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Chapter 1

Introduction

This set of final deliverables for the SELFMAN project covers the four-month
extension (M37-M40). The main goal for this extension is to continue the
momentum of SELFMAN: to provide additional results, to complete existing
results, and to make a bridge toward future projects. We have made the
following additional deliverables in the extension:

• D2.4: Simulation and emulation environment for Kompics P2P frame-
work (partner KTH). This deliverable is part of task T2.2 and extends
D2.1c.

• D3.4: Optimizations for self-managing global storage services (partner
ZIB). This deliverable is part of task T3.2 and extends D3.2b.

• D4.5: Third report on self-configuration support (partner INRIA). This
deliverable is part of task T4.1 and extends D4.1b.

• D5.9: Distributed mobile application on gPhone (partner UCL). This
deliverable is part of task T5.8 and subsumes D5.8.

• D5.10: Design and analysis of Beernet, the Mozart structured overlay
network implementation (partner UCL). This deliverable is part of task
T5.3 and consists of the Ph.D. dissertation of Boris Mejias.

• D5.11: Self-protection mechanisms which provide spam resistance (part-
ner NUS). This deliverable is part of task T5.6 and extends D5.6.

• D6.1d: Second project workshop. The workshop was held on Sept. 15,
2009 in conjunction with SASO 2009.

In addition to these deliverables, we have written an article that distills
many insights and results of SELFMAN: “Software design with interacting
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CHAPTER 1. INTRODUCTION

feedback structures and its application to large-scale distributed systems”
(see Appendix A.1).1 This article can be seen as a continuation of Deliver-
able D5.7 “Guidelines for building self-managing applications”. The major
insight is that large-scale distributed systems can be designed as a set of
weakly interacting feedback structures, where a feedback structure is a hier-
archy of interacting feedback loops that together maintain one global system
property. The overall system specification is the conjunction of these prop-
erties. This provides the foundation of a realistic methodology for building
self-managing applications. For example, the Scalaris design consists of six
weakly interacting feedback structures, which is an enlightening alternative
to the traditional layered approach where it is presented as three layers.

1Submitted to CACM on Oct. 1, 2009, upon invitation by editor-in-chief Moshe Vardi.
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Chapter 2

D2.4: Simulation and
emulation environment for the
Kompics P2P framework

2.1 Executive summary

In this deliverable we present the prototype of a simulation and emulation en-
vironment for the evaluation of peer-to-peer systems built using the Kompics
component framework. The prototype is released together with the Kompics
framework and can be downloaded from http://kompics.sics.se.

The evaluation environment comprises of (1) a Java-based domain-specific
language for specifying peer-to-peer experiment scenarios, (2) generic sup-
port for executing Kompics system in a reproducible simulation mode, (3)
a generic discrete-event simulator encapsulated in a Kompics component,
paired by an orchestrator component for the emulation mode, (4) system-
specific simulator components, and (5) component architectures and patterns
that enable the execution of Kompics P2P systems in either simulation, in
local real-execution/emulation mode, or in distributed deployment.

A few examples of experiment scenarios can be found and followed at
http://kompics.sics.se/trac/wiki/P2P. These include some scenarios for
experiments with Chord and Cyclon in both simulation and real-time execu-
tion mode, as well as some BitTorrent simulation experiments.

This evaluation environment was successfully used as a teaching tool in
the Distributed Computing, Peer-to-Peer and Grids course (ID2210) at KTH.
The framework was used as support for student assignments which required
the implementation and evaluation of P2P systems including a structured
overlay network, a gossip-based overlay, and a content distribution network.

8



CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.2 Contractors contributing to the Deliver-

able

KTH(P2) has contributed to this deliverable.

KTH(P2) KTH has implemented and tested and is still improving a pro-
totype of the simulation and emulation environment for P2P systems built
using the Kompics component framework. KTH gave a demonstration of
this evaluation environment at the P2P’09 conference in September 2009.

SELFMAN Deliverable Year Four (M37-M40), Page 9



CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.3 Overview of the evaluation environment

Kompics is a component model targeted at building distributed systems
by composing protocols programmed as event-driven components. Kompics
components are reactive state machines that are executed concurrently by
a set of workers. Components communicate by passing data-carrying typed
events through typed bidirectional ports connected by channels. Ports are
event-based component interfaces. A port type represents a service or a pro-
tocol abstraction. It specifies the types of events sent through the port in
each direction. Components may encapsulate subcomponents.

The Kompics runtime supports pluggable component schedulers. The
default scheduler is multi-threaded and executes components in parallel on
multi-core machines. We use a single-threaded scheduler for reproducible
simulation.

In this deliverable we present the prototype of a simulation and emulation
environment for the evaluation of peer-to-peer systems built using the Kom-
pics component framework. Kompics systems can be uniformly evaluated in
large-scale reproducible simulation and distributed deployment, using both
the same system code and the same experiment scenarios.

The evaluation environment comprises of (1) a Java-based domain-specific
language for specifying peer-to-peer experiment scenarios, (2) generic sup-
port for executing Kompics system in a reproducible simulation mode, (3)
a generic discrete-event simulator encapsulated in a Kompics component,
paired by an orchestrator component for the emulation mode, (4) system-
specific simulator components, and (5) component architectures and patterns
that enable the execution of Kompics P2P systems in either simulation, in
local real-execution/emulation mode, or in distributed deployment.

2.3.1 Defining an experiment scenario

We designed a Java domain-specific language (DSL) for expressing experi-
ment scenarios for P2P systems. We call a stochastic process, a finite random
sequence of events, with a specified inter-arrival time distribution. Here is
an example scenario composed of 3 stochastic processes:

StochasticProcess boot = new StochasticProcess() {{

eventInterArrivalTime(exponential(2000)); // 2s

raise(1000, chordJoin, uniform(16)); }}; // 1000 joins

StochasticProcess churn = new StochasticProcess() {{

eventInterArrivalTime(exponential(500));// 500ms

raise(500, chordJoin, uniform(16)); // 500 joins

SELFMAN Deliverable Year Four (M37-M40), Page 10
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ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

raise(500, chordFail, uniform(16)); }}; // 500 failures

StochasticProcess lookups = new StochasticProcess() {{

eventInterArrivalTime(normal(50)); // 50ms

raise(5000, chordLookup, uniform(16), uniform(14)); }};

boot.start(); // start

churn.startAfterTerminationOf(2000, boot); // sequential

lookups.startAfterStartOf(3000, churn); // in parallel

terminateAfterTerminationOf(1000, lookups);// terminate

1000 peers join in a space of 0..216. The inter-arrival time between 2
consecutive joins is exponentially distributed with a mean of 2s. A churn
process starts 2s after. Every 500ms on average (exp), a new peer joins or
an existing peer fails. In parallel with the churn process, 5000 lookups are
initiated uniformly around the ring (0..216) for keys in the first ring quadrant
(0..214). The experiment terminates 1s after lookups are done.

2.3.2 Experiment profiles

We can reuse the same experiment scenario definition to drive simulation or
local real-time execution experiments, as well as remote experiments where
the system nodes are distributed over the machines of a cluster (possibly
running ModelNet) or a testbed like PlanetLab or Emulab.

During simulation and local execution we model the network at the
message-level. In simulation, we execute the same system code built for
deployment. Calls for the current system time are trapped and the cur-
rent simulation time is returned. Simulation enables deterministic replay,
debugging, reproducible results, and large-scale experiments without loss of
accuracy.

We developed an infrastructure for deploying and executing distributed
experiments. Experiment scenarios are locally interpreted by a Master com-
ponent which coordinates a set of remote Slaves. Each Slave resides on a
machine available for the experiment and it manages a set of system peers.

2.3.3 Summary

The prototype is released together with the Kompics framework and can be
downloaded from http://kompics.sics.se. Examples of experiment sce-
narios can be found at http://kompics.sics.se/trac/wiki/P2P. These
include some scenarios for experiments with Chord and Cyclon in both sim-
ulation and real-time execution mode, as well as some BitTorrent simulation
experiments.
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CHAPTER 2. D2.4: SIMULATION AND EMULATION
ENVIRONMENT FOR THE KOMPICS P2P FRAMEWORK

2.4 Papers and publications

The simulation and emulation environment for the Kompics P2P framework
was demonstrated at the P2P’09 conference in Seattle, on Septemper 2009.

Building and Evaluating P2P Systems using the Kom-
pics Component Framework

Cosmin Arad, Jim Dowling, Seif Haridi.

A demonstration abstract [3] was published in the P2P’09 conference
proceedings. This demonstration abstract is included in Appendix A.2. The
abstract outlines the contents of the demonstration and briefly introduces
the Kompics component model and its simulation and evaluation framework
for peer-to-peer systems.

The demonstration was accompanied by a poster which is included on
the next page.

SELFMAN Deliverable Year Four (M37-M40), Page 12



Cosmin Arad (cosmin@sics.se)
Jim Dowling (jdowling@sics.se)
Seif Haridi (seif@sics.se)

Distributed Computer Systems Group
Unit for Software and Computer Systems
Information and Communication Technology

Computer
Systems
Laboratory

Experiment pro�les  
»  local / distributed deployment: 1 peer / OS process            

»  local / distributed execution: multiple peers / OS process 

»  local simulation: multiple peers / OS process 

»  the deployment code is executable in simulation mode
 - using a deterministic single-threaded component scheduler
 - replay debugging, reproducible results, large experiments

»  the same experiment scenario can be used for local simu-
lation, local execution, or distributed execution

Peer-to-Peer framework
»  reusable components and patterns
 - failure detection, bootstrap, monitoring
 - communication, web-based interaction

»  implemented overlay systems
 - Chord, Kademlia, Cyclon, T-Man, BitTorrent

»  P2P experiment scenario de�nition DSL
 - specify & compose “stochastic processes”
 - churn, system-speci�c actions, termination

»  generic P2P simulator / orchestrator
 - coupled with system-speci�c simulators

»  reusable latency and bandwidth models

»  Java implementation

Kompics components
»  are reactive / event-driven programming model

»  are concurrent / readily exploit multi-core architectures

»  are decoupled by publish-subscribe ports and channels

»  can be composed out of encapsulated subcomponents

»  form dynamically recon�gurable architectures

»  can form �exible fault supervision hierarchies

Documentation, examples, and source code at http://kompics.sics.se/
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Chord experiment scenario
StochasticProcess boot = new StochasticProcess() {{
  eventInterArrivalTime(exponential(2000));// ˜2s
  raise(1000, chordJoin, uniform(16)); }}; // 1000 joins
StochasticProcess churn = new StochasticProcess() {{
  eventInterArrivalTime(exponential(500)); // ˜500ms
  raise(500, chordJoin, uniform(16));     // 500 joins
  raise(500, chordFail, uniform(16)); }};  // 500 failures
StochasticProcess lookups = new StochasticProcess() {{
  eventInterArrivalTime(normal(50));     // ˜50ms
  raise(5000, chordLookup, uniform(16), uniform(14)); }};
boot.start();         // start
churn.startAfterTerminationOf(2000, boot); // sequential
lookups.startAfterStartOf(3000, churn);    // in parallel
terminateAfterTerminationOf(1000, lookups);// terminate

KOMPICSTH

Reactive Component Model for Distributed Computing



Chapter 3

D3.4: Optimizations for
self-managing global storage
services

3.1 Executive summary

The Global Storage Service developed within SELFMAN has been shown
to scale as a storage backend for complex applications such as Wikipedia.
Within this deliverable we present results from three different optimizations
to the service:

• Storage services deployed over multiple geographically distributed data
centers have recently been presented by companies such as Google, Ya-
hoo! and Amazon. Data centers typically exhibit a hierarchy, while the
SELFMAN storage service was originally developed for a flat topology.
We have adapted the Global Storage Service to work better for a hi-
erarchical structure by using a technique called prefix replication in
combination with a gossip-based ring management algorithm.

• Applications such as Wikipedia have a non-uniform distribution of both
storage and query workload. We have therefore investigated several
active load balancing algorithms for reducing the moved load. In addi-
tion, a passive algorithm was developed to improve the load imbalance
of the system by placing joining nodes according to the load.

• The distributed transaction algorithm used to guarantee strong consis-
tency on storage operation normally need six steps to execute a trans-
action. With the goal of reducing the latency and traffic necessary to
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perform a transaction, we have been able to improve the algorithm to
four steps in the common case.
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GLOBAL STORAGE SERVICES

3.2 Contractors contributing to the Deliver-

able

ZIB(P5) Worked on load balancing, replication and improvements to the
transaction layer on top of the structured storage.
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3.3 Results

This section reports on the optimizations performed to the global storage
service during the last phase of SELFMAN. We have mainly focused on
three sub-problems: load balancing, transaction performance and data center
detection and replication. The main results are summarized in this section
and accompanied by a short introduction to the respective publications in
Section 3.4.

3.3.1 Adapting the Storage Service to Data Centers

With the advent of cloud computing, applications and services are deployed
over multiple, geographically separated data centers to ensure availability.
Using the Global Storage Service in a multi-data center deployment is sub-
optimal due to several basic assumptions in Structured Overlay Networks. 1)
When a data center is unavailable the resulting node failures are correlated,
2) Bandwidth and latency between nodes inside a data center is often several
magnitudes better than between nodes in different data centers and 3) the
topology of a Structured Overlay Network is flat while a multi data center
architecture is hierarchical.

We have addressed these problem using three different methods. First,
we use item prefixes to be able to place replicas according to specific policies.
For example, a majority of replicas within the same data center improves
read/write performance. Second, we introduced a gossip-based ring mainte-
nance algorithm which improves the repair of a ring for correlated failures.
Finally, we developed a fully distributed data center detection algorithm to
minimize the number of unnecessary inter-data center links [25, 24].

Fig. 3.1 illustrates how replicas can be placed in a global ring structure to
ensure both, low latency and high availability for applications with different
geographical user communities, like several instances of Wikipedia in different
languages.

Fig. 3.2 shows the actual size and location (circles) and the estimated
locations of the data centers (diamonds) that were identified by our algorithm
after 1.5 log2 N communication rounds, with N being the number of nodes.
We simulated 100 nodes based on the Grid 5000 node distribution and plotted
all centroids identified by all nodes. After 1.5 log2 N rounds the error is
already relatively small.

SELFMAN Deliverable Year Four (M37-M40), Page 17
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Figure 3.1: Geographic distribution of replicas using prefix replication.

3.3.2 Load Balancing

The goal of load balancing is to improve the fairness regarding storage as
well as network and CPU-time usage between the nodes. Imbalance mainly
occurs due to: 1) non-uniform key distribution, 2) skewed access frequency
of keys and 3) node heterogeneity. First, by supporting range-queries as in
the SELFMAN global storage service, an order-preserving hash function is
used to map keys to the overlay’s identifier space. With a nonuniform key
distribution a node can become responsible for an unfair amount of items.
Second, keys are typically accessed with different popularity which creates
uneven workload on the nodes. The third issue, node capacity differences,
also impacts the imbalance. For example, a low capacity node gets overloaded
faster than a high capacity node.

A load balancing algorithm can have two modes: active, which triggers
a node already part of the overlay to balance with other nodes and passive,
which places a joining node at a position that reduces the overall system
imbalance. Without passive balancing, system churn continually deteriorates
the system balance since nodes are joining at random node IDs. We have
devised an algorithm for both passive and active mode which tries to place the
joining node at the best position depending on both storage and workload.
Figure 3.3 shows the imbalance for the passive/active algorithm with basic
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Figure 3.2: Geographic distribution of replicas using prefix replication.

hashing.
We continued to investigate the possible improvements to active load

balancing algorithms by adding global estimates [8]. Global estimates are
created through gossip and is including variations of the average load, the
standard deviation and both combined. This information was used to extend
Karger’s [11] active randomized load balancing algorithm. Figure 3.4 shows
the performance of the different algorithms using the load distribution from
all English Wikipedia page titles. We conclude that by using global estimates
we are able to move half the load or less as without the estimates. Further
results from this work is presented in [13]. We are currently improving the
simulation model by adding churn. In addition, we are also investigating a
new design that, unlike DHTs, separate the storage and routing layer [10].

3.3.3 Transaction Performance

In the transaction algorithm presented in Deliverable 3.1b and c, there are
six steps necessary to perform a transaction. We have improved this algo-
rithm such that in the common case only four steps are needed. For a fast
transaction validation, each node in the overlay permanently maintains a list
of r − 1 other nodes, that can be used as Replicated Transaction Managers
(RTMs). The location of these nodes could be according to the scheme of
symmetric replication. Once these nodes are located, they are maintained
through the use of failure detection. The short version of the protocol is
shown in Figure 3.5.
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Figure 3.3: Imbalance with decreasing levels of churn.

3.4 Papers and Publications

Gossip-based Topology Inference for Efficient Overlay Mapping on
Data Centers

Thorsten Schütt, Alexander Reinefeld, Florian Schintke, Marie Hoffmann.
Presented at the IEEE Internationl P2P Conference 2009 (see A.3, [25]).

We present a distributed algorithm for identifying the location of
data centers and their relative sizes. This topology information
can be used in P2P systems to improve the routing performance,
replica placement, or job scheduling.

The algorithm uses gossiping with local agglomerative clustering.
It is robust to failures and it correctly identifies outliers that are
caused, e.g., by temporarily overloaded nodes or network failures.
We present empirical results on the Grid 5000 testbed.

Self-Adaptation in Large-Scale Systems: A Study on Structured
Overlays Across Multiple Datacenters

Thorsten Schütt, Alexander Reinefeld, Florian Schintke, Christian Hennig.
Presented at the IEEE SELFMAN Workshop at SASO 2009. (see A.4, [24]).

With the recent focus on cloud computing a new type of system
topology came up: clusters in geographically distributed data-
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Figure 3.4: The systems load in standard deviation versus the amount of
load moved for variations of Karger with global estimates.
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Figure 3.5: Timeline diagram of a fast transaction commit.

centers that are connected by high-latency networks. Current
structured overlay networks (SONs) are not well prepared for
such environments with heterogeneous network performance and
correlated node failures.

We show how the beneficial features of SONs, namely selfman-
agement, scalability, adaptability, and fault tolerance can be ex-
ploited for multi-datacenter environments. We present selfadap-
tive replica placement policies and latency-optimized routing for
SONs on multiple datacenters. Empirical results of our gossip-
based ring maintenance protocol demonstrate its ability to cope
with correlated node failures and network partitioning.
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Enhanced Paxos Commit for Transactions on DHTs

Florian Schintke, Alexander Reinefeld, Seif Haridi, Thorsten Schütt. ZIB
Technical Report ZR-09-28 (see A.5, [23]).

Key/value stores which are built on structured overlay networks
often lack support for atomic transactions and strong data consis-
tency among replicas. This is unfortunate, because consistency
guarantees and transactions would allow a wide range of addi-
tional application domains to benefit from the inherent scalability
and faulttolerance of DHTs.

The Scalaris key/value store supports strong data consistency and
atomic transactions. It uses an enhanced Paxos Commit proto-
col with only four communication steps rather than six. This im-
provement was possible by exploiting information from the replica
distribution in the DHT. Scalaris enables implementation of more
reliable and scalable infrastructure for collaborative Web services
that require strong consistency and atomic changes across multi-
ple items.

Towards Explicit Data Placement in Scalable Key/Value-stores

Mikael Högqvist, Stefan Plantikow. Presented at the IEEE SELFMAN Work-
shop at SASO 2009 (see A.6, [10])

Distributed key/value-stores are a key component of many large-
scale applications. Traditionally they have been designed using
Distributed Hash Tables (DHTs). DHTs, however, setup a tight
coupling between the naming of nodes and assignment of keys to
nodes which limits application control over data placement.

We propose using small amounts of shared state in a semi-centralized
architecture for more flexible data placement by introducing ex-
plicit mapping between keys and nodes via an indirection layer
(blockspace). Our design is based on a membership layer that
provides O(1) routing thereby targeting interactive applications.
We evaluate a centralized and decentralized approach showing
that both have relatively low overhead and provide efficient load
balancing.

SELFMAN Deliverable Year Four (M37-M40), Page 22



CHAPTER 3. D3.4: OPTIMIZATIONS FOR SELF-MANAGING
GLOBAL STORAGE SERVICES

Active/Passive Load Balancing with Informed Node Placement in
DHTs

Mikael Högqvist, Nico Kruber. To be presented at the IFIP International
Workshop on Self-Organizing Systems (IWSOS) 2009 (see A.7, [9])

Distributed key/value stores are a basic building block for large-
scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload
distribution can be non-uniform.

We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that
adapt to both the key and workload distribution. The algorithms
are evaluated in a simulated environment, focusing on the impact
of load balancing on scalability under normal conditions and in
an overloaded system.

Generic Self-Healing via Rejuvenation: Challenges, Status Quo,
and Solutions

Artur Andrzejak. Presented at the IEEE SELFMAN Workshop at SASO
2009 (see A.8, [1])

Software rejuvenation - in its simplest form a restart of a compo-
nent or a program - is an efficient and universal approach for ad
hoc healing of certain complex systems such as SOA components,
telecommunication systems, and servers in data centers. Despite
of its advantages this technique has not been widely deployed in
other scenarios. The reasons are several shortcomings including
loss of application availability and loss of working data due to
a restart, and a lack of standardized support in operating sys-
tems, middleware, and component frameworks. In this position
paper we argue that even partial remedies to these problems can
turn rejuvenation into a powerful self-healing tool applicable to a
larger variety of scenarios. We discuss rejuvenation-related prob-
lems, overview existing solutions, and propose a set of efficient
architectural approaches which can pave the way to a universal
adoption of this technique.

DHT Load Balancing with Estimated Global Information

Nico Kruber. Master Thesis at Humboldt University Berlin, 2009 (see A.9,
[13])
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One of the biggest impacts on the performance of a Distributed
Hash Table (DHT), once established, is its ability to balance load
among its nodes. DHTs supporting range queries for example suf-
fer from a potentially huge skew in the distribution of their items
since techniques such as consistent hashing can not be applied.
Thus explicit load balancing schemes need to be deployed. Sev-
eral such schemes have been developed and are part of recent
research, most of them using only information locally available in
order to scale to arbitrary systems.

Gossiping techniques however allow the retrieval of fairly good
estimates of global information with low overhead. Such infor-
mation can then be added to existing load balancing algorithms
that can use the additional knowledge to improve their perfor-
mance. Within this thesis several schemes are developed that use
global information like the average load and the standard devia-
tion of the load among the nodes to primarily reduce the number
of items an algorithm moves to achieve a certain balance. Two
novel load balancing algorithms have then been equipped with
implementations of those schemes and have been simulated on
several scenarios. Most of these variants show better balance re-
sults and move far less items than the algorithms they are based
on.

The best of the developed algorithms achieves a 15-30% better
balance and moves only about 50-70% of the number of items its
underlying algorithm moves. This variation is also very robust to
erroneous estimates and scales linearly with the system size and
system load. Further experiments with self-tuning algorithms
that set an algorithms parameter according to the systems state
show that even more improvements can be gained if additionally
applied. Such a variant based on the algorithm described by
Karger and Ruhl shows the same balance improvements of 15-30%
as the variant above but reduces the number of item movements
further to 40-65%.
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D4.5: Third report on
self-configuration support

4.1 Executive summary

This deliverable reports on a preliminary study towards a framework and in-
frastructure for component deployment in a WAN-based unstructured over-
lay network. It first describes a NAT-resilient gossip peer-sampling protocol
which is key to build unstructured overlays in a realistic Internet environ-
ment, with multile forms of NAT coexisting. It then describes a peer-to-peer
middleware, called Salute, which aims to support the concurrent deployment
of distributed applications on heterogeneous computing resources distributed
over the Internet. Salute combines new and well-known gossip protocols to
build and maintain its application supporting infrastructure.
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4.2 Contractors contributing to the Deliver-

able

INRIA(P3)has contributed to this deliverable.
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4.3 Results

The work reported in this deliverable finds inspiration from the Managing
Clouds manifesto [4], which describes the challenge of building a general-
purpose framework for delivering and supporting in a self-organized fashion
distributed applications running independently over a large scale dynamic
pool of computing resources. The Managing Clouds paper also highlights key
elements of such a framework: application suite descriptions, whose purpose
is “to define what applications are running on the network and what resources
should be assigned to these applications”, and a middleware that is “respon-
sible for keeping the system in a state that corresponds to the description”,
and that typically should comprise the following services: a bootstrapping
service, responsible for starting up and application from scratch, a chrun
handling service for assisting the application in handling chrun and failures,
and a slicing service for assigning the right subset of nodes to aplications,
according to application requirements specified in application descriptions.

In this report we present two pieces of works that contribute to the Man-
aging Clouds challenge. The first one aims to build an (unstructured) over-
lay network in a realistic Internet environment with NAT (Network Address
Translation) devices. Such an overlay can in turn be used as the network
basis for delivering applications on clouds (i.e. dynamic pools of comput-
ing resources). The second one presents indeed a preliminary study towards
a peer-to-peer middleware that supports the deployment and execution of
independent applications on an unstructured overlay network. The central
function of our peer-to-peer middleware, called Salute, is a dynamic slicing
service that relies on a peer sampling service to maitain the overlay network
of computing resources.

4.3.1 NAT-resilient gossip peer-sampling

Gossip protocols have received an increasing attention over the past decade
because they are robust, simple and highly resilient to churn. Gossip peer-
sampling protocols are extensively used to build and maintain unstructured
overlay networks. They typically provide peers with a random sample of the
network and maintain connectivity in highly dynamic settings. They rely on
the assumption that, at any time, each peer is able to establish a communi-
cation with any of the peers of the sample provided by the protocol. Yet, this
ignores the fact that there is a significant proportion of peers that now sit
behind NAT devices (70% is a fair ratio in the current Internet), preventing
direct communication without specific mechanisms. This has been largely
ignored so far in the community. Our experiments (reported in Appendix
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A.10) demonstrate that the presence of NATs, introducing some restrictions
on the communication between peers, significantly hurts both the random-
ness of the provided samples and the connectivity of the p2p overlay network,
in particular in the presence of high rate of peers arrivals, departures and
failures (aka churn).

To deal with these issues we have developed a NAT-resilient peer sampling
protocol, called Nylon, which is described in Appendix A.10. Nylon is a
fully decentralized protocol, that spreads evenly among peers the extra load
caused by the presence of NATs (to relay messages to nodes located behind
NAT). Nylon also ensures that a peer can always estbalish a communication,
and therefore intiate a gossip, with any peer in its sample. This is achieved
through a variant of the hole punching method (which is traditionally used
to traverse NATs) that establishes a path of relays (rendez-vous peers, i.e.
public peers that can exchange messages with both a source and a destination
peer) between peers.

Simulation results show thatNylon is highly resilient to churn (it tolerates
the departure of 50% of the peers without partitioning), and that it fulfills its
objective of evenly spreading the overhead induced by NATs between public
and natted peers.

4.3.2 Adaptive deployment over unstructured overlays

The Salute framework manages the deployment of multiple independent ap-
plications over an unstructured overlay network (the reserve overlay), built
and maintained by a gossip peer sampling protocol. Essentially, Salute pro-
vides each application with a dynamic subset of of nodes from the underlying
overlay network, called a slice, where the application can be deployed and
executed.

A request to deploy an application with Salute contains a slice specifica-
tion, which describes the required number of nodes in the slice, together with
their characteristics (capacities and availability profile). Salute comprises
two key elements: a resource reservation service and a resource profiling ser-
vice. The resource profiling service provides a categorization of nodes based
on their capacities and their availability history. The resource reservation
service itself relies on three services:

• The request propagation service, that broadcasts the reservation re-
quest among the nodes in the reserve overlay, so as to book enough
resources to build the requested slice (a booked peer cannot belong
to more than one slice). The request propagation service is typically
implemented by an epidemic broadcast.
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• The counting service is used during the lifecycle of a slice: it is used
during request propagation to decide when the requested slice is com-
plete, and during the lifetime of the slice in order to detect if the slice
size falls under a certain threshold because of churn. The counting
service is typically implemented using a gossip aggregation protocol.

• The peer sampling service in charge of maintaining the supporting over-
lay and the slices.

The protocol that implements the resource reservation service builds, mon-
itors and maintains dynamic slices matching requested slice specifications.
The reservation protocol also avoids deadlocks between concurrent slice re-
quests by means of a priority mechanism.

The Salute framework, presented in more detail in Appendix A.11, consti-
tutes only a preliminary design. We have not evaluated it yet, but Appendix
A.11 discusses the evaluation criteria.
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4.4 Papers and publications

The work on NAT-resilient gossip peer-sampling reported in this deliverable
has been published as the following paper:

• Anne-Marie Kermarrec, Alessio Pace, Vivien Quéma and Valerio Schi-
avoni. NAT-resilient Gossip Peer Sampling. 29th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE Computer
Society, June 2009.
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D5.9: Distributed mobile
application on gPhone

5.1 Executive summary

This deliverable presents the development of DeTransDrawid, a collaborative
drawing application showcasing the Beernet P2P network with transactional
support [15]. DeTransDrawid allows several users to simultaneously edit the
same drawing while guaranteeing both the coherence of the drawing and high
performance of the application. We call the resulting application DeTrans-
Drawid since it is based on the original DeTransDraw application presented
in Appendix A.12. This deliverable describes the work done to implement
DeTransDrawid on the gPhone, which in our case is an HTC Magic smart-
phone running Google’s Android operating system. We explain each step,
problem and choice taken during the development of the application.

A major problem we have had to face is the separation between Oz and
Java. The application is running half in a Mozart emulator and half with
the Android API. The communication between both parts is an important
key factor for the performance of the application. The more communications
there are, the worse is the performance.
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5.2 Contractors contributing to the Deliver-

able

UCL(P1) has contributed to this deliverable.

UCL(P1) has ported the Mozart environment to Android and implemented
a collaborative graphic drawing application in Mozart which runs on the An-
droid operating system.
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5.3 Introduction

We present the development of DeTransDrawid, a distributed, decentralized,
interactive application for collaborative drawing, running on an Android op-
erating system. We first present the specification that we want this applica-
tion to fulfill, essentially a coherent state and good responsiveness and how
to achieve them. We move on to describe the architecture of the solution
retained and the structure of the Android target platform. We then high-
light some of the most interesting parts of the implementation. Finally, we
conclude by showing what remains to be done in term of polishing in order
to provide a fully functional application.

SELFMAN Deliverable Year Four (M37-M40), Page 33



CHAPTER 5. D5.9: DISTRIBUTED MOBILE APPLICATION ON
GPHONE

5.4 Specification

DeTransDrawid is a collaborative drawing tool that can be used by several
users simultaneously on the same drawing. The operation of the tool is
explained in Appendix A.12. In this section we explain why DeTransDrawid
is an interesting case study for the Beernet transactional storage.

As a distributed collaborative and interactive drawing application, De-
TransDrawid has two goals: (1) keeping a coherent state and (2) being re-
sponsive. These two goals seem to be in conflict as the obvious solution for
coherent state is to do a time-consuming global lock on the state to be mod-
ified while the obvious solution for responsiveness is to optimistically allow
the user to do any modification she wants without regard for coherence.

In DeTransDrawid the drawing is made of a set of shapes. Each shape
has its own set of parameters such as position, size, color, etc. An edit cycle
consist of the user selecting a first shape, repeatedly modifying parameters
and selecting more shapes and finally deselecting all shapes. For the drawing
to remain coherent for all users, each edit cycle is made into a transaction
on the global, distributed storage.

The tension between the two goals is now converted into a choice of
scheduling policy. An optimistic scheduling will give adequate reponsiveness
and coherence but at the price of aborted transactions, which can be very
frustrating for the user when her very complex transaction involving lots of
different shapes and fine-tuning of the parameter is aborted in favor of a
trivial change to one shared shape by another user. A pessimistic scheduling
will of course frustrate the user that will have to wait for locks before she
can make any change, as insignificant as it could be (e.g., correcting a typo).

The transactions used in DeTransDrawid are both optimistic and pes-
simistic. They are optimistic in that the user is immediately allowed to
select and modify shapes and her edits can be aborted. They are pessimistic
in that as soon as the user select a shape, the correponding lock is requested
and edits are aborted as soon as a lock is known to be unavailable. Figure
5.1 shows the precise state diagram. A user is initially holding no locks and
therefore in the No lock state. When she selects some shapes, she sends re-
quests for the corresponding locks and waits for them in the Asking for locks
state. On abort, all locks are released ans she returns to the No lock state.
If all locks are received, she moves on to the Got locks state from which she
can commit her transaction (by unselecting all shapes) and return to the No
lock state or ask for more shapes to be locked and return to the Asking for
locks state, re-exposing herself to the risk of an aborted edit.

This optimistic-with-eager-locking approach is complemented by visual
feedback to the user which can therefore know wheter the edit he is making
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Figure 5.1: State diagram of a user

is still susceptible to rollback. This feature puts the user in control. He
can decide to optimistically edit a shape to correct a simple mistake without
delays or to pessimistically wait for the guarantee to be able to complete a
major reorganisation of the drawing. Figure 5.2 shows the visual feedback.
The user on the left as just selected the big rectangle and can optimistically
modify it since the handles for it are red. However we know that this trans-
action will be aborted as the user on the right as the lock for this rectangle
(as indicated by the black handles).

Finally, it was decided to structure the participants in two classes, since
the cost and feeble bandwidth of smartphones makes them bad candidates for
routing, only computers are participating as full peers. The smartphones at-
tach themselves to one of these peers and do all their communication through
it. However, this link is as reconfigurable as the links in the P2P network
itself and the phone can reconnect to other peers should its connection be
broken.

5.5 Architecture

Since the Beernet framework provides decentralized, replicated storage with
a transactional layer supporting both eager-locking and notification of the
locking status, it was choosen as the underlying platform for DeTransDrawid.
The application is thus written in Oz and runs on the Mozart platform.
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Figure 5.2: On the left, the user is in Asking for locks state. On the right,
the user is in Got locks mode.

DeTransDrawid was ported to two different platforms. The first one is
traditional desktop computers and similar platforms. The second is Android
[20], the new cell-phone operating system developed by Google. Although
based on a Linux kernel, this operating system is quite different from a
standard Linux distribution.

An Android application is structured as a set of user visible screens (called
tasks), background services, content providers, and event listeners. All of
them are instantiated by the system based on user requests or environmen-
tal changes. All of them can be destroyed at certain points and recreated
later without any visible change to the user. This is not transparent for the
developer. As an example, Figure 5.3 illustrates the lifecycle of a task.

The current version of DeTransDrawid is made of a main task showing the
drawing and a few accessory tasks to allow the user to connect to a drawing.

Upcoming versions should allow the application to be launched from other
contexts such as the user clicking a link in a webpage or email, on receiving
a special text message or by scanning special barcodes.
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Figure 5.3: State diagram of an Android task
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5.6 Implementation

In the very beginning of the development of the application, we first needed
to port the Mozart environment on the platform. The application will be
architecture in a Model-View-Controller pattern. The model and controller
will be implemented in Mozart environment on top of the Beernet and the
view will be displayed thanks to the Android API.

DeTransDrawid uses the Beernet ring. It first connects to a node of the
ring and use it for network communication. DeTransDrawid may connect to
an existing node of the ring or create a new node and join the ring. The first
example appears in the Figure for node P3 while the second is like node P7.
As you can see on Figure 5.4, only the Oz part receives network messages.
The GUI part is network independent. There is communication between the
logic part and the ring, and between the logic part and the GUI part.

Figure 5.4: Structure of DeTransDrawid

The desktop version of DeTransDrawid is implemented in Oz using QTk
for the graphical user interface and Beernet for the decentralized storage and
transactional support.

The Android version of DeTransDrawid is implemented in Oz but since
Tk is not available on Android, the GUI part has to be rewritten. The only
supported language for user interfaces on Android is Java, running on the
Dalvik virtual machine.

Porting DeTransDraw to Android thus required the following subtasks:
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• Porting the Mozart environment to Android. This in turn was made
more difficult by the following constraints:

– Need to cross-compile the executable. The Google supported way
to develop native application for the Android platform is only by
using a specific cross-compiler. The build system for Mozart had
only some support for cross-compilation for the Windows target
platform.

– Need to integrate in the Android build-system. Developement
of native application for Android is only possible by using the
Google provided build infrastructure which relies on non-recursive
makefiles.

While this is a more modern approach, it required adapting the
whole build infrastructure of the Mozart platform.

– Lack of a complete implementation of C++. The supported lan-
guages for native developement on Android are C and C++ but
the C++ language is provided with extremely minimal library
support, no runtime type information and no exception support.

– Deficient loader. The loader of native application on the An-
droid platform, part of the Bionic C library, is still in its infancy.
This implies that certain constructs generated by the compiler are
unusable and need to be worked around. It also means that dy-
namic library support is extremely limited. Mozart uses dynamic
libraries to reduce it’s startup time by offloading many modules to
external libraries. Another consequence of this defficient linker is
the requirement to use Android version 1.5 or better. The linker
in previous versions is completely unusable.

• Creating a bridge to access the Java API for user interfaces from an
Oz application.

This bridge makes available the complete Java API accessible through
reflection in the Java language by providing an Oz API at the same level
of abstraction. Internally, all operations are serialized, the communi-
cation between the Oz virtual machine and the Java virtual machine
is done over a TCP link and the two garbage collectors are made to
cooperate.

• Developing a GUI for DeTransDraw using the primitives provided by
the Java API. Since the level of abstraction in QTk is much higher than
the one provided by the Java API of Android for the developement
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of user interfaces, the GUI of DeTransDraw is less powerful on the
Android version than on the desktop version. For now the Android
version offers a read-only access to the drawing. Also, as a concession
to speed and due to the parallel developement of all these parts, some
elements of the GUI are developed directly in Java and not in Oz.

5.6.1 Porting Mozart on Android

The Mozart environment’s porting was the first step of the development
of DeTransDrawid. To allow Mozart interacting with the device, we need
communication between Mozart and the Java API.

The application starts Mozart emulator and open a port to allow commu-
nication between both parts. We have created a project named javaaccess
which implements the reflection mechanism for the communication.

We have developed the application in Eclipse environment, with the An-
droid Development Toolkit (ADT) plugin. To run an application you then
need two projects.

The first project is a Java project that we have called javaaccess. You
can see on Figure 5.5 how to create this project.

Figure 5.5: Creation of javaaccess project in Eclipse

You also need the Android project that we have called DeTransDrawId.
You can see on Figure 5.6 how to create this project.
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Figure 5.6: Creation of DeTransDrawId project in Eclipse

The result of the creation of this project is shown on figure 5.7.
To run Mozart on the device, we need to use the Java API to copy the

cross-compiled environment on the device and then to run it before trying
to use it. The first part is implemented in ZipExpander.java file. While the
second part is implemented in GenericApplication.java file. The expander is
started with the following command :

ZipExpander.expand(dir, getAssets().open("emu.zip"));

The file emu.zip contains the cross-compiled environment of Mozart. We
put it in the assets of the project to ensure that the application will always
find the environment to copy, unzip and run it on the device. After the
environment has been unzipped from this file, Mozart emulator is started
with the following commands :

ServerSocket s = new ServerSocket(4545);

File emu = new File(dir, "ozEmulator");

if (emu.exists()) {

ozP = Runtime.getRuntime().exec(

new String[] { emu.getCanonicalPath(), "-init",

new File(dir, "Init.ozf").getCanonicalPath(), "-u",

"x-oz://system/android/Main.ozf", "--" },
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Figure 5.7: Eclipse environment after creating both projects
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new String[] {

"OZ_ANDROID_PORT=4545" }, dir);

}

5.6.2 Communication Oz-Java

When there are interactions from Mozart environment, the classes and ob-
jects are brought to Mozart in a lazy way. For example the following com-
mand :

{{{J.c ’java.lang.System’}.get err}.p println(

string("ELSE *:* Hello World/Activity."#{Label Msg}))}

The first statement is {J.c ’java.lang.System’} which mean that we want
the access the System class from java.lang package. For example, if we got
the result in a variable named R1, the second statement is {R1.get err}. We
want to get the object stored in the err variable from the class. This new
result, R2, is now part of the third statement which is {R2.p println(Str)}.
The method println from err is now called with the parameter Str. The
variable Str is the Oz string

"ELSE *:* Hello World/Activity."#{Label Msg}

which needs to be converted to a Java string by the reflection process. In
order to help this convertion, we need to explicitly note that Str is a string
with string(Str) statement. This complex command in Oz correspond in Java
to this statement (i.e : with onCreate method as label) :

System.err.println("ELSE *:* Hello World/Activity.onCreate");

To create a Mozart application on the device, you need a file named
Main.oz. This file has to be a functor importing at least ’x-android:///J’
which is a Java object to access the Java part. It also need to export the
MainActivity procedure that will be called when the application is created
from Android.

functor

import

J at ’x-android:///J’

export

MainActivity
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The MainActivity procedure is called every time the Java part of the
application notifies the Oz part with a handler. The procedure get the Msg
as parameter. The code should look like that :

fun{MainActivity Msg}

case Msg

of onCreate(!BundleC#SavedInstanceState) then

...

[] onOwnMethod1(_#Var1) then

...

[] onOwnMethod2(_#Var2 _#Var3) then

...

[] onDestroy() then

...

[] onStop() then

...

else

{{{J.c ’java.lang.System’}.get err}.p

println(string("ELSE *:* Hello World/Activity."#{Label Msg}))}

end % End of case

void(x)

end % End of MainActivity

Here is as example, the onDestroy method from Java part. It will called
the MainActivity procedure thanks to the handler h and invoke method :

@Override

public void onDestroy() {

super.onDestroy();

try {

h.invoke(this, GenericActivity.class.getMethod(

"onDestroy",

new Class[] {}),

new Object[] {});

} catch (Throwable e) {

throw new RuntimeException(e);

}

}

5.6.3 Graphical toolkit for Android

While developing we wanted to have the most generic Oz application. We first
started by implementing logic and graphical parts in Oz. The graphical user
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interface (GUI) part was created thanks to a QTk like toolkit. It simplifies
the way to create application for Android because the GUI part is just the
same as using QTk.

But when we have been able to use our toolkit for GUI in Android, we
have noticed that we had a big performance issue. Creating the GUI from
Oz part takes about between 10 and 20 seconds. As in this example :

W/System.err( 310): Hello World/Activity.onCreate

W/System.err( 310): ’begin : ’#8080# ’miliseconds’

D/dalvikvm( 310): GC freed 8599 objects / 494272 bytes in 150ms

D/dalvikvm( 167): GC freed 5510 objects / 321824 bytes in 225ms

D/dalvikvm( 310): GC freed 6295 objects / 499288 bytes in 149ms

W/System.err( 310): ’Creation time for canvas+window : ’#11.57#

’ seconds’

As this part is only executed once, it was still possible to create applica-
tion in Oz part but the main concern appeared when drawing objects on the
canvas :

W/System.err( 310): going through onDraw

W/System.err( 310): ’begin : ’#75870# ’miliseconds’

W/System.err( 310): ’Creation time for both rectangles : ’#0.81

W/System.err( 310): ’Time for setARGB : ’#0.81

W/System.err( 310): ’Time for drawing the object : ’#0.17

W/System.err( 310): ’begin : ’#79650# ’miliseconds’

W/System.err( 310): ’Creation time for both rectangles : ’#0.81

W/System.err( 310): ’Time for setARGB : ’#0.82

W/System.err( 310): ’Time for drawing the object : ’#0.17

W/System.err( 310): ’Time for the complete draw : ’#3.95

The time for creating an object is about two seconds and it growth linearly
with the number of objects. In the example above, it took about four seconds
to complete the drawing part. The code used for this benchmark is :

local Begin = {Property.get time}.total in

{System.show ’begin : ’#Begin#’miliseconds’}

RectF1 = {RectFC.new i(float({IntToFloat (Object.xb+1)})

float({IntToFloat (Object.yb+1)})

float({IntToFloat (Object.xe-1)})

float({IntToFloat (Object.ye-1)}))}

RectF2 = {RectFC.new i(float({IntToFloat Object.xb})

float({IntToFloat Object.yb})
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float({IntToFloat Object.xe})

float({IntToFloat Object.ye}))}

{System.show ’Creation time for both rectangles : ’#

{Float.’/’ {IntToFloat {Property.get time}.total-Begin} 1000.0}}

end

local Begin = {Property.get time}.total in

{P1.p setARGB(int(255) int(Red1) int(Green1) int(Blue1))}

{P2.p setARGB(int(255) int(Red2) int(Green2) int(Blue2))}

{System.show ’Time for setARGB : ’#

{Float.’/’ {IntToFloat {Property.get time}.total-Begin} 1000.0}}

end

local Begin = {Property.get time}.total in

case Object.form

of rect then {Canvas.p drawRect(RectF2 P2)}{Canvas.p drawRect(RectF1 P1)}

[] oval then {Canvas.p drawOval(RectF2 P2)}{Canvas.p drawOval(RectF1 P1)}

[] text then {Canvas.p drawText(string(Object.text)

float({IntToFloat Object.xb})

float({IntToFloat Object.yb}) P1)}

else {{{J.c ’java.lang.System’}.get err}.p

println(string("error unkown object to draw"))}

end

{System.show ’Time for the complete draw : ’#

{Float.’/’ {IntToFloat {Property.get time}.total-Begin} 1000.0}}

end

What we can understand from this code is that there is too much commu-
nication between Mozart and Java leading to multiple environment switches.
In the first part, the creation of the rectangles is realized in six steps. The
conversion of floats from Oz to Java in order to create the instance of Rect-
angle, the creation of the instance and the transport from Java to Oz of the
instance. These three steps are repeated twice. It takes almost a second
to compute this part. We experience the same duration for the setARGB
method.

The performance issue would only be a minor problem if we were using
most of the graphical libraries provided by the platforms. But with the Java
API provided for Android, we have to face with another kind of library.
The way the GUI works in Android is by refreshing the screen regularly.
But communication between Oz and Java parts happens while the screen is
refreshed. Thus, the drawing part has to be processed a lot of time. Which
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means that the refresh time also grows linearly with the number of objects
to draw.

5.6.4 Application structure

In the Oz part, the following network messages may come from the ring :

• (fingerChanged(... ... unit)#...)

• (join(≤ N ≥)#...)

• (leader#...)

• (’lock’(...)#...)

• (msg(locked(,,,))#...)

• (msg(update(,,,))#...)

• (onRing(...)#...)

• (’prepare’(id:... item:item(,,,) tid:...)#...)

• (prepared(key:... rkey:... tid:...)#...)

• (predSetChanged(,,,—,,, nil)#...)

• (rangeChanged(... ...)#...)

• (registerRTM(... tid:...)#...)

• (succChanged(... ...)#...)

• (succListChanged(,,,—,,, ,,,—,,,)#...)

• (update(id:... item:item(,,,) tid:...)#...)

• (voteAck(key:... rkey:... rtm:... tid:... vote:prepared)#...)

But we are only interested in message corresponding to the pattern msg(M).
We only have these messages :

• (msg(locked(dt))#...)

• (msg(update(id:... item:item(,,,) tid:...))#...)
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The message that is interesting for the state of the application is update
which can be for an object or for the list of object. If the id is dt, it means
that an object has been created or deleted. When the id is a number, an
object has been modified. In both cases, we need to update the status of the
application.

The logic part need to interact with the graphical part when update hap-
pens on the system. This communication works using the reflection mech-
anism. When Java gets the canvas to draw something on the screen, it
propagates the event through Oz. The following methods are provided for
this communication:

• draw(...) : object to draw (creation or modification)

• unDraw(...) : object that has to be removed

The first method is the reaction to the messages update(id:dt ....) and
update(id:... ...). If dt is updated, a new object has to be drawn. The logical
part will find the new objects and then ask the GUI part to draw this new
object.

If an object is modified, we got the second messages and the application
draw the same object but with different values. The GUI part will erase the
old information for the object with the new ones.

If an object is removed, we need to notify the GUI part with the unDraw
method. The GUI stores the state of objects that are currently drawn. When
the method unDraw is called, the GUI will remove this object from the Java
store.

For the GUI part, we need to notify the logic part when new objects
are drawn from the device, when objects are moved and when objects are
removed. The two last operations need the selection of objects, the logic
part have to be notified in order to lock the selected object. The following
methods are provided for this communication:

• onConnect(String ticket) : when the user asks to connect to a ticket

• onSelect(Int id, ...) : reaction to the selection of an object

• onDraw(...) : refresh drawing on the screen

• newObject(...) : reaction to the creation of an object

• updateObject(...) : reaction to the modification of an object
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Figure 5.8: DeTransDrawid state diagram

These methods propagate from Java to Oz the information that the ap-
plication state have been modified.

Figure 5.8 shows the state diagram of DeTransDrawId.
In the initial state, the application starts. The user needs to press menu

button to access to functionalities of the application. The connect button
will help to call onConnect method. It means that the application will try
to connect to the ring thanks to a ticket that the user should enter in the
textfield. If the connection is established, the application goes to idle state.
In case where something wrong happened, the application exit abruptly.

The idle state is in Java and change state only if something happens
there. Most of the time, the current state switches from idle to in Oz-on
draw. This cycle allows the logic part to notify the Java part if objects have
been created or removed. As we know that Android is constantly refreshing
the screen, we know that the application will be sufficiently responsive to
give visual feedback to application updates.

When interaction happens from Android user, there are other method
calls. If the user draws an object, the newObject will propagate from Java to
Oz in order to logically create this new item. Then, the application simply
returns to Java. During this method, DT and a new id are locked to commit
the creation of the object. The lock is released as soon as the change is
commited.
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The most interesting part of the application is in the last methods :
onSelect and updateObject. When the user want to modify the position of
an object, he needs to change from drawing mode to select mode. This is
possible by going through the menu and push the select button. A click on an
object will try to select it. While waiting for result about the lock, red dots
will appear on the object. The application is now in in Oz-onSelect state
waiting for the lock. If the lock is accepted, the application stores the lock
and returns to Java part with setLocked method. Otherwise, the application
cancels changes and returns to Java with setLockRefused method.

The lock begins in in Oz-onSelect state and is still active in in Java-
setLocked. When Java parts has been notified about the lock, the application
returns to idle state keeping the lock. Now the object appears with black
dots as visual feedback that the lock has been accepted. The lock is released
after the application is ready to commit the changes (when the user has
clicked outside the object).

To release the lock, the first step is to propagate updateObject from Java
to Oz. The logic part will then commit the changes, release the lock and
then returns to Java part in idle state.

5.6.5 Screenshots of the applications

Figure 5.9 shows the application running on a desktop while Figure 5.10
shows it running on the Android platform. For evident reasons of readability,
the picture is a screenshot of the application running in an emulator rather
than a photograph of it running on the actual device.

5.6.6 Locking mechanism

In DeTransDrawid, the application also works over transactions. As the GUI
part is separated from the logic part, transacations are implemented in Oz
reusing the work done for DeTransDraw.

The first use is for loading the system when joining a Beernet ring. In
procedure LoadDT, we only need to read data. We first get the list stored
with key DT. Then, we get the object corresponding to each value in the list.

Here is the method :

%%% Post : Load the work already done if it exists

LoadDT =

proc{$}

S

ProcS = proc {$ Li}
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Figure 5.9: DeTransDraw running on the desktop

Figure 5.10: DeTransDraw running on Android
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case Li of nil then skip

[] L|R then M

in

M = {GetVal L}

{DrawObject M}

{ProcS R}

else {System.show ’bug’}

end

end

in

{Conn.exTrans Trans _}

S = {GetVal DT}

{ProcS S}

LastDT:=S

end

The DHT is accessed with the procedure GetVal, with the code :

%%% Pre : Key is the key of the value to get

%%% Post : Val will store the value corresponding to Key

GetVal =

proc{$ Key Val}

Trans = proc {$ Obj}

{Obj read(Key Val)}

end

in

try

{Conn.exTrans Trans _}

catch _ then Val = error

end

end

When we create an object, we need to access the DHT to add the object
and the id the list. The method in DeTransDraw is :

%%% Pre : Id is the key of the new object

%%% Val is the value of the new object

%%% Post : The new object is added in the DHT

AddItem =

proc{$ Id Val}
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DTval

KeyRing % lock on DT

in

DTval = {GetVal DT}

{Conn.locks [DT Id] KeyRing}

if KeyRing == error then

thread

{Delay 500}

{System.show ’retrying’}

{AddItem Id Val}

end

else

LastDT := {Append DTval [Id]}

{Conn.commit KeyRing [DT#@LastDT Id#Val]} %%% Commit new value

end

{Conn.reader Id}

end

The method asks the lock for keys DT and Id to get the list and create
the new key. The KeyRing is the key to commit new values for DT and Id.

The method ends with {Conn.reader Id} statement which means that the
application is now a reader of Id key in the DHT. Everytime this key is locked
or updated, the application receives msg(locked(...)) and msg(update(..))
messages.

If the lock is refused, we can retry to ask for the lock until we are able
to add the item. Indeed, this operation does not modify any existing object.
We are only adding a new value to the list and a new key and value in the
DHT.

When objects are selected and updated, we also need to lock them. They
are first locked when there are selected and when they are unselected, the
lock is released. Here is the method to release a selected object :

%%% Pre : Id is the key of the object to release

%%% Post : Release the object with the key Id and commit the changes

ReleaseObject =

proc{$ Id}

Val#_ = {Dictionary.get VDict Id}

Key = {Dictionary.get KeyDict Id}

in

{Conn.commit Key [Id#Val]}

Selected := {List.subtract @Selected Id}

end
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5.7 Conclusion and future work

In its current incarnation, the DeTransDraw application is little more than
a proof-of-concept. However, most of the major technical problems are now
solved. What remains to be done is a better integration of the application in
its environment, particularly on Android. Some features such as removing
object, multi-selection and changing size still needs to be implemented. The
application also needs some end-user polishing, e.g., an application icon and
availability on the Android market.

DeTransDraw and DeTransDrawid already show that an interactive appli-
cation, running fully distributed on small embedded platforms can be made
efficient, fast and reliable thanks to the principles outlined in the SELFMAN
project.
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5.8 Papers and publications

Decentralized transactional collaborative drawing

Jérémie Melchior, Boris Mej́ıas, Yves Jaradin, Peter Van Roy, Jean Vander-
donckt. Submitted to COPS’09 (see Appendix A.12).

This paper proposes a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with replicated stor-
age. As a consequence, there is a gain in fault-tolerance and the transac-
tional protocol eliminates the problem of network delay improving usability
and network transparency. The same technique can be used for collaborative
text editing and other collaborative tasks.

Decentralized transactional collaborative drawing - Demo

Boris Mej́ıas, Jérémie Melchior and Yves Jaradin. Demonstrator at Collab-
oration Meeting for FP6 and FP7 projects. (see Appendix A.13).

This is a description of the demonstration we gave of DeTransDraw in the
Internet of Services 2009 Collaboration Meeting for FP6 and FP7 projects.
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Chapter 6

D5.10: Design and analysis of
Beernet, the Mozart structured
overlay network
implementation

6.1 Executive summary

This deliverable presents the analysis of Beernet [15], the structured overlay
network developed using the Mozart programming system. It is the suc-
cessor of P2PS [21], presented in deliverable D1.5, in WP1, during year 2
of the SELFMAN project. Beernet implements the Relaxed-Ring [17] net-
work topology presented as result of year 1, and it includes the high level
layer for transactional DHT, which is the result of WP3, providing consistent
symmetric replication.

The deliverable is presented as the draft of Boris Mej́ıas’s Ph.D. disser-
tation, and it is included in Appendix A.14. The dissertation makes an
extensive review of existing structured overlay networks. It explains the con-
tribution of the Relaxed-Ring, making not only an experimental evaluation
of the algorithm, but also an analysis of it using feedback loops, which are
part of the results of WP2. It also details the algorithms used for atomic
transaction commits, contributing with an eager protocol for synchronous
collaborative applications. It presents a set of applications built on top of
Beernet to show the impact of it, and to emphasise its contribution.
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6.2 Contractors contributing to the Deliver-

able

This deliverable is in the form of a dissertation written by a researcher of
UCL(P1). UCL is the main developer and author of the papers leading to
this dissertation.
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6.3 Results

Beernet stands for pbeer-to-pbeer network, where words peer and beer are
mixed to emphasise the fact that this is a peer-to-peer network built on top of
a relaxed -ring topology, considering that beers are usually a mean to achieve
relaxation. This deliverable presents the draft of Boris Mej́ıas’s Ph.D. disser-
tation as the main result. The dissertation makes the analysis of Beernet by
describing in detail the algorithm of the Relaxed-Ring, which is the network
topology on which Beernet is implemented. The Relaxed-Ring is one of the
results of WP1, beign part of the first two years of the project. The Relaxed-
Ring is compared to other structured overlay networks by making a summary
of the state-of-the-art in peer-to-peer networks. The main contribution of the
Relaxed-Ring is that introduces non-transitive connectivity in the design of
the protocols that provides self-organization of the ring. Beernet also in-
cludes the results on transactional DHT from WP3, by implementing the
Paxos consensus algorithm, and also by developing the Eager Paxos protocol
that is more suitable for synchronous collaborative applications. Four appli-
cations are also presented on this dissertation emphasizing the impact of the
contribution of Beernet. The applications are Sindaca, a community-driven
recommendation system described in Deliverable D5.3; DeTransDraw, a col-
laborative drawing tool, presented in detail in deliverables D5.8 and D5.9 5;
and two applications designed and implemented by third parties, beign a
decentralized wiki, and a decentralized version of Twiteer.

The contributions of this deliverable can be listed in detail as follows:

• The design of a protocol for self-organizing peer-to-peer networks cre-
ating a network topology called relaxed-ring. The network is able to
deal with false suspicions in failure detection and with non-transitive
networks such as the Internet, improving lookup consistency with re-
spect to existing peer-to-peer networks. The relaxed-ring also provides
self healing by triggering a failure recovery mechanism when the crash
of a peer is detected.

• The relaxed-ring protocol is cost-efficient because it does not rely on
periodic stabilization to repair the network when it is affected by churn.
The relaxation introduces branches to the ring topology, but it keeps
the routing algorithm competitive with log(N) hops to reach any peer.

• We provide a self-adaptable routing topology that allows the relaxed-
ring to take advantage of full connectivity in small networks, and loga-
rithmic routing in large networks. The system can scale up and down
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making it suitable for many different applications independent of the
size of the network.

• We present the algorithms of the relaxed-ring using feedback loops
to analyse and validate its self-management properties. The feedback
loops help us to understand how the system monitors itself, analyses
the information, and triggers the needed action to modify the system.

• We study and validate the Paxos consensus algorithm for atomic trans-
actions on a replicated DHT, and we compare it with the well known
solution for distributed transactions called Two-phase commit.

• We adapt Paxos consensus algorithm to provide eager locking of the
transaction participants, and we extend it with a notification layer to
make other peers aware of the modifications. This new protocol allows
us to design application where users can collaborate synchronously.

• As proof-of-concepts, we have implemented Beernet, the pbeer-to-pbeer
network, a relaxed way of doing peer-to-peer. It is an implementation
of the relaxed-ring where peers are organized as a set of distributed-
transparent actors. These actors represents components with encapsu-
late state and that communicates only via message passing, avoiding
share state concurrency. Beernet also takes advantage of the fault-
stream model for failure handling improving its modularity and net-
work transparency. These characteristics provide a better programming
framework for self configuration of components.

• We have implemented and presented to the research community three
different demonstrators to introduce the concepts of the relaxed-ring,
atomic transactional DHT, and synchronous collaboration with eager
transactions.

• We develop two applications on top of Beernet to exploit optimistic and
pessimistic transactions, and the notification layer. These application
provide a community-driven recommendation system, and a collabora-
tive drawing tool. Two other applications designed and developed by
third parties are also presented so as to emphasize the impact of the
contribution of the relaxed-ring and its transactional layer.

The dissertation is organized as follows. After the introduction, there is
a review of all three generations of peer-to-peer systems, being structutured
overlay networks the most important focus of the analysis. The systems we
reviewed are not only studied from the point of view of their overlay graph,
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but also from their self-managing properties. We also review distributed
storage and the connection of peer-to-peer with Grid and Cloud Computing.
The following chapter presents the protocols and algorithms of the Relaxed-
Ring, being an important part of the contribution of this dissertation. The
Relaxed-Ring is also studied using feedback-loops so as to understand its
self-managing properties from a architectural and software design point of
view. Note that feedback-loops are part of the results in WP2. Evaluation
of the Relaxed-Ring, specially in comparison with other overlay graphs, is
done experimentally using a concurrent multi-agent simulator.

Once we have presented the Relaxed-Ring, the dissertation continues with
the study of distributed storage. We analyse Two-Phase commit, Paxos con-
sensus algorithm, and we describe our contribution with Eager Paxos and the
notification layer. Then, the dissertation describes the design decisions and
implementation details of Beernet, which implements the Relaxed-Ring and
its layer for transactional distributed hash tables using symmetric replica-
tion. Before the concluding the dissertation, we present a set of applications
designed and developed using Beernet and the ideas of the Relaxed-Ring.
Some of the applications are developed by the authors, and some of them are
contributions of third parties, emphasizing the impact of this dissertation.

Apart from the contributions presented in the dissertation, there are other
results included on this deliverable. We have presented the paper “Beernet:
RMI-free peer-to-peer networks” [16] in the Workshop on Distributed Objects
for the 21st Century (DO21) at ECOOP’09. This paper presents the architec-
ture and programming concepts used in the implementation of Beernet. We
have also published the paper “From mini-clouds to Cloud Computing” [18]
at the SELFMAN SASO Workshop 2009. This paper is a proposal for future
work of this deliverable.

The author has won the “Best Presentation Award” in the Doctoral Sym-
posium of the “XtreemOS Summer School”, held at the Wadham College of
the University of Oxford, Oxford, UK, on September 10, 2009. The presenta-
tion was entitled “Beernet: a relaxed-ring approach for peer-to-peer networks
with transactional replicated DHT” [14], and it summarized the contribution
of the dissertation.
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MOZART STRUCTURED OVERLAY NETWORK IMPLEMENTATION

6.4 Dissertation, Publications and Award

This section is dedicated to give a brief introduction to the documents in-
cluded as appendices on this deliverable. They correspond to a Ph.D. dis-
seration, a workshop paper, and the abstract of a presentation that won an
award in a Doctoral Symposium.

Beernet: A Relaxed-Ring for Self-Managing Decentralized Systems
with Transactional Replicated Storage

The core of this deliverable corresponds to this Ph.D. disseration. The full
version of the draft is to be found in Appendix A.14. Its content and con-
tribution have been already introduced in Section 6.3 and in the Excutive
Summary of this deliverable.

Beernet: RMI-free peer-to-peer networks

This paper is included in the proceedings of the Workshop on Distributed
Objects for the 21st Century (DO21) at ECOOP’09. The paper describes
the architecture of Beernet, and discusses language abstractions that are
useful in distributed object, mainly for development of peer-to-peer system.
The position is that RMI is considered harmful. The paper is included in
Appendix A.15.

From mini-clouds to Cloud Computing

This paper has been accepted and presented in the Workshop on Architec-
tures and Languages for Self-Managing Distributed Systems, SELFMAN at
SASO09. The paper describes a proposal to apply the results of this disser-
tation in Cloud Computing. The paper is included in Appendix A.16.

Best Presentation Award: “Beernet: a relaxed-ring approach for
peer-to-peer networks with transactional replicated DHT”

Boris Mej́ıas, author of the Ph.D. dissertation, presented the main contri-
bution of his work in the Doctoral Symposium of the “XtreemOS Summer
School”, held at the Wadham College of the University of Oxford, Oxford,
UK, on September 10, 2009. He won the “Best Presentation Award”. The
abstract of the presentation, together with a copy of the certificate are in-
cluded in Appendix A.17.
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Chapter 7

D5.11: Evaluation of security
mechanisms

7.1 Executive summary

Deliverable 5.11 reports on a self-protection mechanism for Wikipedia to
identify spam and reduce the effect of spam (Section 7.3). The spam detec-
tion system builds on the general self-protection infrastructure for Wikipedia
developed in Deliverable 5.6 where it was used to enhance the credibility of
articles and edits in Wikipedia.

The particular spam problem we address is to identify the users who
are spammers in Wikipedia. Often these are the anonymous contributors
but nevertherless we can still identify them by requiring that they need to
have an identity in a social network through the use of a trusted proxy in
the infrastructure. The most difficult kind of attack to defend against is
where the user creates multiple virtual identities in the social network and
employs a large number of identities to make it easier to distribute the spam
contribution among the virtual users (the sybil users). This stategy tries
to make difficult to distinguish between an honest user from a spammer.1

We map the sybil spam identification problem to one where edits correspond
to votes and we want to be able to measure the votes given that there are
sybil voters. The approach used is to measure the maximum flow in the
graph which can be used to identify the bottlenecks which are typically the
connections from the sybil region to the honest region of the graph. Initial
experiments using data collected from Facebook show that the effect of spam
can be effectively limited to the actual number of honest users the spammer

1We do not deal with approaches which try to understand the underlying semantics of
the edit which would lead to difficult natural language understanding problems.
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is connected to in the social network. The results show that an automatic
and transparent mechanism for identifying spammers which is one of the
challenges to the growth of Wikipedia is feasible.

We also report on an extension to Deliverable 5.6 in Section 7.4 which
was not reported earlier as we had only stumbled upon the phenomena at
the time of the report. Only certain small world networks are known to be
navigable, meaning have routing algorithms which have short routes. Such
small world network models however do not resemble actual social networks
as their graph structure is much more sparse and less clustered. Conversely,
models such as the Watts and Strogatz small world networks which can
produce more clustered networks and have statistics closer to real world
networks are believed to be not navigable using greedy routing algorithms.
We discovered by enhancing local routing with local neighbourhood topology,
Watts and Strogatz networks become much more navigable and the routing
length approaches known navigable networks like the Kleinberg small world
networks. We believe this may be applicable to real world networks which
are more difficult to route than artificial small world networks.
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7.2 Contractors contributing to the Deliver-

able

NUS(P7) contributed to this deliverable.

NUS(P7) enhanced the self-protection infrastructure for Wikipedia in De-
liverable D5.6 to deal with the problem of spam.
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7.3 Applications of the Wiki Credibility In-

frastructure

7.3.1 Reducing Wiki spam with Social Networks

In Deliverable D5.6, we introduced a mechanism to enhance Wikipedia using
existing and reputable third party services. The philosophy of Wikipedia is to
allow anybody to contribute which includes anonymous users.2 It turns out
that high quality contributions come from the vast number of anonymous
users who may only contribute once [2]. Such high quality (anonymous)
authors may be experts or have established reputation elsewhere. Although
their edits may be of high quality, it is desirable that such edits can be associ-
ated with a credibility measure which is indicative of the quality particularly
when it is anonymous. This can be achieved using our Wikipedia enhance-
ment [7] in Deliverable D5.6 to transfer the reputation from a third party
to Wikipedia in a possibly anonymous fashion. In Deliverable D5.11, we
will introduce another application of our Wikipedia enhancement framework
which is targeted at the problem of how to reduce spam in Wikipedia.

