environments (with imperfect failure
detection and network partitioning). We have developed
software, including the Scalaris and Beernet libraries and
the Distributed Wikipedia and the DeTransDraw collabora-
tive drawing tool, to show that our solutions are credible.
The Scalaris architecture consists of six feedback structures
whose interactions are carefully controlled.

5.1 Reversible phase transitions

‘We have shown that a structured peer-to-peer network can
react to a hostile environment by doing a reversible phase
transition [35]. To be precise, if the network is partitioned,
then the overlay network continues to work as several smaller
overlays. If the partition goes away, then a merge algorithm
is run that merges the smaller overlays back into a single
large overlay [30]. This is an exact analogy to a physical
phase transition as explained by thermodynamics [10, 13].
This behavior is predictable and can be exposed to the ap-
plication as an API so that it can be written to survive the
transition. Important research questions are how to design
a system together with determining its complete (reversible)
behavior in phase space, how phase transitions should be ex-
posed to an application as an API, and how they should af-
fect application design. We are preparing a followup project
to SELFMAN to answer these questions.

5.2 A complete and justified methodology

We have motivated why it is useful to design systems us-
ing feedback structures and we have presented our own tech-
niques in this area. For practical system design, it is impor-

tant to have a complete methodology that is formally jus-
tified and that allows to design systems with desired global
properties. To our knowledge, no such methodology exists
yet. Most of the knowledge in this area is fragmented and
deriving formal properties is difficult. Formal analysis of
systems with multiple interacting feedback loops is difficult
[17]. Techniques from theoretical physics are necessary to
show the existence of phase transitions [18]. Clearly, it is
not practical for a system developer to do formal analysis at
this level.

‘We propose a research agenda to create a complete method-
ology. First we study existing feedback loop systems to build
a library of patterns and rules. Second we translate the
patterns and rules into a process calculus. The translation
should be correct in a formal sense, e.g., according to the
definition of abstract interpretation [9]. Third we prove the
relevant properties of the patterns and rules. Important
properties include global correctness, stability, composition-
ality, and phase behavior. Finally, we step back from the
formal treatment and use the original patterns as design el-
ements following the rules. The developer can rely on the
proofs without having to do any formal analysis. We con-
sider the creation of this methodology as one of the most
important tasks for software development as the Internet
continues to grow in complexity.

6. ACKNOWLEDGMENTS

This work is funded by the European Union in the SELF-
MAN project (contract 34084) and in the CoreGRID net-
work of excellence (contract 004265).

7. REFERENCES

[1] Ahmad Al-Shishtawy, Joel Héglund, Konstantin
Popov, Nikos Parlavantzas, Vladimir Vlassov, and Per
Brand. Distributed Control Loop Patterns for
Managing Distributed Applications. Workshop on
Decentralized Self Management for Grids, P2P, and
User Communities (part of SASO 2008), Oct. 21, 2008.

[2] Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand,
and Seif Haridi. A Design Methodology for
Self-Management in Distributed Environments.
GRID4ALL project.

[3] Joe Armstrong. “Making reliable distributed systems
in the presence of software errors”. Ph.D. dissertation,
Royal Institute of Technology (KTH), Kista, Sweden,
Nov. 2003.

[4] Ken Birman, Gregory Chockler, and Robbert van
Renesse. Toward a Cloud Computing Research Agenda.
ACM SIGACT News, 40(2), June 2009, pp. 68-80.

[5] Rodney A. Brooks. A Robust Layered Control System
for a Mobile Robot. IEEE Journal of Robotics and
Automation, RA-2, April 1986, pp. 14-23.

[6] Alexandre Bultot. “A Survey of Systems With
Multiple Interacting Feedback Loops and Their
Application to Programming”. Master’s report,
Université catholique de Louvain, August 2009.

[7] Scott Camazine, Jean-Louis Deneubourg, Nigel R.
Franks, James Sneyd, Guy Theraulaz, and Eric
Bonabeau. “Self-Organization in Biological Systems”.
Princeton University Press, 2001.

[8] Christos G. Cassandras and Stéphane Lafortune.
“Introduction to Discrete Event Systems”. Second

[14]

[15]

[16]

[17]

[18]

[25]

Edition. Springer-Verlag, 2008.

Patrick Cousot and Radhia Cousot. Abstract
Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or
Approzimation of Fizpoints. 4th ACM Symposium on
Principles of Programming Languages (POPL 1977),
Jan. 1977, pp. 238-252.

Ernest G. Ehlers. “The Interpretation of Geological
Phase Diagrams”. Dover Publications, 1987. Originally
published by W.H. Freeman and Company, 1972.
Gary William Flake. “The Computational Beauty of
Nature: Computer Explorations of Fractals, Chaos,
Complex Systems, and Adaptation”. MIT Press, 2001.
Rachid Guerraoui and Lufs Rodrigues. “Introduction
to Reliable Distributed Programming”.
Springer-Verlag, 2006.

Hermann Haken. “Synergetics: An Introduction.
Nonequilibrium Phase Transitions and
Self-Organization in Physics, Chemistry, and Biology”.
Third Edition. Springer-Verlag, 1983.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. “Feedback Control of Computing
Systems”. Wiley-IEEE Press, August 2004.
Information Sciences Institute. “RFC 793:
Transmission Control Protocol Darpa Internet
Program Protocol Specification”. Sept. 1981.

Jeffrey O. Kephart and David M. Chess. The Vision
of Autonomic Computing. IEEE Computer 36(1), pp.
41-50, Jan. 2003.

Supriya Krishnamurthy, Sameh El-Ansary, Erik
Aurell, and Seif Haridi. A statistical theory of Chord
under churn. Proceedings of the 4th International
Workshop on Peer-to-Peer Systems (IPTPS’05),
Ithaca, New York, Feb. 2005.

Supriya Krishnamurthy and John Ardelius. “An
Analytical Framework for the Performance Evaluation
of Proximity-Aware Overlay Networks”. Tech. Report
TR-2008-01, Swedish Institute of Computer Science,
Feb. 2008 (submitted for publication).

Leslie Lamport. The part-time parliament. ACM
Trans. Comput. Syst. 16(2), pp. 133-169, 1998.

Boris Mejias. “Algorithms for Self-Managing
Large-Scale Decentralized Networks”. Ph.D.
dissertation, Université catholique de Louvain, 2009
(in preparation). See beernet.info.ucl.ac.be.

Boris Mejias and Peter Van Roy. The Relaxed-Ring: A
Fault-Tolerant Topology for Structured Overlay
Networks. Parallel Processing Letters 18(3), pp.
411-432, Sept. 2008.

Gerhard Michal (ed.). “Biochemical Pathways: An
Atlas of Biochemistry and Molecular Biology”. John
Wiley & Sons and Spektrum Akad. Verlag, 1999.
Monika Moser and Seif Haridi. Atomic commitment in
transactional DHTs. In CoreGRID Symposium,
August 2007.

Stefan Plantikow, Alexander Reinefeld, and Florian
Schintke. Transactions for Distributed Wikis on
Structured Overlays. In A. Clemm, L. Z. Granville,
and R. Stadler, editors, DSOM, Springer LNCS
volume 4785, 2007, pp. 256-267.

Alexander Reinefeld, Florian Schintke, Thorsten

(35]

Schiitt, and Seif Haridi. A Scalable, Transactional
Data Store for Future Internet Services. In Towards
the Future Internet, G. Tselentis et al (eds.), IOS
Press, 2009.

Florian Schintke, Alexander Reinefeld, Seif Haridi,
and Thorsten Schiitt. “Enhanced Paxos Commit for
Transactions on DHTs”. ZIB-Report 09-28, Zuse
Institute Berlin, Sept. 2009.

Thorsten Schiitt. “Scalaris: A Scalable Transactional
Data Store for Web 2.0 Services”. Technical report,
Zuse Institute Berlin, 2008. See
code.google.com/p/scalaris.

SELFMAN: Self Management for Large-Scale
Distributed Systems Based on Structured Overlay
Networks and Components. European Commission 6th
Framework Programme three-year project, June 1,
2006—Sept. 30, 2009. See www.ist-selfman.org.

Peter M. Senge, Art Kleiner, Charlotte Roberts,
Richard B. Ross, Bryan J. Smith. “The Fifth
Discipline Fieldbook: Strategies and Tools for
Building a Learning Organization”. Nicholas Brealey
Publishing, 1994.

Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi.
Dealing with Network Partitions in Structured Overlay
Networks. Journal of Peer-to-Peer Networking and
Applications (PPNA), 2009 (to appear).

Yoav Shoham and Kevin Leyton-Brown. “Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations”. Cambridge University Press, 2009.

Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications.
SIGCOMM 2001, pp. 149-160.

Peter Van Roy. Self Management and the Future of
Software Design. Springer ENTCS 182, June 2007, pp.
201-217. Proceedings of Third International Workshop
on Formal Aspects of Component Software (FACS
’06), Sep. 2006.

Peter Van Roy, Seif Haridi, Alexander Reinefeld,
Jean-Bernard Stefani, Roland Yap, and Thierry
Coupaye. Self Management for Large-Scale Distributed
Systems: An Querview of the SELFMAN Project.
Springer LNCS volume 5382, 2008, pp. 153-178.
Revised postproceedings of FMCO 2007, Amsterdam,
The Netherlands, Oct. 2007.

Peter Van Roy. Overcoming Software Fragility with
Interacting Feedback Loops and Reversible Phase
Transitions. First International Conference on Visions
of Computer Science (BCS08), London, UK, Sep.
22-24. 2008.

Peter Van Roy. Guidelines for Building Self-Managing
Applications. SELFMAN project deliverable D5.7,
2009. See www.ist-selfman.org.

Norbert Wiener. “Cybernetics, or Control and
Communication in the Animal and the Machine”. MIT
Press, Cambridge, MA, 1948.

Wikipedia, the free encyclopedia. Entry “drowning”,
August 2006. See en.wikipedia.org/wiki/Drowning.
Wikipedia, the free encyclopedia. Entry “wikipedia”,
2009. See en.wikipedia.org/wiki/Wikipedia (section
Software and Hardware).

APPENDIX A. PUBLICATIONS

A.2 Building and Evaluating P2P Systems
using the Kompics Component Frame-
work

SELFMAN Deliverable Year Four (M37-M40), Page 85

Building and Evaluating P2P Systems using the Kompics Component Framework

Cosmin Arad
Royal Institute of Technology (KTH)
icarad@kth.se

Abstract—We present a framework for building and evaluat-
ing P2P systems in simulation, local execution, and distributed
deployment. Such uniform system evaluations increase confi-
dence in the obtained results. We briefly introduce the Kompics
component model and its P2P framework. We describe the
component architecture of a Kompics P2P system and show
how to define experiment scenarios for large dynamic systems.
The same experiments are conducted in reproducible simula-
tion, in real-time execution on a single machine, and distributed
over a local cluster or a wide area network.

This demonstration shows the component oriented design
and the evaluation of two P2P systems implemented in Kom-
pics: Chord and Cyclon. We simulate the systems and then
we execute them in real time. During real-time execution we
monitor the dynamic behavior of the systems and interact with
them through their web-based interfaces. We demonstrate how
component-oriented design enables seamless switching between
alternative protocols.

Keywords-peer-to-peer; evaluation; component framework;
design; simulation; experimentation; deployment.

I. INTRODUCTION

Comprehensive evaluation of P2P systems comprises
analysis, simulation, and live performance measurements.
We present Kompics [1], a model for building reconfigurable
distributed systems from event-driven components. Kompics
systems can be uniformly evaluated in large-scale repro-
ducible simulation and distributed deployment, using both
the same system code and the same experiment scenarios.

Very similar in spirit, but without a hierarchical com-
ponent model, is the ProtoPeer [2] toolkit for prototyping
and evaluating P2P systems. Mace [3] generates distributed
systems code from a high-level specification while Splay [4]
allows system specification in a high-level language.

II. KoMpPics AND THE P2P COMPONENT FRAMEWORK

Kompics is a component model targeted at building dis-
tributed systems by composing protocols programmed as
event-driven components. Kompics components are reactive
state machines that are executed concurrently by a set of
workers. Components communicate by passing data-carrying
typed events through typed bidirectional ports connected
by channels. Ports are event-based component interfaces. A
port type represents a service or a protocol abstraction. It
specifies the types of events sent through the port in each

*This work was funded by the SELFMAN EU project, contract 34084.

Jim Dowling, Seif Haridi
Swedish Institute of Computer Science (SICS)
jdowling,seif @sics.se

Cl itorServerMain

; SomeApplication JettyWebServer
ChordMain JettyWebServer

{Ghorapearror] fwen]
:
.

~lichordReerROrE]

K | web]
— Web +

ChordMonitorServer
[Networkl

ChordPeer

ChordMonitorClient

s | +son |
CS SON

[Sathl)
Chord
BootstrapClient FailureDetector (OP)
m -Timer m -Timer

JettyWebServer

+{ web]
= imer
+

Ti
—_ T
MinaNetwork

= [Timer

Network *Timer
| MinaNetwork | | JavaTimer |

+

JavaTimer

Figure 1. The left figure shows the architecture of a Chord process. The
Chord protocol is implemented by the Chord component using Network,
Timer, and FailureDetector abstractions. The Network and Timer abstrac-
tions are provided by the MinaNetwork [5] (which handles connection
management and message serialization) and JavaTimer components. The
ChordMonitorClient periodically inspects the Chord status (CS port) and
sends it through the network to the ChordMonitorServer (top right). The
ChordWebApplication renders this status on a web page upon request from
the JettyWebServer [6] (which provides web browser access). On the right
we have the component architectures of the monitoring and bootstrap server.

direction. A component either provides (+) or requires (-) a
port. Components may encapsulate subcomponents.

The Kompics runtime supports pluggable component
schedulers. The default scheduler is multi-threaded and
executes components in parallel on multi-core machines. We
use a single-threaded scheduler for reproducible simulation.

We developed a set of utility components and method-
ology for building and evaluating P2P systems. Service
abstractions for network and timers can be provided by dif-
ferent component implementations. The framework contains
reusable components that provide bootstrap and failure de-
tection services. System-specific components are developed
for global system monitoring and web-based interaction. We
highlight the elements of the P2P framework in the archi-
tecture of our Chord implementation illustrated in Figure 1.

III. DEFINING AN EXPERIMENT SCENARIO

We designed a Java domain-specific language (DSL) for
expressing experiment scenarios for P2P systems. We call a
stochastic process, a finite random sequence of events, with
a specified inter-arrival time distribution. Here is an example
scenario composed of 3 stochastic processes:

StochasticProcess boot = new StochasticProcess () {{

eventInterArrivalTime (exponential (2000)); // ~2s

raise (1000, chordJoin, uniform(16)); }}; // 1000 joins
StochasticProcess churn = new StochasticProcess() {{

eventInterArrivalTime (exponential (500));// ~500ms

raise (500, chordJoin, uniform(16)); // 500 joins

raise (500, chordFail, uniform(16)); }}; // 500 failures
StochasticProcess lookups = new StochasticProcess() {{

eventInterArrivalTime (normal (50)); // ~50ms

raise (5000, chordLookup, uniform(16), uniform(14)); }1};
boot.start () ; // start
churn.startAfterTerminationOf (2000, boot); // sequential
lookups.startAfterStartOf (3000, churn); // in parallel

terminateAfterTerminationOf (1000, lookups);// terminate

1000 peers join in a space of . The inter-arrival
time between 2 consecutive joins is exponentially distributed
with a mean of 2s. A churn process starts 2s after. Every
500ms on average (exp), a new peer joins or an existing
peer fails. In parallel with the churn process, 5000 lookups
are initiated uniformly around the ring () for keys in
the first ring quadrant (). The experiment terminates
1s after lookups are done.

IV. EXPERIMENT PROFILES

We can reuse the same experiment scenario to drive
simulation or local real-time execution experiments, as well
as remote experiments where the system nodes are dis-
tributed over the machines of a cluster (possibly running
ModelNet [7]) or a testbed like PlanetLab [8] or Emulab [9].

During simulation and local execution (see Figure 2) we
model the network at the message-level. In simulation, we
execute the same system code built for deployment. Calls
for the current system time are trapped and the current
simulation time is returned. Simulation enables determin-
istic replay, debugging, reproducible results, and large-scale
experiments without loss of accuracy.

We developed an infrastructure for deploying and execut-
ing distributed experiments. Experiment scenarios are locally
interpreted by a Master component which coordinates a set
of remote Slaves. Each Slave resides on a machine available
for the experiment and it manages a set of system peers.

Ch imulati in (ChordE: i in)
E3 vy |

Web
ChordSimulator ~——

E,] ﬁﬁﬁ
% l' I

= ChordPeerPort II

ChordPeer I

[Timerk

Figure 2. The simulation architecture with all peers and the bootstrap and
monitor servers within one process. ChordSimulationMain is executed using
a single-thread simulation scheduler for deterministic replay and simulated
time advancement. P2pSimulator is generic. It interprets experiment scenar-
ios and sends system-specific scenario events (e.g. chordJoin, chordLookup)
to the ChordSimulator which manages the ChordPeers (same from Figure 1).
The P2pSimulator provides a Network abstraction and can be parameterized
with a custom network latency and bandwidth model. For real-time local
execution we replace the P2pSimulator with a P2pOrchestrator, which
interprets the same experiment scenario but in real time. In addition,
components are executed by the default multi-threaded scheduler.

V. DEMONSTRATION OVERVIEW

This demonstration consists of evaluations of two P2P
systems developed in Kompics: Chord [10] and Cyclon [11].
Each system is first evaluated in a reproducible simulation
experiment. We reuse the same experiment scenario to
execute the systems in real time. We observe the dynamic
behavior of the systems though the web interface of the
monitoring server, which aggregates the global system state
periodically. We also inspect the local state of a few system
nodes though their web interfaces and we interact with
Chord by manually issuing lookups from different nodes.

We reuse the same scenario definition to drive a dis-
tributed experiment where nodes are deployed remotely on
some cluster machines or on PlanetLab [8]. We repeat
some of the previous system interactions. This illustrates
the uniform experience of evaluating real systems across
simulation, local execution, and distributed deployment.

We use a BitTorrent [12] system developed in Kompics,
in a simulation experiment, to demonstrate a realistic band-
width emulation model. Finally, we return to local execution
to experiment live with different scenario definitions.

VI. SUMMARY

We briefly introduced the Kompics component model
and we described the component architecture of the Chord
overlay developed using the Kompics P2P framework. We
showed how to define experiment scenarios for large and
dynamic systems and how the same experiments are con-
ducted in reproducible simulation, in real-time execution on
a single machine, and distributed over a local cluster or a

wide area network.
The source code used for this demonstration, including the

Kompics runtime, the P2P framework, experiment scenarios,
and implementations of Chord, Cyclon, and BitTorrent, is
available online at http://kompics.sics.se.

REFERENCES

[1]1 C. Arad, J. Dowling, and S. Haridi, “Developing, simulating, and deploying
peer-to-peer systems using the Kompics component model,” in COMSWARE’09.

[2] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Protopeer: a p2p toolkit
bridging the gap between simulation and live deployement,” in SimuTools, 2009.

[3] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat, “Mace:
language support for building distributed systems,” in PLDI ’07.

[4] L. Leonini, E. Riviere, and P. Felber, “Splay: distributed systems evaluation
made simple (or how to turn ideas into live systems in a breeze),” in NSDI'09.

[5] (2004-2009) Apache MINA. [Online]. Available: http://mina.apache.org/

[6] (1995-2009) Mortbay Jetty. [Online]. Available: http://www.mortbay.org/jetty/

[7] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti¢, J. Chase, and
D. Becker, “Scalability and accuracy in a large-scale network emulator,” SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, 2002.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “PlanetLab: an overlay testbed for broad-coverage services,”
SIGCOMM Comput. Commun. Rev., vol. 33, 2003.

[91 B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental environment
for distributed systems and networks,” in OSDI’02.

[10] 1. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” IEEE Transactions on Networking, vol. 11, February 2003.

[11] S. Voulgaris, D. Gavidia, and M. Steen, “Cyclon: Inexpensive membership
management for unstructured P2P overlays,” Journal of Network and Systems
Management, vol. 13, no. 2, June 2005.

[12] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Proc. Ist Workshop
on Economics of Peer-to-Peer Systems (P2PEcon), 2003.

APPENDIX A. PUBLICATIONS

A.3 Gossip-based Topology Inference for Ef-
ficient Overlay Mapping on Data Cen-
ters

SELFMAN Deliverable Year Four (M37-M40), Page 88

Gossip-based Topology Inference for Efficient Overlay Mapping on Data Centers*

Thorsten Schiitt, Alexander Reinefeld, Florian Schintke, and Marie Hoffmann
Zuse Institute Berlin

Abstract

We present a distributed algorithm for identifying the lo-
cation of data centers and their relative sizes. This topology
information can be used in P2P systems to improve the rout-
ing performance, replica placement, or job scheduling.

The algorithm uses gossiping with local agglomerative
clustering. It is robust to failures and it correctly identi-
fies outliers that are caused, e.g., by temporarily overloaded
nodes or network failures. We present empirical results on
the Grid 5000 testbed.

1 Introduction

When deploying P2P systems in the Internet, it is im-
portant to minimize the stretch between the under- and the
overlay network. Knowing the current topology of the un-
derlay allows to speed up the routing process, to improve
replica placement, and to optimize gang scheduling of par-
allel processes—to name just a few of the many advantages.

With the recent focus on cloud computing and data cen-
ters topology-aware process placement became an impor-
tant research topic. Widely varying latencies of inter- and
intra-center links and correlated resource failures make it
difficult to determine an optimal process mapping. If the
topology and size of data centers were known, existing P2P
protocols [9] could be optimally mapped onto data centers
to provide better access latency with less maintenance traf-
fic [11].

We present an algorithm for gossip-based topology in-
ference which uses only local knowledge. It derives the
network topology by continuously checking the network
latencies between nodes with a network coordinate sys-
tem [1, 12] and grouping them with agglomerative cluster-
ing [2]. This allows to identify clusters of nearby located
nodes and to detect outliers (e.g., caused by temporary over-
load) with high confidence. The algorithm is robust with
respect to failures and it finds node clusters in a logarithmic
number of distributed communication steps.

*Part of this work was carried out under the SELFMAN and XtreemOS
projects funded by the European Commission

While topology inference is our main focus in this paper,
the clustering algorithm can also be used for other tasks. As
an example, we determined CPU speeds and memory sizes
of the nodes in the Grid 5000 testbed (Sec. 4). The resulting
resource classes can be used to aid Grid schedulers or to
determine optimal replica placement in P2P systems [9].

In Section 2 we briefly recall gossiping, network coor-
dinate systems and clustering techniques. In Section 3 we
present our gossip-based algorithm for agglomerative node
clustering and in Section 4 we present results obtained on
the Grid 5000 environment. Section 5 gives a brief conclu-
sion and outlook.

2 Background

Gossiping [7] is a well-established method in distributed
systems. It is used for information dissemination, informa-
tion aggregation, peer sampling [10], and overlay construc-
tion [5]. Gossip algorithms are easy to implement, they are
tolerant to node failures and they converge fast—usually in
a logarithmic number of communication rounds. In each
gossip operation, an active node selects a peer at random,
exchanges information with it, and updates its local data
with the received information.

Network Coordinate Systems are used to build a model
that predicts the round-trip time between any two nodes.
The algorithm starts in each node by assigning itself a
random coordinate which is subsequently refined by ex-
changing coordinate information with other nodes to im-
prove the prediction quality. We use the gossip-based Vi-
valdi [1] algorithm with a 2-dimensional Euclidean coordi-
nate space. Several models for network coordinate systems
have been evaluated [1], including higher-dimensional Eu-
clidian spaces, Euclidian spaces with height vectors repre-
senting the individual delays of the access line to the In-
ternet core network (e.g. queueing and DSL link delays,
oversubscribed links) and spherical coordinates which were
initially deemed to model the earth surface best. For our
purpose, simple 2D coordinates are sufficient.

Clustering is a common technique in data mining [4, 3]
to group data so that the members of a group have similar
properties. Clusters are usually represented by centroids,

[~BEN le NV NSNS I SIS

0NN R W=

— o e
AN B W= OO

// active thread

Peer p := selectRandomPeer ()
sendTo(p, centroids)
receiveFrom (p, remoteCentroids)
// aggregate data
centroids := centroids U
centroids agglClustering (centroids ,
centroids normalize (centroids)

remoteCentroids

r)

[BN e Y R N S R

// passive thread

(p, remoteCentroids) :=
sendTo(p, centroids)

// aggregate data
centroids := centroids U
centroids agglClustering (centroids ,
centroids normalize (centroids)

receiveFromAny ()

remoteCentroids

r)

Figure 1. Framework for gossip-based clustering.

agglClustering (centroids , radius):

// get indices of closest centroids
(p, q) := closestPoints (centroids)
while size (centroids) > 1

and dist(p, q) < radius:
// aggregate sizes
size := p.size + q.size
// merge closest centroids
new._centroid := (p.centroidxp.size
+ q.centroidxq.size)/size

// update centroids
centroids .remove(p)
centroids .remove(q)
centroids .add(new_centroid , size)
(p, q) := closestPoints(centroids)

return centroids

Figure 2. Agglomerative clustering.

i.e. the centers of the clusters. Two widely used algorithms
are k-means clustering [8] and agglomerative clustering [2].
The former clusters the data points into k£ groups and tries
to minimize the distance of data points from their respective
centroids. The latter clusters data points in the same group
iff their similarity is below a given threshold. In k-means
the number of clusters is given as a parameter, while in ag-
glomerative clustering the number of clusters is determined
by the similarity threshold and the data distribution.