A recent study found that Wikipedia growth is slowing down [26]. On the
other hand the amount of spam or vandalism attempts continues unabated.
An important trend identified in [26] is a new positive trend which shows that
Wikipedia is losing editors. This is very significant since it is precisely the
work of human editors which is the main spam and vandalism mechanism
in Wikipedia. Although the use of human editors cannot be regarded as
scalable, in practice, it was effective simply because the number of editors
could keep pace with the spammers or vandals. Now, however, we may have
come to a point when the existing Wikipedia development will gradually be
threatened by the scale of the spam.

As such, this may be a good time to reevaluate how Wikipedia should
work in the future — perhaps by accepting less edits and accepting only
from reputable authors. The approach in Deliverable D5.6 is to make use
of third party services if they exist to transfer credibility information into
Wikipedia [7]. However, this does not deal with users who do not have any
credibility or reputation, in particular, virtually created identities. In order
to distinguish virtual identities, we leverage the power of social networks
and the availability of extensive social networking sites such as Facebook,
MySpace, etc. We focus on the problem of spammers which try to create
fake identities of editors to take over an article. Fake identities are used to
hide their activities and create an artificial community of editors.

2Anonymous users are users who do not register and are listed by their IP address.
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In today’s increasingly connected world, a user in Wikipedia is likely to
be connected to other users in one of the social network. The social network
can be viewed as a big graph which shows relationships between users in the
network, i.e. the friends of a user. An honest user is expected to correspond
to a single node in the graph. Spammers which try to exploit multiple iden-
tities can be analyzed to see how their relationships differ from honest users.
Although spammer can create new virtual identities, the corresponding nodes
in the graph are limited in what friends they can know.

One of the largest social networking sites is Facebook with more than 300
million active users [5]. Furthermore, much of the graph is publically visible.
In Deliverable D4.4b, we developed a social network crawler for extracting
the graph from sites like Facebook. We build upon those tools here for the
Wikipedia spam prevention infrastructure.

If we use Facebook as the third party service for our Wikipedia enhance-
ment, we will be able to use it to limit the number of probable spammers
as well as detecting the presence of spammers from a certain period of time
thus can be used as a tool to fight spams.

As mentioned above, given the slow growth of Wikipedia and ever high
number of spams it may be a good time to moderate the edits. We can
use the Wikipedia enhancement to link every edits in Wikipedia to a user
in social networking site (e.g. Facebook) via trusted proxy. This requires
any (anonymous) users to use their Facebook account to make an edit in
Wikipedia. However, to maintain the anonymity, the trusted proxy can be
setup to anonymize the account but still be able to map back the edit to the
particular user whenever requested. Therefore, users can remain anonymous
and their edits can still be redarded as qualtiy edit if they linked the edits
with reputable third parties.

The linkage of Wikipedia edits to a user in a social network gives more
information to Wikipedia admins to fight for spammers. A typical spammers
can no longer do edit freely due to the linkage to the social networking
account. If the spammers do the spam using the same social networking
account, it will be easy for the Wikipedia admin to revert back all his edits.
On the other hands, and attempt to use different social networking account
will be easily captured by analyzing the social network graph.

Originally, we had intended to explore various Sybil defence approaches
in the literature in the Wikipedia context. However, recently, the SumUp
approach [27] has been shown to be very promising and more effective than
existing approaches Thus, we decided to base our Wikipedia spam mechanism
on vote collection using SumUp.

Analyzing the social networking graph to determine the spammers re-
quires substantial compute effort which may not be feasible for real-time
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editing response given the load of Wikipedia. We propose to collect all edits
during a specific period of time. Then Wikipedia contacts the trusted prox-
y/proxies using our credibility infrastructure to map the edits to users in the
social network graph. The problem of analyzing the social network structure
is reduced to a problem of Sybil Voting. We treat the users who do the edit
as voters and select some trusted users (in the social network) as the vote
collectors. The number of accepted Sybil votes can then be limited using
SumUp algorithm [27]. The maximum-flow from each voters to the vote col-
lectors is calculated. Once the flow is saturated, the Sybil region becomes
disconnected from the honest region as there is no more flow from the Sybil
to honest region. At this time, those voters that cannot be collected are
likely to be the Sybil voters who may reside in (several) “disconnected from
honest” regions. By using this assumption, the remainder of the sybil nodes
can be found by graph connectivity tests on the Sybil voters. One limitation
of our approach is that it only deals with edits from virtual nodes, the sybil
users.

In summary, our Wikipedia enhancement [7] has several potential ap-
plications that can improve the trust of content and edits in Wikipedia by
associating the edits with existing third party services to transfer the repu-
tation as well as a potential tool for the Wikipedia administrators to fight
spams by associating the edits with social networking sites such as Facebook.
The association between edits and a user in a social network can be used to
analyze potential spam attacks as well as to rate-limit the number of edits
made by the Sybil attacker to the number of attack edges (friends) the at-
tacker has in the social network graph. One advantage of this approach is
that it can be integrated easily into Wikipedia without much effort and pro-
vides transparent and automatic self protection mechanisms for Wikipedia.

7.3.2 Experiments

We evaluated the effectiveness of our proposed Wikipedia self-protection
mechanism by testing it with real social network data from Facebook. First,
we crawled a subset of Facebook graph, using an approach similar to [22].
The subgraph extracted from Facebook consists of 73719 nodes and 5992544
edges. The average node degree is 81.289 and average clustering coefficient
is 0.364. It is not possible to visualize the whole graph here, so we show the
first 1000 collected nodes in Figure 7.1.

SumUp [27] is a resilient vote aggregation system that leverages the trust
network among users to defend against Sybil attacks. Sybil attacks is an
attack where adversaries creates many identities in the trust network to out-
vote the honest users. Defending against non Sybil attack is easy if there
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Figure 7.1: Facebook subgraph with 1000 nodes visualized. The two pictures
at the bottom are the zoomed-in version of the red regions of the graph.
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is only one attacker using the same identity. The hardest defense is against
many different (independent) real attackers.

SumUp works by assuming that a single user in the trust network can
only have limited number of friends, typically hundreds. To limit the number
of votes from Sybil users, SumUp select a trusted user as the vote collector
in the trust network and run a maximum-flow algorithm from the voters to
the vote collector. This way, the number of Sybil votes can be limited to the
number of friends (called the number of attack edges) that the Sybil node
has. SumUp further reduces the number of attack edges by employing link
pruning and reducing the capacity along the path from the voter to vote
collector via negative feedback.

We reduce the Wiki spam prevention problem into a voting problem em-
ploying SumUp. All edits in Wikipedia from a certain period of time are
mapped to user/nodes in the social network. The users in the social network
are the voters. We then pick a trusted node in the social network as the
vote collector for the SumUp algorithm. We can also manually inspect the
edits and use negative feedback as well as link pruning. The voting result
will tell us which edits in Wikipedia are likely to be coming from the same
Sybil attacker.

This experiment uses the collected graph from Facebook with N = 74K
nodes. We assume that the edits are already mapped to users in the Facebook
graphs. The edit model is that the users are randomly selected from the
graph. Thus, some are honest users while others are Sybil users. We then
measure how effective is SumUp in identifying the Sybil users that did the
edits. We will then also identify the rest of the Sybil users linked from the
rejected Sybil user since they are in the same region but didn’t vote. This
further captures all other Sybil nodes in the graph that haven’t been used by
the Sybil user. We purposedly created several Sybil regions in the Facebook
graph so that we are able to measure how the effectiveness against Sybil
attacks.

Figure 7.2 shows the number of accepted Wikipedia edits (Sybil votes)
as the number of Sybil nodes is varied in the social network. We assume
that we have a single attacker that has 200 friends (this is substantially
higher than the average node degree). There is a single vote collector that
can receive up to 700 edits/votes by distributing the 700 tickets as in [27].
The experiment shows that initially the number of edits accepted from sybil
nodes is proportional to the number of sybil nodes in the trust network as
the number of nodes increases. However, after 200 sybil nodes, the number
of Sybil votes is limited to 200 which is the number of attack edges. What
this means is that it is feasible to limit the number of Wikipedia edits to the
maximum number of attack edges of the attacker.
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Figure 7.2: Varying the number of Sybil nodes

Figure 7.3: Acceptance rate when there is no attack
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The next experiment in Figure 7.3 shows the fraction of the honest edits
accepted when there is no attack. What we would like is that all honest
edits are acceepted when there are no attacks, i.e. the edits only come from
honest nodes. We can see that the acceptance rate is around 100%, thus, the
protection mechanism doesn’t affect the honest users.

Figure 7.4: Varying the number of vote collectors

Vote collectors plays a crucial role in this framework. Having more vote
collectors can give rise to more robustness. Figure 7.4 shows an experiment
to explore the importance of having robust vote collectors. In this experi-
ment, we create 250 sybil nodes with 200 attack edges from the sybil region
to the honest region. A single vote collector may suffer from the problem
that it may lose some edits/votes because of overcapacity on some edge. The
experiment shows that having more vote collectors reduces this problem as
the fraction of votes collected becomes stable after two vote collectors. Only
about 95% of the edits are allowed because the sybil region is limited to
about 200 edits.

To summarize, the experiments show that it is feasible to limit the effect
of spam edits to the number of attack edges of the sybil nodes. Once the sybil
region is identified, an adminstrator could remove all the spam including the
spam which was not rejected since SumUp allows some spam to get through.
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7.4 Navigability in the Watts and Strogatz

Small World Model

We report on an extension of the work in Deliverable 5.6. This work is re-
ported in Deliverable 5.11 as it is some new results we discovered around
the end of Deliverable 5.6 and thus was not yet ready to go into the Deliv-
erable 5.6 report at the time. The results are also reported in the SELF-
MAN@SASO09 workshop [6].

The study of small-world networks (SWNs) has become popular with the
growth of social networking sites such as Facebook. SWNs were first studied
by Stanley Milgram [28] who showed experiments forwarding letters that the
length of the chain was between five and six. This is also popularly known
as “six degrees of separation”. This suggests that SWNs should have a small
diameter. Furthermore, SWNs are not just random graphs but they have
other properties, most notably, small diameter. A well studied model of a
SWN is the one proposed by Watts and Strogatz [29]. Their model (WS
SWN) has the virtue of simplicity, while capturing the two properties.

We investigate the problem of finding effective routes between nodes (also
known as navigability), in WS SWN [6]. The property of small diameter en-
sures the existence of a short route, but it does not mean that finding a short
route is easy, especially in a distributed setting. Ideally, the routing length
should be polylogarithmicly bounded and the routing algorithm should not
require global information about the whole SWN graph. We revisit the issue
of routability for two reasons. Firstly, WS SWN makes it easy to construct
SWNs with different amounts of clustering which makes it useful as a model
for social networks. Secondly, a number of papers [12] have promoted the
idea that WS SWN is not navigable.

Rather than strict greedy routing, we will look at local routing algorithms
which are greedy-routing like so as to get better navigability in WS SWN. We
employ the NoN-Greedy [19] routing strategy to help reducing the average
routing length. In NoN-Greedy routing, each node knows the link informa-
tion of its neighbors (1-lookahead). With more (but still local) information,
the routing can be better guided towards the target and reduces the unnec-
essary routes to the wrong paths early in the routing thus significantly cut
down the routing length.

Preliminary results shows that WS SWN is more navigable than it was
suggested. With 1-lookahead, the routing length approaches that of the
Kleinberg SWN which is known to be navigable. Increasing the lookahead
beyond 1-lookahead appears to give only small gains but substantially in-
creases the storage needed.

SELFMAN Deliverable Year Four (M37-M40), Page 72



CHAPTER 7. D5.11: EVALUATION OF SECURITY MECHANISMS

7.5 Papers and publications

Wiki credibility enhancement3

Felix Halim, Wu Yongzheng and Roland H.C. Yap, Fifth International Sym-
posium on Wikis and Open Collaboration (WikiSym), 2009 (see Appendix
A.18).

Wikipedia has been very successful as an open encyclopedia which
can be edited by anybody. However, the anonymous nature of
Wikipedia means that readers may have less trust since there is no
way of verifying the credibility of the authors or contributors. We
propose to transfer external information from outside Wikipedia
to Wikipedia pages. These additional information is meant to
enhance the credibility of the content. For example, it could
be the education level, professional expertise or affiliation of the
author. We do this while maintaining anonymity. In this paper,
we present the design and architecture of such system together
with a prototype.

Routing in the Watts and Strogatz Small World Net-
works Revisited

Felix Halim, Yongzheng Wu, Roland H.C. Yap, Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2009 (see
Appendix A.19).

Routing in small world networks (SWNs) have mainly been stud-
ied in the context of Kleinberg-like SWNs because of their nav-
igability. If one wants to employ real world SWNs such as so-
cial networks for self-managing overlay networks, we believe that
models like the Watts and Strogatz’s SWN (WS-SWN) may be
more suitable because the resulting graphs from the WS-SWN
construction have properties closer to real world SWNs. Further-
more, WS-SWN provides a parameter p to adjust the clustering
coefficient and the diameter of the graph.

The drawback is that WS-SWN is not navigable using greedy
routing. We demonstrate some preliminary experiments which
suggest that WS-SWN may be more navigable than previously

3An earlier draft of this paper appears in the Deliverable D5.6. This paper is the one
which is published in WikiSym’09.
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thought. Using additional routing information (such as 1-lookahead),
routing performance in WS-SWN seems to approach greedy rout-
ing performance in the Kleinberg SWN model. This is interesting
since it suggests that various graphs such as the WS-SWN may
be more usable for routing than previously thought.
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ABSTRACT
As Internet programs become larger and more complex, de-
signing them and predicting their behavior become daunt-
ing. In addition to users coming and going and acting con-
currently, “abnormal” events such as software errors, par-
tial failures, attacks, and hotspots become normal. To ad-
dress this problem, we propose that these programs should
be designed from the start as a set of interacting feedback
structures. Each feedback structure consists of one or more
feedback loops and continuously maintains one system prop-
erty. In a well-designed system, no part should exist outside
of a feedback structure. We motivate this approach with
examples of robust systems from biology and computing.

To show the power of the approach, we have built the
open-source Scalaris transactional store, which combines a
structured peer-to-peer network, a replicated storage layer,
and a transaction layer. Scalaris consists of six feedback
structures working together in a harmonious way. Scalaris
scales smoothly and efficiently to hundreds of nodes, han-
dles node and network failures, and performs load balancing.
Scalaris uses a modified Paxos uniform consensus algorithm
to implement atomic commit. A distributed Wiki built with
Scalaris won first prize in the IEEE International Scalable
Computing Challenge (SCALE 2008).

In this approach, a system’s specification consists of a con-
junction of properties, each of which is implemented by one
feedback structure. This achieves separation of concerns by
defining the concerns in terms of the feedback structures
that naturally implement them. We are currently studying
how to design with this approach and we are extending the
approach to design for a desired global behavior using re-
versible phase transitions. Such systems will be much easier
to design, predict, and manage, and will be less subject to
global problems such as multicast storms, chaotic behavior,
and cascading failures. They will provide well-defined be-
havior for a wide range of environmental conditions, even
extremely hostile ones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
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to-peer

1. INTRODUCTION
It is now possible to build Internet applications that are

more complex than ever before. The Internet has reached a
higher level of availability and scale than ever before using
computing nodes that are more powerful than ever before.
Experience shows that it is difficult to build applications
that take advantage of this complexity: they are hard to
design, predict, and manage. They are subject to hostile
environmental conditions with frequent node failures and
communication problems. They are subject to global prob-
lems such as hotspots, attacks, multicast storms, chaotic
behavior, and cascading failures [4].

To address these problems, we propose to design applica-
tions from the start as a set of feedback structures. Each
feedback structure is designed to manage one (global) sys-
tem property. It consists of a collection of feedback loops,
often organized as a hierarchy where each feedback loop may
control an inner loop and be controlled by an outer loop.
Interaction between feedback structures is limited and well-
defined. In a well-designed system, no part exists outside
of a feedback structure. Each feedback loop continuously
tries to achieve one specific (local) goal by means of an al-
gorithm at its core that is integrated into the system with
detection and actuation components. It is important to dis-
tinguish between the system level (feedback structures) and
the building block level (feedback loops).

We claim that by using design rules and patterns for feed-
back structures, it is practical to build large-scale systems
that are robust, adaptable, easy to understand, and easy to
maintain. We motivate the use of feedback structures with
examples of real systems taken from both biology and com-
puting. To substantiate the claim, we have built Scalaris as
part of the SELFMAN project [28, 34]. Scalaris is a self-
managing transactional store built on top of a structured
peer-to-peer network. We use a structured peer-to-peer net-
work as the foundation because it already provides scalabil-
ity and robustness with a design based on feedback and self
organization. Scalaris uses an improved variant of the Paxos
uniform consensus algorithm at the heart of its transaction
manager. Scalaris contains a large number of interacting
feedback loops, organized as six feedback structures, that
perform self healing to maintain connectivity, do merging
of split rings, manage replicas, and implement transactions,



and self tuning to achieve efficient routing and to spread
load.

Subsystem

Monitoring agentActuating agent

Calculate corrective action

Figure 1: A feedback loop

1.1 Feedback loops and feedback structures
A feedback loop in its general form consists of four parts: a

monitor, a corrector, and an actuator, attached to a subsys-
tem. We assume without loss of generality that the parts are
concurrent components (agents) communicating by asyn-
chronous message passing, as depicted in Figure 1. A part
can perform either a global or local action. For example,
a global monitor can use gossip-based aggregation to con-
tinuously calculate global information and a global actuator
can use a broadcast or publish/subscribe mechanism. The
corrector contains an abstract model of the subsystem and
a goal. The feedback loop runs continuously, monitoring the
subsystem and applying corrections in order to approach the
goal. The abstract model should be correct in a formal sense
(e.g., according to the semantics of abstract interpretation
[9]) but there is no need for it to be complete.

A simple example of a feedback loop is a transaction man-
ager. It manages system resources according to a goal, which
can be optimistic or pessimistic concurrency control. The
monitor accepts lock requests and the actuator gives the
response according to the concurrency control algorithm.
The transaction manager contains a model of the system:
it knows at all times which parts of the system have exclu-
sive access to which resources.

A feedback structure is a collection of interacting feedback
loops that together manage one system property. The feed-
back loops are typically organized to use both hierarchy and
stigmergy, the two basic mechanisms of loop interaction.
Through stigmergy, loops act on a shared subsystem, and
through hierarchy, one loop directly controls another.

Very little systematic work exists on how to design with in-
teracting feedback loops. In real systems, however, interact-
ing feedback loops are the norm. But these feedback loops
do not interact haphazardly. As far as we can tell, they are
always organized as weakly interacting feedback structures.
We can therefore study feedback structures separately from
their interactions. This is why the study of feedback struc-
tures is invaluable for designing and understanding real sys-
tems. The system specification then consists of a conjunc-
tion of system properties, each of which is implemented by
one feedback structure. We find that dividing system func-
tionality into feedback structures is a natural way to define
and to separate concerns in real systems.

1.2 Interdisciplinary nature
Using feedback loops for system design is an old idea that

dates back at least to Norbert Wiener’s work on cybernetics
[37]. It is being used successfully in many areas both inside
and outside of computing:

• Artificial intelligence. For example, Brooks’ subsump-
tion architecture implements intelligent systems by de-

composing complex behaviors into layers of simple be-
haviors, each of which controls the layers below it [5].

• Management of computer systems. This is done at
many levels. A simple example is automatic mem-
ory management (garbage collection), in which a pro-
grammer manages not individual memory blocks but
rather the garbage collection policy. Another exam-
ple is IBM’s Autonomic Computing initiative, which
reduces management costs by removing humans from
low-level management loops [16]. It is used primarily
for clusters and databases.

• Telecommunications. Armstrong et al show how to
build reliable telecommunications software in Erlang
using the principle of supervisor trees [3]. Each inter-
nal node in a supervisor tree corresponds to a feedback
loop that monitors part of the system.

• Control theory. Hellerstein et al show how to design
computing systems with feedback control, to optimize
global behavior such as maximizing throughput [14].
Hellerstein gives two examples of adaptive systems with
interacting feedback loops: gain scheduling (with dy-
namic selection among multiple controllers) and self-
tuning regulation (where controller gain is continu-
ously adjusted).

• Distributed algorithms. These algorithms can be for-
mulated as feedback structures. For example, fault-
tolerance algorithms use a feedback loop based on a
failure detector [12]. The implementation of the fail-
ure detector itself requires a feedback loop.

• Structured overlay networks, also called structured peer-
to-peer networks. They are inspired by previous gen-
erations of peer-to-peer networks with random neigh-
bors but provide guaranteed lookup and performance
[32]. They use principles of self organization to guaran-
tee scalable and efficient storage, lookup, and routing
despite volatile computing nodes and networks. Our
work in the SELFMAN project is in this area.

• Social systems and biological systems. Senge et al show
how to debug problems in human organizations by
modeling them as feedback structures [29]. Many nat-
ural and biological systems use feedback structures and
do self organization [11, 7, 22].

We have taken ideas from many of these disciplines to forge
our approach. Some disciplines are needed to design a feed-
back loop’s core algorithm. Others are needed to understand
design rules and patterns for interacting feedback loops.

1.3 Structure of the article
This article presents our methodology in a condensed form,

supported with many examples.

• Section 2 gives two nontrivial examples of feedback
structures, from biology and computing, and derives
several design rules from them.

• Section 3 presents the open-source Scalaris transac-
tional storage library, its design, and the Distributed
Wikipedia application we have built with it. We also
present the Beernet library, which differs in important



ways from Scalaris. We contrast two ways of present-
ing the Scalaris architecture: a conventional presenta-
tion as a layered system and a novel presentation as a
set of six interacting feedback structures.

• Section 4 explains how to design Scalaris and similar
systems by giving a set of guidelines for the design of
one feedback structure and for the decomposition and
orchestration of multiple feedback structures.

• Finally, Section 5 recapitulates the approach and points
to two important future directions: designing robust
systems with reversible phase transitions and justify-
ing and completing the methodology through formal
techniques.

2. FEEDBACK STRUCTURES
We study working systems to gain insight in how to con-

struct feedback structures. It is important to understand
the basic design rules and patterns before attempting a for-
mal analysis. We give two examples out of many nontrivial
systems that consist of multiple interacting feedback loops.
Our first example comes from biology: the human respira-
tory system, which was designed by evolutionary processes.
Our second example comes from software design: the TCP
protocol family, which was designed by human designers over
several decades in response to the exponentially growing In-
ternet. Other interesting examples are given in [33] (sub-
sumption architecture, fault tolerance in Erlang) and [34]
(human endocrine system, Hill equations, collective intelli-
gence).
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Figure 2: The human respiratory system as a feed-
back structure

2.1 The human respiratory system
Successful biological systems survive in natural environ-

ments, which can be particularly harsh. We study them
to gain insight in how to design robust software. Figure 2
shows the parts of the human respiratory system and how
they interact. We derived this figure from a precise medi-
cal description of the system’s behavior [38]. The figure is
slightly simplified when compared to reality, but it is com-
plete enough to give many insights. There are four feedback
loops: two inner loops (breathing reflex and laryngospasm),
a loop controlling the breathing reflex (conscious control),
and an outer loop controlling the conscious control (falling

unconscious). Three loops make a hierarchical tower which
interacts using stigmergy with the fourth loop. From this
figure we can deduce what happens in many realistic cases.
For example, holding one’s breath increases the CO2 thresh-
old so that the breathing reflex is delayed. Eventually the
breath-hold threshold is reached and the breathing reflex
happens anyway. For a trained person the O2 threshold is
reached first and they fall unconscious without breathing.
When unconscious the breathing reflex is reestablished.

We can infer some plausible design rules from this system.
The innermost loops (breathing reflex and laryngospasm)
and the outermost loop (falling unconscious) are based on
negative feedback using a monotonic parameter. This gives
them stability. The middle loop (conscious control) is not
stable: it is highly nonmonotonic and may run with both
negative or positive feedback. It is by far the most com-
plex of the four loops. For example, if a person falls into a
lake, conscious control of breathing is part of a swimming
movement to get to the shore. We can justify why conscious
control is sandwiched in between two simpler loops. On the
inner side, conscious control manages the breathing reflex,
but it does not have to understand the details of how this
reflex is implemented. This is an example of using nesting
to implement abstraction. On the outer side, the outermost
loop overrides the conscious control (a fail safe) so that it is
less likely to bring the body’s survival in danger. Conscious
control seems to be the body’s all-purpose general problem
solver : it appears in many of the body’s feedback structures.
This very power means that it needs a check.
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Figure 3: TCP as a feedback structure

2.2 Transmission Control Protocol (TCP)
The TCP family of network protocols has been carefully

tailored over many years to work adequately for the Internet.
We consider therefore that its design merits close study. We
explain the heart of TCP as two feedback loops that interact
hierarchically to implement a reliable byte stream transfer
protocol with congestion control [15]. The protocol sends a
byte stream from a source to a destination node. Figure 3
shows the two feedback loops as they appear at the source
node. The inner loop does reliable transfer of a stream of
packets: it sends packets and monitors the acknowledge-
ments of the packets that have arrived successfully. The
inner loop implements a sliding window: the actuator sends
packets so that the sliding window can advance. The slid-



ing window can be seen as a case of negative feedback using
monotonic control. The outer loop does congestion control:
it monitors the throughput of the system and acts either
by changing the policy of the inner loop or by changing the
inner loop itself. If the rate of acknowledgements decreases,
then it modifies the inner loop by reducing the size of the
sliding window. If the rate becomes zero then the outer loop
may terminate the inner loop and abort the transfer.

These two loops are part of a much larger feedback struc-
ture, in which the individual TCP connections all share a
common network. Congestion is felt by all congestion con-
trol loops, which will all reduce their window sizes. This
is an example of collaboration using stigmergy. It causes
the overall throughput to increase, since the network no
longer wastes its resources transmitting packets that will
be dropped before reaching their destination.
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Figure 4: Distributed Wikipedia built on top of
Scalaris

3. SCALARIS
Scalaris is an open-source library providing a self-managing

data management service for Web 2.0 applications [27, 25,
24]. Web 2.0 initiated a business revolution: service providers
offer Internet services for many activities, shopping, online
banking, information, social networking, and recreation. In
today’s society Web 2.0 is no longer a convenience, but cus-
tomers rely on its continuous availability, regardless of time
and space. Even the shortest interruption, caused by system
downtime or network partitioning, may cause huge losses in
reputation and revenue. In addition to 24/7 availability,
providers face another challenge: they must, for a good user
experience, be able to respond within milliseconds to in-
coming requests, regardless whether thousands or millions
of concurrent requests are currently being served. Continu-
ous availability, high performance, and scalability were key
requirements in the design of Scalaris. To satisfy these re-
quirements, we designed Scalaris to be self managing.

As a challenging benchmark for Scalaris, Figure 4 shows
how we implemented the core of Wikipedia, the “free ency-
clopedia, that anyone can edit”. Wikipedia is among the ten
most frequently accessed websites. It handles about 50,000
requests per second, of which 48,000 are cache hits in the
proxy server layer and 2,000 are processed by ten servers in

the master/slave MySQL database layer [39]. The proxy and
web server layers are embarrassingly parallel and therefore
trivial to scale. From a scalability point of view, only the
database layer is challenging. Because our implementation
uses Scalaris to replace the database layer, it inherits all the
favorable properties of Scalaris such as scalability and self
management. Instead of using a relational database, we map
the Wikipedia content to the Scalaris key/value store. On a
page update, a transaction across all affected keys (content,
backlinks, categories, etc.) and their replicas is done. With
a synthetic benchmark, Scalaris achieves 14,000 read+write
transactions per second on 15 servers, increasing almost lin-
early with the number of servers [26]. This number cannot
be directly compared to the Wikipedia number since the
work and the processors are not the same, but it does show
that Scalaris is a credible implementation.

We have built a second library, Beernet, that differs from
Scalaris in some important points. Whereas Scalaris is based
on a Chord# overlay network, Beernet uses a relaxed ring
structure [21, 20]. We relax the connectivity condition, re-
quiring only that a node be in the same ring as its successor
(instead of both its successor and predecessor). Ring main-
tenance then does not need periodic stabilization and does
not rely on transitive connectivity. The relaxed ring has a
“bushy” structure that converges with local operations to a
perfectly connected ring. We also modify the transaction
manager to request locks quickly and to notify all nodes of
modified state. We need these modifications for our col-
laborative drawing application, DeTransDraw, which uses
transactions to overcome network delays while maintaining
a coherent global drawing.
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Figure 5: The Scalaris transaction protocol

3.1 Transactions on an overlay network
Scalaris is a structured overlay network extended with a

transaction layer using a replicated key/value storage. Its
architecture provides the traditional ACID properties of trans-
actions in a scalable decentralized setting. It does not at-
tempt to replace current database management systems with
their general, full-fledged SQL interfaces. Instead our tar-
get is to support transactional Web 2.0 services like those
needed for Internet shopping, banking, or multiplayer online
games. Figure 4 shows the three layers of the system:

1. At the bottom, an enhanced structured peer-to-peer
network, with logarithmic routing performance, pro-



vides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other
overlays, our implementation stores the keys in lex-
icographical order. Lexicographical ordering instead
of random hashing enables control of data placement
which is necessary for low latency access in multi data
center environments.

2. The middle layer implements data replication. It en-
hances the availability of data even under harsh con-
ditions such as node crashes and physical network fail-
ures. We use symmetric replication, in which the data
is replicated symmetrically around the ring.

3. The top layer provides transactional support for strong
data consistency in the face of concurrent data opera-
tions. It uses a fast consensus protocol with low com-
munication overhead that has been optimally embed-
ded into the peer-to-peer network.

Figure 5 shows how the transaction protocol works on a
structured peer-to-peer network with 16 nodes. A client
initiates a transaction by asking its nearest node, which be-
comes a transaction manager. Other nodes that store data
are transaction participants. Given symmetric replication
with degree f (4 in the figure), we have f transaction man-
agers (TM and rTM in the figure) and f replicas for the
other participating nodes. A modified version of Lamport’s
Paxos uniform consensus algorithm is used for node agree-
ment [19, 12]: each replicated transaction manager (rTM)
collects votes from a majority of participants and locally de-
cides on abort or commit. The transaction manager (TM)
then collects a majority from the replicated transaction man-
agers and sends its decision to all participants. This algo-
rithm achieves commitment if more than f/2 nodes of each
replica group are alive. The algorithm’s operation seems
simple; things are actually more subtle because it is correct
even if nodes can at any time be falsely suspected of having
failed. All we know is that after some unknown finite time,
the failure suspicions are correct (eventually perfect failure
detection). In our experience, this failure detector is ade-
quate for an Internet setting, where nodes may crash and
communication may be interrupted.

3.2 Feedback structures in Scalaris
Instead of the conventional layered presentation of the pre-

vious section, we can present the architecture of Scalaris in
a more enlightening way as a set of six feedback structures
and their interactions:

1. Connectivity management. This feedback structure
maintains the connectivity of the ring using periodic
successor list stabilization.

2. Merge management. This feedback structure monitors
when it is possible to merge the ring after it has split
into several rings due to network partitioning or other
network problems. It uses the merge algorithm to con-
verge continuously to a single ring [30].

3. Routing management. This feedback structure main-
tains efficient routing tables using periodic finger sta-
bilization.

4. Load balancing. This feedback structure balances load
by monitoring each node and moving nodes when nec-
essary to distribute load evenly.

5. Replica management. This feedback structure main-
tains the invariant that there will always eventually
be f replicas of each data item. Whenever there is a
potential new replica, it uses consensus to propose a
new replica set.

6. Transaction management. This feedback structure uses
consensus among replicated transaction managers and
storage nodes to perform atomic commit. If the trans-
action manager TM fails, then one of its replicas rTM
takes over. Multiple takeovers are tolerated by con-
sensus.

The Scalaris specification then consists of the conjunction
of the six properties implemented by these feedback struc-
tures. Interactions between the feedback structures are pos-
sible when the perceived set of correct nodes changes, due
to nodes joining, leaving, failing, or suspected of failing. We
handle the interactions as follows:

• Connectivity management, replica management, and
routing management interact when the set of nodes
changes. This does not affect correctness because each
manager always converges towards its ideal solution.
Oscillations do not occur because there are no cyclic
dependencies (connectivity management is not affected
by the other two). We choose the time delays of the
different managers to improve efficiency.

• Replica management and transaction management in-
teract because the number of replicas can change. This
may affect consistency if there are temporarily more
than f replicas. This is an extremely rare situation,
but it can be handled by changing the majority cri-
terium of the consensus algorithm.

• Covert stigmergy between feedback structures may oc-
cur because the network is a shared resource. Connec-
tivity and merge management messages must be given
priority over other messages, since otherwise the over-
lay network may become disconnected at high loads.
To minimize other bad effects due to stigmergy, the
management load on the network should be kept as
constant as possible. If connectivity management does
less work, then routing management takes up the slack.

Because these six feedback structures act at all layers of
the system, we can say that the Scalaris implementation is
self managing in depth. For many Web 2.0 services, the to-
tal cost-of-ownership is dominated by the costs needed for
personnel to maintain and optimize the service. In tradi-
tional database systems, changing system size and tuning
require human interference which is error prone and costly.
In both these situations, the same number of administrators
in Scalaris can operate much larger installations.

4. DESIGN GUIDELINES
A self-managing application consists of a set of interact-

ing feedback structures, each of which manages one system
property [36]. For this reason, we sometimes call a feed-
back structure a “manager”. We first explain how to design
one feedback structure and then we explain how to combine
feedback structures to make the complete system. This sec-
tion gives a partial methodology; the complete methodology
is still a subject of future research.



4.1 Designing one feedback structure
A feedback structure consists of a set of feedback loops

that collaborate together. An important design rule is that
each feedback loop should target a separate part of the man-
agement. In the TCP example, the inner loop implements
the sliding window and the outer loop does congestion con-
trol by changing a parameter of the inner loop. Each feed-
back loop can then be designed and optimized separately
using control theory [14] or discrete systems theory [8]. This
works well for feedback loops that are mostly independent.
If the feedback loops interact in a stronger way, then the
design must take these interactions into account. In a well-
designed feedback structure, the interactions will be small
and can be handled by small changes to each of the par-
ticipating feedback loops. It can happen that parts of the
feedback structure do not fit into the “mostly separable sin-
gle feedback loops” pattern. We have encountered several
examples of this in the SELFMAN project. In that case we
recommend the following approach:

• In the case of a large number of agents that collaborate,
the best approach is to design a distributed algorithm
[12] or a multi-agent system [31] to perform the task.
For example, in SELFMAN we needed an algorithm to
perform atomic commit for distributed transactions, in
the face of possible node failures and communication
interruptions (imperfect failure detection). We found
that a modified version of the Paxos uniform consen-
sus protocol was an essential part of the solution. This
is a complex algorithm whose correctness is not trivial
to prove [12, 23]. Instead of trying to reinvent it in
terms of interacting feedback loops, we used the exist-
ing knowledge about this algorithm.

• In the case when the feedback structure consists of
more than one loop intimately tied together, the global
behavior must be determined by analyzing the struc-
ture as a whole and not by trying to analyze each loop
separately. To our knowledge, no general methodology
for doing this exists. We have made progress on two
fronts: design rules and patterns for common feedback
structures. We have made a comprehensive survey of
feedback loop patterns [6]. Some commonly occurring
patterns, such as “Tragedy of the Commons”, have
been extensively studied in the literature. Unfortu-
nately, the literature is extremely fragmented. Studies
of feedback loop patterns exist in widely different dis-
ciplines, such as business management [29], biology [7,
22], and computer science [14]. Complete classification
of these patterns is still future research.

4.2 Combining feedback structures
We now explain how to build a system as a set of feedback

structures. This is done in two steps, decomposition and
orchestration [2]. Decomposition divides the overall man-
agement into separate feedback structures. Orchestration
handles the interactions between these feedback structures.

In decomposition, each task focuses on a single property of
the system and is performed by a single feedback structure.
For example, in the distributed store we distinguish connec-
tivity, efficient routing, load balance, replicated storage, and
transactions. Each of these is done by a different feedback
structure. Connectivity is done through ring maintenance
and the merge algorithm. Efficient routing is done through

finger table maintenance. Load balancing is done through
a load distribution algorithm. Replicated storage is done
through the symmetric replication algorithm. Transactions
are done through the replicated transaction managers.

For a successful orchestration, it is crucial to perform the
right decomposition. The managers should be independent
or interact only in a simple way. Because interactions can
be subtle (see Section 3.2), it is important to simplify them
as much as possible at design time. For the different kinds
of interactions, we give design rules to achieve this. We then
enumerate all possible interactions and modify the system
so they do not result in undesirable behavior.

4.2.1 Handling interactions
We identify three ways in which managers can interact

and we explain how to handle them [1]:

• Stigmergy. This occurs when managers make changes
to a shared subsystem. Each change made by a man-
ager may be sensed by another manager. This is the
most common and is often hard to control. It is a
powerful way to communicate for managers that oth-
erwise have no direct communication channel, such as
the TCP congestion control loops. Since stigmergic
communication tends to be noisy, the managers must
be designed to tolerate this.

• Hierarchy. This occurs when one manager directly
controls another. This situation often occurs inside
a single feedback structure, when an outer loop con-
trols an inner loop. For example, it occurs inside the
TCP structure and in the human respiratory system.
To handle this, we choose the control parameter to be
a natural parameter of the system being controlled and
we model the control in terms of this parameter.

• Direct interaction. This occurs when two managers
interact as peers. It does not mean that one man-
ager controls the other, but one manager may interact
with another. Direct interaction is sometimes needed
since two independent managers affecting the same re-
source may cause undesired behavior, such as races or
oscillation. It must be handled carefully to avoid re-
placing one kind of undesired behavior by another. We
can avoid many problems by designing each manager
around a monotonic function with a limiting value that
corresponds to perfect behavior. Each manager then
increases its own function in discrete steps.

4.2.2 Build the system in the right order
An important technique to reduce the interaction of feed-

back structures is to add the different properties in the right
order. In this way, each new property can be added in (al-
most) orthogonal fashion to the system. For the transac-
tional store, we propose the following order:

• The first property is self healing: the structured peer-
to-peer network is based on a ring structure and uses
feedback loops to repair the ring if a node joins, leaves,
or fails, or to repair network partitioning.

• We add self tuning in two steps. The first step is to
add extra routing links to the nodes (called “fingers”
in the literature) to make the routing efficient. This



is done through a feedback loop that continuously cor-
rects the fingers depending on the changing structure
of the ring. The second step is to update the ring dy-
namically to remove hotspots. This is done through a
feedback loop that periodically collects node load in-
formation and performs balancing operations in which
an unloaded node leaves the ring and rejoins near a
loaded node to take over some of the load.

• We add self configuration. Components use the effi-
cient routing to communicate, in particular to inform
nodes when to add or remove new components.

• Finally, we add self protection. We continuously mod-
ify the ring’s topology to approach a small-world net-
work, which is resistant to certain kinds of collusion.
We also add an observer of node behavior that can
eject bad nodes from the ring. This form of self pro-
tection protects against malicious users; it does not
protect against attacks to the infrastructure itself.

5. CONCLUSIONS AND PROSPECTS
To tame the complexity of Internet applications, we pro-

pose to build them using feedback structures. Each feedback
structure consists of a hierarchy of feedback loops that to-
gether monitor and correct one system property. Feedback
structures interact minimally and in a well-defined way. No
part of the system should exist outside of a feedback struc-
ture. We motivate this approach by giving examples of real
systems taken from biology and software (the human respi-
ratory system and the Internet TCP protocol family). In
our own work in the SELFMAN project [27, 20, 28, 34],
we have built structured peer-to-peer networks that survive
in realistically harsh environments (with imperfect failure
detection and network partitioning). We have developed
software, including the Scalaris and Beernet libraries and
the Distributed Wikipedia and the DeTransDraw collabora-
tive drawing tool, to show that our solutions are credible.
The Scalaris architecture consists of six feedback structures
whose interactions are carefully controlled.

5.1 Reversible phase transitions
We have shown that a structured peer-to-peer network can

react to a hostile environment by doing a reversible phase
transition [35]. To be precise, if the network is partitioned,
then the overlay network continues to work as several smaller
overlays. If the partition goes away, then a merge algorithm
is run that merges the smaller overlays back into a single
large overlay [30]. This is an exact analogy to a physical
phase transition as explained by thermodynamics [10, 13].
This behavior is predictable and can be exposed to the ap-
plication as an API so that it can be written to survive the
transition. Important research questions are how to design
a system together with determining its complete (reversible)
behavior in phase space, how phase transitions should be ex-
posed to an application as an API, and how they should af-
fect application design. We are preparing a followup project
to SELFMAN to answer these questions.

5.2 A complete and justified methodology
We have motivated why it is useful to design systems us-

ing feedback structures and we have presented our own tech-
niques in this area. For practical system design, it is impor-

tant to have a complete methodology that is formally jus-
tified and that allows to design systems with desired global
properties. To our knowledge, no such methodology exists
yet. Most of the knowledge in this area is fragmented and
deriving formal properties is difficult. Formal analysis of
systems with multiple interacting feedback loops is difficult
[17]. Techniques from theoretical physics are necessary to
show the existence of phase transitions [18]. Clearly, it is
not practical for a system developer to do formal analysis at
this level.

We propose a research agenda to create a complete method-
ology. First we study existing feedback loop systems to build
a library of patterns and rules. Second we translate the
patterns and rules into a process calculus. The translation
should be correct in a formal sense, e.g., according to the
definition of abstract interpretation [9]. Third we prove the
relevant properties of the patterns and rules. Important
properties include global correctness, stability, composition-
ality, and phase behavior. Finally, we step back from the
formal treatment and use the original patterns as design el-
ements following the rules. The developer can rely on the
proofs without having to do any formal analysis. We con-
sider the creation of this methodology as one of the most
important tasks for software development as the Internet
continues to grow in complexity.
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Abstract—We present a framework for building and evaluat-
ing P2P systems in simulation, local execution, and distributed
deployment. Such uniform system evaluations increase confi-
dence in the obtained results. We briefly introduce the Kompics
component model and its P2P framework. We describe the
component architecture of a Kompics P2P system and show
how to define experiment scenarios for large dynamic systems.
The same experiments are conducted in reproducible simula-
tion, in real-time execution on a single machine, and distributed
over a local cluster or a wide area network.

This demonstration shows the component oriented design
and the evaluation of two P2P systems implemented in Kom-
pics: Chord and Cyclon. We simulate the systems and then
we execute them in real time. During real-time execution we
monitor the dynamic behavior of the systems and interact with
them through their web-based interfaces. We demonstrate how
component-oriented design enables seamless switching between
alternative protocols.

Keywords-peer-to-peer; evaluation; component framework;
design; simulation; experimentation; deployment.

I. INTRODUCTION

Comprehensive evaluation of P2P systems comprises
analysis, simulation, and live performance measurements.
We present Kompics [1], a model for building reconfigurable
distributed systems from event-driven components. Kompics
systems can be uniformly evaluated in large-scale repro-
ducible simulation and distributed deployment, using both
the same system code and the same experiment scenarios.

Very similar in spirit, but without a hierarchical com-
ponent model, is the ProtoPeer [2] toolkit for prototyping
and evaluating P2P systems. Mace [3] generates distributed
systems code from a high-level specification while Splay [4]
allows system specification in a high-level language.

II. KOMPICS AND THE P2P COMPONENT FRAMEWORK

Kompics is a component model targeted at building dis-
tributed systems by composing protocols programmed as
event-driven components. Kompics components are reactive
state machines that are executed concurrently by a set of
workers. Components communicate by passing data-carrying
typed events through typed bidirectional ports connected
by channels. Ports are event-based component interfaces. A
port type represents a service or a protocol abstraction. It
specifies the types of events sent through the port in each

*This work was funded by the SELFMAN EU project, contract 34084.
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Figure 1. The left figure shows the architecture of a Chord process. The
Chord protocol is implemented by the Chord component using Network,
Timer, and FailureDetector abstractions. The Network and Timer abstrac-
tions are provided by the MinaNetwork [5] (which handles connection
management and message serialization) and JavaTimer components. The
ChordMonitorClient periodically inspects the Chord status (CS port) and
sends it through the network to the ChordMonitorServer (top right). The
ChordWebApplication renders this status on a web page upon request from
the JettyWebServer [6] (which provides web browser access). On the right
we have the component architectures of the monitoring and bootstrap server.

direction. A component either provides (+) or requires (–) a
port. Components may encapsulate subcomponents.

The Kompics runtime supports pluggable component
schedulers. The default scheduler is multi-threaded and
executes components in parallel on multi-core machines. We
use a single-threaded scheduler for reproducible simulation.

We developed a set of utility components and method-
ology for building and evaluating P2P systems. Service
abstractions for network and timers can be provided by dif-
ferent component implementations. The framework contains
reusable components that provide bootstrap and failure de-
tection services. System-specific components are developed
for global system monitoring and web-based interaction. We
highlight the elements of the P2P framework in the archi-
tecture of our Chord implementation illustrated in Figure 1.

III. DEFINING AN EXPERIMENT SCENARIO

We designed a Java domain-specific language (DSL) for
expressing experiment scenarios for P2P systems. We call a
stochastic process, a finite random sequence of events, with
a specified inter-arrival time distribution. Here is an example
scenario composed of 3 stochastic processes:



StochasticProcess boot = new StochasticProcess() {{
eventInterArrivalTime(exponential(2000)); // ˜2s
raise(1000, chordJoin, uniform(16)); }}; // 1000 joins

StochasticProcess churn = new StochasticProcess() {{
eventInterArrivalTime(exponential(500));// ˜500ms
raise(500, chordJoin, uniform(16)); // 500 joins
raise(500, chordFail, uniform(16)); }}; // 500 failures

StochasticProcess lookups = new StochasticProcess() {{
eventInterArrivalTime(normal(50)); // ˜50ms
raise(5000, chordLookup, uniform(16), uniform(14)); }};

boot.start(); // start
churn.startAfterTerminationOf(2000, boot); // sequential
lookups.startAfterStartOf(3000, churn); // in parallel
terminateAfterTerminationOf(1000, lookups);// terminate

1000 peers join in a space of 0..216. The inter-arrival
time between 2 consecutive joins is exponentially distributed
with a mean of 2s. A churn process starts 2s after. Every
500ms on average (exp), a new peer joins or an existing
peer fails. In parallel with the churn process, 5000 lookups
are initiated uniformly around the ring (0..216) for keys in
the first ring quadrant (0..214). The experiment terminates
1s after lookups are done.

IV. EXPERIMENT PROFILES

We can reuse the same experiment scenario to drive
simulation or local real-time execution experiments, as well
as remote experiments where the system nodes are dis-
tributed over the machines of a cluster (possibly running
ModelNet [7]) or a testbed like PlanetLab [8] or Emulab [9].

During simulation and local execution (see Figure 2) we
model the network at the message-level. In simulation, we
execute the same system code built for deployment. Calls
for the current system time are trapped and the current
simulation time is returned. Simulation enables determin-
istic replay, debugging, reproducible results, and large-scale
experiments without loss of accuracy.

We developed an infrastructure for deploying and execut-
ing distributed experiments. Experiment scenarios are locally
interpreted by a Master component which coordinates a set
of remote Slaves. Each Slave resides on a machine available
for the experiment and it manages a set of system peers.
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Figure 2. The simulation architecture with all peers and the bootstrap and
monitor servers within one process. ChordSimulationMain is executed using
a single-thread simulation scheduler for deterministic replay and simulated
time advancement. P2pSimulator is generic. It interprets experiment scenar-
ios and sends system-specific scenario events (e.g. chordJoin, chordLookup)
to the ChordSimulator which manages the ChordPeers (same from Figure 1).
The P2pSimulator provides a Network abstraction and can be parameterized
with a custom network latency and bandwidth model. For real-time local
execution we replace the P2pSimulator with a P2pOrchestrator, which
interprets the same experiment scenario but in real time. In addition,
components are executed by the default multi-threaded scheduler.

V. DEMONSTRATION OVERVIEW
This demonstration consists of evaluations of two P2P

systems developed in Kompics: Chord [10] and Cyclon [11].
Each system is first evaluated in a reproducible simulation
experiment. We reuse the same experiment scenario to
execute the systems in real time. We observe the dynamic
behavior of the systems though the web interface of the
monitoring server, which aggregates the global system state
periodically. We also inspect the local state of a few system
nodes though their web interfaces and we interact with
Chord by manually issuing lookups from different nodes.

We reuse the same scenario definition to drive a dis-
tributed experiment where nodes are deployed remotely on
some cluster machines or on PlanetLab [8]. We repeat
some of the previous system interactions. This illustrates
the uniform experience of evaluating real systems across
simulation, local execution, and distributed deployment.

We use a BitTorrent [12] system developed in Kompics,
in a simulation experiment, to demonstrate a realistic band-
width emulation model. Finally, we return to local execution
to experiment live with different scenario definitions.

VI. SUMMARY
We briefly introduced the Kompics component model

and we described the component architecture of the Chord
overlay developed using the Kompics P2P framework. We
showed how to define experiment scenarios for large and
dynamic systems and how the same experiments are con-
ducted in reproducible simulation, in real-time execution on
a single machine, and distributed over a local cluster or a
wide area network.

The source code used for this demonstration, including the
Kompics runtime, the P2P framework, experiment scenarios,
and implementations of Chord, Cyclon, and BitTorrent, is
available online at http://kompics.sics.se.
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Abstract

We present a distributed algorithm for identifying the lo-
cation of data centers and their relative sizes. This topology
information can be used in P2P systems to improve the rout-
ing performance, replica placement, or job scheduling.

The algorithm uses gossiping with local agglomerative
clustering. It is robust to failures and it correctly identi-
fies outliers that are caused, e.g., by temporarily overloaded
nodes or network failures. We present empirical results on
the Grid 5000 testbed.

1 Introduction

When deploying P2P systems in the Internet, it is im-
portant to minimize the stretch between the under- and the
overlay network. Knowing the current topology of the un-
derlay allows to speed up the routing process, to improve
replica placement, and to optimize gang scheduling of par-
allel processes—to name just a few of the many advantages.

With the recent focus on cloud computing and data cen-
ters topology-aware process placement became an impor-
tant research topic. Widely varying latencies of inter- and
intra-center links and correlated resource failures make it
difficult to determine an optimal process mapping. If the
topology and size of data centers were known, existing P2P
protocols [9] could be optimally mapped onto data centers
to provide better access latency with less maintenance traf-
fic [11].

We present an algorithm for gossip-based topology in-
ference which uses only local knowledge. It derives the
network topology by continuously checking the network
latencies between nodes with a network coordinate sys-
tem [1, 12] and grouping them with agglomerative cluster-
ing [2]. This allows to identify clusters of nearby located
nodes and to detect outliers (e.g., caused by temporary over-
load) with high confidence. The algorithm is robust with
respect to failures and it finds node clusters in a logarithmic
number of distributed communication steps.

∗Part of this work was carried out under the SELFMAN and XtreemOS
projects funded by the European Commission

While topology inference is our main focus in this paper,
the clustering algorithm can also be used for other tasks. As
an example, we determined CPU speeds and memory sizes
of the nodes in the Grid 5000 testbed (Sec. 4). The resulting
resource classes can be used to aid Grid schedulers or to
determine optimal replica placement in P2P systems [9].

In Section 2 we briefly recall gossiping, network coor-
dinate systems and clustering techniques. In Section 3 we
present our gossip-based algorithm for agglomerative node
clustering and in Section 4 we present results obtained on
the Grid 5000 environment. Section 5 gives a brief conclu-
sion and outlook.

2 Background

Gossiping [7] is a well-established method in distributed
systems. It is used for information dissemination, informa-
tion aggregation, peer sampling [10], and overlay construc-
tion [5]. Gossip algorithms are easy to implement, they are
tolerant to node failures and they converge fast—usually in
a logarithmic number of communication rounds. In each
gossip operation, an active node selects a peer at random,
exchanges information with it, and updates its local data
with the received information.

Network Coordinate Systems are used to build a model
that predicts the round-trip time between any two nodes.
The algorithm starts in each node by assigning itself a
random coordinate which is subsequently refined by ex-
changing coordinate information with other nodes to im-
prove the prediction quality. We use the gossip-based Vi-
valdi [1] algorithm with a 2-dimensional Euclidean coordi-
nate space. Several models for network coordinate systems
have been evaluated [1], including higher-dimensional Eu-
clidian spaces, Euclidian spaces with height vectors repre-
senting the individual delays of the access line to the In-
ternet core network (e.g. queueing and DSL link delays,
oversubscribed links) and spherical coordinates which were
initially deemed to model the earth surface best. For our
purpose, simple 2D coordinates are sufficient.

Clustering is a common technique in data mining [4, 3]
to group data so that the members of a group have similar
properties. Clusters are usually represented by centroids,



1 / / a c t i v e t h r e a d
2 Pee r p := s e l e c t R a n d o m P e e r ( )
3 sendTo ( p , c e n t r o i d s )
4 r e c e i v e F r o m ( p , r e m o t e C e n t r o i d s )
5 / / a g g r e g a t e da ta
6 c e n t r o i d s := c e n t r o i d s ∪ r e m o t e C e n t r o i d s
7 c e n t r o i d s := a g g l C l u s t e r i n g ( c e n t r o i d s , r )
8 c e n t r o i d s := n o r m a l i z e ( c e n t r o i d s )

1 / / p a s s i v e t h r e a d
2
3 ( p , r e m o t e C e n t r o i d s ) := rece iveFromAny ( )
4 sendTo ( p , c e n t r o i d s )
5 / / a g g r e g a t e da ta
6 c e n t r o i d s := c e n t r o i d s ∪ r e m o t e C e n t r o i d s
7 c e n t r o i d s := a g g l C l u s t e r i n g ( c e n t r o i d s , r )
8 c e n t r o i d s := n o r m a l i z e ( c e n t r o i d s )

Figure 1. Framework for gossip-based clustering.

1 a g g l C l u s t e r i n g ( c e n t r o i d s , r a d i u s ) :
2 / / g e t i n d i c e s o f c l o s e s t c e n t r o i d s
3 ( p , q ) := c l o s e s t P o i n t s ( c e n t r o i d s )
4 whi le s i z e ( c e n t r o i d s ) > 1
5 and d i s t ( p , q ) < r a d i u s :
6 / / a g g r e g a t e s i z e s
7 s i z e := p . s i z e + q . s i z e
8 / / merge c l o s e s t c e n t r o i d s
9 n e w c e n t r o i d := ( p . c e n t r o i d ∗p . s i z e

10 + q . c e n t r o i d ∗q . s i z e ) / s i z e
11 / / u p da t e c e n t r o i d s
12 c e n t r o i d s . remove ( p )
13 c e n t r o i d s . remove ( q )
14 c e n t r o i d s . add ( n e w c e n t r o i d , s i z e )
15 ( p , q ) := c l o s e s t P o i n t s ( c e n t r o i d s )
16 re turn c e n t r o i d s

Figure 2. Agglomerative clustering.

i.e. the centers of the clusters. Two widely used algorithms
are k-means clustering [8] and agglomerative clustering [2].
The former clusters the data points into k groups and tries
to minimize the distance of data points from their respective
centroids. The latter clusters data points in the same group
iff their similarity is below a given threshold. In k-means
the number of clusters is given as a parameter, while in ag-
glomerative clustering the number of clusters is determined
by the similarity threshold and the data distribution.

We focus on agglomerative clustering because the num-
ber of data centers is generally not known in advance. We
define a similarity metric based on network latency and give
a latency threshold for when nodes are located in the same
site.

3 Gossip-based Clustering Algorithm

Each node executes the algorithm shown in Fig. 1. The
algorithm consists of an active thread which initiates the
communication and a passive thread that waits for incoming
messages. Each node maintains a list of already detected
clusters with their centroids and relative sizes. The sizes of
all clusters sum up to 1.

On startup, each node initializes its centroids list with its
own coordinate and the relative cluster size 1. It then selects
a random communication partner with a peer sampling al-

gorithm [10, 6]. The partners exchange their centroids lists
and run the agglomerative clustering algorithm (called in
line 7 of Fig. 1, function shown in Fig. 2) on the merged
lists. The centroids’ relative sizes are then normalized so
that they sum up again to 1 (line 8 of Fig. 1).

The agglomerative clustering algorithm shown in Fig. 2
iteratively merges the two closest centroids p and q and
computes the weighted average (line 9, 10 of Fig. 2) re-
sulting in a new list of centroids.

4 Results

We used our clustering algorithm to determine the net-
work topology and various node attributes of the French
Grid 5000 testbed1. It comprises 1604 compute nodes
spread over nine sites (data centers) which are initially un-
known to the algorithm.

4.1 Topology Inference

To determine the topology of Grid 5000, we assign each
node a network coordinate. This coordinate is used for
initializing the nodes’ local view. Since the number of
data centers is not known, we use agglomerative cluster-
ing (Fig. 2) with a threshold denoting the maximum ex-
pected latency inside a data center. The centroids result-
ing from agglomerative clustering are network coordinates
which represent the centers’ center of gravity and their rel-
ative sizes.

Fig. 4 shows the actual size and location (circles) and
the estimated locations (�) of the data centers that were
identified by our algorithm after 1.5 log2 N communica-
tion rounds, with N being the number of nodes. We sim-
ulated 100 nodes based on the Grid 5000 node distribution
and plotted all centroids (�) identified by all nodes. Af-
ter 1.5 log2 N rounds the error is already relatively small.
Convergency is shown in Fig. 3 and discussed later.

Detecting Outliers Nodes that are overloaded or weakly
linked to the network due to wrong configuration will be
slow in answering requests. Consequently, the clustering

1https://www.grid5000.fr/
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Figure 4. Centroids and relative cluster sizes
in Grid 5000. + denotes node locations and � denotes the
estimated centroids of each node. The circles’ sizes show the actual
relative cluster sizes determined by central clustering.

algorithm puts their coordinates far away from all other
nodes, resulting in singletons which clearly identifies these
points as outliers. Similarly, network failures within a data
center can cause a subset of nodes to form a cluster, but
again, they are easy to identify, because they will lie far
outside of other data centers’ clusters.

Convergence To analyze the convergence of the cluster
algorithm, let |c| be the total number of centroids in a sys-
tem with N nodes and let ci be the centroids in the local
view of node i. Then cij is the jth centroid of ci and wij

is its relative size. Furthermore, let wk be the relative size
of the closest real centroid ck obtained by a globally in-
formed clustering algorithm that minimizes the expression
||cij − ck||. Then the average error of the cluster sizes is

error =
1
|c|

N∑

i=1

|ci|∑

j=1

(wij − wk)2
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Figure 5. Error reduction per commmunica-
tion round.
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Figure 6. Grid5000 nodes clustered by
#cores.

For Fig. 3, we simulated networks with different num-
bers of nodes. The graph shows that the algorithm con-
verges after ≈ log2 N rounds. Fig. 5 presents the same
metric for clustering node properties (discussed below). As
can be seen, the error decreases exponentially, eventually
converging after ten rounds.

4.2 Aggregating Resource Data

The nodes in Grid 5000 are heterogeneous and were pro-
cured from different vendors. We used our algorithm to
additionally aggregate the processor speeds, the number of
cores, the main memory sizes, and the hard disk sizes.

Cores For the number of cores, we put nodes in the same
cluster if their number of cores differed by less than one.
For such integer-valued attributes, the clustering can be pre-
cisely steered: If the similarity threshold is set to 1, nodes
will only end up in the same cluster when their attribute has
exactly the same value. Fig. 6 shows that three centroids
with 2, 4, and 8 cores were found in Grid 5000.

The left bars show the average cluster sizes after run-
ning log2 N communication rounds. For comparison, the
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Figure 7. Grid5000 nodes by disc size.

right bars show a (hypothetical) central algorithm with com-
plete knowledge. All data lies in the confidence interval and
the average cluster sizes are close to the exact values after
log2 N rounds (see also Fig. 5).

Disk Size For determining the hard disk sizes, we set the
similarity threshold to 1 GB. Hence only disks of exactly
the same size are clustered together. Fig. 7 shows that all
seven different hard disk sizes were correctly identified and
that the relative sizes are also close to the correct values.

Memory Size For computing the main memory sizes
we used 1 GB as the similarity threshold. After log2 N
rounds all four main memory classes were correctly identi-
fied (Fig. 8). Although the relative sizes span several orders
of magnitude, the approximations are reasonably good.

5 Conclusion and Future Work

We presented a simple, yet powerful gossip-based clus-
tering algorithm for data aggregation in distributed systems.
The algorithm is robust with respect to failures and it cor-
rectly identifies outliers. Empirical results on Grid 5000 are
in good agreement with the actual data.

The algorithm can be used for a wide variety of data ag-
gregation tasks like topology inference, replica placement,
or process placement. When the total number of nodes in
the overlay is known (or can be approximated), the number
of nodes in each cluster can be determined by multiplying
its relative size by the total number. This information can be
used for mapping data replicas or for job scheduling. In the
latter case, it could be beneficial to group nodes e.g. into
‘fat’ nodes with multiple cores and a large main memory
and into ‘normal’ nodes.

Our work was motivated by the need for obtaining topol-
ogy information in global P2P networks. We intend to use
the clustering algorithm for deploying DHTs onto data cen-
ters. The clustering information will be used to improve the
routing by adding extra pointers to the routing table so that
each routing table has a given number of pointers to each
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Figure 8. Grid5000 nodes by memory size.

data center. Proximity routing along the extra pointers will
then be used to minimize lookup latencies and the relative
cluster sizes could be used to decide how many pointers
should be placed to each data centers.
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Abstract—With the recent focus on cloud computing a new type
of system topology came up: clusters in geographically distributed
datacenters that are connected by high-latency networks. Current
structured overlay networks (SONs) are not well prepared for
such environments with heterogeneous network performance and
correlated node failures.

We show how the beneficial features of SONs, namely self-
management, scalability, adaptability, and fault tolerance can
be exploited for multi-datacenter environments. We present self-
adaptive replica placement policies and latency-optimized routing
for SONs on multiple datacenters. Empirical results of our gossip-
based ring maintenance protocol demonstrate its ability to cope
with correlated node failures and network partitioning.

I. INTRODUCTION

Structured Overlay Networks (SONs) provide self-
management and fault-tolerance properties, that are also of
interest to providers of datacenters and cloud computing.
However, SONs like Chord [19] are ill prepared for
deployment over multiple datacenters, as some of their basic
assumptions are violated:
• Node failures are no longer independent from each other,

but become correlated when a whole data center ex-
periences a power outage or network link failure. To
improve the data availability, replicas must be explicitly
assigned to different datacenters, rather than placing them
randomly by consistent hashing. In Section II we present
a flexible data placement scheme for Chord# [14], a SON
without hashing.

• In multi-datacenter scenarios the message delays are
either negligible (for intra-datacenter), or very long
(for inter-datacenter). A similar pattern holds true
for the bandwidth. To provide faster data access, we
present approaches for latency-optimized routing in
multi-datacenter SONs in Section III.

• The increased probability of correlated node failures calls
for adapted overlay maintenance schemes. We present
and evaluate an improved gossip-based ring maintenance
algorithm based on T-MAN [8] in Sections IV and V.

Deploying SONs in multi-datacenter environments has the
advantage that the nodes are more reliable (because there is
less churn than in usual P2P networks) and that the environ-
ment can be trusted (no Byzantine faults).

To minimize the administration cost, all data and services
of multiple applications should be hosted on a single overlay
and the overlay should be able to support individual placement
policies per application.

Part of this work was carried out under the SELFMAN and XtreemOS
projects funded by the European Commission.

II. ASSIGNING DATA RANGES TO DATACENTERS

In the following, we present a framework for a key-value
store spanning over multiple datacenters. We start from a DHT
which does not hash keys but stores them in lexicographical
order on the ring. Examples are skip graphs [1], Mercury [2],
and Chord# [14]. We analyze how this property can be
exploited for the deployment in datacenter environments.

A. Replication
DHTs typically replicate data items by successor list replica-

tion [19] or by key-based replication. The former stores copies
of the items in the successors of the responsible node and the
latter stores them under multiple keys. All replicas of an item
can be found with a parallel lookup. Symmetric replication [7]
is a special case of key-based replication where the keys are
evenly distributed over the key space.

We introduce prefix replication for DHTs that store their
items in lexicographical order [14]. It adds a prefix to the
key to derive the replicas’ keys. As an example, the three
replicas of ‘gnat’ would be stored at keys ‘1:gnat’, ‘2:gnat’,
and ‘3:gnat’.

By adding the application name as a second prefix to the
replicas several applications with different replication policies
can be hosted on the same overlay. A replicated key name has
the form <appname>:<replica number>:<key>. Thereby,
keys of different applications will populate disjoint parts of
the ring. Fig. 1 shows an example with four applications, each
of them with the replication degree 3.

B. Replica Placement Policies
Replica placement algorithms have to cope with two contra-

dicting goals. On the one hand, the items should be stored near
the user to improve the access speed. On the other hand, the
items should be spread over several datacenters to guarantee
availability in the face of datacenter outages. For read-only
data and for weakly consistent data as in Dynamo [6] both
aspects can be trivially accomplished by spreading a sufficient
number of replicas over all sites.

We aim at providing strong data consistency with concur-
rent updates. Hence, all read and write operations must be
performed on a majority of the replicas [16] and it is no
longer sufficient to put just one replica near the user, but a
majority. The remaining replicas should be spread over the
other sites to improve the availability. The differently shaded
parts in Fig. 1 illustrates how replicas can be placed in a global
ring structure to ensure both, low latency and high availability
for applications with different geographical user communities,
like several instances of Wikipedia in different languages.
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Fig. 1. Prefix Replication

C. Implementation of Placement Policies

The described replica placement policies can be enforced
by a standard load-balancing algorithm like that of Karger et
al. [9]. It autonomously distributes items when nodes join or
leave the system. To achieve a suitable geographical placement
within datacenter bounds, we modify Karger et al.’s algorithm
to exchange the workload according to our policy restrictions.
More specifically, replicas violating the geographic restrictions
are migrated to nodes in the targeted region, while all other
load is exchanged within the same geographical region.

Different policies can be enforced for different applications.
Policies can be changed at any time and are automatically
implemented by the balancing scheme.