We focus on agglomerative clustering because the num-
ber of data centers is generally not known in advance. We
define a similarity metric based on network latency and give
a latency threshold for when nodes are located in the same
site.

3 Gossip-based Clustering Algorithm

Each node executes the algorithm shown in Fig. 1. The
algorithm consists of an active thread which initiates the
communication and a passive thread that waits for incoming
messages. Each node maintains a list of already detected
clusters with their centroids and relative sizes. The sizes of
all clusters sum up to 1.

On startup, each node initializes its centroids list with its
own coordinate and the relative cluster size 1. It then selects
a random communication partner with a peer sampling al-

gorithm [10, 6]. The partners exchange their centroids lists
and run the agglomerative clustering algorithm (called in
line 7 of Fig. 1, function shown in Fig. 2) on the merged
lists. The centroids’ relative sizes are then normalized so
that they sum up again to 1 (line 8 of Fig. 1).

The agglomerative clustering algorithm shown in Fig. 2
iteratively merges the two closest centroids p and ¢ and
computes the weighted average (line 9, 10 of Fig. 2) re-
sulting in a new list of centroids.

4 Results

We used our clustering algorithm to determine the net-
work topology and various node attributes of the French
Grid 5000 testbed!. It comprises 1604 compute nodes
spread over nine sites (data centers) which are initially un-
known to the algorithm.

4.1 Topology Inference

To determine the topology of Grid 5000, we assign each
node a network coordinate. This coordinate is used for
initializing the nodes’ local view. Since the number of
data centers is not known, we use agglomerative cluster-
ing (Fig. 2) with a threshold denoting the maximum ex-
pected latency inside a data center. The centroids result-
ing from agglomerative clustering are network coordinates
which represent the centers’ center of gravity and their rel-
ative sizes.

Fig. 4 shows the actual size and location (circles) and
the estimated locations (¢) of the data centers that were
identified by our algorithm after 1.5log, N communica-
tion rounds, with N being the number of nodes. We sim-
ulated 100 nodes based on the Grid 5000 node distribution
and plotted all centroids (¢) identified by all nodes. Af-
ter 1.5log, IV rounds the error is already relatively small.
Convergency is shown in Fig. 3 and discussed later.

Detecting Outliers Nodes that are overloaded or weakly
linked to the network due to wrong configuration will be
slow in answering requests. Consequently, the clustering

Thttps://www.grid5000.fr/

0.0001
0O 5 10 15 20 25 30 35 40 45 50

Round

Error of estimated cluster size per node

Figure 3. Error reduction per communication
round for different grid sizes.

52

Lattidude [°]

44r

42 L . . L .
Longitude [°]

Figure 4. Centroids and relative cluster sizes
in Grid 5000. -+ denotes node locations and ¢ denotes the
estimated centroids of each node. The circles’ sizes show the actual
relative cluster sizes determined by central clustering.

algorithm puts their coordinates far away from all other
nodes, resulting in singletons which clearly identifies these
points as outliers. Similarly, network failures within a data
center can cause a subset of nodes to form a cluster, but
again, they are easy to identify, because they will lie far
outside of other data centers’ clusters.

Convergence To analyze the convergence of the cluster
algorithm, let |c| be the total number of centroids in a sys-
tem with N nodes and let ¢; be the centroids in the local
view of node i. Then c;; is the jth centroid of ¢; and w;;
is its relative size. Furthermore, let w;, be the relative size
of the closest real centroid ¢, obtained by a globally in-
formed clustering algorithm that minimizes the expression
[lcij — ck||- Then the average error of the cluster sizes is

N el

error = % Z Z(wu —wy)?

i=1 j=1

@

B 0.1 T T T T T T T T T

€ cores

) harddisc -----
o memory -------
N

2 0.01]
2

[%2]

=

o

e

2

[0.001 E
£

@
SRR
s | e TLITIIIIIIITI I I I III I
g 0.0001 I I I I I I I I I

u 5 10 15 20 25 30 35 40 45 50

Round

Figure 5. Error reduction per commmunica-
tion round.

0.6 T T T T
' After log N rounds XXX
05 L »:6:63 Correct Cluster size gz |
g ogoge . Standard deviation -+ -+
[(KR ‘
= 04y KR 0595 .
g (R4 5K
2 (R (KR
S 209 00058
5 o3} 15%9% %%]
o [[
) (R34 A
2 (4 R
= 0.2+ KKK KX X B i
o '0’0‘0 REs35
K lo%ees: oK
i oo R
0.1+ o0 % [XXA o 4
KKK R o
(55 S84z
S0 B
0 [XXX (XX
2 4
Cores

Figure 6. Grid5000 nodes clustered by
#cores.

For Fig. 3, we simulated networks with different num-
bers of nodes. The graph shows that the algorithm con-
verges after ~ log, N rounds. Fig. 5 presents the same
metric for clustering node properties (discussed below). As
can be seen, the error decreases exponentially, eventually
converging after ten rounds.

4.2 Aggregating Resource Data

The nodes in Grid 5000 are heterogeneous and were pro-
cured from different vendors. We used our algorithm to
additionally aggregate the processor speeds, the number of
cores, the main memory sizes, and the hard disk sizes.

Cores For the number of cores, we put nodes in the same
cluster if their number of cores differed by less than one.
For such integer-valued attributes, the clustering can be pre-
cisely steered: If the similarity threshold is set to 1, nodes
will only end up in the same cluster when their attribute has
exactly the same value. Fig. 6 shows that three centroids
with 2, 4, and 8 cores were found in Grid 5000.

The left bars show the average cluster sizes after run-
ning log, N communication rounds. For comparison, the

0.7 T T T

i " After iog N rounds =x1
0.6 - Correct Cluster size &z -
Standard deviation +-+ -+

<

05

o
‘

04

N

0.3

(RS
-

0.2

Relative Cluster Size

01| I

<
%
SVaVaVa
KKK
.
S 1
X X X]
9a%%
8
3

‘
SE
K
5
W
K%
5
-
e
)
%
5
3
on

’V

70 73 80 146 160 250 600
Disc Space [GB]

Figure 7. Grid5000 nodes by disc size.

right bars show a (hypothetical) central algorithm with com-
plete knowledge. All data lies in the confidence interval and
the average cluster sizes are close to the exact values after
log, N rounds (see also Fig. 5).

Disk Size For determining the hard disk sizes, we set the
similarity threshold to 1 GB. Hence only disks of exactly
the same size are clustered together. Fig. 7 shows that all
seven different hard disk sizes were correctly identified and
that the relative sizes are also close to the correct values.

Memory Size For computing the main memory sizes
we used 1 GB as the similarity threshold. After log, NV
rounds all four main memory classes were correctly identi-
fied (Fig. 8). Although the relative sizes span several orders
of magnitude, the approximations are reasonably good.

5 Conclusion and Future Work

We presented a simple, yet powerful gossip-based clus-
tering algorithm for data aggregation in distributed systems.
The algorithm is robust with respect to failures and it cor-
rectly identifies outliers. Empirical results on Grid 5000 are
in good agreement with the actual data.

The algorithm can be used for a wide variety of data ag-
gregation tasks like topology inference, replica placement,
or process placement. When the total number of nodes in
the overlay is known (or can be approximated), the number
of nodes in each cluster can be determined by multiplying
its relative size by the total number. This information can be
used for mapping data replicas or for job scheduling. In the
latter case, it could be beneficial to group nodes e.g. into
‘fat’ nodes with multiple cores and a large main memory
and into ‘normal’ nodes.

Our work was motivated by the need for obtaining topol-
ogy information in global P2P networks. We intend to use
the clustering algorithm for deploying DHTs onto data cen-
ters. The clustering information will be used to improve the
routing by adding extra pointers to the routing table so that
each routing table has a given number of pointers to each

0.7 T T

After log N rounds o=
Correct Cluster size
Standard deviation +-+-+

0.6
0.5
0.4
0.3

0.2

Relative Cluster Size

0.1

Main Memory [GB]

Figure 8. Grid5000 nodes by memory size.

data center. Proximity routing along the extra pointers will
then be used to minimize lookup latencies and the relative
cluster sizes could be used to decide how many pointers
should be placed to each data centers.

References

[1] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris. Vivaldi:
A Decentralized Network Coordinate System. ACM SIG-
COMM 2004.

[2] W. H. E. Day and H. Edelsbrunner. Efficient algorithms for
agglomerative hierarchical clustering methods. Journal of
Classification, 1:7-24, 1984.

[3] I. Eyal, I. Keidar, R. Rom. Distributed Clustering for Robust
Aggregation in Large Networks. HotDep, Jun. 2009.

[4] A.K.Jain, M.N. Murty, P.J. Flynn. Data Clustering: A Re-
view. ACM Computing Surveys, 31(3), Sept. 1999.

[5] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay
topology management. ESOA 2005.

[6] M. Jelasity, R. Guerraoui, A. M. Kermarrec, and M. van
Steen. The peer sampling service: Experimental evalua-
tion of unstructured gossip-based implementations. Middle-
ware’04.

[71 A. M. Kermarrec and M. Steen. Gossiping in Distributed
Systems. ACM Operating System Review 41(5). Oct. 2007.

[8] H. Steinhaus. Sur la division des corp materiels en parties.

Bulletin I’ Acadmie Polonaise des Science C1. III, IV, 1956.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications. ACM SIGCOMM 2001.

[10] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: In-

expensive Membership Management for Unstructured P2P
Overlays. J. Network Syst. Manage. 13(2), 2005.

[11] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware
Overlay Network. ACM SIGCOMM 2003.

[12] G. Wang and T. S. E. Ng. Distributed algorithms for stable
and secure network coordinates. IMC 2008.

[9

—

APPENDIX A. PUBLICATIONS

A.4 Self-Adaptation in Large-Scale Systems:
A Study on Structured Overlays Across
Multiple Datacenters

SELFMAN Deliverable Year Four (M37-M40), Page 93

Self-Adaptation in Large-Scale Systems:
A Study on Structured Overlays Across Multiple Datacenters

Thorsten Schiitt, Alexander Reinefeld, Florian Schintke, Christian Hennig
Zuse Institute Berlin, Germany

Abstract—With the recent focus on cloud computing a new type
of system topology came up: clusters in geographically distributed
datacenters that are connected by high-latency networks. Current
structured overlay networks (SONs) are not well prepared for
such environments with heterogeneous network performance and
correlated node failures.

We show how the beneficial features of SONs, namely self-
management, scalability, adaptability, and fault tolerance can
be exploited for multi-datacenter environments. We present self-
adaptive replica placement policies and latency-optimized routing
for SONs on multiple datacenters. Empirical results of our gossip-
based ring maintenance protocol demonstrate its ability to cope
with correlated node failures and network partitioning.

I. INTRODUCTION

Structured Overlay Networks (SONs) provide self-
management and fault-tolerance properties, that are also of
interest to providers of datacenters and cloud computing.
However, SONs like Chord [19] are ill prepared for
deployment over multiple datacenters, as some of their basic
assumptions are violated:

e Node failures are no longer independent from each other,
but become correlated when a whole data center ex-
periences a power outage or network link failure. To
improve the data availability, replicas must be explicitly
assigned to different datacenters, rather than placing them
randomly by consistent hashing. In Section II we present
a flexible data placement scheme for Chord” [14], a SON
without hashing.

o In multi-datacenter scenarios the message delays are
either negligible (for intra-datacenter), or very long
(for inter-datacenter). A similar pattern holds true
for the bandwidth. To provide faster data access, we
present approaches for latency-optimized routing in
multi-datacenter SONs in Section III.

o The increased probability of correlated node failures calls
for adapted overlay maintenance schemes. We present
and evaluate an improved gossip-based ring maintenance
algorithm based on T-MAN [8] in Sections IV and V.

Deploying SONs in multi-datacenter environments has the
advantage that the nodes are more reliable (because there is
less churn than in usual P2P networks) and that the environ-
ment can be trusted (no Byzantine faults).

To minimize the administration cost, all data and services
of multiple applications should be hosted on a single overlay
and the overlay should be able to support individual placement
policies per application.

Part of this work was carried out under the SELFMAN and XtreemOS
projects funded by the European Commission.

II. ASSIGNING DATA RANGES TO DATACENTERS

In the following, we present a framework for a key-value
store spanning over multiple datacenters. We start from a DHT
which does not hash keys but stores them in lexicographical
order on the ring. Examples are skip graphs [1], Mercury [2],
and Chord# [14]. We analyze how this property can be
exploited for the deployment in datacenter environments.

A. Replication

DHTs typically replicate data items by successor list replica-
tion [19] or by key-based replication. The former stores copies
of the items in the successors of the responsible node and the
latter stores them under multiple keys. All replicas of an item
can be found with a parallel lookup. Symmetric replication [7]
is a special case of key-based replication where the keys are
evenly distributed over the key space.

We introduce prefix replication for DHTs that store their
items in lexicographical order [14]. It adds a prefix to the
key to derive the replicas’ keys. As an example, the three
replicas of ‘gnat’ would be stored at keys ‘l:gnat’, ‘2:gnat’,
and ‘3:gnat’.

By adding the application name as a second prefix to the
replicas several applications with different replication policies
can be hosted on the same overlay. A replicated key name has
the form <appname>:<replica_number>:<key>. Thereby,
keys of different applications will populate disjoint parts of
the ring. Fig. 1 shows an example with four applications, each
of them with the replication degree 3.

B. Replica Placement Policies

Replica placement algorithms have to cope with two contra-
dicting goals. On the one hand, the items should be stored near
the user to improve the access speed. On the other hand, the
items should be spread over several datacenters to guarantee
availability in the face of datacenter outages. For read-only
data and for weakly consistent data as in Dynamo [6] both
aspects can be trivially accomplished by spreading a sufficient
number of replicas over all sites.

We aim at providing strong data consistency with concur-
rent updates. Hence, all read and write operations must be
performed on a majority of the replicas [16] and it is no
longer sufficient to put just one replica near the user, but a
majority. The remaining replicas should be spread over the
other sites to improve the availability. The differently shaded
parts in Fig. 1 illustrates how replicas can be placed in a global
ring structure to ensure both, low latency and high availability
for applications with different geographical user communities,
like several instances of Wikipedia in different languages.

App2:3:*

US center 1
US center 2
German center
Swedish center

Fig. 1. Prefix Replication

C. Implementation of Placement Policies

The described replica placement policies can be enforced
by a standard load-balancing algorithm like that of Karger et
al. [9]. It autonomously distributes items when nodes join or
leave the system. To achieve a suitable geographical placement
within datacenter bounds, we modify Karger et al.’s algorithm
to exchange the workload according to our policy restrictions.
More specifically, replicas violating the geographic restrictions
are migrated to nodes in the targeted region, while all other
load is exchanged within the same geographical region.

Different policies can be enforced for different applications.
Policies can be changed at any time and are automatically
implemented by the balancing scheme.

III. LATENCY-AWARE ROUTING OVER DATACENTERS

When deploying SONs over multiple datacenters, the inter-
datacenter latency dominates the overall access latency. Conse-
quently, the use of inter-datacenter links should be minimized,
whereas intra-datacenter links can be used more liberally.
Proximity routing [3] and k-ary routing [13] are two clas-
sical schemes that are used to reduce the access latency in
DHTs. Unfortunately, they do not consider clustered nodes in
datacenters.

In the following, we first present an agglomerative clustering
algorithm for finding nodes in datacenters and then present
approaches to reduce the traffic between datacenters.

A. Determining the Location of Datacenters

To be able to reduce the number of long-distance hops,
the memberships of nodes in datacenters must be known.
For this purpose, we devised an agglomerative clustering
algorithm [15] (Alg. 1) that determines the relative node
locations by measuring pairwise message latencies. Because
latencies cannot be clustered directly, we assign to each node a
point in a two-dimensional space so that the Euclidean distance

Algorithm 1 Datacenter detection
1: initialize

2: centroids := {(vivaldi(self()), 1.0)}
3: end

: every interval time units

peer := selectRandomPeer();
sendto peer : SHUFFLE(centroids)
: end event

8: upon event SHUFFLE(set remoteCentroids) from p
9: sendto p : SHUFFLERESPONSE(centroids)

10: centroids := update(centroids U remoteCentroids)
11: end event

12: upon event SHUFFLERESPONSE(set remoteCentroids)
13: centroids := update(centroids U remoteCentroids)

14: end event

15: function UPDATE(set centroids)

16: centroids := agglClustering(centroids, radius)
17: centroids := normalize(centroids)
18: return centroids

19: end function

20: function NORMALIZE(set centroids)
21: result := ()

22: foreach (centroid, size) in centroids do
23: result := result U {(centroid, %)}
24 end foreach
25: return result

26: end function

to any other nodes reflects the network latency between them.
This is done distributedly using a network coordinate system
like Vivaldi [5].

Alg. 2 shows the gossip based clustering algorithm that
uses Vivaldi. In the beginning, each node assumes that there
is only one cluster of size 1 (itself). After several gossiping
rounds each node has an estimate of the centroid (average
network coordinate of a set of nodes) of each datacenter and
their relative sizes. In each gossip step two nodes exchange
their current view on the system: both nodes concatenate the
two views and recluster them locally.

Once the membership of nodes in clusters (resp. datacenters)
is known, the number of long-distance routing hops between
datacenters can be minimized. For this purpose, each peer
maintains (at least) one finger to a node in each replica range
of Fig. 1. Any lookups can then be directly forwarded to the
target datacenter without any intermediate hop. Local routing
will forward the request to the target node without leaving
the destination datacenter — assuming bi-directional routing as
described in the next Section.

B. Bi-directional Routing

DHTs typically maintain routing pointers only in one di-
rection. Bi-directional routing, that is maintaining pointers in
both directions, does not pay of, because it reduces the hops
by only 1 (e.g. from 0.51log N to 0.5log N —1) while doubling
the storage overhead.

In our datacenter scenario, however, bi-directional routing is
beneficial — despite the additional storage overhead. A lookup
that is started at the ’end’ of the key range hosted in a
datacenter for a key that is stored at the ’beginning’ of the

Algorithm 2 Datacenter Range detection

1: initialize

2: if getDataCenter(self()) # getDataCenter(succ) then
3: borders := {(self(), getDataCenter(self()),

4: getDataCenter(succ))}

S: else

6: borders := ()

7 end if

8: end

9: every interval time units

10: peer := selectRandomPeer();

11: sendto peer : SHUFFLE(borders)

12: end event

13: upon event SHUFFLE(remoteBorders) from p
14: sendto p : SHUFFLERESPONSE(borders)
15: borders := borders U remoteBorders

16: end event

17: upon event SHUFFLERESPONSE(remoteBorders)
18: borders := borders U remoteBorders
19: end event

Upper-level Ring

2

n
-

ns3 R

Gateway Nodes
o O
o

o}
o

Lower-level Ring

\Data Center 1)

Fig. 2. Hierarchically Structured Overlay for Multi-Datacenter Deployment.

datacenter’s range can use a 'backwards’ pointer to reach the
target key without the need to leave the datacenter. By this
means, bi-directional routing avoid inter-datacenter latency by
routing (if possible) inside datacenters.

C. Ethernet Broadcasting

Inside a datacenter, multicasts should be performed with
a Ethernet broadcast operations. For its subnetwork, each
node needs to maintain a finger to all other nodes and their
responsibilities. Every node periodically broadcasts its ring
identifier and IP-address using Ethernet broadcast messages.
With this scheme we achieve a one-hop data access with a
slightly larger routing table.

D. Hierarchically Structured Overlay

The traffic between datacenters can also be reduced with a
hierarchically structured overlay. The architecture presented so
far (Fig. 1) provides higher flexibility and better performance
than a standard DHT. However, the geographical location of
the datacenters is not reflected in the overlay topology and
neighboring nodes may be thousands of miles apart.

Moreover, a large amount of TCP connections are kept open
between datacenters for successor and finger pointers. This can
be avoided by introducing gateway nodes that are connected
to the gateway nodes of other datacenters and forward inter-
datacenter requests from/to local nodes (Fig. 2).

On the inter-datacenter level, a standard overlay is built
where each datacenter appears as one peer for each of its
replica ranges. This role is performed by the gateway nodes of
each datacenter. To avoid overloading of single gateway nodes
and to improve fault-tolerance, they can be implemented with
replicated state machines which are distributed over multiple
machines. Standard load-balancing techniques can be used to
hide this fact from other peers.

Even though, the gateway nodes appear to be one replicated
peer, only a small subset of their state has to be consistently
replicated among them. It is sufficient to consistently repli-
cate [10] the node’s position on the ring and the pointer to
the successor resp. predecessor. There is no need to keep the
routing tables synchronous because they do not affect data
consistency. As the gateway nodes do not hold any data, the
synchronization overhead is low.

The lower level ring stores the data for which the datacenter
is responsible at the upper level. It is divided into an ’active’
part (marked bold in Fig. 2) and a ’passive’ part. The active
part is populated with the data items. It corresponds to the
segment of the upper ring for which ns is responsible.

The upper level ring is oblivious of the hierarchical struc-
ture. This transparency allows to build systems with multi-
level hierarchies to even better control the flow of network
traffic. In the extreme, one could deploy a global ring on the
top, one ring per continent on the next level comprising several
datacenters, a ring per container, and a ring per rack on the
lowest level.

IV. COPING WITH DATACENTER FAILURES

In Chord, nodes and keys are randomly hashed on the
identifier space, and hence the failure of physically neighbored
nodes does not too much affect the nodes in the logical ring.
A successor list of length log, N is usually sufficient to repair
gaps in the ring — even with a high churn.

With our prefix replication, this assumption is violated.
Even worse, neighboring nodes will likely be hosted in the
same datacenter and their failures will correlate. A network
outage in a datacenter can cause thousands of adjacent nodes
to disappear from the overlay at the same time. Chord’s ring
maintenance algorithm cannot fix this, because the ring gap is
wider than the successor list length.

A. Gossip-based Ring Maintenance

Our ring maintenance algorithm copes with correlated node
failures. It is based on T-MAN [8], a gossip protocol for
the construction of arbitrary overlay structures. We adapted
T-MAN for continuous ring maintenance as follows.

To accelerate the detection of crashed nodes, each node in
the local view is monitored by a failure detector. In case of a
failure, the node is removed from the view.

Datacenter 1

les——""— T ——— T T - ——— T - ————— —
= 01EL | / Ring Healthness | ggg =
[[| | Ring Size — — — 3
8 oo01f 4 300 2
£ 0001 F 4250 2
S 0.0001 F 130 5
{m 1e-05 & 1100 8
£ 1e06 | 150 5
® jeort ‘ ‘ ‘ o <

0 100 200 300 400 500 600

Time [s]
Datacenter 2

1 E e O - - =] —_—
= 01 kL I’ Ring Healthness “7 ggg =
E e "
§ 001 £ \ Ring Size — — — H 300 &
£ o0001f ' H 250 2
= F | H 200 %5
§ 0.0001 F ‘ 5o B
T [3
o 1le05[I Lf 100 2
£ 1e-06 | 15 §
© jeort ! 0 Z

0 100 200 300 400 500 600

Time [s]

Fig. 3.

Dead nodes are stored in a dead-node-cache (DNC). This
is a FIFO queue with a fixed size of 10 elements in our case.
DNC nodes are periodically contacted to detect re-appearing
nodes, e.g. after repair of a network partitioning.

T-MAN [12] initializes the local view with a set of random
nodes. The shuffling continues until the view does not change
anymore. When the view becomes stable, the view is re-
initialized with random nodes and the procedure starts from
the beginning. It takes up to O(log N) shuffle rounds until
defects in the overlay are repaired. In contrast to T-MAN,
we never reset the local view and we include in each shuffle
operation some random nodes.

T-MAN uses a ranking function based on the distance in
the key space, d(a,b) = min(N — |a —b|, |a — b|), for building
rings. Our view, in contrast, is built on the distance in the node
space and thereby builds separate predecessor and successor
lists, as Fig. 4 shows. This improves the reliability under
churn and with correlated failures. On a datacenter outage,
the preceeding node of that datacenter will detect that all its
successors are gone. In the next T-"MAN round, it will accept
any random node to fill the missing successor list entries.

V. EVALUATION

We implemented the described algorithm in our transac-
tional key-value store Scalaris [16]. We simulated 400 nodes
on two datacenters: 300 in datacenter 1 and 100 in datacenter
2. Each datacenter was simulated on a single server and the
network partitioning was simulated by removing the network
connection between the two servers. We used a Cyclon Interval

Network partitioning and repair with modified T-MAN (0Os: startup, 200s: network partitioning, 400s: network repair)

modified view

original T-MAN:
modified T-MAN:

views = [B,C, D, E]
views = [B, P,C, O]

Fig. 4. Succ/pred list with original resp. modified T-MAN.

of 4.9 seconds, a T-MAN interval of 10 seconds, and a failure
detector timeout of 3 seconds.