III. LATENCY-AWARE ROUTING OVER DATACENTERS

When deploying SONs over multiple datacenters, the inter-
datacenter latency dominates the overall access latency. Conse-
quently, the use of inter-datacenter links should be minimized,
whereas intra-datacenter links can be used more liberally.
Proximity routing [3] and k-ary routing [13] are two clas-
sical schemes that are used to reduce the access latency in
DHTs. Unfortunately, they do not consider clustered nodes in
datacenters.

In the following, we first present an agglomerative clustering
algorithm for finding nodes in datacenters and then present
approaches to reduce the traffic between datacenters.

A. Determining the Location of Datacenters

To be able to reduce the number of long-distance hops,
the memberships of nodes in datacenters must be known.
For this purpose, we devised an agglomerative clustering
algorithm [15] (Alg. 1) that determines the relative node
locations by measuring pairwise message latencies. Because
latencies cannot be clustered directly, we assign to each node a
point in a two-dimensional space so that the Euclidean distance

Algorithm 1 Datacenter detection
1: initialize
2: centroids := {(vivaldi(self()), 1.0)}
3: end

4: every interval time units
5: peer := selectRandomPeer();
6: sendto peer : SHUFFLE(centroids)
7: end event

8: upon event SHUFFLE(set remoteCentroids) from p
9: sendto p : SHUFFLERESPONSE(centroids)

10: centroids := update(centroids ∪ remoteCentroids)
11: end event

12: upon event SHUFFLERESPONSE(set remoteCentroids)
13: centroids := update(centroids ∪ remoteCentroids)
14: end event

15: function UPDATE(set centroids)
16: centroids := agglClustering(centroids, radius)
17: centroids := normalize(centroids)
18: return centroids
19: end function

20: function NORMALIZE(set centroids)
21: result := ∅
22: foreach (centroid, size) in centroids do
23: result := result ∪ {(centroid, size

2
)}

24: end foreach
25: return result
26: end function

to any other nodes reflects the network latency between them.
This is done distributedly using a network coordinate system
like Vivaldi [5].

Alg. 2 shows the gossip based clustering algorithm that
uses Vivaldi. In the beginning, each node assumes that there
is only one cluster of size 1 (itself). After several gossiping
rounds each node has an estimate of the centroid (average
network coordinate of a set of nodes) of each datacenter and
their relative sizes. In each gossip step two nodes exchange
their current view on the system: both nodes concatenate the
two views and recluster them locally.

Once the membership of nodes in clusters (resp. datacenters)
is known, the number of long-distance routing hops between
datacenters can be minimized. For this purpose, each peer
maintains (at least) one finger to a node in each replica range
of Fig. 1. Any lookups can then be directly forwarded to the
target datacenter without any intermediate hop. Local routing
will forward the request to the target node without leaving
the destination datacenter – assuming bi-directional routing as
described in the next Section.

B. Bi-directional Routing

DHTs typically maintain routing pointers only in one di-
rection. Bi-directional routing, that is maintaining pointers in
both directions, does not pay of, because it reduces the hops
by only 1 (e.g. from 0.5 log N to 0.5 log N−1) while doubling
the storage overhead.

In our datacenter scenario, however, bi-directional routing is
beneficial – despite the additional storage overhead. A lookup
that is started at the ’end’ of the key range hosted in a
datacenter for a key that is stored at the ’beginning’ of the



Algorithm 2 Datacenter Range detection
1: initialize
2: if getDataCenter(self()) 6= getDataCenter(succ) then
3: borders := {(self(), getDataCenter(self()),
4: getDataCenter(succ))}
5: else
6: borders := ∅
7: end if
8: end

9: every interval time units
10: peer := selectRandomPeer();
11: sendto peer : SHUFFLE(borders)
12: end event

13: upon event SHUFFLE(remoteBorders) from p
14: sendto p : SHUFFLERESPONSE(borders)
15: borders := borders ∪ remoteBorders
16: end event

17: upon event SHUFFLERESPONSE(remoteBorders)
18: borders := borders ∪ remoteBorders
19: end event

Data Center 1

n2

Gateway Nodes

Lower-level Ring

Upper-level Ring

n0

n1

n3

n4

Fig. 2. Hierarchically Structured Overlay for Multi-Datacenter Deployment.

datacenter’s range can use a ’backwards’ pointer to reach the
target key without the need to leave the datacenter. By this
means, bi-directional routing avoid inter-datacenter latency by
routing (if possible) inside datacenters.

C. Ethernet Broadcasting

Inside a datacenter, multicasts should be performed with
a Ethernet broadcast operations. For its subnetwork, each
node needs to maintain a finger to all other nodes and their
responsibilities. Every node periodically broadcasts its ring
identifier and IP-address using Ethernet broadcast messages.
With this scheme we achieve a one-hop data access with a
slightly larger routing table.

D. Hierarchically Structured Overlay

The traffic between datacenters can also be reduced with a
hierarchically structured overlay. The architecture presented so
far (Fig. 1) provides higher flexibility and better performance
than a standard DHT. However, the geographical location of
the datacenters is not reflected in the overlay topology and
neighboring nodes may be thousands of miles apart.

Moreover, a large amount of TCP connections are kept open
between datacenters for successor and finger pointers. This can
be avoided by introducing gateway nodes that are connected
to the gateway nodes of other datacenters and forward inter-
datacenter requests from/to local nodes (Fig. 2).

On the inter-datacenter level, a standard overlay is built
where each datacenter appears as one peer for each of its
replica ranges. This role is performed by the gateway nodes of
each datacenter. To avoid overloading of single gateway nodes
and to improve fault-tolerance, they can be implemented with
replicated state machines which are distributed over multiple
machines. Standard load-balancing techniques can be used to
hide this fact from other peers.

Even though, the gateway nodes appear to be one replicated
peer, only a small subset of their state has to be consistently
replicated among them. It is sufficient to consistently repli-
cate [10] the node’s position on the ring and the pointer to
the successor resp. predecessor. There is no need to keep the
routing tables synchronous because they do not affect data
consistency. As the gateway nodes do not hold any data, the
synchronization overhead is low.

The lower level ring stores the data for which the datacenter
is responsible at the upper level. It is divided into an ’active’
part (marked bold in Fig. 2) and a ’passive’ part. The active
part is populated with the data items. It corresponds to the
segment of the upper ring for which n2 is responsible.

The upper level ring is oblivious of the hierarchical struc-
ture. This transparency allows to build systems with multi-
level hierarchies to even better control the flow of network
traffic. In the extreme, one could deploy a global ring on the
top, one ring per continent on the next level comprising several
datacenters, a ring per container, and a ring per rack on the
lowest level.

IV. COPING WITH DATACENTER FAILURES

In Chord, nodes and keys are randomly hashed on the
identifier space, and hence the failure of physically neighbored
nodes does not too much affect the nodes in the logical ring.
A successor list of length log2 N is usually sufficient to repair
gaps in the ring – even with a high churn.

With our prefix replication, this assumption is violated.
Even worse, neighboring nodes will likely be hosted in the
same datacenter and their failures will correlate. A network
outage in a datacenter can cause thousands of adjacent nodes
to disappear from the overlay at the same time. Chord’s ring
maintenance algorithm cannot fix this, because the ring gap is
wider than the successor list length.

A. Gossip-based Ring Maintenance

Our ring maintenance algorithm copes with correlated node
failures. It is based on T-MAN [8], a gossip protocol for
the construction of arbitrary overlay structures. We adapted
T-MAN for continuous ring maintenance as follows.

To accelerate the detection of crashed nodes, each node in
the local view is monitored by a failure detector. In case of a
failure, the node is removed from the view.
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Fig. 3. Network partitioning and repair with modified T-MAN (0s: startup, 200s: network partitioning, 400s: network repair)

Dead nodes are stored in a dead-node-cache (DNC). This
is a FIFO queue with a fixed size of 10 elements in our case.
DNC nodes are periodically contacted to detect re-appearing
nodes, e.g. after repair of a network partitioning.

T-MAN [12] initializes the local view with a set of random
nodes. The shuffling continues until the view does not change
anymore. When the view becomes stable, the view is re-
initialized with random nodes and the procedure starts from
the beginning. It takes up to O(log N) shuffle rounds until
defects in the overlay are repaired. In contrast to T-MAN,
we never reset the local view and we include in each shuffle
operation some random nodes.

T-MAN uses a ranking function based on the distance in
the key space, d(a, b) = min(N−|a−b|, |a−b|), for building
rings. Our view, in contrast, is built on the distance in the node
space and thereby builds separate predecessor and successor
lists, as Fig. 4 shows. This improves the reliability under
churn and with correlated failures. On a datacenter outage,
the preceeding node of that datacenter will detect that all its
successors are gone. In the next T-MAN round, it will accept
any random node to fill the missing successor list entries.

V. EVALUATION

We implemented the described algorithm in our transac-
tional key-value store Scalaris [16]. We simulated 400 nodes
on two datacenters: 300 in datacenter 1 and 100 in datacenter
2. Each datacenter was simulated on a single server and the
network partitioning was simulated by removing the network
connection between the two servers. We used a Cyclon Interval

modified view
original view
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M

original T-MAN: viewA = [B, C,D, E]
modified T-MAN: viewA = [B, P,C, O]

Fig. 4. Succ/pred list with original resp. modified T-MAN.

of 4.9 seconds, a T-MAN interval of 10 seconds, and a failure
detector timeout of 3 seconds.

We simulated the scenario in Fig. 1 with one application.
Each datacenter is responsible for a disjoint segment of the
ring. When partitioning the network, a contiguous segment of
1/4 resp. 3/4 nodes disappears.

Fig. 3 shows the sizes of the datacenters and the healthiness
of the ring over the observation time (600s). ‘Healthiness’ is
the aggregated deviation of the local views (predecessors and
successors) from the correct view based on global information.
Additionally, we weight the errors according to their relative
position in the list. It is more important for the direct successor



to be correct than for the last node in the list. Finally, we
normalize the error to the interval [0, 1).

The system was started at t = 0s by joining 400 nodes to
the system during the first 10 seconds. After ≈ 140 seconds,
T-MAN has fixed the ring structure. In this period, T-MAN
performed ≈ 14 shuffle rounds.

At t = 200s, we disconnected the two servers. For datacen-
ter 1, the ring size drops to 300 nodes, because datacenter 2 is
unavailable. Analogously, the ring size for datacenter 2 drops
to 100 nodes. At the same time, the error increases, as the
predecessor and successor lists of some nodes in the datacenter
are invalid. After ≈ 110s (at t = 310s, after 11 shuffle
rounds) the local views became correct again, representing
two separate rings, one per datacenter.

At t = 400s, we re-connected the links between the two
servers and the nodes in the DNC are detected to have become
alive again. T-MAN starts to repair the ring. As can be seen,
the ring size goes up to 400 nodes and the ring becomes fixed
after ≈ 100s (at t = 500s, after 10 shuffle rounds).

VI. CONCLUSION

We presented and analyzed techniques for an improved
autonomous mapping of structured overlays onto global P2P
networks over multiple datacenters. Prefix replication allows
to implement fine-grained replica placement policies for im-
proved data availability and reduced lookup latency.

Our system autonomously infers the network topology,
detects datacenters and optimizes its routing tables. Our sim-
ulation results with 400 nodes showed that with gossip-based
ring maintenance SONs can repair themselves also in presence
of correlated node failures and network partitioning without
global knowledge.

Due to the self-* properties of Scalaris, globally distributed
services can be run with low administrative overhead. Adding,
removing and updating nodes can be done at any time without
preparing or reconfiguring the system. The system will adapt
itself accordingly. This eases the job of datacenter operators,
reduces the possibility of human errors and allows mainte-
nance without scheduled downtimes.
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Abstract—Key/value stores which are built on structured
overlay networks often lack support for atomic transac-
tions and strong data consistency among replicas. This is
unfortunate, because consistency guarantees and transac-
tions would allow a wide range of additional application
domains to benefit from the inherent scalability and fault-
tolerance of DHTs.

The Scalaris key/value store supports strong data con-
sistency and atomic transactions. It uses an enhanced
Paxos Commit protocol with only four communication
steps rather than six. This improvement was possible by
exploiting information from the replica distribution in the
DHT. Scalaris enables implementation of more reliable
and scalable infrastructure for collaborative Web services
that require strong consistency and atomic changes across
multiple items.

I. INTRODUCTION

Distributed hash tables (DHTs) and other structured
overlay networks (SONs) were developed to provide an
efficient key based location of nodes and associated data
in the presence of node joins, leaves and crashes (churn).
Due to churn, two challenges arise in such systems: (1)
When a node crashes, all data stored on this node is
lost. (2) When a node is suspected to be crashed, lookup
inconsistencies and responsibility inconsistencies may
occur, which may lead to wrong query results or loss
of update requests. Responsibility inconsistency occurs
when multiple nodes believe they are responsible for an
overlapping range of items.

The first issue can be addressed by data replication.
The second issue can only be relieved but not overcome:
It was shown that in an asynchronous network atomic
overlay maintenance is impossible [7] and thus respon-
sibility inconsistency is unavoidable. Clearly, data con-
sistency cannot be achieved if responsibility consistency
is violated. But as shown in [19], the probability of in-
consistent data accesses can be reduced by increasing the
replication degree, and performing reads on a majority of
replicas. In typical Internet scenarios, for example, only
three replicas give a consistency probability of five nines.
It can be further improved by adding more replicas or

by increasing the share of nodes required for a quorum,
but it can never be made 100%1.

Scalaris [16] is a transactional key/value store which
uses symmetric key replication [8] to ensure data avail-
ability in the face of churn. Data consistency is enforced
by performing all data operations on a majority of
replicas.

In this paper, we present improved algorithms for
concurrency control and transaction processing, that are
based on approaches presented in [14], [16]:
• We show how Paxos Commit can be efficiently

embedded into a DHT to perform a low latency
non-blocking atomic commit on replicated items.
Our commit protocol including the commit phase
and the validation phase requires just four message
delays in the failure-free case (Sect. V-B).

• We discuss failure scenarios and explain how they
are dealt with (Sect. V-B).

• We illustrate how transactions are executed and
validated in Scalaris and how concurrency control
is performed using readers-writer locks (Sect. V-C
and Sect. V-D).

• We evaluate the latency-critical path of our commit
protocol by checking each step for its earliest start
time (Sect. VI).

Before going into the details in Sect. V and VI, we dis-
cuss related work in the following, describe our general
overlay structure and replication scheme in Sect. III and
provide the fundamentals of Paxos Consensus and Paxos
Commit in Sect. IV.

II. RELATED WORK

There are several production systems that use Paxos
Consensus [12], like Google’s distributed lock service
Chubby [3]. The closest to our work is Etna [13] which
provides replicated atomic registers. Etna uses consensus
to agree on the replica membership set. It does not
provide transactional semantics on multiple data items.

1Inconsistencies might still happen if multiple nodes join between
two existing nodes [19].



Dynamo [5] is a large-scale key/value store. In contrast
to Scalaris [16], Dynamo favours availability instead of
strong consistency. It provides eventual consistency and
no transactions.

We describe an improved transaction commit proto-
col which reduces the number of message delays in
the failure-free case by two compared to our previous
protocol [14].

III. SCALARIS: REPLICATED DATA ON STRUCTURED

OVERLAYS

Scalaris [16] is a distributed, transactional key/value
store with replicated items. It uses symmetric data repli-
cation [8] on top of a structured overlay like Chord [20]
or Chord# [17]. In contrast to many other key/value
stores, Scalaris provides strong data consistency. It uses
the same transaction mechanism for providing replica
synchronization as well as transactional semantics on
multiple data items.

In the following, we describe the DHT layer and
replication layer.

A. Structured Overlay Networks

Distributed hash tables (DHTs) provide a scalable
means for storing and retrieving data items in decen-
tralized systems. They are usually implemented on top
of structured overlay networks which provide robustness
in dynamic environments with unreliable hosts. A DHT
has a simple API for storing, retrieving and deleting
key/value pairs: put(key,value), get(key), and delete(key).

We use the structured overlay protocol Chord# [17]
for storing and retrieving key/value pairs in nodes that
are arranged in a virtual ring. This ring defines a key
space where all values can be stored according to the
associated key. Nodes can be placed at arbitrary places
on the ring and are responsible for all data between
their predecessor and themselves. The placement policy
ensures even distribution of load over the nodes.

In each of the N nodes, Chord# maintains a routing
table with O(logN) entries (fingers). In contrast to other
DHTs like Chord [20], Kademlia and Pastry, Chord#

stores the keys in lexicographical order. This enables
range queries and it gives control over the placement
of data on the ring structure, which is necessary when
deploying a Chord# ring over datacenters to have better
control over latencies. To ensure logarithmic routing per-
formance, the fingers in the routing table are computed
in such a way [17] that successive fingers in the routing
table jump over an exponentially increasing number of
nodes in the ring.

To access the node responsible for a given key k, a
DHT lookup with an average of 0.5logb N routing hops
is performed. The base b can be chosen according to the
application requirements, e.g. faster lookup versus lower
space requirements [1].

Due to churn, nodes can join and leave at any time,
and the ring must be repaired. Stabilization routines
run periodically, check the ring healthiness and repair
the routing tables according to the finger placement
algorithm. If the ring becomes partitioned, a bad pointer
list keeps information on nodes on the other part of the
ring and a merge algorithm [18], [11] can be used to
rejoin them again.

B. Data Replication

To prevent loss of data in the case of failing nodes,
the key/value pairs are replicated over r nodes. Several
schemes like successor list replication or symmetric
replication [8] exist. Symmetric replication stores each
item under r keys. A globally known function places the
keys {k1, . . . ,kr} symmetrically in the key space. Read
and write operations are performed on a majority of
replicas, thereby tolerating the unavailability of up to
b(r−1)/2c nodes. This scheme is shown to ensure key
consistency for data lookups under realistic networking
conditions [19].

IV. PAXOS CONSENSUS AND PAXOS COMMIT

To provide strong consistency over all replicas, trans-
actions are implemented on top of our structured overlay
where symmetric replication is employed. We use opti-
mistic concurrency control with a backward validation
scheme. Our Scalaris system uses an adapted Paxos
Commit for non-blocking atomic commit, which in turn
uses Paxos Consensus for each individual data replica
to fault-tolerantly agree on prepared or abort for each
replica.

We first describe the Paxos Consensus protocol and
then discuss the non-blocking atomic commit protocol.

A. Paxos Consensus

In a distributed consensus protocol, all correct (i.e.
non-failing) processes eventually choose a single value
from a set of proposed values. A process may perform
many communication operations during the protocol exe-
cution, but it must eventually decide a value by passing it
to the client process that invoked the consensus protocol.

Throughout this paper, we assume a fail-stop model
where failing processes do not recover. To simulate this
behaviour, returning nodes will rejoin with a new identity
and empty state.



Algorithm 1 Paxos Consensus: Proposer
1: initialize
2: r = any round number greater than all r seen before
3: multicast prepare(r) to all acceptors
4: ack received = /0

5: on receipt of ack(r,vi,rlasti) from acceptor acci
6: ack received = ack received ∪ (r,vi,rlasti)
7: if |ack received|> n

2 . get index of newest round
8: j = max(rlastk: for all k such that {r,vk,rlastk}∈

ack received)
9: . end of information gathering phase

10: if v j = ⊥ . no value agreed yet?
11: v j = any value . we propose a value
12: multicast accept(r, v j) to all acceptors

Algorithm 2 Paxos Consensus: Acceptor
1: initialize
2: rack = 0,raccepted = 0,v =⊥ . no round acknowledged

or accepted yet, no value

3: on receipt of prepare(r) from proposer
4: if r > rack ∧ r > raccepted . new round?
5: rack = r . memorize that we saw round r
6: send ack(r, v, raccepted) to proposer

7: on receipt of accept(r, w) from proposer
8: if r ≥ rack ∧ r > raccepted . latest round?
9: raccepted = r . memorize that we accepted in round r

10: v = w
11: send accepted(raccepted , v) to learners

12: on receipt of decided(v) from learner
13: cleanup()

Algorithm 3 Paxos Consensus: Learner
1: on receipt of accepted(r,v) from a majority of acceptors
2: multicast decided(v) . v is consensus

Lamport’s Paxos Consensus [12], [15] is a non-
blocking consensus protocol for asynchronous dis-
tributed systems. Alternative algorithms were proposed
by Chandra and Toueg [4] and by Dwork [6]. Paxos im-
plements a uniform consensus which achieves agreement
even when a minority of processes should fail. Uniform
consensus has the following properties [10]:

• Termination: Every correct process eventually de-
cides some value.

• Validity: If a process decides v, then v was proposed
by some process.

• Integrity: No process decides twice.
• Agreement: No two processes decide differently.

1) Outline of the algorithm: Each process may take
the role of a proposer, an acceptor, or a learner, or
any combination thereof. A proposer attempts to get
a consensus on a value. This value is either its own
proposal or the resulting value of a previously achieved
consensus. The acceptors altogether act as a collective
memory on the consensus status achieved so far. The
number of acceptors must be known in advance and
must not increase during runtime, as it defines the size
of the majority set m required to be able to achieve
consensus. The decision, whether a consensus is reached,
is announced by a learner.

Proposers trigger the protocol by initiating a new
round. Acceptors react on requests from proposers. By
holding the current state of accepted proposals, the
acceptors collectively provide a distributed, fault-tolerant
memory for the consensus. In essence, a majority of ac-
ceptors together ’know’ whether an agreement is already
achieved, while the proposers are necessary to trigger the
consensus process and to ’read’ the distributed memory.

Each round is marked by a distinct round number r.
Round numbers are used as a mean of decentralized
tokens. The protocol does not limit the number of
concurrent proposers: There may be multiple proposers
at the same time with different round numbers r. The
proposer with the highest r holds the token for achiev-
ing consensus. Only messages with the highest round
number ever seen by each acceptor, will be processed
by that acceptor. All others will be ignored. If at any
round, a majority of the acceptors accepted a proposal
with value v, it will again be chosen by all subsequent
rounds. This ensures the validity and integrity properties.

Alg. 1, 2, and 3 depict the protocols of the proposer,
acceptor, and learner, respectively. The algorithm can
be split into two phases: (1) an information gathering
phase to check whether there was already an agreement
in previous rounds, and (2) a consolidation phase to
distribute the consensus to a majority of acceptors and
thereby to agree on the decision. In the best case,
consensus may be achieved in a single round. In the
worst case, the decision may be arbitrarily long delayed
by interleaving proposers with successively increasing
round numbers (token stealing by each other).

2) Information gathering phase: A proposer starts a
new round (lines 1–3 of Alg. 1) by selecting a round
number r greater than any round number seen before. At
start time, an arbitrary round number is chosen. The only
restriction on round numbers is that they must be unique
across all possible proposers. This can be achieved, for
example, by appending the proposer’s identifier. If any



new round number happens to be smaller than an earlier
one, the round will be detected as outdated and will be
ignored.

The proposer sends its round number with a prepare(r)
message to the acceptors and starts a timeout (timeouts
are not shown in the algorithms). If it does not get an
ack message from a majority of the acceptors within the
timeout, it starts from the beginning with a higher round
number and retries with a slightly increased timeout. The
timeout implements an eventually perfect failure detector
�P on an arbitrary majority of acceptors.

When an acceptor receives a prepare(r) message (lines
3–6 of Alg. 2), it checks whether the given round r is
newer than any previously seen round. If the received
r is greater, the acceptor memorizes the round and
acknowledges with ack(r, v, raccepted) where v is the value
accepted previously in round raccepted .

Note that a proposed value v may be accepted several
times by an acceptor in different rounds. If the round
number r is outdated, the acceptor does nothing. Alter-
natively, the acceptor may send nack(r, raccepted) to help
the proposer to quickly find a higher number for a new
round (this improvement is not shown in the algorithms).

3) Consolidation phase: After collecting a majority
of ack messages, the proposer checks for the latest value
that was accepted by an acceptor (lines 4–9 of Alg. 1).
If it is still the initial ⊥, the proposer chooses a value
by itself, otherwise it takes the latest accepted value v j.
The proposer then sends an accept(r, v j) request to the
acceptors.

An acceptor receiving an accept(r, v j) request checks
the round. If it is the latest one, it updates its local state
and confirms the accept request with accepted(r, v) to the
learners (lines 7–11 of Alg. 2). Otherwise the acceptor
does nothing or sends naccepted() to the proposer.

When a learner receives accepted(r, v) messages from
a majority of the acceptors, the consensus is finished with
value v.

4) Discussion: When a proposer crashes, any other
process (or even multiple processes) may take the role
of a proposer. The new proposer(s) may retrieve the so
far achieved consensus (if any) from the acceptors by
triggering a new round.

Since the acceptors have no indication on whether
a consensus has been achieved already, they must run
forever, always being prepared to take new accept(r,w)
messages from other proposers. When a new accept(r,w)
with a higher round number r comes in, they are obliged
to accept and store the new value w. As an improve-
ment, the application may decide that a consensus was

achieved and consumed and hence the acceptors may be
terminated.

B. Paxos Commit

Gray and Lamport [9] describe a commit protocol
based on Paxos Consensus. Instead of using a simple
version with a single Paxos Consensus as a stable stor-
age, they propose a variant that needs more messages but
one less message delay. It performs a Paxos Consensus
for each item (TP) involved in the transaction.

In the simple variant, the transaction manager (TM)
is responsible to make the decision. It works as follows:
The TM asks all TPs whether they are prepared to
commit the requested transaction and TPs answer with
either prepared or abort. If all TPs are prepared, the
TM initiates a Paxos Consensus and takes the role of
a proposer by sending accept(prepared) to the accep-
tors, otherwise by sending accept(abort). The acceptors
answer accepted and on a majority of such answers the
TM sends the final decision (commit or abort) to all TPs
for execution. This procedure involves 5 message delays.

The Paxos Commit proposed in [9] needs one fewer
message delay. It does so with a separate Paxos Con-
sensus instance for each TP. As before, the TM asks all
TPs whether they are prepared to commit the requested
transaction. This time, however, the TPs do not reply to
the TM directly, but initiate a Paxos Consensus for their
decision by taking the role of a proposer and sending
their proposal accept(prepared) or accept(abort) to the
acceptors for stable storage. After consensus is achieved,
they reply with the outcome to the TM in its role as a
learner, which then combines the results and sends the
final decision to all TPs for execution. This requires 4
message delays and N(2F +3)−1 messages for N TPs,
and 2F +1 acceptors.

If the TM or a TP fails in the decision process,
any replicated transaction manager (RTM) may read the
decision from the acceptors, or propose to abort if there
was no consensus yet.

V. TRANSACTIONS IN SCALARIS

Scalaris supports transactional semantics. A client
connected to the system can issue a sequence of oper-
ations including reads and writes within a transactional
context, i.e. begin trans . . . end trans. This sequence of
operations is executed by a local transaction manager
TM associated with the overlay node to which the client
is connected. The transaction will appear to be executed
atomically if successful, or not executed at all if the
transaction aborts.



A. System Architecture

Transactions in Scalaris are executed optimistically.
This implies that each transaction is executed completely
locally at the client in a read-phase. If the read phase
is successful the TM tries to commit the transaction
permanently in a commit phase, and permanently stores
the modified data at the responsible overlay nodes. Con-
currency control is performed as part of this latter phase.
A transaction t will abort only if: (1) other transactions
hold the majority of locks of some overlapping data
items (simultaneous validation); or (2) other successful
transactions have already modified data that is accessed
in transaction t (version conflict).

Each item is assigned a version number. Read/write
operations work on a majority of replicas to obtain the
highest version number and thereby the latest value. A
read operation selects the data value with highest version
number, and a write operation increments the highest
version number of the item.

The commit phase employs an adapted version of
the Paxos atomic commit protocol [9], which is non-
blocking. In contrast to the 3-Phase-Commit protocol
used in distributed database systems, the Paxos Commit
protocol still works in the majority part of a network that
became partitioned due to some network failure. It em-
ploys a group of replicated transaction managers (RTMs)
rather than a single transaction manager. Together they
form a set of acceptors with the TM acting as the leader.

B. Transaction Validation with Paxos Commit

Scalaris executes the following four steps in the
failure-free case (Fig. 1).

1) Prerequisites: For a fast transaction validation,
each node in the overlay permanently maintains a list
of r− 1 other nodes, that can be used as Replicated
Transaction Managers (RTMs). The location of these
nodes could be according to the scheme of symmetric
replication. Once these nodes are located, they are main-
tained through the use of failure detection.

Step 1.The client contacts an arbitrary node in the
Scalaris ring with a transaction log (translog)
of read and write operations for the valida-
tion phase. This node becomes the Transaction
Manager (TM). The TM chooses a transaction
identifier (Tid) and a Paxos Consensus identifier
(Pi) for each replica of each item. It sends
an init RTM message with the translog, the
Tid, all Pi, and the addresses of all RTMs
to each RTM. Additionally, the TM sends to
all Transaction Participants (TP) an init TP

message with the translog, Tid, RTMs, and the
individual Pi for each TP.

Step 2.Each TP initiates a Fast Paxos Consensus with
the received Pi. Each TP proposes either pre-
pared or abort with an accept message to
the acceptors according to its local validation
strategy (see later).
As the TP is the only initial proposer, it uses
the lowest round number by default and thereby
skips the information gathering phase (’Fast
Paxos Consensus’). The proposal is sent to the
TM and RTMs.
If the TP decided prepared it locks its replica.
When a TM or RTM receives an accept mes-
sage from a TP, it also learns the address of the
TP to be used later in the protocol.

Step 3.The TM will take the role of a learner in
each consensus instance. To allow the TM to
calculate each consensus instance, each RTM
sends a list of accepted messages to the TM. As
soon as the TM received a majority of accepted
messages for a given consensus instance Pi it
decides on i.

Step 4.The TM will decide the transaction to commit
if for each item a majority of the consensus
instances have decided prepared, otherwise it
will decide abort. After having received the
decision from the TM, the TPs execute the
changes, release the locks and finish.

2) Discussion: As a precondition, we assume that a
majority of RTMs plus TM and a majority of replicas
for each item are correct. The following failures may
happen:

When the TM fails, any RTM may take its role
by initiating a new round for every Paxos Consensus
involved. In Scalaris, the RTMs’ failure detectors have
different timeouts, so that multiple RTMs will never
compete for leadership and no explicit leader election
algorithm is necessary. The new TM is able to continue
with the protocol, because the current status on the
consensus is safely stored at the RTMs (acceptors).

When an RTM fails, the protocol continues with the
rest of the RTMs.

When a TP fails in step 2, the TM or some RTM does
not receive an accept message from the TP within the
specified timeout. The TM or RTM then takes the role
of a proposer and proposes abort for the corresponding
consensus instance with a round number > 1, if no
consensus was already achieved before the TP crashed.
Until only a minority of the Paxos Consensus for the
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Fig. 1. Timeline diagram of a Scalaris commit.

replicas of a given item votes abort and a majority
of them votes prepared the transaction still can be
committed. This can be safely done, as in contrast to
Paxos Commit, we operate on replicated items.

C. Working Phase: Building a Translog in Scalaris

We now describe the working phase in which Scalaris
builds a translog with all items that are to be updated
in an atomic operation. Alg. 4 shows an example of a
client code for a money transfer from bank account A
to account B. The money transfer should be executed
atomically—if the balance in account A allows to. In
the example, each account is replicated over three keys
keyA1 , . . . ,keyA3 and keyB1 , . . . ,keyB3 . Fig. 2 shows the
corresponding Scalaris ring with the replicas.

The client code shown in Alg. 4 is formulated in the
functional programming language Erlang [2]. It works as
follows. First, it defines a function F, that will perform
the working phase of the transaction (lines 2-12). It
then executes this function to retrieve a transaction log
(line 13) and thereafter attempts to validate it by calling
scalaris:commit() on the outcome of the working phase
(line 14).

The working phase is ’read only’ and does not modify
any values or locks. It stores only the relevant data
for each accessed key in the transaction log translog.
Each translog entry is a 5-tuple consisting of: (1) the
performed operation, (2) the key involved, (3) a status
flag indicating success or failure, (4) the corresponding
value, and (5) the corresponding version.

A read request for a key k triggers a quorum read
on the replicas, if k is not yet included in the translog.

Algorithm 4 Example of a Scalaris transaction in Erlang.
1: my transaction() –>

2: F = fun (TransLog) –>
3: {X, TL1} = scalaris:read(TransLog, ”Acc A”),
4: {Y, TL2} = scalaris:read(TL1, ”Acc B”),
5: if X > 100 –>
6: TL3 = scalaris:write(TL2, ”Acc A”, X - 100),
7: TL4 = scalaris:write(TL3, ”Acc B”, Y + 100),
8: {ok, TL4};
9: true –>

10: {ok, TL2};
11: end
12: end,

13: MyTransLog = F(EmptyTransLog),

14: Result = scalaris:commit(MyTransLog) .

It returns the read value and the accordingly updated
translog as a tuple.

A write request for a key k first triggers a quorum read
on the replicas, if k is not yet included in the transaction
log. Then a new translog entry with the incremented
version number and the new value is created or updated
accordingly.

The quorum reads for read and write operations re-
quire DHT lookups with O(logn) hops. If a quorum read
fails, this is recorded in the corresponding status flag in
the translog. If any status flag in the translog is failed,
the whole transaction will be aborted.
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Fig. 2. Scalaris ring with two items keyA and keyB.

D. Using the Translog in the Validation Phase

Based on the commit protocol presented in Sec. V-B
we now describe the validation strategy in more detail.
We show how Scalaris places locks and decides accord-
ing to the translog.

A TP receives in step 1 of Fig. 1 the corresponding
translog entry. To choose between the proposals prepared
and abort it checks the following constraints:
• Is the version number still valid?

For reads: Is the local version number in the data
store the same as the one listed in the translog entry?
For writes: Is the local version number in the data
store one less than the version number stored in the
translog?

• Is the lock of the key available?
For reads: Is no write lock set?
For writes: Is neither a read lock, nor a write lock
set?

If both checks are successful, the TP proposes pre-
pared and increments for reads the read lock counter and
for writes it sets the write lock. Otherwise it proposes
abort.

When a TP receives a write commit in step 4 of Fig. 1,
it writes the value and version number from the translog
into the key.

For read and write operations, independent of commit
or abort, the TP releases the locks.

VI. EVALUATION

For globally distributed structured overlay systems,
latency is an important issue. To reduce the latency in our
majority based system, we may assign a majority of the
replicas of an item to nodes near the main popularity
of that item. This is possible using Chord# [17] as an
overlay, as it allows to arbitrarily assign nodes to ranges

of keys and as it does not use hashing but keeps the keys
in lexicographical order in the ring.

1) The latency-critical path: In step 1 of our commit
protocol, an initialization message is send to each RTM
and TP (see Fig. 1). Each TP immediately responds
with its accept message to the TM and RTMs. So,
some accept message may arrive at an RTM earlier
than the corresponding initialization message. This is
not a problem, as the RTM will record it and assign it
later via the given transaction and consensus identifiers.
Similarly in the case of accepted messages from RTMs
(step 3) that may arrive earlier at the TM than the accept
messages from the TPs sent in step 2.

In step 3, each RTM collects an accept message for
each consensus (each TP) and sends a list of accepted
in a single message to the TP. While this protocol is
optimal with respect to the number of messages sent, the
overall latency can be reduced by sending each accepted
message immediately after receipt of the corresponding
accept. Then the TM must await a consensus for a
majority of the Pi for each item, independent from which
RTMs it came. Progress between step 2 and 4 depends
on the m lowest latency paths from TPs (via RTMs) to
the TM for each item, where m = r/2+1 is the size of
the majority set.

2) Empirical Results: We compared the performance
of simple quorums reads with full transactions on an
Intel cluster with 16 nodes. Each node has two Dual-
Core Intel Xeons (4 cores in total) running at 2.66 GHz
and 8 GB of main memory. The nodes are connected via
GigE. On each server we ran s Scalaris nodes distributed
over v Erlang virtual machine. We used a replication
degree of four, i.e. there are four copies of each key-value
pair. For generating load, we started c clients in each
Erlang VM and each client performed the function under
test i times. We ran the tests with various combinations
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Fig. 3. Performance of quorum reads (left) and transactions with Paxos (right).

for (s,v,c, i). The graphs in Fig. 3 show the aggregated
performance over all clients and the number of clients
per VM of the best parameter combinations. The best
parameter settings usually used 1 VM per server with
16 or 32 Scalaris nodes.

The left graph in Fig. 3 shows the throughput for
quorum reads. The maximum of 73,000 lookups is
achieved with 15 servers. As the quorum reads are
dominated by the lookup, which scales with logN, the
curve does not scale linearly. Two servers achieve a lower
read performance than one because of the additional TCP
overhead.

The right graph in Fig. 3 shows the performance of
read-modify-write transactions with Paxos. 15 servers
are capable of handling almost 14,000 transactions per
second. More importantly, the curve scales almost lin-
early with an increasing number of servers.

VII. CONCLUSION

We presented an atomic transaction protocol that has
been efficiently embedded into a DHT and uses four
communication steps only. It makes progress as long as
a majority of TPs for each item and a majority of RTMs
(including the TM) are correct (non-failing).

The transaction protocol was used to implement
Scalaris [16], a fault-tolerant key/value store with repli-
cated items on a DHT. The DHT ensures scalability
while the enhanced Paxos commit protocol provides data
consistency. The implementation comprises a total of
9,700 lines of Erlang code: 7,000 for the P2P layer with
replication and basic system infrastructure and 2,700
lines for the transaction layer.
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[16] T. Schütt, F. Schintke, A. Reinefeld. Scalaris:
Reliable transactional P2P key/value store. ACM
SIGPLAN Erlang Workshop. 2008.
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Abstract

Distributed key/value-stores are a key component of
many large-scale applications. Traditionally they have been
designed using Distributed Hash Tables (DHTs). DHTs,
however, setup a tight coupling between the naming of
nodes and assignment of keys to nodes which limits appli-
cation control over data placement.

We propose using small amounts of shared state in a
semi-centralized architecture for more flexible data place-
ment by introducing explicit mapping between keys and
nodes via an indirection layer (blockspace). Our design
is based on a membership layer that provides O(1) rout-
ing thereby targeting interactive applications. We evaluate
a centralized and decentralized approach showing that both
have relatively low overhead and provide efficient load bal-
ancing.

1 Introduction

Distributed key/value stores [7, 8, 5] provide decentral-
ized, scalable storage as basis for applications like caching
layers, indirection services, and activity tracking systems.
Such applications require high scalability, high availability,
autonomic failure management, and certain consistency and
security guarantees from their storage layer.

Beyond this, storage systems powering large-scale web
applications and services additionally demand (1) low la-
tency for interactive access [7], (2) fine-grained control over
data placement to honor legal restrictions, react to variations
in resource pricing, or move/replicate data according to us-
age patterns [1], and (3) flexible data models with support
for both exact-match and range queries.

Current state of the art in autonomic key/value-stores are
based on DHTs such as [12, 9]. DHTs provide algorithms
for node management (join/leave/fail) and a routing layer
that maps keys to the system nodes. Key-lookup requires
O(logN) routing steps and per-node routing table entries.

∗This work was funded by the EU FP6 project SELFMAN, IST-34084

DHTs partition the keyspace horizontally by mapping it
directly to the node identifier space. This does not require
any additional state for finding the location of a key. How-
ever, the static assignment makes it difficult to control or
introduce new policies for the placement of items within
the system. Furthermore, look-up with O(logN) routing
hops may not be sufficient to meet the latency demands of
interactive applications [4].

Based on above considerations, we propose a system de-
sign that (1) introduces an intermediary blockspace which
decouples the keyspace from the nodespace to control data
placement and load balancing, (2) uses a routing and mem-
bership layer with O(1) hops to provide low lookup laten-
cies. This design implies that each node has to maintain
state for the blockspace as well as membership information
about all other nodes in the system.

In addition to describing the system design, we con-
tribute algorithms for managing the index-structure storing
key/value-pairs. This includes, the assignment of blocks to
nodes, block splitting and merging that adapts to the item
distribution, and the atomic reassignment of blocks. In
the evaluation, we compare two different block assignment
strategies in terms of load balancing and maintenance traffic
overhead.

2 System Design

Background A key/value store is a database management
system for storing key/value-pairs or items. Keys are ele-
ments of the keyspace range [Kmin,Kmax], values are arbi-
trary binary objects. Items are grouped in indices and sorted
by key. The store provides a simple interface for creation,
retrieval, update and deletion of index items. Data retrieval
is achieved by issuing an exact-match query that returns a
value for a given key or via range/prefix queries that return
all matching key/value-pairs.

Distributed key/value-stores consists of a set of N nodes
which are fully connected via a network. Each node stores
items in a local database and is assigned an ID in the dis-
crete range [Nmin, Nmax). This range, the nodespace,
wraps around at Nmax, and can be seen as a ring.



Items are assigned to nodes according to some data
placement strategy. Many systems implement this through
some deterministic and constant function based on keys
only, e.g. by hashing into the nodespace. However, such
functions can not be directly influenced by the application
or system management components. For example, when
using hashing, load balancing requires moving nodes by
changing their ID. Alternatively, distributing a direct key-
to-node assignment to all system nodes does not scale to a
large number of keys.

ASSIGNMENT STRATEGY

KEYSPACE

BLOCKSPACE

NODESPACE

Figure 1. Using an intermediary blockspace
enables more flexible data placement

Approach The key insight is that decoupling the
nodespace from the keyspace enables the system to control
data placement. This separation is achieved by introduc-
ing a new indirection layer that we call the blockspace (see
Fig. 1). The blockspace covers the same identifier space
as the keyspace but is partitioned into blocks containing a
range of keys. Each block is mapped to the nodespace us-
ing an assignment strategy. Distributing the block-to-node
assignment to all system nodes is scalable, since the size
of the state is several orders of magnitudes smaller com-
pared to a key-to-node assignment. Since we aim for O(1)
routing, this mapping needs to be synchronized between all
system nodes. This requires a mechanism for membership
management and the distribution of global state.

Membership Management Each node needs a consistent
view regarding membership information, blockspace parti-
tioning and assignment. We accomplish this by using Cen-
sus [6], a recently suggested membership service protocol.
Census provides each node with a replica of all membership
information (shared global state). To achieve this, Census
operates in epochs (periods of time). At the start of each
epoch, a set of leader nodes broadcasts changes to the global
state of that epoch to all other nodes. Therefore, during an
epoch, all nodes have the same consistent view on the state
of the system. At any time, nodes may send updates to lead-
ers for distribution in the next epoch. Leaders agree on the
set of updates for the next epoch using a consensus protocol
or master-slave replication and leader election.

For broadcasting updates, non-leader nodes are orga-
nized as a set of multicast trees. The key to Census is
that these trees are constructed deterministically based on
the global state of the current epoch, i.e. require no addi-
tional communication between nodes. By only propagating
updates of the global state, overall communication cost is
minimized.

For correctness, census only requires synchronized clock
rates of participating nodes with an upper bound on the
maximal deviation. This is sufficient for local nodes to de-
termine if their current view could still be valid from the
leader’s point of view.

Indices An index consists of a blockspace and a keyspace,
both confined within a pre-defined discrete range R =
[Rmin, Rmax) (see Fig. 1). The index range is divided into
a set of B disjoint blocks. Each block, bi, has a position i
and a start identifier, bIDi . A block, bi, ends at the identifier
for the next block, bIDi+1. We say that bi covers the range
[bIDi , bIDi+1). All blocks combined cover the entire range
[Rmin, Rmax). The first block, b0, starts at Rmin and the
last block, bN−1, ends at Rmax.

An item consists of a variable-length key and value. The
key identifies the position of the item in the index range. An
item with a key outside the range R cannot be stored by the
system. A block bi is responsible for all keys k ≥ bIDi and
k < bIDi+1. There is always only one such block per key k.

Look-ups The goal of a look-up is to find the node cur-
rently responsible for storing an item. In order to perform
a look-up, first, the block responsible for the key is deter-
mined. Second, the associated node is looked up in the
block-to-node assignment table. Both of these indirections
are performed locally at each node using the consistent state
which contains the block-to-node assignment table. There-
fore each look-up requires exactly 1 overlay network hop.
A range query, [a, b] is executed by calculating all blocks
covering the given range. All blocks are retrieved in paral-
lel by issuing separate look-ups for each block.

Summary Our design uses a combination of a decou-
pled key- and nodespace with a consistent membership view
to allow for flexible data placement and low look-up la-
tency suitable for interactive applications. By introducing a
leader-based membership service and efficient application-
level multicast, the nodes are provided with low-cost up-
dates to the global state. The leader is not part of read and
write operations to the key/value-store and is thereby kept
out of the clients fast path. In the following section we in-
troduce the algorithms for managing the blockspace.



3 Index Management

This section presents the algorithms used for managing
the blocks in a single index. We describe a self-tuning pro-
tocol which adapts the block sizes to a supplied target size
in order to support efficient storage of different key distri-
butions and value sizes. Based on this, we introduce two
approaches for assigning blocks to nodes. Finally, we out-
line a protocol for atomic re-assignment of blocks.

Split and Merge The goal of the split and merge algo-
rithm is to dynamically partition the blockspace according
to the distribution of the stored keys and the number of
stored keys per block. The target size of blocks, Lt, is a
system defined parameter. Using a fixed block size is use-
ful for estimating the result set size of a range query. We
define two operations used by the algorithm: split which di-
vides a single block into two parts and merge which merges
two consecutive blocks into a single block. Note that the
operations described here are binary but they can easily be
generalized to n-ary split and merge.

Nodes decide locally if a block that it stores should be
split or merged. A split is triggered when a block’s load is
larger than a factor δ of the target load, assuming δ > 1.
A merge is performed when the block load is less than a
factor 1

δ of the target load. This ensures that the block load
varies in the interval [Lt

δ , δLt]. Using this interval avoids
oscillations which can occur in threshold-based schemes.
We split the block at the median item to achieve storage
load balance but this can be done arbitrarily with application
specific policies.

When a node performs an operation on the blockspace,
all other nodes must find out about the modification in or-
der for look-ups to be directed to the correct node. A
blockspace change is done in two phases. First, a node in-
forms the leader that it wants to perform an update. In a fol-
lowing epoch, the leader forwards the change to all nodes
including the initiating node.

Block Assignment The split and merge algorithm parti-
tions the blockspace according to the key distribution. How-
ever, for look-ups to work, all nodes need to know the cur-
rent partitioning including the mapping from the blockspace
to the nodespace. The assignment strategy is used to place
blocks at different nodes. We present two alternatives, a
centralized approach where blocks are explicitly assigned
to nodes and a decentralized approach that uses consistent
hashing. The main trade-off between the strategies is the
extra load and maintenance costs vs. the assignment flexi-
bility.

In the centralized approach, all nodes maintain a data
structure containing a mapping from blocks to nodes.
Changes to the mapping table which are induced by block

split and merges as well as node churn are reported to the
leader who distributes them to all nodes at the beginning
of the next epoch. Thus the mapping tables of all blocks
are kept synchronized. A look-up is performed locally on
a node by finding the block responsible for a key using the
block-node mapping.

In the decentralized approach, the nodes only maintain
the current partitioning as created by split and merge. In-
stead, blocks are assigned to nodes by applying a hash-
function mapping their starting identifier, bIDi , to the
nodespace. A block belongs to the node which is closest
to the block according to a distance function, d(x, y). Un-
like for example Chord [12], we use the euclidean distance
d(a, b) = min((a− b) mod IDmax, (b− a) mod IDmax).
This has the advantage that when a node fails, the blocks
it was responsible for are divided between its two closest
neighbors instead of a single successor.

In both strategies, the state at each node is bounded by
the number of blocks in the blockspace. The main differ-
ence is the network usage and CPU costs. Since in cen-
tralized, the mapping table include both blocks and nodes,
it is dependent on the churn rate and the item insert and
removal rate. The additional CPU costs comes from the re-
computation of the block to node mapping at each epoch.
However, performing this at the leader can also save overall
CPU costs by not repeating an expensive calculation at each
node.

Atomic Block Reassignment When re-assigning a block
from one node to another, it is crucial to avoid different
nodes disagreeing about who is responsible for a block (at a
fixed point in global time). This problem could arise due to
delayed message delivery and is related to look-up incon-
sistency in structured overlay networks [11].

While such structural inconsistency may be dealt with
through the use of replication at the cost of higher aver-
age latency, as an alternative, we propose a forward-till-
timeout-approach to achieve atomic block re-assignment.
To handover a block b at epoch e from node n0 to node
n1, a forward entry is added to the global state at epoch
e+ 1. This forward requires that all requests to block b are
sent to n1 who will forward them to n0 until n0 either is
removed from the system or acknowledges successful han-
dover to n1 along with the last version of b. n0 will sig-
nal this only after it is guaranteed that either each system
node is in epoch e + 1 or must have failed. This knowl-
edge is available to n0 based on assumptions about epoch
duration, leader behavior, accuracy of clock rate synchro-
nization, and the maximal timeout after which a node that
has not received the next epoch state will cease processing
requests in its current epoch. In any case, eventually n1 can
be sure that no more requests will be sent to n0 and will fin-
ish the re-assignment in the following epoch by removing



the forward entry from the global state. We are currently
working on a more detailed and formal description of this
protocol.

4 Evaluation

By introducing a leader in the system, it is the most likely
bottleneck even though it is only mediating control traffic
and not any data traffic. We evaluate the trade-off between
maintenance costs and the ability to balance the storage load
using the centralized and decentralized approaches. The ex-
periments are performed using a discrete time event-based
simulator.

An experiment is initialized with a leader and 1000
nodes. Each node has a mean time to failure (MTTF) and
a recovery delay in order to simulate churn. The MTTF is
drawn from an exponential distribution with an average set
to 1 hour. Block updates are sent to the leader which for-
wards the changes in each epoch (30s) to all nodes. We use
an insert-only workload with a constant rate of 10000 items
per epoch and a block size of 10000 items. For simplicity,
messages are sent directly to the nodes without loss. Thus,
we only measure the overhead of the centralized and decen-
tralized approach without fault tolerance.

Maintenance Costs In this experiment, we measure the
maintenance overhead for an index. That is, the updates
propagated by the leader that are used by the nodes to main-
tain their internal block-node mapping table.

Figure 2(a) shows the aggregated number of updates af-
ter 86400s (1 day). The significantly higher maintenance
cost for centralized block assignment can mainly be at-
tributed to the churn rate, since, unlike decentralized as-
signment, each join and leave require explicit updates to the
block-node mapping table. The average number of updates
per epoch for centralized is 26.4, while for decentralized it
is 2.3. Note that the rate of splits is much higher in the start-
ing phase. This is because the system starts with a single
block and is under a uniform insert-only workload which
trigger splits as soon as a block is full. With more blocks in
the system, it takes longer time before a block is full.

Block Imbalance Using the centralized approach, the
maintenance costs are significantly higher compared to the
decentralized approach. However, by letting a leader decide
the block to node assignment, we have more control of how
to balance the storage load. In this experiment, we quantify
this trade-off by measuring the storage imbalance resulting
from a central algorithm vs. consistent hashing.

We define the block storage imbalance as Lmax

Lavg
. Lmax

is the maximum number of blocks stored at any node while
Lavg is the average number of blocks per node. The central

algorithm assigns each unassigned block in an epoch to the
nodes with the least number of blocks. A block becomes
unassigned when the node responsible for the block leaves
the system or when a new block is created through a split.

Figure 2(b) shows that the imbalance for the centralized
algorithm approaches 1 with increasing number of blocks,
while the hash-based algorithm is able to balance the system
within a factor 5 to 10. We conclude that the increased con-
trol gained from the centralized algorithm makes it possible
to significantly improve the storage imbalance. In addition,
the leader-based approach can more easily be extended to
consider further parameters such as inter-node latencies or
application-specific placement policies.

5 Related Work

DHTs Classic DHTs such as Chord or Pastry are mapping
keys directly to the identifier space. This makes it diffi-
cult to support range queries without explicit storage load
balancing. Therefore several approaches that layer addi-
tional indexing on top of DHTs in order to achieve complex
queries such as range- or prefix-queries has been developed.
We discuss two of these approaches, however, unlike our
system which is layered on a one-hop membership service,
they all assume a DHT as underlay. In [13], Zheng et. al.
present a binary tree structure called Distributed Segment
Tree (DST) that support range- and cover-queries. A DST
is a binary tree where a tree node represents a key interval.
The DST is mapped to a DHT by hashing the node’s interval
into the nodespace. The insert-cost in a DST corresponds to
the height of the tree since a parent tree node also cover the
interval of its children.

In RIPPNET [10], Ryeng et. al., use a CAN-like system
to index fragments of a range instead of the individual keys.
We are also decoupling the keyspace from the nodespace
by introducing fragments or blocks, but do not require a
specialized multi-dimensional DHT.

Distributed Key/Value-stores Amazon’s Dynamo [7],
uses consistent hashing for partitioning to keyspace. Each
physical node maintains a set of virtual nodes used for load
balancing. Nodes have an eventually consistent view of the
members, including the virtual nodes, of the system which
is updated through gossiping.

Google [3], uses Chubby [2], a highly available and per-
sistent distributed lock service, to handle node membership.
A central master is responsible for assigning tablets, blocks
of data, to the nodes.

PNUTS from Yahoo! [5] take a similar approach by
storing key/value-pairs in blocks (tablets). Unlike Dynamo,
they support exact-match and range queries. The mapping
of tablets to data nodes is done with a centralized “tablet
controller” for increased control. Routers, used by clients
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Figure 2. Maintenance costs and storage imbalance with centralized and decentralized.

to find the location of a key or range, update their internal
tablet state regularly via the tablet controller.

Both Yahoo! and Google uses a centralized way of
assigning blocks to nodes, while Amazon uses consistent
hashing. We plan to further explore this trade-off between
the cost of centralized control and decentralized assignment
for environments which are not under single administrative
control.

6 Conclusions

Revisiting semi-centralized architectures is an interest-
ing option for building low-latency large-scale storage sys-
tems. We explored this idea through our system design
based on the census membership service. Beyond achieving
O(1) routing, a consistent global view opens up the possi-
bility for flexible data placement. Our simulation results
indicate that the traffic overhead of update dissemination is
considerably low. We conclude, that semi-centralized man-
agement of data placement is an interesting design approach
for distributed key/value-stores.
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Abstract. Distributed key/value stores are a basic building block for
large-scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload distribution
can be non-uniform.

We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that adapt to
both the key and workload distribution. The algorithms are evaluated
in a simulated environment, focusing on the impact of load balancing on
scalability under normal conditions and in an overloaded system.

1 Introduction

Distributed key/value stores [1,2,3] are used in applications which require high
throughput, low latency and have a simple data model. Examples of such appli-
cations are caching layers and indirection services. Federated key/value-stores,
where the nodes are user contributed, require minimal management overhead
for the participants. Furthermore, the system must be able to deal with large
numbers of nodes which are often unreliable and have varying network band-
width and storage capacities. We also aim to support both exact-match and
range queries to increase flexibility for applications and match the functionality
of local key/value-stores such as Berkeley DB and Tokyo Cabinet.

Ring-based Structured Overlay Networks (SONs) provide algorithms for node
membership (join/leave/fail) and to find the node responsible for a key within
O(log N) steps, where N is the number of nodes. One of the main advantages of
SONs for large-scale services is that each node only has to maintain state of a
small number of other nodes, typically O(log N). Most SONs also define a static
partitioning strategy over the data items where each node is responsible for the
range of keys from itself to its predecessor.

At first glance SONs may therefore seem to be a good fit for distributed
key/value stores. However, the static assignment of data items to nodes in com-
bination with the dynamic nature of user-donated resources make the design of
the data storage layer especially challenging in terms of reliability [4] and load
balancing.

The goal of load balancing is to improve the fairness regarding storage as well
as network and CPU-time usage between the nodes. Imbalance mainly occurs
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due to: 1) non-uniform key distribution, 2) skewed access frequency of keys and
3) node heterogeneity. First, by supporting range-queries, an order-preserving
hash function is used to map keys to the overlay’s identifier space. With a non-
uniform key distribution a node can become responsible for an unfair amount of
items. Second, keys are typically accessed with different popularity which creates
uneven workload on the nodes. The third issue, node capacity differences, also
impacts the imbalance. For example, a low capacity node gets overloaded faster
than a high capacity node. We assume that nodes are homogeneous or have unit
size, where a single physical node can run several overlay nodes.

Our main contribution is a self-adaptive balancing algorithm which is aware
of both the key distribution and the item load, i.e. used storage and access-
frequency. The algorithm has two modes: active, which triggers a node already
part of the overlay to balance with other nodes and passive, which places a joining
node at a position that reduces the overall system imbalance. In both the passive
and active mode, a set of nodes are sampled and the algorithm balance using
the node with the highest load.

Our target application is a federated URL redirection service. This service
allow users to translate a long URL, from for example Google Maps, to a short
URL. The redirection service supports look-ups of single URLs as well as statis-
tics gathering and retrieval over time which motivates the need for range queries
to execute aggregates. Popular URL redirection providers such as tinyurl.com
have over 60 million requests per day and close to 300 million indirections.

Section 2 contains the model, assumptions and definitions that are used for
the load balancing algorithm presented in Section 3. In Section 4, we evaluate the
system using a simulated environment. Results from the simulation show that
the algorithm improves the load imbalance within a factor 2-3 in a system with
1000 nodes. In addition, we also show that load balancing reduces the storage
capacity overhead necessary in an overloaded system from a factor 10 to 8.

2 System Model

A ring-based DHT consists of N nodes and an identifier space in the range [0, 1).
This range wraps around at 1.0 and can be seen as a ring. A node, ni, at position
i has an identifier nID

i in the ID space. Each node ni has a successor -pointer
to the next node in clockwise direction, ni+1, and a predecessor -pointer to the
first counter-clockwise node, ni−1. The last node, nN−1, has the first node, n0 as
successor. Thus, the nodes and their pointers create a double linked list where
the first and last node are linked. We define the distance between two identifiers
as d(x, y) = |y − x| mod 1.0.

Nodes can fail and join the system at any time. When a node joins, it takes
over the range from its own ID to the predecessor of its successor. Similarly,
when a node ni fails, its predecessor becomes predecessor of ni’s successor. We
model churn by giving each node a mean time to failure (MTTF). To maintain
the system size, a failed node is replaced after a recovery time-out.
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Storage: When a key/value-pair or item is inserted in the system it is assigned
an ID using an order-preserving hash-function in the same range as the node IDs,
i.e. [0, 1). Each node in the system stores the subset of items that falls within its
responsibility range. That is, a node ni is responsible for a key iff it falls within
the node’s key range (nID

i−1, n
ID
i ].

Each item is replicated with a replication factor f . The replicas are assigned
replica keys according to symmetric replication where the identifier of an item
replica is derived from the key and the replica factor using the formula r(k, i) =
k +(i− 1) ∗ 1

f mod N , k is the item ID and i is the ith replica [5]. An advantage
of symmetric replication is that the replica keys are based on the item key. This
makes it possible to look-up any replica by knowing the original key. In other
approaches such as successor-list replication [6] the node responsible for the key
must first be located in order to find the replicas.

A replica maintenance protocol ensures that a node stores the items and the
respective replicas it is responsible for. The protocol consist of two phases; the
synchronization phase and the data transfer phase. In the synchronization phase,
a node determines which items should be stored at the node using the symmetric
replication scheme. And if they are not stored or not up-to-date, which replicas
need to be retrieved. The retrieval is performed during the data transfer phase
by issuing a read for each item.

Load and Capacity: Each node has a workload and a storage capacity. The
workload can be defined arbitrarily, but for a key/value-store this is typically
the request rate. Each stored item has a workload and a storage cost. A node
cannot store more items than its storage capacity allows. The workload, on the
other hand, is limited by for example bandwidth, and a node can decide if a
request should be ignored or not. We model the probability of a request failure
as P (fail) = 1 − 1

μ , where μ is the current node utilization, i.e. the measured
workload divided by the workload capacity.

Imbalance: We define the system imbalance of a load attribute (storage or work-
load) as the ratio between the highest loaded node and the system average. For
example, for the storage, the imbalance is calculated as Lmax

Lavg
. Lmax is the maxi-

mum number of items stored by a node and Lavg is the average number of items
per node.

3 Load Balancing Algorithm

The only way to change the imbalance in our model is to change the responsibility
of the nodes. A node’s responsibility changes either when another node joins
between itself and its predecessor, or when the predecessor fails. Thus, we can
balance the system either actively by triggering a node to fail and re-join or
passively by placing a new node at an overloaded node when joining. Passive
balancing uses the system churn, while active induces churn and extra data
transfers. We first present the passive/active balancing algorithm followed by
the placement function.
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1 def placement ( ) :
2 balanced ID = ⊥
3 cu r r en t d i s t anc e = ∞
4 for item in (nID

i−1, nID
i ] :

5 d i s t anc e = f(itemID) # the placement funct ion
6 i f d i s t anc e < cu r r e n t d i s t anc e :

7 balanced ID = itemID + d(itemID , next(itemID))/2
8 c u r r e n t d i s t an c e = d i s t anc e
9

10 return balanced ID
11
12 def sample ( ) :
13 samples = [ ( n . load ( ) , n)
14 for n in random nodes (k ) ]
15 return max( samples )
16
17 def passive ( ) :
18 ( n load , n) = sample ( )
19 j o i n (n)
20
21 def active ( ) :
22 ( n load , n) = sample ( )
23 i f n load > l o c a l l o a d ∗ ε :
24 l e ave ( )
25 j o i n (n . placement ( ) )

Fig. 1. Passive and Active load balancing

The passive/active balancing algorithm presented in Figure 1 uses only local
knowledge and can be divided into three parts. 1) sample a set of k random
nodes to balance with using e.g. [7], 2) decide the placement of a potential new
predecessor and 3) select one of the k-nodes that reduce the imbalance the most.
We assume that there is a join function which is used to join the overlay given an
ID. passive is called before a node is joining and active is called periodically.
active is inspired by Karger’s [8] balancing algorithm, but we only consider the
case where the node has a factor ε less load than the remote node. The ε is used
to avoid oscillations by creating a relative load range where nodes do not trigger
a re-join. sample calls a function random_nodes that uses a random walk or
generates random IDs to find a set of k nodes. The node with the highest load
is returned.

Placement Function

The goal of the placement function is to find the ID in a node’s responsibility
range that splits the range in two equal halves considering both workload and
key distribution. When defining the cost for a single load attribute, it is optimal
to always divide the attribute in half [9]. We use this principle for each attribute
by calculating the ratio between the range to the left of the identifier x and
the remaining range up to the node’s ID. The optimal position is where this
ratio approaches 1. A ratio therefore increases slowly from 0 towards 1 until the
optimal value of x is reached, and after 1 the value approaches the total cost for
the attribute.
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First, let lr(a, b) =
∑items∈(a,b]

i=0 l(itemi) be a function returning the load of
the items in the range (a, b]. l(itemi) is the load of a single item and is defined
arbitrarily depending on the load attribute. Second, let ni be the node at which
we want to find the best ID, then the ratio function is defined as follows

r(x) =
lr(nID

i−1, x)
lr(x, nID

i )

The workload ratio, rw(x), could for example be defined using l(itemi) =
weight(itemi)+(rateaccess(itemi)×weight(itemi)). The weight is the total bytes
of the item and the access rate is estimated with an exponentially weighted mov-
ing mean. For the key distribution ratio, rks(x), the load function is l(itemi) = 1.
This means that rks(x) = 1 for the median element in ni’s responsibility range.
An interesting aspect of the ratio definitions is that they can be weighted in
order to ignore load attributes that changes fast or taking on extreme values.

In order to construct a placement function acknowledging different load at-
tributes, we calculate the product of their respective ratio function. The point
x where this product is closest to 1 is where all attributes are being balanced
equally. Note that when it equals 1, it means that the load attributes have their
optimal point at the same ID.

The placement function we use here considers both the key-space and work-
load distribution and is more formally described as

f(x) = |1− rw(x) × rks(x)|

where x is the ID and nj is the joining node. The ratio product value is subtracted
from 1 and the absolute value of this is used since we are interested in the ratio
product value “closest” to 1. Finally, when the smallest value of f(x) is found, a
node is placed at the ID between the item, itemi preceding x and the subsequent
item, itemi+1. That is, the resulting ID is itemID

i + d(itemID
i , itemID

i+1)/2.

4 Evaluation

This section present simulation results of the passive and active algorithms. The
goal of this section is to 1) show the effects of different access-load and key
distributions, 2) show the scalability of the balancing strategies when increasing
the system size and 3) determine the impact of imbalance in a system close to
its capacity limits. Table 1 summarizes the parameters used for the different
experiments.

Effect of Workloads: In this experiment, we quantify the effect that different
access-loads and key distributions have on the system imbalance. The results
from this experiment motivate the use of a multi-attribute placement function.
Specifically, we measure the imbalance of the nodespace (ns), keyspace (ks) and
the access workload (w).
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Table 1. Parameters of the different experiments

Nodes Items Replicas k MTTF Storage Item Size

Effect of Workloads 256 32768 7 7 ∞ ∞ 1

Network costs 256 8192 7 7 1h ∞ 1-1MB

Size of k 256 8192 7 0-20 1h ∞ 1

System size 64-1024 215-218 3 7 1h ∞ 1

Churn 256 8192 7 7 1h-1d ∞ 1

Overload 256 8192 7 7 1h 128 ∗ 7-1024 ∗ 7 1
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Fig. 2. The effect of different access workloads and key distributions

Four different placement functions are used (x-axis in Fig. 2)

nodespace places a new node in the middle between the node and its prede-
cessor, i.e. ni + d(ni−1,ni)

2 .
keyspace places the node according to the median item, f(x) = |1− rks(x)|.
workload halves the load of the node, i.e f(x) = |1− rw(x)|
combined uses the placement function defined in section 3.

The simulation is running an active balancing algorithm with ε = 0.15.
Workload is generated using three scenarios; uniform (u), exponential (e) and

range (r). In the uniform and exponential cases, the items receive a load from
either a uniform or exponential distribution at simulation start-up. The range
workload is generated by assigning successive ranges of items with random loads
taken from an exponential distribution. We expect this type of workload from
the URL redirection service when, for example, summarizing data of a URL for
the last week.

From the results shown in Figure 2, we can see that the imbalance when using
the different placement strategies are dependent on the load type. Figure 2(a)
clearly shows that a uniform hash-function is efficient to balance all three metrics
under both uniform and exponential workload. In the latter case, this is because
the items are assigned the load independently. However, for the range workload,
the imbalances are showing much higher variation depending on the placement
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function. We conclude that in a system supporting range queries, the placement
function should consider several balancing attributes for fair resource usage.

Size of k: In this experiment, we try to find a reasonable value of the number
of nodes to sample, k. A larger k implies more messages used for sampling,
but also reduces the imbalance more. The results in figure 3 imply that the
value of k is important for smaller values of between 2-10. However, the balance
improvement becomes smaller and smaller for each increase of k, similar to the
law of diminishing returns. In the remaining experiments we use k = 7.
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Fig. 3. Imbalance when increasing the number of sampled nodes

Network costs: We define cost as the total amount of data transferred in the
system up to a given iteration. This cost is increased by the item size each time
an item is transferred. Since there is no application traffic in the simulation
environment, the cost is only coming from replica maintenance. That is, item
transfers are used to ensure that replicas are stored according to the current
node responsibilities. Active load balancing creates traffic when a node decides
to leave and re-join the system.

We measure the keyspace imbalance and the transfer cost at the end of the
simulation, which is run for 86400s (1 day). Each simulation has 8192 items with
7 replicas and the size of the items is increased from 210 to 220. The item size
has minor impact on the imbalance (Fig. 4(a)). Interestingly, the overhead when
using the hash-based balancing strategy as a reference, of active and passive
(a+p in the figure) and active only is 5-15% (Fig. 4(b)). The passive strategy
does not show a significant difference. Noteworthy is also that in a system storing
around 56 GB of total data (including replicas), over 1 TB aggregated data is
transferred. This can be explained with the rather short node lifetime of 3600s.

Churn: A node joining and leaving (churn) changes the range of responsibility
for a node in the system. Increasing the rate of churn influences the cost of
replica maintenance since item repairs are triggered more frequently. In this
experiment, we quantify the impact of churn on transferred item cost and the
storage imbalance.
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Fig. 4. Imbalance and cost of balancing for increasing item size

In figure 5(a) the node MTTF is varied from 1 to 24 hours. As expected the
amount of data transferred is decreasing when the MTTF is increasing. Also as
noted in the network costs experiment, the different schemes for load balancing
have a minor impact on the total amount of transferred data. Figure 5(b) shows
that churn has in principle no impact on the imbalance for the different strategies.
This is also the case for the passive approach which only relies on churn to
balance the system.
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Fig. 5. Imbalance and network cost for varying levels of churn (MTTF)

System size: The imbalance in a system with hash-based balancing was shown
theoretically to be bounded by O(log N), where N is the number of nodes in the
system [10]. However, this assumes that both the nodes and the keys are assigned
IDs from a uniform hash-function. In this experiment, we try to determine the
efficiency of the placement function with an increasing number of nodes and
items.
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Fig. 6. Imbalance of the system using different balancing strategies while increasing
the system size. The right figure shows the influence of load balancing in an overloaded
system.

We measure the keyspace imbalance for an increasing number of nodes be-
tween 25 and 210. In addition, for each system size we vary the number of items
from 215 to 218. Keys are generated from a dictionary and nodes are balanced
using the combined placement function. Four different balancing strategies are
compared; 1) IDs generated by a uniform hash-function 2) active without any
passive placement, 3) passive without any active and 4) active and passive to-
gether (a+p). For the last three, 7 nodes are sampled when selecting which node
to join at or whether to balance at all.

Figure 6(a) shows that the hash-based approach performs significantly worse
with an imbalance up to 2-3 times higher compared to the other balancing strate-
gies. Interestingly, the difference in load imbalance when varying the number of
items is also growing slightly with larger system sizes. All three variants of the
passive/active algorithm show similar performance. The imbalance grows slowly
with increasing system size and the difference for different number of items is
small. Thus, we draw the conclusion that these strategies are only minimally
influenced by system size and number of items. However, note that we need to
perform further experiments varying other parameters such as k to validate these
results.

Overload: In a perfectly balanced system where at most one consecutive node
can fail, nodes can use at most up to 50% of their capacity to avoid becoming
overloaded when a predecessor fails. This type of overload leads to dropped write
requests when there is insufficient storage capacity and dropped read request
with insufficent bandwidth and processing capacity. Since a replica cannot be
recreated when a write is dropped, this influences the data reliability. The goal
of this experiment is to better understand the storage capacity overhead to avoid
dropped writes.

We start the experiment such that the sum of the item weights equals the
aggregated storage capacity of all nodes. Then by increasing the node’s storage
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capacity we decrease their fill-ratio and thereby the probability of a dropped
write. The system is under churn and lost replicas are re-created using a replica
maintenance algorithm executed periodically at each node. The y-axis in Fig-
ure 6(b) shows the fraction of dropped write requests and the x-axis shows the
storage capacity ratio. We do not add any data to the system which means that
a write request is dropped when a replica cannot be created at the responsible
node because of insufficient storage capacity. We measured the difference with
hash-based balancing vs. the active and active + passive with 7 sampled nodes
and the combined placement function.

Figure 6(b) shows that a system must have at least 10x the storage capacity
over the total storage load to avoid dropped write requests when using hash-
based balancing. Active and active-passive delays the effect of overload and a
system with at least 8x storage capacity exhibits a low fraction of dropped
requests.

5 Related Work

Karger et al. [8] and Ganesan et al. [11] both present active algorithms aiming at
reducing the imbalance of item load. Karger uses a randomized sampling-based
algorithm which balances when the relative load value between two nodes differs
by more than a factor ε. Ganesan’s algorithm triggers a balancing operation
when a node’s utilization exceeds (falls below) a certain threshold. In that case,
balancing is either done with one of its neighbors or the least (most) loaded node
found. Aspnes at al. [12] describe an active algorithm that categorizes nodes as
closed or open depending on a threshold and groups them in a way so that
each closed node has at least one open neighbor. They balance load when an
item is to be inserted into a closed node that cannot shed some of its load to
an open neighbor without making it closed as well. A rather different approach
has been proposed by Charpentier et al. [13] who use mobile agents to gather
an estimate of the system’s average load and to balance load among the nodes.
Those algorithms however do not explicitly define a placement function or use a
simple “split loads in half” approach which does not take several load attributes
into account.

Byers et. al. [14] proposed to store an item at the k least loaded nodes out of d
possible. Similarly, Pitoura et al. [15] replicate an item to k of d possible identi-
fiers when a node storing an item becomes overloaded (in terms of requests). This
technique, called the “power of two choices” was picked up by Ledlie et. al [16]
who apply it to node IDs and use it to address workload skew, churn and het-
erogeneous nodes. With their algorithm, k-Choices, they introduce the concept
of passive and active balancing. However, their focus is on virtual server-based
systems without range-queries. Giakkoupis and Hadzilacos [17] employ this tech-
nique to create a passive load balancing algorithm including a weighted version
for heterogeneous nodes. There, joining nodes contact a logarithmic (in system
size) number of nodes and choose the best position to join at. Their focus on
the other hand is on balancing the address-space partition rather than arbitrary
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loads. Manku [18] proposes a similar algorithm issuing one random probe and
contacting a logarithmic number of its neighbors. An analysis of such algorithms
using r random probes each followed by a local probe of size v is given by Ken-
thapadi and Manku [19]. However, only the nodespace partitioning is examined.

In Mercury [20] each node maintains an approximation of a function describing
the load distribution through sampling. This works well for simple distributions,
but as was shown in [21] it does not work for more complex cases such as file-
names. Instead, [21] introduces OSCAR where the long-range pointers are placed
by recursively halving the traversed peer population in each step. Both OSCAR
and Mercury balance the in/out-degree of nodes. While this implies that the
routing load in the overlay is balanced, it does not account for the placement of
nodes according to item characteristics.

6 Conclusions

With the goal of investigating load balancing algorithms for distributed
key/value-stores, we presented an active and a passive algorithm. The active al-
gorithm is triggered periodically, while the passive algorithm uses joining nodes
to improve system imbalance. We complement these algorithms with a place-
ment function that splits a node’s responsibility range according to the current
key and workload distribution. Initial simulation results are promising showing
that the system works well under churn and scales with increasing system sizes.
Ongoing work include quantifying the cost of the algorithms within a prototype
implementation of a key/value-store.

Acknowledgments. This work is partially funded by the European Commis-
sion through the SELFMAN project with contract number 034084.
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Abstract—Software rejuvenation - in its simplest form a restart
of a component or a program - is an efficient and universal
approach for ad hoc healing of certain complex systems such
as SOA components, telecommunication systems, and servers in
data centers. Despite of its advantages this technique has not
been widely deployed in other scenarios. The reasons are several
shortcomings including loss of application availability and loss of
working data due to a restart, and a lack of standardized support
in operating systems, middleware, and component frameworks.
In this position paper we argue that even partial remedies to
these problems can turn rejuvenation into a powerful self-healing
tool applicable to a larger variety of scenarios. We discuss
rejuvenation-related problems, overview existing solutions, and
propose a set of efficient architectural approaches which can
pave the way to a universal adoption of this technique.

I. WHAT IS REJUVENATION?

The simplest form of rejuvenation [Huang et al., 1995],
[Pfening et al., 1996], [Vaidyanathan and Trivedi, 2005] is a
restart of a software component, an application, or the oper-
ating system. The purpose of this technique is the cleansing
of internal data structures whose corruption (due to software
or hardware faults) has caused a malfunction or perfor-
mance degradation. More advanced forms include replacing
a corrupted image by a stand-by replica [Silva et al., 2007]
or “cleaning up” of critical data structures during run-time
[Demsky and Rinard, 2003]. The most prominent usage of
rejuvenation is to fight software aging (or rather software
state aging) [Parnas, 1994]. The latter is a phenomenon of
gradual decrease in system performance due to memory leaks,
non-scheduled threads, accumulated rounding errors and other
causes.

The idea to cleanse a system or its components in face
of a malfunction instead of attempting to fix it has been ex-
ploited in other contexts as well. Examples include killing and
restarting lightweight threads in the Erlang programming lan-
guage [Wikstrom, 1994], and re-issuing web service requests
if the response time exceeds a limit. Rejuvenation is also
one of the fundamental forms of self-healing in organisms:
the programmed cell-death (PCD) is triggered upon feedback
from neighbors, stress or DNA-damage e.g. in order to prevent
cancer. This mechanism is complemented by creation of new
cells to ensure organic rejuvenation.

Even if rejuvenation is not a permanent solution to recurring
problems and does not eliminate the need for diagnosing and
repair of the root problems, this method is very attractive for

broad classes of application scenarios and defect types:
∙ Rejuvenation is the only feasible “healing” approach in

many complex software systems built of Commercial
Off-The-Shelf Software (COTS), legacy code, or very
complex frameworks / middleware / applications. This
applies especially in production environments, where
repairing an aging application is impossible (no source
code), too costly, or if the real system and the failure
conditions cannot be reproduced in a testing environment
due to complexity.

∙ Rejuvenation is sufficient to “cure” faults which were
caused by very rare (possibly non-deterministic) con-
ditions or events. The complexity of today’s systems
(caused by size of applications, bloated communication
protocols and overhead of component-based frameworks)
can be enormous, preventing elimination of rare bugs in
the testing phase. Paired with the non-determinism in-
duced by distribution and concurrent execution, diagnosis
of certain malfunctions can be almost impossible1. On the
other hand, this does not preclude that malfunctions are
rare in complex systems - they just have different causes.
In such cases, rejuvenation is the most effective means to
remove the corruption of the application state and restore
its full performance and functionality.

In our opinion rejuvenation is rapidly gaining importance due
to growing complexity and scale of today’s software systems.
These characteristics make it hard to quickly inspect systems
in order to fix the root causes, and simultaneously cause the
emergence of rare or non-deterministic faults.

In this position paper we argue that by solving several
key problems rejuvenation can become a primary self-healing
tool for a variety of scenarios. We discuss the mentioned
obstacles, the status quo of solutions, and propose a set of
efficient architectural approaches which might pave the way
to a universal adoption of this technique.

II. SHORTCOMINGS OF REJUVENATION AND THE STATUS
QUO

Despite its effectiveness and universality, the use of re-
juvenation is currently limited to specific environments and

1According to unofficial statements from Microsoft it is not uncommon
that diagnosis of a single bug in a Windows device driver takes weeks for a
skilled developer.



it is implemented in a hand-crafted way. Examples of most
successful uses of this technique include (stateless) web
and application servers, high-availability telecommunications
hardware [Networks, 2008] and server healing in Microsoft
data centers [Isard, 2007]. The lack of support for healing
of generic software components and applications can be ex-
plained by several shortcomings of this technique and a non-
existent infrastructural support for it.

Loss of availability. A restart implies a temporary loss
of availability. Several approaches can reduce or partially
removed this disadvantage. A lot of research has been
done on the question when to rejuvenate [Dohi et al., 2000],
[Andrzejak and Silva, 2007] (termed adaptive rejuvenation).
However, these approaches neither shorten nor prevent the
non-availability. Several solutions proposed in the recent
years within the Recovery Oriented Computing (ROC) project
[Candea et al., 2004] have gained most attention. They in-
clude recursive rejuvenation [Candea and Fox, 2001] and
microrebooting [Candea and Fox, 2004]. These approaches
can significantly shorten the loss of availability but do
not completely eliminate it; moreover, they require changes
in the architecture and implementation of a system. In
[Silva et al., 2007] we proposed an approach that repli-
cates aging application server based on virtualization tech-
niques. It does not require code changes. While the deci-
sion to trigger the rejuvenation and replace an application
by a hot-standby replica is based on a simple performance
threshold, on optimization approach to schedule rejuvenation
of multiple concurrently running replicas is presented in
[Andrzejak et al., 2007].

Loss of working data during restart. This disadvan-
tage limits the applicability of current approaches to (es-
sentially) stateless components or applications. The recovery
of data after a crash has been extensively studied in the
context of database transactions [Haerder and Reuter, 1983].
Similar applies to recovery of distributed applications
[Elnozahy et al., 2002]. However, these solutions require pro-
found changes in the application architecture and cannot be
used in a generic way. Both the Tandem / NonStop sys-
tems [Gray, 1990] as well as process groups [Birman, 1993]
use multiple redundant processors simultaneously or pseudo-
synchronously and deploy solutions to synchronize and trans-
fer working data between them. These approaches require
a significant redundancy of resources, a proprietary oper-
ating system or deep changes of applications and do not
provide protections against permanent (or repeatable) soft-
ware errors. Similar approaches including execution redun-
dancy have been implemented in the IBM zSeries systems
[Bartlett et al., 2004].

Lack of support in operating systems and component
frameworks. The most serious obstacle (and a consequence
of the above two shortcomings) to the widespread use of
rejuvenation is the lack of support in the component frame-
works, mainstream operating systems, middleware, or virtual
machine managers (including browser engines). Hence cur-
rently each implementation carries a great cost of developing

and infrastructure and algorithms for component / application
analysis, decision taking, image replication, and transfer of
working data (if applicable). The only existing support in
OS’s can be found in Solaris 10. It is limited to management
of dependencies between system processes [Shapiro, 2004] to
enable a partial reboot of the OS. In the domain of middleware,
the framework presented in [Silva et al., 2007] allows for a
transparent replication and restart of SOA servers. Besides of
being a prototype, it has the disadvantage that the measurement
and decision parts need to be adapted to each application.
It also introduces a high resource overhead since a complete
operating system (and not only a process) is virtualized.

III. MAKING REJUVENATION CHEAP AND PAINLESS

The thesis of this paper is the following one.

Rejuvenation can become one of the most generic and
efficient solutions for self-healing of software components,
applications and operating / distributed systems. The pre-
requisites to achieve this vision are:
∙ the introduction of non-intrusive, transparent support

for rejuvenation in the mainstream operating systems
/ component frameworks / virtual machine managers
/ middleware, and

∙ practical solutions to the problems of loss of availabil-
ity and loss of working data.

By non-intrusive and transparent we mean that the rejuve-
nation frameworks and methods should not require changes
of the source code2. An even stronger constraint is that these
approaches should not need knowledge about the “ interior”of
the component or an application. This is in contrast to the tech-
niques introduced in the ROC project [Candea et al., 2004]
e.g. microrebooting which demand changes or even complete
rewriting of components. While these requirements surely
limit the spectrum of available approaches, we believe that
they are the key factors yet to ensure a widespread acceptance
and effortless deployment of rejuvenation. Furthermore, they
guarantee that the approach remains very universal and works
regardless of the causes of errors.

We discuss in the following possible approaches towards the
above goals, especially essential support in the OS’s, methods
for transfer of working data between process replica, and
techniques for state cleansing without a restart.

A. Rejuvenation support in operating systems

An ideal support of rejuvenation in an OS or a component
framework such as J2EE would provide a standardized API
to specify the following functions and parameters: setting for
each component or process whether it should be protected by
rejuvenation; conditions or routines for triggering rejuvenation
according to metrics provided by the OS; policies for process
replication in faces of limited resources (cores, memory);
buffering of inputs and messages in order to recompute work-
ing data (see Section III-B). In order to enable this scenario,

2This does not preclude methods such as binary code rewriting or AOP.
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some sophisticated techniques need to be investigated and
implemented.

Identifying component/process errors. A necessary func-
tionality is the detection of potential state corruption. For
the case of crashes this is trivially solvable, yet much
harder in case of partial malfunctions. In case of perfor-
mance degradation, on-line monitoring and performance mod-
eling [Andrzejak and Silva, 2008] coupled with scheduling of
restarts [Andrzejak and Silva, 2007], [Andrzejak et al., 2007]
can be used.

Adaptive replication of processes. Rejuvenation with-
out loss of availability can be achieved via process repli-
cation [Silva et al., 2007], [Andrzejak et al., 2007]. Today’s
hardware (multiple cores, several GB of memory) make this
approach feasible - users are more likely to “sacrifice” a
processor core that to experience availability outage. Such
replication of processes can be achieved by lightweight virtu-
alization [Yu et al., 2008] and techniques for rapid replication
of virtual resources [Lagar-Cavilla et al., 2009]. In addition it
is necessary to develop policies for controlling the number
replicas depending on the available resources, workload, and
the “importance” of protected processes.

B. Transfer of working data

A major shortcoming of rejuvenation is a possible loss of
working data of stateful components or applications. This is
usually caused by a (forced) restart of a component / appli-
cation or its substitution by an uncorrupted replica. Several
issues make this problem difficult.

First, in many cases the essential working data is hard to tell
apart from the corrupted parts of the data. For example, identi-
fying loitering objects (“memory leaks”) in Java is a non-trivial
problem [Mitchell and Sevitsky, 2003]. Consequently, migrat-
ing the whole component / application state indiscriminately
is likely to lead to an anew corruption. Approaches outlined
below attempt to tackle this core problem of state transfer.
Another, more intrusive approach is based on invariants of
data structures (see Section III-C).

Second, application components (understood here as OS
processes) have both an “internal state” represented by the
local data structures, and “external state” expressed by entries
in OS tables, file / network handles, and references held by
other components (e.g. process ID, open socket connections).
While the transfer of the internal state should require least
or no changes in application code, the external state requires
changes in the hosting OS, such as intercepting of the input
and output function calls and transparent replacement of file
/ network handles. This functionality (partially provided by
lightweight virtualization [Yu et al., 2008]) is clearly to be
implemented as a part of the OS support discussed in Section
III-A, and requires deep changes in the process management.

Finally, in today’s multi-component, multi-threaded appli-
cations, an unintentionally changed behavior (due to state
changes or even new timing patterns) of one component
might break the consistency of the whole application. As a

consequence, partial rejuvenation in such complex applica-
tions might cleanse a component but cause a corruption on
the application level. As a partial solution, OS supporting
rejuvenation should provide an API which allows to specify
component dependencies (e.g. maximum response latencies)
for multi-process applications.

Following the arguments from Section III on impor-
tance of non-intrusiveness we focus here on several solu-
tions for transferring of “internal state” which require least
amount of changes in the application code. However, also
more invasive (yet highly effective) solutions exist3. One
of them are restrictions on the component development,
e.g. requiring programmers to implement methods for sav-
ing the working data (similarly to methods onStop() /
onRestart() of the Activity class in the Android APIs
[Open Handset Alliance, 2009]).

Creating a state without working data. Some applications
are stateful yet provide mechanisms for persistent storing of
their working data, and for retrieval of them. This category
include EJB components (via Container Managed Persistence),
text editors, and web browsers which can save session data
upon closing them. In these cases a state without “unsaved”
working data can be achieved easily; then a restart or re-
placement of the component with an subsequent retrieval of
the working data can be enforced. For example, in e.g. text
editors or browsers saving of the current state can be enforced
without code modifications - via simulation of user input or
OLE automation in Windows. In application servers, EJB can
be forced to save their state before requests are redirected to
a replica initialized with this saved state [Silva et al., 2007].
One of the difficulties here is ensuring availability after the
main process no longer accept inputs, but the replica is not
yet active or up-to-date.

State mirroring with input filtering. A more general but
costly mechanism is on-line mirroring of working memory of
a process. This can be complemented by the buffering of user
input and incoming messages. Techniques applied for the rapid
replication of virtual machines [Lagar-Cavilla et al., 2009]
can be used to obtain an efficient implementation. After a
rejuvenation or substitution of the corrupted image with a
replica, the buffered input is fed to the application in order to
achieve consistency. While this approach resolves rare errors
due to non-determinism, it might fail if the replica inherits the
same corrupted data as the original process. In some cases the
last problem can be addressed by the using methods of Delta
Debugging [Zeller, 2002]. In brief, recorded inputs can be
selectively “replayed” in order to observe which ones produce
a state corruption or a crash. Those are then subsequently
filtered out to avoid repeated corruption.

C. State cleansing without restart

An alternative to a component restart is cleansing of internal
data structures during the run-time. This method reduced the
need to reboot a part of large telecommunication system from

3As pointed out by an anonymous reviewer.
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once per week to about twice per year [Singhal, 2007]. While
this approach avoids a loss of availability and issues of state
transfer, it is restricted to components / applications with
known source code or to environments which allow inspection
and change of code and data (such as JVM). Following
approaches might be investigated in this context:

Swapping of leaking objects. Performance degradation
due to memory leaks is only noticeable when available
memory is low. By using technologies such as LeakBot
[Mitchell and Sevitsky, 2003] it is possible to identify auto-
matically leaking objects in Java. These objects can be then
swapped to hard drive, delaying (in terms of time or work
done) the need for restart by a factor 100 or larger.

Automatic repairing of data structures during run-
time. Existing techniques for cleansing of data structures
[Demsky and Rinard, 2003] require a programmer to specify
invariants. This approach is time consuming and not possible
without knowledge of the source code. In order to automatize
the creation such invariants statistical methods could be used
to create invariants automatically, or at least propose to the de-
veloper potential invariants. To this aim variations of methods
such as statistical debugging [Zheng et al., 2006] could prove
useful.

IV. CONCLUSION

In this paper we gave a brief overview on software rejuve-
nation, a technique to (temporarily) remedy state corruption
and performance problems in complex software systems. We
argued that it has a largely unexploited potential to become a
primary self-healing solution in such systems. We have also
discussed the major obstacles for the widespread acceptance of
this technique - notably, a lack of support in OS’s / component
frameworks, loss of availability and loss of working data - and
outlined several possible solutions to these problems.

As next steps we plan to evaluate some of the presented
approaches for transparent rejuvenation and working data
transfer within the J2EE environment using the RUBiS bench-
marking framework [Pugh and Spacco, 2004].
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Abstract

One of the biggest impacts on the performance of a Distributed Hash Table (DHT),
once established, is its ability to balance load among its nodes. DHTs supporting range
queries for example suffer from a potentially huge skew in the distribution of their items
since techniques such as consistent hashing [29] can not be applied. Thus explicit load
balancing schemes need to be deployed. Several such schemes have been developed and
are part of recent research, most of them using only information locally available in order
to scale to arbitrary systems.

Gossiping techniques however allow the retrieval of fairly good estimates of global
information with low overhead. Such information can then be added to existing load
balancing algorithms that can use the additional knowledge to improve their perform-
ance. Within this thesis several schemes are developed that use global information like
the average load and the standard deviation of the load among the nodes to primar-
ily reduce the number of items an algorithm moves to achieve a certain balance. Two
novel load balancing algorithms have then been equipped with implementations of those
schemes and have been simulated on several scenarios. Most of these variants show
better balance results and move far less items than the algorithms they are based on.

The best of the developed algorithms achieves a 15 − 30% better balance and moves
only about 50 − 70% of the number of items its underlying algorithm moves. This
variation is also very robust to erroneous estimates and scales linearly with the system
size and system load. Further experiments with self-tuning algorithms that set an al-
gorithm’s parameter according to the system’s state show that even more improvements
can be gained if additionally applied. Such a variant based on the algorithm described by
Karger and Ruhl [30] shows the same balance improvements of 15− 30% as the variant
above but reduces the number of item movements further to 40− 65%.
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1. Introduction

1.1. Context

Distributed Hash Tables (DHTs) store key/value-pairs on several nodes of a network and
provide means for inserting, retrieving and deleting a value associated with a key. Each
node is assigned a unique node ID in a given ID space uniformly at random and is then
responsible for all values with keys near its ID (keys are also mapped to this ID space).
By using a technique called consistent hashing [29], the DHT then spreads the stored
items uniformly over the node ID space which achieves a fair balance without any further
effort. More precisely, nodes will have loads varying by O(log n) times the average load
in terms of stored items in a system of n nodes [36, 25]. However, DHTs with range
queries like Scalaris [39] cannot use hash functions to spread their items because they
need to stay in the order given by their keys. Therefore more effort is needed to balance
items among the nodes in such storages.

Consider the following example: Articles are to be stored in a range-query-based DHT
with 100 nodes and the key under which an article is stored is its heading. In case of
keys in (American) English and nodes responsible for equidistant key ranges, items would
then be distributed as shown in Figure 1.1.
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Figure 1.1.: Item distribution of US-English words on 100 nodes with equidistant key ranges.
(list of words aggregated from [11])
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To even out such skewed load distributions load balancing algorithms are required
which change the nodes’ responsibilities that in turn reduces their load. Such algorithms
try to balance an arbitrarily defined load at each node and should only use information
locally available in order to scale to large systems. Several of such algorithms will be
introduced in the following chapters, some of them using different definitions of load,
e.g. the number of keys a node is responsible for, the number of items a node actually
stores or the access-popularity of a node’s items. Some also weight load depending on a
node’s capacities and therefore adapt to heterogeneous environments.

1.2. Aims & Objectives

This thesis aims at improving such load balancing algorithms in terms of moved items
and reached balance by adding estimates of global information. These values can be
retrieved with high confidence and low overhead using gossiping techniques [23, 28] and
include approximations of values like the minimum, maximum and average load as well
as the standard deviation and system size.

A first approach will try to use the average load of all nodes in its decision on whether
to balance two nodes and how much to transfer from one node to another. Most al-
gorithms simply balance two nodes that have been matched by trying to equalise their
loads. This does however not involve a node’s ideal load - the average load. Therefore
several items are transferred multiple times during the algorithm’s task to balance the
load at each node of the system, especially if a node’s load after a balance operation is
sufficiently higher than the average load. By knowing the target load and integrating
it appropriately, a much better performance can be expected. Preliminary results of an
algorithm using the average load already show some improvements compared with its
underlying algorithm without that change [27].

Further variations will be introduced into ordinary load balancing algorithms also
including some of the other information mentioned above. The resulting algorithms’
performance will then be evaluated on a set of given scenarios like the alphabetical
distribution of Figure 1.1. It is assumed that with the right use of such information, any
algorithm can be significantly improved.

1.3. Methods

In order to evaluate any of the introduced algorithms, a simulation will be implemented
that emulates a simple DHT with range queries and starts with an initial system load
distributed among the nodes according to a given scenario. This emulation will disregard
node joins and deletions as well as any other side-effects, e.g. network maintenance,
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node failures, network delay and bandwidth etc., to eliminate any other influences when
assessing an algorithm. It will however allow analysing the algorithm under different
aspects such as different scenarios with different numbers of items and nodes, different
choices for an algorithm’s parameters and a different accurateness of the estimated global
information. It will also provide the ability to run multiple simulations with the same
set of parameters in order to allow the evaluation of randomised algorithms that show
(slightly) different behaviour in each simulation.

The program will follow the strategy of being easily extensible and will in particular
allow additional algorithms and scenarios to be deployed separately and added dynamic-
ally via a plugin-based infrastructure. It will also provide means of comparing different
algorithms with varying parameters on multiple scenarios. A graphical user interface
and a command line client will be created that allow fast evaluations of the algorithms
as well as batch-jobs for more time-consuming simulations.

1.4. Achievements

At first a survey of the field of Distributed Hash Tables has been given by presenting
their concepts and examining their mode of operation including DHTs that support range
queries. Additionally a very thorough overview of load balancing schemes that can be
applied to (arbitrary) DHTs has been given and several novel load balancing algorithms
have been presented. Gossiping algorithms have also been introduced to present a way
estimates of global information can be retrieved in Distributed Hash Tables.

Secondly several algorithm variations have been introduced that make use of estimated
global information in order to minimise the item movements an algorithm performs as
well as the imbalance it reaches. Those variations have then been applied to the load
balancing schemes by Karger and Ruhl [30] and Bharambe et al. [12] and have been
evaluated by performing simulations with different load distribution scenarios. These
variations use estimated values of the system’s average and maximum load, the standard
deviation of the load among the nodes and the system size.

The best algorithm among those variants limits the original algorithm’s item move-
ments in a way that nodes that have a load smaller than the (estimated) average load
will not reach a load above this bound. Additionally it only performs such balance op-
erations that increase the standard deviation by at least a factor s/n with n being the
system size and s a configurable parameter that has been set to 2.0 and 3.0 for the al-
gorithms by Karger and Ruhl and Bharambe et al. respectively. This variation achieves
an up to 30% lower imbalance than the algorithm applied to would achieve alone and
only moves about 50− 70% of its items.

Further experiments that try to tune the algorithms’ parameters according to the
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system’s state show that even more improvements are possible. Applying such self-
tuning to the algorithm by Karger and Ruhl for example has shown an up to 30% lower
imbalance with only about 40 − 65% of the item movements of the original algorithm.
Such good performance has however not been achieved by a similar variant that has
been applied to the algorithm by Bharambe et al. Further investigations into the field
of self-tuning algorithms are thus needed.

1.5. Outline

At first a deeper insight into the techniques behind Distributed Hash Tables (DHTs)
will by given in Chapter 2. It will also present several representatives of DHTs and
their characteristics and will introduce methods for achieving range-queriable systems.
It will then present gossip algorithms followed by several novel load balancing schemes
that are available for such DHTs. Chapter 3 will define the system model that is used
in this thesis and the algorithms that have been chosen to be equipped with estimated
global information. It will conclude with the introduction of the algorithm variants that
have been developed. These variants will be evaluated in the following Chapter 4 starting
with a detailed description of the evaluation process itself and the scenarios used. It then
presents the results that the implemented simulator created for the different algorithms
under different aspects of the simulation. Chapter 5 will finally sum up the achievements
of the thesis and will provide ideas about possible extensions of the given algorithms and
future work.
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2. Background / Related Work

This chapter presents Distributed Hash Tables (DHTs), a prominent representative of
the class of structured overlay networks, which has been of great interest in research
over the past years. The structure of a generic DHT and some of its representatives will
be introduced including DHTs that support range queries. This class of DHTs imposes
some restrictions on the organisation of the stored resources which need to be considered
when designing load balancing algorithms, e.g. stored resources cannot move arbitrarily
to different nodes of the network. Before load balancing algorithms are described in the
last section of this chapter, gossiping algorithms will be introduced. Those algorithms
can be used in peer-to-peer networks to gather estimates of certain global information
that is usually not available in such a setting. This information will later be used to
improve some of the load balancing algorithms described here.

2.1. Distributed Hash Tables (DHTs)

Distributed Hash Tables provide functionality similar to ordinary hash tables. They
store key/value-pairs on several nodes of a network and provide look-up facilities for
retrieving the value associated with a given key. Several such systems exist, but despite
their diversity a reference model can be given which models their approaches in a generic
manner [8] and is outlined below.

In this model, a DHT maps peers P and resources R to a common identifier space I
using mapping functions fP : P → I and fR : R → I. Furthermore, a closeness metric
d : I × I → R is defined on I which can be used by a mapping function M : I → 2P that
associates identifiers with the peers storing them. The peers themselves are organised
in a logical network to allow access to every other peer’s resources, i.e. by embedding
a graph into the identifier space. Following this notation, differences between several
DHTs only exist because of the different choices made for the following aspects:

• Selection of an identifier space with a closeness metric d: This serves as an address-
space for resources and peers and should be large enough to support large systems.

• Mappings fP and fR: These functions may satisfy certain distributional properties
which can be exploited for load balancing. They can preserve resource semantics
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such as closeness/neighbourhood relations or the order under a given key or com-
pletely drop them, e.g. when following a uniform distribution in I.

• Management of the identifier space: The function M : I → 2P assigns each iden-
tifier of a resource a set of peers responsible for it. Locating resource r therefore
involves finding a peer in M(fR(r)). Note that systems with replication have
several peers responsible for each resource.

• Structure of the logical network: The logical network can be modelled as a (time-
dependent) directed graph G = (P,E) with vertices P (peers) and edges E (direct
connections). Also let N(p) be the set of peers a given peer p maintains a connec-
tion to, e.g. its neighbours. The overall structure of that graph is then determined
by N(p) for every p ∈ P .

• Routing strategy: Requests for identifiers need to be routed to their responsible
peers. A strategy for that can be described as selecting at a given peer p for
an identifier i a set of next peers R(p, i) ∈ N(p) to which to forward a request.
Routing is typically greedy, i.e. ∀q ∈ R(p, i) : d(i, fP (q)) ≤ d(i, fP (p)), and built
on top of the decisions made for the identifier space and its management, e.g. the
distance function.

• Maintenance strategy: Changes in peer connectivity (referred to as churn) may
occur quite frequently and create the need for mechanisms to repair the state of the
logical network. Since node joins are typically active operations, this task mainly
focuses on repairing connections due to node (connection) failures. Maintenance
strategy can either follow a proactive approach (heartbeats, periodic probing) or
a reactive approach (correction on use, failure or change) or a combination of the
two. Functionality of the DHT heavily relies on a consistent network structure
making this strategy essential for its operation.

Additionally DHTs provide (supposedly different) implementations for a common set
of functionality they expose to their clients.This includes joining and leaving a network,
several routing functions, looking up identifiers and getting some administrative inform-
ation about the local peer and its neighbours. Data management functionality exposes
insert, delete and update methods as well as searching for resources using queries of
some kind.

Implementations of such structured overlay networks include CAN [37], Pastry [38],
Chord [41], Freenet [19], Tapestry [45], Gnutella [5, 1] and more. The following sections
will concentrate on the first three which all implement a variant of consistent hashing [29,
33] outlined below. The main focus however is not on a complete description of the
different DHTs but to give an overview of their structure and message routing / resource
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retrieval algorithms which both is important for load balancing. Also although the
descriptions will make use of the introduced terminology and definitions they will not be
structured explicitly that way in order to focus on the main aspects of design decisions
and establish a better understanding of the techniques. It will however become apparent
that the DHTs follow the given model.

2.1.1. Consistent Hashing

While traditional hash tables map objects to a static set of buckets, the number of
peers to which resources are mapped constantly changes in DHTs. Karger et al. [29]
and Lewin [33] describe a consistent hash function that operates on a changing set of
buckets and provides some consistency properties, e.g. adding a bucket only changes the
mappings of a minimum fraction of objects needed to maintain a balanced state.

Using the aforementioned syntax, let P be a set of n = ‖P‖ peers, I the circular
interval [0, 1) ⊂ R and fR a random function that maps resources of R log(n)-way
independently1 and uniformly to I. Now let each real peer p run m “virtual” peers that
operate independently from each other. Virtual peers can be modelled by each peer
being mapped to m different identifiers instead of just one: fP : P → Im ⊂ I, ‖Im‖ = m

(otherwise the same constraints as fR apply). Also define a function M that maps each
resource r ∈ R to the peer p ∈ P that has the closest identifier to fR(r). Each such hash
function has the following properties which also hold for large enough arbitrary I:

• Monotonicity: If new peers are added to P , resources only move from old peers to
new peers, but never between old peers.

• Adding a peer p to P changes the mappings of O(‖R‖/n) resources.

• Balance: The probability of a resource r ∈ R being assigned to peer p ∈ P is

O

(
1
n
·
(

1 +
log(n)
m

))
.

Thus using m = Ω(log(n)) virtual servers results in a well-balanced state with each node
being responsible for O (‖R‖/n) resources. Having no virtual nodes however (m = 1)
yields to some nodes having O(log(n)) times more resources associated with them than
others because each node is responsible for O ((log(n) + 1) · ‖R‖/n) resources.

2.1.2. CAN

A basic CAN network [37] uses a virtual d-dimensional Cartesian coordinate space C
for its identifiers and places it on a d-torus for routing. Peers are responsible for their

1A random mapping function is k-way independent if any k elements are mapped independently. This
allows representing real identifiers in I ⊂ R with limited precision instead of using an infinite number
of bits and also allows for arbitrary large enough discrete I.
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individual and distinct zones of this coordinate space which is entirely covered at any
point in time. A key/value-pair is stored in CAN by mapping its key to a point q ∈ C
using a uniform hash function and storing it at the peer p responsible for the zone
containing q. Similarly querying for a key corresponds to routing to the node responsible
for the zone containing q. For this every peer maintains a list of immediate neighbours
(nodes with zones adjoining their own zone) and routing a message at peer p directed
to q is done by forwarding it to the neighbour of p which is responsible for coordinates
closest to q (greedy forwarding). Also note that several paths exist and can be used in
case of node and connection failures or to deploy a simple request load balancing (see
Figure 2.1 for an example). This way using d dimensions and n = ‖P‖ commensurate
zones, each individual node maintains 2d neighbours and average routing paths cross
(d/4)(n1/d) zones (peers).

Figure 2.1.: Planar 2-d CAN with coordinates in range [0, 1)× [0, 1) ⊂ R2 with 16 nodes routing a
message from node n6 to q = (0.8, 0.6) (dashed arrows present an alternative route).

If greedy forwarding fails, an expanding ring search using stateless, controlled flooding
may be used to locate peers closer to the destination. From there greedy forwarding will
be continued.

In order for a node to join an existing CAN, it needs to take the following steps:

1. Find a CAN node by using some external mechanism, e.g. DNS.

2. (Randomly) choose a point q to join at, contact the peer currently responsible for
that point (using normal routing) and split the zone in half assigning one half to
the new node.
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3. Learn neighbours from the previous occupant and notify them of its arrival.

4. Transfer resources according to the new responsibilities.

These steps involve O(d) existing nodes which need to change their list of neighbours.
A node gracefully leaving the system hands over its zone to a neighbour which is

able to join the two zones. If this is not possible the neighbour with the smallest zone
will (temporarily) handle both zones. To identify node failures peers normally send
periodic update messages to their neighbours. If such message is not received for some
time its neighbours each initiate a takeover mechanism and agree on one of them taking
over the failed zone, possibly becoming responsible for two zones. To prevent further
fragmentation of the coordinate space background zone-reassignment algorithms try to
merge zones again.

Further improvements were suggested in order to reduce routing path lengths, i.e.
increasing the number of dimensions or using multiple coordinate spaces (realities), in-
troducing round-trip-times into routing decisions, caching frequently requested resources
or replicating them to their peers’ neighbours. See [37] for more details and an evaluation
of the various improvements.

2.1.3. Pastry

A different approach to realising a distributed hash table is provided by Pastry [38] which
uses identifiers represented by 128-bit numbers. The circular identifier space therefore
consists of integers in the range [0, 2128 − 1] and the two mapping functions fP and fR

are expected to distribute their results uniformly and independently among the identifier
space. Resource identifiers are for example created by applying a secure hash function,
e.g. SHA-1 [7], to the resource’s name, content and the resource owner’s identifier. Also
resource r ∈ R is stored at the k peers with identifiers numerically closest to fR(r). k
can be set individually for each resource at its insertion, influences its availability in case
of failures and provides some means of balancing resource requests.

For routing purposes node identifiers in pastry are sub-divided into separate levels
of b bits with a domain at level l being defined as the bits from position (b · l) to
(b · (l+ 1)−1). Messages are now forwarded using prefix routing, i.e. messages at peer p
with destination fR(r) matching fP (p) up to level l will be forwarded to a node whose
identifier matches the destination’s identifier up to at least level (l+1). Also each pastry
node p stores information about other peers in 3 different node sets:

• a routing table T which contains information about representatives of different
domains at different levels: for each level l it contains IP addresses of (2b−1) peers
with the same prefix as fP (p) up to level (l − 1) but a different domain at level l
(to improve route locality, a representative geographically close to p can be chosen),

DHT Load Balancing with Estimated Global Information 17



2. Background / Related Work

• a namespace set L that contains identifiers and IP addresses of ‖L‖ peers that are
numerically close and centred around fP (p) which is used for routing too and

• a neighbourhood set M storing identifiers and IP addresses of ‖M‖ peers that are
geographically close to p and which is useful for network maintenance. Note that
this set has been dropped in later versions of Pastry [15]. The following descriptions
however are based on the original version.

While the choice of b influences the size of the routing table (ca. dlog2b(n)e · (2b − 1)
entries, n = ‖P‖) and the average routing path length, the sizes of ‖L‖ and ‖M‖ can
be chosen arbitrarily and are typically 2b and 2b+1 respectively. Using those tables, a
message to resource r arriving at peer p is routed as follows:

if fR(r) is in the range of the two farthest nodes in p’s namespace set N(p):
Forward message to pi ∈ N(p) so that |fR(r)− fP (pi)| is minimal (possibly p).

else if p’s routing table contains a node that shares a longer prefix than p:
Forward the message to that node.

else:
Forward to a known node (from the routing table, namespace set or neighbourhood
set) that shares a prefix at least as long as p but is numerically closer to r.

Although the third case creates a worst-case with linear performance (in the number
of nodes), Rowstron and Druschel [38] argue that this is very unlikely due to the uniform
distribution of node identifiers and give an average routing path length of dlog2b(n)e hops.

Nodes joining a Pastry network need to perform the following 6 steps which involve
O(log2b(n)) remote procedure calls:

1. Find a Pastry node p1 by using some external mechanism.

2. Choose a node identifier (at random), contact the peer p2 currently responsible for
resources with that identifier using normal routing.

3. Update its routing tables using the neighbourhood set of p1 and the namespace
set of p2 as approximations of its own neighbourhood and namespace sets. Fill the
routing table with information from the nodes the join message came along.

4. Improve those approximations by requesting the state of the nodes in its routing
table and neighbourhood set.

5. Notify peers that need to be aware of the new node and send them its own state.

6. Transfer resources according to the new responsibilities.

18 DHT Load Balancing with Estimated Global Information



2.1. Distributed Hash Tables (DHTs)

Node failures are detected when a node tries to contact another node in its routing
table or namespace set. The latter is repaired by using an appropriate node of the
namespace set of the live node with the largest identifier in the direction of the failed
node. Repairing a representative in the routing table involves contacting another repres-
entative at the same level and asking it for the required connection or continuing with
requests to nodes at higher levels. The neighbourhood set can be repaired by requesting
the neighbourhood sets of the other live nodes in it.

2.1.4. Chord

Chord [41] places identifiers of m bits on a circle modulo 2m and performs every cal-
culation modulo 2m. A secure hash function, typically SHA-1 [7], is used for mapping
resources and peers to this identifier space (m = 160 in case of SHA-1). fP maps peers
to identifiers by hashing their IP address and fR hashes the key of a resource. Using
consistent hashing, M maps a resource r ∈ R to the peer p ∈ P whose identifier is equal
to or follows r’s identifier in the identifier space. That is if predecessor(p) denotes the
predecessor of a peer p on the identifier circle, p is responsible for all resources with
identifiers within (fP (predecessor(p)), fP (p)]. Note that Chord does not use an explicit
load balancing scheme but instead relies on consistent hashing with the use of virtual
servers.

Chord nodes store routing information about m nodes in a so-called finger table. The
i’th finger of peer p’s table, 1 ≤ i ≤ m, points to the node p′ whose identifier succeeds
fP (p) by at least 2i−1, i.e. p.finger[i] = M(fP (p) + 2i−1), p.finger[1] = successor(p).
Note that consecutive fingers can point to the same node if there is no peer between their
designated identifiers. Additionally to the finger table each node maintains a pointer
to its predecessor to simplify node join and leave operations. Figure 2.2 shows such a
node’s complete routing state (including its finger table) in an exemplified Chord ring.

Routing uses those fingers as shortcuts to reach the destination with fewer hops than
using successor links alone (which would suffice for routing correctness and result in
O(n), n = ‖P‖ hops)). If peer p needs to find the node p′ which is responsible for key k,
it searches its finger table for the node j whose identifier immediately precedes k and asks
j for the node it thinks is closest to k. This procedure is repeated until the immediate
predecessor of k is found, whose successor is then the node responsible for k. Note that
those messages could also be forwarded to the nodes recursively instead of implementing
an iterative approach as described here. Because the fingers provide shortcuts half-way,
quarter-way,. . . around the circle and the distance to the destination halves in each step
this results in O(log(n)) nodes to contact (with high probability2).

2with high probability means probabilities of at least (1−O(n−1)), n being the system size
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Figure 2.2.: Chord ring with m = 6 and 16 nodes showing the routing pointers of node n8 and
all nodes’ responsibilities in grey (associations with identifiers).

Nodes joining an existing Chord ring need to take the following steps:

1. Find a Chord node p1 by using some external mechanism.

2. Initialise its predecessor and finger pointers by asking p1 to look them up or copy
from a neighbour’s finger table and find the correct values on its own (the neighbour
of the to-be-inserted node p can be retrieved by asking p1 to look up M(fP (p)) ).

3. Contact (existing) peers that need to be aware of the new node and update their
predecessor and finger pointers.

4. Transfer resources according to the new responsibilities.

Alternatively, step 3 could be omitted if the Chord nodes periodically run a stabilisation
protocol that fixes their finger tables. Note that this would also allow Chord to handle
concurrent joins.

To deal with node failures first recall that Chord only needs to maintain correct
successor pointers in order to work properly. To overcome failures of successor pointers,
each peer stores an additional list of r successors and uses the first live node in that list
in such case. The stabilisation protocol mentioned above also ensures that the finger
tables are corrected in case of node failures. Meanwhile, alternative nodes to forward
routing messages to are found in the finger table (using the preceding finger to the failed
one) or in the successor-list.
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Both, a node joining and leaving a Chord ring will require O
(
log2(n)

)
messages to be

exchanged in order to re-establish the routing state of affected nodes.

2.1.5. Conclusion

The previously presented DHTs show that realising a distributed hash table can be done
in many different ways while still maintaining the goal of efficient resource look-ups (in
terms of visited nodes) with only a small fraction of the system known to a node. CAN
puts its resources and peers in a d-dimensional coordinate space and requires each node
to maintain 2d neighbour links. By using simple forwarding based on the geometric
distance of a node to a target resource, it achieves average routing path lengths of
(d/4)(n1/d) hops and allows simple request load balancing by routing requests through
different nodes in the direction of a target. Pastry and Chord both map their nodes
and resources to a one-dimensional circular name space with addresses between 0 and
2m − 1. Pastry further sub-divides those identifiers into levels of b bits and requires a
node to maintain a routing table of size dlog2b(n)e · (2b − 1) as well as a namespace and
neighbourhood set of fixed sizes. Using prefix-routing the average number of hops during
routing is dlog2b(n)e with a worst-case of O(n). Additionally Pastry allows replication on
a per-resource level which can be set at a resource’s insertion and also provides request
load balancing. Chord on the other hand uses finger tables of size m to point to nodes
responsible for an exponentially increasing key distance from the nodes’ own keys and
achieves routing path lengths of O(log(n)) with high probability.

Except for the request load balancing provided by CAN and Pastry, those three DHTs
do not implement any explicit load balancing algorithms to balance the load among the
nodes but instead rely on the (passive) load balancing provided by consistent hashing
with the help of virtual servers (Chord). Without virtual servers this results in each node
being responsible for an O((log(n) + 1) · 1/n) fraction of the available resources which
is brought down to O(1/n) using virtual servers. Further improvements (even without
virtual servers) are possible using explicit load balancing algorithms (ref. Section 2.4).

Despite their differences, those DHTs all provide a common set of functionality which
allows them to be deployed to the needs of the user and be replaced by one another.
However, they only allow simple requests like retrieving resources for a set of single keys
and lack support for further extensions such as range-queries covered below.

2.2. DHTs with Range Queries

One way of implementing range queries is to build them on top of ordinary DHTs such as
the ones described above. Multiple dimensions, i.e. possible attributes in range queries,
would be reduced to one dimension using space-filling curves and then split into several
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ranges which each serve as a single key that is then stored in the DHT [9, 17, 22] (also see
Figure 2.3). Such partition needs to be implemented with care because too few fractions
lead to poor load balance and too many will increase look-up costs as several of them may
need to be retrieved in order to answer a single range query. The same happens for large
multi-dimensional range queries. Another disadvantage is the increased maintenance
cost this additional layer imposes on the network.

Figure 2.3.: Example of using a space-filling curve: Patches group coordinates and are then
mapped to one dimension according to the progression of the Hilbert curve (approx-
imation level 4) drawn in red. (map: Marble [2], curve: Wikipedia [6])

Because of these disadvantages, specific DHTs were created that support range queries
out of the box. Mercury [12] and Chord# [39], for example, use key-order-preserving
hash functions which allow significantly lower overhead in design complexity and better
query performance (in terms of visited nodes per range query) compared to the method
depicted above. The following sections will give a short overview of those two imple-
mentations which work a bit differently than ordinary DHTs and need to deal with a
new set of problems, e.g. significant load imbalance based on the key distribution of
their resources.

2.2.1. Mercury

Resources in Mercury [12] consist of a list of (attribute, value) pairs with attributes
supporting int, char, float and string data types. Queries can be created using
multiple filters on given attributes which together form a conjunction (disjunctions of
filters need to be emulated by issuing a single query for each of them).

Mercury partitions its peers into several attribute hubs Ha each denoting a group
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that is responsible for a single attribute a. The number of hubs should be reasonably
small but nodes can be part of several such hubs. Within a single hub Ha each node
is responsible for a contiguous range of an attribute a and together the nodes form a
circular overlay based on that attribute. This range is assigned to a node when it joins
the network. Furthermore, resource r is stored at each node that is responsible for any
of its attributes in any hub and is thus sent to every hub Ha with a ∈ r when it is
inserted into the network.

Processing a query first involves a selection of a (single) hub through which the message
is routed. Within that hub the query is processed by all nodes which have potential
matches. Selecting a hub is therefore crucial for getting a good routing performance and
should be done by evaluating the selectivity of each filter of a query. In-hub-routing
works by sending the query to the node that is responsible for the first value of the hub’s
attribute and forwarding it to subsequent nodes still within the range of the query. For
that nodes store links to their predecessor and successor nodes within each hub and links
to (at least) one node in every other hub. For better robustness to node failures, nodes
could alternatively store a (small) number of those links instead of just one.

Similarly to Chord this system would result in O(n), n = ‖P‖ hops required for
processing a query. To provide more efficient routing, k long-distance links are added
to the nodes’ state (also see the example given in Figure 2.4). Note that k could be
different for each node but let’s assume that each node contains no more than 2k of
such links whose construction is given as follows. For each link li a node p responsible
for the range [al, ar) of attribute a draws a number x ∈ [1/n, 1] = J using the harmonic
probability distribution function p(x) = (n · log(x))−1 for x ∈ J and stores the node that
is responsible for the value (ar+(amax−amin) ·x) within Ha. Queries are then forwarded
to the node among the long-distance links that minimises the (clockwise) distance to the
requested attribute value. Assuming node ranges are uniform, a node responsible for
the first value in a given range can be reached with O

(
log2(n) · 1/k

)
hops (including the

first hop which decides the hub to route in).

Constructing O(log(n)) long-distance links in that manner also enables Mercury to
allow uniform random sampling of nodes which is used to gather histograms of system
statistics, e.g. load distribution, node-counts and so on. This provides information
needed to create the links at all (the number of nodes) and may also be used for imple-
menting a load balancing scheme. Mercury uses a load balancing algorithm similar to
the one presented by Karger and Ruhl [30]. Both are described in Section 2.4.2.

Nodes joining Mercury need to complete the following steps:

1. Find a Mercury node p1 by using some external mechanism.

2. Obtain a list of representatives of each hub by querying p1.
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Figure 2.4.: Mercury network with Hubs Hx and Hy showing node n5’s predecessor, successor,
cross-hub (h) and k = 3 long-distance (ld) links and each node’s responsibilities
inside its hub.

3. (Randomly) choose a hub to join at, contact one of its members (p2) and become
its predecessor taking half of its values.

4. Copy routing state of p2, create its own long-distance links and get hub represent-
atives different to the ones from p2.

When nodes fail or leave the network, repairing successor and predecessor links is done
by using the successor and predecessor link lists mentioned before. Long-distance link
failures can be repaired by simply creating new links. Alternatively (and to deal with
many link failures) nodes can periodically re-create all links when the number of nodes
in the system changes substantially. Finally repairing cross-hub links can be achieved
by using a backup link, asking a neighbouring node for its links or (if both fails) using
the external mechanism used for node joins.

2.2.2. Chord# / Scalaris

Chord# [39] is a variation of the Chord protocol described in Section 2.1.4 and has
been implemented in Scalaris [3]. In its basic form it supports one-dimensional range
queries but can also be extended for multiple dimensions as described in [39]. It derives
from Chord by removing consistent hashing and instead using a key-order preserving
hash function to map resources to the identifier space, e.g. by storing the keys in
lexicographical order. Nodes are placed at such points of the identifier space that achieve
well-enough load distribution. This placement is managed by an explicit load balancing
mechanism which constantly changes the nodes’ responsibilities according to the current
system load. Schütt et al. suggest to use the algorithm presented by Karger and Ruhl [30]
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but any of the algorithms described in Section 2.4 is suitable.

In order to keep the routing performance (number of hops required to reach a node
responsible for a random resource) at O(log(n)), n = ‖P‖, the finger table is constructed
differently and operates in the node space rather than the key space. The first finger
is the node’s successor as in Chord and the i’th finger is created by asking the node at
finger (i−1) for its (i−1)’th finger. This step is repeated as long as fingers point to nodes
succeeding the previous finger and not exceeding the current node. The resulting finger
table then contains at most dlog(n)e fingers with the longest finger pointing half-way
around the node circle, the second longest quarter-way, and so on. It is also guaranteed
that no two fingers point to the same node (refer to Figure 2.5 for an example).

Figure 2.5.: Chord# ring with 26 possible IDs and 16 nodes distributed to balance a distribution
of resources with hot spots around 6, 24 and 36 (node responsibilities in grey).

Although the routing algorithm stays the same as in Chord, the number of hops
required to reach a desired node is now guaranteed to be O(log(n)). This is achieved
because fingers in Chord# definitely decrease the distance to a target node by factor 2
each routing step and not just with high probability. Also (re-)building the finger table
requires only O(log(n)) messages compared to O(log2(n)) in Chord.

2.2.3. Conclusion

The aforementioned DHTs show that support for range queries can be achieved with
little less or no overhead to ordinary DHTs. In fact, Chord# even improves Chord’s
performance by guaranteeing routing performance of O(log(n)) hops and changing only
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little compared to Chord. Mercury supports multi-dimensional range queries and uses a
so-called Hub for each of a resource’s attributes. Using k long-distance links it reaches
a designated node within O

(
log2(n) · 1/k

)
hops. Furthermore by the way those links are

generated, Mercury supports random sampling of nodes which it uses to gather system
statistics such as estimates of the average load and the number of nodes.

Both DHTs may use arbitrary load balancing algorithms in order to even out the
load imbalance that is inherent in the use of order-preserving hash functions. Chord#

suggests an algorithm proposed by Karger and Ruhl [30] while Mercury implements its
own variant of this algorithm. Refer to Section 2.4 for a description of those algorithms.

2.3. Gossiping

Gossip algorithms can be advantageous for Distributed Hash Tables in several ways.
They can for example provide another way of learning random nodes and can be used to
adapt the topology of the overlay network to changes. Both is provided by the Cyclon
framework [43]. They can also be used to aggregate (global) information with high
confidence and low overhead which is of more interest here. Such information includes
approximations of values like the minimum, maximum and average load, network size,
variance and standard deviation [28].

A generic proactive algorithm calculating those values could for example work by
letting each node periodically select another node to exchange information about its
local estimate of the desired attribute. Both nodes update their state according to an
aggregation-specific update function that improves a node’s estimate with the help of
the other node’s estimate. In case of average load computation the nodes could start
with local estimates such as their own load. The update function would receive the two
estimates avgp and avgq of the nodes p and q and both nodes will update their local
estimates to (avgp + avgq)/2 thus achieving a better estimate. Note that the sum of all
estimates remains the same as the sum of all nodes’ loads and can thus be used to further
aggregate the average load the same way. Similarly the minimum and maximum can be
calculated by returning min(avgp, avgq) and max(avgp, avgq) respectively and can also
be used to collect information about the k minimum/maximum loads (and the nodes
holding those values). The variance can be computed by calculating the averages of the
nodes’ loads and their squares since Var(l) = avg(l2) − avg(l)2, same for the standard
deviation σl =

√
Var(l).

This method provides exponential convergence to the desired value at each node, but
best performance can only be guaranteed if the node selection is truly random, e.g.
uniform. Nevertheless, this protocol also works by (randomly) selecting nodes from a
list of neighbours that is based on the topology of its network or by making random
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walks. Experiments conducted in [28] show that the more uniform the random sampling
is the faster this algorithm converges.

The following chapters will make use of gossiping algorithms only to retrieve the
aforementioned estimates of global information in order to improve load balancing. For
an overview of further uses of such algorithms on structured overlay networks refer to [23]
and the papers referred there.

2.4. Load Balancing in DHTs

As depicted above, some distributed hash tables include (simple) load balancing tech-
niques with some even being immanent in their design, e.g. by using consistent hashing.
Their ability to balance load among the system however varies greatly and can generally
be improved by deploying a different load balancing algorithm that suits a specific need.
That might include a better partition of the address space among the nodes or, more
generally, a better balance of an arbitrary load like the number of stored resources, a ma-
chine’s workload including computing power or bandwidth or any other. Also, although
not explicitly considered here, one might include node heterogeneity in any balance de-
cision. Other DHTs, in particular those supporting range queries, heavily rely on explicit
load balancing mechanisms because the distribution of the stored resources is retained
and may be highly skewed.

Node i Node i+1

Node i Node i+1

(a) Slide

Node i Node k Node j

Node k Node i Node j

(b) Jump

Figure 2.6.: Supported load balancing operations in arbitrary distributed hash tables.

Note that generic load balancing algorithms can only make use of techniques supported
by every DHT and cannot use features specific to a single one. It is for example possible
to adjust the responsibility of two neighbouring nodes so that one node takes some
resources or responsibilities off of the other. This process is called sliding and may be
supported directly by the DHT or by removing one of the two nodes and inserting it at
an identifier that will result in the desired behaviour. The second generic load balancing
primitive is jumping, that is a node leaves its current position dropping off all its load
and responsibilities to its successor and joining somewhere else in order to take off some
of other node’s load. Examples for both are presented in Figure 2.6 for a ring-based
DHT also showing the changes of every affected node.

The following sections will present several such load balancing algorithms which are
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structured as follows. Section 2.4.1 will describe algorithms that try to balance the
amount of identifier space each node is responsible for, followed by algorithms trying
to balance the actual number of resources in Section 2.4.2. Load balancing algorithms
relying on virtual servers or using replication are covered in sections 2.4.3 and 2.4.4.
Note that some algorithms’ classifications can be ambiguous in which case their main
aspects determine the section they are presented in. Further categorisations could be
made in order to differentiate between passive and active algorithms, i.e. those that only
act on node or item inserts or deletes and those that actively probe the network every
once in a while to search for nodes to balance. This additional classification is included
in the overview of all presented algorithms given in Section 2.4.5

Note that (until otherwise stated) algorithm descriptions in the following sections will
be restricted to ring-based DHTs like Chord which can be done without loss of generality
(special care only needs to be taken with the multiple dimensions of a CAN network).

2.4.1. Address-Based Load Balancing

Address-based load balancing algorithms aim at partitioning the identifier space uni-
formly among the participating nodes so that each node is responsible for an equal range
of identifiers. This is mostly useful for DHTs using consistent hashing (see Section 2.1.1)
where resource identifiers are spread uniformly among the identifier space as well and
do not follow a particular distribution. Recall that using uniform and independent hash
functions for both nodes and resources still results in an O(log(n)) imbalance. Using
virtual servers reduces this imbalance but introduces higher maintenance costs due to
the increased number of connections each real host manages. The following sections
will describe several address-based load balancing algorithms that will try to reduce the
imbalance without using virtual servers.

Karger and Ruhl

Karger and Ruhl’s address-space balancing scheme [30] first adds an ordering to addresses

of the form
x

y
=

2b+ 1
2a

in the circular identifier interval I = [0, 1] such that
x

y
<
x′

y′
⇔

(y < y′) or (y = y′ and x < x′). Equation 2.1 shows the order of some addresses with
this specification.
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<
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16

<
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16

<
7
16
. . . (2.1)

Secondly, each node maintains a set of O(log(n)) potential positions it can place itself
at (solely dependent on the node itself, e.g. on its IP address). It now occasionally
checks the address range between each such position and the succeeding active node on
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the ring and places itself at the position with the range that covers the smallest address
under the given ordering. It can be observed that nodes place themselves at positions
close to all small addresses (under the given ordering) which distributes them nearly
uniformly among the address space (each node is responsible for an O(1/n) fraction)
with high probability thus achieving a ratio between the largest and smallest interval of
O(1).

Bienkowski et al.

Bienkowski et al. [13] give a load balancing algorithm for ring-based DHTs which estim-
ates the total number of nodes by having each node maintain an additional connection to
a random position in the ring (a marker) and count the number of markers that fall into
the interval of the node itself and some of its successors. Let i and m be the length of the
encountered interval and the number of encountered markers respectively, then a node
continues to add the succeeding node’s data (interval length and number of markers) as
long as m < log(1/i). At the end, i is decreased so that m = log(1/i) using the inform-
ation of the last visited node. Let ni be the solution of log(x)− log(log(x)) = log(1/i).
It follows that with high probability ni is within constant factors of the real number of
nodes n and there are global constants v, u so that v · ni ≤ n ≤ u · ni.

Bienkowski et al. now use these values to define three categories of intervals: short

intervals of length at most
4

v · ni
, long intervals of length at least

12 · u
v2 · ni

and middle

intervals of lengths in between. Note that the given interval definitions have been chosen
so that middle and long intervals have lengths of at least 4/n and halving long intervals
never creates short intervals.

In the algorithm, nodes with short intervals whose predecessors also cover short inter-
vals try to contact nodes with long intervals with probability 1/2 and move to a position
which splits those nodes’ intervals into halves. The search for suitable partner nodes
starts at a random position on the ring and continues to look at up to 6 · log(u · ni) of
the succeeding nodes. If routing messages to random destinations is of complexity R

then this algorithm achieves a constant ratio between the largest and smallest interval
in O(1) rounds with each node incurring a communication cost of O(R + log(n)) per
round.

Manku et al.

Manku [34] describes an algorithm for choosing appropriate node identifiers upon inser-
tion by contacting the node responsible for a random identifier as well as c · log(n) of
its neighbours (using a small constant c) and selecting an identifier so that the largest
covered interval among those nodes is split into halves. Node departures are handled
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similarly by moving at most one node of the c · log(n) neighbours of the departing node
taking into account the intervals they cover. This algorithm achieves a ratio between the
largest and smallest node interval of at most 4 using Θ(R + log(n)) messages, R being
the number of messages needed to contact a random node of the used DHT, and can be
tuned to achieve a ratio of (1 + ε), ε > 0 at the cost of re-assigning O(1/ε) nodes instead
of one node and an increased message cost.

Later Kenthapadi and Manku [31] generalise the scheme of using random and local
probes describing algorithms that conduct r random probes each followed by a local
probe discovering v of its neighbours and selecting an identifier to split the largest of
those intervals. They state that with r · v ≥ c · log(n) the ratio between the largest and
smallest interval is at most 8 with high probability where c is a small constant. n can
be estimated from the first random probe to ensure that condition. Such schemes use
Θ(r ·R+v) messages which allows fine-tuning of the number of local and random probes
with respect to the message cost.

Giakkoupis and Hadzilacos

Giakkoupis and Hadzilacos [24] employ the power of multiple random choices paradigm
to create a load balancing algorithm they extend to support heterogeneous nodes. Their
algorithm ensures that each key interval a node is responsible for has a length of 1/2d for
some constant d ∈ N and its endpoints are integer multiples of its length. It adjusts node
responsibilities only at join and leave operations and works as follows: Nodes joining
the system first contact the nodes responsible for a logarithmic (in system size) number
of points selected uniformly and independently at random. If 1/2d is the length of the
interval the node contacts to join the DHT, then dajoin · d+ bjoine identifiers are looked
up for some positive system-wide parameters ajoin and bjoin. The node then splits the
largest interval in halves. Similar to this nodes leaving the system will again issue a
logarithmic number of requests for nodes (daleave · (d + 1) + bleavee identifiers if 1/2d is
the length of the node’s interval), merge the smallest interval with its adjacent interval
and assign the leaving node’s interval to the node removed due to this merge. As in the
algorithm by Manku, a ratio between the largest and smallest node interval of at most 4
is reached but O(R · log(n)) messages need to be exchanged.

In the weighted version of the protocol nodes have an associated weight (an integer
power of 2 with a system-wide upper bound W ) proportional to their power, e.g. com-
puting power, bandwidth or storage capacity, and are organised in groups containing
adjacent nodes. The same technique as in the unweighted version is now used to balance
the intervals of those groups while an additional group management protocol handles the
balance inside a group and splits or merges groups in order to keep the sum of all weights
of its nodes between W and (2W −1). Therefore the ratio between the largest and smal-
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lest group interval is 4 and the overall balance depends on this protocol. It could either
achieve a perfect balance inside each group, requiring that up to all its nodes change
their responsibilities, or settle for only a few changes to the nodes’ associations and
achieve an adequate ratio of its nodes’ largest and smallest intervals.

2.4.2. Item-Based Load Balancing

Item-based load balancing algorithms try to balance the actual distribution of the re-
sources among the nodes and do not rely on a uniform resource distribution in the
identifier space. This makes them particularly suitable for range-queriable DHTs that
use order-preserving hash functions. Exemplary distributions of resources that result
from an alphabetical storage can be seen in Figure 1.1 on page 9 and Figure 4.1 on
page 55.

Although some of the depicted address-based load balancing algorithms may be ex-
tended to support item-based load balancing as well, e.g the random and local probes
used by Manku et al. and the power of multiple random choices paradigm incorporated
by Giakkoupis and Hadzilacos could use the node’s actual load instead of the covered
address space, there are also some specific algorithms handling this category of load
balancing which are introduced in the following sections. Also note that item-based load
balancing generally allows arbitrary definitions of load that could for example take into
account a node’s capacity, a resource’s size and popularity, network latency and more or
combine any of those.