We simulated the scenario in Fig. 1 with one application.
Each datacenter is responsible for a disjoint segment of the
ring. When partitioning the network, a contiguous segment of
1/4 resp. 3/4 nodes disappears.

Fig. 3 shows the sizes of the datacenters and the healthiness
of the ring over the observation time (600s). ‘Healthiness’ is
the aggregated deviation of the local views (predecessors and
successors) from the correct view based on global information.
Additionally, we weight the errors according to their relative
position in the list. It is more important for the direct successor

to be correct than for the last node in the list. Finally, we
normalize the error to the interval [0, 1).

The system was started at ¢ = Os by joining 400 nodes to
the system during the first 10 seconds. After ~ 140 seconds,
T-MAN has fixed the ring structure. In this period, T-"MAN
performed ~ 14 shuffle rounds.

At t = 200s, we disconnected the two servers. For datacen-
ter 1, the ring size drops to 300 nodes, because datacenter 2 is
unavailable. Analogously, the ring size for datacenter 2 drops
to 100 nodes. At the same time, the error increases, as the
predecessor and successor lists of some nodes in the datacenter
are invalid. After ~ 110s (at ¢ = 310s, after 11 shuffle
rounds) the local views became correct again, representing
two separate rings, one per datacenter.

At t = 400s, we re-connected the links between the two
servers and the nodes in the DNC are detected to have become
alive again. T-MAN starts to repair the ring. As can be seen,
the ring size goes up to 400 nodes and the ring becomes fixed
after =~ 100s (at ¢t = 500s, after 10 shuffle rounds).

VI. CONCLUSION

We presented and analyzed techniques for an improved
autonomous mapping of structured overlays onto global P2P
networks over multiple datacenters. Prefix replication allows
to implement fine-grained replica placement policies for im-
proved data availability and reduced lookup latency.

Our system autonomously infers the network topology,
detects datacenters and optimizes its routing tables. Our sim-
ulation results with 400 nodes showed that with gossip-based
ring maintenance SONs can repair themselves also in presence
of correlated node failures and network partitioning without
global knowledge.

Due to the self-* properties of Scalaris, globally distributed
services can be run with low administrative overhead. Adding,
removing and updating nodes can be done at any time without
preparing or reconfiguring the system. The system will adapt
itself accordingly. This eases the job of datacenter operators,
reduces the possibility of human errors and allows mainte-
nance without scheduled downtimes.

REFERENCES

[1] J. Aspnes and G. Shah. Skip graphs. SODA, 2003.

[2] A.Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable
multi-attribute range queries. ACM SIGCOMM 2004.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-
aware routing in structured peer-to-peer overlay networks. International
Workshop on Future Directions in Distributed Computing, 2002.

[4] P. Costa, G. Pierre, A. Reinefeld, T. Schiitt, and M. van Steen. Sloppy
Management of Structured P2P Services. HotAC, Chicago, June 2, 2008.

[5] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. ACM SIGCOMM 2004.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store. SOSP, 2007.

[7]1 A. Ghodsi, L. Onana Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems. International Workshop on Databases,
Information Systems and Peer-to-Peer Computing, 2005.

[8] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology
management. ESOA, 2005.

[9] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms

for Peer-to-Peer Systems. IPTPS, 2004.

L. Lamport. Time, Clocks and the Ordering of Events in a Distributed

System. CACM 21(7), 1978.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient
management of DHT routing tables. NSDI, 2005.

A. Montresor, M. Jelasity, and O. Babaoglu. Chord on Demand. P2P
2005.

L. Onana Alima, S. El-Ansary, P. Brand and S. Haridi. DKS(N,
k, f) A family of Low-Communication, Scalable and Fault-tolerant
Infrastructures for P2P applications. CCGRID 2003, 2003.

T. Schiitt, F. Schintke, and A. Reinefeld. Structured overlay without
consistent hashing: Empirical results. GP2PC’06, 2006.

T. Schiitt, A. Reinefeld, F. Schintke, M. Hoffmann. Gossip-based
Topology Inference for Efficient Overlay Mapping on Data Centers. 9th
Int. Conf. on Peer-to-Peer Computing, 2009.

T. Schiitt, F. Schintke, A. Reinefeld Scalaris: Reliable Transactional
P2P Key/Value Store - Web 2.0 Hosting with Erlang and Java. ACM
SIGPLAN Erlang Workshop, 2008.

T. M. Shafaat, A. Ghodsi, S. Haridi. Handling Network Partitions and
Mergers in Structured Overlay Networks. P2P 2007.

T. M. Shafaat, M. Moser, T. Schiitt, A. Reinefeld, A. Ghodsi, S.
Haridi. Key-Based Consistency and Availability in Structured Overlay
Networks. Infoscale, 2008.

1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions. ACM SIGCOMM 2001.

S. Voulgaris, D. Gavidia, M. van Steen. CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays. J. Network
Syst. Manage. 13(2), 2005.

APPENDIX A. PUBLICATIONS

A.5 Enhanced Paxos Commit for Transactions
on DHT's

SELFMAN Deliverable Year Four (M37-M40), Page 99

TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

FLORIAN SCHINTKE, ALEXANDER REINEFELD, SEIF HARIDI, THORSTEN SCHUTT

Enhanced Paxos Commit for Transactions on DHTs

ZIB-Report 09-28 (September 2009)

Enhanced Paxos Commit for Transactions on DHT's

Florian Schintke*,Alexander Reinefeld*, Seif Haridi’ and Thorsten Schiitt*
* Zuse Institute Berlin
T Royal Institute of Technology, Sweden

Abstract—Key/value stores which are built on structured
overlay networks often lack support for atomic transac-
tions and strong data consistency among replicas. This is
unfortunate, because consistency guarantees and transac-
tions would allow a wide range of additional application
domains to benefit from the inherent scalability and fault-
tolerance of DHTs.

The Scalaris key/value store supports strong data con-
sistency and atomic transactions. It uses an enhanced
Paxos Commit protocol with only four communication
steps rather than six. This improvement was possible by
exploiting information from the replica distribution in the
DHT. Scalaris enables implementation of more reliable
and scalable infrastructure for collaborative Web services
that require strong consistency and atomic changes across
multiple items.

I. INTRODUCTION

Distributed hash tables (DHTSs) and other structured
overlay networks (SONs) were developed to provide an
efficient key based location of nodes and associated data
in the presence of node joins, leaves and crashes (churn).
Due to churn, two challenges arise in such systems: (1)
When a node crashes, all data stored on this node is
lost. (2) When a node is suspected to be crashed, lookup
inconsistencies and responsibility inconsistencies may
occur, which may lead to wrong query results or loss
of update requests. Responsibility inconsistency occurs
when multiple nodes believe they are responsible for an
overlapping range of items.

The first issue can be addressed by data replication.
The second issue can only be relieved but not overcome:
It was shown that in an asynchronous network atomic
overlay maintenance is impossible [7] and thus respon-
sibility inconsistency is unavoidable. Clearly, data con-
sistency cannot be achieved if responsibility consistency
is violated. But as shown in [19], the probability of in-
consistent data accesses can be reduced by increasing the
replication degree, and performing reads on a majority of
replicas. In typical Internet scenarios, for example, only
three replicas give a consistency probability of five nines.
It can be further improved by adding more replicas or

by increasing the share of nodes required for a quorum,
but it can never be made 100%'.

Scalaris [16] is a transactional key/value store which
uses symmetric key replication [8] to ensure data avail-
ability in the face of churn. Data consistency is enforced
by performing all data operations on a majority of
replicas.

In this paper, we present improved algorithms for
concurrency control and transaction processing, that are
based on approaches presented in [14], [16]:

o We show how Paxos Commit can be efficiently
embedded into a DHT to perform a low latency
non-blocking atomic commit on replicated items.
Our commit protocol including the commit phase
and the validation phase requires just four message
delays in the failure-free case (Sect. V-B).

« We discuss failure scenarios and explain how they
are dealt with (Sect. V-B).

o We illustrate how transactions are executed and
validated in Scalaris and how concurrency control
is performed using readers-writer locks (Sect. V-C
and Sect. V-D).

« We evaluate the latency-critical path of our commit
protocol by checking each step for its earliest start
time (Sect. VI).

Before going into the details in Sect. V and VI, we dis-
cuss related work in the following, describe our general
overlay structure and replication scheme in Sect. III and
provide the fundamentals of Paxos Consensus and Paxos
Commit in Sect. IV.

II. RELATED WORK

There are several production systems that use Paxos
Consensus [12], like Google’s distributed lock service
Chubby [3]. The closest to our work is Etna [13] which
provides replicated atomic registers. Etna uses consensus
to agree on the replica membership set. It does not
provide transactional semantics on multiple data items.

'Inconsistencies might still happen if multiple nodes join between
two existing nodes [19].

Dynamo [9] is a large-scale key/value store. In contrast
to Scalaris [16], Dynamo favours availability instead of
strong consistency. It provides eventual consistency and
no transactions.

We describe an improved transaction commit proto-
col which reduces the number of message delays in
the failure-free case by two compared to our previous
protocol [14].

III. SCALARIS: REPLICATED DATA ON STRUCTURED
OVERLAYS

Scalaris [16] is a distributed, transactional key/value
store with replicated items. It uses symmetric data repli-
cation [8] on top of a structured overlay like Chord [20]
or Chord* [17]. In contrast to many other key/value
stores, Scalaris provides strong data consistency. It uses
the same transaction mechanism for providing replica
synchronization as well as transactional semantics on
multiple data items.

In the following, we describe the DHT layer and
replication layer.

A. Structured Overlay Networks

Distributed hash tables (DHTSs) provide a scalable
means for storing and retrieving data items in decen-
tralized systems. They are usually implemented on top
of structured overlay networks which provide robustness
in dynamic environments with unreliable hosts. A DHT
has a simple API for storing, retrieving and deleting
key/value pairs: put(key,value), get(key), and delete(key).

We use the structured overlay protocol Chord* [17]
for storing and retrieving key/value pairs in nodes that
are arranged in a virtual ring. This ring defines a key
space where all values can be stored according to the
associated key. Nodes can be placed at arbitrary places
on the ring and are responsible for all data between
their predecessor and themselves. The placement policy
ensures even distribution of load over the nodes.

In each of the N nodes, Chord* maintains a routing
table with O(logN) entries (fingers). In contrast to other
DHTs like Chord [20], Kademlia and Pastry, Chord*
stores the keys in lexicographical order. This enables
range queries and it gives control over the placement
of data on the ring structure, which is necessary when
deploying a Chord” ring over datacenters to have better
control over latencies. To ensure logarithmic routing per-
formance, the fingers in the routing table are computed
in such a way [17] that successive fingers in the routing
table jump over an exponentially increasing number of
nodes in the ring.

To access the node responsible for a given key k, a
DHT lookup with an average of 0.5log, N routing hops
is performed. The base b can be chosen according to the
application requirements, e.g. faster lookup versus lower
space requirements [1].

Due to churn, nodes can join and leave at any time,
and the ring must be repaired. Stabilization routines
run periodically, check the ring healthiness and repair
the routing tables according to the finger placement
algorithm. If the ring becomes partitioned, a bad pointer
list keeps information on nodes on the other part of the
ring and a merge algorithm [18], [11] can be used to
rejoin them again.

B. Data Replication

To prevent loss of data in the case of failing nodes,
the key/value pairs are replicated over r nodes. Several
schemes like successor list replication or symmetric
replication [8] exist. Symmetric replication stores each
item under r keys. A globally known function places the
keys {ki,...,k,} symmetrically in the key space. Read
and write operations are performed on a majority of
replicas, thereby tolerating the unavailability of up to
|(r—1)/2] nodes. This scheme is shown to ensure key
consistency for data lookups under realistic networking
conditions [19].

IV. PAX0S CONSENSUS AND PAX0OS COMMIT

To provide strong consistency over all replicas, trans-
actions are implemented on top of our structured overlay
where symmetric replication is employed. We use opti-
mistic concurrency control with a backward validation
scheme. Our Scalaris system uses an adapted Paxos
Commit for non-blocking atomic commit, which in turn
uses Paxos Consensus for each individual data replica
to fault-tolerantly agree on prepared or abort for each
replica.

We first describe the Paxos Consensus protocol and
then discuss the non-blocking atomic commit protocol.

A. Paxos Consensus

In a distributed consensus protocol, all correct (i.e.
non-failing) processes eventually choose a single value
from a set of proposed values. A process may perform
many communication operations during the protocol exe-
cution, but it must eventually decide a value by passing it
to the client process that invoked the consensus protocol.

Throughout this paper, we assume a fail-stop model
where failing processes do not recover. To simulate this
behaviour, returning nodes will rejoin with a new identity
and empty state.

Algorithm 1 Paxos Consensus: Proposer
1: initialize

2: r= any round number greater than all » seen before

3: multicast prepare(r) to all acceptors

4: ack_received = 0

5: on receipt of ack(r,v;,rlast;) from acceptor acc;

6: ack_received = ack_received U (r,v;, rlast;)

7 if |ack_received| > § > get index of newest round

8: j = max(rlasty: for all k such that {r,vy,rlast;}€
ack_received)

9: > end of information gathering phase

10: ifv; =1 > no value agreed yet?

11: v; = any_value > we propose a value

12: multicast accept(r, v;) to all acceptors

Algorithm 2 Paxos Consensus: Acceptor
1: initialize
2: rack = 0,7acceprea = 0,v =L > no round acknowledged
or accepted yet, no value

on receipt of prepare(r) from proposer
if 7> ruck N¥ > Taccepted > new round?
Fack =T > memorize that we saw round r

send ack(r, v, Taccepted) tO proposer

on receipt of accept(r, w) from proposer
if 72> Faek N7 > Faccepted > latest round?
Taccepted = ¥ > memorize that we accepted in round r
10: V=w
11: send accepted(raccepred, V) 10 learners

R A A o

12: on receipt of decided(v) from learner
13: cleanup()

Algorithm 3 Paxos Consensus: Learner

1: on receipt of accepted(r,v) from a majority of acceptors
2: multicast decided(v) > Vv is consensus

Lamport’s Paxos Consensus [12], [15] is a non-
blocking consensus protocol for asynchronous dis-
tributed systems. Alternative algorithms were proposed
by Chandra and Toueg [4] and by Dwork [6]. Paxos im-
plements a uniform consensus which achieves agreement
even when a minority of processes should fail. Uniform
consensus has the following properties [10]:

o Termination: Every correct process eventually de-
cides some value.

o Validity: If a process decides v, then v was proposed
by some process.

« Integrity: No process decides twice.

o Agreement: No two processes decide differently.

1) Outline of the algorithm: Each process may take
the role of a proposer, an acceptor, or a learner, or
any combination thereof. A proposer attempts to get
a consensus on a value. This value is either its own
proposal or the resulting value of a previously achieved
consensus. The acceptors altogether act as a collective
memory on the consensus status achieved so far. The
number of acceptors must be known in advance and
must not increase during runtime, as it defines the size
of the majority set m required to be able to achieve
consensus. The decision, whether a consensus is reached,
is announced by a learner.

Proposers trigger the protocol by initiating a new
round. Acceptors react on requests from proposers. By
holding the current state of accepted proposals, the
acceptors collectively provide a distributed, fault-tolerant
memory for the consensus. In essence, a majority of ac-
ceptors together ’know’ whether an agreement is already
achieved, while the proposers are necessary to trigger the
consensus process and to ‘read’ the distributed memory.

Each round is marked by a distinct round number r.
Round numbers are used as a mean of decentralized
tokens. The protocol does not limit the number of
concurrent proposers: There may be multiple proposers
at the same time with different round numbers r. The
proposer with the highest r holds the token for achiev-
ing consensus. Only messages with the highest round
number ever seen by each acceptor, will be processed
by that acceptor. All others will be ignored. If at any
round, a majority of the acceptors accepted a proposal
with value v, it will again be chosen by all subsequent
rounds. This ensures the validity and integrity properties.

Alg. 1, 2, and 3 depict the protocols of the proposer,
acceptor, and learner, respectively. The algorithm can
be split into two phases: (1) an information gathering
phase to check whether there was already an agreement
in previous rounds, and (2) a consolidation phase to
distribute the consensus to a majority of acceptors and
thereby to agree on the decision. In the best case,
consensus may be achieved in a single round. In the
worst case, the decision may be arbitrarily long delayed
by interleaving proposers with successively increasing
round numbers (token stealing by each other).

2) Information gathering phase: A proposer starts a
new round (lines 1-3 of Alg. 1) by selecting a round
number r greater than any round number seen before. At
start time, an arbitrary round number is chosen. The only
restriction on round numbers is that they must be unique
across all possible proposers. This can be achieved, for
example, by appending the proposer’s identifier. If any

new round number happens to be smaller than an earlier
one, the round will be detected as outdated and will be
ignored.

The proposer sends its round number with a prepare(r)
message to the acceptors and starts a timeout (timeouts
are not shown in the algorithms). If it does not get an
ack message from a majority of the acceptors within the
timeout, it starts from the beginning with a higher round
number and retries with a slightly increased timeout. The
timeout implements an eventually perfect failure detector
©P on an arbitrary majority of acceptors.

When an acceptor receives a prepare(r) message (lines
3-6 of Alg. 2), it checks whether the given round r is
newer than any previously seen round. If the received
r is greater, the acceptor memorizes the round and
acknowledges with ack(r, v, rycceprea) Where v is the value
accepted previously in round recepred-

Note that a proposed value v may be accepted several
times by an acceptor in different rounds. If the round
number 7 is outdated, the acceptor does nothing. Alter-
natively, the acceptor may send nack(r, racceprea) 10 help
the proposer to quickly find a higher number for a new
round (this improvement is not shown in the algorithms).

3) Consolidation phase: After collecting a majority
of ack messages, the proposer checks for the latest value
that was accepted by an acceptor (lines 4-9 of Alg. 1).
If it is still the initial L, the proposer chooses a value
by itself, otherwise it takes the latest accepted value v;.
The proposer then sends an accept(r, v;) request to the
acceptors.

An acceptor receiving an accepi(r, v;) request checks
the round. If it is the latest one, it updates its local state
and confirms the accept request with accepted(r, v) to the
learners (lines 7-11 of Alg. 2). Otherwise the acceptor
does nothing or sends naccepted() to the proposer.

When a learner receives accepted(r, v) messages from
a majority of the acceptors, the consensus is finished with
value v.

4) Discussion: When a proposer crashes, any other
process (or even multiple processes) may take the role
of a proposer. The new proposer(s) may retrieve the so
far achieved consensus (if any) from the acceptors by
triggering a new round.

Since the acceptors have no indication on whether
a consensus has been achieved already, they must run
forever, always being prepared to take new accept(r,w)
messages from other proposers. When a new accept(r,w)
with a higher round number r comes in, they are obliged
to accept and store the new value w. As an improve-
ment, the application may decide that a consensus was

achieved and consumed and hence the acceptors may be
terminated.

B. Paxos Commit

Gray and Lamport [9] describe a commit protocol
based on Paxos Consensus. Instead of using a simple
version with a single Paxos Consensus as a stable stor-
age, they propose a variant that needs more messages but
one less message delay. It performs a Paxos Consensus
for each item (TP) involved in the transaction.

In the simple variant, the transaction manager (TM)
is responsible to make the decision. It works as follows:
The TM asks all TPs whether they are prepared to
commit the requested transaction and TPs answer with
either prepared or abort. If all TPs are prepared, the
TM initiates a Paxos Consensus and takes the role of
a proposer by sending accept(prepared) to the accep-
tors, otherwise by sending accept(abort). The acceptors
answer accepted and on a majority of such answers the
TM sends the final decision (commit or abort) to all TPs
for execution. This procedure involves 5 message delays.

The Paxos Commit proposed in [9] needs one fewer
message delay. It does so with a separate Paxos Con-
sensus instance for each TP. As before, the TM asks all
TPs whether they are prepared to commit the requested
transaction. This time, however, the TPs do not reply to
the TM directly, but initiate a Paxos Consensus for their
decision by taking the role of a proposer and sending
their proposal accept(prepared) or accept(abort) to the
acceptors for stable storage. After consensus is achieved,
they reply with the outcome to the TM in its role as a
learner, which then combines the results and sends the
final decision to all TPs for execution. This requires 4
message delays and N(2F +3) — 1 messages for N TPs,
and 2F 41 acceptors.

If the TM or a TP fails in the decision process,
any replicated transaction manager (RTM) may read the
decision from the acceptors, or propose to abort if there
was no consensus yet.

V. TRANSACTIONS IN SCALARIS

Scalaris supports transactional semantics. A client
connected to the system can issue a sequence of oper-
ations including reads and writes within a transactional
context, i.e. begin trans ... end trans. This sequence of
operations is executed by a local transaction manager
TM associated with the overlay node to which the client
is connected. The transaction will appear to be executed
atomically if successful, or not executed at all if the
transaction aborts.

A. System Architecture

Transactions in Scalaris are executed optimistically.
This implies that each transaction is executed completely
locally at the client in a read-phase. If the read phase
is successful the TM tries to commit the transaction
permanently in a commit phase, and permanently stores
the modified data at the responsible overlay nodes. Con-
currency control is performed as part of this latter phase.
A transaction ¢ will abort only if: (1) other transactions
hold the majority of locks of some overlapping data
items (simultaneous validation); or (2) other successful
transactions have already modified data that is accessed
in transaction ¢ (version conflict).

Each item is assigned a version number. Read/write
operations work on a majority of replicas to obtain the
highest version number and thereby the latest value. A
read operation selects the data value with highest version
number, and a write operation increments the highest
version number of the item.

The commit phase employs an adapted version of
the Paxos atomic commit protocol [9], which is non-
blocking. In contrast to the 3-Phase-Commit protocol
used in distributed database systems, the Paxos Commit
protocol still works in the majority part of a network that
became partitioned due to some network failure. It em-
ploys a group of replicated transaction managers (RTMs)
rather than a single transaction manager. Together they
form a set of acceptors with the TM acting as the leader.

B. Transaction Validation with Paxos Commit

Scalaris executes the following four steps in the
failure-free case (Fig. 1).

1) Prerequisites: For a fast transaction validation,
each node in the overlay permanently maintains a list
of r—1 other nodes, that can be used as Replicated
Transaction Managers (RTMs). The location of these
nodes could be according to the scheme of symmetric
replication. Once these nodes are located, they are main-
tained through the use of failure detection.

Step 1.The client contacts an arbitrary node in the
Scalaris ring with a transaction log (translog)
of read and write operations for the valida-
tion phase. This node becomes the Transaction
Manager (TM). The TM chooses a transaction
identifier (Tid) and a Paxos Consensus identifier
(P;) for each replica of each item. It sends
an init_RTM message with the translog, the
Tid, all P, and the addresses of all RTMs
to each RTM. Additionally, the TM sends to
all Transaction Participants (TP) an init_TP

message with the translog, Tid, RTMs, and the
individual P; for each TP.

Step 2.Each TP initiates a Fast Paxos Consensus with
the received P,. Each TP proposes either pre-
pared or abort with an accept message to
the acceptors according to its local validation
strategy (see later).

As the TP is the only initial proposer, it uses
the lowest round number by default and thereby
skips the information gathering phase (’Fast
Paxos Consensus’). The proposal is sent to the
TM and RTMs.

If the TP decided prepared it locks its replica.
When a TM or RTM receives an accept mes-
sage from a TP, it also learns the address of the
TP to be used later in the protocol.

Step 3.The TM will take the role of a learner in
each consensus instance. To allow the TM to
calculate each consensus instance, each RTM
sends a list of accepted messages to the TM. As
soon as the TM received a majority of accepted
messages for a given consensus instance P; it
decides on i.

Step 4.The TM will decide the transaction to commit
if for each item a majority of the consensus
instances have decided prepared, otherwise it
will decide abort. After having received the
decision from the TM, the TPs execute the
changes, release the locks and finish.

2) Discussion: As a precondition, we assume that a
majority of RTMs plus TM and a majority of replicas
for each item are correct. The following failures may
happen:

When the TM fails, any RTM may take its role
by initiating a new round for every Paxos Consensus
involved. In Scalaris, the RTMs’ failure detectors have
different timeouts, so that multiple RTMs will never
compete for leadership and no explicit leader election
algorithm is necessary. The new TM is able to continue
with the protocol, because the current status on the
consensus is safely stored at the RTMs (acceptors).

When an RTM fails, the protocol continues with the
rest of the RTMs.

When a TP fails in step 2, the TM or some RTM does
not receive an accept message from the TP within the
specified timeout. The TM or RTM then takes the role
of a proposer and proposes abort for the corresponding
consensus instance with a round number > 1, if no
consensus was already achieved before the TP crashed.
Until only a minority of the Paxos Consensus for the

Step 1 Step 2

Step 3 Step 4

for each replica
wait for a majority

majority of replicas
for each key ‘prepared’?

™ of acceptors - commit, else abort
T
acceptor, learner |‘| initRTM registerTP + list of
\ | (-1 msg) accept(prepared/abort) [accepted(prepared/abort) commit/abort
\ (k*r msg) (r-1 msg) (r-1 msg)
1
1
RTM,, ..., RTM,, -
acceptors ?__‘l initTP registerTP +
‘6‘"‘ (k*rmsg) accept(prepared/abort) commit/abort
%l‘ (k*r? msg) (k*r msg)
TPs for k items * r replicas AR
proposers start consensus time

for each replica

Fig. 1.

replicas of a given item votes abort and a majority
of them votes prepared the transaction still can be
committed. This can be safely done, as in contrast to
Paxos Commit, we operate on replicated items.

C. Working Phase: Building a Translog in Scalaris

We now describe the working phase in which Scalaris
builds a translog with all items that are to be updated
in an atomic operation. Alg. 4 shows an example of a
client code for a money transfer from bank account A
to account B. The money transfer should be executed
atomically—if the balance in account A allows to. In
the example, each account is replicated over three keys
keya,,...,keys, and keyp,,... keyp,. Fig. 2 shows the
corresponding Scalaris ring with the replicas.

The client code shown in Alg. 4 is formulated in the
functional programming language Erlang [2]. It works as
follows. First, it defines a function F, that will perform
the working phase of the transaction (lines 2-12). It
then executes this function to retrieve a transaction log
(line 13) and thereafter attempts to validate it by calling
scalaris:commit() on the outcome of the working phase
(line 14).

The working phase is 'read only’ and does not modify
any values or locks. It stores only the relevant data
for each accessed key in the transaction log translog.
Each translog entry is a 5-tuple consisting of: (1) the
performed operation, (2) the key involved, (3) a status
flag indicating success or failure, (4) the corresponding
value, and (5) the corresponding version.

A read request for a key k triggers a quorum read
on the replicas, if k is not yet included in the translog.

Timeline diagram of a Scalaris commit.

Algorithm 4 Example of a Scalaris transaction in Erlang.
1: my_transaction() —>

2: F = fun (TransLog) —>

3 {X, TL1} = scalaris:read(TransLog, "Acc A”),

4: {Y, TL2} = scalaris:read(TL1, ”Acc B”),

5: if X > 100 —>

6: TL3 = scalaris:write(TL2, ”Acc A”, X - 100),
7 TL4 = scalaris:write(TL3, ”Acc B”, Y + 100),
8

: {ok, TL4};
9: true —>
10: {ok, TL2};
11: end
12: end,

13: MyTransLog = F(EmptyTransLog),

14: Result = scalaris:commit(MyTransLog) .

It returns the read value and the accordingly updated
translog as a tuple.

A write request for a key k first triggers a quorum read
on the replicas, if k is not yet included in the transaction
log. Then a new translog entry with the incremented
version number and the new value is created or updated
accordingly.

The quorum reads for read and write operations re-
quire DHT lookups with O(logn) hops. If a quorum read
fails, this is recorded in the corresponding status flag in
the translog. If any status flag in the translog is failed,
the whole transaction will be aborted.

| Kkeya: (150, v5)

key,,: (200, v7)

. key,s: (200, v7)

key,

keyg,: (20, v4)

N

keyg,: (20, v4)

| keygs: (20, v3)

keyg

Scalaris ring

Fig. 2.

D. Using the Translog in the Validation Phase

Based on the commit protocol presented in Sec. V-B
we now describe the validation strategy in more detail.
We show how Scalaris places locks and decides accord-
ing to the translog.

A TP receives in step 1 of Fig. 1 the corresponding
translog entry. To choose between the proposals prepared
and abort it checks the following constraints:

o Is the version number still valid?
For reads: 1Is the local version number in the data
store the same as the one listed in the translog entry?
For writes: Is the local version number in the data
store one less than the version number stored in the
translog?

« Is the lock of the key available?
For reads: Is no write lock set?
For writes: Is neither a read lock, nor a write lock
set?

If both checks are successful, the TP proposes pre-
pared and increments for reads the read lock counter and
for writes it sets the write lock. Otherwise it proposes
abort.

When a TP receives a write commit in step 4 of Fig. 1,
it writes the value and version number from the translog
into the key.

For read and write operations, independent of commit
or abort, the TP releases the locks.

VI. EVALUATION

For globally distributed structured overlay systems,
latency is an important issue. To reduce the latency in our
majority based system, we may assign a majority of the
replicas of an item to nodes near the main popularity
of that item. This is possible using Chord* [17] as an
overlay, as it allows to arbitrarily assign nodes to ranges

Scalaris ring with two items key4 and keyp.

of keys and as it does not use hashing but keeps the keys
in lexicographical order in the ring.

1) The latency-critical path: In step 1 of our commit
protocol, an initialization message is send to each RTM
and TP (see Fig. 1). Each TP immediately responds
with its accept message to the TM and RTMs. So,
some accept message may arrive at an RTM earlier
than the corresponding initialization message. This is
not a problem, as the RTM will record it and assign it
later via the given transaction and consensus identifiers.
Similarly in the case of accepted messages from RTMs
(step 3) that may arrive earlier at the TM than the accept
messages from the TPs sent in step 2.

In step 3, each RTM collects an accept message for
each consensus (each TP) and sends a list of accepted
in a single message to the TP. While this protocol is
optimal with respect to the number of messages sent, the
overall latency can be reduced by sending each accepted
message immediately after receipt of the corresponding
accept. Then the TM must await a consensus for a
majority of the P; for each item, independent from which
RTMs it came. Progress between step 2 and 4 depends
on the m lowest latency paths from TPs (via RTMs) to
the TM for each item, where m = r/2+1 is the size of
the majority set.

2) Empirical Results: We compared the performance
of simple quorums reads with full transactions on an
Intel cluster with 16 nodes. Each node has two Dual-
Core Intel Xeons (4 cores in total) running at 2.66 GHz
and 8 GB of main memory. The nodes are connected via
GigE. On each server we ran s Scalaris nodes distributed
over v Erlang virtual machine. We used a replication
degree of four, i.e. there are four copies of each key-value
pair. For generating load, we started ¢ clients in each
Erlang VM and each client performed the function under
test i times. We ran the tests with various combinations

80000

T
Reads/s ——

70000 [
60000 |- e
50000 e

40000 - -
30000 [

20000 |

10000

reads/s

Fig. 3.

for (s,v,c,i). The graphs in Fig. 3 show the aggregated
performance over all clients and the number of clients
per VM of the best parameter combinations. The best
parameter settings usually used 1 VM per server with
16 or 32 Scalaris nodes.

The left graph in Fig. 3 shows the throughput for
quorum reads. The maximum of 73,000 lookups is
achieved with 15 servers. As the quorum reads are
dominated by the lookup, which scales with logN, the
curve does not scale linearly. Two servers achieve a lower
read performance than one because of the additional TCP
overhead.

The right graph in Fig. 3 shows the performance of
read-modify-write transactions with Paxos. 15 servers
are capable of handling almost 14,000 transactions per
second. More importantly, the curve scales almost lin-
early with an increasing number of servers.

VII. CONCLUSION

We presented an atomic transaction protocol that has
been efficiently embedded into a DHT and uses four
communication steps only. It makes progress as long as
a majority of TPs for each item and a majority of RTMs
(including the TM) are correct (non-failing).

The transaction protocol was used to implement
Scalaris [16], a fault-tolerant key/value store with repli-
cated items on a DHT. The DHT ensures scalability
while the enhanced Paxos commit protocol provides data
consistency. The implementation comprises a total of
9,700 lines of Erlang code: 7,000 for the P2P layer with
replication and basic system infrastructure and 2,700
lines for the transaction layer.

ACKNOWLEDGEMENTS

This work would not have been possible without the
great help of the Scalaris team. Funding was provided

14000

T
Increments/s

12000 |

10000 |-
ﬁ 8000 -
2 6000 |

2000

Performance of quorum reads (left) and transactions with Paxos (right).

by the EU projects SELFMAN and XtreemOS.

REFERENCES

[1] L. Alima, S. El-Ansary, P. Brand and S. Haridi.
DKS(N.k,f): A family of low-communication, scal-
able and fault-tolerant infrastructures for P2P appli-
cations. Workshop on Global and P2P Computing,
CCGRID 2003, May 2003.

[2] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Programmers, ISBN:
978-1-9343560-0-5, July 2007

[3] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. 7th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2006.

[4] T.D. Chandra, S. Toueg. Unreliable failure detector
for reliable distributed systems. J. ACM, 43(2):225-
267, 1996.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, W. Vogels. Dynamo: Amazon’s highly
available key-value store. SOSP, Oct. 2007.

[6] C. Dwork, N. Lynch, L. Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM,
35(2):288-323, 1988.

[7] A. Ghodsi. Distributed k-ary system: Algorithms for
distributed hash tables. PhD Thesis, Royal Institute
of Technology, 2006.

[8] A. Ghodsi, L. Alima, S. Haridi. Symmetric replica-
tion for structured Peer-to-Peer systems. DBISP2P,
Aug. 2005.

[9] J. Gray, L. Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133—
160, 2006.

[10] R. Guerraoui, L. Rodrigues. Introduction to reliable
distributed programming. Springer-Verlag, 2006.

[11] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay topology management. ESOA, 2005.

[12] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133-169, 1998.

[13] A. Muthitacharoen, S. Gilbert, R. Morris. Etna:
A fault-tolerant algorithm for atomic mutable DHT
data. Technical Report MIT-LCS-TR-993, 2005.

[14] M. Moser, S. Haridi. Atomic commitment in
transactional DHTs. 1st CoreGRID Symposium,
Aug. 2007.

[15] R. D. Prisco, B. W. Lampson, N. A. Lynch. Re-
visiting the PAXOS algorithm. Theor. Comput. Sci.,
243(1-2):35-91, 2000.

[16] T. Schiitt, F. Schintke, A. Reinefeld. Scalaris:
Reliable transactional P2P key/value store. ACM
SIGPLAN Erlang Workshop. 2008.

[17] T. Schiitt, F. Schintke, A. Reinefeld. Structured
overlay without consistent hashing: Empirical re-
sults. GP2PC’06, May. 2006.

[18] T. M. Shafaat, A. Ghodsi, S. Haridi. Handling Net-
work Partitions and Mergers in Structured Overlay
Networks. P2P 2007.

[19] T.M. Shafaat, M. Moser, T. Schiitt, A. Reinefeld,
A. Ghodsi, S. Haridi. Key-based consistency and
availability in structured overlay networks. Infos-
cale, June 2008.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
H. Balakrishnan. Chord: A scalable Peer-to-Peer
lookup service for Internet applications. ACM
SIGCOMM 2001.

APPENDIX A. PUBLICATIONS

A.6 Towards Explicit Data Placement in Scal-
able Key/Valaue-stores

SELFMAN Deliverable Year Four (M37-M40), Page 110

Towards Explicit Data Placement in Scalable Key/Value Stores *

Mikael Hogqvist
hoegqvist@zib.de

Stefan Plantikow
plantikow @zib.de

Zuse Institute Berlin

Abstract

Distributed key/value-stores are a key component of
many large-scale applications. Traditionally they have been
designed using Distributed Hash Tables (DHTs). DHTs,
however, setup a tight coupling between the naming of
nodes and assignment of keys to nodes which limits appli-
cation control over data placement.

We propose using small amounts of shared state in a
semi-centralized architecture for more flexible data place-
ment by introducing explicit mapping between keys and
nodes via an indirection layer (blockspace). Our design
is based on a membership layer that provides O(1) rout-
ing thereby targeting interactive applications. We evaluate
a centralized and decentralized approach showing that both
have relatively low overhead and provide efficient load bal-
ancing.

1 Introduction

Distributed key/value stores [7, 8, 5] provide decentral-
ized, scalable storage as basis for applications like caching
layers, indirection services, and activity tracking systems.
Such applications require high scalability, high availability,
autonomic failure management, and certain consistency and
security guarantees from their storage layer.

Beyond this, storage systems powering large-scale web
applications and services additionally demand (1) low la-
tency for interactive access [7], (2) fine-grained control over
data placement to honor legal restrictions, react to variations
in resource pricing, or move/replicate data according to us-
age patterns [1], and (3) flexible data models with support
for both exact-match and range queries.

Current state of the art in autonomic key/value-stores are
based on DHTs such as [12, 9]. DHTs provide algorithms
for node management (join/leave/fail) and a routing layer
that maps keys to the system nodes. Key-lookup requires
O(log N) routing steps and per-node routing table entries.

*This work was funded by the EU FP6 project SELFMAN, IST-34084

DHTs partition the keyspace horizontally by mapping it
directly to the node identifier space. This does not require
any additional state for finding the location of a key. How-
ever, the static assignment makes it difficult to control or
introduce new policies for the placement of items within
the system. Furthermore, look-up with O(log N) routing
hops may not be sufficient to meet the latency demands of
interactive applications [4].

Based on above considerations, we propose a system de-
sign that (1) introduces an intermediary blockspace which
decouples the keyspace from the nodespace to control data
placement and load balancing, (2) uses a routing and mem-
bership layer with O(1) hops to provide low lookup laten-
cies. This design implies that each node has to maintain
state for the blockspace as well as membership information
about all other nodes in the system.

In addition to describing the system design, we con-
tribute algorithms for managing the index-structure storing
key/value-pairs. This includes, the assignment of blocks to
nodes, block splitting and merging that adapts to the item
distribution, and the atomic reassignment of blocks. In
the evaluation, we compare two different block assignment
strategies in terms of load balancing and maintenance traffic
overhead.

2 System Design

Background A key/value store is a database management
system for storing key/value-pairs or items. Keys are ele-
ments of the keyspace range [K nin, Kmaz], values are arbi-
trary binary objects. Items are grouped in indices and sorted
by key. The store provides a simple interface for creation,
retrieval, update and deletion of index items. Data retrieval
is achieved by issuing an exact-match query that returns a
value for a given key or via range/prefix queries that return
all matching key/value-pairs.

Distributed key/value-stores consists of a set of /V nodes
which are fully connected via a network. Each node stores
items in a local database and is assigned an ID in the dis-
crete range [Npin, Nmaz). This range, the nodespace,
wraps around at V.., and can be seen as a ring.

Items are assigned to nodes according to some data
placement strategy. Many systems implement this through
some deterministic and constant function based on keys
only, e.g. by hashing into the nodespace. However, such
functions can not be directly influenced by the application
or system management components. For example, when
using hashing, load balancing requires moving nodes by
changing their ID. Alternatively, distributing a direct key-
to-node assignment to all system nodes does not scale to a
large number of keys.

KEYSPACE
BLOCKSPACE | | | | | |

ASSIGNMENT STRATEGY'/D
NODESPACE N

Figure 1. Using an intermediary blockspace
enables more flexible data placement

Approach The key insight is that decoupling the
nodespace from the keyspace enables the system to control
data placement. This separation is achieved by introduc-
ing a new indirection layer that we call the blockspace (see
Fig. 1). The blockspace covers the same identifier space
as the keyspace but is partitioned into blocks containing a
range of keys. Each block is mapped to the nodespace us-
ing an assignment strategy. Distributing the block-to-node
assignment to all system nodes is scalable, since the size
of the state is several orders of magnitudes smaller com-
pared to a key-to-node assignment. Since we aim for O(1)
routing, this mapping needs to be synchronized between all
system nodes. This requires a mechanism for membership
management and the distribution of global state.

Membership Management Each node needs a consistent
view regarding membership information, blockspace parti-
tioning and assignment. We accomplish this by using Cen-
sus [6], a recently suggested membership service protocol.
Census provides each node with a replica of all membership
information (shared global state). To achieve this, Census
operates in epochs (periods of time). At the start of each
epoch, a set of leader nodes broadcasts changes to the global
state of that epoch to all other nodes. Therefore, during an
epoch, all nodes have the same consistent view on the state
of the system. At any time, nodes may send updates to lead-
ers for distribution in the next epoch. Leaders agree on the
set of updates for the next epoch using a consensus protocol
or master-slave replication and leader election.

For broadcasting updates, non-leader nodes are orga-
nized as a set of multicast trees. The key to Census is
that these trees are constructed deterministically based on
the global state of the current epoch, i.e. require no addi-
tional communication between nodes. By only propagating
updates of the global state, overall communication cost is
minimized.

For correctness, census only requires synchronized clock
rates of participating nodes with an upper bound on the
maximal deviation. This is sufficient for local nodes to de-
termine if their current view could still be valid from the
leader’s point of view.

Indices Anindex consists of a blockspace and a keyspace,
both confined within a pre-defined discrete range R =
[Romin, Rimaz) (see Fig. 1). The index range is divided into
a set of B disjoint blocks. Each block, b;, has a position 4
and a start identifier, b/?. A block, b;, ends at the identifier
for the next block, b/7;. We say that b; covers the range
[bfP,bIP)). All blocks combined cover the entire range
[Rimin, Rmaz). The first block, by, starts at Ry, and the

last block, by_1, ends at R4z

An item consists of a variable-length key and value. The
key identifies the position of the item in the index range. An
item with a key outside the range R cannot be stored by the
system. A block b; is responsible for all keys k& > b/” and
k < blP,. There is always only one such block per key k.

Look-ups The goal of a look-up is to find the node cur-
rently responsible for storing an item. In order to perform
a look-up, first, the block responsible for the key is deter-
mined. Second, the associated node is looked up in the
block-to-node assignment table. Both of these indirections
are performed locally at each node using the consistent state
which contains the block-to-node assignment table. There-
fore each look-up requires exactly 1 overlay network hop.
A range query, [a, b] is executed by calculating all blocks
covering the given range. All blocks are retrieved in paral-
lel by issuing separate look-ups for each block.

Summary Our design uses a combination of a decou-
pled key- and nodespace with a consistent membership view
to allow for flexible data placement and low look-up la-
tency suitable for interactive applications. By introducing a
leader-based membership service and efficient application-
level multicast, the nodes are provided with low-cost up-
dates to the global state. The leader is not part of read and
write operations to the key/value-store and is thereby kept
out of the clients fast path. In the following section we in-
troduce the algorithms for managing the blockspace.

3 Index Management

This section presents the algorithms used for managing
the blocks in a single index. We describe a self-tuning pro-
tocol which adapts the block sizes to a supplied target size
in order to support efficient storage of different key distri-
butions and value sizes. Based on this, we introduce two
approaches for assigning blocks to nodes. Finally, we out-
line a protocol for atomic re-assignment of blocks.

Split and Merge The goal of the split and merge algo-
rithm is to dynamically partition the blockspace according
to the distribution of the stored keys and the number of
stored keys per block. The target size of blocks, Ly, is a
system defined parameter. Using a fixed block size is use-
ful for estimating the result set size of a range query. We
define two operations used by the algorithm: split which di-
vides a single block into two parts and merge which merges
two consecutive blocks into a single block. Note that the
operations described here are binary but they can easily be
generalized to n-ary split and merge.

Nodes decide locally if a block that it stores should be
split or merged. A split is triggered when a block’s load is
larger than a factor § of the target load, assuming § > 1.
A merge is performed when the block load is less than a
factor % of the target load. This ensures that the block load
varies in the interval [%, 0L,]. Using this interval avoids
oscillations which can occur in threshold-based schemes.
We split the block at the median item to achieve storage
load balance but this can be done arbitrarily with application
specific policies.

When a node performs an operation on the blockspace,
all other nodes must find out about the modification in or-
der for look-ups to be directed to the correct node. A
blockspace change is done in two phases. First, a node in-
forms the leader that it wants to perform an update. In a fol-
lowing epoch, the leader forwards the change to all nodes
including the initiating node.

Block Assignment The split and merge algorithm parti-
tions the blockspace according to the key distribution. How-
ever, for look-ups to work, all nodes need to know the cur-
rent partitioning including the mapping from the blockspace
to the nodespace. The assignment strategy is used to place
blocks at different nodes. We present two alternatives, a
centralized approach where blocks are explicitly assigned
to nodes and a decentralized approach that uses consistent
hashing. The main trade-off between the strategies is the
extra load and maintenance costs vs. the assignment flexi-
bility.

In the centralized approach, all nodes maintain a data
structure containing a mapping from blocks to nodes.
Changes to the mapping table which are induced by block

split and merges as well as node churn are reported to the
leader who distributes them to all nodes at the beginning
of the next epoch. Thus the mapping tables of all blocks
are kept synchronized. A look-up is performed locally on
a node by finding the block responsible for a key using the
block-node mapping.

In the decentralized approach, the nodes only maintain
the current partitioning as created by split and merge. In-
stead, blocks are assigned to nodes by applying a hash-
function mapping their starting identifier, b/”, to the
nodespace. A block belongs to the node which is closest
to the block according to a distance function, d(z,y). Un-
like for example Chord [12], we use the euclidean distance
d(a,b) = min((a — b) mod ID,,4q, (b — a) mod I D, qs).
This has the advantage that when a node fails, the blocks
it was responsible for are divided between its two closest
neighbors instead of a single successor.

In both strategies, the state at each node is bounded by
the number of blocks in the blockspace. The main differ-
ence is the network usage and CPU costs. Since in cen-
tralized, the mapping table include both blocks and nodes,
it is dependent on the churn rate and the item insert and
removal rate. The additional CPU costs comes from the re-
computation of the block to node mapping at each epoch.
However, performing this at the leader can also save overall
CPU costs by not repeating an expensive calculation at each
node.

Atomic Block Reassignment When re-assigning a block
from one node to another, it is crucial to avoid different
nodes disagreeing about who is responsible for a block (at a
fixed point in global time). This problem could arise due to
delayed message delivery and is related to look-up incon-
sistency in structured overlay networks [11].

While such structural inconsistency may be dealt with
through the use of replication at the cost of higher aver-
age latency, as an alternative, we propose a forward-till-
timeout-approach to achieve atomic block re-assignment.
To handover a block b at epoch e from node ng to node
ni, a forward entry is added to the global state at epoch
e + 1. This forward requires that all requests to block b are
sent to n; who will forward them to ng until ng either is
removed from the system or acknowledges successful han-
dover to ny along with the last version of b. ngy will sig-
nal this only after it is guaranteed that either each system
node is in epoch e + 1 or must have failed. This knowl-
edge is available to ny based on assumptions about epoch
duration, leader behavior, accuracy of clock rate synchro-
nization, and the maximal timeout after which a node that
has not received the next epoch state will cease processing
requests in its current epoch. In any case, eventually n; can
be sure that no more requests will be sent to ny and will fin-
ish the re-assignment in the following epoch by removing

the forward entry from the global state. We are currently
working on a more detailed and formal description of this
protocol.

4 Evaluation

By introducing a leader in the system, it is the most likely
bottleneck even though it is only mediating control traffic
and not any data traffic. We evaluate the trade-off between
maintenance costs and the ability to balance the storage load
using the centralized and decentralized approaches. The ex-
periments are performed using a discrete time event-based
simulator.

An experiment is initialized with a leader and 1000
nodes. Each node has a mean time to failure (MTTF) and
a recovery delay in order to simulate churn. The MTTF is
drawn from an exponential distribution with an average set
to 1 hour. Block updates are sent to the leader which for-
wards the changes in each epoch (30s) to all nodes. We use
an insert-only workload with a constant rate of 10000 items
per epoch and a block size of 10000 items. For simplicity,
messages are sent directly to the nodes without loss. Thus,
we only measure the overhead of the centralized and decen-
tralized approach without fault tolerance.

Maintenance Costs In this experiment, we measure the
maintenance overhead for an index. That is, the updates
propagated by the leader that are used by the nodes to main-
tain their internal block-node mapping table.

Figure 2(a) shows the aggregated number of updates af-
ter 86400s (1 day). The significantly higher maintenance
cost for centralized block assignment can mainly be at-
tributed to the churn rate, since, unlike decentralized as-
signment, each join and leave require explicit updates to the
block-node mapping table. The average number of updates
per epoch for centralized is 26.4, while for decentralized it
is 2.3. Note that the rate of splits is much higher in the start-
ing phase. This is because the system starts with a single
block and is under a uniform insert-only workload which
trigger splits as soon as a block is full. With more blocks in
the system, it takes longer time before a block is full.

Block Imbalance Using the centralized approach, the
maintenance costs are significantly higher compared to the
decentralized approach. However, by letting a leader decide
the block to node assignment, we have more control of how
to balance the storage load. In this experiment, we quantify
this trade-off by measuring the storage imbalance resulting
from a central algorithm vs. consistent hashing.

We define the block storage imbalance as LL’:—“: Linaz
is the maximum number of blocks stored at any node while
L, is the average number of blocks per node. The central

algorithm assigns each unassigned block in an epoch to the
nodes with the least number of blocks. A block becomes
unassigned when the node responsible for the block leaves
the system or when a new block is created through a split.
Figure 2(b) shows that the imbalance for the centralized
algorithm approaches 1 with increasing number of blocks,
while the hash-based algorithm is able to balance the system
within a factor 5 to 10. We conclude that the increased con-
trol gained from the centralized algorithm makes it possible
to significantly improve the storage imbalance. In addition,
the leader-based approach can more easily be extended to
consider further parameters such as inter-node latencies or
application-specific placement policies.

5 Related Work

DHTs Classic DHTs such as Chord or Pastry are mapping
keys directly to the identifier space. This makes it diffi-
cult to support range queries without explicit storage load
balancing. Therefore several approaches that layer addi-
tional indexing on top of DHTs in order to achieve complex
queries such as range- or prefix-queries has been developed.
We discuss two of these approaches, however, unlike our
system which is layered on a one-hop membership service,
they all assume a DHT as underlay. In [13], Zheng et. al.
present a binary tree structure called Distributed Segment
Tree (DST) that support range- and cover-queries. A DST
is a binary tree where a tree node represents a key interval.
The DST is mapped to a DHT by hashing the node’s interval
into the nodespace. The insert-cost in a DST corresponds to
the height of the tree since a parent tree node also cover the
interval of its children.