Karger and Ruhl

Karger and Ruhl’s item balancing algorithm [30] is a randomised load balancing al-
gorithm that lets each node ni occasionally contact another node nj at random and tries
to balance those nodes if their load differs by at least a factor of 0 < ε < 1/4 which is a
system-wide constant. It uses the two generic load balancing primitives slide and jump
introduced above to adjust how an interval is split between two neighbouring nodes and
to move a node in order to capture some other node’s resources respectively. Note that
when node ni is removed due to such a move, ni’s successor ni+1 gets all of ni’s resources
which can be a severe burden for ni+1.

After ni and nj establish contact, Karger and Ruhl’s algorithm first checks whether
nj is ni’s successor in which case the two can be directly balanced. Otherwise it tries to
balance the most loaded node of the three involved nodes ni, nj and nj+1 (lines 16-21
in listing 2.1) by either balancing nj with its successor or moving nj to a position that
would result in nj receiving half of ni’s resources.

Karger and Ruhl prove that if each node contacts Ω(log(n)) random nodes (n being

DHT Load Balancing with Estimated Global Information 31



2. Background / Related Work

1 karger_item(DHT d, double ε) {
2 foreach (Node ni ∈ d) {
3 Node nj = d.getRandomNodeExcept(ni); // get another random node

4 if (load(ni) ≤ ε · load(nj)) {
5 balance(nj , ni);
6 } else if (load(nj) ≤ ε · load(ni)) {
7 balance(ni, nj);
8 }
9 }
10 }
11
12 balance(Node ni, Node nj) { // load(ni) > load(nj)
13 if (ni == nj+1) {
14 slide(ni, nj); // equalise load of ni, nj
15 } else {
16 if (load(nj+1) > load(ni)) {
17 slide(nj , nj+1); // equalise load of nj, nj+1

18 } else { // load(nj+1) ≤ load(ni) -> move nj, balance with ni
19 jump(nj , ni); // move nj to take half of ni’s resources

20 // nj’s resources are moved to nj+1

21 }
22 }
23 }

Listing 2.1: Item-based load balancing by Karger and Ruhl.

the number of nodes in the system, lavg the nodes’ average load), this will result in
every node having a load of at most (16/ε) · lavg with high probability. Contacting
another Ω(log(n)) nodes will bring all nodes’ loads to at least (ε/16) · lavg. Increasing
the number of nodes to contact when searching for a node to balance with will increase
the probability of those bounds.

Bharambe et al. (Mercury)

In Mercury [12] (ref. Section 2.2.1) a variant of Karger and Ruhl’s algorithm is used
based on the histograms the DHT provides. Firstly, the local load llocal(ni) of a node
ni is defined to be the average load of itself, its successor and its predecessor. Secondly
Mercury’s histograms are used to retrieve an estimate of the system’s average load lavg.
A node ni is then said to be light if llocal(ni)/lavg < 1/α and heavy if this ratio is greater
than α. This ensures that light nodes have only light neighbours with high probability. If
a light node’s neighbour is heavy, the two nodes need to balance their load. Additionally
heavy nodes probe the system for light nodes which (if found) leave their current position
and move to the heavy node in order to take some of its resources. Listing 2.2 shows an
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implementation of this algorithm.

1 mercury(DHT d, double α) {
2 foreach (Node ni ∈ d) {
3 if (isLight(ni)) {
4 if (isHeavy(ni+1)) {
5 slide(ni, ni+1); // equalise load of ni, ni+1

6 } else if (isHeavy(ni−1)) {
7 slide(ni−1, ni); // equalise load of ni−1, ni
8 }
9 } else if (isHeavy(ni)) {
10 Node nj = d.getRandomNodeExcept(ni); //get another random node

11 if (isLight(nj)) {
12 // ni may be lightly loaded ⇒ use most loaded node of ni, ni−1, ni+1

13 Node n′i = getMostLoaded(ni, ni−1, ni+1);
14 if (nj.isNeighbourOf(n

′
i)) {

15 slide(n′i, nj); // equalise load of n′i, nj
16 } else if (n′i 6= nj) {
17 jump(nj , n′i); // move nj to take half of n′i’s resources

18 // nj’s resources are moved to nj+1

19 }
20 }
21 }
22 }
23 }

Listing 2.2: Example implementation of the load balancing algorithm by Bharambe et al.

Provided that α ≥
√

2, the ratio between the highest and average load (as well as the
ratio between the average and lowest load) is bound by a factor of α. Also note that
by tolerating a small skew, i.e. by setting α appropriately, unnecessary item movements
due to balance operations during load oscillations can be prevented or at least reduced.

Ganesan et al.

Ganesan et al. [21] describe a load balancing algorithm for range-partitioned data that
can also be applied to DHTs. It tries to balance load among nodes whenever the load at
a node increases or decreases by a certain factor δ and is called the Threshold Algorithm.
More precisely they define a sequence of thresholds Ti = bc · δic, i ≥ 1 for some constant
c > 0 and whenever a node’s load increases to a (Tm + 1) the algorithm tries to adjust
its load as follows. If one of its neighbours has a load of at most Tm−1 the node balances
its load with the neighbour with the smallest load. Otherwise the node (let it be n)
searches for the least-loaded node nk and, if nk’s load is at most Tm−2, tells it to leave
its current position (moving all its items to its successor) in order to take over half of
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n’s load. This might result in further recursive invocations of this adjustment at the
affected nodes. See listing 2.3 for a complete description of the load balancing procedure
performed if such interval is exceeded due to a resource’s insertion.

1 adjustLoad(Node ni) { // let load(ni) ∈ (Tm, Tm+1]
2 Node nj = minLoadedNeighbour(ni); // least loaded neighbour

3 if (load(nj) ≤ Tm−1) { // adjust neighbours

4 slide(ni, nj); // equalise load of ni, nj
5 adjustLoad(nj);
6 adjustLoad(ni);
7 } else {
8 Node nk = findLeastLoadedNode ();
9 if (load(nk) ≤ Tm−2) {
10 jump(nk, ni); // move nk to take half of ni’s resources

11 // nk’s resources are moved to nk+1

12 adjustLoad(nk+1); // adjust load of nk’s old successor

13 }
14 }
15 }

Listing 2.3: Method used to adjust load in the Threshold Algorithm by Ganesan et al. when a
resource insertion results in node ni’s load exceeding a threshold.

Load adjustments due to resource deletions are handled accordingly: if the node’s load
drops below a threshold Tm it tries to balance with the highest-loaded neighbour with a
load of at least Tm+1 or tries to move to the highest-loaded node of the system to take
half of its elements if that node has a load of at least Tm+2. This definition reduces too
hasty load balancing operations - and thus resource movements - in case of oscillating
loads around the threshold Tm.

Ganesan et al. show that each δ ≥ Φ := (
√

5 + 1)/2 ≈ 1.62 can be chosen achieving a
ratio of δ3 between the highest and lowest load. They also state that finding the least
and most loaded nodes (line 8 of the adjustLoad method in listing 2.3) is not necessary
for their results to hold true. Instead the node could move to any node that violates
a GlobalBalance condition, i.e. for node ni with a load in the interval (Tr−1, Tr] find a
node nk with a load not in the interval (Tr−3, Tr+2].

Aspnes et al.

Aspnes et al. [10] describe a load balancing algorithm for range-queriable data structures
that uses arbitrary definitions of load and groups keys into buckets with each peer storing
some of them (similar to virtual servers). A “free-list” of buckets is maintained, e.g. by
using a separate overlay network or storing all such buckets near a fixed key, and is used to
take load off of heavily loaded nodes. Buckets are further divided into closed and open
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buckets depending on a certain threshold based on their load. They are furthermore
partitioned into groups of two (closed, open) or three buckets (closed, open, closed) and
retain this structure by transferring resources as needed, e.g. when a resource is to be
inserted into a closed bucket, it moves one of its resources to the neighbouring open
bucket and accepts the new resource. If an insertion makes an open bucket closed, one
of the buckets from the free list is taken and inserted accordingly (this may transform a
group of two into a group of three or a group of three into two groups of two buckets).
Deleting resources works similarly and may lead to empty buckets which are returned
to the free list during re-structuring.

A bucket’s size can be changed by adjusting the threshold that classifies a bucket
as closed and requires re-structuring the bucket groups. Such changes will be enforced
when the overall system load increases or decreases sufficiently. A centralised version of
this algorithm can for example double this threshold when the free list becomes empty
and halve it when half the number of nodes is in that list. This results in a worst-case
maximum load of 4 times the average load but requires a global controller to adjust the
bucket size. It also creates heavy load movements during such migrations.

Aspnes et al. also describe a distributed version which resizes the buckets based on
an estimate of the system’s average load (gained by gossiping techniques) and prevents
simultaneous resource migrations. In order to achieve the latter, buckets are again
organised into groups of two pairs (closed, open) or one triple (closed, open, closed).
Let M be the load of a closed bucket and 1/4 < eg < 1/2, 1/8 < cg < 1/4 be random
expansion and congestion thresholds for a group g of buckets. g performs localised
expansion (doubling its threshold to classify nodes as closed) if its estimated average
load l satisfies l > eg ·M and performs localised contraction (halving the threshold) if
l < cg ·M allowing each bucket group to migrate separately.

Charpentier et al.

An alternative to using gossiping to gather approximations of global knowledge is to
use cooperative mobile agents. Those agents, while moving from one node to another,
could also be used to initiate load balancing operations. Charpentier et al. [16] use
that technique which is solely sketched here to present a rather different approach using
techniques from the research field of mobile agents. In their algorithm agents gather
approximations of the system’s average load. They first start in an initialisation phase
which tries to estimate the average load to a certain degree of accuracy. Several agents
can be supplied and cooperate with each other to improve their estimates and speed-up
their initialisation phase by exchanging their data. In their second phase agents order
nodes with loads higher than their calculated average to migrate some of their resources
to either or both of their neighbours thus achieving some load balancing.
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2.4.3. Virtual-Server-Based Load Balancing

Several research papers focus on DHTs that use multiple virtual servers on each real peer
and balance load by moving those virtual servers. As depicted above, using consistent
hashing and deploying Ω(log(n)) virtual servers (in a system with n real peers) randomly
along the identifier space will lead to each peer being responsible for an O(1/n) fraction
of the stored resources (ref. Section 2.1.1). Another advantage is that each peer can
easily adjust its load by moving some of its virtual servers to any other peer instead of
just being able to shed load to its neighbours or move itself. This however comes at
the cost of maintaining Ω(log(n)) additional network connections, an increased number
of routing hops while looking up random resources as well as increased churn on node
failures which are generally the reasons why the use of virtual servers is not preferred.
Nevertheless the following sections show some algorithms that make use of this technique
as it has been of interest in past research and still is.

Rao et al.

Rao et al. [36] present three different load balancing schemes that try to move virtual
servers from heavily to lightly loaded nodes. Load in their case can be any single resource,
e.g. storage, bandwidth or CPU capacity, so this algorithm could also be classified as
an item-based algorithm. Nodes are considered heavy if their current load exceeds their
target load and are otherwise light. Balancing a heavy peer ph with a light peer pl will
move the virtual server v to pl that does not make pl heavy and is the lightest virtual
server making ph light or the heaviest virtual server in case ph cannot be made light that
way. The three schemes now differ in how heavy and light nodes are matched in order
to start balance operations.

The One-to-One Scheme lets light nodes occasionally probe other nodes at random
and virtual servers are transferred if the probed node is heavy. Letting only light nodes
try to contact heavy nodes (instead of heavy nodes trying to contact light nodes) will not
introduce additional workload on heavy nodes and will therefore not increase the risk of
highly loaded systems getting overloaded or trashed due to unnecessary and unsuccessful
probes. The second scheme implements a One-to-Many matching technique by letting
light nodes register with one of d system-wide directories which are also maintained by
the DHT, e.g. by storing a directory at the node responsible for its key. Heavy nodes
may now look at such directories and pick the least loaded node to shed some of their
virtual servers to. This scheme is now extended by registering heavy nodes with those
directories as well and letting the node that stores a directory occasionally match heavy
and light nodes in a Many-to-Many fashion to optimise the load balance even more.

Rao et al. [36] now analyse their algorithms in a static setting, i.e. an initial load is
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distributed among a fixed number of nodes. Neither new resources are added or deleted,
nor are nodes. Using the total number of moved load and the number of probes the
algorithm needs to achieve a state with only light nodes, they conclude that the amount
of load moved is not dependent on the used scheme although the one-to-one scheme
needs more probes in order to succeed. Also in the one-to-many scheme with 16 nodes
per directory most heavy nodes succeed in getting light by contacting only one directory.

Godfrey et al.

Godfrey et al. [25] further extend the many-to-many scheme introduced by Rao et al. and
analyse it in dynamic networks, that is nodes and resources are dynamically added and
removed. In their version, each node initially contacts a random directory and sends its
load and capacity information and repeats to send this data to another random directory
whenever it transfers any load. Additionally if a node becomes heavy, i.e. its current
load is above a given emergency threshold, it contacts its chosen directory and tries to
shed load immediately. Directories on the other hand create schedules for transferring
load among all their known nodes and execute them periodically. They also perform the
immediate balance requests issued by their nodes. Virtual servers are transferred based
on a greedy algorithm that moves each heavy node’s lightest server to a common pool
and matches each of those servers (starting from the heaviest) to the node that suffers
the least impact of such transfer relative to its capacity.

Their evaluation shows that using periodic load balancing with an emergency threshold
allows selecting significantly larger execution periods and thus achieves better node util-
isation with less load movement. They also show that the number of directories deployed
does not severely affect the achieved node utilisation and that by using 16 directories
node utilisation is only 3% higher than in a centralised approach (1 directory).

Chen and Tsai

In a recent paper, Chen and Tsai [18] try to improve the many-to-many scheme depicted
above by introducing ant system heuristics (ASH) to re-assign the virtual servers. Their
algorithm, called Dual-Space Local Search (DSLS), describes an iterative procedure con-
sisting of three stages:

1. Construct an initial solution for the current iteration using the ASH algorithm.

2. Improve this solution by evaluating further local solutions in its neighbourhood
both in terms of load balance and movement cost.

3. Update pheromone trails if a better solution was found.
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In step 1, pheromone variables τij are used to denote node j’s desire of taking virtual
server i (with a given maximum desire τmax used if i is already assigned to j). Now
with probability p0 server i is assigned to another node k with enough capacity and a
maximal τik and with probability (1 − p0) it is assigned to another node with enough
capacity under the probability function pij =

τij∑
k∈P τik

, ∀j ∈ P . p0 thus allows fine-

tuning the algorithm between exploiting already found solutions (high values) or explore
new variations (low values). If all nodes are fully occupied, a random assignment is used.

Step 2 first tries to find a good solution (if the first step hasn’t found any yet) by
shifting load from overloaded nodes to their neighbours and eventually further. If a
feasible solution is found, i.e. no node exceeds its capacity, a cost-reducing function tries
to minimise movement costs by moving servers back to their original location if possible.

Chen and Tsai’s evaluation shows that their variation achieves better load balance
than the previous implementation of the many-to-many scheme and moves only little
more resources than is necessary in order to balance their scenarios. In contrast to the
previous work though the number of deployed directories has a severe affect on their
algorithm which performs better with less directories.

Ledlie and Seltzer

Ledlie and Seltzer [32] use the multiple random choices paradigm to deploy an algorithm
that generates k different verifiable identifiers for each node at which the node can create
virtual servers. This algorithm, called k-Choices, primarily works at node joins where a
node chooses a target load and a maximum number of k/2 virtual servers to create. It
then creates new virtual servers as long as its target load and the total number of servers
are not exceeded. Each such join happens at the one of the still available identifiers which
results in the lowest cost in terms of difference between the target and real loads of the
two affected nodes. Additionally to this passive implementation, k-Choices can also
work actively and re-select identifiers at any time (not just at node joins) if the change
induces a big enough benefit, e.g. a node is over- or underloaded. Also nodes could
create more virtual servers or delete some.

During their experiments, Ledlie and Seltzer show that their active algorithm achieves
a good load balance for k = 8 identifiers. It was still able to do so under highly dynamic
networks and with large amounts of skewed load.

Godfrey and Stoica

A technique described by Godfrey and Stoica [26] can reduce the additional cost induced
by virtual servers by placing each peer’s k virtual servers in a Θ(k/n) fraction of the
identifier space instead of spreading them randomly. This way they can share a single set
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of network links. Godfrey and Stoica show that the ratio between highest and average
load can be reduced to (1 + ε) for any ε > 0 although increasing route lengths and
number of links to maintain by only a constant factor (if applied to an arbitrary DHT).
They further evaluate an implementation based on Chord using 2 · log(n) virtual servers
and achieve a ratio of less than 4.

2.4.4. Load Balancing using Replication

Sometimes replication is not only used to ensure resource availability in such highly
dynamic networks as DHTs, but is also suggested to carry out simple load balancing by
placing replicas at lightly loaded nodes thus evening out the overall imbalance. However
replication is not in the main focus of this work, so the following sections only briefly
describe some of the available techniques.

Byers et al.

Byers et al. [14] combine load balancing and replication techniques by making use of the
power of two choices paradigm. Each resource is assigned d different identifiers using
d different hash functions. It is then associated with the k most lightly loaded peers
responsible for any of the identifiers. The rest of the peers may store redirection pointers
to those storage locations to simplify searches (resulting in increased maintenance costs).
Otherwise searches will be carried out for all possible identifiers in parallel.

Xu and Bhuyan

Xu and Bhuyan [44] collect information about the stored resources’ access history and
use this as their definition of load to balance the impact of requests to popular resources
among the (possibly heterogeneous) nodes. They first describe a static load distribution
algorithm which splits a node’s zone into two halves depending on its load (unlike its
key range) when a new node arrives. Secondly a dynamic load distribution algorithm
steps in when nodes become overloaded and balances their load among neighbouring
nodes (possibly including their neighbours as well, and so on). In a final step they
specify a replication scheme which enhances their access history with network topology
information and replicates resources to peers near a group of peers with the highest
request rates. Requests from those peers can now be redirected to the replicas to reduce
the access latency and the original node’s (access) load.

Pitoura et al.

Pitoura et al. [35] design a DHT which uses replication for efficient range query processing
and load balancing of resource accesses. For this they use a so-called multi-rotation hash
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function that assigns a resource multiple identifiers of an identifier ring. Whenever a node
becomes overloaded (in terms of request access load), it will add additional replicas at
some of the available identifiers and issue replication requests to its neighbours’ resources
as well. Replicating whole arcs of the identifier space will improve performance of range-
queries that start on a replicated resource location and continue at its original location’s
successor because its data is replicated to the current location’s successor as well. It
should also be mentioned that the underlying algorithm of this system can be applied
to different DHTs as well.

2.4.5. Conclusion

As can be seen from the previously described algorithms, the goal of balancing load in a
distributed hash table can be tackled from several angles. There are at first algorithms
which try to balance the address-space, i.e. give each node responsibility for an equal part
of the identifier space. Those algorithms rely on the uniform distribution of the resources’
identifiers in order to give each node an equal amount of resources to store. They are
therefore not suitable for range-queriable DHTs that are based on order-preserving hash
functions. Another kind of algorithms tries to balance an arbitrarily defined load by
moving items (resources) and nodes accordingly and are thus called item-based. Those
algorithms mostly concentrate on load being the size of all resources stored by a node
or the stored resources’ popularity (number of requests). Heterogeneous algorithms set
those into relation to a node’s capacity. An overview of all presented algorithms and
their classifications is given in Table 2.1.

Algorithm item/addr. active/passive Notes

Karger & Ruhl (1) [30] address-based active
Bienkowski et al. [13] address-based active estimates the network’s size
Manku [34] address-based passive (node)
Kenthapadi & Manku [31] address-based passive (node)
Giakkoupis & Hadzilacos [24] address-based passive (node) a weighted version exists
Karger & Ruhl (2) [30] item-based active
Bharambe et al. [12] item-based active uses estimate of average load
Ganesan et al. [21] item-based passive (item) uses least/most loaded nodes
Aspnes et al. [10] item-based passive (item) uses estimate of average load
Charpentier et al. [16] item-based active uses mobile agents, average load
Rao et al. [36] item-based active uses virtual servers (VS-based)
Godfrey et al. [25] item-based act+pass(item) VS-based
Chen & Tsai [18] item-based act+pass(item) VS-based, ant system heuristics
Ledlie & Seltzer [32] item-based act+pass(node) VS-based
Godfrey & Stoica [26] address-based passive (node) VS-based
Byers et al. [14] item-based passive (item) uses replication
Xu & Bhuyan [44] item-based active replication, file access history
Pitoura et al. [35] item-based active uses replication

Table 2.1.: Overview of the presented load balancing algorithms.
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Comparing the algorithms’ performance with each other is however not that simple.
At first, several metrics for performance exist. Some use the ratio between the highest
and the average load of the system, some the ratio between the highest and lowest load.
Others measure the variance of the fraction of address-space the nodes are responsible for
or the deviation from the average load. Secondly values are sometimes given in Landau
notation thus hiding constant factors that matter when comparing otherwise equally
well performing algorithms. Additionally the costs of achieving a certain performance,
e.g. item movements or the number of interchanged messages, are often not mentioned
either or are not comparable.

Further impairing the lack of comparisons is the fact that no common test scenarios
have been agreed upon which each algorithm can be tested with and that resemble the
different use cases of DHTs. For example some papers evaluate their algorithm(s) by
simulating them in a static setting, i.e. an initial load is distributed among a fixed
number of nodes and neither new resources nor nodes are added or deleted. Those
simulations mostly use load distributions that follow a certain probability distribution,
e.g. normal or exponential distributions. Other algorithms, especially passive ones, need
dynamic simulations as they only act when nodes or items are inserted or deleted. This
provides even more flexibility in setting up a test scenario. Furthermore most algorithms
also allow some fine-tuning by setting their parameters according to the scenario and
the needs of the user.
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with global information

This chapter will present the general concepts of adding estimates of global information
to existing load balance algorithms in order to improve their performance. It will start
introducing the underlying system model that describes the DHT the algorithms can
work on, the operations it supports and any further assumptions. It will then present
the (original) algorithms that have been chosen to exemplify how such information is
integrated and which affect it has. The final section will cover the changes that were made
to those algorithms and the ideas behind them. Detailed descriptions of all mentioned
algorithms in pseudo-code can be found in appendix A.

3.1. System Model

Let d be an arbitrary DHT that operates in the identifier space I = [0,m) ⊂ N that
wraps around at the end and forms a ring. On this ring a clockwise direction is defined
as going towards increasing keys possibly wrapping around at m→ 0. An interval (a, b]
of this ring includes all keys that are encountered when traversing the ring clockwise
starting at (but excluding) a and stopping at b (inclusive). Note that it is possible that
a > b in which case (a, b] covers all keys greater than a and less than or equal to b.

Let d consist of n homogeneous nodes (peers) p ∈ P , each being responsible for an
interval (ap, bp] ⊂ I so that exactly one peer is responsible for any identifier id ∈ I:

∀pi, pj ∈ P, pi 6= pj : (api , bpi ] ∩ (apj , bpj ] = ∅
⋃

p∈P
(ap, bp] = I

The successor of peer pi is the peer pj which is responsible for the following interval, i.e.
apj = bpi . A predecessor is defined analogously. From the previous definitions follows
that there is exactly one successor and predecessor for each peer. Connections between
those are maintained so that predecessor and successor pointers form a double-linked
list. Additional connections to further peers exist in order to allow efficient routing from
any peer of the network to any other.
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The DHT stores (arbitrary) resources, i.e. items, that are mapped to I using an order-
preserving hash function and stored at the peer which is responsible for their identifier.
Each peer has a load l(p) equal to the number of items it stores. The imbalance of the
DHT is defined as the standard deviation of its nodes’ loads, i.e.

imbalance(d) := σl

=

√∑
p∈P (l(p)− µ)2

n
, µ =

∑
p∈P l(p)
n

=

√∑
p∈P l(p)2

n
−
(∑

p∈P l(p)
n

)2

=:
√

avg(l2)− avg(l)2

The first goal of a load balancing scheme is to reduce this imbalance. For this, two
types of operations are supported: slide and jump, previously described in Section 2.4.
They effectively adjust some nodes’ responsibilities which implies item movements. The
second goal of a balance algorithm is thus to reduce the number of moved items in order
to reach a certain imbalance. There is a trade-off between these two goals because a
smaller imbalance can generally only be reached by moving more items.

Further operations include the retrieval of a node’s successor and predecessor and the
ability to get a random node of the whole system. The latter might be natively supported
by the DHT or can be implemented by using random walks (suggested in [12]) or gossip
algorithms [23] or by generating a random ID and returning the node responsible for
it (assuming uniform node responsibilities). Balance algorithms heavily rely on those
methods. Some also need to retrieve the node that is responsible for a given key but
this is not the case for the algorithms in this section.

Every node also runs a gossiping algorithm that continuously calculates estimates of
certain global information such as the system’s size, average load and standard deviation
(ref. Section 2.3). It is assumed that those estimates are within a certain error rate (in
percent) of the exact values and that they are re-calculated every once in a while in
order to stay within this bound.

During the following sections it will also be assumed that the system is static, i.e.
the total number of items and nodes in the system stays constant. Algorithms will thus
start their operation on a DHT whose nodes’ responsibilities are uniformly distributed
among the identifier space. Stored resources follow a certain distribution the algorithms
don’t know about. The static nature of the system requires that the algorithms actively
probe for other nodes to balance with and cannot operate passively.
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3.2. Algorithms

In order to analyse the effect of adding estimated global information to existing load
balancing schemes, two novel active item-based balance algorithms were chosen and
equipped with this knowledge. Those algorithms include the item-balancing scheme
introduced by Karger and Ruhl [30] (from here on referred to as “karger”) and the
algorithm used in Mercury [12] (“mercury“), both described in Section 2.4.2.

Sampling

Sample k nodes that should be 
involved in a balance operation.

Sampling

Sample k nodes that should be 
involved in a balance operation.

Matchmaking

Perform a dry run with each of the k 
nodes and choose the best match.

Matchmaking

Perform a dry run with each of the k 
nodes and choose the best match.

Execution

Perform the load transfer agreed on 
in the previous phase.

Execution

Perform the load transfer agreed on 
in the previous phase.

At each execution and for each node, both sample one
random node and then decide whether to balance with
it and how many items to transfer between the nodes.
At most three nodes are involved in such a decision and
only they can change their load: the two neighbouring
nodes in case of a slide operation and in case of a jump
the moved node, its (original) successor and the node
jumped to. Karger and Ruhl also suggest to perform
multiple random samples and balance with the best node
among them but do not describe how to decide for the
best. Here, algorithms with multiple randomly sampled
nodes will operate in three phases as presented in the
figure to the right. The first step involves sampling a
given number of (unique) nodes uniformly at random. With each such candidate node,
the balance algorithm is simulated and the best among them (or none) is chosen. It
follows the execution of the algorithm with this node (if there is one). Listing 3.1
shows the modified karger algorithm and the changes compared to the original scheme
described by Karger and Ruhl. Detailed algorithm descriptions in pseudo-code are given
in appendix A.

The way the best match among the candidates is chosen is crucial for the algorithm.
Here it is defined as the node that improves the standard deviation of the system’s load
the most. If no such node exists, i.e. no balance operation would decrease the standard
deviation, no operation is performed. Note that this method will also be used if only
one random sample is requested. Also note that only local knowledge is required to take
that decision. This can be easily deduced from the following observations.

First recall that σl =

√∑
p∈P l(p)2

n
−
(∑

p∈P l(p)
n

)2

and that the sum of the loads as

well as the number of nodes, n, is not changed by performing either slide or jump. Thus
only the first sum needs to be examined. The candidate node that reduces this sum the
most will reduce the standard deviation the most. If, for example, the involved nodes’
loads l(pi), l(pj) change to l′(pi), l′(pj), then the change of the sum can be determined
as l′(pi)2 + l′(pj)2 − l(pi)2 − l(pj)2 (similarly with three nodes).
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1 karger_item(DHT d, double ε, int samples) {
2 foreach (Node ni ∈ d) {
3 // get k unique random nodes that are not equal to ni:
4 Nodes candidates = d.getUniqueRandomNodes(ni, samples);

5 // get best candidate by simulating the algorithm:

6 Node nj = getBest(d, ε, ni, candidates);

7 if (d.exists(nj)) {
8 if (load(ni) ≤ ε · load(nj)) {
9 karger_balance(nj , ni);
10 } else if (load(nj) ≤ ε · load(ni)) {
11 karger_balance(ni, nj);
12 }
13 }
14 }
15 }
16
17 karger_balance(Node ni, Node nj) { // load(ni) > load(nj)
18 if (ni == nj+1) {
19 slide(ni, nj); // equalise load of ni, nj
20 } else {
21 if (load(nj+1) > load(ni)) {
22 slide(nj , nj+1); // equalise load of nj, nj+1

23 } else { // load(nj+1) ≤ load(ni) -> move nj, balance with ni
24 jump(nj , ni); // move nj to take half of ni’s resources

25 }
26 }
27 }

Listing 3.1: karger with multiple samples, changes to the original algorithm in red

3.3. Adding global information

The two previously introduced algorithms are now equipped with additional knowledge
about estimated global information. The accurateness of it is unknown to them though.
The following sections will introduce each single estimate that is added, how it is used
and the ideas behind. A final section will describe how several of those estimates can be
used together and will present the idea of self-tuning algorithms.

3.3.1. Average load

The key to reducing the number of moved items is to understand which of them do at
least have to be moved in order to reach a state with minimal imbalance. In such a
state every node has the same load as the average load among all nodes (only then is
σl = 0). This ideal state however does sometimes not exist for a given total amount
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of load and a number of nodes, e.g. if the total load is not divisible by the number of
nodes. If it exists and arbitrary item movements are possible, an optimal number of
load transfers can be reached by moving items only from overloaded nodes (those with
a load higher than the average) to underloaded nodes (less load than the average) and
never make them overloaded. Also overloaded nodes would only move so many items in
order to become balanced. Figure 3.1 shows the load that would get moved in such case.
However, it is not possible to apply this algorithm to DHTs following the given model
since, for example, items can not be moved arbitrarily.
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Figure 3.1.: Load that needs to be moved in order to reach a minimal imbalance (in red).

The following sections will present some ways, information about the average load can
be added to existing load balance algorithms. They try to incorporate some of the ideas
of the optimal item movement pictured above.

Variant avg1

As one of the first things, one might observe that existing load balancing schemes often
try to even out the balance of two neighbouring nodes. This moves load off of overloaded
nodes quickly but often results in unnecessary item movements, e.g. transferred items
would need to be moved again if the receiving node gets overloaded after the balance
operation. Those movements can be reduced if the amount of items that can be moved
is lower than or equal to the (estimated) average load.

This variant will thus hook into the algorithms to replace the decision about how
much load - and thus items - is to be moved from one node to another. It will never
move more than the (estimated) average load from the heavier loaded node to the lighter
one. Algorithms with this implementation will have avg1 appended to their name. It
is the hope that this will reduce the number of item movements while not changing
the algorithm’s operations too much and thus keeping the balance results the original
algorithms expose.
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Variant avg2

A natural extension to avg1 would further restrict item movements when balancing
neighbouring nodes and never make the light node heavy. Additionally this variant
will only move items from heavy nodes (those with a load higher than the average) to
light nodes (less load than the average) and limit the number of transferred items to the
minimum required in order to make the heavy node balanced (load equal to the average).
Algorithms with this implementation will have avg2 appended to their name.

While less item movements can be expected from this variation, evaluations will show
whether those changes are too invasive in order to reach the same imbalance.

Variant avg3j

Both of the previous variations will not not have any influence on the decision whether
a node is jumping to another position or not. In avg2, for example, this results in some
light nodes becoming heavy nonetheless because a jumping node’s items are transferred
to them. This is not the case in an ideal item movement though.

A third implementation will thus restrict jumping so that this does not happen. If a
node makes its successor heavy by jumping or if the successor is already heavy, no balance
operations is performed. This variant can be combined with either of the previous
two variants (which are not already included!) and appends avg3j to the algorithm’s
base name. It will reduce unnecessary item movements by restricting jumps. However
without jumping, reducing the system’s imbalance would take significantly longer and
is sometimes not possible when further restrictions apply. It is unclear whether the
same imbalance can be reached as with the original algorithm, especially since a jump
is normally doing more good than bad.

3.3.2. Standard deviation and system size

As the standard deviation measures the system’s imbalance, it can also be used to
quantify the quality of a single load balance operation. Assuming the average load does
not change and the current standard deviation σl, the system’s size n and the load
changes of the current balance operation are known, the new standard deviation can be
calculated as follows. Let pi and pj be the peers that changed their load from l(pi), l(pj)
to l′(pi), l′(pj), then:

σ′l =

√∑
p∈P\{pi,pj} l(p)
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Variant stddev2

This variation will hook into the algorithms to replace the decision about which node
from a list of candidates is the best and thus also decides whether to balance or not.
Aside from the original algorithm implementations mentioned above, an estimate of the
standard deviation of the nodes’ loads as well as the system’s size is retrieved and used
to calculate an estimate of the new standard deviation. Additionally, the algorithms
are equipped with one more parameter, s, and the best node among some candidates
is then determined as the node that, if used in a balance operation, would improve
the standard deviation the most and by at least a factor s/n. If no such candidate is
available, no balance operation is performed. Algorithms with this implementation will
have stddev2 appended to their name.

This rationale behind this idea is to omit balance operations that do not improve the
overall balance enough compared to the big picture. It will thus tolerate a small skew as
balance algorithms mostly already do. This way the algorithm can concentrate on bigger
improvements and will (maybe) handle the smaller ones at a later time when they are
responsible for the imbalance. With this restriction it can be expected that almost the
same balance can be reached while moving fewer items. However special care has to be
taken on the decision of the value of s which needs to be adapted to the algorithm this
variant is applied to (and possibly also to the load distribution in the DHT, in particular
the overall total load). If the algorithm generally only moves a few items, the affect on
the imbalance can’t be as high as an algorithm moving more items and thus s needs to
be lower in order not to block too many operations. This will be evaluated as well.

3.3.3. Combined variants

Several of the ideas pictured above can be combined to form new variants of an algorithm.
This new variant is then expected to show even better results since two different meas-
ures of improving the imbalance and/or reducing the number of moved items are applied
together. One of those combinations has already been suggested above: applying avg1

and avg2 to avg3j. Both resemble the ideal item movement more than a single method
alone while avg3j avg2 resembles it the most. Less item movements can thus be ex-
pected and the simulation will show the influence on the imbalance reached at the end.
Additionally to this combination, stddev2 can be applied. It is expected to improve
every aforementioned variant by setting an appropriate s and thus only executing the
most useful balance operations.

The following combinations are possible and will be evaluated:

avg1 stddev2 avg3j avg1 avg3j avg1 stddev2 avg3j stddev2

avg2 stddev2 avg3j avg2 avg3j avg2 stddev2
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3.3.4. Self-tuning algorithms

Most algorithms can be fine-tuned by adjusting certain parameters, i.e. ε in karger and
α in mercury. Different values for those parameters will result in different performances
in each scenario as can be seen in Figure 3.2 showing plots of moved items vs. imbalance
data points of the karger and mercury algorithms with different parameters. This allows
the analysis of the progression of the algorithms during the whole simulation and shows
which imbalance can be reached by moving a certain amount of items. They have been
taken from Section 4.4 and will be analysed in more detail there.

(a) karger (b) mercury

Figure 3.2.: Balance results for karger and mercury with different parameters,
scenario: Wikipedia page titles (en), error rate: 25%.

It can be seen that algorithms with parameters tolerating a bigger skew in the load
distribution, i.e. larger epsilon and smaller alpha respectively, start off better than the
others. Every imbalance they reach, they reach by moving less items. This might be
exploited for self-tuning algorithms in a way that the algorithm starts off tolerating a
bigger skew and sets its parameter(s) for better imbalance results during its execution
and according to the current distribution of load among the nodes. Estimates of global
information will be used to gain knowledge about this distribution. This change will
hopefully result in the algorithm starting off with the good results of parameters tol-
erating a bigger skew and continue the way the others do, finally arriving at the best
imbalance the original algorithm can achieve but by moving less items.

This idea has been applied to the karger and mercury algorithms and results in the
following calculations that set the algorithm’s parameters for each node during their
execution1:

1 epsilon = bound (0.01 , lavg / max(lavg + σl, lmax - σl), 0.24);

2 alpha = bound (1.42 , (lavg + σl) / lavg, 10.00);

1
bound sets the value to the first argument if it is smaller and to the last if it is larger
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The idea behind both is that if the standard deviation is high only those nodes should be
balanced that are responsible for this high value, i.e. those nodes that have the highest
loads in the system. The trick is not to set this bound too restrictively since then too few
nodes could be matched with each other. This is why for karger a node should only be
balanced with an other if their load differs by at least a factor of f1 = lavg/(lmax−σl), i.e.
the average load divided by the maximal load minus the standard deviation. The first
idea was to use a factor of f2 = lavg/(lavg + σl) but this did not achieve the anticipated
results so a more restrictive approach was taken by using f1 which is usually smaller
than f2. Using the maximum of the two in the calculation above is purely technical and
covers the case if f1 > f2.

The same idea could unfortunately not be applied to mercury since it operates differ-
ently. At first, balancing is coupled to the average load and occurs only between heavy
and light nodes, i.e. nodes with their local load being greater than α or lower than 1/α re-
spectively. Thus setting alpha influences both bounds instead of a (more flexible) factor
as in karger. It therefore needs to be set with more care. Additionally the meaning is
different which is why it has been set to (lavg + σl)/lavg.

In contrast to the other variants above, a self-tuning variant needs to be adjusted to
the way its algorithm operates and the parameters it uses. It can thus not be formalised
independently of the algorithm which is why the different implementations will probably
show different behaviours. The achievements of one self-tuning algorithm can therefore
not necessarily be transferred to another. However it may be evaluated whether the idea
behind is good. Self-tuning algorithms will have self added to their names.
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The following sections will evaluate the performance of the proposed algorithms from
the previous chapter. The evaluation has been carried out by implementing a simulator
and running these algorithms on different scenarios which will be introduced below.
The metrics used for this are explained alongside with a brief overview of the simulator
program itself. Finally the collected data will be analysed and further simulations will
show how robust the algorithms are in regard to several aspects of the simulations.

4.1. Simulation scenarios

In order to evaluate the proposed algorithms, several scenarios were set up for the al-
gorithms to balance. Real-life applications often store data with keys made of words
and numbers, e.g. titles of articles or names of files. Those alphanumeric keys therefore
usually follow the distribution of the words of a certain language. Scenarios resembling
real-life applications have thus been set up by taking the list of page titles of the English,
German and French Wikipedia (page title dumps from 16/08/2009 (en), 10/08/2009 (de)
and 19/08/2009 (fr) [4]). Note though that the English Wikipedia (as well as the German
and French one) does not only have English page titles but instead describes topics of all
languages using English. Nonetheless all three exhibit different distributions as the scen-
arios’ plots in Figure 4.1 show. Additional scenarios include key-distributions following
a normal distribution with different parameters as well as an exponential distribution.

Each of the mentioned key distributions was included into a scenario with 5, 10, 20 or
40 thousand nodes which was set up with an initial load of 0.5, 1, 2 or 4 million items.
Every node was given an identifier in the circular ID space I = [0, 264 − 1) uniformly
at random. In case of alphabetical distributions, page titles were then hashed to an
identifier using an order-preserving hash function and from that list of unique keys the
requested number of items was drawn uniformly at random. Scenarios following a normal
or exponential probability distribution create keys by drawing them randomly according
to their distribution and create items accordingly. Those items are finally inserted at
the nodes responsible for them. It might happen that a key is drawn multiple times,
in which case a neighbouring key is tried or a new key is re-drawn until no conflicts
occur. Figure 4.1 shows the resulting load distributions among the nodes in key order
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for scenarios with 10 000 nodes and a total load of 1 000 000.

4.2. Metrics

The performance of the different algorithms was measured using three different metrics.
The first metric is the standard deviation, σl, of the nodes’ loads which measures the
degree of imbalance among them, as defined by the system model. The higher its value,
the more imbalanced the nodes are in regard to their loads (ref. Section 3.1). An optimal
state (σl = 0) is reached when each node stores the system’s average number of items.

The second metric is the amount of moved load, i.e. moved items. Assuming the
cost of transferring a set of items from one arbitrary node to another is proportional
to the number of items, the moved load determines the overall transfer cost of the
algorithm. Improving an algorithm’s performance could therefore either mean reaching
the same balance, i.e. standard deviation, by moving less load or reaching a better
(lower) standard deviation while moving the same amount of load.

For the sake of comparability the ratio δmal between the system’s maximal and average
load is included as well since this, along with the ratio between the system’s maximal
and minimal load, has been used by several algorithms introduced in Section 2.4. The
latter though has been omitted here because it is not well-defined if the minimal load
is 0. Compared to the standard deviation as a metric for imbalance though, the ratio
δmal has certain disadvantages. For example, a small number of highly loaded nodes
could create a very high ratio. Continuing to balance the system and further improving
its balance might not decrease this ratio though if at least one of those nodes keeps
its load. In a system where this single overloaded node would have a severe impact on
the overall availability it makes sense to say that its balance has not really improved.
However, this should typically not be the case for DHTs storing items and so this metric
is disregarded in further discussions.

4.3. Simulator program

In order to evaluate the algorithms’ activities on a DHT with the different scenarios, a
simulator program was implemented that emulates such a DHT. It is based on Qt [40]
and consists of a common library, a command line client running simulations specified
by JavaScript files and a graphical user interface that supports immediate evaluation of
a simulation’s results with several integrated plots of the metrics described above and
their relations. A screenshot of the GUI can be found in Figure 4.2, a sample simulation
script in Figure 4.1. Both interfaces offer means of exporting collected simulation results
to gnuplot data files and creating appropriate gnuplot scripts that generate such plots.
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(f) Normal - N(µ = 261, σ2 = 1 · 1018)
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(g) Normal - N(µ = 261, σ2 = 4 · 1018)

Figure 4.1.: Simulation scenarios based on alphabetical, exponential and normal item distribu-
tions showing the load (number of items) of each of the 10 000 nodes in key order
(1 000 000 items in total).
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Figure 4.2.: Snapshot of the Simulator GUI.

Algorithms and simulation scenarios (“Load Distributions”) are implemented as plug-
ins and thus new variations can be easily deployed. Load distributions have one para-
meter: the error rate that influences the exactness of the estimates of global information
as described above. Algorithms can have several parameters that can all be set in either
application interface and are included in the results’ data files.

Each simulation has a name and a description and consists of a load distribution
and an algorithm. Due to the random nature of most algorithms, a simulation can be
specified to run several times (each such test run starts with the same initial parameters).
The results of each such simulation will be aggregated to averages over all test runs also
storing the minimal and maximal values reached. When an algorithm is invoked by the
simulation, it will iterate over all the nodes in the system and will perform its operations
for each encountered node. The number of algorithm executions can be specified at the
start of a simulation.

Three containers store simulation results: The first container stores the different values
of each test run’s state at the end of its life-time including the aggregates of the amount of
moved load, standard deviation, moved nodes, load among the nodes, number of balance
operations and the ratios between the maximal and minimal as well as maximal and
average load. Another container stores such values each time the amount of moved load
changes and can thus for example be used to plot the moved load against the standard
deviation to show which balance state was reached at which costs. Plots showing the
standard deviation and the number of moved items for each balance operation, i.e. each
operation in which the algorithm signals nodes to perform a jump or slide, can be
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1 var ldists = simulation.getLoadDistributions("n10k_l1000k");
2 var algName = "karger";
3 var simDesc = "Find best parameters for each scenario.";
4 var testRuns = 100; // number of test runs of each simulation

5 var maxTime = 200;// number of algorithm executions in each test run

6 var collectMI = true; // data by moved items

7 var collectOp = true; // data by balance operations

8 var errorRate = 0;
9 var e_test = new Array(0.01 , 0.10, 0.20); // epsilons to test

10 var k = 1; // number of samples

11
12 for (var i = 0; i < ldists.length; ++i) {
13 var ldistName = ldists[i];
14 var gnuplotPath = "data/" + algName + "--" + ldistName;
15 if (simulation.resultsExist(gnuplotPath)) {
16 print("skipping " + gnuplotPath);
17 } else {
18 print("starting " + gnuplotPath);
19 simulation.startAutoExportToGnuplot(gnuplotPath , 100);
20 for (var i_e = 0; i_e < e_test.length; ++i_e) {
21 var algPars = { e: e_test[i_e], k: k };
22 var simName = gnuplotPath + "-k" + k + "-e" + algPars.e;
23 simulation.addSim(simName , simDesc , ldistName , testRuns ,
24 errorRate , algName , algPars , collectMI , collectOp);
25 }
26 simulation.runSims ();
27 }
28 }

Listing 4.1: Example simulation script for the Simulator CLI.

created from the data stored in the third container. It creates such snapshots each time
the number of balance operations changes. Since the latter two generate quite much
data, they can optionally be turned off.

Much effort has been put into parallelising the core components of the Simulator. As
such it uses multiple threads to run the simulations, process the results and export them.
At first, each simulation creates two worker threads for the latter two containers. Each
test run, which is executed in a separate thread, has a local cache of such snapshots for
itself which is piped to a job-queue of the appropriate worker at the end of its life-time.
This worker combines the different snapshots one after another. The integration of the
snapshot of a simulation’s final state into the other container is however done by itself.
The number of threads used for concurrent test runs can be limited by providing the
command line parameter “-j <number>” to the program. By default, the number of
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available CPU cores is used. If the simulation scripts enable results to be automatically
exported, there will be one more thread which performs those exports similarly to the
worker threads mentioned above.

The simulator is available under the GPL version 3 or later [20] and can found on
the enclosed DVD as binary packages for Windows and Linux. Source code, license
information and documentation is included as well. The latter could be generated at
any time by running the Doxygen tool [42] with the supplied Doxyfile.
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4.4. Simulation results

The following sections will evaluate all simulations that have been run in order to ana-
lyse the algorithms themselves and under different aspects of the simulations. As only
summarised information may be provided here, all simulations’ detailed results are avail-
able on the enclosed DVD and can also be re-generated using the provided scripts or
the simulator GUI. At first, every introduced variant will be analysed on the karger

algorithm. This evaluation will go into great detail and try to cover most aspects of
the simulation in order to assess the robustness of the algorithms as well. Afterwards
the same variations will be applied to the mercury algorithm that will show whether
the same effects can be observed with another algorithm, too. The basic algorithms
themselves will always serve as a reference for the algorithm variations. Also note that
this should not be a comparison between karger and mercury and only the effects of
the variants compared to their basic algorithm are evaluated.

4.4.1. Karger item balancing

Without added global information

Figure 4.3 shows the standard deviation that the original karger algorithm reached
after each load movement in each test scenario. It presents the algorithm’s performance
during its execution and shows which balance can be reached at which cost. Plotted
are the collected data points of all simulations with different values of the ε parameter,
100 test runs, 200 algorithm executions and one sampled node. Since Karger and Ruhl
state that ε should be greater than 0 and less than 1/4, the following values have been
chosen: 0.01, 0.05, 0.10, 0.15, 0.20 and 0.24. The number of algorithm executions was
originally set to 100 which turned out to be too low for some of the karger variants that
in turn exhibited results varying too much from the average of all test runs. Those that
still show these variations will be discussed in their respective sections below. Also the
effect of setting this number even higher will be evaluated for all algorithm variations.

As can be seen from figures 4.3 (a)-(c), for each single value of ε, the alphabetical
scenarios show similar behaviour. Evaluating an algorithm’s variation will therefore
at first concentrate on the scenario created from the English Wikipedia’s page titles.
Similarly the two exponential distributions will be assessed in favour of the normal
distributions which, when compared, show only slightly different results. The variant
that performs best on these three scenarios (“Wikipedia (en)”, “Exp(λ = 6 ·10−19)” and
“Exp(λ = 2 · 10−19)”) will finally be simulated on all of them in order to make sure it
does not show any different behaviour on the other three scenarios.

The plots of Figure 4.3 also show that no matter which scenario, smaller ε values
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(a) Wikipedia page titles (en) (b) Wikipedia page titles (de)

(c) Wikipedia page titles (fr)

(d) Exponential - Exp(λ = 6 · 10−19)) (e) Exponential - Exp(λ = 2 · 10−19)

(f) Normal - N(µ = 261, σ2 = 1 · 1018) (g) Normal - N(µ = 261, σ2 = 4 · 1018)

Figure 4.3.: Balance results for karger with different ε and for each of the scenarios.

60 DHT Load Balancing with Estimated Global Information



4.4. Simulation results

will always reach a given standard deviation by moving fewer load. To understand that
effect, recall that karger only balances two nodes with each other if their load differs by
at least a factor ε. Thus small values will make the algorithm only balance nodes with
big load differences and since balancing the most loaded nodes affects the imbalance
the most, this will lead to a better imbalance with the same number of moved items
compared to greater ε. However, higher values will reach a better imbalance at the end,
which can be seen, too. For the following simulations, a fixed ε of 0.24 is used which
resulted in the best imbalance at the end.

With added global information

In order to assess the improvements of a karger variant, it has been simulated with
the “Wikipedia (en)”, “Exp(λ = 2 · 10−19)” and “Exp(λ = 6 · 10−19)” scenarios using
ε = 0.24 as mentioned above. For those simulations a 25% inaccurateness of global
information was set in order to resemble the estimate of gossiping. This percentage is
supported by experiments conducted by Jelasity et al. [28] evaluating the quality of a
gossip algorithm that estimates the system size in a dynamic system. It is thus also a
reasonable value for the static simulations presented here. Further discussions about the
influence of this error rate on the simulation results will however be held at the end of
this section.

It follows a detailed performance analysis of the different karger variants previously
introduced. The evaluations will concentrate on showing the imbalance that can be
reached by moving a certain amount of load, i.e. items, and the imbalance as well as the
number of moved items at the end of each simulation.

The results of the algorithm variants pictured in Figure 4.4 show that avg3j needs to
move more items to reach the same imbalance most of the time during its execution1.
Only at the end it comes around and falls below the data points of the original karger
without however achieving the same imbalance. The algorithm is probably refusing some
jumps that would have been useful nonetheless, i.e. the potential improvements by the
jump would be greater than the prevented light node getting heavy. A possible reason
for this might be the error of the estimate being too high but simulations with the exact
value of the average load show no better results. In fact, simulations with an error of
25% produce even lower imbalances. Also as Table 4.1 shows, these jumps are traded
for slide operations: karger avg3j performs up to 12% fewer jumps than karger and
increases the number of slides by up to 26%, depending on the scenario. An additional
effect that can especially be seen in Figure 4.4a is that the variance of the data points
is quite high among different test runs. This also affects the final imbalance at the end

1time and number of moved items correlate
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(a) Wikipedia page titles (en)

(b) Exponential - Exp(λ = 6 · 10−19)) (c) Exponential - Exp(λ = 2 · 10−19)

Figure 4.4.: Balance results for the karger variants with one variation, error rate 25%.

of each test run that varies by up to 35% (ref. Table 4.2 on page 66). Since the final
δmal with karger avg3j is also higher than with karger, heavier nodes in the system
still exist. It seems that those nodes have not been balanced because they have been
matched with nodes for which a jump was not possible. In that case avg3j suggests
no alternative operation so the heavy node’s load is left unchanged and more attempts
- and thus time - are needed in order to either find a node that is able to jump or to
balance with one of its neighbours. It turns out that by further increasing the number
of algorithm executions, the variance of the final imbalance of karger avg3j can be
greatly reduced (see the respective section below).

The avg1 and avg2 variants perform better, although a significant time of the sim-
ulation they expose worse results than the original algorithm, which is understandable
because the item movements they carry out do not have such a great impact on the
balance as the original ones. However towards the simulation’s end, they significantly
increase their performance in both imbalance and number of moved items and outper-
form karger. This is because towards the end fewer and fewer nodes are responsible for
the bad imbalance (most of the previously heavy nodes have already been balanced) and
thus balance operations on the few heavy nodes quickly improve the standard deviation
without many item movements. Additionally these two variants achieve a better overall
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Algorithm Wikipedia (en) Exp(λ = 2 · 10−19) Exp(λ = 6 · 10−19)

name slides jumps slides jumps slides jumps

karger (err = 0%) 1101.49 12709.44 598.17 6435.19 444.10 12681.83
.. avg1 1132.43 16517.17 605.74 7600.33 529.43 16079.09
.. avg2 1625.72 15140.70 767.75 7835.22 1178.19 14316.18
.. avg3j 1158.86 12018.87 752.07 5661.78 484.59 12199.47
.. stddev2 432.06 7451.13 334.98 4936.37 124.93 7548.05
.. self 577.39 9384.95 219.64 5756.06 133.95 11304.61

.. avg1 stddev2 403.59 8317.22 312.57 5414.44 222.31 8494.17

.. avg2 stddev2 229.39 8532.15 255.44 5592.58 96.49 8861.53

.. avg3j avg1 1245.92 13521.21 792.10 6040.37 681.64 13694.82

.. avg3j avg2 2589.08 10609.35 1226.50 5539.62 2106.98 10522.54

.. avg3j stddev2 528.08 6958.42 472.35 4192.76 184.06 7064.11

.. avg3j avg1 stddev2 396.56 6633.99 412.44 4273.73 297.52 6986.91

.. avg3j avg2 stddev2 396.56 6633.99 412.44 4273.73 297.52 6986.91

.. self avg2 stddev2 122.36 7635.50 128.22 5043.02 42.91 7617.31

Table 4.1.: Average number of slide and jump operations of the different karger variants
(error rate = 25% unless otherwise stated, ε = 0.24, s = 1.5 where appropriate).

balance at the end of the simulation which is owed to the fact that balancing two nodes
in the original karger could result in both of them being in the bounds of ε and thus
not being considered for balancing anymore. Here on the other side the receiving node’s
load would at least be nearer to the average load which results in a better imbalance. In
avg2 this node would be even better balanced than in avg1 so the standard deviation
is expected to be lower at the end with probably fewer item movements. This effect
has been confirmed by the simulations as the plots and the results at the end of the
simulations in Table 4.2 show.

Algorithms using the stddev2 variation need a further parameter, s, that influences
the decision on whether to perform a balance operation or not. Initial simulations using
karger stddev2 have shown that s = 1.5 is a good value for all scenarios which will
thus be used for every variant of Karger and Ruhl’s algorithm that incorporates stddev2.
Figure 4.4 clearly supports that limiting balance operations to those that are really worth
it is a good choice. In all three scenarios the resulting imbalance is comparable to the one
of the avg1 variant and better than the result of the original algorithm but in contrast
to these two, throughout the whole simulation any given standard deviation is reached
by moving far less items.

The self-tuning algorithm starts off similar to the original karger in the first and
third scenario but then quickly gets to the same imbalance of the other algorithms by
moving far less items. In the second scenario it first operates similarly to avg2 but
then outperforms it as well. Surprisingly, in the first two scenarios most of the time
karger self reaches the same imbalance by even moving far less items than karger
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with ε = 0.01, e.g. in the alphabetically distributed scenario an imbalance of 100 is
reached by moving nearly half the number of items (680 000 versus 1 200 000). The ε set
by the self-tuning variant is however never below 0.01. The only possible reason for this
would be the (slightly) fluctuating value of ε due to the error rate. This might allow
some balance operations which quickly propagate items from heavily loaded nodes to
lightly loaded ones and are otherwise not performed. It can not be an effect due to the
randomness of the algorithm since all 100 simulations exhibit similar behaviour which
can be seen by the thinness of the algorithm’s scatter plot, especially in the first two
scenarios. The resulting imbalance at the end of the simulations is also around 10−15%
better than the original algorithm. Overall, it can be said that the self-tuning algorithm
did perform even better than anticipated and is the best among the algorithm variants
using a single variation.

(a) Wikipedia page titles (en)

(b) Exponential - Exp(λ = 6 · 10−19)) (c) Exponential - Exp(λ = 2 · 10−19)

Figure 4.5.: Balance results of the combined karger variants, error rate 25%. Indistinguishable
curves have been merged, i.e. avg[1,2] is short hand for “avg1 or avg2”.

Further simulations, shown in Figure 4.5, have been run in order to analyse the effect of
the combination of several of the above evaluated variants incorporated into the karger

algorithm. The plots show that although the avg3j avg1 and avg3j avg2 variants
resemble the ideal item movement the most, they don’t seem to perform well in any
of the three simulations and especially in the alphabetically distributed scenario. This
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is probably due to the restricted jump capabilities of the avg3j component as argued
above. However, if this variant is combined to avg3j stddev2, it performs similar to
stddev2 alone and does not seem to be affected by the limited jumps as much as the
original algorithm. Table 4.1 shows an increased number of slide operations of up to
47% and jumps being reduced by less than 15% when adding avg3j to stddev2. The
restrictions added by stddev2 however seem to compensate for the restricted jumps and
only allow such operations that are useful. Since there is no real improvement to this
variant alone though, avg3j stddev2 could be dropped.

Figure 4.5 also shows that in general variants using the stddev2 component perform
quite well. In particular combinations with avg1 and avg2 seem to profit from that.
Both exhibit very similar behaviour and can sometimes be indistinguishable in the plots
which is why their data points have been merged to a single scatter plot. In those
algorithms, restricting balance operations to the ones that significantly reduce the im-
balance greatly improves their performance so that any given imbalance is achieved by
moving less items than the original algorithm and less items than those variants alone.
The omitted operations have thus prevented nodes from taking part in future balance
decisions with greater impact due to the restrictions of ε (recall that stddev2 only re-
fuses balance operations and does not influence them in any other way). Additionally,
the good imbalance reached at the end of the simulations is maintained (ref. Table 4.2).
The latter could have been expected since all participating variants alone exhibit quite
similar results. The small impact of choosing either avg1 or avg2 though was surprising
but seems to be owed to the greater influence of stddev2. Table 4.1 shows another
interesting effect: adding stddev2 to any other algorithm reduces its number of slide
operations more than the number of jumps in terms of percentages. Thus the majority
of the slides in algorithms without stddev2 does not significantly change the overall
imbalance and hence most balance improvements can be achieved by moving nodes.

Further combining stddev2 with avg3j and one of avg1 or avg2 looks quite prom-
ising at the start, regarding the number of items moved in order to achieve a certain
imbalance. It is also surprising that avg3j further improves the algorithms that way al-
though previous combinations with it have not shown this behaviour. At the end though
they do not reach the imbalance that can be reached by avg2 stddev2 which is probably
owed to the restrictions avg3j imposes on jumps. Additionally a large variance of the
resulting imbalance can be observed as before with avg3j variants.

Substitutional for variants combined with the self-tuning facilities implemented for
karger, the karger avg2 stddev2 variant which showed the best results among the
previously evaluated algorithms has been equipped with a self-tuning ε. The plots
in Figure 4.5 show the superiority of this variant over all others since it reaches any
imbalance by moving far less items. Additionally Table 4.2 shows that the resulting
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Scenario Algorithm Simulation results (avg)

name name moved load stddev δmal

Wikipedia (en) karger (err = 0%) 2101882.19 ±1.00% 30.17 ± 2.45% 2.07

.. avg1 1734141.30 ±0.99% 29.07 ± 2.26% 2.13

.. avg2 1582001.44 ±1.17% 22.40 ± 2.98% 2.15

.. avg3j 1934212.76 ±0.65% 39.22 ±35.27% 10.81

.. stddev2 1738616.51 ±0.64% 29.28 ± 2.16% 2.12

.. self 935499.20 ±1.33% 25.82 ± 2.59% 2.20

.. avg1 stddev2 1113145.43 ±1.61% 22.02 ± 3.58% 2.15

.. avg2 stddev2 1109117.52 ±1.56% 20.92 ± 1.91% 1.88

.. avg3j avg1 1209741.98 ±0.86% 206.97 ± 6.45% 133.82

.. avg3j avg2 945844.46 ±1.51% 214.48 ± 5.60% 136.38

.. avg3j stddev2 1661461.88 ±0.36% 31.27 ± 3.05% 3.62

.. avg3j avg1 stddev2 816453.40 ±3.17% 81.73 ±15.97% 75.59

.. avg3j avg2 stddev2 816453.40 ±3.17% 81.73 ±15.97% 75.59

.. self avg2 stddev2 835771.74 ±1.15% 21.43 ± 2.08% 1.99

Exp(λ = 6 · 10−19) karger (err = 0%) 1807032.79 ±0.95% 30.70 ± 2.27% 2.02

.. avg1 1591271.05 ±1.17% 28.98 ± 2.82% 2.10

.. avg2 1430089.78 ±1.53% 21.82 ± 2.31% 2.09

.. avg3j 1654011.51 ±0.66% 35.96 ±18.33% 7.40

.. stddev2 1462922.39 ±0.86% 30.30 ± 1.64% 2.12

.. self 1018445.93 ±1.58% 25.98 ± 3.40% 2.09

.. avg1 stddev2 1036543.22 ±1.65% 26.82 ± 3.29% 2.18

.. avg2 stddev2 1041755.81 ±1.22% 20.72 ± 1.96% 1.93

.. avg3j avg1 1171385.61 ±1.06% 93.58 ± 8.39% 30.55

.. avg3j avg2 900437.51 ±1.14% 103.84 ±10.00% 32.76

.. avg3j stddev2 1380104.63 ±0.28% 31.78 ± 2.22% 3.33

.. avg3j avg1 stddev2 781607.82 ±0.66% 47.33 ±13.49% 21.07

.. avg3j avg2 stddev2 781607.82 ±0.66% 47.33 ±13.49% 21.07

.. self avg2 stddev2 804922.24 ±1.62% 21.06 ± 2.05% 1.90

Exp(λ = 2 · 10−19) karger (err = 0%) 1003902.63 ±1.14% 30.59 ± 1.74% 2.03

.. avg1 937143.51 ±1.43% 28.99 ± 2.36% 2.10

.. avg2 880638.66 ±1.41% 24.45 ± 1.92% 1.99

.. avg3j 880305.73 ±0.89% 35.55 ±11.68% 5.81

.. stddev2 860193.57 ±1.06% 28.76 ± 1.84% 2.06

.. self 667771.88 ±3.05% 27.53 ± 2.90% 2.09

.. avg1 stddev2 713955.21 ±1.45% 26.86 ± 2.44% 2.13

.. avg2 stddev2 706704.75 ±1.55% 24.65 ± 2.05% 1.96

.. avg3j avg1 711236.50 ±1.37% 50.87 ± 9.25% 15.09

.. avg3j avg2 590921.06 ±0.98% 60.80 ± 5.26% 16.66

.. avg3j stddev2 765143.97 ±0.56% 32.17 ± 3.49% 3.75

.. avg3j avg1 stddev2 560023.34 ±0.95% 37.13 ±10.10% 12.05

.. avg3j avg2 stddev2 560023.34 ±0.95% 37.13 ±10.10% 12.05

.. self avg2 stddev2 585624.70 ±2.15% 25.40 ± 2.02% 1.93

Table 4.2.: Results of the different karger variants, best variants for each scenario marked in
yellow (error rate = 25% unless otherwise stated, ε = 0.24, s = 1.5 where appropriate,
100 test runs with 200 algorithm executions each).
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imbalance at the simulations’ end is only slightly worse than karger avg2 stddev2

without self-tuning. It looks like the idea of an ε that varies depending on the system’s
state is also applicable to the introduced variants and can thus achieve even better results
by combining the advantages of all of them.

Best karger variants

Thus karger avg2 stddev2 with and without self-tuning are considered the best vari-
ations of the original karger algorithm. Both however can still be influenced by their
s parameter that defines the minimal imbalance reduction a balance operation should
have in order to be considered for execution. They have thus been simulated with dif-
ferent values for s to find the one with the best performance. The plots in Figure 4.6
show the results of these simulations with the three main scenarios. They show that the
karger avg2 stddev2 variant without self-tuning relies quite much on the correct value
being set. Higher s result in a slightly better imbalance at the simulations’ end up to a
certain bound. Higher values also reach a given imbalance by moving less items which
can be clearly seen. If s is increased too much though, the algorithm will not reach a
good imbalance at all which can even happen with small increments as the first two plots
show (scenarios “Wikipedia (en)” and Exp(λ = 6 · 10−19)). In both scenarios, s = 3.5
still shows a good result but s = 4.0 already is quite bad and the result of s = 4.5 is even
unacceptable. The Exp(λ = 2 · 10−19) scenario however does not show this behaviour
with the simulated values although a slightly worse final imbalance can already be seen
with s = 4.5. The effect will probably start with higher values.

When the stddev2 variant was developed, its new parameter was integrated in such
a way that suggested that its best performance can be reached by a single s for any
scenario, i.e. the value of s does not influence (much) the algorithm’s performance on any
scenario. s thus needs to be set depending on the number of items an algorithm moves
in a single balance operation and the resulting change the operation has on the overall
balance. If an algorithm only ever moves very few items those moves will probably not
have a great impact on the overall imbalance and thus a too high value for s will omit too
many balance operations for the algorithm to work. In the case of karger avg2 stddev2

however, the number of items the algorithm moves depends on the system’s average load,
so s needs to be set with care in order not to block too many operations.

The effect of the different performances of the karger avg2 stddev2 variant with
s ≥ 4.0 in the three scenarios can however not be explained with a different average load
because all scenarios share a common average load of 100. It might instead result from
the different imbalances of the scenarios: A single balance operation may not have a
big enough affect on the system’s imbalance in terms of percentages in scenarios with a
greater imbalance. Especially since the number of moved items is limited by the average
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load. This suggests that a weighted bound based on the current imbalance is more useful
than statically dropping all operations that do not increase the imbalance by a factor of
at least s/n as suggested by stddev2. It will probably also be beneficial for this algorithm
variant when applied to arbitrary scenarios.

(a) Wikipedia (en), karger avg2 stddev2 (b) Wikipedia (en), karger self avg2 stddev2

(c) Exp(λ = 6 · 10−19), karger avg2 stddev2 (d) Exp(λ = 6 · 10−19), karger self avg2 stddev2

(e) Exp(λ = 2 · 10−19), karger avg2 stddev2 (f) Exp(λ = 2 · 10−19), karger self avg2 stddev2

Figure 4.6.: Balance results of the best karger variants with different error rates. (scenario:
Wikipedia (en), ε = 0.24 where appropriate, 100 test runs, 200 algorithm executions)

From those simulations alone, the optimal s might be chosen as 3.0 but simulations
later carried out to evaluate the influence of the error rate revealed that this value was
not performing good with low error rates. This is why a safer value of 2.0 was chosen
instead (ref. Figure 4.7c on page 73).
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Different values of s seem to affect the self-tuning variant karger self avg2 stddev2

in another way than the same algorithm without self-tuning. Results of the self-tuning
algorithm shown in figures 4.6 b, d and f show the same behaviour as before with s ≥ 4.0
in the first two scenarios. Also in the third, it can not be observed. In contrast to the
variant without self-tuning though their final imbalances only vary insignificantly and
do not necessarily improve with higher s.