In RIPPNET [10], Ryeng et. al., use a CAN-like system
to index fragments of a range instead of the individual keys.
We are also decoupling the keyspace from the nodespace
by introducing fragments or blocks, but do not require a
specialized multi-dimensional DHT.

Distributed Key/Value-stores Amazon’s Dynamo [7],
uses consistent hashing for partitioning to keyspace. Each
physical node maintains a set of virtual nodes used for load
balancing. Nodes have an eventually consistent view of the
members, including the virtual nodes, of the system which
is updated through gossiping.

Google [3], uses Chubby [2], a highly available and per-
sistent distributed lock service, to handle node membership.
A central master is responsible for assigning tablets, blocks
of data, to the nodes.

PNUTS from Yahoo! [5] take a similar approach by
storing key/value-pairs in blocks (tablets). Unlike Dynamo,
they support exact-match and range queries. The mapping
of tablets to data nodes is done with a centralized “tablet
controller” for increased control. Routers, used by clients

centralized ——
100000 L decentralized —— |

T 10000
5|
3
g 1000 |
@
2
o
3 100 H
=]

10

1 . \ . . . \

0 500 1000 1500 2000 2500 3000 3500

Epochs

(a) Maintenance costs

centralized —— |
decentralized ——

Imbalance

0 1000 2000 3000 4000 5000 6000 7000

Number of Blocks

(b) Block storage imbalance

Figure 2. Maintenance costs and storage imbalance with centralized and decentralized.

to find the location of a key or range, update their internal
tablet state regularly via the tablet controller.

Both Yahoo! and Google uses a centralized way of
assigning blocks to nodes, while Amazon uses consistent
hashing. We plan to further explore this trade-off between
the cost of centralized control and decentralized assignment
for environments which are not under single administrative
control.

6 Conclusions

Revisiting semi-centralized architectures is an interest-
ing option for building low-latency large-scale storage sys-
tems. We explored this idea through our system design
based on the census membership service. Beyond achieving
O(1) routing, a consistent global view opens up the possi-
bility for flexible data placement. Our simulation results
indicate that the traffic overhead of update dissemination is
considerably low. We conclude, that semi-centralized man-
agement of data placement is an interesting design approach
for distributed key/value-stores.

References

[1] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. Scads: Scale-
independent storage for social computing applications. In
CIDR, 2009.

[2] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI, pages 335-350. USENIX As-
sociation, 2006.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Trans. Comput. Syst., 26(2), 2008.

[4] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,
S. Shenker, and J. M. Hellerstein. A case study in build-
ing layered dht applications. In SIGCOMM, pages 97-108.
ACM, 2005.

[5] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. PVLDB,
1(2):1277-1288, 2008.

[6] J. Cowling, D. R. K. Ports, B. Liskov, R. A. Popa, and
A. Gaikwad. Census: Location-aware membership manage-
ment for large-scale distributed systems. In USENIX, San
Diego, CA, USA, June 2009.

[71 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-
value store. In SOSP, pages 205-220. ACM, 2007.

[8] S. C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Rat-
nasamy, S. Shenker, I. Stoica, and H. Yu. Opendht: a public
dht service and its uses. In SIGCOMM, pages 73-84. ACM,
2005.

[9] A. L T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. In Middleware, volume 2218 of Lecture Notes
in Computer Science, pages 329-350. Springer, 2001.

[10] N. H. Ryeng and K. Ngrvag. Rippnet: Efficient range in-
dexing in peer-to-peer networks. In /CDIM, pages 184—191.
1EEE, 2008.

[11] T. M. Shafaat, M. Moser, T. Schiitt, A. Reinefeld, A. Gh-
odsi, and S. Haridi. Key-Based Consistency and Availability
in Structured Overlay Networks. In Proc. of Infoscale’08.
ACM, June 2008.

[12] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In SIGCOMM, pages 149-160,
2001.

[13] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Seg-
ment Tree: Support of Range Query and Cover Query over
DHT. In IPTPS, Santa Barbara, USA, Feb. 2006.

APPENDIX A. PUBLICATIONS

A.7 Active/Passive Load Balancing with In-
formed Node Placement in DHT's

SELFMAN Deliverable Year Four (M37-M40), Page 116

Passive/Active Load Balancing with Informed
Node Placement in DHT's

Mikael Hogqvist and Nico Kruber

Zuse Institute Berlin
Takustr. 7, 14195, Berlin, Germany
hoegqvist@zib.de, kruber@zib.de

Abstract. Distributed key/value stores are a basic building block for
large-scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload distribution
can be non-uniform.

We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that adapt to
both the key and workload distribution. The algorithms are evaluated
in a simulated environment, focusing on the impact of load balancing on
scalability under normal conditions and in an overloaded system.

1 Introduction

Distributed key/value stores [1,2,3] are used in applications which require high
throughput, low latency and have a simple data model. Examples of such appli-
cations are caching layers and indirection services. Federated key/value-stores,
where the nodes are user contributed, require minimal management overhead
for the participants. Furthermore, the system must be able to deal with large
numbers of nodes which are often unreliable and have varying network band-
width and storage capacities. We also aim to support both exact-match and
range queries to increase flexibility for applications and match the functionality
of local key /value-stores such as Berkeley DB and Tokyo Cabinet.

Ring-based Structured Overlay Networks (SONs) provide algorithms for node
membership (join/leave/fail) and to find the node responsible for a key within
O(log N) steps, where N is the number of nodes. One of the main advantages of
SONs for large-scale services is that each node only has to maintain state of a
small number of other nodes, typically O(log N'). Most SONs also define a static
partitioning strategy over the data items where each node is responsible for the
range of keys from itself to its predecessor.

At first glance SONs may therefore seem to be a good fit for distributed
key /value stores. However, the static assignment of data items to nodes in com-
bination with the dynamic nature of user-donated resources make the design of
the data storage layer especially challenging in terms of reliability [4] and load
balancing.

The goal of load balancing is to improve the fairness regarding storage as well
as network and CPU-time usage between the nodes. Imbalance mainly occurs

T. Spyropoulos and K.A. Hummel (Eds.): IWSOS 2009, LNCS 5918, pp. 101-112, 2009.
© IFIP International Federation for Information Processing 2009

102 M. Hogqgvist and N. Kruber

due to: 1) non-uniform key distribution, 2) skewed access frequency of keys and
3) node heterogeneity. First, by supporting range-queries, an order-preserving
hash function is used to map keys to the overlay’s identifier space. With a non-
uniform key distribution a node can become responsible for an unfair amount of
items. Second, keys are typically accessed with different popularity which creates
uneven workload on the nodes. The third issue, node capacity differences, also
impacts the imbalance. For example, a low capacity node gets overloaded faster
than a high capacity node. We assume that nodes are homogeneous or have unit
size, where a single physical node can run several overlay nodes.

Our main contribution is a self-adaptive balancing algorithm which is aware
of both the key distribution and the item load, i.e. used storage and access-
frequency. The algorithm has two modes: active, which triggers a node already
part of the overlay to balance with other nodes and passive, which places a joining
node at a position that reduces the overall system imbalance. In both the passive
and active mode, a set of nodes are sampled and the algorithm balance using
the node with the highest load.

Our target application is a federated URL redirection service. This service
allow users to translate a long URL, from for example Google Maps, to a short
URL. The redirection service supports look-ups of single URLs as well as statis-
tics gathering and retrieval over time which motivates the need for range queries
to execute aggregates. Popular URL redirection providers such as tinyurl.com
have over 60 million requests per day and close to 300 million indirections.

Section 2 contains the model, assumptions and definitions that are used for
the load balancing algorithm presented in Section 3. In Section 4, we evaluate the
system using a simulated environment. Results from the simulation show that
the algorithm improves the load imbalance within a factor 2-3 in a system with
1000 nodes. In addition, we also show that load balancing reduces the storage
capacity overhead necessary in an overloaded system from a factor 10 to 8.

2 System Model

A ring-based DHT consists of N nodes and an identifier space in the range [0, 1).
This range wraps around at 1.0 and can be seen as a ring. A node, n;, at position
1 has an identifier nf D in the ID space. Each node n; has a successor-pointer
to the next node in clockwise direction, n;4+1, and a predecessor-pointer to the
first counter-clockwise node, n;_1. The last node, ny_1, has the first node, ng as
successor. Thus, the nodes and their pointers create a double linked list where
the first and last node are linked. We define the distance between two identifiers
as d(z,y) = |y — x| mod 1.0.

Nodes can fail and join the system at any time. When a node joins, it takes
over the range from its own ID to the predecessor of its successor. Similarly,
when a node n; fails, its predecessor becomes predecessor of n;’s successor. We
model churn by giving each node a mean time to failure (MTTF). To maintain
the system size, a failed node is replaced after a recovery time-out.

Passive/Active Load Balancing with Informed Node Placement in DHTSs 103

Storage: When a key/value-pair or item is inserted in the system it is assigned
an ID using an order-preserving hash-function in the same range as the node IDs,
i.e. [0,1). Each node in the system stores the subset of items that falls within its
responsibility range. That is, a node n; is responsible for a key iff it falls within
the node’s key range (n!?, nfP].

Each item is replicated with a replication factor f. The replicas are assigned
replica keys according to symmetric replication where the identifier of an item
replica is derived from the key and the replica factor using the formula r(k,) =
kE+(i—1)x % mod N, k is the item ID and 7 is the ith replica [5]. An advantage
of symmetric replication is that the replica keys are based on the item key. This
makes it possible to look-up any replica by knowing the original key. In other
approaches such as successor-list replication [6] the node responsible for the key
must first be located in order to find the replicas.

A replica maintenance protocol ensures that a node stores the items and the
respective replicas it is responsible for. The protocol consist of two phases; the
synchronization phase and the data transfer phase. In the synchronization phase,
a node determines which items should be stored at the node using the symmetric
replication scheme. And if they are not stored or not up-to-date, which replicas
need to be retrieved. The retrieval is performed during the data transfer phase
by issuing a read for each item.

Load and Capacity: Each node has a workload and a storage capacity. The
workload can be defined arbitrarily, but for a key/value-store this is typically
the request rate. Each stored item has a workload and a storage cost. A node
cannot store more items than its storage capacity allows. The workload, on the
other hand, is limited by for example bandwidth, and a node can decide if a
request should be ignored or not. We model the probability of a request failure
as P(fail) =1— %, where p is the current node utilization, i.e. the measured
workload divided by the workload capacity.

Imbalance: We define the system imbalance of a load attribute (storage or work-
load) as the ratio between the highest loaded node and the system average. For
example, for the storage, the imbalance is calculated as LL’"” Lipaz is the maxi-

avg

mum number of items stored by a node and Lg.g is the average number of items
per node.

3 Load Balancing Algorithm

The only way to change the imbalance in our model is to change the responsibility
of the nodes. A node’s responsibility changes either when another node joins
between itself and its predecessor, or when the predecessor fails. Thus, we can
balance the system either actively by triggering a node to fail and re-join or
passively by placing a new node at an overloaded node when joining. Passive
balancing uses the system churn, while active induces churn and extra data
transfers. We first present the passive/active balancing algorithm followed by
the placement function.

104 M. Hogqgvist and N. Kruber

1 | def placement ():

2 balanced_ID = L

3 current_distance = oo

4 for item in (nlP nIP]:

5 distance = f(item'P) # the placement function
6 if distance < current_distance:
7 balanced_ID = item!P + d(item!”, next(item’?))/2
8 current_distance = distance
9

10 return balanced_ID

11

12 | def sample():

13 samples = [(n.load (), n)

14 for n in random_nodes (k)]
15 return max(samples)

16

17 | def passive():

18 (n_load , n) = sample()

19 join (n)

20

21 | def active ():

22 (n_load , n) = sample()

23 if n_load > local_load x e:

24 leave ()

25 join (n.placement ())

Fig. 1. Passive and Active load balancing

The passive/active balancing algorithm presented in Figure 1 uses only local
knowledge and can be divided into three parts. 1) sample a set of k random
nodes to balance with using e.g. [7], 2) decide the placement of a potential new
predecessor and 3) select one of the k-nodes that reduce the imbalance the most.
We assume that there is a join function which is used to join the overlay given an
ID. passive is called before a node is joining and active is called periodically.
active is inspired by Karger’s [8] balancing algorithm, but we only consider the
case where the node has a factor € less load than the remote node. The € is used
to avoid oscillations by creating a relative load range where nodes do not trigger
a re-join. sample calls a function random_nodes that uses a random walk or
generates random IDs to find a set of £ nodes. The node with the highest load
is returned.

Placement Function

The goal of the placement function is to find the ID in a node’s responsibility
range that splits the range in two equal halves considering both workload and
key distribution. When defining the cost for a single load attribute, it is optimal
to always divide the attribute in half [9]. We use this principle for each attribute
by calculating the ratio between the range to the left of the identifier z and
the remaining range up to the node’s ID. The optimal position is where this
ratio approaches 1. A ratio therefore increases slowly from 0 towards 1 until the
optimal value of x is reached, and after 1 the value approaches the total cost for
the attribute.

Passive/Active Load Balancing with Informed Node Placement in DHTSs 105

First, let l,(a,b) = Zzt;‘g”e(a’b} I(item;) be a function returning the load of
the items in the range (a,b]. I(item;) is the load of a single item and is defined
arbitrarily depending on the load attribute. Second, let n; be the node at which
we want to find the best ID, then the ratio function is defined as follows

lr(nzIPl? x)

lr(:c,nfD)

r(z) =

The workload ratio, r,(z), could for example be defined using [(item;) =
weight(item;)+ (rategecess (item;) X weight(item;)). The weight is the total bytes
of the item and the access rate is estimated with an exponentially weighted mov-
ing mean. For the key distribution ratio, s (), the load function is I (item;) = 1.
This means that r4s(z) = 1 for the median element in n;’s responsibility range.
An interesting aspect of the ratio definitions is that they can be weighted in
order to ignore load attributes that changes fast or taking on extreme values.

In order to construct a placement function acknowledging different load at-
tributes, we calculate the product of their respective ratio function. The point
x where this product is closest to 1 is where all attributes are being balanced
equally. Note that when it equals 1, it means that the load attributes have their
optimal point at the same ID.

The placement function we use here considers both the key-space and work-
load distribution and is more formally described as

f(@) =1 = ru(x) X ris(2)]

where z is the ID and n; is the joining node. The ratio product value is subtracted
from 1 and the absolute value of this is used since we are interested in the ratio
product value “closest” to 1. Finally, when the smallest value of f(x) is found, a
node is placed at the ID between the item, item; preceding x and the subsequent
item, item;41. That is, the resulting ID is item!? + d(item! P, item!P,) /2.

4 Evaluation

This section present simulation results of the passive and active algorithms. The
goal of this section is to 1) show the effects of different access-load and key
distributions, 2) show the scalability of the balancing strategies when increasing
the system size and 3) determine the impact of imbalance in a system close to
its capacity limits. Table 1 summarizes the parameters used for the different
experiments.

Effect of Workloads: In this experiment, we quantify the effect that different
access-loads and key distributions have on the system imbalance. The results
from this experiment motivate the use of a multi-attribute placement function.
Specifically, we measure the imbalance of the nodespace (ns), keyspace (ks) and
the access workload (w).

106 M. Hogqgvist and N. Kruber

Table 1. Parameters of the different experiments

Nodes Items Replicas k& MTTF Storage Item Size

Effect of Workloads 256 32768 7 7 o) [1
Network costs 256 8192 7 7 1h 00 1-1IMB
Size of k 256 8192 7 0-20 1h o0 1
System size 64-1024 27-21 3 7 1h 9] 1
Churn 256 8192 7 7 1h-1d o) 1
Overload 256 8192 7 7 1h 128 x7-1024 x 7 1

Imbalance
Imbalance

il i

%, ", %*x¢0°°*°z°%°z %, ", %**4 °°%°*°x°%°
%q, % a% %, *’% *Yoﬁs o, 7%,

(a) Uniform key distribution (b) Dictionary key distribution

Fig. 2. The effect of different access workloads and key distributions

Four different placement functions are used (x-axis in Fig. 2)

nodespace places a new node in the middle between the node and its prede-
cessor, i.e. n; + w

keyspace places the node according to the median item, f(z) = |1 — rgs(2)|.

workload halves the load of the node, i.e f(z) = |1 — ry ()]

combined uses the placement function defined in section 3.

The simulation is running an active balancing algorithm with € = 0.15.

Workload is generated using three scenarios; uniform (u), exponential (e) and
range (r). In the uniform and exponential cases, the items receive a load from
either a uniform or exponential distribution at simulation start-up. The range
workload is generated by assigning successive ranges of items with random loads
taken from an exponential distribution. We expect this type of workload from
the URL redirection service when, for example, summarizing data of a URL for
the last week.

From the results shown in Figure 2, we can see that the imbalance when using
the different placement strategies are dependent on the load type. Figure 2(a)
clearly shows that a uniform hash-function is efficient to balance all three metrics
under both uniform and exponential workload. In the latter case, this is because
the items are assigned the load independently. However, for the range workload,
the imbalances are showing much higher variation depending on the placement

Passive/Active Load Balancing with Informed Node Placement in DHTSs 107

function. We conclude that in a system supporting range queries, the placement
function should consider several balancing attributes for fair resource usage.

Size of k: In this experiment, we try to find a reasonable value of the number
of nodes to sample, k. A larger k implies more messages used for sampling,
but also reduces the imbalance more. The results in figure 3 imply that the
value of k is important for smaller values of between 2-10. However, the balance
improvement becomes smaller and smaller for each increase of k, similar to the
law of diminishing returns. In the remaining experiments we use k = 7.

active ——
passive
a+p

Imbalance
3

Fig. 3. Imbalance when increasing the number of sampled nodes

Network costs: We define cost as the total amount of data transferred in the
system up to a given iteration. This cost is increased by the item size each time
an item is transferred. Since there is no application traffic in the simulation
environment, the cost is only coming from replica maintenance. That is, item
transfers are used to ensure that replicas are stored according to the current
node responsibilities. Active load balancing creates traffic when a node decides
to leave and re-join the system.

We measure the keyspace imbalance and the transfer cost at the end of the
simulation, which is run for 86400s (1 day). Each simulation has 8192 items with
7 replicas and the size of the items is increased from 2'° to 220, The item size
has minor impact on the imbalance (Fig. 4(a)). Interestingly, the overhead when
using the hash-based balancing strategy as a reference, of active and passive
(a+p in the figure) and active only is 5-15% (Fig. 4(b)). The passive strategy
does not show a significant difference. Noteworthy is also that in a system storing
around 56 GB of total data (including replicas), over 1 TB aggregated data is
transferred. This can be explained with the rather short node lifetime of 3600s.

Churn: A node joining and leaving (churn) changes the range of responsibility
for a node in the system. Increasing the rate of churn influences the cost of
replica maintenance since item repairs are triggered more frequently. In this
experiment, we quantify the impact of churn on transferred item cost and the
storage imbalance.

108 M. Hogqgvist and N. Kruber

Imbalance
Transferred Data (GBs)

o
/
“
/
: ,
“ /
S S ’_/,/
Soo0 To000 00000 Teros Tero7 o0 o000 00000 Tors Tero7
o S o i
(a) Imbalance vs. Item size (b) Transferred bytes

Fig. 4. Imbalance and cost of balancing for increasing item size

In figure 5(a) the node MTTF is varied from 1 to 24 hours. As expected the
amount of data transferred is decreasing when the MTTF is increasing. Also as
noted in the network costs experiment, the different schemes for load balancing
have a minor impact on the total amount of transferred data. Figure 5(b) shows
that churn has in principle no impact on the imbalance for the different strategies.
This is also the case for the passive approach which only relies on churn to
balance the system.

o
e
Imbal

Transferred Data (MB)

. i e — - Y |
— i e e

o 5 10 15 20 25 o 5 10 15 20 25
MTTF (hours) MTTF (hours)

(a) Bytes transferred with increasing (b) Imbalance with varying MTTF
MTTF

Fig. 5. Imbalance and network cost for varying levels of churn (MTTF)

System size: The imbalance in a system with hash-based balancing was shown
theoretically to be bounded by O(log N), where N is the number of nodes in the
system [10]. However, this assumes that both the nodes and the keys are assigned
IDs from a uniform hash-function. In this experiment, we try to determine the
efficiency of the placement function with an increasing number of nodes and
items.

Passive/Active Load Balancing with Informed Node Placement in DHTSs 109

Load Imbalance vs. Number of Nodes Fraction of Dropped Wiite Requests vs. Storage Capacity ratio

fash hash ——

Load Imbalance
Fraction of Dropped Write Requests

s B I\\
: H § i 02 .. \\
Iy g T \\
. 0 B S
R P : : : : 0 A
Robor i v Copty o
(a) Increasing nodes and items (b) Capacity

Fig. 6. Imbalance of the system using different balancing strategies while increasing
the system size. The right figure shows the influence of load balancing in an overloaded
system.

We measure the keyspace imbalance for an increasing number of nodes be-
tween 2° and 210, In addition, for each system size we vary the number of items
from 2'° to 2'8. Keys are generated from a dictionary and nodes are balanced
using the combined placement function. Four different balancing strategies are
compared; 1) IDs generated by a uniform hash-function 2) active without any
passive placement, 3) passive without any active and 4) active and passive to-
gether (a+p). For the last three, 7 nodes are sampled when selecting which node
to join at or whether to balance at all.

Figure 6(a) shows that the hash-based approach performs significantly worse
with an imbalance up to 2-3 times higher compared to the other balancing strate-
gies. Interestingly, the difference in load imbalance when varying the number of
items is also growing slightly with larger system sizes. All three variants of the
passive/active algorithm show similar performance. The imbalance grows slowly
with increasing system size and the difference for different number of items is
small. Thus, we draw the conclusion that these strategies are only minimally
influenced by system size and number of items. However, note that we need to
perform further experiments varying other parameters such as k to validate these
results.

Overload: In a perfectly balanced system where at most one consecutive node
can fail, nodes can use at most up to 50% of their capacity to avoid becoming
overloaded when a predecessor fails. This type of overload leads to dropped write
requests when there is insufficient storage capacity and dropped read request
with insufficent bandwidth and processing capacity. Since a replica cannot be
recreated when a write is dropped, this influences the data reliability. The goal
of this experiment is to better understand the storage capacity overhead to avoid
dropped writes.

We start the experiment such that the sum of the item weights equals the
aggregated storage capacity of all nodes. Then by increasing the node’s storage

110 M. Hogqgvist and N. Kruber

capacity we decrease their fill-ratio and thereby the probability of a dropped
write. The system is under churn and lost replicas are re-created using a replica
maintenance algorithm executed periodically at each node. The y-axis in Fig-
ure 6(b) shows the fraction of dropped write requests and the x-axis shows the
storage capacity ratio. We do not add any data to the system which means that
a write request is dropped when a replica cannot be created at the responsible
node because of insufficient storage capacity. We measured the difference with
hash-based balancing vs. the active and active + passive with 7 sampled nodes
and the combined placement function.

Figure 6(b) shows that a system must have at least 10x the storage capacity
over the total storage load to avoid dropped write requests when using hash-
based balancing. Active and active-passive delays the effect of overload and a
system with at least 8x storage capacity exhibits a low fraction of dropped
requests.

5 Related Work

Karger et al. [8] and Ganesan et al. [11] both present active algorithms aiming at
reducing the imbalance of item load. Karger uses a randomized sampling-based
algorithm which balances when the relative load value between two nodes differs
by more than a factor e. Ganesan’s algorithm triggers a balancing operation
when a node’s utilization exceeds (falls below) a certain threshold. In that case,
balancing is either done with one of its neighbors or the least (most) loaded node
found. Aspnes at al. [12] describe an active algorithm that categorizes nodes as
closed or open depending on a threshold and groups them in a way so that
each closed node has at least one open neighbor. They balance load when an
item is to be inserted into a closed node that cannot shed some of its load to
an open neighbor without making it closed as well. A rather different approach
has been proposed by Charpentier et al. [13] who use mobile agents to gather
an estimate of the system’s average load and to balance load among the nodes.
Those algorithms however do not explicitly define a placement function or use a
simple “split loads in half” approach which does not take several load attributes
into account.

Byers et. al. [14] proposed to store an item at the k least loaded nodes out of d
possible. Similarly, Pitoura et al. [15] replicate an item to k of d possible identi-
fiers when a node storing an item becomes overloaded (in terms of requests). This
technique, called the “power of two choices” was picked up by Ledlie et. al [16]
who apply it to node IDs and use it to address workload skew, churn and het-
erogeneous nodes. With their algorithm, k-Choices, they introduce the concept
of passive and active balancing. However, their focus is on virtual server-based
systems without range-queries. Giakkoupis and Hadzilacos [17] employ this tech-
nique to create a passive load balancing algorithm including a weighted version
for heterogeneous nodes. There, joining nodes contact a logarithmic (in system
size) number of nodes and choose the best position to join at. Their focus on
the other hand is on balancing the address-space partition rather than arbitrary

Passive/Active Load Balancing with Informed Node Placement in DHTs 111

loads. Manku [18] proposes a similar algorithm issuing one random probe and
contacting a logarithmic number of its neighbors. An analysis of such algorithms
using r random probes each followed by a local probe of size v is given by Ken-
thapadi and Manku [19]. However, only the nodespace partitioning is examined.

In Mercury [20] each node maintains an approximation of a function describing
the load distribution through sampling. This works well for simple distributions,
but as was shown in [21] it does not work for more complex cases such as file-
names. Instead, [21] introduces OSCAR where the long-range pointers are placed
by recursively halving the traversed peer population in each step. Both OSCAR
and Mercury balance the in/out-degree of nodes. While this implies that the
routing load in the overlay is balanced, it does not account for the placement of
nodes according to item characteristics.

6 Conclusions

With the goal of investigating load balancing algorithms for distributed
key /value-stores, we presented an active and a passive algorithm. The active al-
gorithm is triggered periodically, while the passive algorithm uses joining nodes
to improve system imbalance. We complement these algorithms with a place-
ment function that splits a node’s responsibility range according to the current
key and workload distribution. Initial simulation results are promising showing
that the system works well under churn and scales with increasing system sizes.
Ongoing work include quantifying the cost of the algorithms within a prototype
implementation of a key/value-store.

Acknowledgments. This work is partially funded by the European Commis-
sion through the SELFMAN project with contract number 034084.

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP, pp. 205-220. ACM, New York (2007)

2. Rhea, S.C., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S.,
Stoica, I., Yu, H.: Opendht: a public dht service and its uses. In: SIGCOMM, pp.
73-84. ACM, New York (2005)

3. Reinefeld, A., Schintke, F., Schiitt, T., Haridi, S.: Transactional data store for
future internet services. Towards the Future Internet - A European Research Per-
spective (2009)

4. Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer networks:
Pick two. In: HotOS, USENIX, pp. 1-6 (2003)

5. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-
peer systems. In: DBISP2P, pp. 74-85 (2005)

6. Stoica, 1., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, pp.
149-160 (2001)

112

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Hogqvist and N. Kruber

Vishnumurthy, V., Francis, P.: A comparison of structured and unstructured p2p
approaches to heterogeneous random peer selection. In: USENIX, pp. 309-322
(2007)

. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer

systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp.
131-140. Springer, Heidelberg (2005)

. Wang, X., Loguinov, D.: Load-balancing performance of consistent hashing: asymp-

totic analysis of random node join. IEEE/ACM Trans. Netw. 15(4), 892-905 (2007)
Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: ACM Symposium on Theory of Computing, May
1997, pp. 654-663 (1997)

Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: VLDB, pp. 444-455. Morgan
Kaufmann, San Francisco (2004)

Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-
queriable data structures. In: PODC, pp. 115-124 (2004)

Charpentier, M., Padiou, G., Quéinnec, P.: Cooperative mobile agents to gather
global information. In: NCA, pp. 271-274. IEEE Computer Society, Los Alamitos
(2005)

Byers, J.W., Considine, J., Mitzenmacher, M.: Simple load balancing for dis-
tributed hash tables. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 80-87. Springer, Heidelberg (2003)

Pitoura, T., Ntarmos, N., Triantafillou, P.: Replication, load balancing and efficient
range query processing in dhts. In: loannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Bohm, K., Kemper, A., Grust, T., Bohm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 131-148. Springer, Heidelberg (2006)

Ledlie, J., Seltzer, M.I.: Distributed, secure load balancing with skew, heterogeneity
and churn. In: INFOCOM, pp. 1419-1430. IEEE, Los Alamitos (2005)
Giakkoupis, G., Hadzilacos, V.: A scheme for load balancing in heterogenous dis-
tributed hash tables. In: PODC, pp. 302-311. ACM, New York (2005)

Manku, G.S.: Balanced binary trees for id management and load balance in dis-
tributed hash tables. In: PODC, pp. 197-205 (2004)

Kenthapadi, K., Manku, G.S.: Decentralized algorithms using both local and ran-
dom probes for p2p load balancing. In: SPAA, pp. 135-144. ACM, New York (2005)
Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM, pp. 353-366. ACM, New York (2004)
Girdzijauskas, S., Datta, A., Aberer, K.: Oscar: Small-world overlay for realistic
key distributions. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel,
AM. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 247-258.
Springer, Heidelberg (2006)

APPENDIX A. PUBLICATIONS

A.8 Generic Self-Healing via Rejuvenation:
Challenges, Status Quo, and Solutions

SELFMAN Deliverable Year Four (M37-M40), Page 129

Generic Self-Healing via Rejuvenation: Challenges,
Status Quo, and Solutions

Artur Andrzejak
Zuse Institute Berlin
Takustr. 7, D-14195 Berlin, Germany
andrzejak @zib.de

Abstract—Software rejuvenation - in its simplest form a restart
of a component or a program - is an efficient and universal
approach for ad hoc healing of certain complex systems such
as SOA components, telecommunication systems, and servers in
data centers. Despite of its advantages this technique has not
been widely deployed in other scenarios. The reasons are several
shortcomings including loss of application availability and loss of
working data due to a restart, and a lack of standardized support
in operating systems, middleware, and component frameworks.
In this position paper we argue that even partial remedies to
these problems can turn rejuvenation into a powerful self-healing
tool applicable to a larger variety of scenarios. We discuss
rejuvenation-related problems, overview existing solutions, and
propose a set of efficient architectural approaches which can
pave the way to a universal adoption of this technique.

I. WHAT IS REJUVENATION?

The simplest form of rejuvenation [Huang et al., 1995],
[Pfening et al., 1996], [Vaidyanathan and Trivedi, 2005] is a
restart of a software component, an application, or the oper-
ating system. The purpose of this technique is the cleansing
of internal data structures whose corruption (due to software
or hardware faults) has caused a malfunction or perfor-
mance degradation. More advanced forms include replacing
a corrupted image by a stand-by replica [Silva et al., 2007]
or “cleaning up” of critical data structures during run-time
[Demsky and Rinard, 2003]. The most prominent usage of
rejuvenation is to fight software aging (or rather software
state aging) [Parnas, 1994]. The latter is a phenomenon of
gradual decrease in system performance due to memory leaks,
non-scheduled threads, accumulated rounding errors and other
causes.

The idea to cleanse a system or its components in face
of a malfunction instead of attempting to fix it has been ex-
ploited in other contexts as well. Examples include killing and
restarting lightweight threads in the Erlang programming lan-
guage [Wikstrom, 1994], and re-issuing web service requests
if the response time exceeds a limit. Rejuvenation is also
one of the fundamental forms of self-healing in organisms:
the programmed cell-death (PCD) is triggered upon feedback
from neighbors, stress or DNA-damage e.g. in order to prevent
cancer. This mechanism is complemented by creation of new
cells to ensure organic rejuvenation.

Even if rejuvenation is not a permanent solution to recurring
problems and does not eliminate the need for diagnosing and
repair of the root problems, this method is very attractive for

broad classes of application scenarios and defect types:

Rejuvenation is the only feasible “healing” approach in
many complex software systems built of Commercial
Off-The-Shelf Software (COTS), legacy code, or very
complex frameworks / middleware / applications. This
applies especially in production environments, where
repairing an aging application is impossible (no source
code), too costly, or if the real system and the failure
conditions cannot be reproduced in a testing environment
due to complexity.

Rejuvenation is sufficient to “cure” faults which were
caused by very rare (possibly non-deterministic) con-
ditions or events. The complexity of today’s systems
(caused by size of applications, bloated communication
protocols and overhead of component-based frameworks)
can be enormous, preventing elimination of rare bugs in
the testing phase. Paired with the non-determinism in-
duced by distribution and concurrent execution, diagnosis
of certain malfunctions can be almost impossible'. On the
other hand, this does not preclude that malfunctions are
rare in complex systems - they just have different causes.
In such cases, rejuvenation is the most effective means to
remove the corruption of the application state and restore
its full performance and functionality.

In our opinion rejuvenation is rapidly gaining importance due
to growing complexity and scale of today’s software systems.
These characteristics make it hard to quickly inspect systems
in order to fix the root causes, and simultaneously cause the
emergence of rare or non-deterministic faults.

In this position paper we argue that by solving several
key problems rejuvenation can become a primary self-healing
tool for a variety of scenarios. We discuss the mentioned
obstacles, the status quo of solutions, and propose a set of
efficient architectural approaches which might pave the way
to a universal adoption of this technique.

II. SHORTCOMINGS OF REJUVENATION AND THE STATUS
Quo

Despite its effectiveness and universality, the use of re-
juvenation is currently limited to specific environments and

1 According to unofficial statements from Microsoft it is not uncommon
that diagnosis of a single bug in a Windows device driver takes weeks for a
skilled developer.

it is implemented in a hand-crafted way. Examples of most
successful uses of this technique include (stateless) web
and application servers, high-availability telecommunications
hardware [Networks, 2008] and server healing in Microsoft
data centers [Isard, 2007]. The lack of support for healing
of generic software components and applications can be ex-
plained by several shortcomings of this technique and a non-
existent infrastructural support for it.

Loss of availability. A restart implies a temporary loss
of availability. Several approaches can reduce or partially
removed this disadvantage. A lot of research has been
done on the question when to rejuvenate [Dohi et al., 2000],
[Andrzejak and Silva, 2007] (termed adaptive rejuvenation).
However, these approaches neither shorten nor prevent the
non-availability. Several solutions proposed in the recent
years within the Recovery Oriented Computing (ROC) project
[Candea et al., 2004] have gained most attention. They in-
clude recursive rejuvenation [Candea and Fox, 2001] and
microrebooting [Candea and Fox, 2004]. These approaches
can significantly shorten the loss of availability but do
not completely eliminate it; moreover, they require changes
in the architecture and implementation of a system. In
[Silva et al., 2007] we proposed an approach that repli-
cates aging application server based on virtualization tech-
niques. It does not require code changes. While the deci-
sion to trigger the rejuvenation and replace an application
by a hot-standby replica is based on a simple performance
threshold, on optimization approach to schedule rejuvenation
of multiple concurrently running replicas is presented in
[Andrzejak et al., 2007].

Loss of working data during restart. This disadvan-
tage limits the applicability of current approaches to (es-
sentially) stateless components or applications. The recovery
of data after a crash has been extensively studied in the
context of database transactions [Haerder and Reuter, 1983].
Similar applies to recovery of distributed applications
[Elnozahy et al., 2002]. However, these solutions require pro-
found changes in the application architecture and cannot be
used in a generic way. Both the Tandem / NonStop sys-
tems [Gray, 1990] as well as process groups [Birman, 1993]
use multiple redundant processors simultaneously or pseudo-
synchronously and deploy solutions to synchronize and trans-
fer working data between them. These approaches require
a significant redundancy of resources, a proprietary oper-
ating system or deep changes of applications and do not
provide protections against permanent (or repeatable) soft-
ware errors. Similar approaches including execution redun-
dancy have been implemented in the IBM zSeries systems
[Bartlett et al., 2004].

Lack of support in operating systems and component
frameworks. The most serious obstacle (and a consequence
of the above two shortcomings) to the widespread use of
rejuvenation is the lack of support in the component frame-
works, mainstream operating systems, middleware, or virtual
machine managers (including browser engines). Hence cur-
rently each implementation carries a great cost of developing

and infrastructure and algorithms for component / application
analysis, decision taking, image replication, and transfer of
working data (if applicable). The only existing support in
OS’s can be found in Solaris 10. It is limited to management
of dependencies between system processes [Shapiro, 2004] to
enable a partial reboot of the OS. In the domain of middleware,
the framework presented in [Silva et al., 2007] allows for a
transparent replication and restart of SOA servers. Besides of
being a prototype, it has the disadvantage that the measurement
and decision parts need to be adapted to each application.
It also introduces a high resource overhead since a complete
operating system (and not only a process) is virtualized.

III. MAKING REJUVENATION CHEAP AND PAINLESS

The thesis of this paper is the following one.

Rejuvenation can become one of the most generic and
efficient solutions for self-healing of software components,
applications and operating / distributed systems. The pre-
requisites to achieve this vision are:

the introduction of non-intrusive, transparent support
for rejuvenation in the mainstream operating systems
/ component frameworks / virtual machine managers
/ middleware, and

practical solutions to the problems of loss of availabil-
ity and loss of working data.

By non-intrusive and transparent we mean that the rejuve-
nation frameworks and methods should not require changes
of the source code?. An even stronger constraint is that these
approaches should not need knowledge about the * interior”of
the component or an application. This is in contrast to the tech-
niques introduced in the ROC project [Candea et al., 2004]
e.g. microrebooting which demand changes or even complete
rewriting of components. While these requirements surely
limit the spectrum of available approaches, we believe that
they are the key factors yet to ensure a widespread acceptance
and effortless deployment of rejuvenation. Furthermore, they
guarantee that the approach remains very universal and works
regardless of the causes of errors.

We discuss in the following possible approaches towards the
above goals, especially essential support in the OS’s, methods
for transfer of working data between process replica, and
techniques for state cleansing without a restart.

A. Rejuvenation support in operating systems

An ideal support of rejuvenation in an OS or a component
framework such as J2EE would provide a standardized API
to specify the following functions and parameters: setting for
each component or process whether it should be protected by
rejuvenation; conditions or routines for triggering rejuvenation
according to metrics provided by the OS; policies for process
replication in faces of limited resources (cores, memory);
buffering of inputs and messages in order to recompute work-
ing data (see Section III-B). In order to enable this scenario,

2This does not preclude methods such as binary code rewriting or AOP.

some sophisticated techniques need to be investigated and
implemented.

Identifying component/process errors. A necessary func-
tionality is the detection of potential state corruption. For
the case of crashes this is trivially solvable, yet much
harder in case of partial malfunctions. In case of perfor-
mance degradation, on-line monitoring and performance mod-
eling [Andrzejak and Silva, 2008] coupled with scheduling of
restarts [Andrzejak and Silva, 2007], [Andrzejak et al., 2007]
can be used.

Adaptive replication of processes. Rejuvenation with-
out loss of availability can be achieved via process repli-
cation [Silva et al., 2007], [Andrzejak et al., 2007]. Today’s
hardware (multiple cores, several GB of memory) make this
approach feasible - users are more likely to “sacrifice” a
processor core that to experience availability outage. Such
replication of processes can be achieved by lightweight virtu-
alization [Yu et al., 2008] and techniques for rapid replication
of virtual resources [Lagar-Cavilla et al., 2009]. In addition it
is necessary to develop policies for controlling the number
replicas depending on the available resources, workload, and
the “importance” of protected processes.

B. Transfer of working data

A major shortcoming of rejuvenation is a possible loss of
working data of stateful components or applications. This is
usually caused by a (forced) restart of a component / appli-
cation or its substitution by an uncorrupted replica. Several
issues make this problem difficult.

First, in many cases the essential working data is hard to tell
apart from the corrupted parts of the data. For example, identi-
fying loitering objects (“memory leaks”) in Java is a non-trivial
problem [Mitchell and Sevitsky, 2003]. Consequently, migrat-
ing the whole component / application state indiscriminately
is likely to lead to an anew corruption. Approaches outlined
below attempt to tackle this core problem of state transfer.
Another, more intrusive approach is based on invariants of
data structures (see Section III-C).

Second, application components (understood here as OS
processes) have both an “internal state” represented by the
local data structures, and “external state” expressed by entries
in OS tables, file / network handles, and references held by
other components (e.g. process ID, open socket connections).
While the transfer of the internal state should require least
or no changes in application code, the external state requires
changes in the hosting OS, such as intercepting of the input
and output function calls and transparent replacement of file
/ network handles. This functionality (partially provided by
lightweight virtualization [Yu et al., 2008]) is clearly to be
implemented as a part of the OS support discussed in Section
II-A, and requires deep changes in the process management.

Finally, in today’s multi-component, multi-threaded appli-
cations, an unintentionally changed behavior (due to state
changes or even new timing patterns) of one component
might break the consistency of the whole application. As a

consequence, partial rejuvenation in such complex applica-
tions might cleanse a component but cause a corruption on
the application level. As a partial solution, OS supporting
rejuvenation should provide an API which allows to specify
component dependencies (e.g. maximum response latencies)
for multi-process applications.

Following the arguments from Section III on impor-
tance of non-intrusiveness we focus here on several solu-
tions for transferring of “internal state” which require least
amount of changes in the application code. However, also
more invasive (yet highly effective) solutions exist’. One
of them are restrictions on the component development,
e.g. requiring programmers to implement methods for sav-
ing the working data (similarly to methods onStop () /
onRestart () of the Activity class in the Android APIs
[Open Handset Alliance, 2009]).

Creating a state without working data. Some applications
are stateful yet provide mechanisms for persistent storing of
their working data, and for retrieval of them. This category
include EJB components (via Container Managed Persistence),
text editors, and web browsers which can save session data
upon closing them. In these cases a state without “unsaved”
working data can be achieved easily; then a restart or re-
placement of the component with an subsequent retrieval of
the working data can be enforced. For example, in e.g. text
editors or browsers saving of the current state can be enforced
without code modifications - via simulation of user input or
OLE automation in Windows. In application servers, EJB can
be forced to save their state before requests are redirected to
a replica initialized with this saved state [Silva et al., 2007].
One of the difficulties here is ensuring availability after the
main process no longer accept inputs, but the replica is not
yet active or up-to-date.

State mirroring with input filtering. A more general but
costly mechanism is on-line mirroring of working memory of
a process. This can be complemented by the buffering of user
input and incoming messages. Techniques applied for the rapid
replication of virtual machines [Lagar-Cavilla et al., 2009]
can be used to obtain an efficient implementation. After a
rejuvenation or substitution of the corrupted image with a
replica, the buffered input is fed to the application in order to
achieve consistency. While this approach resolves rare errors
due to non-determinism, it might fail if the replica inherits the
same corrupted data as the original process. In some cases the
last problem can be addressed by the using methods of Delta
Debugging [Zeller, 2002]. In brief, recorded inputs can be
selectively “replayed” in order to observe which ones produce
a state corruption or a crash. Those are then subsequently
filtered out to avoid repeated corruption.

C. State cleansing without restart

An alternative to a component restart is cleansing of internal
data structures during the run-time. This method reduced the
need to reboot a part of large telecommunication system from

3 As pointed out by an anonymous reviewer.

once per week to about twice per year [Singhal, 2007]. While
this approach avoids a loss of availability and issues of state
transfer, it is restricted to components / applications with
known source code or to environments which allow inspection
and change of code and data (such as JVM). Following
approaches might be investigated in this context:

Swapping of leaking objects. Performance degradation
due to memory leaks is only noticeable when available
memory is low. By using technologies such as LeakBot
[Mitchell and Sevitsky, 2003] it is possible to identify auto-
matically leaking objects in Java. These objects can be then
swapped to hard drive, delaying (in terms of time or work
done) the need for restart by a factor or larger.

Automatic repairing of data structures during run-
time. Existing techniques for cleansing of data structures
[Demsky and Rinard, 2003] require a programmer to specify
invariants. This approach is time consuming and not possible
without knowledge of the source code. In order to automatize
the creation such invariants statistical methods could be used
to create invariants automatically, or at least propose to the de-
veloper potential invariants. To this aim variations of methods
such as statistical debugging [Zheng et al., 2006] could prove
useful.

IV. CONCLUSION

In this paper we gave a brief overview on software rejuve-
nation, a technique to (temporarily) remedy state corruption
and performance problems in complex software systems. We
argued that it has a largely unexploited potential to become a
primary self-healing solution in such systems. We have also
discussed the major obstacles for the widespread acceptance of
this technique - notably, a lack of support in OS’s / component
frameworks, loss of availability and loss of working data - and
outlined several possible solutions to these problems.

As next steps we plan to evaluate some of the presented
approaches for transparent rejuvenation and working data
transfer within the J2EE environment using the RUBiS bench-
marking framework [Pugh and Spacco, 2004].

V. ACKNOWLEDGEMENTS

This research work is carried out in part under the SELF-
MAN project (contract 034084, FP6) funded by the EC.

REFERENCES

[Andrzejak et al., 2007] Andrzejak, A., Moser, M., and Silva, L. (2007).
Managing performance of aging applications via synchronized replica
rejuvenation. In DSOM 2007, Silicon Valley, CA, USA.

[Andrzejak and Silva, 2007] Andrzejak, A. and Silva, L. (2007). Determin-
istic models of software aging and optimal rejuvenation schedules. In /0th
IFIP/IEEE Symposium on Integrated Management (IM 2007), Munich,
Germany.

[Andrzejak and Silva, 2008] Andrzejak, A. and Silva, L. (2008). Using
machine learning for non-intrusive modeling and prediction of software
aging. In IEEE/IFIP Network Operations & Management Symposium
(NOMS 2008), Salvador de Bahia, Brazil.

[Bartlett et al., 2004] Bartlett, W., Society, I. C., and Spainhower, L. (2004).
Commercial fault tolerance: A tale of two systems. IEEE Transactions on
Dependable and Secure Computing, 1:2004.

[Birman, 1993] Birman, K. P. (1993). The process group approach to reliable
distributed computing. Communications of the ACM, 36:37-53.

[Candea et al., 2004] Candea, G., Brown, A. B., Fox, A., and Patterson, D. A.
(2004). Recovery-oriented computing: Building multitier dependability.
IEEE Computer, 37(11):60-67.

[Candea and Fox, 2001] Candea, G. and Fox, A. (2001). Recursive restarta-
bility: Turning the reboot sledgehammer into a scalpel. In HorOS, pages
125-130. IEEE Computer Society.

[Candea and Fox, 2004] Candea, G. and Fox, A. (2004). End-user effects of
microreboots in three-tiered internet systems. CoRR, cs.0S/0403007.
[Demsky and Rinard, 2003] Demsky, B. and Rinard, M. C. (2003). Auto-
matic detection and repair of errors in data structures. In OOPSLA 2003,

pages 78-95.

[Dohi et al., 2000] Dohi, T., Goseva-Popstojanova, K., and Trivedi, K. S.
(2000). Statistical non-parametric algorithms to estimate the optimal
software rejuvenation schedule. In PRDC 2000, pages 77-84. IEEE
Computer Soc. Press.

[Elnozahy et al., 2002] Elnozahy, Alvisi, Wang, and Johnson (2002). A
survey of rollback-recovery protocols in message-passing systems. CSURV:
Computing Surveys, 34.

[Gray, 1990] Gray, J. (1990). A census of tandem system availability between
1985 and 1990. Technical Report 90.1, Tandem Computers.

[Haerder and Reuter, 1983] Haerder, T. and Reuter, A. (1983).
of transaction oriented database recovery.
15(4):287-317.

[Huang et al., 1995] Huang, Y., Kintala, C., Kolettis, N., and Fulton, N.
(1995). Software rejuvenation: Analysis, module and applications. In
Proceedings of Fault-Tolerant Computing Symposium FTCS-25.

[Isard, 2007] Isard, M. (2007). Autopilot: automatic data center management.
Operating Systems Review, 41(2).

[Lagar-Cavilla et al., 2009] Lagar-Cavilla, H. A., Whitney, J., Scannell, A.,
Patchin, P,, Rumble, S. M., de Lara, E., Brudno, M., and Satyanarayanan,
M. (2009). Snowflock: Rapid virtual machine cloning for cloud computing.
In 3rd European Conference on Computer Systems (Eurosys), pages 1-12,
Nuremberg, Germany.

[Mitchell and Sevitsky, 2003] Mitchell, N. and Sevitsky, G. (2003). LeakBot:
An automated and lightweight tool for diagnosing memory leaks in large
Java applications. Lecture Notes in Computer Science, 2743:351-377.

[Networks, 2008] Networks, J. (2008). JUNOS 9.3 Configuration Guides -
High Availability. Manual.

[Open Handset Alliance, 2009] Open Handset Alliance (2009). Android SDK
Reference.

[Parnas, 1994] Parnas, D. L. (1994). Software aging. In Proceedings 16th
International Conference on Software Engineering (ICSE "94), pages 279—
287.

[Pfening et al., 1996] Pfening, A., Garg, S., Puliafito, A., Telek, M., and
Trivedi, K. S. (1996). Optimal software rejuvenation for tolerating soft
failures. Perform. Eval, 27/28(4):491-506.

[Pugh and Spacco, 2004] Pugh, B. and Spacco, J. (2004). RUBIS revisited:
why J2EE benchmarking is hard. ACM SIGPLAN Notices, 39(10):204—
205.

[Shapiro, 2004] Shapiro, M. W. (2004). Self-healing in modern operating
systems. ACM Queue, 2(9):66-75.

[Silva et al., 2007] Silva, L. M., Alonso, J., Silva, P., Torres, J., and Andrze-
jak, A. (2007). Using virtualization to improve software rejuvenation. In
1IEEE International Symposium on Network Computing and Applications
(IEEE-NCA), Cambridge, MA, USA.

[Singhal, 2007] Singhal, S. (2007). Private communication. HP Labs.

[Vaidyanathan and Trivedi, 2005] Vaidyanathan, K. and Trivedi, K. S.
(2005). A comprehensive model for software rejuvenation. IEEE Trans.
Dependanble and Secure Computing, 2(2):1-14.