Scenario Algorithm Simulation results (avg)

name name moved load stddev δmal

Wikipedia (en) karger (err = 0%) 2101882.19 ±1.00% 30.17 ±2.45% 2.07

karger avg2 stddev2 1090815.91 ±2.45% 20.97 ±1.53% 1.87

karger self avg2 stddev2 831745.79 ±0.92% 21.38 ±1.93% 1.95

Wikipedia (de) karger (err = 0%) 2150263.47 ±0.94% 30.73 ±2.72% 2.03

karger avg2 stddev2 1121778.42 ±1.65% 20.65 ±1.99% 1.88

karger self avg2 stddev2 842240.22 ±1.01% 20.95 ±1.93% 1.91

Wikipedia (fr) karger (err = 0%) 2223748.31 ±0.82% 31.17 ±1.85% 2.06

karger avg2 stddev2 1166642.63 ±1.91% 20.44 ±2.13% 1.91

karger self avg2 stddev2 858124.86 ±1.36% 20.54 ±2.06% 1.92

Exp(λ = 6 · 10−19) karger (err = 0%) 1807032.79 ±0.95% 30.70 ±2.27% 2.02

karger avg2 stddev2 1000030.18 ±1.28% 20.70 ±1.62% 1.89

karger self avg2 stddev2 809677.18 ±2.46% 20.87 ±1.93% 1.90

Exp(λ = 2 · 10−19) karger (err = 0%) 1003902.63 ±1.14% 30.59 ±1.74% 2.03

karger avg2 stddev2 679464.20 ±1.14% 24.64 ±1.77% 1.95

karger self avg2 stddev2 583767.38 ±2.76% 25.36 ±1.56% 1.93

N(µ = 261, σ2 = 1 · 1018) karger (err = 0%) 1858444.98 ±1.09% 30.98 ±1.79% 2.03

karger avg2 stddev2 998929.11 ±1.02% 20.03 ±1.57% 1.86

karger self avg2 stddev2 846733.68 ±3.10% 19.85 ±2.14% 1.87

N(µ = 261, σ2 = 4 · 1018) karger (err = 0%) 778226.73 ±1.25% 30.49 ±1.89% 2.04

karger avg2 stddev2 553003.90 ±1.22% 25.86 ±2.09% 1.94

karger self avg2 stddev2 501005.91 ±3.41% 26.39 ±2.02% 1.93

Table 4.3.: Results of the best karger variants for all scenarios (error rate = 25% unless other-
wise stated, ε = 0.24, s = 2.0 where appropriate, 100 test runs with 200 algorithm
executions each).

Starting from a certain value of s, the number of moved items needed to get the final
imbalance is increasing instead of decreasing monotonously as in the variant without
self-tuning. This barrier at which this change is starting depends on the scenario but
all three scenarios show a decreasing number of moved items up to s = 2.0 which is
thus considered optimal for the self-tuning algorithm, too. The insignificant effect of
different s is probably due to the algorithm’s ε being coupled to (an estimate of) the
system’s standard deviation and thus probably a higher value for that is being used
earlier than with lower s. This dampens the success of higher values and thus results in
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the performances shown.
Since the optimal values for parameters of the best karger variants have been set, they

can now be simulated on all scenarios previously introduced. Table 4.3 shows the final
results of such simulations using karger and the karger avg2 stddev2 variant with and
without a self-tuning ε parameter. Also given is the maximum deviation of this average
value to the minimal and maximal value among all 100 test runs. It shows that in the
alphabetical scenarios, the algorithm variants both achieve an imbalance that is around
30% better than the final imbalance using the original algorithm. Additionally, both
move far less items: karger avg2 stddev2 without self-tuning moves only about 50%
of the amount karger moves which can be further reduced to 40% if self-tuning is used.
Results of the Exp(λ = 6 · 10−19) and N(µ = 261, σ2 = 1 · 1018) scenarios show similar
results (45% and 55% less item movements respectively with the same improvements of
the imbalance). In the other two scenarios, imbalance improvements are only at about
15% with 30 − 35% and 35 − 40% fewer item movements respectively. Variances from
those average results are negligible which indicates that the given results can be expected
for any simulation despite the algorithms having a random component. The results of
the latter two scenarios not being as good as the others can probably be explained by
the scenarios already having a better imbalance at the start of the simulations and ε

limiting any further improvements.

Number of algorithm executions

As mentioned above, some algorithms, especially those with the avg3j variant, have
been limited by the number of algorithm executions the simulations were set up with.
Simulating them with a too low value will result in a large variance of their results at
the simulations’ final state. This can be observed in the results presented in Table 4.2
on page 66 with most variations of avg3j. In order to further analyse the effect of the
number of algorithm executions and see whether this is the limiting factor or inherent
in the algorithm, further simulations have been set up using 200, 400 and 800 algorithm
executions.

Results of those simulations on the “Wikipedia (en)” scenario are shown in Table 4.4
and indicate that the majority of the algorithms are not affected by the increased number
of executions. They mostly achieve insignificantly better imbalances by moving slightly
more items. This is good for real-world scenarios where the algorithms are not stopped
after an arbitrary number of executions but continue to operate.

All avg3j variants but avg3j stddev2 however show significant improvements when
executed more often. karger avg3j without any more changes for example achieves a
15% better imbalance when executed 800 times instead of 200. Additionally the results
of the different test runs then vary only by up to 6.60% instead of 35.27 which is a major
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improvement. These results are achieved by moving less than 1% more items. The
fact that the variance of the number of moved items with 200 executions is very little
supports the assumption that this variant is omitting too many of the potential balance
operations and is only waiting for a perfect match to occur which is left to chance. In
order to achieve comparable results, it would thus have to be called at least 4 times as
often as karger, but since the improvements compared to that are quite small, another
variant is a better choice.

Algorithm Number of algorithm executions

200 400 800

name moved load stddev moved load stddev moved load stddev

karger (err = 0%) 2101882.19 30.17 2103140.72 30.03 2103796.72 29.96
±1.00% ±2.45% ±0.99% ±2.45% ±0.99% ±2.44%

.. avg1 1734141.30 29.07 1735693.54 28.87 1736382.82 28.79
±0.99% ±2.26% ±0.95% ±2.21% ±0.93% ±2.25%

.. avg2 1582001.44 22.40 1583620.65 22.11 1584258.24 22.00
±1.17% ±2.98% ±1.15% ±2.76% ±1.16% ±2.92%

.. avg3j 1934212.76 39.22 1945354.89 35.11 1951379.16 33.17
±0.65% ±35.27% ±0.55% ±23.09% ±0.54% ±6.60%

.. stddev2 1738616.51 29.28 1739724.63 29.14 1740337.26 29.06
±0.64% ±2.16% ±0.64% ±2.36% ±0.65% ±2.35%

.. self 935499.20 25.82 938410.78 25.37 939270.53 25.24
±1.33% ±2.59% ±1.28% ±3.44% ±1.30% ±3.14%

.. avg1 stddev2 1113145.43 22.02 1114870.02 21.71 1115548.02 21.59
±1.61% ±3.58% ±1.60% ±3.41% ±1.61% ±3.54%

.. avg2 stddev2 1109117.52 20.92 1110666.33 20.71 1111222.90 20.63
±1.56% ±1.91% ±1.58% ±1.89% ±1.60% ±2.15%

.. avg3j avg1 1209741.98 206.97 1244770.19 186.00 1271884.97 166.41
±0.86% ±6.45% ±0.72% ±6.54% ±1.11% ±9.26%

.. avg3j avg2 945844.46 214.48 980313.28 193.18 1006870.52 173.92
±1.51% ±5.60% ±1.33% ±5.60% ±1.06% ±8.54%

.. avg3j stddev2 1661461.88 31.27 1664858.96 30.55 1666627.45 30.21
±0.36% ±3.05% ±0.32% ±2.95% ±0.26% ±3.13%

.. avg3j avg1 stddev2 816453.40 81.73 843764.96 68.15 856083.76 57.42
±3.17% ±15.97% ±1.84% ±18.39% ±1.17% ±19.66%

.. avg3j avg2 stddev2 816453.40 81.73 843764.96 68.15 856083.76 57.42
±3.17% ±15.97% ±1.84% ±18.39% ±1.17% ±19.66%

.. self avg2 stddev2 835771.74 21.43 839216.44 20.93 839990.51 20.83
±1.15% ±2.08% ±0.94% ±1.54% ±0.90% ±1.61%

Table 4.4.: Average results of the karger variants with different number of algorithm executions,
most affected algorithms marked in yellow (Wikipedia (en), error rate 25% unless
otherwise stated, ε = 0.24, s = 1.5 where appropriate, 100 test runs).

The imbalance results of the avg3j avg1 and avg3j avg2 variants can be improved
by more executions, too. But unlike the pristine avg3j variant, the variance of these
results is even higher in terms of percentages. This leaves room for improvements and
it is unclear whether an even higher number of executions would solve this. At least
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the number of moved items with 800 executions increases by only 5 − 7% compared
to 200. avg3j stddev2 behaves similarly to stddev2 alone as already observed above.
This continues with an increased number of executions.

The avg3j avg1 stddev2 and avg3j avg1 stddev2 variants - that looked quite prom-
ising at the start of the simulations (ref. Figure 4.5 on page 64) - continue to improve
their final imbalance with an increased number of executions. Simulating it four times
as often as originally though only achieves an imbalance of 57.42 at the end. Although
this is achieved by moving only about 5% more items, the results vary even more than
with 200 executions in terms of percentages. If the improvements can be continued by
increasing the number of executions even more, it might get near the avg2 stddev2 vari-
ant but it would then probably need much more tries to find nodes that can be balanced
with each other.

Error rate

One of the major aspects of all algorithm variations introduced above is that they work
with estimated global information. Gossiping algorithms are used to retrieve any of such
values, e.g. average load, standard deviation, and will approximate them to a certain
degree which will be more exact the more often the gossip algorithm is executed. In
highly dynamic systems however they need some time to incorporate any changes and
thus provide worse approximations for a while. The quality of this information in the
given simulations can be influenced by setting an error rate (previously at 25%). Further
simulations with the best karger variants identified above should clarify how dependent
their performance is on the accurateness of the global information.

As such, simulations with error rates from 10− 80% have been run whose results are
shown in Figure 4.7. It also includes results of simulations with karger avg2 stddev2

using s = 3 that has been mentioned above as a candidate for the best value of s. As
the result table shows, this parameter probably restricts too many balance operations
(moving up to lavg ± 10% items in a single balance operation is more likely to hit this
barrier than lavg ± 20%).

The plots in Figure 4.7a,b show the results of the karger avg2 stddev2 variant
without and with self-tuning and also plot the ordinary karger algorithm for com-
parison. Recall that the latter is independent from the error rate since it does not use
any global information. Furthermore, the variant without self-tuning seems to be influ-
enced by the error rate a bit more than the other. Its performance however does degrade
gracefully so that even with an error of up to 80% an imbalance that is comparable to
karger can be reached by moving about 25% more items than the same algorithm with
a 10% error and still about 40% less than karger. According to this the algorithm seems
pretty robust to erroneous global information. This is probably due to the fact that the
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bound that ε imposes has a greater affect than an error rate that only determines how
many items are moved.

(a) karger avg2 stddev2 (e = 0.24, s = 2) (b) karger self avg2 stddev2 (s = 2)

Algorithm Error Simulation results (avg)

name parameters moved load stddev δmal

karger e = 0.24 ≤ 0% 2101882.19 ± 1.00% 30.17 ± 2.45% 2.07

.. avg2 stddev2 e = 0.24, s = 2 ≤ 10% 1041627.75 ± 2.08% 16.79 ± 3.02% 2.05

≤ 20% 1078691.18 ± 2.28% 19.19 ± 2.00% 1.93

≤ 40% 1123017.37 ± 2.10% 26.36 ± 1.37% 1.88

≤ 80% 1291849.74 ± 1.91% 33.38 ± 1.46% 1.97

e = 0.24, s = 3 ≤ 10% 416431.18 ±30.26% 168.79 ±26.22% 9.98

≤ 20% 1058711.34 ± 1.39% 19.27 ± 2.09% 1.97

≤ 40% 1102975.35 ± 1.76% 26.57 ± 1.45% 1.87

≤ 80% 1268950.19 ± 2.21% 33.56 ± 1.67% 1.97

.. self avg2 stddev2 s = 2 ≤ 10% 830177.11 ± 0.80% 17.79 ± 3.77% 2.11

≤ 20% 830203.73 ± 0.80% 19.85 ± 2.47% 2.01

≤ 40% 836896.21 ± 0.92% 26.79 ± 1.71% 1.86

≤ 80% 927569.14 ± 1.37% 34.20 ± 1.57% 1.97

(c) Results at the end of the simulations

Figure 4.7.: Results of the best karger variants with different error rates. (Wikipedia (en),
100 test runs, 200 algorithm executions each, plots cut off at 1.3m moved items)

Even more robust is the karger self avg2 stddev2 variant with self-tuning. Error
rates of 10 or 20% nearly differ at all from each other and increasing the error to 40%
not even moves 1% more items by still achieving a fair imbalance. A bigger difference
can be seen with 80% which offers almost the same imbalance of karger avg2 stddev2

at 80% but still moving less than 1m items. The better result is probably owed to ε

being adapted to the system’s state every time at each node independently from any
previous state. After all with an average load of 100 and several nodes with loads over
1 000 (ref. Figure 4.1 on page 55), an 80% difference does not matter that much. This
might be different for simulations with higher loads though.
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Number of sampled nodes

Another aspect of the algorithms is their ability to sample multiple random nodes instead
of just one. In that case a node can decide with which of the sampled nodes it balances.
This should at least allow the algorithm to get to lower imbalances earlier than with
only one sample but introduces additional traffic on the network. The algorithms of the
following simulations were set up to sample k ∈ {1, 2, 4, 8} different nodes uniformly at
random, dry-run the balance operations with each of them and choose the best among
them as described in Section 3.2. The results of such simulations using karger and the
two best variants from above are shown in Figure 4.8.

(a) Results during the simulations (indistinguishable curves have been merged)

Algorithm Simulation results (avg)

name parameters moved load stddev δmal

karger e = 0.24, k = 1 2101882.19 ±1.00% 30.17 ±2.45% 2.07

e = 0.24, k = 2 2050068.45 ±0.68% 29.98 ±2.37% 2.01

e = 0.24, k = 4 1988928.43 ±0.81% 30.01 ±2.12% 1.99

e = 0.24, k = 8 1917664.25 ±0.87% 28.83 ±2.21% 1.95

.. avg2 stddev2 e = 0.24, s = 2, k = 1 1090815.91 ±2.45% 20.97 ±1.53% 1.87

e = 0.24, s = 2, k = 2 1047354.14 ±2.09% 20.75 ±1.74% 1.75

e = 0.24, s = 2, k = 4 1040849.12 ±2.21% 20.67 ±2.29% 1.69

e = 0.24, s = 2, k = 8 1051528.20 ±1.91% 20.65 ±1.72% 1.67

.. self avg2 stddev2 s = 2, k = 1 831745.79 ±0.92% 21.38 ±1.93% 1.95

s = 2, k = 2 830804.58 ±1.12% 21.03 ±1.90% 1.76

s = 2, k = 4 829238.02 ±1.18% 20.96 ±1.90% 1.69

s = 2, k = 8 827633.51 ±0.93% 20.95 ±2.18% 1.67

(b) Results at the end of the simulations

Figure 4.8.: Results of the best karger variants with different numbers of sampled nodes (k).
(Wikipedia (en), 100 test runs, 200 algorithm executions each, error rate 25%)
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The plots clearly show the expected effect with the karger algorithm: The more nodes
are sampled the more the scatter plot of the algorithm turns bottom left, i.e. the same
imbalance is reached by moving less items. Also the final results are slightly better with
higher k but as seen with k = 4 this is not always the case in contrast to the number of
moved items that decreases monotonously.

This effect however can not be observed with the avg2 stddev2 variants with or
without self-tuning. In the latter, a difference can only be found between either sampling
one node or more (algorithms with k ∈ {2, 4, 8} perform nearly the same). The insig-
nificant differences of the standard deviation and the number of moved items at the
end of the simulations may be owed to the ε preventing any further improvements. In
contrast to the standard deviation though, the ratio δmal of the maximum load to the
average load always decreases with higher values of k. So higher values do at least show
some effect: the maximum load in the system decreases (recall that the average load is
constant throughout the whole simulation).

Finally, the self-tuning algorithm does not show any significant differences between
the simulations with a different number of sampled nodes, except for a decreasing δmal.
This is probably due to the strong coupling of ε to the current system’s state and the
fact that this variant without self-tuning was already not influenced much by different
numbers of sampled nodes.

Scalability

Up until now all simulations have always been carried out with 10 000 nodes and a total
load of 1 000 000 items and parameters have been set according to such scenarios. In
this section the algorithms will show whether they also perform as expected in scenarios
with more nodes or greater loads.

As such karger and its best two variants have been run on the “Wikipedia (en)”
scenario with 10 000 nodes and different total loads as shown in Table 4.5. This will,
substitutionally for all scenarios, clarify whether the algorithms work with different
average loads as well. At first it can be seen that the ordinary karger algorithm nearly
doubles both the number of moved items and the standard deviation at the end of the
scenarios when the total load is doubled. This effect is inherent in the increased total
load and can also be observed with the two karger variants. The variance among the two
values for all 100 test runs also stays within reasonable bounds and does not increase
with the increased load. These results indicate good scalability in terms of system load
for all three algorithms.

Furthermore scenarios with a different system size, i.e. number of nodes, can be set up
to evaluate whether the algorithm’s performance depends on the number of nodes in the
system. The stddev2 variant for example has already been developed with this in mind:
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Algorithm Total load

500 000 1 000 000 2 000 000 4 000 000

moved l. stddev moved l. stddev moved l. stddev moved l. stddev

karger 1048218 15.14 2101882 30.17 4205981 60.49 8414797 121.09
±0.82% ±2.15% ±1.00% ±2.45% ±1.01% ±2.84% ±0.83% ±2.58%

.. av2 st2 545453 10.46 1090815 20.97 2183785 41.93 4362201 83.90
±1.89% ±1.97% ±2.45% ±1.53% ±1.83% ±1.58% ±1.86% ±1.52%

.. se av2 st2 414751 10.66 831745 21.38 1666331 42.73 3336612 85.71
±0.75% ±2.37% ±0.92% ±1.93% ±0.83% ±2.75% ±1.14% ±1.87%

Table 4.5.: Average results of the karger variants with different total loads (Wikipedia (en), error
rate 0% with karger, otherwise 25%, ε = 0.24, s = 2.0 where appropriate, 100 test
runs, 200 algorithm executions each, 10 000 nodes, moved load rounded down to the
nearest integral, abbreviated algorithm names).

it considers the fact that if more nodes share the same amount of load, a single balance
operation will probably affect the overall imbalance less than with fewer nodes. This
is why the system size has been integrated there as well. The same three algorithms
as above also had to complete the “Wikipedia (en)” scenario with a fixed amount of
1 000 000 items but different system sizes.

The results of these simulations, presented in Table 4.6, show that karger scales
linearly with an increasing number of nodes. Inversely to the simulations above, the
standard deviation decreases if more nodes share the same total load. It halves with
karger compared to scenarios with half as many nodes while the number of moved
items constantly increases by about 10%. The latter should ideally not change much
but such a small increase when doubling the system size is acceptable.

Algorithm Number of nodes

5 000 10 000 20 000 40 000

moved l. stddev moved l. stddev moved l. stddev moved l. stddev

karger 1926994 60.64 2101882 30.17 2306485 15.32 2506472 7.57
±1.14% ±4.15% ±1.00% ±2.45% ± 0.58% ± 1.41% ±0.36% ± 0.83%

.. av2 st2 1063600 42.53 1090815 20.97 1122572 10.58 902782 30.24
±2.48% ±2.66% ±2.45% ±1.53% ± 1.57% ± 1.58% ±7.76% ±21.17%

.. se av2 st2 823234 43.38 831745 21.38 756367 21.73 613656 35.88
±1.79% ±3.57% ±0.92% ±1.93% ±12.36% ±69.05% ±6.75% ±18.32%

Table 4.6.: Average results of the karger variants with different system sizes (Wikipedia (en),
error rate 0% with karger, otherwise 25%, ε = 0.24, s = 2.0 where appropriate, 100
test runs, 200 algorithm executions each, total load 1 000 000, moved load rounded
down to the nearest integral, abbreviated algorithm names).

The avg2 stddev2 variant without self-tuning however only halves the reached stand-
ard deviation up to a system size of 20 000 nodes. With 40 000 nodes it gets much
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worse and also shows a great variance among the 100 test runs. This indicates that the
number of algorithm executions is not high enough for the given scenario which might
especially hit stddev2 variants since they block balance operations and depend on a
possibility to find alternatives. The same restriction applies to the self-tuning algorithm
which already performs worse than karger with 20 000 nodes and continues to do so
with more nodes. Further simulations with an increased number of algorithm execu-
tions to 400 support the previous assumption of this being the limiting factor. In those,
karger self avg2 stddev2 achieves an imbalance of about 5.22 with 40 000 nodes by
moving about 882453 items. These values are the ones that could have been expected by
this algorithm and since in real-world scenarios the algorithm would operate indefinitely
and would not stop after an arbitrary number of executions, this variant is still a good
choice that does scale linearly with the system size as well.

Summary of Results

Most of the introduced variants that incorporate estimated global information into the
karger algorithm use it to their advantage. They provide much better final results in
terms of both number of moved items and the imbalance of the system. Especially
good performances are achieved by the avg2, stddev2 and self-tuning variants which
combined with each other provide even better results. An improvement of up to 60% less
item movements with a 30% better standard deviation can be achieved using an optimal
value for stddev2’s s parameter. These effects can be observed with the scenarios that
have a greater imbalance at the simulations’ start. Scenarios which already start with
smaller imbalances only show improvements of up to 40% less item movements and a
15% better imbalance at the simulations’ end.

Simulations have also shown that the best two algorithms, i.e. karger avg2 stddev2

and karger self avg2 stddev2, are pretty robust against fluctuations in the quality
of the estimated global information they use. They can however not provide the same
improvements on the final imbalance with too erroneous data but at least still show
major improvements in the number of moved items. With an error of 80% and in an
alphabetical scenario (high starting imbalance) still about 40% and 55% less items are
moved. Compared to the ordinary karger algorithm though, the final imbalance is
around 10% worse.

Better results by sampling multiple random nodes can only be observed with the ori-
ginal karger algorithm. Sampling more nodes in karger avg2 stddev2 produces meas-
urable but insignificant improvements over one sampled node. Differences of sampling
either 2, 4 or 8 nodes are negligible though. If self-tuning is also applied to this al-
gorithm variant changes in the number of sampled nodes can nearly be observed and
can be buried in the variance of the results among the different test runs.
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Further simulations of an alphabetical scenario with different total loads or different
system sizes have also shown that these two variants scale linearly with those changes.
They also offer the same improvements over the original algorithm in terms of both,
moved items and imbalance at the end of the simulations. The only thing that can be
noticed though is that if the system size, i.e. number of nodes, increases more algorithm
executions are needed than with the ordinary karger algorithm. This is due to the fact
that these variants omit several balance operations and wait for better node matches.
It should be considered if these algorithms are applied to real-world scenarios since in
order to achieve the same imbalance in the same time they would need to be called
more often, e.g. 4 times as much (karger already achieves its results with 100 algorithm
executions). Further investigations on the aspect of time, that was previously ignored,
are needed in order to draw any further conclusions to applications on real systems.
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4.4.2. Mercury

All of the introduced algorithm variants have also been applied to a second algorithm,
mercury, in order to evaluate whether the effects observed with karger also apply to
other balance algorithms. The following sections will analyse those variations the same
way as the analysis has been done with karger above. In contrast to this though it will
not be as thorough as before and will concentrate only on proving the effectiveness of the
variants and will neither evaluate the influence of the number of algorithm executions
nor the effect of multiple sampled nodes. The evaluation will thus also only use the
three main scenarios that have been used with the karger variants. The other scenarios
exhibited very similar results, so the simulated scenarios can be restricted to those three
without loss of generality.

(a) Wikipedia page titles (en)

(b) Exponential - Exp(λ = 6 · 10−19)) (c) Exponential - Exp(λ = 2 · 10−19)

Figure 4.9.: Balance results for mercury with different α for the three main scenarios
(error rate = 25%).

Without added global information

At first the original mercury algorithm has been simulated with different values of the
α parameter in order to evaluate its influence. Since α ≥

√
2, values starting from 1.42

have been chosen up to a value that still reaches a fair imbalance. Those values include
1.42, 1.75, 2.00, 2.25, 2.50, 3.00 and 5.00. The simulation results of mercury with those

DHT Load Balancing with Estimated Global Information 79



4. Evaluation

values are presented in Figure 4.9. The plot for each scenario shows the imbalance
reached after moving the given number of items and thus indicates the relation between
the two invariants quality, i.e. imbalance, and cost. As with karger it can be seen
that parameters that tolerate bigger skews, i.e. larger α’s, achieve the same standard
deviation by moving less items than those tolerating smaller skews. This behaviour is
important for the idea of self-tuning algorithms that will be analysed in the following
sections. In contrast to karger though, results of the 100 different test runs of the
simulation on the alphabetical scenario with a given α vary much more which is probably
due to the error rate being at 25% and the definition of local load in mercury.

A fixed α of 1.42 is used for the following simulations because it results in the best
imbalance at the end. The imbalance reached by this value and the number of moved
items at the end of each simulation has been included in Table 4.7 on page 84.

With added global information

The results of the different algorithm variations that implement one of the variants
introduced above are shown in Figure 4.10. In contrast to karger though the avg3j

variant alone does perform a bit better than the original algorithm by moving less items
and achieving only slightly worse imbalances at the end of the simulations in all three
scenarios. This is probably due to light nodes (according to the definition in mercury)
having lightly loaded neighbours with high probability and thus the additional restriction
of avg3j not being hit that often as in karger (recall that only light nodes jump).

The performances of the two avg1 and avg2 variants are so similar when applied to
mercury, that they could not be distinguished in the plots which is why they have been
merged to a single scatter plot. Their results however are very similar to the ones they
exhibited with karger although they do not show such bad results at the start of a
simulation. The imbalance reached by these two variants at the end of the alphabetical
simulations however is disappointing (ref. Table 4.7). This can only be explained by
too many nodes getting a load that neither makes them light nor heavy and thus does
not allow further balancing. Maybe not enough light nodes exist in order to balance the
remaining heavy nodes. This however does not occur in the other two scenarios which is
probably because there neighbouring nodes have a similar load with higher probability
than in the alphabetical scenario. Averaging the load of three neighbouring nodes to a
local load may thus lead to the node being neither heavy nor light although it is very
heavily or lightly loaded.

Results of the stddev2 variant are as expected: a slightly better imbalance at the
end of the simulations with less moved items than the original algorithm. In order to
achieve that though, its s parameter was set to 3.0 which seemed to be the best for
mercury stddev2 during initial simulations. This will allow only such balance opera-
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(a) Wikipedia page titles (en)

(b) Exponential - Exp(λ = 6 · 10−19)) (c) Exponential - Exp(λ = 2 · 10−19)

Figure 4.10.: Balance results for the mercury variants with one variation, error rate 25%.

tions, that improve the standard deviation by at least a factor of 3.0/n which is more
selective than the 1.5/n used by the karger variants. In contrast to those however, the
difference in the number of moved items compared to the original algorithm is not that
high. Possibly most balance operations performed by mercury are already worth it and
are thus not prevented by this variation.

The self-tuning algorithm implemented for mercury looks quite superior to the other
variants in the given plots - similarly to the results of the self-tuning variant of the karger
algorithm. It moves a lot less items in all three scenarios and in the exponential scenarios
it achieves an imbalance that is comparable to the one of the ordinary algorithm. In the
alphabetical scenario however its final imbalance is disappointing. The huge variance
of this value among the 100 test runs however indicates that the number of algorithm
executions is not high enough for this variant which has been confirmed by additional
simulations that reach better imbalances with an increased number of executions, e.g.
an imbalance around 39 with a lower variance and around 830 000 moved items can be
reached by doubling this number.

Results of algorithms with several variants combined are shown in Figure 4.11. Again
avg1 and avg2 variants have been too similar to distinguish from each other and have
been merged. Apparently the balance operations of mercury and its definition of local
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load have a greater influence on the imbalance than the number of items moved during
such an operation which does not differ substantially in most cases with those two
variants. Combining either of them with avg3j though is - as with karger - not a good
idea since the resulting algorithm’s performance is not as good as the other combinations
and does not get close to the imbalance the original algorithm reaches at the end of the
simulations. Only the last scenario exhibits good results with that combination which is
probably due to its better imbalance at the simulation start. Adding avg3j to stddev2

does not show much difference compared to the results of stddev2 alone which has been
observed with the karger algorithm, too.

(a) Wikipedia page titles (en)

(b) Exponential - Exp(λ = 6 · 10−19)) (c) Exponential - Exp(λ = 2 · 10−19)

Figure 4.11.: Balance results for the combined mercury variants, error rate 25%. Indistinguish-
able curves have been merged.

The remaining algorithms are running shoulder to shoulder. Best final imbalances
are achieved by the avg1 stddev2 and avg2 stddev2 variants which can be traded
for a little worse imbalance by the advantage of moving slightly less items with the
avg3j avg1 stddev2 and avg3j avg2 stddev2 variants. The self-tuning algorithm’s
performance is somewhere in between these two groups. In contrast to karger it does
not outperform the other variants and the good results of self-tuning alone compared
to other variants alone could unfortunately not be combined with the good results of
another variant as this was the case with karger. Maybe α ≥

√
2 is the limiting factor
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here or the local load paradigm and its node classification in general. The fact that so
many algorithms perform almost identically in contrast to the observations with karger

would support that statement.

Error rate

Simulations carried out with different error rates as above show that the avg2 stddev2

variant applied to mercury performs similarly than the same variant on karger. The
only difference that should be noted here is that the performance of the algorithm with
an error of 10% is closer to the one with a 20% error than before. Also, the 10% scenario
shows a worse imbalance result at the end of the simulations which is probably due to
less items being transferred to another node than with 20% and heavy nodes thus not
getting “normal” and stealing light nodes that otherwise would have been matched with
more unbalanced nodes.

(a) karger avg2 stddev2 (e = 0.24, s = 2)

Algorithm Error Simulation results (avg)

name parameters moved load stddev δmal

mercury a = 1.42 ≤ 0% 1594504.07 ±0.43% 50.13 ±0.91% 3.23

.. avg2 stddev2 a = 1.42, s = 3 ≤ 10% 844367.93 ±1.01% 35.19 ±2.92% 3.18

a = 1.42, s = 3 ≤ 20% 883390.55 ±1.36% 30.48 ±2.93% 3.00

a = 1.42, s = 3 ≤ 40% 907052.92 ±1.07% 34.01 ±2.42% 2.81

a = 1.42, s = 3 ≤ 80% 998260.86 ±1.60% 42.36 ±1.82% 3.05

(b) Results at the end of the simulations

Figure 4.12.: Results of the best mercury variant with different error rates. (Wikipedia (en),
100 test runs, 200 algorithm executions each, plot cut off at 1.05m moved items)
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Scenario Algorithm Simulation results (avg)

name name moved load stddev δmal

Wikipedia (en) mercury 1761353.09 ±0.49% 34.43 ± 2.36% 2.87

.. avg1 991167.62 ±1.21% 105.80 ±17.72% 95.34

.. avg2 981093.10 ±1.57% 105.99 ±20.78% 95.04

.. avg3j 1658430.86 ±0.43% 35.45 ± 2.31% 3.13

.. stddev2 1692875.04 ±0.46% 31.81 ± 1.67% 2.52

.. self 720993.42 ±5.89% 72.92 ±25.88% 49.45

.. avg1 stddev2 904086.45 ±1.06% 30.37 ± 7.82% 3.58

.. avg2 stddev2 887620.31 ±1.02% 30.84 ± 4.72% 3.22

.. avg3j avg1 804079.98 ±0.93% 174.60 ± 8.97% 126.44

.. avg3j avg2 791579.36 ±0.61% 174.31 ± 6.65% 126.61

.. avg3j stddev2 1638856.48 ±0.29% 34.51 ± 1.33% 2.86

.. avg3j avg1 stddev2 819585.53 ±0.83% 38.27 ±21.87% 16.85

.. avg3j avg2 stddev2 819585.53 ±0.83% 38.27 ±21.87% 16.85

.. self avg2 stddev2 841609.76 ±1.69% 34.63 ± 9.47% 3.80

Exp(λ = 6 · 10−19) mercury 1436953.99 ±0.55% 31.51 ± 2.24% 2.48

.. avg1 868365.51 ±0.98% 29.12 ±16.86% 9.22

.. avg2 863661.82 ±1.27% 29.49 ±17.17% 9.02

.. avg3j 1367239.74 ±0.29% 32.45 ± 1.54% 2.76

.. stddev2 1387009.40 ±0.31% 29.54 ± 1.55% 2.36

.. self 751612.57 ±0.70% 31.32 ± 1.87% 2.89

.. avg1 stddev2 797138.00 ±0.67% 26.47 ± 2.46% 2.55

.. avg2 stddev2 790562.53 ±0.79% 26.73 ± 2.52% 2.53

.. avg3j avg1 742164.69 ±0.74% 74.06 ±10.63% 27.45

.. avg3j avg2 736134.58 ±0.73% 73.33 ±11.68% 27.50

.. avg3j stddev2 1355825.40 ±0.24% 31.07 ± 1.23% 2.44

.. avg3j avg1 stddev2 749505.40 ±0.47% 28.48 ± 2.03% 2.83

.. avg3j avg2 stddev2 749505.40 ±0.47% 28.48 ± 2.03% 2.83

.. self avg2 stddev2 768556.88 ±0.62% 28.14 ± 1.50% 2.70

Exp(λ = 2 · 10−19) mercury 858594.53 ±1.03% 36.98 ± 1.50% 2.69

.. avg1 649470.11 ±2.05% 36.76 ± 1.64% 2.71

.. avg2 644264.44 ±1.68% 36.98 ± 2.42% 2.72

.. avg3j 737164.36 ±1.03% 39.15 ± 1.43% 3.02

.. stddev2 795476.38 ±0.88% 35.11 ± 1.52% 2.58

.. self 570593.90 ±1.26% 39.80 ± 1.86% 2.95

.. avg1 stddev2 590802.90 ±1.62% 35.88 ± 2.29% 2.64

.. avg2 stddev2 583538.73 ±1.18% 36.10 ± 1.50% 2.65

.. avg3j avg1 516676.43 ±1.12% 41.81 ± 8.50% 9.72

.. avg3j avg2 510947.23 ±1.11% 41.87 ± 7.15% 9.21

.. avg3j stddev2 720274.42 ±1.02% 38.80 ± 1.69% 2.76

.. avg3j avg1 stddev2 501536.74 ±1.54% 40.71 ± 1.99% 3.13

.. avg3j avg2 stddev2 501536.74 ±1.54% 40.71 ± 1.99% 3.13

.. self avg2 stddev2 558778.87 ±1.07% 38.53 ± 1.51% 2.84

Table 4.7.: Results of the different mercury variants, best variants for each scenario marked in
yellow (error rate = 25% unless otherwise stated, α = 1.42, s = 3.0 where appropriate,
100 test runs with 200 algorithm executions each).
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Scalability

As can be seen from the results in Table 4.8, mercury does scale linearly with the overall
load as does its avg2 stddev2 variant. It also continues to show the same improvements
in terms of percentages compared to the original algorithm.

Algorithm Total load

500 000 1 000 000 2 000 000 4 000 000

moved l. stddev moved l. stddev moved l. stddev moved l. stddev

mercury 878334 17.28 1761353 34.43 3527486 68.83 7056172 137.71
±0.58% ±1.79% ±0.49% ±2.36% ±0.57% ±2.30% ±0.63% ±1.76%

.. av2 st2 443357 15.56 887620 30.84 1776176 61.52 3549476 123.04
±1.36% ±5.05% ±1.02% ±4.72% ±1.02% ±5.09% ±1.34% ±4.42%

Table 4.8.: Average results of the mercury variants with different total loads (Wikipedia (en),
error rate 0% with karger, otherwise 25%, α = 1.42, s = 3.0 where appropriate, 100
test runs, 200 algorithm executions each, 10 000 nodes, moved load rounded down to
the nearest integral, abbreviated algorithm names).

Also these algorithm’s performances in scenarios with more number of nodes, shown
in Table 4.9, show similar results than what has been observed with karger. mercury

moves about 10% more items in scenarios with twice as many nodes just like karger

did and achieves nearly halved imbalances as well. The avg2 stddev2 variant however
moves only slightly more items comparing the simulations with 5 000 and 10 000 nodes
but already starts to show the effect of not being executed often enough with 20 000
nodes which is supported by the variance that is shown by the results. This is similar to
the observations with karger although there this effect with the non-self-tuning variant
did start to occur with 40 000 nodes.

Algorithm Number of nodes

5 000 10 000 20 000 40 000

moved l. stddev moved l. stddev moved l. stddev moved l. stddev

mercury 1615172 69.68 1761353 34.43 1941249 17.05 2113715 8.31
±0.69% ±2.99% ±0.49% ±2.36% ±0.40% ±1.57% ±0.47% ±1.33%

.. av2 st2 869918 62.97 887620.31 30.84 873597 24.80 724608 29.05
±1.27% ±2.87% ±1.02% ±4.72% ±3.39% ±24.67% ±17.11% ±38.04%

Table 4.9.: Average results of the mercury variants with different system sizes (Wikipedia (en),
error rate 0% with karger, otherwise 25%, α = 1.42, s = 3.0 where appropriate, 100
test runs, 200 algorithm executions each, total load 1 000 000, moved load rounded
down to the nearest integral, abbreviated algorithm names).
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Summary of Results

Based on the simulations on the three main scenarios carried out and analysed above,
the best mercury variant is mercury avg2 stddev2 without self-tuning. It achieves
an up to 15% lower imbalance at the end of the simulations by moving up to 50%
fewer items than the original algorithm (depending on the scenario). This confirms the
results that have been observed with this variant on the karger algorithm above and
indicates that the possible improvements are not limited to the presented algorithms.
Only the superiority of this variant being equipped with a self-tuning parameter could
not be confirmed. However the implementation of this on mercury is different to the
implementation on karger which is why the results can not necessarily be transferred.
There are however indications that mercury itself is limiting any more improvements
since several algorithms that have previously showed different results now almost perform
identically.

The robustness of the algorithm variants that has been observed with karger though
still exist here. mercury’s best variant mercury avg2 stddev2 shows the same minor
influence to changed error rates as karger avg2 stddev2 does. The same can be said
about the scalability of this variant in regard to increased overall loads and increased
number of nodes. It seems that those effects can be transferred to another algorithm if
the algorithm itself already shows them (which mercury does).
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5. Conclusion

5.1. Achievements

At the beginning in Chapter 2 an overview of the field of research was given. It introduced
Distributed Hash Tables (DHTs) and some of their representatives, e.g. CAN, Pastry
and Chord. This general concept has then been extended to such DHTs that support
range queries among their stored data, i.e. they do not only allow the retrieval of the
value of a set of single keys but also support queries for ranges of them. Among several
implementations of such DHTs, Mercury and Scalaris have been introduced that show
only few or no overhead to ordinary DHTs without range queries. Additionally, gossiping
techniques have been presented that are able to aggregate global information of a DHT
with high confidence and low overhead. Among those estimated values is the system’s
minimum, average and maximum load, the standard deviation of the load among the
nodes as well as the number of nodes in the system.

The problem that arises by the way range-queriable DHTs store their data is the
increased variance of load among different nodes. They thus apply some sort of load
balancing scheme. Chapter 2 also introduced several novel load balancing algorithms
that have been developed in recent research. These algorithms have been arranged into
4 different categories since most of them make use of a common set of techniques and
only differ in details.

Two of the 18 presented algorithms have then been chosen and equipped with (ad-
ditional) estimates of global information with the objective of improving their perform-
ances. Chapter 3 introduced the system model that is used for the evaluation and
presents the two algorithms in more detail. It concludes by introducing five different
techniques of using information such as the average and maximum load, the standard
deviation of the load among the nodes and system size and describes the ideas behind.

These techniques have then been integrated into the algorithms and evaluated by
simulation. Chapter 4 described the simulator that has been set up for this evaluation
and defined the metrics that have been used in order to rate the different algorithms.
It further presented the simulation scenarios the algorithms should master and finally
evaluated their performances. During these evaluations an algorithm variant combining
several of the ideas introduced above has been found that significantly increases the
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performance of both original algorithms. When applied to any of the given scenarios, the
imbalance reached at the end of the simulations is about 15−30% lower and the number
of moved items has even been decreased by about 30− 50%. For this achievement three
global estimates are used: the average load, the standard deviation of the load among
the nodes and the number of nodes. Further simulations also verified that this variant
is quite robust regarding the accurateness of the estimates and also scales linearly to
scenarios with higher overall loads or increased number of nodes. With the algorithm
described by Karger and Ruhl, the number of moved items can even be further reduced
by using a so-called self-tuning variant that sets the algorithm’s ε parameter according to
the system’s state. This variation then moved only 40− 65% of the amount the original
algorithm moves by achieving a 15 − 30% lower imbalance. Unfortunately this success
was not observed with the self-tuning variant developed for the second algorithm.

This evaluation supports the thesis from the beginning that load balancing algorithms
can profit from added global information such that they show better performances. As
can also be seen, major improvements can be expected by such variations of an algorithm.

5.2. Future Work

As already mentioned in the evaluation above, some of the algorithm’s aspects need
further investigation. There is at first the concept of time which has been omitted in the
current system model but is needed for real-world applications. It needs to be evaluated
how much more often the new algorithm variants need to be executed in order to show
the improved results they exhibited here. It will then need to be evaluated whether the
additional operations performed by the omitted balance operations, e.g. getting random
nodes, are still negligible in terms of impact on the network.

Another aspect that still needs further attention is a different definition of load. The
system model used here assumes that the load of a node is proportional to the num-
ber of items it stores and so is the transfer cost. This equals a real-world scenario
where every item in the system has the same size and the storage on the nodes is to
be balanced. More often, another aspect of the stored items is crucial for the system’s
performance/availability: the popularity of the stored items and the resulting number
of item accesses. Other definitions of load may take into account the nodes’ (potentially
different) capacities of network bandwidth and latency towards other nodes. Systems
with heterogeneous nodes in general would also need to be further observed.

Finally different (additional) global estimates may further improve the algorithms
and deploying the introduced values in other way might potentially be useful as well.
Especially the concept of self-tuning parameters seems promising and may be further
extended to different algorithms, too, or be used to create a new algorithm from scratch.
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A. Implemented algorithms in Pseudo-Code

A.1. Generic helper functions

These are some of the generic helper functions that are used by every algorithm. They
make use of a calcBalancedLoad method which must be defined for each algorithm.

1 // slide between ni and its successor nj
2 // return the actual load changes this operation will have

3 slideHelper(DHT d, Node ni, Node nj , bool simulate) {
4 // calculate the amount of load that should be moved between the nodes:

5 LoadMove loadMove = calcBalancedLoad(d, ni, nj);
6 if (simulate) {
7 return d.simulateSlide(ni, nj , loadMove);
8 } else {
9 return d.slide(ni, nj , loadMove);
10 }
11 }
12
13 // move nj to support ni
14 // return the actual load changes this operation will have

15 jumpHelper(DHT d, Node nj , Node ni, bool simulate) {
16 // calculate the amount of load that should be moved from ni
17 // to the empty nj after it has been moved:

18 LoadMove loadMove = calcBalancedLoad(d, ni, emptyNode);
19 if (simulate) {
20 return d.simulateJump(nj , ni, loadMove);
21 } else {
22 return d.jump(nj , ni, loadMove);
23 }
24 }
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A. Implemented algorithms in Pseudo-Code

A.2. Variations of calcBalancedLoad

The following method can be used by algorithms which want to even out the load of two
nodes they decided to balance with each other. It will try give both nodes half of the
sum of their loads. The exact number of transferred items is dependent on their load
and will be determined by the slide and simulateSlide operations.

1 calcBalancedLoad_half(DHT d, Node first , Node second) {
2 LoadMove loadToMove;
3 Node nfat = NULL;
4 Node nslim = NULL;
5 if (load(first) > load(second)) {
6 nfat = first;
7 nslim = second;
8 loadToMove.direction = FirstToSecond;
9 } else { // load(first) <= load(second)

10 nfat = second;
11 nslim = first;
12 loadToMove.direction = SecondToFirst;
13 }
14 loadToMove.load = (load(nfat) - load(nslim)) / 2;
15 return loadToMove;
16 }

Another implementation might want to try not to move more than the average load
for which an estimate is retrieved from the DHT. It will otherwise do the same as
calcBalancedLoad half.

1 calcBalancedLoad_avg1(DHT d, Node first , Node second) {
2 LoadMove loadToMove;
3 Node nfat = NULL;
4 Node nslim = NULL;
5 if (load(first) > load(second)) {
6 nfat = first;
7 nslim = second;
8 loadToMove.direction = FirstToSecond;
9 } else { // load(first) <= load(second)

10 nfat = second;
11 nslim = first;
12 loadToMove.direction = SecondToFirst;
13 }
14 double avg = d.getAvgLoad ();
15 loadToMove.load = min(avg , (load(nfat) - load(nslim)) / 2);
16 return loadToMove;
17 }
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A.2. Variations of calcBalancedLoad

The third implementation only balances heavy nodes (those with a load higher than
the average) with light nodes (less load than the average) and never make a light node
heavy. It will also move no more items than are required to make the heavy node
balanced (load equal to the average).

1 calcBalancedLoad_avg1(DHT d, Node first , Node second) {
2 LoadMove loadToMove;
3 Node nfat = NULL;
4 Node nslim = NULL;
5 if (load(first) > load(second)) {
6 nfat = first;
7 nslim = second;
8 loadToMove.direction = FirstToSecond;
9 } else { // load(first) <= load(second)

10 nfat = second;
11 nslim = first;
12 loadToMove.direction = SecondToFirst;
13 }
14 double avg = d.getAvgLoad ();
15 if (load(nfat) > avg && load(nslim) < avg) {
16 loadToMove.load = min(load(nfat) - avg , avg - load(nslim));
17 } else {
18 loadToMove.load = 0;
19 }
20 return loadToMove;
21 }
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A.3. Variations of getBest

The first way of finding a best node among a list of candidates uses only local knowledge
and decides for the node that improves the standard deviation the most (without knowing
its exact value). As pictured in Section 3.2 only the change of the sum of the square of
all loads needs to be examined which is done here.

1 getBest_stddev1(List <Node > candidates , Map <LoadChanges >
results) {

2 Node bestNode = none;
3 double minSumLi2_change = 0;
4 foreach(Node nj ∈ candidates) {
5 double currentChange = 0;
6 foreach(LoadChange lc ∈ results[nj ]) {
7 currentChange += lc.newLoad ()2 - lc.oldLoad ()2;
8 }
9 if (currentChange < minSumLi2_change) {
10 minSumLi2_change = currentChange;
11 bestNode = nj;
12 }
13 }
14 return bestNode;
15 }

A second implementation will get an estimate of the old value of the standard deviation
and an estimate of the size from the DHT and use them to calculate the new value. The
best candidate is at first the one that improves the standard deviation the most, but
additionally to the previous implementation, it is only used if by balancing this node
the standard deviation would increase by at least s/size. Otherwise nothing is done.

1 getBest_stddev2(List <Node > candidates , Map <LoadChanges >
results , double s) {

2 Node bestCandidate = getBest_stddev1(candidates , results);
3 if (exists(bestCandidate)) {
4 int size = d.getSize (); double oldStddev = d.getStddev ();
5 double variance = oldStddev2;
6 foreach(LoadChange lc ∈ results[nj ]) {
7 variance += lc.newLoad ()2 / size - lc.oldLoad ()2 / size;
8 }

9 double stddev =
√
variance;

10 if (stddev >= 0 && stddev < oldStddev * (1 - s / size)) {
11 return bestCandidate;
12 }
13 }
14 return none;
15 }
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A.4. Algorithms based on the item balancing scheme by Karger and Ruhl

A.4. Algorithms based on the item balancing scheme by
Karger and Ruhl

Basic algorithm

The following listing shows the basic algorithm as it is shared between most of the
variations. Each algorithm implementation has to provide an implementation of the
calcBalancedLoad and the getBest method and can override any of the given methods.

1 karger_item(DHT d, double e /*ε*/, int k /* samples */) {
2 foreach (Node ni ∈ d) {
3 // get k unique random nodes that are not equal to ni:
4 List <Node > candidates = d.getUniqueRandomNodes(ni, k);
5 Map <LoadChanges > results;
6 foreach (Node nj ∈ candidates) {
7 results[nj] = karger_helper(d, e, ni, nj , true);
8 }
9 Node nj = getBest(candidates , results);
10 if (exists(nj)) {
11 karger_helper(d, e, ni, nj , false);
12 }
13 }
14 }
15
16 karger_helper(DHT d, double e, int k, bool simulate) {
17 if (load(ni) ≤ e * load(nj)) { // load(nj) > load(ni)
18 return karger_balance(d, nj , ni, simulate);
19 } else if (load(nj) ≤ e * load(ni)) { // load(ni) > load(nj)
20 return karger_balance(d, ni, nj , simulate);
21 }
22 return []; // no changes

23 }
24
25 karger_balance(DHT d, Node ni, Node nj , bool simulate) {
26 if (ni == nj+1) {
27 return slideHelper(ni, nj , simulate);
28 } else {
29 if (load(nj+1) > load(ni)) {
30 return slideHelper(nj , nj+1, simulate);
31 } else { // load(nj+1) ≤ load(ni) -> move nj, balance with ni
32 return jumpHelper(nj , ni simulate);
33 }
34 }
35 return []; // no changes

36 }
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Karger variations

The original karger algorithm uses calcBalancedLoad half and getBest stddev1 as
its implementations for calcBalancedLoad and getBest respectively. Variations of the
original algorithm include the names of the used implementations in their own name,
e.g. karger avg1 stddev2 uses calcBalancedLoad avg1 and getBest stddev2 and
thus has an additional parameter s. It follows the pseudo-code of variants that need to
be implemented inside karger’s main methods.

Variant avg3j

The implementation of avg3j only changes one method from the original algorithm:

1 karger_balance(DHT d, Node ni, Node nj , bool simulate) {
2 if (ni == nj+1) {
3 return slideHelper(ni, nj , simulate);
4 } else {
5 if (load(nj+1) > load(ni)) {
6 return slideHelper(nj , nj+1, simulate);
7 } else if (load(nj) + load(nj+1) ≤ d.getAvgLoad()) {
8 return jumpHelper(nj , ni simulate);
9 }
10 }
11 return []; // no changes

12 }

Self-tuning

The self-tuning variants of the karger algorithm only set a different value of the epsilon
parameter for each node at each execution and then continue as the ordinary karger.
Its main method is thus changed to:

karger_item(DHT d, int k /* samples */) {
foreach (Node ni ∈ d) {
double avgL = d.getAvgLoad(); double maxL = d.getMaxLoad();

double stddev = d.getStddev();

double e = bound(0.01, avgL / max(avgL+stddev, maxL-stddev), 0.24);

// continue as before...

}
}

98 DHT Load Balancing with Estimated Global Information



A.5. Algorithms based on Mercury’s load balancing scheme

A.5. Algorithms based on Mercury’s load balancing scheme

Basic algorithm

As with Karger, the following listing presents Mercury’s basic algorithm shared between
most of its variations which need to provide implementations of the calcBalancedLoad
and the getBest methods and can override any other method.

1 mercury(DHT d, double a /*α*/, int k /* samples */) {
2 foreach (Node ni ∈ d) {
3 if (isLight(ni)) {
4 if (isHeavy(ni+1)) {
5 slideHelper(d, ni, ni+1, false);
6 } else if (isHeavy(ni−1)) {
7 slideHelper(d, ni−1, ni, false);
8 }
9 } else if (isHeavy(ni)) {
10 // get k unique random nodes that are not equal to ni:
11 List <Node > candidates = d.getUniqueRandomNodes(ni, k);
12 Map <LoadChanges > results;
13 foreach (Node nj ∈ candidates) {
14 if (isLight(nj)) {
15 results[nj] = mercury_helper(d, a, ni, nj , true);
16 } else {
17 results[nj] = []; // no changes (do not balance!)

18 }
19 }
20 Node nj = getBest(candidates , results);
21 if (exists(nj)) {
22 mercury_helper(d, a, ni, nj , false);
23 }
24 }
25 }
26 }
27
28 mercury_helper(DHT d, double a, int k, bool simulate) {
29 // ni may be lightly loaded ⇒ use most loaded node of ni, ni−1, ni+1

30 Node n′i = getMostLoaded(ni, ni−1, ni+1);
31 if (nj.isNeighbourOf(n

′
i)) {

32 return slideHelper(d, n′i, nj , simulate);
33 } else if (n′i 6= nj) {
34 return jumpHelper(d, nj , n′i, simulate);
35 }
36 }
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Mercury variations

Similar to karger, the original mercury algorithm uses calcBalancedLoad half and
getBest stddev1 as its implementations for calcBalancedLoad and getBest respect-
ively. Variations of the original algorithm include the names of the used implementa-
tions in their own name, e.g. mercury avg1 stddev2 uses calcBalancedLoad avg1 and
getBest stddev2 and thus has an additional parameter s. It follows the pseudo-code
of variants that need to be implemented inside mercury’s main methods.

Variant avg3j

The implementation of avg3j only changes one method from the original algorithm:

1 mercury_helper(DHT d, double a, int k, bool simulate) {
2 // ni may be lightly loaded ⇒ use most loaded node of ni, ni−1, ni+1

3 Node n′i = getMostLoaded(ni, ni−1, ni+1);
4 if (nj.isNeighbourOf(n

′
i)) {

5 return slideHelper(d, n′i, nj , simulate);
6 } else if (n′i 6= nj && load(nj) + load(nj+1) ≤ d.getAvgLoad()) {
7 return jumpHelper(d, nj , n′i, simulate);
8 }
9 }

Self-tuning

The self-tuning variants of the karger algorithm only set a different value of the alpha
parameter for each node at each execution. Its main method is thus changed to:

mercury(DHT d, int k /* samples */) {
foreach (Node ni ∈ d) {
double avgL = d.getAvgLoad();

double stddev = d.getStddev();

double alpha = bound(1.42, (avgL + stddev) / avgL, 10.00);

// continue as before...

}
}

100 DHT Load Balancing with Estimated Global Information
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Abstract

Gossip peer sampling protocols now represent a solid
basis to build and maintain peer to peer (p2p) overlay net-
works. They typically provide peers with a random sam-
ple of the network and maintain connectivity in highly dy-
namic settings. They rely on the assumption that, at any
time, each peer is able to establish a communication with
any of the peers of the sample provided by the protocol. Yet,
this ignores the fact that there is a significant proportion of
peers that now sit behind NAT devices (70% is a fair ratio
in the current Internet), preventing direct communication
without specific mechanisms. This has been largely ignored
so far in the community. Our experiments demonstrate that
the presence of NATs, introducing some restrictions on the
communication between peers, significantly hurts both the
randomness of the provided samples and the connectivity
of the p2p overlay network, in particular in the presence
of high rate of peers arrivals, departures and failures (aka
churn). In this paper we propose a NAT-resilient gossip
peer sampling protocol, calledNylon, that accounts for the
presence of NATs. Nylon is fully decentralized and spreads
evenly among peers the extra load caused by the presence
of NATs. Nylon ensures that a peer can always establish
a communication, and therefore initiates a gossip, with any
peer in its sample. This is achieved through a simple, yet
efficient mechanism, establishing a path of relays between
peers. Our results show that the randomness of the gener-
ated samples is preserved, that the connectivity is not im-
pacted even in the presence of high churn and a high ratio
of peers sitting behind NAT devices.

1 Introduction

Gossip protocols have received an increasing attention
in distributed computing over the past decade as they are
robust, simple and highly resilient to churn. Gossip random
peer sampling protocols are extensively used in that area to

build and maintain unstructured networks.
In gossip peer sampling, each peer typically maintains a

set of neighbors (called its view) which it periodically ex-
changes with another peer in the system, picked from its
view. This view is expected to be a sample of peers picked
uniformly at random among all peers. Such protocols rely
on the implicit assumption that a peer is able to commu-
nicate with any peer of its view. Yet, it is a well known
fact that today, a large number of peers sit behind NATs [1]
(such peers are called natted in the sequel, while other peers
are called public). NAT devices allow several peers with a
private IP address to share a single public IP address. NATs
implement firewall-like mechanisms that drop unsolicited
incoming messages. Consequently, the presence of NATs
between peers may prevent them to communicate directly.

While this issue has been addressed in the context of
structured p2p networks [1, 7], it has been mostly ignored in
the area of gossip protocols so far. To the best of our knowl-
edge, the only work that deals with NATs in gossip protocol
is [4]. In this solution, a peer p stores in a cache the peers
with which it successfully communicated in the past. The
presence of this cache is expected to ensure that at any time
p has a high probability to know a peer with which it can
communicate. Needless to say, such a simple mechanism
cannot ensure that the network will remain connected. As
we show in the sequel, the presence of natted peers signifi-
cantly impacts the properties of the peer sampling protocol
with respect to both the randomness of the provided sam-
ples and the connectivity. A straightforward cope out is to
associate every natted peer to a public one. Provided the
natted peer accepts incoming messages from its associated
public peer, the latter can act as a relay between this natted
peer and any other peer. Obviously, this imposes a signifi-
cant overhead on public peers which is not acceptable.

In this paper we present Nylon, a fully decentralized
NAT-resilient gossip peer sampling protocol where the re-
lay load is evenly spread among peers be they natted or
public. This protocol ensures that the communication be-
tween a peer and its neighbors is always possible. As soon
as a peer picks a neighbor n in its view to initiate a gossip, it



uses as relay the peer which gave it this specific entry to set
up a communication with n, and becomes itself a relay to n.
Note that the peer might rely on more than one relay to set
up a communication with n. Typically, in our experiments,
the chain of relays contains on average less that 4 peers in a
system comprising 10.000 peers, 90% of which are natted.
We show through a simulation study that Nylon (i) ensures
that the properties of the peer sampling are preserved in the
presence of NATs; (ii) evenly balances the relay load be-
tween peers; and (iii) is highly resilient to churn.

The rest of this paper is organized as follows. We provide
a background on NAT in Section 2, we study the impact of
the presence of NAT on existing peer sampling protocols
in Section 3. Section 4 provides a description of our NAT
resilient protocol. We report experimental results in Section
5. We discuss related works before concluding in Section 6.

2 Background on NATs

This section presents the various NAT devices and de-
scribes NAT traversal techniques allowing UDP message
exchanges between natted peers. More details can be found
in [5]. Note that in this section and in the rest of the paper,
we do not consider nested NAT topologies.

2.1 NAT devices behavior

A NAT device typically orchestrates the communication
between peers sitting behind it and the rest of the network
(external peers). When a natted peer opens an outgoing TCP
or UDP session through a NAT, the NAT assigns the session
a public IP address and port number to allow subsequent
messages from an external peer to be received. In addition,
the NAT assigns the session a filtering rule, which specifies
whether messages received from external peers on the as-
signed public IP address and port should be forwarded or
not to the natted peer’s private IP address and port. The
public IP address and port mapping, as well as the filtering
rule, only remain valid a limited time after the last message
was sent (or received) in a session.

Existing NATs differ in the way they assign public IP
addresses and ports, as well as in the filtering rules they
implement. We briefly describe the four main NAT types.

Full Cone (FC). This is the most permissive type of NAT.
The NAT assigns the same public IP address and port to all
sessions started from a given natted peer’s IP address and
port. These sessions all share the same filtering rule, which
states that the NAT must forward all incoming messages.

Restricted Cone (RC). This type of NAT imposes restric-
tions on the IP addresses of external peers that can send
messages to natted peers. As for FC NATs, the RC NAT
assigns the same public IP address and port to all sessions

started from a given natted peer’s IP address and port. All
the sessions started from a given natted peer’s IP address
and port, and involving the same target IP address, share
the same filtering rule: the NAT only forwards messages
coming from this IP address.

Port Restricted Cone (PRC). This type of NAT imposes
restrictions on the IP addresses and ports of external peers
that can send messages to natted peers. As for the previ-
ous NAT types, the NAT assigns the same public IP address
and port to all sessions started from a given natted peer’s IP
address and port. Nevertheless, each session started from
a given natted peer’s IP address and port towards a target
IP address and port, has its own filtering rule. This rule
states that the NAT only forwards messages coming from
the target IP address and port to which the session has been
opened.

Symmetric (SYM). This is the most restrictive type of
NAT. For every session started from a given natted peer’s IP
address and port, the NAT always assigns the same public
IP address but a different port. Note that contrarily to other
NAT types, the mapping is destination-dependent. The fil-
tering rule is similar to the one used in PRC NATs: the NAT
device only forwards messages coming from the target IP
address and port to which the session has been opened.

2.2 NAT traversal techniques

The public IP address and port mapping and the filtering
rules determine how peers can communicate. As long as
a peer behind a FC NAT regularly sends or receives mes-
sages through the public address and port the NAT device
assigned to it, it will have a valid filtering rule forcing the
NAT device to forward it all incoming messages. Rather,
if the target peer is behind a RC, PRC, or SYM NAT, the
source peer willing to communicate with it has to apply
a so-called NAT traversal technique. NAT traversal tech-
niques rely on the use of rendez-vous peers (RVP) able to
exchange messages with both the source and the destina-
tion peers1. There exist two different techniques depending
on the combination of source’s and target’s NAT type. The
two techniques are described below. The table summarizes
which one should be used in various configurations. Source
peer’s NAT type is given in the most-left column, whereas
target peer’s NAT type is given in the heading row.

public RC PRC SYM
public direct hole punching hole punching relay

RC direct hole punching hole punching hole punching
PRC direct hole punching hole punching relaying
SYM direct mod. hole punching relaying relaying

1RVP is usually a public node to which the source and destination peers
periodically send PING messages.



Hole punching. In the hole punching technique, the source
peer sends a PING message to the destination peer. Con-
sequently, the source peer’s NAT device creates a filtering
rule forcing it to forward incoming messages from the des-
tination peer. The source peer then sends an OPEN HOLE
message to an RVP, indicating that it wants to commu-
nicate with the destination peer. The RVP forwards the
OPEN HOLE message to the destination peer. As soon as
it receives the OPEN HOLE message, the destination peer
sends a PONG message to the source peer. Thereafter, the
NAT device of the destination peer has a valid filtering rule
allowing incoming messages from the source peer (we say
that there is a hole in the NAT). The source peer can start
sending messages to the destination peer as soon as it re-
ceives the PONG message2. Note that for most combina-
tions (i.e. those not involving SYM NATs), after the hole
punching technique has been applied, the destination peer
can also send messages directly to the source peer.

Relaying. In some cases, the hole punching mechanism
cannot be used: when the destination peer is behind a SYM
NAT and the source peer is either behind a PRC NAT or a
SYM NAT, or when the destination peer is behind a PRC
NAT and the source peer is behind a SYM NAT. This is
due to the fact that the SYM NAT device assigns a different
port to every new session, and this port is not known by the
source peer. The only possibility for sending messages to
the destination peer is then to use the RVP as a relay.

3 Impact of NATs on existing protocols

Various peer sampling protocols have been proposed [10,
15, 18]. The protocols described in [10, 15] rely on random
walks. These protocols assume a fairly static peer intercon-
nection topology and are not specifically designed to sus-
tain high levels of churn. Conversely, gossip protocols have
been designed to handle peers joining and leaving the sys-
tem at a high rate. We focus on such protocols in the sequel.

A generic gossip peer sampling protocol is described in
Figure 1. The system is composed of a set of uniquely iden-
tified peers, each one storing references to few other peers
into a view. Typically, the view size is in the order of log(n),
where n is the number of peers in the network.

The generic protocol works as follows: each peer peri-
odically initiates a communication (i.e. gossips) with one
target peer selected from its view. The source and/or the
target peer exchange their views. When a peer receives a
view, it merges it with its view, and truncates the result to

2When the source peer is behind a SYM NAT, the hole punching tech-
nique needs to be slightly modified. Indeed, as the destination peer does
not know the public IP address and port that has been assigned to the source
peer, it uses the RVP to send the PONG message to the source peer.

a constant maximum view size. This is typically called a
view shuffling.

A peer sampling protocol is expected to provide the fol-
lowing properties: (i) the graph formed by peer views re-
mains connected, and (ii) every peer in the network has the
same probability to be selected by other peers (the provided
sample is random).

1 every s h u f f l i n g p e r i o d u n i t s do
2 t a r g e t ← s e l e c t g o s s i p d e s t i n a t i o n ( view )
3 send 〈REQUEST , view 〉 to t a r g e t
4 i f p u s h p u l l then
5 r e c e i v e 〈RESPONSE , v i e w t 〉 from t a r g e t
6 view ← m e r g e a n d t r u n c a t e ( view , v i e w t )
7 i n c r e a s e v i e w a g e ( )

8 on r e c e i v e 〈REQUEST , v i e w s 〉 from s o u r c e do
9 i f p u s h p u l l then

10 send 〈RESPONSE , view 〉 to s o u r c e
11 view ← m e r g e a n d t r u n c a t e ( view , v i e w s )
12 i n c r e a s e v i e w a g e ( )

Figure 1. Generic peer sampling protocol.

The generic gossip-based peer sampling protocol de-
scribed in Figure 1 can be configured along the following
three dimensions [9]: (i) Gossip target selection: can either
be done randomly (rand), or by picking the oldest peer in
the view (tail); (ii) View propagation: either only the source
peer sends its view to the target peer (push), or both source
and target peers exchange their view (push/pull);

(iii) View merging: when truncating a view, randomly
chosen peers are kept (rand), or the youngest ones (healer),
or the ones received from the other peer (swapper).

We evaluated six different configurations of the generic
protocol described in the previous section. The view prop-
agation strategy is the same in all the configurations and is
set to push/pull, which is most used in the literature as a
push mode consistently exhibits significantly worse perfor-
mances than push/pull. The gossip target selection and view
merging strategies that we evaluated are those described
above.