[Wikstrom, 1994] Wikstrom, C. (1994). Distributed computing in Erlang. In
First International Symposium on Parallel and Symbolic Computation.
[Yu et al., 2008] Yu, Y., Kolam, H., Lam, L.-C., and Chiueh, T. (2008).
Applications of a feather-weight virtual machine. In Gregg, D., Adve,
V. S., and Bershad, B. N., editors, VEE 2008, pages 171-180, Seattle,

WA, USA.

[Zeller, 2002] Zeller, A. (2002). Isolating cause-effect chains from computer
programs. In SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of software engineering, pages 1-10,
New York, NY, USA. ACM Press.

[Zheng et al., 2006] Zheng, A. X., Jordan, M. 1., Liblit, B., Naik, M., and
Aiken, A. (2006). Statistical debugging: simultaneous identification of
multiple bugs. In Cohen, W. W. and Moore, A., editors, /CML, volume
148 of ACM International Conference Proceeding Series, pages 1105—
1112. ACM.

Principles
ACM Computing Surveys,

APPENDIX A. PUBLICATIONS

A.9 DHT Load Balancing with Estimated (Global
Information

SELFMAN Deliverable Year Four (M37-M40), Page 134

DHT Load Balancing with Estimated Global Information

Diplomarbeit

Humboldt-Universitat zu Berlin
Mathematisch-Naturwissenschaftliche Fakultat 11

Institut fiur Informatik

Submitted by: Nico Kruber

Supervisor: Prof. Dr. Alexander Reinefeld
Second reader: Prof. Dr. Miroslaw Malek

Berlin, 25th September 2009

Copyright (c¢) 2009 by Nico Kruber.

This work is licenced under the Creative Commons Attribution-Share Alike 3.0 Ger-
many License. To view a copy of this licence, visit http://creativecommons.org/licenses/
by-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California 94105, USA.

Declaration of own work

I, Nico Kruber, confirm that this work submitted for assessment is my own
and is expressed in my own words. Any uses made within it of the works
of other authors in any form (e.g. ideas, equations, figures, text, tables,
programs) are properly acknowledged at any point of their use. A list of the

references employed is included.

Signed:

Place, Date:

Abstract

One of the biggest impacts on the performance of a Distributed Hash Table (DHT),
once established, is its ability to balance load among its nodes. DHTs supporting range
queries for example suffer from a potentially huge skew in the distribution of their items
since techniques such as consistent hashing [29] can not be applied. Thus explicit load
balancing schemes need to be deployed. Several such schemes have been developed and
are part of recent research, most of them using only information locally available in order
to scale to arbitrary systems.

Gossiping techniques however allow the retrieval of fairly good estimates of global
information with low overhead. Such information can then be added to existing load
balancing algorithms that can use the additional knowledge to improve their perform-
ance. Within this thesis several schemes are developed that use global information like
the average load and the standard deviation of the load among the nodes to primar-
ily reduce the number of items an algorithm moves to achieve a certain balance. Two
novel load balancing algorithms have then been equipped with implementations of those
schemes and have been simulated on several scenarios. Most of these variants show
better balance results and move far less items than the algorithms they are based on.

The best of the developed algorithms achieves a 15 — 30% better balance and moves
only about 50 — 70% of the number of items its underlying algorithm moves. This
variation is also very robust to erroneous estimates and scales linearly with the system
size and system load. Further experiments with self-tuning algorithms that set an al-
gorithm’s parameter according to the system’s state show that even more improvements
can be gained if additionally applied. Such a variant based on the algorithm described by
Karger and Ruhl [30] shows the same balance improvements of 15 — 30% as the variant

above but reduces the number of item movements further to 40 — 65%.

Contents

1. Introduction 9
1.1, Context e 9
1.2. Aims & Objectives 10
1.3. Methods o 10
1.4. Achievements 11
1.5. Outline o o 12

2. Background / Related Work 13
2.1. Distributed Hash Tables (DHTSs) 13

2.1.1. Consistent Hashing 15
2.1.2. CAN . . o 15
2.1.3. Pastryo 17
2.14. Chord 19
2.1.5. Conclusion 21
2.2. DHTs with Range Queries 21
2.2.1. Mercury e 22
2.2.2. Chord® / Scalaris 24
2.23. Conclusion 25
2.3. GOSSIPING 26
2.4. Load Balancingin DHTs. 27
2.4.1. Address-Based Load Balancing 28
2.4.2. Ttem-Based Load Balancing 31
2.4.3. Virtual-Server-Based Load Balancing 36
2.4.4. Load Balancing using Replication 39
2.4.5. Conclusion L 40

3. Improving load balancing algorithms with global information 43
3.1. System Model 43
3.2, Algorithms 45
3.3. Adding global information L 46

3.3.1. Averageload 46

DHT Load Balancing with Estimated Global Information 7

Contents

3.3.2. Standard deviation and system size 48

3.3.3. Combined variants 49

3.3.4. Self-tuning algorithms 50

4. Evaluation 53
4.1. Simulation scenarios e e 53
4.2. Metrics e e 54
4.3. Simulator program 54
4.4. Simulation results 59
4.4.1. Karger item balancing L 0oL 59

4.4.2. Mercury 79

5. Conclusion 87
5.1. Achievements e 87
5.2. Future Worko 88

A. Implemented algorithms in Pseudo-Code 93
A.1. Generic helper functions 93
A.2. Variations of calcBalancedLoad 94
A.3. Variations of getBest Lo 96

A 4. Algorithms based on the item balancing scheme by Karger and Ruhl . . . 97
A.5. Algorithms based on Mercury’s load balancing scheme 99

DHT Load Balancing with Estimated Global Information

1. Introduction

1.1. Context

Distributed Hash Tables (DHTS) store key/value-pairs on several nodes of a network and
provide means for inserting, retrieving and deleting a value associated with a key. Each
node is assigned a unique node ID in a given ID space uniformly at random and is then
responsible for all values with keys near its ID (keys are also mapped to this ID space).
By using a technique called consistent hashing [29], the DHT then spreads the stored
items uniformly over the node ID space which achieves a fair balance without any further
effort. More precisely, nodes will have loads varying by O(logn) times the average load
in terms of stored items in a system of n nodes [36, 25]. However, DHTs with range
queries like Scalaris [39] cannot use hash functions to spread their items because they
need to stay in the order given by their keys. Therefore more effort is needed to balance
items among the nodes in such storages.

Consider the following example: Articles are to be stored in a range-query-based DHT
with 100 nodes and the key under which an article is stored is its heading. In case of
keys in (American) English and nodes responsible for equidistant key ranges, items would

then be distributed as shown in Figure 1.1.

ABCDETFGHI JKLMNOPQRSTUVWXY z
16000 L 16000
load ===
14000 4 i E 14000
12000 £ 12000
10000 n £ 10000
g 8000 1 || 7 - I E 8000
6000 0 E 6000
4000 4 £ 4000
0 HH | H H HH HHHHHH HH H H HHH i H H - HH s Hﬂnn Lot
0 20 40 60 80 100

node

Figure 1.1.: Item distribution of US-English words on 100 nodes with equidistant key ranges.
(list of words aggregated from [11])

DHT Load Balancing with Estimated Global Information 9

1. Introduction

To even out such skewed load distributions load balancing algorithms are required
which change the nodes’ responsibilities that in turn reduces their load. Such algorithms
try to balance an arbitrarily defined load at each node and should only use information
locally available in order to scale to large systems. Several of such algorithms will be
introduced in the following chapters, some of them using different definitions of load,
e.g. the number of keys a node is responsible for, the number of items a node actually
stores or the access-popularity of a node’s items. Some also weight load depending on a

node’s capacities and therefore adapt to heterogeneous environments.

1.2. Aims & Objectives

This thesis aims at improving such load balancing algorithms in terms of moved items
and reached balance by adding estimates of global information. These values can be
retrieved with high confidence and low overhead using gossiping techniques [23, 28] and
include approximations of values like the minimum, maximum and average load as well
as the standard deviation and system size.

A first approach will try to use the average load of all nodes in its decision on whether
to balance two nodes and how much to transfer from one node to another. Most al-
gorithms simply balance two nodes that have been matched by trying to equalise their
loads. This does however not involve a node’s ideal load - the average load. Therefore
several items are transferred multiple times during the algorithm’s task to balance the
load at each node of the system, especially if a node’s load after a balance operation is
sufficiently higher than the average load. By knowing the target load and integrating
it appropriately, a much better performance can be expected. Preliminary results of an
algorithm using the average load already show some improvements compared with its
underlying algorithm without that change [27].

Further variations will be introduced into ordinary load balancing algorithms also
including some of the other information mentioned above. The resulting algorithms’
performance will then be evaluated on a set of given scenarios like the alphabetical
distribution of Figure 1.1. It is assumed that with the right use of such information, any

algorithm can be significantly improved.

1.3. Methods

In order to evaluate any of the introduced algorithms, a simulation will be implemented
that emulates a simple DHT with range queries and starts with an initial system load
distributed among the nodes according to a given scenario. This emulation will disregard

node joins and deletions as well as any other side-effects, e.g. network maintenance,

10 DHT Load Balancing with Estimated Global Information

1.4. Achievements

node failures, network delay and bandwidth etc., to eliminate any other influences when
assessing an algorithm. It will however allow analysing the algorithm under different
aspects such as different scenarios with different numbers of items and nodes, different
choices for an algorithm’s parameters and a different accurateness of the estimated global
information. It will also provide the ability to run multiple simulations with the same
set of parameters in order to allow the evaluation of randomised algorithms that show
(slightly) different behaviour in each simulation.

The program will follow the strategy of being easily extensible and will in particular
allow additional algorithms and scenarios to be deployed separately and added dynamic-
ally via a plugin-based infrastructure. It will also provide means of comparing different
algorithms with varying parameters on multiple scenarios. A graphical user interface
and a command line client will be created that allow fast evaluations of the algorithms

as well as batch-jobs for more time-consuming simulations.

1.4. Achievements

At first a survey of the field of Distributed Hash Tables has been given by presenting
their concepts and examining their mode of operation including DHT's that support range
queries. Additionally a very thorough overview of load balancing schemes that can be
applied to (arbitrary) DHTs has been given and several novel load balancing algorithms
have been presented. Gossiping algorithms have also been introduced to present a way
estimates of global information can be retrieved in Distributed Hash Tables.

Secondly several algorithm variations have been introduced that make use of estimated
global information in order to minimise the item movements an algorithm performs as
well as the imbalance it reaches. Those variations have then been applied to the load
balancing schemes by Karger and Ruhl [30] and Bharambe et al. [12] and have been
evaluated by performing simulations with different load distribution scenarios. These
variations use estimated values of the system’s average and maximum load, the standard
deviation of the load among the nodes and the system size.

The best algorithm among those variants limits the original algorithm’s item move-
ments in a way that nodes that have a load smaller than the (estimated) average load
will not reach a load above this bound. Additionally it only performs such balance op-
erations that increase the standard deviation by at least a factor s/n with n being the
system size and s a configurable parameter that has been set to 2.0 and 3.0 for the al-
gorithms by Karger and Ruhl and Bharambe et al. respectively. This variation achieves
an up to 30% lower imbalance than the algorithm applied to would achieve alone and
only moves about 50 — 70% of its items.

Further experiments that try to tune the algorithms’ parameters according to the

DHT Load Balancing with Estimated Global Information 11

1. Introduction

system’s state show that even more improvements are possible. Applying such self-
tuning to the algorithm by Karger and Ruhl for example has shown an up to 30% lower
imbalance with only about 40 — 65% of the item movements of the original algorithm.
Such good performance has however not been achieved by a similar variant that has
been applied to the algorithm by Bharambe et al. Further investigations into the field

of self-tuning algorithms are thus needed.

1.5. Outline

At first a deeper insight into the techniques behind Distributed Hash Tables (DHTS)
will by given in Chapter 2. It will also present several representatives of DHTs and
their characteristics and will introduce methods for achieving range-queriable systems.
It will then present gossip algorithms followed by several novel load balancing schemes
that are available for such DHTs. Chapter 3 will define the system model that is used
in this thesis and the algorithms that have been chosen to be equipped with estimated
global information. It will conclude with the introduction of the algorithm variants that
have been developed. These variants will be evaluated in the following Chapter 4 starting
with a detailed description of the evaluation process itself and the scenarios used. It then
presents the results that the implemented simulator created for the different algorithms
under different aspects of the simulation. Chapter 5 will finally sum up the achievements
of the thesis and will provide ideas about possible extensions of the given algorithms and

future work.

12 DHT Load Balancing with Estimated Global Information

2. Background / Related Work

This chapter presents Distributed Hash Tables (DHTS), a prominent representative of
the class of structured overlay networks, which has been of great interest in research
over the past years. The structure of a generic DHT and some of its representatives will
be introduced including DHT's that support range queries. This class of DHTs imposes
some restrictions on the organisation of the stored resources which need to be considered
when designing load balancing algorithms, e.g. stored resources cannot move arbitrarily
to different nodes of the network. Before load balancing algorithms are described in the
last section of this chapter, gossiping algorithms will be introduced. Those algorithms
can be used in peer-to-peer networks to gather estimates of certain global information
that is usually not available in such a setting. This information will later be used to

improve some of the load balancing algorithms described here.

2.1. Distributed Hash Tables (DHTs)

Distributed Hash Tables provide functionality similar to ordinary hash tables. They
store key/value-pairs on several nodes of a network and provide look-up facilities for
retrieving the value associated with a given key. Several such systems exist, but despite
their diversity a reference model can be given which models their approaches in a generic
manner [8] and is outlined below.

In this model, a DHT maps peers P and resources R to a common identifier space
using mapping functions fp : P — I and fr : R — I. Furthermore, a closeness metric
d:Ix1I — Ris defined on I which can be used by a mapping function M : I — 2F that
associates identifiers with the peers storing them. The peers themselves are organised
in a logical network to allow access to every other peer’s resources, i.e. by embedding
a graph into the identifier space. Following this notation, differences between several

DHTs only exist because of the different choices made for the following aspects:

o Selection of an identifier space with a closeness metric d: This serves as an address-

space for resources and peers and should be large enough to support large systems.

o Mappings fp and fr: These functions may satisfy certain distributional properties

which can be exploited for load balancing. They can preserve resource semantics

DHT Load Balancing with Estimated Global Information 13

2. Background / Related Work

such as closeness/neighbourhood relations or the order under a given key or com-

pletely drop them, e.g. when following a uniform distribution in I.

o Management of the identifier space: The function M : I — 2F assigns each iden-
tifier of a resource a set of peers responsible for it. Locating resource r therefore
involves finding a peer in M(fgr(r)). Note that systems with replication have

several peers responsible for each resource.

e Structure of the logical network: The logical network can be modelled as a (time-
dependent) directed graph G = (P, E)) with vertices P (peers) and edges E (direct
connections). Also let N(p) be the set of peers a given peer p maintains a connec-
tion to, e.g. its neighbours. The overall structure of that graph is then determined

by N(p) for every p € P.

e Routing strategy: Requests for identifiers need to be routed to their responsible
peers. A strategy for that can be described as selecting at a given peer p for
an identifier i a set of next peers R(p,i7) € N(p) to which to forward a request.
Routing is typically greedy, i.e. Yq € R(p,i) : d(i, fp(q)) < d(i, fp(p)), and built
on top of the decisions made for the identifier space and its management, e.g. the

distance function.

e Maintenance strategy: Changes in peer connectivity (referred to as churn) may
occur quite frequently and create the need for mechanisms to repair the state of the
logical network. Since node joins are typically active operations, this task mainly
focuses on repairing connections due to node (connection) failures. Maintenance
strategy can either follow a proactive approach (heartbeats, periodic probing) or
a reactive approach (correction on use, failure or change) or a combination of the
two. Functionality of the DHT heavily relies on a consistent network structure

making this strategy essential for its operation.

Additionally DHTSs provide (supposedly different) implementations for a common set
of functionality they expose to their clients.This includes joining and leaving a network,
several routing functions, looking up identifiers and getting some administrative inform-
ation about the local peer and its neighbours. Data management functionality exposes
insert, delete and update methods as well as searching for resources using queries of
some kind.

Implementations of such structured overlay networks include CAN [37], Pastry [38],
Chord [41], Freenet [19], Tapestry [45], Gnutella [5, 1] and more. The following sections
will concentrate on the first three which all implement a variant of consistent hashing [29,
33] outlined below. The main focus however is not on a complete description of the

different DHTs but to give an overview of their structure and message routing / resource

14 DHT Load Balancing with Estimated Global Information

2.1. Distributed Hash Tables (DHTS)

retrieval algorithms which both is important for load balancing. Also although the
descriptions will make use of the introduced terminology and definitions they will not be
structured explicitly that way in order to focus on the main aspects of design decisions
and establish a better understanding of the techniques. It will however become apparent
that the DHTs follow the given model.

2.1.1. Consistent Hashing

While traditional hash tables map objects to a static set of buckets, the number of
peers to which resources are mapped constantly changes in DHTs. Karger et al. [29]
and Lewin [33] describe a consistent hash function that operates on a changing set of
buckets and provides some consistency properties, e.g. adding a bucket only changes the
mappings of a minimum fraction of objects needed to maintain a balanced state.

Using the aforementioned syntax, let P be a set of n = ||P|| peers, I the circular
interval [0,1) C R and fr a random function that maps resources of R log(n)-way
independently! and uniformly to I. Now let each real peer p run m “virtual” peers that
operate independently from each other. Virtual peers can be modelled by each peer
being mapped to m different identifiers instead of just one: fp: P — I, C I, ||Ln]| =m
(otherwise the same constraints as fr apply). Also define a function M that maps each
resource © € R to the peer p € P that has the closest identifier to fr(r). Each such hash

function has the following properties which also hold for large enough arbitrary I:

e Monotonicity: If new peers are added to P, resources only move from old peers to

new peers, but never between old peers.
e Adding a peer p to P changes the mappings of O(||R||/n) resources.
e Balance: The probability of a resource r € R being assigned to peer p € P is
1 1
0 ((1+ Og(’”)).
n m

Thus using m = Q(log(n)) virtual servers results in a well-balanced state with each node

being responsible for O (||R||/n) resources. Having no virtual nodes however (m = 1)
yields to some nodes having O(log(n)) times more resources associated with them than

others because each node is responsible for O ((log(n) + 1) - || R||/n) resources.

2.1.2. CAN

A basic CAN network [37] uses a virtual d-dimensional Cartesian coordinate space C

for its identifiers and places it on a d-torus for routing. Peers are responsible for their

'A random mapping function is k-way independent if any k elements are mapped independently. This
allows representing real identifiers in I C R with limited precision instead of using an infinite number
of bits and also allows for arbitrary large enough discrete I.

DHT Load Balancing with Estimated Global Information 15

2. Background / Related Work

individual and distinct zones of this coordinate space which is entirely covered at any
point in time. A key/value-pair is stored in CAN by mapping its key to a point ¢ € C
using a uniform hash function and storing it at the peer p responsible for the zone
containing ¢q. Similarly querying for a key corresponds to routing to the node responsible
for the zone containing ¢. For this every peer maintains a list of immediate neighbours
(nodes with zones adjoining their own zone) and routing a message at peer p directed
to g is done by forwarding it to the neighbour of p which is responsible for coordinates
closest to ¢ (greedy forwarding). Also note that several paths exist and can be used in
case of node and connection failures or to deploy a simple request load balancing (see
Figure 2.1 for an example). This way using d dimensions and n = ||P|| commensurate
zones, each individual node maintains 2d neighbours and average routing paths cross
(d/4)(n"/?) zones (peers).

(I} A A A_05 A A A A1
n 7 7 7 7 7 P n
= =
-< >
- >

5

) o
o] o
< E \(0,8, 0.6) g

: @ @ A
L ee P

- > o
-< r
o <
w V) w) N N
0V 4 4 Vv 05 ¥ 4 4 LR

Figure 2.1.: Planar 2-d CAN with coordinates in range [0,1) x [0,1) C R? with 16 nodes routing a
message from node n6 to ¢ = (0.8,0.6) (dashed arrows present an alternative route).

If greedy forwarding fails, an expanding ring search using stateless, controlled flooding
may be used to locate peers closer to the destination. From there greedy forwarding will
be continued.

In order for a node to join an existing CAN;, it needs to take the following steps:
1. Find a CAN node by using some external mechanism, e.g. DNS.

2. (Randomly) choose a point ¢ to join at, contact the peer currently responsible for
that point (using normal routing) and split the zone in half assigning one half to

the new node.

16 DHT Load Balancing with Estimated Global Information

2.1. Distributed Hash Tables (DHTS)

3. Learn neighbours from the previous occupant and notify them of its arrival.

4. Transfer resources according to the new responsibilities.

These steps involve O(d) existing nodes which need to change their list of neighbours.

A node gracefully leaving the system hands over its zone to a neighbour which is
able to join the two zones. If this is not possible the neighbour with the smallest zone
will (temporarily) handle both zones. To identify node failures peers normally send
periodic update messages to their neighbours. If such message is not received for some
time its neighbours each initiate a takeover mechanism and agree on one of them taking
over the failed zone, possibly becoming responsible for two zones. To prevent further
fragmentation of the coordinate space background zone-reassignment algorithms try to
merge zones again.

Further improvements were suggested in order to reduce routing path lengths, i.e.
increasing the number of dimensions or using multiple coordinate spaces (realities), in-
troducing round-trip-times into routing decisions, caching frequently requested resources
or replicating them to their peers’ neighbours. See [37] for more details and an evaluation

of the various improvements.

2.1.3. Pastry

A different approach to realising a distributed hash table is provided by Pastry [38] which
uses identifiers represented by 128-bit numbers. The circular identifier space therefore
consists of integers in the range [0, 2128 _ 1] and the two mapping functions fp and fgr
are expected to distribute their results uniformly and independently among the identifier
space. Resource identifiers are for example created by applying a secure hash function,
e.g. SHA-1 [7], to the resource’s name, content and the resource owner’s identifier. Also
resource r € R is stored at the k peers with identifiers numerically closest to fr(r). k
can be set individually for each resource at its insertion, influences its availability in case
of failures and provides some means of balancing resource requests.

For routing purposes node identifiers in pastry are sub-divided into separate levels
of b bits with a domain at level | being defined as the bits from position (b - 1) to
(b-(I+1)—1). Messages are now forwarded using prefix routing, i.e. messages at peer p
with destination fgr(r) matching fp(p) up to level | will be forwarded to a node whose
identifier matches the destination’s identifier up to at least level (I+1). Also each pastry

node p stores information about other peers in 3 different node sets:

e a routing table T which contains information about representatives of different
domains at different levels: for each level [it contains IP addresses of (2° — 1) peers
with the same prefix as fp(p) up to level (I — 1) but a different domain at level

(to improve route locality, a representative geographically close to p can be chosen),

DHT Load Balancing with Estimated Global Information 17

2. Background / Related Work

e a namespace set L that contains identifiers and IP addresses of || L|| peers that are

numerically close and centred around fp(p) which is used for routing too and

e a neighbourhood set M storing identifiers and IP addresses of || M|| peers that are
geographically close to p and which is useful for network maintenance. Note that
this set has been dropped in later versions of Pastry [15]. The following descriptions

however are based on the original version.

While the choice of b influences the size of the routing table (ca. [logg(n)] - (20 — 1)
entries, n = ||P||) and the average routing path length, the sizes of ||L| and |[|M]| can
be chosen arbitrarily and are typically 2> and 207! respectively. Using those tables, a

message to resource r arriving at peer p is routed as follows:

if fr(r) is in the range of the two farthest nodes in p’s namespace set N(p):

Forward message to p; € N(p) so that |fr(r) — fp(p;)| is minimal (possibly p).
else if p’s routing table contains a node that shares a longer prefix than p:

Forward the message to that node.
else:

Forward to a known node (from the routing table, namespace set or neighbourhood

set) that shares a prefix at least as long as p but is numerically closer to 7.

Although the third case creates a worst-case with linear performance (in the number
of nodes), Rowstron and Druschel [38] argue that this is very unlikely due to the uniform
distribution of node identifiers and give an average routing path length of [logys (n)] hops.

Nodes joining a Pastry network need to perform the following 6 steps which involve

O(logys(n)) remote procedure calls:
1. Find a Pastry node p; by using some external mechanism.

2. Choose a node identifier (at random), contact the peer pa currently responsible for

resources with that identifier using normal routing.

3. Update its routing tables using the neighbourhood set of p; and the namespace
set of py as approximations of its own neighbourhood and namespace sets. Fill the

routing table with information from the nodes the join message came along.

4. Improve those approximations by requesting the state of the nodes in its routing

table and neighbourhood set.
5. Notify peers that need to be aware of the new node and send them its own state.

6. Transfer resources according to the new responsibilities.

18 DHT Load Balancing with Estimated Global Information

2.1. Distributed Hash Tables (DHTS)

Node failures are detected when a node tries to contact another node in its routing
table or namespace set. The latter is repaired by using an appropriate node of the
namespace set of the live node with the largest identifier in the direction of the failed
node. Repairing a representative in the routing table involves contacting another repres-
entative at the same level and asking it for the required connection or continuing with
requests to nodes at higher levels. The neighbourhood set can be repaired by requesting

the neighbourhood sets of the other live nodes in it.

2.1.4. Chord

Chord [41] places identifiers of m bits on a circle modulo 2™ and performs every cal-
culation modulo 2™. A secure hash function, typically SHA-1 [7], is used for mapping
resources and peers to this identifier space (m = 160 in case of SHA-1). fp maps peers
to identifiers by hashing their IP address and fr hashes the key of a resource. Using
consistent hashing, M maps a resource r € R to the peer p € P whose identifier is equal
to or follows 7’s identifier in the identifier space. That is if predecessor(p) denotes the
predecessor of a peer p on the identifier circle, p is responsible for all resources with
identifiers within (fp(predecessor(p)), fp(p)]. Note that Chord does not use an explicit
load balancing scheme but instead relies on consistent hashing with the use of virtual
servers.

Chord nodes store routing information about m nodes in a so-called finger table. The
i’th finger of peer p’s table, 1 < i < m, points to the node p’ whose identifier succeeds
fr(p) by at least 21, i.e. p.finger[i] = M(fp(p) +2"1), p.finger[l] = successor(p).
Note that consecutive fingers can point to the same node if there is no peer between their
designated identifiers. Additionally to the finger table each node maintains a pointer
to its predecessor to simplify node join and leave operations. Figure 2.2 shows such a
node’s complete routing state (including its finger table) in an exemplified Chord ring.

Routing uses those fingers as shortcuts to reach the destination with fewer hops than
using successor links alone (which would suffice for routing correctness and result in
O(n),n = || P|| hops)). If peer p needs to find the node p’ which is responsible for key k,
it searches its finger table for the node j whose identifier immediately precedes k and asks
j for the node it thinks is closest to k. This procedure is repeated until the immediate
predecessor of k is found, whose successor is then the node responsible for k. Note that
those messages could also be forwarded to the nodes recursively instead of implementing
an iterative approach as described here. Because the fingers provide shortcuts half-way,
quarter-way,. .. around the circle and the distance to the destination halves in each step
this results in O(log(n)) nodes to contact (with high probability?).

with high probability means probabilities of at least (1 — O(n" ")), n being the system size

DHT Load Balancing with Estimated Global Information 19

2. Background / Related Work

Figure 2.2.: Chord ring with m = 6 and 16 nodes showing the routing pointers of node n8 and
all nodes’ responsibilities in grey (associations with identifiers).

Nodes joining an existing Chord ring need to take the following steps:
1. Find a Chord node p; by using some external mechanism.

2. Initialise its predecessor and finger pointers by asking p; to look them up or copy
from a neighbour’s finger table and find the correct values on its own (the neighbour

of the to-be-inserted node p can be retrieved by asking p; to look up M (fp(p))).

3. Contact (existing) peers that need to be aware of the new node and update their

predecessor and finger pointers.
4. Transfer resources according to the new responsibilities.

Alternatively, step 3 could be omitted if the Chord nodes periodically run a stabilisation
protocol that fixes their finger tables. Note that this would also allow Chord to handle
concurrent joins.

To deal with node failures first recall that Chord only needs to maintain correct
successor pointers in order to work properly. To overcome failures of successor pointers,
each peer stores an additional list of r successors and uses the first live node in that list
in such case. The stabilisation protocol mentioned above also ensures that the finger
tables are corrected in case of node failures. Meanwhile, alternative nodes to forward
routing messages to are found in the finger table (using the preceding finger to the failed

one) or in the successor-list.

20 DHT Load Balancing with Estimated Global Information

2.2. DHTs with Range Queries

Both, a node joining and leaving a Chord ring will require O (logQ(n)) messages to be

exchanged in order to re-establish the routing state of affected nodes.

2.1.5. Conclusion

The previously presented DHTs show that realising a distributed hash table can be done
in many different ways while still maintaining the goal of efficient resource look-ups (in
terms of visited nodes) with only a small fraction of the system known to a node. CAN
puts its resources and peers in a d-dimensional coordinate space and requires each node
to maintain 2d neighbour links. By using simple forwarding based on the geometric
distance of a node to a target resource, it achieves average routing path lengths of
(d/ 4)(n1/ 4) hops and allows simple request load balancing by routing requests through
different nodes in the direction of a target. Pastry and Chord both map their nodes
and resources to a one-dimensional circular name space with addresses between 0 and
2™ — 1. Pastry further sub-divides those identifiers into levels of b bits and requires a
node to maintain a routing table of size [loggs(n)] - (2° — 1) as well as a namespace and
neighbourhood set of fixed sizes. Using prefix-routing the average number of hops during
routing is [loggs (n)] with a worst-case of O(n). Additionally Pastry allows replication on
a per-resource level which can be set at a resource’s insertion and also provides request
load balancing. Chord on the other hand uses finger tables of size m to point to nodes
responsible for an exponentially increasing key distance from the nodes’ own keys and
achieves routing path lengths of O(log(n)) with high probability.

Except for the request load balancing provided by CAN and Pastry, those three DHT's
do not implement any explicit load balancing algorithms to balance the load among the
nodes but instead rely on the (passive) load balancing provided by consistent hashing
with the help of virtual servers (Chord). Without virtual servers this results in each node
being responsible for an O((log(n) + 1) - 1/n) fraction of the available resources which
is brought down to O(1/n) using virtual servers. Further improvements (even without
virtual servers) are possible using explicit load balancing algorithms (ref. Section 2.4).

Despite their differences, those DHT's all provide a common set of functionality which
allows them to be deployed to the needs of the user and be replaced by one another.
However, they only allow simple requests like retrieving resources for a set of single keys

and lack support for further extensions such as range-queries covered below.

2.2. DHTs with Range Queries

One way of implementing range queries is to build them on top of ordinary DHT's such as
the ones described above. Multiple dimensions, i.e. possible attributes in range queries,

would be reduced to one dimension using space-filling curves and then split into several

DHT Load Balancing with Estimated Global Information 21

2. Background / Related Work

ranges which each serve as a single key that is then stored in the DHT [9, 17, 22] (also see
Figure 2.3). Such partition needs to be implemented with care because too few fractions
lead to poor load balance and too many will increase look-up costs as several of them may
need to be retrieved in order to answer a single range query. The same happens for large
multi-dimensional range queries. Another disadvantage is the increased maintenance

cost this additional layer imposes on the network.

Ovangs

'rmsurg 9 see:

um
£

5}

¥

P = NS I P R S

Bena® Sochfy: Seedrcren | s

& < o .
CerpPamepen’. o Smsseitor Orasse e |

Wiesbadea® ['Franird

E il
o | cwigshaten ©tfanrnem of
e .

prassoul

o, S pmtechen

2 il L e W) Austry

Figure 2.3.: Example of using a space-filling curve: Patches group coordinates and are then
mapped to one dimension according to the progression of the Hilbert curve (approz-
imation level 4) drawn in red. (map: Marble [2], curve: Wikipedia [6])

Because of these disadvantages, specific DHT's were created that support range queries
out of the box. Mercury [12] and Chord? [39], for example, use key-order-preserving
hash functions which allow significantly lower overhead in design complexity and better
query performance (in terms of visited nodes per range query) compared to the method
depicted above. The following sections will give a short overview of those two imple-
mentations which work a bit differently than ordinary DHTs and need to deal with a
new set of problems, e.g. significant load imbalance based on the key distribution of

their resources.

2.2.1. Mercury

Resources in Mercury [12] consist of a list of (attribute,value) pairs with attributes
supporting int, char, float and string data types. Queries can be created using
multiple filters on given attributes which together form a conjunction (disjunctions of
filters need to be emulated by issuing a single query for each of them).

Mercury partitions its peers into several attribute hubs H, each denoting a group

22 DHT Load Balancing with Estimated Global Information

2.2. DHTs with Range Queries

that is responsible for a single attribute a. The number of hubs should be reasonably
small but nodes can be part of several such hubs. Within a single hub H, each node
is responsible for a contiguous range of an attribute a and together the nodes form a
circular overlay based on that attribute. This range is assigned to a node when it joins
the network. Furthermore, resource r is stored at each node that is responsible for any
of its attributes in any hub and is thus sent to every hub H, with a € r when it is
inserted into the network.

Processing a query first involves a selection of a (single) hub through which the message
is routed. Within that hub the query is processed by all nodes which have potential
matches. Selecting a hub is therefore crucial for getting a good routing performance and
should be done by evaluating the selectivity of each filter of a query. In-hub-routing
works by sending the query to the node that is responsible for the first value of the hub’s
attribute and forwarding it to subsequent nodes still within the range of the query. For
that nodes store links to their predecessor and successor nodes within each hub and links
to (at least) one node in every other hub. For better robustness to node failures, nodes
could alternatively store a (small) number of those links instead of just one.

Similarly to Chord this system would result in O(n), n = ||P|| hops required for
processing a query. To provide more efficient routing, k long-distance links are added
to the nodes’ state (also see the example given in Figure 2.4). Note that k could be
different for each node but let’s assume that each node contains no more than 2k of
such links whose construction is given as follows. For each link /; a node p responsible
for the range [a;, a,) of attribute a draws a number z € [1/n, 1] = J using the harmonic
probability distribution function p(z) = (n-log(z)) ™! for 2 € J and stores the node that
is responsible for the value (a, + (maz — @min) -) within H,. Queries are then forwarded
to the node among the long-distance links that minimises the (clockwise) distance to the
requested attribute value. Assuming node ranges are uniform, a node responsible for
the first value in a given range can be reached with O (log®(n) - 1/k) hops (including the
first hop which decides the hub to route in).

Constructing O(log(n)) long-distance links in that manner also enables Mercury to
allow uniform random sampling of nodes which is used to gather histograms of system
statistics, e.g. load distribution, node-counts and so on. This provides information
needed to create the links at all (the number of nodes) and may also be used for imple-
menting a load balancing scheme. Mercury uses a load balancing algorithm similar to
the one presented by Karger and Ruhl [30]. Both are described in Section 2.4.2.

Nodes joining Mercury need to complete the following steps:
1. Find a Mercury node p; by using some external mechanism.

2. Obtain a list of representatives of each hub by querying p;.

DHT Load Balancing with Estimated Global Information 23

2. Background / Related Work

x[0..100] yc..d]

x[101..250]

x[751..900]

X[251..300]

x[651..750]

y[m..o]

X[401..650] y[p..s]

Figure 2.4.: Mercury network with Hubs H, and H, showing node nd’s predecessor, successor,
cross-hub (h) and k = 3 long-distance (ld) links and each node’s responsibilities
inside its hub.

3. (Randomly) choose a hub to join at, contact one of its members (p2) and become

its predecessor taking half of its values.

4. Copy routing state of po, create its own long-distance links and get hub represent-

atives different to the ones from po.

When nodes fail or leave the network, repairing successor and predecessor links is done
by using the successor and predecessor link lists mentioned before. Long-distance link
failures can be repaired by simply creating new links. Alternatively (and to deal with
many link failures) nodes can periodically re-create all links when the number of nodes
in the system changes substantially. Finally repairing cross-hub links can be achieved
by using a backup link, asking a neighbouring node for its links or (if both fails) using

the external mechanism used for node joins.

2.2.2. Chord” / Scalaris

Chord™ [39] is a variation of the Chord protocol described in Section 2.1.4 and has
been implemented in Scalaris [3]. In its basic form it supports one-dimensional range
queries but can also be extended for multiple dimensions as described in [39]. It derives
from Chord by removing consistent hashing and instead using a key-order preserving
hash function to map resources to the identifier space, e.g. by storing the keys in
lexicographical order. Nodes are placed at such points of the identifier space that achieve
well-enough load distribution. This placement is managed by an explicit load balancing
mechanism which constantly changes the nodes’ responsibilities according to the current

system load. Schiitt et al. suggest to use the algorithm presented by Karger and Ruhl [30]

24 DHT Load Balancing with Estimated Global Information

2.2. DHTs with Range Queries

but any of the algorithms described in Section 2.4 is suitable.

In order to keep the routing performance (number of hops required to reach a node
responsible for a random resource) at O(log(n)),n = || P||, the finger table is constructed
differently and operates in the node space rather than the key space. The first finger
is the node’s successor as in Chord and the ¢’th finger is created by asking the node at
finger (i—1) for its (¢—1)’th finger. This step is repeated as long as fingers point to nodes
succeeding the previous finger and not exceeding the current node. The resulting finger
table then contains at most [log(n)] fingers with the longest finger pointing half-way
around the node circle, the second longest quarter-way, and so on. It is also guaranteed

that no two fingers point to the same node (refer to Figure 2.5 for an example).

(30,35]

Figure 2.5.: Chord® ring with 2° possible IDs and 16 nodes distributed to balance a distribution
of resources with hot spots around 6, 24 and 36 (node responsibilities in grey).

Although the routing algorithm stays the same as in Chord, the number of hops
required to reach a desired node is now guaranteed to be O(log(n)). This is achieved
because fingers in Chord” definitely decrease the distance to a target node by factor 2
each routing step and not just with high probability. Also (re-)building the finger table
requires only O(log(n)) messages compared to O(log?(n)) in Chord.

2.2.3. Conclusion

The aforementioned DHTs show that support for range queries can be achieved with
little less or no overhead to ordinary DHTs. In fact, Chord™® even improves Chord’s

performance by guaranteeing routing performance of O(log(n)) hops and changing only

DHT Load Balancing with Estimated Global Information 25

2. Background / Related Work

little compared to Chord. Mercury supports multi-dimensional range queries and uses a
so-called Hub for each of a resource’s attributes. Using k long-distance links it reaches
a designated node within O (logQ(n) . 1/k) hops. Furthermore by the way those links are
generated, Mercury supports random sampling of nodes which it uses to gather system
statistics such as estimates of the average load and the number of nodes.

Both DHTs may use arbitrary load balancing algorithms in order to even out the
load imbalance that is inherent in the use of order-preserving hash functions. Chord”
suggests an algorithm proposed by Karger and Ruhl [30] while Mercury implements its

own variant of this algorithm. Refer to Section 2.4 for a description of those algorithms.

2.3. Gossiping

Gossip algorithms can be advantageous for Distributed Hash Tables in several ways.
They can for example provide another way of learning random nodes and can be used to
adapt the topology of the overlay network to changes. Both is provided by the Cyclon
framework [43]. They can also be used to aggregate (global) information with high
confidence and low overhead which is of more interest here. Such information includes
approximations of values like the minimum, maximum and average load, network size,
variance and standard deviation [28].

A generic proactive algorithm calculating those values could for example work by
letting each node periodically select another node to exchange information about its
local estimate of the desired attribute. Both nodes update their state according to an
aggregation-specific update function that improves a node’s estimate with the help of
the other node’s estimate. In case of average load computation the nodes could start
with local estimates such as their own load. The update function would receive the two
estimates avg, and avg, of the nodes p and ¢ and both nodes will update their local
estimates to (avgy, + avg,)/2 thus achieving a better estimate. Note that the sum of all
estimates remains the same as the sum of all nodes’ loads and can thus be used to further
aggregate the average load the same way. Similarly the minimum and maximum can be
calculated by returning min(avgp, avgy) and max(avgy, avg,) respectively and can also
be used to collect information about the & minimum/maximum loads (and the nodes
holding those values). The variance can be computed by calculating the averages of the
nodes’ loads and their squares since Var(l) = avg(l?) — avg(l)?, same for the standard
deviation o; = 1/ Var(l).

This method provides exponential convergence to the desired value at each node, but
best performance can only be guaranteed if the node selection is truly random, e.g.
uniform. Nevertheless, this protocol also works by (randomly) selecting nodes from a

list of neighbours that is based on the topology of its network or by making random

26 DHT Load Balancing with Estimated Global Information

2.4. Load Balancing in DHT's

walks. Experiments conducted in [28] show that the more uniform the random sampling
is the faster this algorithm converges.

The following chapters will make use of gossiping algorithms only to retrieve the
aforementioned estimates of global information in order to improve load balancing. For
an overview of further uses of such algorithms on structured overlay networks refer to [23]

and the papers referred there.

2.4. Load Balancing in DHTs

As depicted above, some distributed hash tables include (simple) load balancing tech-
niques with some even being immanent in their design, e.g. by using consistent hashing.
Their ability to balance load among the system however varies greatly and can generally
be improved by deploying a different load balancing algorithm that suits a specific need.
That might include a better partition of the address space among the nodes or, more
generally, a better balance of an arbitrary load like the number of stored resources, a ma-
chine’s workload including computing power or bandwidth or any other. Also, although
not explicitly considered here, one might include node heterogeneity in any balance de-
cision. Other DHTSs, in particular those supporting range queries, heavily rely on explicit
load balancing mechanisms because the distribution of the stored resources is retained

and may be highly skewed.

‘ Node i ‘ Node i+1 ‘ _Node i Node k Node j
| | | | |

— | \ | I o i

Node i ‘ / Node i+1 ‘ ‘ Node k ‘ . Nodei Nodej
\ |
[« | \ LT (_] |]

(a) Slide (b) Jump

Figure 2.6.: Supported load balancing operations in arbitrary distributed hash tables.

Note that generic load balancing algorithms can only make use of techniques supported
by every DHT and cannot use features specific to a single one. It is for example possible
to adjust the responsibility of two neighbouring nodes so that one node takes some
resources or responsibilities off of the other. This process is called sliding and may be
supported directly by the DHT or by removing one of the two nodes and inserting it at
an identifier that will result in the desired behaviour. The second generic load balancing
primitive is jumping, that is a node leaves its current position dropping off all its load
and responsibilities to its successor and joining somewhere else in order to take off some
of other node’s load. Examples for both are presented in Figure 2.6 for a ring-based
DHT also showing the changes of every affected node.

The following sections will present several such load balancing algorithms which are

DHT Load Balancing with Estimated Global Information 27

2. Background / Related Work

structured as follows. Section 2.4.1 will describe algorithms that try to balance the
amount of identifier space each node is responsible for, followed by algorithms trying
to balance the actual number of resources in Section 2.4.2. Load balancing algorithms
relying on virtual servers or using replication are covered in sections 2.4.3 and 2.4.4.
Note that some algorithms’ classifications can be ambiguous in which case their main
aspects determine the section they are presented in. Further categorisations could be
made in order to differentiate between passive and active algorithms, i.e. those that only
act on node or item inserts or deletes and those that actively probe the network every
once in a while to search for nodes to balance. This additional classification is included
in the overview of all presented algorithms given in Section 2.4.5

Note that (until otherwise stated) algorithm descriptions in the following sections will
be restricted to ring-based DHT's like Chord which can be done without loss of generality

(special care only needs to be taken with the multiple dimensions of a CAN network).

2.4.1. Address-Based Load Balancing

Address-based load balancing algorithms aim at partitioning the identifier space uni-
formly among the participating nodes so that each node is responsible for an equal range
of identifiers. This is mostly useful for DHT's using consistent hashing (see Section 2.1.1)
where resource identifiers are spread uniformly among the identifier space as well and
do not follow a particular distribution. Recall that using uniform and independent hash
functions for both nodes and resources still results in an O(log(n)) imbalance. Using
virtual servers reduces this imbalance but introduces higher maintenance costs due to
the increased number of connections each real host manages. The following sections
will describe several address-based load balancing algorithms that will try to reduce the

imbalance without using virtual servers.

Karger and Ruhl

Karger and Ruhl’s address-space balancing scheme [30] first adds an ordering to addresses

2b+1 !
of the form — = + in the circular identifier interval I = [0, 1] such that < x—, &
y oy

Y
(y <) or (y=1v and x < 2’). Equation 2.1 shows the order of some addresses with

this specification.

0—1<1<1<§<1<§<§<Z<i<3<5<1 (2.1)
T2 74 T4 78 78 "8 "8 16 16 16 16 '

Secondly, each node maintains a set of O(log(n)) potential positions it can place itself
at (solely dependent on the node itself, e.g. on its IP address). It now occasionally

checks the address range between each such position and the succeeding active node on

28 DHT Load Balancing with Estimated Global Information

2.4. Load Balancing in DHT's

the ring and places itself at the position with the range that covers the smallest address
under the given ordering. It can be observed that nodes place themselves at positions
close to all small addresses (under the given ordering) which distributes them nearly
uniformly among the address space (each node is responsible for an O(1/n) fraction)

with high probability thus achieving a ratio between the largest and smallest interval of

o(1).

Bienkowski et al.

Bienkowski et al. [13] give a load balancing algorithm for ring-based DHTs which estim-
ates the total number of nodes by having each node maintain an additional connection to
a random position in the ring (a marker) and count the number of markers that fall into
the interval of the node itself and some of its successors. Let ¢ and m be the length of the
encountered interval and the number of encountered markers respectively, then a node
continues to add the succeeding node’s data (interval length and number of markers) as
long as m < log(1/i). At the end, ¢ is decreased so that m = log(1/i) using the inform-
ation of the last visited node. Let n; be the solution of log(z) — log(log(x)) = log(1/3).
It follows that with high probability n; is within constant factors of the real number of
nodes n and there are global constants v, u so that v-n; <n < u-n;.

Bienkowski et al. now use these values to define three categories of intervals: short

2-u .
NoR and maddle

intervals of lengths in between. Note that the given interval definitions have been chosen

4
intervals of length at most ——, long intervals of length at least
vy

so that middle and long intervals have lengths of at least 4/n and halving long intervals
never creates short intervals.

In the algorithm, nodes with short intervals whose predecessors also cover short inter-
vals try to contact nodes with long intervals with probability 1/2 and move to a position
which splits those nodes’ intervals into halves. The search for suitable partner nodes
starts at a random position on the ring and continues to look at up to 6 - log(u - n;) of
the succeeding nodes. If routing messages to random destinations is of complexity R
then this algorithm achieves a constant ratio between the largest and smallest interval
in O(1) rounds with each node incurring a communication cost of O(R + log(n)) per

round.

Manku et al.

Manku [34] describes an algorithm for choosing appropriate node identifiers upon inser-
tion by contacting the node responsible for a random identifier as well as ¢ - log(n) of
its neighbours (using a small constant ¢) and selecting an identifier so that the largest

covered interval among those nodes is split into halves. Node departures are handled

DHT Load Balancing with Estimated Global Information 29

2. Background / Related Work

similarly by moving at most one node of the c¢-log(n) neighbours of the departing node
taking into account the intervals they cover. This algorithm achieves a ratio between the
largest and smallest node interval of at most 4 using O(R + log(n)) messages, R being
the number of messages needed to contact a random node of the used DHT, and can be
tuned to achieve a ratio of (14 €),e > 0 at the cost of re-assigning O(1/¢€) nodes instead
of one node and an increased message cost.

Later Kenthapadi and Manku [31] generalise the scheme of using random and local
probes describing algorithms that conduct r random probes each followed by a local
probe discovering v of its neighbours and selecting an identifier to split the largest of
those intervals. They state that with - v > ¢-log(n) the ratio between the largest and
smallest interval is at most 8 with high probability where c is a small constant. n can
be estimated from the first random probe to ensure that condition. Such schemes use
O(r- R+v) messages which allows fine-tuning of the number of local and random probes

with respect to the message cost.

Giakkoupis and Hadzilacos

Giakkoupis and Hadzilacos [24] employ the power of multiple random choices paradigm
to create a load balancing algorithm they extend to support heterogeneous nodes. Their
algorithm ensures that each key interval a node is responsible for has a length of 1/ 24 for
some constant d € N and its endpoints are integer multiples of its length. It adjusts node
responsibilities only at join and leave operations and works as follows: Nodes joining
the system first contact the nodes responsible for a logarithmic (in system size) number
of points selected uniformly and independently at random. If 1/ 24 is the length of the
interval the node contacts to join the DHT, then [ajoin - d + bjoin | identifiers are looked
up for some positive system-wide parameters a;o;n, and bjei,. The node then splits the
largest interval in halves. Similar to this nodes leaving the system will again issue a
logarithmic number of requests for nodes ([ajeave * (d 4+ 1) + bjeque | identifiers if 1/ 2% is
the length of the node’s interval), merge the smallest interval with its adjacent interval
and assign the leaving node’s interval to the node removed due to this merge. As in the
algorithm by Manku, a ratio between the largest and smallest node interval of at most 4
is reached but O(R - log(n)) messages need to be exchanged.

In the weighted version of the protocol nodes have an associated weight (an integer
power of 2 with a system-wide upper bound W) proportional to their power, e.g. com-
puting power, bandwidth or storage capacity, and are organised in groups containing
adjacent nodes. The same technique as in the unweighted version is now used to balance
the intervals of those groups while an additional group management protocol handles the
balance inside a group and splits or merges groups in order to keep the sum of all weights

of its nodes between W and (2W —1). Therefore the ratio between the largest and smal-

30 DHT Load Balancing with Estimated Global Information

2.4. Load Balancing in DHT's

lest group interval is 4 and the overall balance depends on this protocol. It could either
achieve a perfect balance inside each group, requiring that up to all its nodes change
their responsibilities, or settle for only a few changes to the nodes’ associations and

achieve an adequate ratio of its nodes’ largest and smallest intervals.

2.4.2. Item-Based Load Balancing

Item-based load balancing algorithms try to balance the actual distribution of the re-
sources among the nodes and do not rely on a uniform resource distribution in the
identifier space. This makes them particularly suitable for range-queriable DHTs that
use order-preserving hash functions. Exemplary distributions of resources that result
from an alphabetical storage can be seen in Figure 1.1 on page 9 and Figure 4.1 on
page 55.

Although some of the depicted address-based load balancing algorithms may be ex-
tended to support item-