The experiments have been obtained through simula-
tions. The network size is 10,000 peers, and the bootstrap-
ping procedure is such that at the beginning of the simula-
tion all peers’ views are filled with randomly chosen public
peers. The initial graph is thus always connected. No churn
was considered. A more detailed description of the exper-
imental setup is done in Section 5. Moreover, for the sake
of simplicity, only PRC NATs are considered in the experi-
ments presented in this section. We evaluated the protocols
along the following metrics: (i) the resilience of the pro-
tocol with respect to network partitioning; (ii) the ratio of
stale entries in the views and; (iii) the randomness of the
resulting views.

Network partitions. Figure 2 shows the size of the biggest



cluster as a function of the percentage of natted peers for
two view sizes (15 and 27). The biggest cluster size is ex-
pressed as the percentage of peers that belong to it. We
clearly see that the graph partitions when the percentage of
natted peers reaches a certain threshold (50% and 70% for
the considered view sizes). We observe that, as expected,
increasing the view size has a positive impact on the biggest
cluster size for all protocols. This result is not surprising as
it is well known that a graph remains connected with only a
few neighbors. One can legitimately consider that increas-
ing the view sizes is enough to prevent partitions in the pres-
ence of NATs. We show in the reminder of this section that
increasing the view size is not a satisfactory solution with
respect to the two other metrics, the randomness and ratio
of stale entries.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 40  50  60  70  80  90  100

Av
er

ag
e 

bi
gg

es
t g

ra
ph

 s
ize

 (%
)

Percentage of NATs

push/pull,rand,healer
push/pull,rand,blind

push/pull,rand,swapper
push/pull,tail,healer

push/pull,tail,blind
push/pull,tail,swapper

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 40  50  60  70  80  90  100

Av
er

ag
e 

bi
gg

es
t g

ra
ph

 s
ize

 (%
)

Percentage of NATs

push/pull,rand,healer
push/pull,rand,blind

push/pull,rand,swapper
push/pull,tail,healer

push/pull,tail,blind
push/pull,tail,swapper

Figure 2. Size of the biggest cluster for view
sizes equal to 15 (top), 27 (bottom).

Stale references. Figure 3 shows the average percentage of
stale references in peer views for two different view sizes
(15 and 27). A reference to a peer is said to be stale when
it is not possible to communicate with this peer (due to the
presence of NATs). We observe that a small proportion of
natted peers suffices to cause peers to maintain stale ref-
erences in their view. This percentage of stall references

almost linearly grows with the percentage of natted peers.
Moreover, we observe that the percentage of stale refer-
ences increases when the view size increases, and that the
percentage of stale references decreases for view size 15
when the percentage of NATs reaches a certain threshold
(85%). These two observations can be easily explained by
two facts. First, increasing the view size decreases the prob-
ability that two peers shuffle with each other twice during
the lifetime of a NAT filtering rule. Second, with a large per-
centage of NATs and view size 15, the network starts to sig-
nificantly partition in many small clusters. Consequently,
two peers within a cluster have a very high probability to
shuffle with each other twice during the lifetime of a NAT
filtering rule.
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Figure 3. Percentage of stale references.

Randomness. Figure 4 shows the average ratio of non-stale
references that correspond to natted peers. Again, we con-
sider two different view sizes (15 and 27). For instance, the
plot shows that with 40% of natted peers and a view of size
15, peers have on average only 10% of their non-stale refer-
ences that correspond to natted peers. This typically means
that 40% of the peers are sampled only 10% which is ob-
viously a non uniform random sampling. As in Figure 3,
we observe that increasing the view size negatively impacts
the protocol. We also observe that when the percentage of
NATs reaches a certain threshold (70%), the average ratio of
non-stale references increases. The explanation is similar to
the one given for Figure 3.

4 The Nylon protocol

In this section, we present Nylon, a NAT-resilient gos-
sip peer sampling protocol. A commonly used technique
for traversing NATs is to use public RVPs [11, 19]. This
technique could be used to build a NAT-resilient peer sam-
pling protocol as follows: a source peer needing to com-
municate with a natted peer, would contact first the natted
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Figure 4. Ratio of non-stale references to-
wards natted peers.

peer’s public RVP to forward an OPEN HOLE message to
the target peer. This simple scheme suffers however from
several drawbacks. First, the extra load induced by the pres-
ence of NATs is supported by the public peers. This creates
an uneven distribution of the load where public peers con-
tribute much more to the protocol than natted peers.

Another issue is the non uniform impact of failures of
natted and public peers. A public peer’s failure invalidates
all references to natted peers bound to it. A possible solu-
tion is to use several RVPs for each natted peer. Neverthe-
less, this solution increases the bandwidth consumption.

In order to overcome the limitations imposed by using
only public RVPs, we design a fully decentralized protocol
that uses both natted and public peers as RVPs. Relying
on natted peers for implementing RVPs is challenging: ef-
fectively, an RVP must be reachable by all peers willing to
communicate with peers for which it acts as RVP. This is
obviously impossible to ensure that a natted RVP will have
valid filtering rules for every peer in the system. Instead,
peers may rely on a routing infrastructure to send messages
to any RVP in multiple hops. This is for instance what is ap-
plied in Distributed Hash Tables (DHT), where each peer in
the DHT maintains valid filtering rules for the natted peers
that are in its routing table. When a peer needs to commu-
nicate with an RVP, its message is routed using the DHT.
Unfortunately, it is not possible to use such a routing infras-
tructure in the large-scale, highly dynamic, environments
that we consider in this paper.

The design of Nylon relies on two observations:

1. A gossip protocol does not require all peers to be
reachable at any time by all peers. Effectively, at a
given time, the only peers a given peer might want to
communicate with are those that are in its view.

2. In gossip protocols, although a peer should be able to

communicate with any peer in its view at any time, it
does not. Instead, a single peer of its view is picked
upon each gossip operation. It may be the case that a
peer p in the view of a peer q is removed from q’s view
without p and q effectively gossip with each other.

Nylon leverages these two observations to build NAT-
resilient gossip-based peer sampling protocols in which all
peers can act as RVPs. The first observation is used to im-
plement a hole punching protocol for only a subset of the
system. The second observation is used to implement a re-
active hole punching protocol which consists in perform-
ing the actual hole punching protocol between two peers
only when needed, namely when a gossip between the two
peers is initiated. This avoids to systematically send an
OPEN HOLE message to all peers that p adds in its view.

The Nylon protocol. The main idea of Nylon is to imple-
ment reactive hole punching. Intuitively, this works as fol-
lows: a peer only performs hole punching towards peers it
gossip with. Hole punching is implemented using a chain of
RVPs that forward the OPEN HOLE message until it reaches
the gossip target.

The chain of RVPs is built as follows. Consider the case
of a peer n1 shuffling with a peer n2. After having per-
formed hole punching towards n2 (using a chain of RVPs),
peer n1 and n2 can directly communicate with each other.
Thus, they both become RVP for each other. Consider now
that later, one of them, say n2, shuffles with a peer n3 and
gives it a reference to n1. Before shuffling, peers n2 per-
forms hole punching towards n3. Consequently, as between
n1 and n2, peers n2 and n3 both become RVP for each
other. Finally, consider that n3 shuffles with a peer n4 and
gives it a reference to n1. A chain of RVPs has thus been
created, as shown in Figure 5. This chain allows n4 to shuf-
fle with peer n1. For this purpose, it performs hole punching
towards peer n1 by sending an OPEN HOLE message to n3
that will forward it to n2, that will forward it to n1.

OPEN_HOLE
n4

natted

NAT rules

n3: allow

others: deny

rule TTL
170

routing table
dest RVP
n1 n3
... ...

TTL
120

view
n1
...

OPEN_HOLE
n3

natted

NAT rules

n2: allow

others: deny

rule TTL
140

routing table
dest RVP
n1 n2
... ...

TTL
120

view
...

OPEN_HOLE
n2

natted

NAT rules

n1: allow

others: deny

rule TTL
120

routing table
dest RVP
n1   -
... ...

TTL
120

view
...

n1
natted

NAT rules

n2: allow

others: deny

rule TTL
120

routing table
dest RVP

-
TTL

view
...

120n2

n3: allow 140 n4: allow 170

Figure 5. Nylon operating principle.

As illustrated in Figure 5, in addition to its view, each
peer maintains a routing table. This routing table maintains
the mapping between a natted peer in its view and its asso-
ciated RVP.



For each peer n in the routing table, the RVP is the peer
it shuffled with to obtain the reference to n. RVPs inNylon
are constantly changing and following the reactive flavour
of Nylon, RVPs do not proactively refresh holes. There-
fore, a time to live (TTL) is associated to each RVP entry
in the routing tables. TTLs are exchanged by peers together
with their views and are updated every shuffling period, and
every time a message from one RVP stored in the routing
table is received. Note that the TTL mechanism assumes
that there is a known upper bound on the latency between
each pair of peers3.

Pseudocode. The pseudocode of the Nylon protocol is
presented in Figure 6. The basis of the protocol is the
(push/pull, rand, healer) protocol presented in Section 3.
The only additions to the protocol are for handling NAT
traversal techniques and implementing the RVP chaining
mechanism presented in the previous paragraph. The rout-
ing table code is not presented in the figure. It is abstracted
in four methods. The next RVP() method returns the
next RVP to be used for a given destination. Note that if
the destination is directly reachable (because either the des-
tination is public or the peer acts as an RVP for the des-
tination), the method returns the destination itself. The
update next RVP() method is used to update (or cre-
ate) an entry in the routing table. It is called whenever a
message is received. The update routing table()
method is called to update the routing table. It takes as
parameter a view that has been received during a shuffle.
This method adds an entry in the routing table for each
entry in the view and specifies that the RVP for these en-
tries is the peer with which the shuffle was performed. The
decrease routing table ttls() method is used
to decrease the TTL of routing table entries, and purge the
expired ones.

5 Evaluation

In this section, we report the results of the evaluation of
theNylon protocol. We simulated a system of 10,000 peers
and varied the percentage of peers sitting behind NATs. In
short, we show that (i) it achieves uniform random peer
sampling, (ii) it induces a reasonable overhead and homo-
geneously balances the load among natted and public peers,
(iii) it achieves reasonable latency, and (iv) it is highly re-
silient to churn. Before describing these results in more de-
tail, we first present the experimental setup.

Experimental settings. To the best of our knowledge, ex-

3If the upper bound is not met, this could cause an entry in the routing
table to be stale. We show in Section 5 that the protocol resists to the
simultaneous departure of 50% of the nodes. This shows that the protocol
would resist to half of the message exchanges simultaneously exceeding
the upper bound.

1 every s h u f f l i n g p e r i o d u n i t s do
2 t a r g e t ← s e l e c t g o s s i p d e s t i n a t i o n ( view )
3 i f ( t a r g e t i s p u b l i c

or next RVP ( t a r g e t ) = t a r g e t ) then
4 send 〈REQUEST , view , s e l f , t a r g e t 〉 to t a r g e t
5 e l i f ( ( t a r g e t i s SYM and s e l f i s PRC)

or s e l f i s SYM) then
6 / / Use r e l a y i n g
7 send 〈REQUEST , view , s e l f , t a r g e t 〉

to next RVP ( t a r g e t )
8 e l s e
9 / / Hole punch ing

10 send 〈OPEN HOLE , s e l f , t a r g e t 〉 to next RVP ( t a r g e t )
11 i f s e l f i s not p u b l i c then
12 send 〈P ING〉 to t a r g e t
13 i n c r e a s e v i e w a g e ( )
14 d e c r e a s e r o u t i n g t a b l e t t l s ( )

15 on r e c e i v e 〈REQUEST , v iew s , s r c , d e s t 〉 from p do
16 upda te nex t RVP ( p , p , HOLE TIMEOUT)
17 i f d e s t 6= s e l f then
18 / / Forwarding
19 send 〈REQUEST , v iew s , s r c , d e s t 〉 to next RVP ( d e s t )
20 e l i f ( s r c i s SYM and s e l f 6= p u b l i c )

or ( s e l f i s SYM and s r c 6= p u b l i c ) then
21 / / Use r e l a y i n g
22 send 〈RESPONSE , view , s r c 〉 to next RVP ( s r c )
23 e l s e
24 send 〈RESPONSE , view , s r c 〉 to s r c
25 view ← m e r g e a n d t r u n c a t e ( view , v i e w s )
26 u p d a t e r o u t i n g t a b l e ( view )

27 on r e c e i v e 〈RESPONSE , v i e w t , d e s t 〉 from p do
28 upda te nex t RVP ( p , p , HOLE TIMEOUT)
29 i f d e s t 6= s e l f then
30 / / Forwarding
31 send 〈RESPONSE , view , d e s t 〉 to next RVP ( d e s t )
32 e l s e
33 view ← m e r g e a n d t r u n c a t e ( view , v i e w t )
34 u p d a t e r o u t i n g t a b l e ( view )

35 on r e c e i v e 〈OPEN HOLE , s r c , d e s t 〉 from p do
36 upda te nex t RVP ( p , p , HOLE TIMEOUT)
37 i f d e s t = s e l f then
38 send 〈PONG〉 to s r c
39 e l s e
40 send 〈OPEN HOLE , s r c , d e s t 〉 to next RVP ( d e s t )

41 on r e c e i v e 〈P ING〉 from p do
42 upda te nex t RVP ( p , p , HOLE TIMEOUT)
43 send 〈PONG〉 to s r c

44 on r e c e i v e 〈PONG〉 from p do
45 upda te nex t RVP ( p , p , HOLE TIMEOUT)
46 send 〈REQUEST , view , s e l f , p〉 to p

Figure 6. The Nylon protocol.



isting p2p simulators do not take into account NATs. We
thus developed a Java-based, event-driven simulator that
takes into account the four kinds of NATs described in Sec-
tion 2. Message latency was set to 50ms, the hole timeout
was set to 90s (a typical vendor value), and the shuffling
period was set to 5s. Experiments were conducted on a
10,000 peers system. Although we experimented with all
four kinds of NATs, experiments with FC NAT are not re-
ported. In practice, as explained in Section 2, peers behind
FC NATs behave similarly to public peers as long as they
frequently send or receive messages. The distribution we
used is the following: 50% of RC NATs, 40% of PRC NATs,
and 10% of SYM NATs. Note that we evaluated other dis-
tributions and got comparable results. Peers were initial-
ized with a view composed of a random set of public peers
to ensure connectivity at the start of each experiment. Un-
less explicitly mentioned otherwise, the view size is set to
15. All experiments were run with 30 different seeds, the
results reported are the average of those 30 runs. Finally,
experiments lasted a long enough time to observe, most of
the time, a negligible variance. However, any non negligible
observed variance is indicated in the graphs.

Correctness. We assessed the correctness of Nylon with
different experiments. Due to space limitation, we do not
show graphs for these experiments. First, we checked that
there were no network partitions and no stale references in
peer views. Moreover, we assessed randomness using the
diehard test suite for random number generators [14].

Network bandwidth usage. We made experiments to as-
sess the bandwidth usage of Nylon. We computed the av-
erage number of bytes per second that each peer sends and
receives as a function of the percentage of NATs. Results
are depicted in Figure 7. Nylon consumes less than 350B/s.
For comparison, we plotted the average number of bytes per
second consumed by the (push/pull, rand, healer) configura-
tion (line “reference”). We also observe that the bandwidth
usage does not evolve linearly with the number of NATs.
This comes from the fact that the length of RVP chains do
not evolve linearly with the number of NATs (see next sec-
tion).

As explained in Section 4, one of the objectives ofNylon
is to ensure that all peers contribute almost equally to the
protocol4. This is reflected in Figure 8 which shows the av-
erage number of bytes per second sent and received by pub-
lic and natted peers. We observe that public peers send and
receive between 10% and 20% less bytes per second than
natted peers. This comes from the fact that (i) all peers can
act as RVP, and (ii) public peers do not receive OPEN HOLE
messages for themselves and do not send PONG messages.

Latency. The latency is expressed in the number of hops re-
4The only exception being that messages sent and received by peers

sitting behind SYM NATs must be relayed by public peers.
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quired for a peer to establish a message exchange with the
peer it selected for shuffling. The latency towards public
peers is obviously equal to one hop. Regarding natted des-
tinations, the protocol requires sending one PING and one
PONG message. The main factor impacting latency is the
length of the RVP chain used to send the OPEN HOLE mes-
sage. Figure 9 shows the average length of RVP chains with
two different view sizes (15 and 27). Not surprisingly, we
observe that the number of RVPs increases with the percent-
age of NATs. Note that this increase is not linear, which ex-
plains the non-linear bandwidth usage observed for Nylon
in Figure 7. With a view size of 15, the RVP chain length
ranges from 1 (with 10% of NAT) to 3. The average relaying
latency of Nylon is thus smaller than 4 hops, which is very
reasonable. The fact that the length of RVP chain is small
limits the TTL expiration. Finally, an interesting observa-
tion is that the average RVP chain length decreases when
the view size increases. This result is consistent with ran-
dom graph theory results on the average distance between
peers in a graph as a function of their in and out degree [3].
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natted destination.

Churn resiliency. We conclude this section by an analysis
of the behavior of Nylon under massive churn. The ex-
periments consisted in removing a varying fraction of peers
after each of them had performed 500 shuffles. Public and
natted peers were removed proportionally to their number
in the system. We present results in Figure 10. The differ-
ent bar types correspond to different percentages of NATs.
On the X axis is represented the percentage of peers that
are leaving the system. The Y axis represent the size of the
biggest cluster 1500 shuffles after the start of the massive
churn. We observe that Nylon is highly resilient to churn.
It tolerates the departure of 50% of the peers without parti-
tioning. Even with higher percentage, it exhibits very good
performance. This result can be explained by the fact that
each peer can be reached by different chains of RVPs at the

same time.
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6 Related works and conclusion

Several systems have tried to overcome the problem of
limited connectivity [13, 16, 12]. All these systems rely
on an explicit structure to route messages on top of a gos-
sip protocol. They use proactive mechanisms to ensure that
communication between natted peers is possible under the
implicit assumption that the network is fairly static. Some
works have also been done in the context of Distributed
Hash Tables (DHTs) [11, 17]. Traversing NATs in such
systems can be achieved provided that each peer has a rel-
atively static set of neighbors. In addition the structure of
DHTs can be used as a natural vector to assign public peers
to natted peers. Let us also note that there exist protocols al-
lowing the creation of permanent NAT filtering rules: NAT-
PMP [2] and UPnP [8]. These protocols could be used in
gossip protocols to avoid the problems caused by the pres-
ence of NAT devices. Unfortunately these protocols have
limitations. First, they are not supported by all NAT de-
vices. Second, they pose security issues since any applica-
tion running on a peer can open ports on the NAT device
without any approval or notification to the node’s user.

Finally, some works have also been done at the network
level. For instance, [6] proposes an extension to the routing
process of IPv4 in order to take into account NAT devices.
Nevertheless, the proposed architecture requires modifica-
tions to NAT devices and to end hosts.

While taking into account NATs can be achieved in fairly
static systems, this is challenging in the context of highly
dynamic systems.

In this paper, we have proposedNylon, a fully decentral-
ized NAT-resilient gossip peer sampling protocol. Nylon
leverages the fact that in a gossip protocol each peer only



needs to communicate with a subset of peers contained in its
view and does actually communicate with an even smaller
subset of the peers. It uses a reactive hole punching proto-
col, which creates a path of relay peers to setup communica-
tions. Experiments have shown that Nylon accommodates
a large proportion of NATs without impacting the properties
of the peer sampling. Moreover, Nylon evenly spreads the
overhead induced by NATs between public and natted peers
and is highly resilient to churn.
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Adaptive deployment in P2P systems with ”Salute”

Willy Malvault, Vivien Quéma and Jean-Bernard Stefani

Abstract

This paper presents ”Salute” : a peer-to-peer middleware that can manage a poten-
tially large set of concurrent application deployments among a wide and heterogenous
pool of resources (the cloud). Salutes combines new and well-known gossiping proto-
cols to build and maintain its infrastructure, so that it inherits their high scalability
and robustness properties.

1 Introduction

Salute1 is a fully distributed framework that manages multi-scaled application deploy-
ments in large P2P networks. It is hosted by an unstructured P2P network overlay and
its design relies on gossip based protocols [8], making it scalable and robust to peer
churn. Salute allows users to book any pre-specified subset of nodes that match a slice
specification. These nodes are then organized into a sub-overlay network called slice,
where applications can be deployed. The global architecture of Salute is presented in
the Figure 1.

Membership

Join

Resource
Profiling Resource Allocation

Running Slices

Monitor Manage

Figure 1: Salute middleware overview

The basis of the middleware infrastructure is an unstructured network overlay built
and maintained by a gossip peer sampling service. A resource profiling service cate-
gorizes nodes in the overlay according to their capacities and availability. A resource
allocation service called Sarcasm builds the slices from their specification and books
participating peers. Sarcasm also provides an autonomous slice monitoring and man-
aging service that maintains the resource allocation despite node churn in the slice
hosting the application. Some scenarios using Salute could be : trading resources in
an anonymous P2P community, or allocating resources to volunteer computing, or
driving the deployment of several collaborating P2P services over a large collection of
workstations.

1Slice Allocation in Large UnstrucTured Environments
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The document is organized as follow : Section 2 surveys the related work and back-
ground technology, Section 3 describes the architecture of Salute, Section 4 details the
Sarcasm reservation mechanism, Section 5 presents the resource profiling service and
Section 6 discusses the evaluation of the Salute middleware.

2 Background and related work

In this section, the related work is presented the advantages and limitations of existing
solutions are discussed in the context of large scale service deployment. In addition
we give a brief presentation of all gossip-based services used by Sarcasm to provide
resource allocation features.

2.1 Distributed Slicing

2.1.1 Attribute based slicing

The attribute based slicing protocols [17, 12, 13] are the first gossip-based solutions
proposing to divide an unstructured overlay network into several slices. The slicing
specification used by these protocols has the form S(Att, Ns) where Att refers to an
attribute used to compare peers capability, and where Ns is the number of slices re-
quested. Following this specification, peers estimate their ranking among all other
members and are assigned to a slice according to that ranking. By instance, the fol-
lowing specification S(CPU,N) would produce N slices where the lower CPU capable
peers belong to the first slice and the most capable ones to the last slice. The simplified
idea of this gossip-based protocols is to figure out peers ranking using samples coming
from an underlying peer sampling service [19]. Each peer periodically compares its
attribute value to a small sample of other peers and deduce the slice it belongs to from
these comparisons. As shown in [13], the slicing service can leverage the uniformity of
attribute space distribution, resulting in accurate slicing performances. While being
accurate, scalable and robust to system dynamism, classic slicing protocols provide a
limited service to drive peer-to-peer adaptive deployments. Actually attribute based
slicing protocols are not capable to efficiently reconfigure their slicing specification and
their specification doesn’t take into account the ”absolute” size of slices they produce.
An example of classic slicing is presented in Figure 2 where the slice specification is
S(xxx, 4). In the scenario A the system is composed of 6 peers. Applying the classic
slicing protocol with the specification S leads to the creation of four slices. Two of
these slices contain 1 single peer and the two others contain 2 peers. The scenario B
describes the evolution of the same system with two new peers. In that scenario the
system is composed of 8 peers and the slicing specification remains unchanged. The
classic slicing protocol would so allocate 2 peers to each slice. These two scenarios
introduce the principle of the classic slicing protocols : the slicing specification is al-
ways respected so that the number of slice is independent from the system size, but
the slice sizes do depend from the system size. The classic slicing protocols are so not
good candidates to provide highly configurable deployment solutions as the size of the
slices can’t be configured.

2.1.2 Absolute slicing

In [22], Montresor and al. propose an alternative version of the slicing problem called
absolute slicing. The goal is to assign a specified number of nodes to a slice and
maintain such assignment in spite of churn. The slice specification is defined as follow :
S(c, s) where c is a condition expressed through a first-order logic over the set of peers’
attributes and s is the desired slice size. The protocol is a combination of existing p2p
services such as peer sampling service, epidemic broadcast protocol and decentralized
aggregation protocol. The Figure 3 describes an example of absolute slicing where the
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Figure 2: classic slicing

specification is S(Att > 22, 2) (the peers satisfying the condition Att > 22 are in grey
on the figure). In the scenario A 6 peers are composing the system. Once the absolute
slicing protocol has been deployed two slices are built : one containing two peers
that satisfy the slicing specification and one slice containing all other peers. In the
scenarios B the system is composed of 8 peers and the resulting slicing is the same as
in scenario A : one slice contains two peers that satisfy the specification and one other
slice contains all other peers. This example introduces the principle and drawbacks
of the absolute slicing protocol, while the slice size is conform to the specification
and is independent from the system size, only one slice can be built regardless the
composition and the size of the system. The absolute slicing protocol provides good
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Figure 3: absolute slicing

specification possibilities regarding to the classic slicing protocols but has a major
limitation : it can only build and maintain one single slice. For that reason it is not
a good candidate for a large scale application deployment solution.
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2.2 Synchronization

In [3] authors propose a decentralized solution capable of synchronizing all peers within
an unstructured overlay network. This solution is a gossip based protocol that is in-
spired by mathematical models of flash synchronization in certain species of fireflies.
The protocol is scalable and robust to churn. The specification of that protocol is
that peers in a distributed system generate periodic local “heartbeat” events approxi-
mately at the same time. Therefore the protocol used to maintain the synchronization
assumes that peers can access to local clocks that can measure the passage of real
time with reasonable accuracy that is, with a small short-term drift. Evaluations
demonstrated that under several “voluntarily pessimistic” scenarios and parameter
settings, the nodes synchronize their heartbeats to fall in an interval of 1%-10% of the
cycle length of the periodic heartbeats. We assume that such a service can easily be
incorporated in the set of gossiping protocols that compose the core of the Salute in-
frastructure. In the next sections of this document, peers are considered to be able to
synchronize any events within a given period, particularly to start or end the resource
reservations.

2.3 Resource availability

2.3.1 Availability Patterns

While most of studies about resource availability in peer-to-peer systems [10, 5, 21, 24,
14] show that a large portion of peers have truly random behavior, these peers can be
classified into several uptime categories, that would be very helpful to drive large scale
application deployments. As far as we now, the first availability categorization was
presented in [21]. In this work, authors first analyzed the availability history of peers
in two largely distributed systems : Microsoft corporate network [6] and the PlanetLab
testbed [4]. Mickens et. al. wanted to show the existence of availability patterns. In
order to exhibit such patterns, they apply a technique inspired from [10], where the
availability of a node is modeled as a binary signal, stating to 0 when the node is
offline and to 1 when it is online. Initially Douceur detected diurnal behaviors in [10]
by applying a Fourier transform to the availability signal and looking in for spikes in
the daily and weekly frequencies. Mickens et. al. categorize peers that pass the test
of Douceur into a class called “work week periodic”. They found that almost 10% of
nodes in the Microsoft corporate network belong to this class, while none of PlanetLab
peers do. This statement seems to fit the reality as PlanetLab is mainly composed
of long running dedicated servers, while stations composing the Microsoft corporate
network are likely to behave in accordance with work period. While studying further
the availability of hosts in PlanetLab, Mickens and al. found that 67% of nodes have
low frequency availability changes, meaning that their online and offline periods are
long running. This uptime class is called “long stretch” and 20% of the Microsoft
corporate network also belong to this category. These two uptime classes regroup the
periodic availability patterns, but Mickens and al. also defined uptime classes for peer
following aperiodic patterns. These peers are called “unstable” and are categorized
according to their averaged uptime. Unstable peers are classified into five classes
according to their ratio uptime

utime+downtime . A peer being available more than 90% of time
would belong to the “always on” uptime category, while a peer available less than 10%
of the time would belong to the “always off” class. Three other intermediate classes
are defined to fit all possible availability patterns : the “unstable 10-50”, “unstable
50-70” and “unstable 70-90” uptime classes.
Once existence of availability patterns have been confirmed, Mickens. and al. devise
a collection of algorithms providing per peer availability prediction. These algorithms
implemented as “predictors” uses the history of peers to forecast their availability. The
prediction algorithms used in [21] will not be detailed in this document. Therefore,
Mickens and al. show that the predicatability of peers availability depends on the
proportion of some uptime classes within the peer-to-peer community. The main
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results was that “always on” peers are more accurately predictable and that long
stretch peers only support short term predictions. Using the uptime classes defined
by Mickens and al. would allow peer-to-peer applications to fit the available resources
to their deployment requirements.

2.3.2 Toward an availability aware deployment

Modeling the availability in a large collection of heterogeneous resources is mandatory
to drive concurrent application deployments. Actually many peer-to-peer protocols, if
not all, are devise to face the dynamism of the peer-to-peer community hosting them.
This dynamism is called churn and model the continuous arrival and failure (or depar-
ture) of peers. Therefore each peer-to-peer applications has a different tolerance to the
churn intensity. To name an extreme case : in FlashBack [9] the peer-to-peer service
can be satisfied by a collection of resources reaching an extreme churn of 90% every
ten seconds. Few distributed applications are able to work well under such extreme
conditions, but this example shows that peer-to-peer applications may have different
requirements in term of churn profile. Studying related work about resources avail-
ability help us to choose the suitable solution to devise a “churn aware” deployment
solution. In particular the Section 3.2 explains how the availability patterns defined
in [21] can be used in Salute’s slice specification.

3 The deployment environment

This section describes Salutes deployment environment. It first explains how concur-
rent applications can be deployed on a “cloud like” resource pool and introduces the
need of controlled resources allocation. In a second sub-section the slice specifica-
tion is detailed, and a third sub-section describes the implementation of the Salute
middleware infrastructure.

3.1 Application deployment in the cloud

The main goal of Salute is to allow several peer-to-peer applications to co-exist within
the same overlay and to maintain them running despite the dynamicity of the system.
To reach that goal the peer-to-peer network hosting Salute is divided into several sub-
networks called “slices” where client applications can be deployed and run separately.
As described later in the following subsection the slicing specification in Salute, allows
any client to specify the number of peers it needs to deploy its application. The
dynamicity of a peer-to-peer system, better known as “churn”, may lead an allocated
slice to fall below the requested size after a slice has been booked and an application
deployed. The main idea here is to consider that if the application is a peer-to-peer
application, it should support such a churn by dynamically redeploying, if and only if
the resource allocation service counter-balances the resource loss. In such cases Salute
would provide the application with new peers, while others disappear because of the
churn. Otherwise the resource pool allocated to that application would decrease as
the slice looses peers because of churn, and the client application requirements would
not be met. So as to maintain concurrent slices Salute always keeps “safety” peers in a
“reserve” overlay network and stops to create new slices when this reserve overlay falls
under a certain threshold. To summarize, when peers join the Salute infrastructure,
they directly join the reserve overlay and when running slices lacks peers, they request
additional ones to the reserve. The Figure 4 illustrates the resource flows triggered
by the churn in the different network overlays that compose the system. The white
circles symbolize the peers joining the system in the reserve overlay. The grey circles
symbolize the peers that are leaving the system from the reserve overlay or from slices
Si, Sj and Sk. This figures helps to understand that the role of the reserve overlay is
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Figure 4: Salute middleware overview

to control the churn so as to distribute the joining resources to leverage the leaving
ones.

3.2 Slice specification in Salute

The middleware Salute, allows users to book any set of resources by requesting a slice
overlay. The slice specification describes the attribute values, the number of peers that
should compose the slice and the expected duration of the slice reservation. The fol-
lowing grammar formalizes the description language used to write such specifications.

Re ::= ∅ | N | Re + Re

S ::= (F,Np, L)
Np ::= val | ⊥
L ::= val | ⊥
F ::= true | A C val | F ∧ F
A ::= CPU | MEM | HD | BDW | UC
C ::= > | < | ≤ | = | 6=
val ::= i ∈ N

A slice request specification Re is a set containing at most one sub-specification.
A sub-specification S is composed by a collection of filters F , an expected number of
peers Np and a reservation length L. Filters composing F specify boolean constraints
that a peer must respect to join the requested slice (by instance, it can define a
minimal CPU capacity for peers composing the slice). Considering the reservation
duration parameter : if the requester wants to book a set of resources for an unbound
time, the parameter D is set to the particular value ⊥. Otherwise the expected
duration D is set with a real integer indicating the expected duration in hour. The
number of requested peer Np is set with a natural integer value. Therefore, there
exist a particular type of request, that we call “best effort” requests, consisting in
requesting as many peers as possible. Best effort requests are specified by setting the
parameter Np to the particular value ⊥. In Salute, the slice specification filters can
define constraints on the following attributes : the computing capacity of a peer CPU ,
its memory capacity MEM , its hard disk storage capacity HD, its network bandwidth
capacity BDW and its uptime class UC. To improve the relevance of attribute value
specification, theses values are classified so as to fall in a pre-specified categories, that
are set according to the the global resource profile. The rough idea is to choose a
collection of attribute categories, so that the peers attribute distribution in the whole
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system would be uniformly distributed among these categories. The establishment of
attribute categories is done by studying the system evolution. The study of automated
attribute categorization is presented in Section 5. Once a collection of categories has
been chosen for a given attribute, categories must be ranked according to the attribute
value so that the comparison operators >, ≤, >, ≥ can be used to refers to several
categories. For instance the expression CPU > 1 refers to the set of categories having
a rank greater than 1. The algorithms used to rank the attribute categories also
depend on the study of the resource profile presented in Section 5. An example of
peer categorization is presented in Table 1.

Attribute Category ranking
Att < 1 GHz 1

CPU 1 GHz ≤ Att ≤ 3 GHz 2
Att > 3GHz 3

. . . . . . . . .
ALWAY S OFF 1

UC UNSTABLE 10 50 2
. . . . . .

ALWAY S ON N

Table 1: Attribute categorization example.

In Table 1 peers CPU attributes are classified into three categories : the first cat-
egory regroups peers having a CPU frequency lower than 1 GHz, the second category
regroups peers having a CPU frequency lower or equal to 1 GHz and greater or equal
to 3 GHz and the third category regroups peers having a CPU frequency greater than
3GHz. The second attribute categorization presented in this table sorts peers accord-
ing to their uptime classes. These uptime classes characterize the peer availability
patterns according to categories presented in Section 2.3. In order to familiarize the
reader with the Salute slice specification, some examples of specification using the
attribute categorization proposed in Table 1 are presented below :

• Re = (CPU > 1, 10, 1) + (CPU > 1 ∧ UC 6= 3, 10, 1) : Looking in Table 1, we
found that this specification means that : 20 peers are requested and they must
have a CPU frequency greater or equal to 1 GHz (greater than the category
having the ranking 1). Then 10 of these peers should not belong to the uptime
category : ALWAY S OFF . Finally, this request has an expected lifetime of
one hour.

• Re = (CPU > 2,−1,−1) : the requested slice should contain as many peers
with CPU frequency greater than 3 GHz as possible and the duration should be
as long as possible.

• Re = (true, 100,−1) : the requested slice should contain 100 peers, whatever
their attribute characteristics and the duration should be as long as possible.

With such slicing specifications, Salute can provide highly configurable application
deployments, combining the absolute size of a slice with constraints on peers attributes
composing it. The duration parameter allows peers to define a date after which they
can leave the slice.

3.3 Building a reserve overlay

The reserve overlay and slices are build and maintained by a peer sampling service that
connects peers together and provides random peer samples to the gossiping protocols
running in those overlays. The peer sampling service used in Salute is Cyclon [26].
Note that several overlays will co-exists, running their own instance of Cyclon and
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that a peer is mandatory member of the reserve overlay, while it can be member of at
most one slice. Salute contains three types of peer regarding to their role in client
applications deployment process :

• free peers : are only member of the reserve overlay and are available to resource
allocation.

• booked peers : are member of one slice in which they run a client application
and can’t be allocated to another task before the slice reservation ends.

• safety peers : are only member of the reserve overlay, are not available to
resource allocation, but can rescue running slices if churn makes them to fall
under the specified size.

As explained in section 3.1 the reserve overlay should stop to allocate peers to new
slices when it estimates that the current churn could endanger running slices. In order
to prevent client application from over-booking peers, the reserve overlay is configured
to contain a minimal percentage of “safety” peers. Our evaluations have shown that
a value between 5% and 15% is suitable to maintain all deployed slices, depending on
the estimated availability pattern of peers composing the system.
In order to maintain the specified safety peers percentage, peers in Salute use a count-
ing service that estimates the current number of safety peers in the system. This
service is presented in Section 4.1.2. When a peer joins the system for the first time
or after a downtime period it joins the reserve overlay network by contacting a boot-
strapping peer. This bootstrapping peer gives the joining peer its safety percentage
estimation, figured out thanks to the counting service. If the estimated safety peer
percentage in the reserve is too low : the new peer joins the system as a “safety”
peer, otherwise it joins the system as a “free” peer. When a slice reservation ends,
the booked peers it contains change their status according to this heuristic, so that if
any user detects that the churn drive the system in a configuration where the reserve
overlay could no longer feed the running slices, it can stop a running slice to distribute
its resources to other slices.

4 The Sarcasm protocol

Sarcasm is the scalable reservation mechanism provided by Salute to book peers, build
and maintain a slice overlay from its specification. The simplified principle of Sarcasm
is the following : when any peer want to book a set of resources so as to build a
slice, it broadcast the requested slice specification to the reserve overlay and free peers
that can satisfy this request join the building slice overlay. As soon as the slice is
complete, i.e. reaches its requested size, the reservation is started. If there are not
enough available resources to satisfy the request, the reservation is eventually canceled
and the potentially booked peers are released. In case of concurrency for a given
resource, Sarcasm uses a priority mechanism capable to break the tie between any
number of concurrent requesters. The different strategies establishing request priority
will be discuss in Section 6, while this section focuses on Sarcasm’s presentation.
The assumptions made to run Sarcasm on an unstructured network overlay are the
following :

1. No cheating : we do consider only fail stop crashes. Every working peer follows
the exact protocol specification (no cheating).

2. Availability : each peer runs an availability predictor as described in [21] and
can deduce its uptime classes from the output of this predictor. Such availability
categorization allow Salute to consider the uptime class of a peer as an attribute,
that can compose a slice specification (see section 3.2).

3. Identification : peers have a unique identifier id =< IPAddress, portnumber >.
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The first subsection presents sub-services used by Sarcasm. These sub-services can
have several implementation depending on the slicing specification. A second sub-
section details Sarcasm algorithms and protocols.

4.1 Devising Sarcasm as a meta-protocol

Initially Sarcasm has been devised so as to book multiple sized sets of resources and
build slices overlays with them. Also Sarcasm is presented as a meta-protocol using
three sub-services : 1) a request propagation service, 2) a counting service and 3)
a membership management service. The implementation of such services depend on
the slice specification, by instance the requested slice size, and can provide different
qualities of service. This sub-section introduces the role of the three sub-services and
discuss the relevance of some possible implementations.

4.1.1 Request propagation service

The request propagation service is a decentralized protocol that broadcasts the reser-
vation request to potential candidates (free peers willing to satisfy the request) so as
to book enough resources to build the requested slice overlay network. While potential
candidates receive the reservation request, if they can satisfy it, they join the slice by
participating to its membership service. As described later in Section 4.2 it is coupled
to the counting service so as to stop propagating the request when the requested slice
is complete. The “meta-methods” provided by the reservation propagation service are
the following :

• start(RSpec) : is a primitive that starts the request propagation service, the
parameter RSpec is the specification of the requested slice. This methods is
called by the reservation requester.

• propagate() : This methods is used to propagate the request to a sub-set of
the reserve overlay, so that it can be invoked periodically until the requested
slice become complete or abort. This method can be invoked by any peer in the
reserve overlay.

Several implementations of the request propagation service can be relevant regard-
ing to the requested slice size. This paper discusses three possible implementations
for this service : an epidemic broadcast protocol, a random walk-based solution and
a distributed resource discovery service. These implementations are introduced in the
following :

Epidemic broadcast : The natural implementation for the request propagation
service is an epidemic broadcast protocol like Lpbcast [11]. Such gossiping protocol
has good scalability properties and is able to broadcast an information to a very large
collection of peers within a relatively small period. But epidemic broadcast could waste
a lot of bandwidth as it propagates the requested information to every peer within the
peer-to-peer unstructured overlay. In some scenarios, our request propagation protocol
could only need to broadcast its reservation request to a small proportion of the reserve
overlay, wasting the network resources of other peers. By instance if any user wants
to book a dozen of peers among a thousand, the epidemic broadcast protocol would
involve in average hundred time as much peers as necessary. The epidemic broadcast
would so be a good implementation for large sized slice requests, but it would waste
a lot of bandwidth in case of small sized slice requests.

Random walk search : Random walk resource localization has been a topic of
main interest in peer-to-peer research area during the beginning of 21st century [1,
7, 25]. One can imagine to implement the request propagation service by looking for
potential candidates using a random walk and request resulting peers to join the build-
ing slice. A random walk over an unstructured peer-to-peer overlay starts from any
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peers and visits another randomly chosen peer periodically, so that after a pre-specified
number of hop w, the walk has collected information from a sub-set of averaged size
w within an unstructured overlay. Consequently, this kind of protocol can sample an
unstructured overlay while saving the bandwidth consumption regarding to the gos-
siping protocols. Therefore, if the requested resources constitute a small sub-set of
the search domain (by instance if there exists only 1% of resources satisfying a request
among a whole network), the probability that the random walk visits these resources is
very low. Finally, the random walked based solution would be a good implementation
for the request propagation service in scenarios where the number of peer satisfying
the request constitutes a large proportion of the reserve overlay.

Resource discovery service : In [2] authors present Sword : a distributed re-
source discovery service that could fit the request propagation service’s requirements
under certain scenarios. The simplified idea of Sword is to collect all peers attribute
values and store them into a distributed infrastructure (DHT or smaller group of
peers). Sword also handles complex queries, allowing users to describe resources as
a topology and to impose some constraints on the relative networking capabilities of
peers. A simple way of implementing the request propagation service using Sword
would consist in translating Salute’s slice specification into Sword’s specification lan-
guage, then query Sword with that specification and individually request resulting
peers to join the building slice. This solution has consequent limitations as Sword
don’t scale well over several thousand of peers to monitor and needs dedicated peers
to run it. Therefore Sword’s capacity to handle complex queries with network topol-
ogy constraints is an interesting feature that cannot be provided with other solutions.
Finally one can follow the Sword deployment strategies presented in [2] to install it
within the Salute middleware.

To conclude, the epidemic broadcast is a good candidate to be the default im-
plementation of the request propagation service. Effectively the gossip based solution
would succeed with every possible scenario, sometime wasting resources, but scaling up
to million of peers. The random walk based solution could be carefully used to request
a small slice composed of “common” peers and tough save some networking resources.
The resource discovery service is harder to use in Salute as it needs to be installed as a
client application over the Salute’s peer-to-peer community, but it can provide better
slice specification capabilities than ones provided by the other implementations.

4.1.2 Counting service

The counting service is used during all the life cycle of a slice : first it counts the
number of joining peers, as the slice is building, so as to decide when the slice is
complete. Then the counting service is still running within the overlay of a complete
slice in order to detect if the slice size falls under a certain threshold because of the
churn. Notice that a peer belonging to two network overlays would run an instance of
the counting service for each overlay, in particular for the reserve overlay and for the
potential slice it belongs to. The counting service is able to count several “types” of
peers within a given overlay. These types refers to peers attribute categorization (cf
Section3.2) so that each peer knows if it belongs to that type or not. The counting
service API used by Sarcasm is the following :

• start(PS) : this methods starts a counting service instance on the overlay PS
given in parameter. The parameter PS gives a reference allowing the counting
service to use the associated peer sampling service.

• addType(T ) : this method adds a type T of peer to be counted within the
overlay associated to the counting service instance. This type should be defined
according to a set of attribute filters as described in Section 3.2

• removeType(T ) : this method removes a type T of peer to be counted.
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• getSize(T ) : this method returns the number of peers of type T within the
associated overlay.

• stop() : this methods stops the counting service and should be invoked when a
peer leaves the associated network overlay only.

There exist two main implementations of totally decentralized counting proto-
cols [18, 20] suited for unstructured overlay networks, therefore we also discuss in the
following the relevance of a centralized solution :

Gossip based aggregation protocol : the reference implementation of the
gossip based aggregation protocol is [18]. In this work authors present a gossiping
protocol that use global aggregation technics to figure out the number of peers within
an unstructured overlay network. The particularity of this protocol is that every
peers composing the overlay has is own estimation of the overlay size. Evaluations
presented in [18] estimates the maximum deviation of such estimations from the real
value to 10%, meaning that every peers knows its overlay size with a 10% deviation in
worst cases. Like every gossiping protocol, this implementation has good scalability
properties but it suffers from a high bandwidth consumption as it involves every peers
composing the targeted overlay.

Random Walk based protocol : the reference implementation of random
walk based counting protocols is [20]. In this paper authors present a protocol able to
estimate a network overlay size using a set of random walks. The particularity of this
protocol is that the network size estimation is centralized around a requester that is
the source of the random walks used to evaluate the network size. This protocol as
been devised so as to save bandwidth regarding to the gossip based solution, and it
actually reached that goal as described in [20]. Therefore in the case of the counting
service, this protocol needs to be coupled with a broadcasting protocol (by instance
Lpbcast [11]) so as to broadcast the resulting size estimation to all peers within the
targeted overlay. The use of another gossiping protocol in this case would cancel the
bandwidth savings made by the random walk based protocol. For this reason, we
choose to evict this implementation as a candidate for the counting service, but its
low bandwidth consumption property remains a good reference for the evaluation of
Salute’s counting service.

Centralized protocol : A centralized approach can be considered to implement
Salutes’s counting service. If we consider small sized overlays, the centralized solution
would work as follow : an elected peer (by instance the reservation requester) would
know all other peers belonging to the overlay and would monitor them (using ping or
hearth-beat technics) so as to keep the count updated. This solution is clearly not scal-
able but it has the advantage to give an exact estimation, regarding to random walk
based protocol or gossiping protocol. Even if this implementation is less challenging
in term of scalability, some users can need it to deploy some distributed application
on a small but strict number of peer.

To summarize, the default implementation for the counting service is based on the
gossip based aggregation protocol, because of its simplicity and scalability properties.
The random walk based method is abandoned but would be used to compare its
bandwidth consumption to gossiping solution one’s. Finally the existence of centralized
solution has been discussed, this solution can provide a strict counting service (instead
of having a 10% standard deviation) for small slice overlays.

4.1.3 Peer Sampling service

The peer sampling service is in charge of maintaining the overlay network composing an
allocated slice. As explained in Section 3.3 the peer sampling service is also deployed
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so as to maintain the reserve overlay. It provides peer samples that are then used
by every gossiping protocols running in Salute. Notice that if a peer is member of
a slice, it runs two peers sampling services : one for the reserve overlay and one for
its slice. This two peer sampling services are totally independent. The main peer
sampling service implementations are [11, 15, 16, 26, 19] and will be compared in
another version of this document. The API of the peer sampling service used in this
document is the following :

• bootstrap(Π) : this method is used by a peer to join an unstructured overlay
network. The parameter Π is a set containing at least one identifier that can be
used as bootstrap peer to join the overlay. This set can contain several bootstrap
peer identifiers, so that a peer using this set can join the requested overlay if one
of the bootstrap peers is no longer available. If any peer Pi uses this method
with its own identifier as parameter (Π = {Pi}) a new network overlay will be
created. This method can be used in Salute by a slice requester to create the
associated slice overlay network.

• getPeers(N) : this method returns N randomly chosen peers that are member
of the overlay on which the method has been invoked.

• stop() : this method stops the peer sampling service. It should be invoked when
a peer leaves the associated network overlay.

To summarize, Sarcasm uses three services : a propagation service, a counting
service and a peer sampling service. Let now detail the Sarcasm protocol itself.

4.2 Detailing the protocol

This subsection details some pseudo code that illustrate the algorithms used by Sar-
casm. This pseudo code is presented as an object oriented language and refers to
the Salute’s service presented in Section 4.1. The peer sampling services are acces-
sible via two objects : the object Reserve sampler implementing the peer sampling
service of the reserve overlay and the object Slice sampler implementing the peer
sampling service of the local peer’s slice overlay. The request propagating service is
accessible via the object Propagator. Counting services are accessible via two ob-
jects : Reserve counter or Slice counter, regarding to the network overlay they are
running on. Notice that these objects do implement the meta-methods described in
Section 4.1.

4.2.1 Requesting a slice with Sarcasm

When a user wants to book a set of resources so as to deploy its own application on it, it
uses the following Sarcasm methods : Propagate Reservation(< Reqid, RSpec, T >).
The parameter Reqid refers to the requester identifier, RSpec is the requested slice
specification (cf. Section 3.2) and T is the time at which the slice has been requested.
The reservation request and the slice are so identified by the couple < Reqid, T >.
The pseudo code of this method is described in the Figure 5.

1: upon Propagate Reservation(< Reqid, RSpec, T >) do
2: Slice sampler.bootstrap(Pi)
3: Slice counter.start(Slice sampler)
4: for Si ∈ RSpec do
5: Π ← {Reqid}
6: Propagator.propagate(< REQ, Reqid, RSpec, T, Si, Π >)
7: Slice counter.addType(Si.F ilters)
8: end for
9: MonitorSliceStatus()
10: end upon

Figure 5: Pseudo code of Sarcasm reservation request method
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In this method, the slice requester creates a new overlay for the slice and ini-
tializes a counting service running on that overlay (Lines 2 and 3). Then, for
each sub-specification Si contained in the slice specification RSpec (Lines 4 to
7), the requester propagates a message containing the following informations : <
REQ, Reqid, RSpec, T, Si,Π > in the reserve overlay network. Where REQ is a flag
indicating that the message is a reservation request (and not a rescue request) and
where Π is a set containing a small number of peers that are already member of the
slice. This set Π is used to contact the slice overlay or to choose any bootstrapping
peer to join that network (cf Section 4.1.3). Initially the slice is only composed by the
requester, also for the first request propagation Π = {Reqid}. Then the requester adds
a new type to the slice counting service with the method Counter.AddType(). Once
the reservation propagation has been initialized within the loop, the requester moni-
tors the slice during its building process using the slice counting service. The method
MonitorSliceStatus() is described in Section 4.2.3. Therefore the next section intro-
duces the algorithms used by free peers to join a slice when they receive a reservation
request, the slice monitoring heuristics comes immediately after that section.

4.2.2 Joining a slice overlay in Sarcasm

When any peer propagates a reservation request, every other peer can receive it even
if it is not willing to join the requested slice. The reservation request handling process
is composed by three phases : first it checks if the request has already been received,
then it choses to join the requested slice or not and finally it checks if it should continue
to propagate the request or not. The Figure 6 gives the pseudo code of the algorithm
used by peers when they receive a reservation request.

When a peer Pj receives a reservation request < REQ, Reqid, RSpec, T, Si,Π >,
it checks if it already received any reservation request with this identifier (Line 2 and
3). If it does, the request is discarded, otherwise the request is treated. If Pj is free
and can satisfy the request sub-specification Si then it joins the slice (Lines 4 and
5). The procedure JoinSlice(< Reqid, T >) (Lines 11 to 20) executes the following
actions : it saves the slice identifier in a variable called joinedSlice, it modifies Pj ’s
status from “free” to “booked” and initializes the slice’s peer sampling and counting
services (Lines 14 to 18). Pj would now become member of the slice overlay and
would be able to monitor its status according to heuristics describe in Section 4.2.3.
Whether it choses to join the slice or not, Pj should then decide if the reservation
request has to be further propagated or not. In order to check if the requested slice is
complete, it saves the set of members Π into a local variable slice to contact and sends
a message < SL CHECK,Reqid, T > to one peer randomly chosen in Π. Let call Pc

the peer that receives this request. Pc would reply with appropriated informations if
it effectively is a member of the slice identified by the couple < Reqid, T >. In case of
mistake Pc would invalidate the request (Line 26). Therefore, if the request is valid Pc

sends back its estimation of the slice completeness plus a set Π′ containing different
identifiers that ones in Π. Changing the “bootstrapping peer set” Π to Π′ ensures
that the request for slice completeness are uniformly distributed among the members
of a slice. With these informations, Pj would now if it should further propagate the
reservation request and would do so if needed (Line 30 and 31). In case of invalid
answer from Pc, Pj would retry to contact a member the requested slice. The retry
process is not detailed here, but we can assume that Pj would try to contact each peer
in the saved set slice to contact. If none of this peers sends back any valid answer, Pj

would finally decide not to forward the reservation request.

To summarize, when a peer request a slice in Salute, it broadcasts a reservation
request. Free peers join the building slice when they receive that request. Therefore
every peers, even not free forward the request until the requested slice is complete or
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1: upon Receive Reservation Request(REQ, < Reqid, RSpec, T, Si, Π >) do
2: if < Reqid, T, Si >/∈ alreadyReceived then
3: alreadyReceived ← < Reqid, T, Si >
4: if MyStatus = FREE ∧ LocalAttributes.Satisfy(Si.F ilters) then
5: JoinSlice(< Reqid, T >)
6: end if
7: slice to contact ← Π
8: send < SL CHECK, Reqid, T > to Pc ∈ Π
9: end if
10: end upon

11: procedure JoinSlice(< Reqid, T >)
12: joinedSlice ← < Reqid, T >
13: MyStatus ← BOOKED
14: Slice sampler.bootstrap(Π)
15: Slice counter.start(Slice sampler)
16: for Si ∈ RSpec do
17: Slice counter.addType(Si.F ilters)
18: end for
19: MonitorSliceStatus()
20: end

21: procedure ReceiveSliceCheckRequest(< SL CHECK, Reqid, T >) from Pr

22: if joinedSlice =< Reqid, T > then
23: Π ← Slice sampler.getPeers()
24: send < True, Reqid, T, hasStarted, Π > to Pr

25: else
26: send < False, Reqid, T,⊥,⊥ > to Pr

27: end if
28: end

29: upon ReceiveSliceCheckAnswer(< is valid, Reqid, T, is complete, Π′ >) do
30: if is valid ∧ ¬is complete then
31: Propagator.propagate(< Reqid, RSpec, T, Si, Π

′ >)
32: else if ¬check valid then
33: retry(slice to contact)
34: end if
35: end upon

Figure 6: Receiving a reservation request

until it aborts. The inner slice protocol that decides when a slice is complete, when it
ends or even when it should abort is presented in the following section.

4.2.3 Maintaining a slice with Sarcasm

Once slices are built thanks to the reservation propagation service, an inner slice
protocol monitors and maintains the slice reservation. As explained in Section 3.1
slices are prone to suffer from the system dynamism and would probably need to ask
for additional resources during their reservation time. The inner slice protocol uses the
counting service describes in Section 4.1.2 to decide when a slice is complete and when
it needs to ask for additional resources by sending rescue request to the reserve overlay
following the protocol described in Section 3.3. When a peer joins a slice overlay it
invokes the routine MonitorSliceStatus() that is in charge to monitor and maintain
the slice overlay network. The pseudo code of this method is described in the Figure 7.

The monitoring routine periodically checks the number of peers composing the
slice overlay to whom the local peer belongs to. The frequency of the routine is fixed
according to the period ∆ that could be modulated according to the churn estimated
by the slice. Actually the period ∆ should be relatively short when the slice is filling
so as to detect the slice completeness and stop the request propagation. However, this
period could be extended once the slice is complete, as the slice size would not longer
be expected to vary rapidly. The modulation of such period is not discussed further
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1: procedure MonitorSliceStatus()
2: for each ∆ seconds do
3: complete ← True
4: for each Si ∈ JoinedSlice.RSpec do
5: if Slice counter.getSize(Si.F ilters) < Si.Nb Peer then
6: complete ← False
7: toRescue ← Si

8: end if
9: end for
10: if complete then
11: if ¬ hasStarted then
12: hasStarted ← True
13: end if
14: else
15: if hasStarted then
16: Π ← Slice sampler.getPeers()
17: Propagate Rescue Request(< RESCUE, Reqid, RSpec, T, toRescue, Π >)
18: else if CurrentDate > joinedSlice.CancelationDate then
19: LeaveMySlice()
20: end if
21: end if
22: if CurrentDate > joinedSlice.EndReservationDate then
23: LeaveMySlice()
24: end if
25: end for
26: end

27: procedure LeaveMySlice()
28: Slice counter.Stop()
29: Slice sampler.Stop()
30: if Reserve counter.getSize(SafePeer) < SafetyThreshold then
31: MyStatus ← SAFE
32: else
33: MyStatus ← FREE
34: end if
35: end

Figure 7: Monitoring a slice overlay.

in this paper. In the routine, each peer checks if the estimated network size is greater
than the size requested by the slice specification. If the counting service estimates
that the slice network size is big enough regarding to its specification, the variable
hasStarted is set to the boolean value True (Line 12). This variable is initially set to
False and indicates if the slice reached at most once its requested size. This variable
is also used by the slice members to indicate to other peers that the slice is complete,
so as to stop the reservation propagation as described in the Figure 6 (Line 23).
When the estimated slice size is lower than the requested one, the slice is either not
yet complete or some of its members has left the overlay because of the churn. If
the slice is not yet complete, the routine checks that the cancelation deadline has
not been reached (Line 18). If it does, the local peer leaves the slice and goes
back to the reserve overlay either as a free peer or as a safe peer. Such cancela-
tion mechanism prevent reservation requests to run indefinitely when there is not
enough resources to complete the requested slice. If the slice needs extra peers be-
cause of the churn, the local peer broadcasts a rescue request to the reserve over-
lay using the method Propagate Rescue Request so as to get additional resources.
This methods simply chooses a sub-set of size log N (where N is the size of the
system) of peers within the reserve overlay and send them the following message :
< RESCUE, Reqid, RSpec, T, Si, Slice sampler.getPeers() >. The algorithm used
by peers to handle the rescue requests is described in the Figure 8. Finally the slice
monitoring routine checks is the Slice reservation has ended (Line 14) and allows the
local peer to leave the slice overlay and go back to the reserve overlay. Notice that
the methods LeaveMySlice() used by a peer when leaving the slice it belongs to does
respect the reserve overlay joining rule as described in Section 3.3 : the joining peer
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chooses its status regarding to the proportion of safe peer in the reserve overlay (Lines
30 to 34).

To summarize, the slice monitoring service is distributed among all peers involved
in the slice. Notice that peers are supposed to have synchronized clocks thanks to
the synchronization protocol running within the reserve overlay (cf Section 2.2). they
are so synchronized on epochs of length ∆ and choose a random offset value to run
their monitoring routine within that epochs. This offset allows the distribution of the
routine “start-time” of peers to be uniformly distributed among all slice members. This
mechanism distributes peers monitoring actions among a whole epoch length, so that
the slice is continuously monitored by its peers. One peer could only broadcast one
rescue request per epoch. Let now introduce the method Receive Rescue Request()
that handles the rescue requests and manages them so as not to flood the reserve
overlay. The pseudo code of this method is described in the Figure 8.

1: upon Receive Rescue Request(< RESCUE, Reqid, RSpec, T, Si, Π >) do
2: if < Reqid, T, Si >/∈ alreadyReceived then
3: alreadyReceived ← < Reqid, T, Si >
4: if MyStatus = FREE ∧ MyStatus = SAFE ∧ LocalAttributes.Satisfy(Si.F ilters) then
5: JoinSlice(< Reqid, T >)
6: end if
7: end if
8: slice to contact ← Π
9: send < SL CHECK, Reqid, T > to Pc ∈ Π
10: end upon

Figure 8: Rescuing a slice with Sarcasm

Like for a reservation request, if Pj already received a rescue request with
the slice identifier < Reqid, T, Si >, it discards it. Otherwise the message <
RESCUE, Reqid, RSpec, T, Si,Π > is treated. This simple filtering rule allows the
reserve overlay not to be flooded by concurrent rescue requests that could be sent
within the same epoch for a same slice. The variable alreadyReceived keeps track of
the messages received during a period equal to ∆, so that a slice can renew a rescue
request for each new epoch. The receiving peer Pj only decides to treat the rescue
request if its status is either safe or free. Any peer treating a rescue request immedi-
ately joins the slice and then choose to forward this request according to the checking
mechanism described for the reservation request propagation in Figure 6.

4.2.4 The deadlock problem

In case of concurrent requests the version of Sarcasm presented so far can suffer from
deadlocks. The Figure 9 describes a scenario where two concurrent requests lead to a
deadlock state and none of them can succeed.

In this scenario two peers R1 and R2 are propagating a slicing request, respectively
SR1 and SR2. Both slicing specifications are requesting 5 peers of an arbitrary type T
(peers of type T are green in the Figure 9). There exist 6 free peers of type T within the
system, so that only one of the two requests can be satisfied. The request R1 succeeds
to book 4 peers of type T and the request R2 succeeds to book the 2 remaining peers
of type T . None of the two requested slices are complete and both reservation requests
will abort, while in theory one of them could have succeed. This scenario is realistic
as no assumption on request concurrency are made in Salute. Consequently, deadlock
states can’t be predicted and the reservation mechanism Sarcasm must provide a
solution to prevent concurrent reservation requests to lead to a deadlock state. The
solution chosen in Sarcasm is to add a priority mechanism to reservation requests, so
that the priority can break the tie between two concurrent reservations requesting the
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Figure 9: Deadlock state with two concurrent reservation requests

same set of resources. The Figure 10 depicts a scenario where the peer R1 has the
priority on the peer R2.
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Figure 10: Using priority with concurrent request

This scenario starts from the deadlock state depicted in Figure 9. As the slice
request SR1 has priority on the request SR2, it would steal a resource to the blocked
reservation SR2 so as to complete the slice requested by the peer R1. Using this
simple priority mechanism ensures that at least one request would succeed when there
are enough resources to satisfy it. Therefore if the priority doesn’t take into account
the number of resources that a peer has already booked, this mechanism can lead to
starvation. By instance, in the scenario studied in Figure 11 if the peer R1 always has
priority on peer R2 : it could always steal resources to peer R2 and that peer would
suffer from starvation. A simple way to provide a fair priority mechanism is to give the
priority to the peer having the smallest number of successful reservations in its history,
breaking the tie with the peer identifier if needed. One can imagine a lot of policies
defining the priority to be used in case of concurrent request. Such policies would have
a significant effect on the system efficiency as it will be discussed in Section 6. Before
discussing the evaluation of Salute, a second version of Sarcasm is presented in the
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following subsection, where the algorithms implementing the reservation priority are
introduced.

4.2.5 A priority aware version of Sarcasm

The simplified idea of the priority aware version of Sarcasm is to allow any peer Pj

to join a slice Sli regarding to 3 new conditions : i) Pj has already joined a slice Slj ,
ii) Slj is not complete yet and iii) the slice Sli has the priority on Slj . Notice that
the peer Pj is stolen (by the slice Sli) from the Slj resource pool, thus implementing
the resource stealing mechanism described in the previous paragraph. To simplify the
description of the protocol, peers that belong to a slice that is not complete are called
pending peers, as they are waiting for the completeness of the slice. Any pending peer
can so be stolen and would become booked only when the slice it belongs to become
complete. A detailed version of the Sarcasm protocol taking into account request pri-
ority is depicted in the Figure 11. The methods that are changed regarding to the
first version of the protocol are the following : Receive Reservation Request(...),
JoinSlice(...) and WatchForSliceStart() . The methods not described in the Fig-
ure 11 remain the same as in the first version of the protocol.

1: upon Receive Reservation Request(< Reqid, RSpec, T, Si, Π >) do
2: if < Reqid, T, Si >/∈ alreadyReceived then
3: alreadyReceived ← < Reqid, T, Si >
4: if MyStatus = FREE ∧ LocalAttributes.Satisfy(Si.F ilters) then
5: JoinSlice(< Reqid, T >)
6: end if
7: if MyStatus = PENDING ∧ LocalAttributes.Satisfy(Si.F ilters) then
8: if joinedSlice.hasLowerPriority(< Reqid, T, Si >) then
9: LeaveMySlice()
10: JoinSlice(< Reqid, T >)
11: end if
12: end if
13: slice to contact ← Π
14: send < SL CHECK, Reqid, T > to Pc ∈ Π
15: end if
16: end upon

17: procedure JoinSlice(< Reqid, T >)
18: joinedSlice ← < Reqid, T >
19: MyStatus ← PENDING
20: Slice sampler.Start(Π)
21: Slice counter.Start(Slice sampler)
22: for Si ∈ RSpec do
23: Slice counter.addType(Si.F ilters)
24: end for
25: MonitorSliceStatus()
26: end

27: upon MonitorSliceStatus() do
28: for every ∆ second do
29: ......
30: if hasStarted then
31: MyStatus ← BOOKED
32: end if
33: ......
34: end for
35: end upon

Figure 11: Dead lock aware Sarcasm protocol

As in the previous version of Sarcasm, when a peer Pj receives a reservation re-
quest < REQ, Reqid, RSpec, T, Si,Π > for a slice Sli, it checks if it already received
any reservation request with this identifier (Line 2 and 3). If it does, the request
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is discarded, otherwise the request is treated. If Pj is free and can satisfy the re-
quest sub-specification Si then it joins the slice (Lines 4 and 5). The procedure
JoinSlice(< Reqid, T >) (Lines 11 to 20) executes the same actions as in the pre-
vious version of the protocol excepting that when a peer joins a slice, it modifies its
status from “free” to “pending” instead of “booked”. Notice that a sub-routine is
added to the routine MonitorSliceStatus() (Lines 31 to 33). This sub-routine is in
charge of modifying the status of the local peer from “pending” to “booked” when
the inner slice monitoring service detects that the slice has been complete. When the
peer Pj is pending while receiving a new reservation request for a slice Sli, it checks if
Sli has the priority on the slice Slj , that corresponds to the slice Pj already belongs
to. If and only if the slice Sli does have the priority, then Pj leaves its former slice
(Slj) and joins the new one (Sli) (Lines 7 to 12). Finally, whether Pj choses to join
the slice Sli or not, it decides to propagates further the reservation request according
to the same protocol as one depicted in the Figure 6.

To summarize, Sarcasm is a service that allows any user to specify a resources
reservation and request the allocation of associated peers within a large peer-to-peer
system. This service builds sub-network overlays called slices that correspond to the
resources reservation specifications made by users. Sarcasm books peers composing
a slice overlay, so that no peer can belong to more than one slice. This service, also
monitors the composition of allocated slices so as to rescue them if their sizes fall under
a certain threshold because of the churn. Finally Sarcasm is able to manage concurrent
requests thanks to a priority mechanism. Client applications in Salute would use the
slices build by Sarcasm to deploy their own code. The following section discusses
the establishment of a distributed resource profile used by these client applications to
adjust their slice specifications to the system composition. The Section 6 would then
discuss the relevance of different request priority policies that can be used to optimize
the system’s performances.

5 Resource Profiling service

As explained before, the reservation request policy chosen in Salute is to cancel a
resource reservation if the associated slice doesn’t reach its requested size within a
bounded period. Consequently, if a user requests more peers than ones available
within the reserve overlay, then its request would never succeed. It is thus important
for the middleware Salute to provide a reliable resource profiling service. This service
can be used by users to evaluate the composition and number of available resources
within the system and adjust their reservation request specifications according to the
truly available resources. This section discusses the specification and the feasibility
of such a profiling service. It first introduces the profile used in Salute to model the
resource availability and then presents some ideas to automatize the configuration of
this profile.

5.1 Profile of the system

In wide peer-to-peer systems the heterogeneity of peers and the churn make it difficult
to know the exact composition of the system at a given time. Actually the quantity of
information would be linear to the number of peers in the system and that information
would rapidly evolve as the peers join and leave the system. Salute proposes to use
attribute categorization as introduced in Section 3.2 in order to synthesize the attribute
profile of peers into a “system attribute profile”. Therefore this system attribute profile
is not sufficient to drive the configuration of the middleware Salute. A second sub-
profile giving the global availability of resources is then added to the system profile to
complete the information given by the categorization of peers attributes. The following
paragraph explains how the attribute profile is built, while a second paragraph present
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the global availability profile.

5.1.1 Categorization of peers attributes

The system attribute profile can be seen as a map associating a given attribute category
to the number of peers in the system that fall into this category. The categories present
in this map should be the same as ones used to specify the set of filters composing
a slice specification (cf Section 3.2). This categories are : the computing capacity
of a peer CPU , its memory capacity MEM , its hard disk storage capacity HD, its
network bandwidth capacity BDW and its uptime class UC. The Table 2 illustrates
an example of attribute profile.

Attribute Category Size
Att < 1 GHz 1520

CPU 1 GHz ≤ Att ≤ 3 GHz 2600
Att > 3GHz 880

. . . . . . . . .
UC ALWAY S OFF 500

. . . . . .

Table 2: Example of system profile.

As shown in this table, categories are sorted according to the peer attribute they
rely on. The number of categories for a given attribute can be different from an at-
tribute to another but should remain small (i.e. at least a dozen of categories per
attribute), so as to keep the system profile size reasonable. Then for each category the
profile indicates the estimated number of peers falling into it (called category size).
By instance, the Table 2 describes a system composed by approximately 5000 peers,
where 1520 of these peers have a CPU capacity less than 1 GHz, 2600 peers have a
CPU capacity less or equal to 3 GHz and greater or equal than 1 GHz and finally,
880 peers have a CPU capacity greater than 3 GHz 2. The set of categories compos-
ing the system attribute profile is called the attribute profile configuration and is the
same for every peers. The global profile is build using Salute’s counting service (cf
Section 4.1.2) on the reserve overlay. A peer type is added to the counting service for
each category available in the attribute profile configuration, so that peers can build
their own system profile overview by asking to the counting service the estimated size
of each attribute category.

The categorization process, i.e. setting the attribute profile configuration, should
be organized such that the profile of peers attributes is uniformly distributed among
all categories. If the distribution of peers attributes is such that one category among
a dozen contains 80% of peers, the specification capacity for Salute users would be re-
duced by the inaccuracy of the profile. This distribution means that users have a dozen
of choices, that is great, but these choices concern only 20% of the peers composing
the system. Actually, if all attribute categories have approximately the same size, the
more categories there are in the attribute profile, the more accurate is the resource
profiling service. The attribute profile configuration should so deal with a tradeoff be-
tween the accuracy of the profiling service and the cost of the counting service building
the attribute profile. Effectively the cost, in term of bandwidth used, of the counting
service would grow in function of the number of categories to count. Another prob-
lem relative to the profile configuration is to choose the appropriate category to add
to the profile, while maintaining the “approximatively uniform” distribution of peers

2Notice that the values given in the Table 2 are arbitrary set to illustrate the principle of attribute
categories. These values are so not relevant to describe a really deployed system.

20



attributes within the different categories. Some clue allowing the implementation of
an automated profile configuration are given in Section ??.

The resource profiling service of Salute gives a global resource profile to the users,
including the distribution of peers into the different uptime classes defined in [21].
Therefore one can need some extra informations that could not be extracted from
the availability profile of peers, such that the minimal number of peers in the system
within a given period or the average number of peers available at the same time. The
following paragraph discusses the relevance of a global availability profile that could
provide these extra informations.

5.1.2 Global availability profile

In addition to the informations given by the attributes categorization, the resource
profiling service of Salute also provides a global availability profile. This second “sub-
profile” models the global availability of peers involved in the Salute peer-to-peer
community. Some properties on the peers availability such that the minimum number
of peers encountered during the past history of the system are provided by this new
profile. These informations cannot be extracted from the resource attribute profile
and is therefore very useful to manage the middleware as explained in Section 6.

In order to synthesize the global availability profile, some informations worked out
by the counting service running on the reserve overlay has to be periodically collected
and stored so as to build a global availability history of the system. For simplicity
reasons the correlation of peers availability with other attributes are not included
in this history. This simplification implies by instance that the availability history
contains the number of peers available within the system at a given time, but not the
number of that peers having a greater CPU capacity than 3GHz. The informations
collected by the counting service for a given time are : i) the total number of peers
running in the system, ii) the percentage of free peers in the whole system, iii) the
percentage of safety peers in the whole system and iv) the number of running slices
in the system. The period at which the informations are collected could be on the
order of a quarter of hour. This value of 15 minutes is proposed because it corresponds
to the finest public peer-to-peer traces of our knowledge [23]. These traces could so
be used as input to evaluate the resource profiling service. Moreover, that period is
small enough to allow an accurate profiling of availability regarding to the expected
duration of reservations that can spread from several minutes to several days or even
weeks. The Table 3 gives a sample of a global availability profile.

Date System Size % free % safe nb slices
23/09/2009 15:00:00 50000 50% 10% 15

. . . . . . . . . . . . . . .
23/09/2009 17:30:00 55000 20% 7% 80

. . . . . . . . . . . . . . .
23/09/2009 18:15:00 65000 3% 3% 110

. . . . . . . . . . . . . . .
23/09/2009 19:00:00 55000 15% 9% 75

. . . . . . . . . . . . . . .
23/09/2009 02:30:00 45000 75% 10% 10

Table 3: Sample of global availability profile.

This sample describes the evolution of a system over a period of 15 hours and 30
minutes. For each date at which the informations has been collected from the counting
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service, the system size, the percentage of free and safe peers and the number of slice
are given. These informations indicates, by instance, that Salute resources are likely
to be intensively used in the end of the afternoon, whereas few resources are likely to
be used during the night 3. Such informations could then be used to manage Salute
and optimize the system performances as it would be further discussed in Section 6.

In Salute, each peer has to build its own system profile, simply using the counting
service to collect the information needed to work out that profile. The following sub-
section discusses the configuration of the system, in particular the heuristics that adapt
the attribute profile categories to the estimated available resources.

5.2 Profile configuration

As explained before the attribute profile can be configured through the categorization
of peers attributes. Remember that if all categories have roughly the same size, the
more categories there are, the more accurate the attribute profile is. The routine called
MonitorAttributeCategories() is in charge of adjusting the number of categories
for a given attribute so as to optimize the attribute profile regarding to the attribute
distribution of the available peers. The execution of this routine (i.e. who runs the
routine) is discussed in the Section ??, while the Figure 12 describes the pseudo code
used by this routine.

1: upon MonitorAttributeCategories() do
2: for every ∆ second do
3: for Att ∈ [CPU, MEM, HD, BDW, UC] do
4: Cat ← Profile.get(Att)

5: ideal ← Reserve counter.getSize(ALL)
|Cat|

6: Cat′ ← ∅
7: for C ∈ Cat do
8: Csize ← Reserve counter.getSize(C)
9: if Csize > 2ideal ∧ |Cat| < 12 then
10: Profile.split(C)
11: else if Csize > ideal

2
then

12: Cat′ ← Cat′ ∪ C
13: end if
14: end for
15: Profile.merge(Cat′)
16: end for
17: end for
18: end upon

Figure 12: Heuristic configuring the attribute categorization.

The method MonitorAttributeCategories() is periodically executed following a
period ∆. As this routine monitors the informations given by the counting service, it
should be executed with a period such that the counting protocol has updated these
informations between two executions. Thus we admit that the counting protocol is
able to renew its informations accurately within a period ∆. This routine analyzes
the attribute profile structure, for each attribute Att considered in the Salute slice
specification (Line 3) it collects the list Cat of categories associated to this attribute
(Line 4) and figures out the ideal size of each category according to the number of
categories in that list and to the system size (Line 5). This size is the one that maxi-
mizes the accuracy of the attribute profile for a given number of categories, it is stored
in the variable ideal. Then the routine checks the size of each category C in the list
Cat (Lines 7 and 8). If the size of C is at least twice as big as the ideal size, and
the number of categories associated to the attribute Att doesn’t exceed a dozen, this
category is split into two new categories by the method Profile/split(C) (Lines 9 and

3Notice that the values given in the Table 3 are arbitrary set to explain the interest of the global
availability profile. These values are so not relevant to describe a really deployed system.
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10). This method is not described in this document but it simply splits a category
into two parts equally sized, as it would use the dichotomy principle. By instance the
categories design by the expression 1 < X < 3 would be divided into the following
categories : 1 < X < 2 and 2 ≤ X < 3. If the size of C is at most twice as small
as the ideal size, it is stored into the list Cat′ to be potentially merged with other
categories. Once all categories associated to the attribute Att has been checked, the
method Profile.merge(Cat′) merges the categories stored into the list Cat′ so that
the resulting category doesn’t exceed the ideal size ideal.
This simple heuristic allows to automatically configure the attribute profile so as to
eliminate the useless categories (i.e. the categories containing a small number of peers)
and to split the useful ones (i.e. split the categories containing a lot of peers). The
effect of such periodical re-configuration would be to refine the attribute profile until
the distribution of peers attributes is (roughly) uniformly distributed among the dif-
ferent categories.

To summarize, the Salute profiling service provides a synthesized view of the
global system properties threw two sub-profiles : i) a global attribute profile that
autonomously categorizes the peers’ attributes and a global availability profile that
builds an history of peers availability. This profile is then used by client applications
to evaluate the properties of available resources and adjust their reservation specifica-
tion in function of the profile’s informations.

6 Salute performances

This section explains how the middleware Salute will be evaluated, in a first part
it describes some relevant evaluation criterions and in a second part it presents our
expectations about Salute’s performances.

6.1 Evaluation criterions

The evaluation of Salute depends of three criterions : i) the healthiness of the system,
ii) the accuracy of the resource allocation service and iii) the fairness of the request
reservation satisfaction.

6.1.1 Healthiness

As explained before in Section 3.1 the safety peer percentage plays a role of main
importance in the slice requester satisfaction. Effectively, it ensures that the reserve
overlay contains enough peer to rescue the running slices if needed. In Salute, the
health of slices is evaluated thanks to four status : i) the slice is satisfied if it
contains at least 100% of the number of requested peers, ii) it is healthy if it con-
tains at least 95% of these peers, iii) it is endangered if it contains a number of
peers stating between 90% and 95% of the requested slice size and iv) it is dead if
the number of peers it contains fall under 90% of the requested slice size. Basically,
when peers belonging to a slice detects thanks to the inner slice monitoring service
(cf. Section 4.2.3) that their slice is no longer satisfied, they request rescues to the
free and safety peers available in the reserve overlay. Combining all running slices
health status gives a global system health overview. This overview can be figured out
by every peers using the global availability profile, assuming that the counting service
collects the relevant informations. In the following the system is considered to be
healthy if all of the running slices are healthy too. The objective of the middleware
is to maintain the running slices so that they are always healthy despite the evolution
of the global system availability.
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6.1.2 Accuracy

The accuracy of Salute measures the ratio of global resource allocation over global
resource request. The best accuracy that Salute can achieve is 1, meaning that the total
number of peers allocated to the different running slices is strictly equal to the number
of requested resources. Therefore the core of Sarcasm, the protocol building the slices,
is based on a counting service that is not perfectly accurate (cf. Section 4.1.2). Thus
the slices build by Sarcasm may not contain exactly the number of requested peers 4.
This inaccuracy would not be a problem for a single slice as we suppose that this
inaccuracy is reasonable for client applications, but at the global scale of the system
this inaccuracy could lead to waste resources. The previous paragraph explained that
if Salute allocates less peers than requested to a slice, the health of the system would
decrease and so would the satisfaction of client applications. On the contrary, if
Salute allocates more peers than requested to the deployed slices, then the health of
the system would be good but the resource allocation capacity would decrease. By
instance, if 90% of the peers composing the system are allocated to different slices
while only 60% have been initially requested by users, the accuracy of the system is
2
3 . Such an accuracy means that the middleware can only allocate 2

3 of the available
resources, that would be quite inefficient. The Figure 14 illustrates the impact of an
inaccurate slice allocation service.

90%

90%

85%60%

climax

safety peers
100%

perfect

inaccurate

accurate

wasted resources

% of allocated peers

% of requested peers

Figure 13: Accuracy of Salute

This figure gives the global percentage of allocated resources (on the ordinate) in
function of the global percentage of requested resources (on the abscissa). On this
picture the perfect system accuracy is represented by the function f(x) = x so that
the total number of peers that are allocated to different slices is strictly equal to the
number of requested peers. The climax corresponds to the theoretical highest accuracy
that can be reached by the systems, meaning that all peers but safety ones have been
successfully allocated and every running slices contains the exact number of requested
peers. It is easy to understand that the climax is a theoretical concept that is not
willing to happen because of the churn of peer-to-peer systems on which Salute is
willing to be hosted. The Figure 14 also describes an inaccurate system : the area

4we empirically estimated the slice size error to 5% on average with a small standard deviation
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colored in grey represents the amount of resources that are wasted by the allocation
service. The inaccurate system represented in this figure allocates in average 30%
more peers than requested. As a consequence it can only allocate 60% of the available
resources. A realistic estimation of an accurate system is also shown. Within this
last system few resources would be wasted, but as it is discussed in Section 6.2, the
expected accuracy of Salute could be not as accurate as this system.

6.1.3 Fairness

The fairness criterion would ensure that the total amount of requested resources would
be equally distributed among the requesters. Intuitively, a resource allocation protocol
would be fair if it distributes as many resources to all requests. Therefore Salute has
to deal with concurrent requests having different specification regarding the number
of requested resources. By instance a fairness problem could occur when Salute has
to choose between satisfying a large number of small request instead of one large re-
quests. If Salute always gives the priority to smaller requests, then a large request
would never succeed in a highly concurrent environment. On the contrary if Salutes
always gives the priority to biggest requests, users would oversize their request (i.e.
request more resources than needed), so as to get the priority on concurrent requests.
Salute is said to respect the fairness criterion if it never uses the requests size to set
the priority used by Sarcasm to break the tie between several concurrent requests (cf.
Section4.2.5).

To summarize, Salute should always respect the healthiness and fairness criterions.
The Salute efficiency can be evaluated regarding its accuracy under several scenarios
in which the healthiness and fairness criterions are respected.

6.2 Expected performances

This sub-section describes a synthesis of the evaluation done so far with the middle-
ware Salute and explains the resulting expected behavior of this resource allocation
service. In order to implement and validate the algorithm composing it, the reserva-
tion protocol Sarcasm (cf. Section 4) has been simulated under various scenarios. The
churn given as input for these simulations has been extracted from All-pairs Plan-
etLab Ping Data [23]. The simulation protocol is voluntarily not presented in this
document, but the main results are presented in the following. A first part discusses
the configuration of the safety peer percentage and a second part describes the ex-
pected behavior of Salute in a large scaled, dynamic and heterogeneous environment
inspired from Stribling’s PlanetLab traces [23].

6.2.1 Efficient configuration of the safety peer percentage

The percentage of safety peers within the system has a non-negligible impact on its
performances and its configuration should be chosen with care in order to optimize the
allocation service. Intuitively, if 50% of the peers in the system are safety peers, then
the probability that any slice could not be rescued is very low as there exist one safety
peer to replace each booked resource. On the contrary the reservation possibilities are
small as only 50% of the peers can be booked. A good system configuration would
be a safety percentage high enough to preserve the system health and low enough to
optimize the system performances. In order to bootstrap the system, the default value
of the safety percentage would be 10%. Effectively some simulations not presented in
this document have shown that if the global size of the system doesn’t vary (i.e. there
are as many peers joining the system as peers leaving it) a safety percentage of 10%
is enough to respect the healthiness criterion. Therefore the churn given as input to
these simulations doesn’t contains unpredicted events such that the departure of 10%
of the peers within the same time. As a consequence, a system running Salute with
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10% of safety peers would not be able to guarantee the good health of its slices if
unpredicted events occur. Notice that a system willing to maintain slices despite such
an extreme churn would use a big safety percentage and would so reduce the system
performances. The cost of extreme churn prevention is very high and is delegated to
client applications. Effectively if Salute’s clients are willing to run critical applications
on a peer-to-peer community having a high unpredicted churn, they would oversize
their reservation specification so as to manage themselves the cost of such prevention.

6.2.2 Expected behavior

Using the configuration discussed in the previous paragraph, the expected behavior of
the middleware Salute states between the behavior of an inaccurate (i.e. inefficient)
system and an unhealthy one. The Figure 14 illustrates the expected behavior of
Salute.

90%

90%
80%60%

climax

safety peers
100%

perfect
expected
unhealthy
inaccurate

% of allocated peers

% of requested peers

Figure 14: Accuracy of Salute

Under several scenarios differentiated by the number of concurrent requests and
the size distribution of these requests the accuracy of Salute allows approximately
80% of the available resources to be allocated to slices. In addition the safety peer
percentage of 10% empirically evaluated is sufficient to maintain the system health.

7 Conclusion

To summarize, this document presents Salute : a decentralized middleware providing
a resource allocation service in peer-to-peer environments. Salute can be used by peers
to request a well specified set of resources and book them so as to deploy their own dis-
tributed applications on it. The profiling service gives a synthetic view of the system
properties and availability so that client applications can use these informations to
adjust their reservation specifications. The protocol Sarcasm builds some sub-network
overlays corresponding to the reservation specifications. These sub-overlays are called
slices and are maintained by the Salute’s infrastructure despite the churn of the envi-
ronment hosting them.
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The reservation mechanism Sarcasm has been successfully evaluated threw simu-
lations and provides reasonable performances according to the evaluation criterions
described in this document. Therefore the profiling service has not been evaluated
as we do not succeed yet to collect sufficient informations from really deployed peer-
to-peer systems. The next step in the development of Salute is to provide a realistic
input to the profiling system to validate the set of services provided by the peer-to-peer
middleware Salute.
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Abstract

When multiple users collaboratively edit a vector image,
avoiding conflicts requires synchronizing exclusive access
to the objects of the image. This synchronization needs a
true concurrency control algorithm. One of the most com-
mon strategy to achieve this synchronization is to use a
centralized architecture where a single server becomes the
transactional manager. Unfortunately, a central point of
control is also a single point of failure. This paper pro-
poses a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with
replicated storage. As a consequence, there is a gain in
fault-tolerance and the transactional protocol eliminates
the problem of network delay improving usability and net-
work transparency. The same result can be applied to text
edition and other collaborative editing tasks.

1. Introduction

There are many software applications supporting collab-
orative work, such as drawing, text editing or software de-
velopment. Collaborative work can be done synchronously
or asynchronously. In the later case, the participants make
their modifications on their local copy without direct inter-
action with the other participants. Once the changes are
made, they are committed to the global state. In the for-
mer case, which is the focus of this paper, all participants
are concurrently working on a shared working space. Such
scenario requires continuous synchronization of the partici-
pants in order to avoid conflicts. One way of achieving such
synchronization is by letting the participants lock the part
of the shared space they want to modify, granting exclusive
access to that part. Since all participants can take any lock,
having a single point of control make sense, resulting in the
classical client-server architecture. Unfortunately, it is well
known that having a single point of control also means hav-
ing a single point of failure, because the whole application

relies on the stability of the server.
Transdraw [5] is a distributed collaborative vector-based

graphical editor with a shared drawing area. Each user runs
the application and joins a server to get access to the shared
area. When someone is drawing in this area, feedback is
sent to other users reflecting the action. In addition, Trans-
Draw uses a transactional protocol to allow users to make
optimistic changes on the drawing with immediate conflict
resolution. This feature eliminates the problem of perfor-
mance degradation caused by network latency and it is a
crucial property of TransDraw. The synchronization and
storage of the global state is done on a server which cen-
tralizes the control of the work flow. When users modify
an object on the drawing, they request exclusive access for
it, which may succeed or fail depending on the behaviour of
the other users. All this is reflected graphically in the shared
drawing space.

As we have mentioned, a problem of TransDraw, due to
its centralized architecture, is its dependency on the server.
If the server crashes the work is lost, and the application
will not run until the server is rebooted.

Peer-to-peer networks have the nice property of being
self-organized, fault-tolerant and fully decentralized. We
propose in this paper to redesign the transactional proto-
col of TransDraw to overcome the problem of the single
point of failure. In order to do that, we use Beernet [2],
a structured peer-to-peer overlay network providing a fault-
tolerant distributed transaction layer with replicated storage.
Every time a user attempts to modify a graphical object,
this modification will be done inside a transaction with a
different transaction manager, which is replicated to allow
the transaction to finish in case of failure of the manager.
Unfortunately, this fault-tolerance mechanism is not free.
Replication requires a higher usage of network resources in-
creasing latency of transactions, but the optimistic approach
for starting the modification of an object counteract the la-
tency. We consider this a small drawback because function-
ality of TransDraw is fully respected and there is an impor-
tant gain in fault-tolerance.



What follows is a more detailed description of Trans-
Draw and related works in sections 2 and 3. Beernet is de-
scribed in section 4. The core of the proposal is explained
in section 5, being followed by conclusions.

2. TransDraw

2.1 Description

Transdraw is a collaborative vector drawing tool created
by Donatien Grolaux using transactions[5]. The toolbar
provides, not only the traditional tools of vector editing (eg.
lines, ellipse, rectangles), but also a pair of tools supporting
collaboration. As soon as a user selects an object, a request
is sent to the server for the corresponding lock. However,
the user is permitted to edit the object optimistically before
the server can answer the request. The optimistic nature of
the operation is visually presented to the user by red selec-
tion handles. When the server grants the lock, the transac-
tion on the object is committed and the user can continue to
edit the object in exclusive mode, indicated by black selec-
tion handles until he deselect it at which time the lock will
be returned. If the lock was already held by another user,
the server has to refuse it to the user and the transaction is
aborted. The user see the modification he did optimistically
undo themselves and the object is deselected.

A user can also manage explicitly his locks by using the
“take lock” tool, for example to make a complex reorgani-
sation of the drawing, involving several individual objects.
He then has to release the locks manually using the flashing
“release-locks” button.

In order to prevent starvation which could happen as sim-
ply as by a user inadvertently selecting every object before
taking a rest, a lock stealing mechanism is provided. The
“steal lock” tool make a request to steal a lock to the server
which forwards it to the current owner of the lock. This
user then as a few seconds to accept or reject the stealing of
her locks. On timeout, the stealing is considered accepted.
Once accepted, the previous owner notifies the server to for-
ward the lock to the stealer.

2.2 Example scenario

Figure 1, presents the view of two users working on the
same drawing, each in his own window. Bob, on the right,
had the top ellipse selected long enough for the server to
grant him the lock has can be seen by the black selection
handles around it. Alice, on the left has just tried to select
this ellipse. After a, normally brief, period during which she
was able to do optimistic changes to this ellipse, her transac-
tion is aborted, and she is notified of it by the disappearance
of her selection and the red dot on the ellipse which will

Figure 1. Alice, on the left, see a locked and
non-editable ellipse while Bob has it is se-
lected and editable.

blink a few times to explain that Bob is a currently editing
this object.

The diagram in Figure 2 describes a possible continua-
tion of the scenario in which Alice steals the lock from Bob
to perform the update she wants. Alice ask to steal the lock
to the server. Since Bob currently has the lock, the server
ask Bob whether he allows his lock to be stolen or not. This
is shown to Bob as two blinking buttons at the bottom of his
edition window as we can see in Figure 3. If Bob allows his
lock to be stolen, either explicitly or by ignoring the request
long enough, he loose selection of the object and possession
of the lock and the server transfer them to Alice.

Of course, all of this assumes that the server does not
crash. . .

3. Related works

There are some applications that already support collab-
oration in different ways. We describe and comment some
of them briefly.

3.1 BOUML

Some researchers have released an application to pro-
vide an easy to use and free UML tool, named BOUML[8].
It allows drawing diagrams and generating code in multiple
languages. The tool has been developed as a multiuser ap-
plication in a sequential way. Each user of the application
must choose an identifier which allows working on some
diagrams. The work may be done in parallel but there is not
any feedback on other users work as there is no support for
concurrent work. There are many problems with the tool.
The lack of feedback prevents user to know what others are
doing and to see their changes. It is also impossible to know
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grant

can steal?
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Figure 3

refuse

lock?

commit
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abort

Figure 2. Scenario of complex interaction

Figure 3. Bob is asked whether he allows his
lock to be stolen.

which files are currently being modified or that have been
modified and saved. There can be conflicts when saving the
project. When users are working collaboratively, the work
of a user will be saved but not all the modification of other
users. This leads to irreversible lost work without any warn-
ing. Another problem is the impossibility to lock part of the
work to prevent modification from another user.

3.2 Gobby

Gobby is a free text-editor that allows collaborative work
[1]. It supports multiuser parallel edition on multiple doc-
uments and a multiuser chat. A user has to start a session
and create the documents, he will host the server needed to
centralize the information. Other users must choose a name
and a color and connect to the server host. The collabora-
tion between all the users is simple thanks to the feedback
brought to users with colors. A list of users allows know-
ing the color of each editor. The application has the ability
to recognize patterns of many different text formats and en-
able syntax coloration. As the BOUML application, Gobby
does not support any lock of some part of the text and all
the users can edit what they want. This is not a major is-
sue since other users can observe the changes in real time
and the team work may rely on trusted users. Nevertheless
there is a problem when the server crashes. All the unsaved
modifications can be saved by another user but the whole
process of creating a server and joining the server must be
restarted.

3.3 Google Docs

Google Docs [3] is an online office suite that allows mul-
tiple users to modify the same file at the same time. On
particular feature, similar to TransDraw, can be seen on
spreadsheets. One a user is modifying a cell, this one is
coloured differently as in any single user spreadsheet appli-
cation. When other users connect to Google servers to edit
the same file, then, the cells they select will appear with a
different colour on the view of the other users, and with a
tag identifying the user. Instead of locking the cell, changes
are save incrementally using versioning. Google Docs uses
also a centralized architecture because everything is control
at Google side. But, there is a very important difference.
There is not only one server to rely on, but a set of servers
with replicated information, so if a server crashes, another
one takes over. Of course, these are only conjectures about
Google’s back-end.

4. Decentralized transactional DHT

Beernet [2] is a structured overlay network providing a
distributed hash table (DHT) with symmetric replication.



Figure 4. Paxos consensus protocol for dis-
tributed transactions.

Peers are self-organized using the relaxed-ring topology [6],
which is derived from Chord [10], with cost-efficent ring
maintenance and self-healing properties. Data replication
is guaranteed with a decentralized transactional protocol al-
lowing the modification of different items within a single
transaction. The transactional protocol implements a Paxos-
consensus algorithm [7, 4], with requires the agreement of
the majority of peers holding the replicas of the items. We
will focus on the transactional layer of Beernet because it
will be our mean to decentralize TransDraw.

Figure 4 describes how the Paxos-consensus protocol
works. The client, which is connected to a peer that is
part of the network, triggers a transaction in order to read-
/write some items from the global store. When the transac-
tion begins, the peer becomes the transaction manager (TM)
for that particular transaction. The whole transaction is di-
vided in two phases: read phase and commit phase. During
the read phase, the TM contact all transaction participants
(TPs) for all the items involved in the transaction. TPs are
chosen from the peers holding a replica of the items. The
modification to the data is done optimistically without re-
questing any lock yet. Once all the read/write operations
are done, and the client decides to commit the transaction,
the commit phase is started.

In order to commit the changes on the replicas, it is nec-
essary to get the lock of the majority of TPs for all items.
But, before requesting the locks, it is necessary to register a
set of replicated transaction managers (rTMs) that are able
to carry on the transaction in case that the TM crashes. The
idea is to avoid locking TPs forever. Once the rTMs are reg-
istered, the TM sends a prepare message to all participants.
This is equivalent to request the lock of the item. The TPs
answer back with a vote to all TMs (arrow to TM removed
for legibility). The vote is acknowledged by all rTMs to
the leader TM. Like that, the TM will be able to take a de-
cision if the majority of rTMs have enough information to

take exactly the same decision. If the TM crashes at this
point, another rTM can take over the transaction. The deci-
sion will be commit if the majority of TPs voted for commit.
It will be abort otherwise. Once the decision is received by
the TPs, locks are released.

The protocol provides atomic commit on all replicas with
fault tolerance on the transaction manager and the partici-
pants. As long as the majority of TMs and TPs survives the
process, the transaction will correctly finish. These are very
strong properties that will allows us to run TransDraw on a
decentralized system without depending on a server.

5. Decentralized TransDraw

Our conjecture about the way Google Docs is designed
in order to provide fault-tolerance is strongly based on
replication and the possibility of replacing a crashed server
with another machine. Not having Google’s infrastructure,
we can achieve replication and fault-tolerance by building
TransDraw on top of a peer-to-peer network, and by decen-
tralizing the synchronization of locks and data storage. Our
proposal is to build TransDraw on top of Beernet.

Peers are self-organized using the relaxed-ring topology
implemented by Beernet. Data is stored using the DHT
with symmetric replication. The transactional layer pro-
vides synchronized access to the shared state solving con-
flicts due to race conditions. But the Paxos-consensus pro-
tocol as described in section 4 is not sufficient to provide
exactly the same functionality of TransDraw as it was de-
scribed in section 2. The main difference lies on the mo-
ment where the locks are granted. As it is currently, locks
are granted too late for TransDraw, because it is not possible
to inform users about the intention of the others.

The first modification we have to do to the transactional
protocol is to allow eager locking request. One idea is to
request the locks when read/write operations are sent to the
transaction participants during the read-phase. If locks are
not granted, the transaction is immediately aborted. The
problem introduced by this modification is that if leader TM
crashes after requesting the locks, there is no rTM yet to
take over the transaction, and items would be locked for-
ever. Considering this, the registration of rTMs must also
be moved up to the read-phase. After this two modifica-
tions we realized that in fact it is better to avoid the read-
phase and start immediately with a extended commit phase
that first needs to gather the participants.

The second modification is an eager notification mecha-
nism. Currently, out transactional layer is meant for asyn-
chronous access to the share state. When a peer write a
new value for item, other users are not notified unless they
read the item. In the case of TransDraw, other users needs
to be notified not only of every modification on the value
of items, but also on the intention of other users when they



lock items. To achieve this, the leader must broadcast its
decision to the network once it get enough locks, and once
the final decision is taken.

Note that eager locking and the notification mechanism
are only needed on synchronous collaborative work. If the
collaborative application relies on asynchronous collabo-
ration it is enough with the Paxos protocol presented in
the previous section. Scalaris [9] is an implementation of
Wikipedia running on top a structured overlay network with
Paxos transactional protocol. This shows that we could al-
ready add fault-tolerance and decentralization to TransDraw
if the goal is work on asynchronous fashion. The suggested
modifications are meant for achieving real-time collabora-
tive work.

6. Conclusion and Future Work

We have seen that several synchronous collaborative ap-
plications are currently based on centralized synchroniza-
tion. This strategy is efficient but not fault-tolerant because
it strongly relies on the stability of the server. Some appli-
cations achieve fault-tolerant by replicating the state of the
server, but this requires a more sophisticated infrastructure
and it is still inherently centralized. Single point of control
is a single point of failure.

We propose to implement these kind of applications on
top of structured overlay networks with symmetric replica-
tion, and a transactional layer based on consensus. This
strategy provides synchronization and fault-tolerance by de-
centralizing the control of the work flow. We present our ap-
proach by taking the TransDraw application and the Beernet
peer-to-peer network.

Beernet as is, can help to decentralize asynchronous col-
laborative applications. In order to achieve the functional-
ity of TransDraw, which is synchronous, eager locking and
a notification mechanism needs to be added to the current
transactional protocol.

We still need to study in detail the new transactional pro-
tocol, implement it and compare the performance with the
centralized approach. We expect to have a small degrada-
tion in performance at the level of the transactional proto-
col due to replication cost, but with a huge gain in fault-
tolerance. There is no degradation in performance for the
user in case of no conflicts, because its changes are done
optimistically, eliminating the problem of network latency.
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1 Demonstrator

DeTransdraw is a decentralized collaborative vector-based graphical editor
with a shared drawing area. It provides synchronous collaboration between
users with graphical support for notifications about other users’ activities.
Conflict resolution is achieved with a decentralized transactional service
with storage replication, and self-management replication for fault-tolerance.
The transactional service also allows the application to prevent performance
degradation due to network latency, which is an important feature for syn-
chronous collaboration.

DeTransDraw is a redesign of TransDraw [1], a client-server application
providing similar features. Due to its centralized architecture, TransDraw
has a single point of failure and does not scale beyond the capacity of the
server. DeTransDraw is built on top of a peer-to-peer network, Beernet [4],
allowing users to join and leave the application at any time, without re-
laying on any central point of control. The decentralized architecture of
DeTransDraw makes it more scalable and fault-tolerant. Other collabora-
tive applications, either synchronous or asynchronous, can benefit from these
properties by reusing the transactional layer over an equivalent peer-to-peer
network.

The transactional service we use is based on an eager protocol that is an
adaptation of Paxos consensus algorithm [3]. The peer-to-peer network we
built uses the relaxed-ring topology [2].

During the demonstration we will built an ad-hoc peer-to-peer network
that will be interfaced by three clients running on three different computers.
The three clients will run the graphical interface of DeTransDraw, accessing
the shared drawing area. Apart from simple drawing actions, conflict reso-
lution will be tested by trying to modify the same graphical objects by more
that one client. Fault-tolerance will be tested by killing some of the peers
during the drawing actions. For the demonstrations we will need space and
power to set up three laptops and a router.

∗This research is funded by SELFMAN (contract number: 034084).
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2 Innovations

• Replicated storage achieved by decentralized transaction over peer-
to-peer networks providing distributed hash table (DHT), providing
eager notifications to the participants of a collaborative application

• Prevention of performance degradation due to network latency. Users
work on the application almost as if it was a local application.

• Self-management of storage achieved with symmetric replication over
a structured overlay network.

• Self-healing of transactions participants. A transaction always termi-
nate if the majority of the peers is alive during the execution. Fault-
tolerance is guaranteed depending on the majority.
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Abstract

The increment of network bandwidth and computing power has definitely
made an impact on distributed systems which are becoming larger, more
complex and therefore, difficult to manage. Although classical client-server
architecture provides a simple management scheme with centralized control
of the whole system, it does not scale because the server becomes a point of
congestion and a single point of failure. If the server fails, the whole system
collapses.

The key to deal with the complexity of large-scale distributed systems
is to make it decentralized and self-managing. Peer-to-peer networks, and
specially in their form of structured overlays, offer a fully decentralized archi-
tecture which is self-organizing and self-healing. These properties are very
important to build systems that are more complex than file-sharing, which
is currently the most common use of peer-to-peer. Despite the nice design of
many existing structured overlay networks, many of them present problems
when they are implemented in real-case scenarios. The problems arise due
to basic issues in distributed computing such as partial failure, imperfect
failure detection and non-transitive connectivity.

This dissertation is about how to build self-managing decentralized sys-
tems. It presents a novel structured overlay network topology called Relaxed-
ring, that provides cost-efficient ring maintenance without relying on transi-
tive communication. The Relaxed-Ring is the base for Beernet, a pbeer-to-
pbeer network prividing replicated and distributed transactional storage.

Fault-tolerant distributed hash tables requires some replication mecha-
nism so as to deal with the failure of a peer without loosing data. Maintain-
ing the replicas is not just costly but it is also difficult to guarantee their
coherency. Beernet uses a transactional protocol based on Paxos consensus
algorithm over symmetric replication that guarantees that at least the ma-
jority of the replicas is kept coherent. The transactional layer is adapted to
provide synchronous and asynchronous collaboration between peers at the
application level.
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Chapter 1
Introduction

All animals are equal

“Animal Farm” - George Orwell

There are many technological and social factors that make peer-to-peer
systems a popular way of conceiving distributed systems nowadays. From
the technological point of view, the increment of network bandwidth and
computing power has definitely made an impact on distributed systems
which are becoming larger, more complex and therefore, difficult to manage.
Although classical client-server architecture provides a simple management
scheme with centralized control of the whole system, it does not scale be-
cause the server becomes a point of congestion and a single point of failure.
If the server fails, the whole system collapses.

The key to deal with the complexity of large-scale distributed systems
is to make it decentralized and self-managing. Peer-to-peer networks, and
specially in their form of structured overlays, offer a fully decentralized archi-
tecture which is self-organizing and self-healing. These properties are very
important to build systems that are more complex than file-sharing, which
is currently the most common use of peer-to-peer. Despite the nice design of
many existing structured overlay networks, many of them present problems
when they are implemented in real-case scenarios. The problems arise due
to basic issues in distributed computing such as partial failure, imperfect
failure detection and non-transitive connectivity.

Coming back to basics on distributed programming, let us review two
definitions that target some key concepts concerning distribution. According
to Tanenbaum and van Steen [TV01]:

“A distributed system is a collection of independent comput-
ers that appears to its users as a single coherent system”

1
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This definition suggests using distribution transparency, where all the ef-
fort of distributed programming is moved to the construction of a middleware
that supports the distribution of the programming language entities. But
network and computer failures cause unexpected errors to appear at higher
abstraction levels, which breaks transparency and complicates programming.

The key issue in distributed programming is partial failure. It is what
makes distributed programing different from concurrent programming. This
is why we would like to quote Leslie Lamport and his definition of a dis-
tributed system:

“A distributed system is one in which the failure of a computer
you did not even know it existed can render your own computer
unusable”

It does not matter how much transparency can be provided in distributed
programming, it will always be broken by partial failure. This is not par-
ticularly bad, but it means that we need to take failures very seriously,
understanding that perfect failure detection is unfeasible in Internet style
networks, and that a failure does not mean only the crash of a process,
but also a broken link of communication between two processes, implying
non-transitive networks.

Because of failures, we cannot trust the stability of the whole system to
a single node, or to a reduce set of nodes with some hierarchy. We need to
build self-managing decentralized systems, where data storage needs to be
replicated and load balanced across the network in order to provide fault
tolerance.

This dissertation is about how to build self-managing decentralized sys-
tems. It presents a novel structured overlay network topology called Relaxed-
ring, which deals with non-transitive connectivity, making it suitable for In-
ternet applications. We also provide support for a transactional distributed
hash table that allows programmers to write applications for synchronous
and asynchronous collaboration between users. Beernet, our implementa-
tion of the Relaxed-Ring, is a pbeer-to-pbeer network providing replicated
and distributed transactional storage.

1.1 Thesis and Contribution

Thesis: a solution to deal with the complexity of dynamic distributed systems
is to build self-managing decentralized systems. They have to provide fault
tolerance and deal with non-transitive connections. Global state has to be
replicated and consistent.

Contributions:

• The design of a protocol for self-organizing peer-to-peer networks cre-
ating a network topology called relaxed-ring. The network is able to
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deal with false suspicions in failure detection and with non-transitive
networks such as the Internet, improving lookup consistency with re-
spect to existing peer-to-peer networks. The relaxed-ring also provides
self healing by triggering a failure recovery mechanism when the crash
of a peer is detected.

• The relaxed-ring protocol is cost-efficient because it does not rely on
periodic stabilization to repair the network when it is affected by churn.
The relaxation introduces branches to the ring topology, but it keeps
the routing algorithm competitive with log(N) hops to reach any peer.

• We provide a self-adaptable routing topology that allows the relaxed-
ring to take advantage of full connectivity in small networks, and loga-
rithmic routing in large networks. The system can scale up and down
making it suitable for many different applications independent of the
size of the network.

• We present the algorithms of the relaxed-ring using feedback loops
to analyse and validate its self-management properties. The feedback
loops help us to understand how the system monitors itself, analyses
the information, and triggers the needed action to modify the system.

• We study and validate the Paxos consensus algorithm for atomic trans-
actions on a replicated DHT, and we compare it with the well known
solution for distributed transactions called Two-phase commit.

• We adapt Paxos consensus algorithm to provide eager locking of the
transaction participants, and we extend it with a notification layer to
make other peers aware of the modifications. This new protocol allows
us to design application where users can collaborate synchronously.

• As proof-of-concepts, we have implemented Beernet, the pbeer-to-pbeer
network, a relaxed way of doing peer-to-peer. It is an implementation
of the relaxed-ring where peers are organized as a set of distributed-
transparent actors. These actors represents components with encapsu-
late state and that communicates only via message passing, avoiding
share state concurrency. Beernet also takes advantage of the fault-
stream model for failure handling improving its modularity and net-
work transparency. These characteristics provide a better program-
ming framework for self configuration of components.

• We have implemented and presented to the research community three
different demonstrators to introduce the concepts of the relaxed-ring,
atomic transactional DHT, and synchronous collaboration with eager
transactions.
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• We develop two applications on top of Beernet to exploit optimistic and
pessimistic transactions, and the notification layer. These application
provide a community-driven recommendation system, and a collabora-
tive drawing tool. Two other applications designed and developed by
third parties are also presented so as to emphasize the impact of the
contribution of the relaxed-ring and its transactional layer.

1.2 Publications, Software and Award

The work presented in this dissertation is the result of incremental progress
made through discussions and presentations in several workshops and doc-
toral symposia. The implementation of software as proof of concepts has
contributed to polish algorithms and ideas about how decentralized systems
should be designed. Several of the results presented here have also been
published in conferences and a journal. In this section we present the most
important publications that support this dissertation, together with refer-
ences to software demonstrators that validates the implementation of the
ideas. There is also an award to be mentioned that the author has receive
for his presentation in a doctoral symposium.

• Journal “The Relaxed-Ring: A fault-tolerant topology for structured
overlay networks”. Boris Mejías and Peter Van Roy. In Parallel Pro-
cessing Letters, Vol. 18(3):411–432, World Scientific, September 2008.
This publication presents most of the results that we will describe in
detail in Chapter 3, presenting part of the evaluation measurements
that will be presented in Chapter 5.

• Conference “A Relaxed-Ring for Self-Organising and Fault-Tolerant
Peer-to-Peer Networks”. Boris Mejías and Peter Van Roy. In Pro-
ceedings of XXVI International Conference of the Chilean Computer
Science Society (SCCC 2007), 8-9 November 2007, Iquique, Chile.
This publication focus more on the analysis of the self-management
behaviour of the Relaxed-Ring, using feedback loops as a mean to
describe an analyse the algorithms for ring maintenance and failure
recovery. This ideas are further discussed in Chater 4.

• Conference “PALTA: Peer-to-peer AdaptabLe Topology for Ambient
intelligence”. Alfredo Cádiz, Boris Mejías, Jorge Vallejos, Kim Mens,
Peter Van Roy, Wolfgang de Meuter. In Proceedings of XXVII IEEE
International Conference of the Chilean Computer Science Society (SCCC’08).
November 13-14, 2008, Punta Arenas, Chile. This paper complements
Relaxed-Ring’s algorithms with an efficient self-adaptable routing ta-
ble. The algorithm is described in detail in Chapter 3, and its evalua-
tion is included in Chapter 5.
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• Demonstrator in Conference “PEPINO: PEer-to-Peer network IN-
spectOr” (abstract for demonstrator). Donatien Grolaux, Boris Mejías,
and Peter Van Roy. In Proceedings of P2P ’07: Proceedings of the
Seventh IEEE International Conference on Peer-to-Peer Computing.
September 2-7, 2007, Galway, Ireland. This software demonstrator has
helped us to visualize and polish our implementation of the Relaxed-
Ring, being closely related to Chapter 7 and the applications of Chap-
ter 8.

• Demonstrator in Conference “Visualizing Transactional Algorithms
for DHT” (abstract for demonstrator). Boris Mejías, Mikael Högqvist
and Peter Van Roy. In Proceedings of P2P ’08: Proceedings of the
Eighth IEEE International Conference on Peer-to-Peer Computing.
September 8-11, 2008, Aachen, Germany. This software demonstra-
tor validates the design and implementation of the transactional layer
for atomic commit on DHTs with symmetric replication. It validates
the claims we discuss in Chapter 6.

• Award The author has won the “Best Presentation Award” in the Doc-
toral Symposium of the “XtreemOS Summer School”, held at the Wad-
ham College of the University of Oxford, Oxford, UK, on September 10,
2009. The presentation was entitled “Beernet: a relaxed-ring approach
for peer-to-peer networks with transactional replicated DHT” [Mej09],
and it summarized the contribution of this dissertation.

1.3 Roadmap

This dissertation is organized as follows. Chapter 2 makes a review of all
three generations of peer-to-peer systems, being structutured overlay net-
works the most important focus of the analysis. The systems we reviewed
are not only studied from the point of view of their overlay graph, but also
from their self-managing properties. We also review distributed storage and
the connection of peer-to-peer with Grid and Cloud Computing. Chapter 3
presents the protocols and algorithms of the Relaxed-Ring, being an im-
portant part of the contribution of this dissertation. The Relaxed-Ring is
also studied using feedback-loops in Chapter 4 so as to understand its self-
managing properties from a architectural and software design point of view.
Evaluation of the Relaxed-Ring, specially in comparison with other over-
lay graphs, is done experimentally using a concurrent multi-agent simulator.
The results of such evaluation are presented in Chapter 5.

Once we have presented the Relaxed-Ring, the dissertation continues
with the study of distributed storage in Chapter 6. We analyse Two-Phase
commit, Paxos consensus algorithm, and we describe our contribution with
Eager Paxos and the notification layer. Chapter 7 describes the design deci-
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sions and implementation details of Beernet, which implements the Relaxed-
Ring and its layer for transactional distributed hash tables using symmetric
replication. Before the concluding in Chapter 9, we present a set of appli-
cations designed and developed using Beernet and the ideas of the Relaxed-
Ring. Some of the applications are developed by the authors, and some
of them are contributions of third parties, emphasizing the impact of this
dissertation.



Chapter 2
The Road to Peer-to-Peer Networks

All animals are equal, but some are more equal
than others

“Animal Farm” - George Orwell

The goal of distributed computing is to achieve the collaboration of a
set of different autonomous processes. A process is an abstraction of an
entity that can perform computations. This entity can be a computer, a
processor in a computer, or a thread of execution in a processor. We will
use nodes or peers to also mean a process. The most basic problem that
has to be addressed is to establish the connection between two processes and
to provide programming language abstraction to allow programmers to per-
form distributed operations. As more processes come into communication,
enlarging the network, it is necessary to correctly route messages between
processes that are not directly connected. And as the network grows larger,
it is necessary to design system architectures that can ease the collaboration
between processes. Even though the first issues we mentioned are not com-
pletely solved, the existing solutions are good enough to let us focus on the
architecture of the system.

We are interested in designing and building overlay networks to organize
processes that are already able to communicate between each other and to
route messages through an underlaying network. Therefore, this chapter is
dedicate to analyze existing overlay networks to contextualize the contribu-
tion of this dissertation. Even though this work is developed on a high level
of abstraction, we still consider many of the basic principles of distributed
computing, such as latency or partial failure. These principles go across all
level of abstractions on distributing computing, and not taking them into
account would be like an architect discarding physical rules that would in-
validate its design of a building. We will mention some issues concerning
routing messages on the underlaying network during this chapter, and we

7
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will discuss more about language abstractions for programming languages
when we describe the implementation of Beernet in Chapter 7.

In the introduction we motivated the use of peer-to-peer networks for
building dynamic distributed systems, because of their decentralized, fault-
tolerant and self-organizing structure. We also claimed that increasing self
management in such systems is the only way of dealing with their high
complexity. The self-management properties of peer-to-peer networks are
so intrinsic to them that we will start this chapter by briefly introducing
some concepts of self management, and then we will use them to analyze the
related work.

2.1 Self Management

The complexity of almost any system is proportional to its size. This rule also
holds for distributed system. As systems grow larger, they become more and
more difficult to manage. Therefore, increasing system’s self management
appears as a natural way of dealing with high level complexity. By self
management, we mean the ability of a system to modify itself to handle
changes in its internal state or its environment without human intervention
but according to high-level management policies. This means that human
intervention is lifted up to the level where policies are defined.

Typical self-management operations are: tune performance, reconfigure,
replicate data, detect failures and recover from them, detect intrusion and at-
tacks, add or remove parts of the system, which can be components within a
process, or a whole peer, and others. Each of those actions or a combination
of them can be identified as self-configuration, self-organization, self-healing,
self-tunning, self-protection and self-optimization, often called self-* proper-
ties in literature. We will use this properties to analyze the related work and
the contribution of this work, but self-protection is not in the scope of this
dissertation.

One of the key operations that a system must perform to achieve self-
managing behaviour is to monitor itself and its environment. Once relevant
information is collected, it can take decision over which action to trigger to
achieve its goal. Once the action is triggered, the system needs to monitor
again to observe the effect of its action, developing a constant feedback loop.
We will review more about feedback loops in Chapter 4. In peer-to-peer sys-
tems, monitoring is distributed and based only on the local knowledge that
every peer has. Peers monitor each other and trigger actions in other peers.
Global state can be infered but always as an approximation, because there
is no central point of control that observes the whole system at once. Self-
managing behaviour must be observed as a property of the whole network,
and not as an isolated property of a single peer.
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Figure 2.1: Overlay network.

2.2 Overlay Networks

A computer network, is a group of interconnected processes able to route
messages between them. Internet is a group of interconnected networks,
routing messages between processes independently of the network where they
belong. An overlay network is a network built on top of another network
or set of networks. For instance, a group of processes using the Internet to
route their message is said to be an overlay network, where the Internet is
the underlay network. Actually, the Internet itself can be seen as an overlay
network running on top of the group of local area networks.

Figure 2.1 depicts the architecture we are describing. An important issue
to discuss here is the analysis of the routing of messages. We can observe
that nodes f and e are directly connected in the overlay network. Therefore,
a message sent from node f to e is considered to be sent in one hop. However,
if we look at the topology of the underlaying network, we observe that the
message would take at least three hops, and it go through the node identified
as d, which is not even connected with f in the overlay. This different in the
amount of hops is understandable if we consider that the overlay network
complete abstract the underlaying network. The same overlay network de-
picted in Figure 2.1 could have been deployed over a different underlaying
network where nodes f and e are really directly connected, or completely far
away. Since there is no direct correlation between overlay and underlay in
the amount of hops needed to route a message, we will consider these two
analysis as independent. This does not mean that the design of an overlay
network can take the underlaying network into account in order to optimize
routing. In this dissertation, when we discuss the amount of hops to route a
message we will mean at the level of the overlay network, unless it is explicitly
stated.
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2.2.1 Client-Server

Client-Server is the one of the most basic and popular architecture to build
distributed systems. It is very simple and it allows the designer of the server
to have control over the system, because all messages have the server as
participant. It can also be seen as an centralized overlay network with a star
topology. Unfortunately, it relies too much on the server which becomes a
point of congestion and a single point of failure. The system relies entirely
on the server. If the server crashes, there is no application. The size of the
application also relies on how powerful the server is to handle the connection
of all the clients. Therefore, it does not scale very much. If there is any
self-management property that we want to analyze here, it would be entirely
focused on the server, and we would remain with the problem that if the
server is gone all self-* properties will be gone too.

Currently, companies that base their business model on the client-server
architecture have extended it to run more code on client’s machine, allow
some communication directly between clients, and more fundamentally, repli-
cate their servers in order to scale and provide more fault tolerance. If we
focus the self-management analysis on the group of servers, then we would
not be studying client-server architecture anymore, because the group of
servers would actually form a different network. Yet, if the access to the
group of servers is broken, there is no application. To achieve more fault
tolerance it is necessary to decentralize the system. Decentralization will
also increase scalability but at the cost that there will be no central point of
control. Increasing self management will allow the system to control itself.

2.2.2 Peer-to-Peer First Generation

Napster [Nap99] is the first peer-to-peer system to be widely known. It was
a file-sharing service that allowed users to exchange files directly, without
sending them though the server. It is said to belong to the first generation
of peer-to-peer networks where we also find AudioGalaxy [Aud01] and Open-
Nap [Ope01]. This generation was not entirely peer-to-peer. It was based on
a mixed architecture which still relied on a server to work. Peers connected
to a server in order to run queries over media files. The server replied with
the addresses of the peers storing the requested file so that peers could con-
nect directly. If the server failed, the exchange of files could continue, but it
was not possible to run new queries. Therefore, the application would stop to
work as soon as all current downloads where completed. It was not possible
to route messages to other peers through the currently connected peers, and
this is why it is not considered to be entirely peer-to-peer. Only the exchange
of files was done peer-to-peer . OpenNap, an open source derivate work from
Napster, allowed communication between different servers improving robust-
ness of the system, but the network remained centralized on the group of
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servers handling the queries. Because large part of the exchanged content
was copyrighted, Napster ceased its operations in 2001 due to legal issues.
The service was easily shut by just stopping the servers.

2.2.3 Peer-to-Peer Second Generation

The more it stays the same, the less it changes!

“The Majesty of Rock” - Spin̈al Tap

The second generation of peer-to-peer networks is considered to be the
first real peer-to-peer system, because it is fully decentralized, it does not
rely on any server, and it is able to route messages using peers on the overlay
network independently of the underlay network. This generation is mainly
represented by Gnutella [Gnu03] and Freenet [Fre03], and it is also developed
having file-sharing as goal. It was actually a solution to Napster shut down,
because there was no server to stop. These systems are also known as un-
structured overlay networks because peers are randomly connected without
any particularly defined structure. As we have discussed already, nowadays
almost any machine can behave as a client and a server. Therefore, every
peer can trigger queries as a client, and handle queries from other peers,
playing the role of a server.

The algorithm to route messages in such unstructured network is called
flooding. It is very simple but highly bandwidth consuming. It works as
follows: the peer that triggers the query sends it to all its neighbours with a
time to live (TTL) value. The TTL can be expressed in seconds or hops. We
will use hops for our example. The receiver of the query determines if it is the
first time that has seen it and if the TTL is greater than 0. If so, it transmit
the query to all its neighbours except for the sender, with a decremented
TTL. If the peer can resolve the query, it answers back following the path to
the original sender. In Figure 2.2 we can see the flooding algorithm initiated
by peer h with a TTL of 2. The extra circles around the peers on the figure
represents the amount of hops that the message needed to reach the peer.
All coloured peers participated in the routing algorithm. Peers with a darker
coloured means that the peer receive the message more than once. Let us
imagine that the query triggered by peer h can be answered by node m. The
query is first sent from h to nodes f, g, j and k. Every peer will send it to its
neighbours, so m receives the message from k, and the answer travels back
following m→k→h.

There are several issues that make this algorithm less scalable and not
suitable for the kind of systems we want to build. If we observe peer f on
this example, first, it receives the query from peer h and then from peer j. A
similar situation occurs with the other nodes on the first level of flooding. On
the second level, nodes i and n receive the message twice too. In conclusion,
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Figure 2.2: Flooding routing in a unstructured overlay network.

many nodes process the query unnecessarily more than once, inefficiently
using their resources.

A second issue is the amount of messages being sent. In this example,
the messages is sent 16 times without counting the responses. In the ideal
case, it was only necessary to follow the path h→k→m. To do such routing,
peers would need a routing table with information about their neighbours.
However, the absent of routing tables for the sake of simplicity is considered
to be one of the advantages of unstructured overlay networks.

Determine a correct TTL is also an issue. If the query could have been
resolved immediately on the first level, all the messages sent to the second
level and further would have been unnecessary. If the TTL on this example
would have been set to 3, the whole network would have been flooded to
resolve the query. However, if the query could have been only resolved by
a, b or d, a TTL of 2 would not have been sufficient to find the answer.
This is one of the reasons why unpopular items are more difficult to find
in file-sharing services based on flooding routing, even though the items are
stored somewhere in the network.

Another issue that influences the success of resolving a query is the place
of the originator. Nodes closer to the center of the network will reach more
nodes that nodes living at the border of the network. For instance, in Fig-
ure 2.2, node h floods the whole network in three hops, but nodes l and m
would need to use a value TTL of 5 to reach a, b or d. In a very large
network, a TTL of 6 seems to be reasonable following the six degree of sepa-
ration theory of human connected networks.Â Using a formula from [AH02]
to count the amount of messages sent in a query (with the responses), with
an average C connections per peer, and using TTL of 6, we obtain:

2 ∗
TTL∑

i=0

C ∗ (C − 1)i = 54610 (2.1)

Despite all these issues, unstructured overlay networks are still very pop-
ular to run file-sharing services because bandwidth consumption is mainly
considered a problem for ISP providers and not for the users, and because
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popular items can be found in a reasonable amount of hops, again, following
the rule of six degree of separation. Another reason is that items stored in
file-sharing systems do not update their values. If many peers store the same
item, it is necessary to find at least one of the peers. There is no such thing
as the latest value of the item, so there is no issue with respect to consistency.
Any replica of an item is a valid one as long as the value stays the same.

Flooding routing works fine for networks with a tree topology, because
it avoids that peers receives messages more than once, but it is very costly for
unstructured overlay networks, being inefficient in bandwidth and processing-
power usage. Another problem is that there is no guarantee of reachability
or consistency, properties that we consider important to build decentral-
ized systems that constantly update the values of the stored items. Even
though Gnutella can keep large amount of peers connected, it does not mean
that scalable services can be built on top of it because of the problems
on efficiency, reachability and consistency [Mar02, RFI02]. Also, accord-
ing to [DGM02], it is not difficult to perform a query-flood DoS attack in
Gnutella-like networks, but their success depend on the topology of the net-
work and the place of the originator of the attack, which is related to the
reachability issue we already discussed.

Freenet also uses flooding routing but it presents some improvements
with respect to Gnutella. The main difference is that the queries can be done
with anonymity in Freenet. Since these systems were conceived as file-sharing
services, the motivation for providing anonymity is basically legal, so no user
can be sued. There is a degradation in performance because everything is
sent encrypted. Freenet also keeps some information with respect to locality
on the routing tables of the peers so as to improve routing speed. But, since
it is flooding based, it is still very expensive.

With respect to self-* properties, we observe a basic self-organization
mechanism despite the fact of not having any structured topology. There
is no global or manual mechanism to organize the peers. Peers joining the
network are just connected to the peers it gets introduced by its entry point.
When nodes disconnect from the network, the other nodes simply stop for-
warding queries to them, and therefore, there is no need for a self-healing
strategy. Routing protocols in Gnutella and Freenet are under continuous
improvement by their communities, but we will not refer to them because
they go beyond the simplicity of the basic unstructured network, and they
do not solve the more fundamental problems already discussed. It is possible
to provide some self-tunning of the TTL value, and some self-optimization in
the flooding paths by adding more information to the routing tables of the
peers, but we will study better choices on the structured overlay networks in
the next section.
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2.3 Structured Overlay Networks

The third generation, also known as structured overlay networks (SONs), is
the result of academia’s interest in peer-to-peer networks. It clearly aims to
solve the problems of unstructured networks by providing efficient routing,
guaranteeing reachability and consistent retrieval of information. Adding
structure makes possible to achieve these improvements, but it also cre-
ates new challenges such as dealing with disconnections of peers and non-
transitive links. SONs typically provide a distributed hash table (DHT)
where every peer is responsible for a part of the hash table. There are
two basic operations that every DHT must provide: put(key, value) and
get(key). The put operation stores the value associated with its key such
that every peer can retrieve it with the get operator. If another value was
already stored under the same key, the value is overwritten. We define
now some of the concepts we will use in this section and in the following
chapters. These terms are also common to other surveys found in litera-
ture [AH02, BL03, GGG+03, EAH05, LCP+05, AAG+05].

• Item. The key/value pair stored in the hash table.

• Identifier space. The key of an item is always mapped into a hash
key, which is the identifier of the item (abbreviated as id). The range
of possible values of ids is the identifier space. Peers in the network
are also associated with an id. Due to that, the identifier space is also
named address space

• Lookup. It is the operation performed by any peer to find the respon-
sible peer of a given key.

• Join. A new peer getting into the network.

• Leave. A peer disconnects from the network either voluntarily (gentle
leave) or because of a failure (also named crash).

• Churn. Measurement of peers joining and leaving the network during
a given amount of time.

• Iterative routing. The originator of a lookup sends its message to
its best contact on the overlay, with respect to the searched key. The
contact answers back with its best contact, so the originator iterates
until reaching destination. This seems to be inefficient, but if a node
in the path fails, the originator nodes exactly where to recover from.
See Figure 2.3(a).

• Recursive routing. The originator of a lookup sends its message to
its best contact on the overlay, with respect to the searched key. The
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(a) (b)

Figure 2.3: Example of (a) iterative and (b) recursive routing.

contact forwards the lookup request to its best contact, and so contin-
ues the search. When destination is reached, the peer answer back to
the originator. It is more efficient than iterative routing, but in case of
a failure, the whole process needs to be restarted. See Figure 2.3(b).

Every system assumes that nodes willing to join the network have a ref-
erence to at least one peer in the system, which we call the first contact. We
will start by discussing ring-based networks because it is where our contri-
bution is made. We will deeply analyze Chord because it influences many
other systems, which are basically variations with improvements to Chord.

2.3.1 Chord

Chord [SMK+01, DBK+01] is one of the most known and referenced SON. In
Chord, peers are self-organized forming a ring with a circular address space
of size N . Hash keys are integers from 0 to N − 1. The ring can be seen as a
double-linked list with every peer having two basic pointers: predecessor and
successor (abbreviated as pred and succ). Figure 2.4(a) depicts an example
of a Chord ring. Only pointers of peer identified with id q are drawn on the
figure but every peer holds equivalent pointers. Peers p and s corresponds to
pred and succ respectively. This means that p < q < s, where ‘<’ is defined
on the circular address space following the ring clockwise.

DHT The ring provides a DHT where every peer is responsible for the
storage of a set of keys determined by its own id and its predecessor. In
the case of q, the peer is responsible for the range (p, q], (i.e., excluding
pred’s id and including its own). If the ring is perfectly linked, there is no
overlapping of peers’ responsibilities, and therefore, every lookup operation
gives consistent results.

Fingers To provide efficient routing, Chord uses a set of extra pointers
called fingers or long references. They are chosen dividing the address space
in halves. The farther finger of q is the responsible of key (q +N/2) mod N .
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In our example in Figure 2.4(a), we consider q = 0 to label finger keys, and
therefore, the ideal farther finger key is N/2. In the figure there is no peer
holding exactly that key, but peer k is currently the responsible. Closer
fingers are chosen using the same formula but dividing N by powers of 2.
The fingers, together with pointers to pred and succ, form the routing table
of a peer. Ideally, every peer holds references to log2N fingers.

Lookup When any peer receives a lookup request for a given key, it first
determines if the key belongs to the range between its own id and its succes-
sor. If that is the case, it answers the lookup query giving its successor id as
answer. If it is not, it forwards the lookup to the closest preceding finger. It
never uses the predecessor to route to avoid cycles. The routing mechanism
is therfore recursive. In our example of Figure 2.4(a), if lookup(m) arrives
to peer q, q forwards it to peer k. If it is lookup(b’) with b < b′ < c,
then q forwards the message to b, being the closest preceding finger of b′.
The, b answers that c is the responsible, because c′ ∈ (b, c]. The fact that
b answers that its successor c is the responsible of c′ will be the source of
inconsistencies under special cases of churn and connectivity problems, as
it is described in [Gho06, MV08, SMS+08]. This occurs basically because
b could not be aware of new node between c and the key c′. We will come
back to this issue on Chapter 3.

Fingers fragments the address space into halves, therefore, every forward-
ing of a lookup request shortens the distance to approximately the half of
it. Considering that the address space is discrete, the routing of the lookup
converges to the responsible of the key in O(log2N) hops. This routing cost
is very scalable because if the network doubles its size, the routing takes in
average only one extra hop.

Churn Figure 2.4(b) shows three different events producing churn: peer j
joins as k’s predecessor, peer b leaves voluntarily the network, and peer m
crashes. In the case of the join, k accepts j only if j belongs to k’s range
of responsibility. Since N/2 > j > q, peer j becomes the new responsible
of N/2, and therefore, it is a more suitable finger for q. This value needs
to be updated somehow. A similar situation occurs when b leaves, because
c becomes the new responsible of N/4. The difference here is that now q
has temporary no finger for that value until it knows about c. The crash of
m does not affect q’s routing table, but it surely affect other peers’ routing
table, and the responsibility of m’s successor.

Join When new peers want to join the network, they have to do it as
predecessor of the responsible of its own key. Looking at the example in
Figure 2.4(b), we observe that peer j joins as predecessor of peer k. To
know where to join the ring, j has to previously request a lookup(j) to
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(a) (b)

Figure 2.4: Example of (a) Chord ring and (b) some events causing churn.

its first contact, which can be any peer in the network. Since the answer
to the lookup is k, peer j set its succ pointer to k and notifies it. Then,
k determines that j ∈ (d, k] and update its pred pointer to j. Half of the
process of joining is done here. It is continued by periodic stabilization,
which we describe now.

Periodic stabilization We can divide a peer’s routing table into two
groups: fingers, which are used for efficient routing, and pred/succ, which
are needed for correctness. These references become invalid after some time
due to churn. Therefore, it is necessary that every peer periodically checks
the validity of the references.

A peer periodically asks its succ for the value of succ’s pred. If it is
the same as itself, there is nothing to change to do. If it is a new one, it
is probably a better successor, or something when wrong and there is an
inconsistency in the responsibilities of the DHT. Coming back to our join
example in Figure 2.4(b), when it is time for d to run periodic stabilization,
it asks k the value of its predecessor. Peer k answers j. Peer d realizes that
j ∈ (d, k], and then, d changes its succ pointer to j, fixing the ring. Then,
d notifies j about itself becoming j’s pred. That is how j gets to know d
and the joining of j is completed. This mechanism relies entirely on network
transitivity (i.e., if d can talk to k and k can talk to j ⇒ d can talk to
j). This property is often assumed as guaranteed, but it does not hold all
the time, being source of errors in real implementations [FLRS05]. Another
problem with this join algorithm based on periodic stabilization is that two
peers joining simultaneously in the same range of keys will introduce lookup
inconsistency even if connectivity is perfect, as analyzed in [Gho06]. We will
discuss more about these two issues later on this section and on Chapter 3.

To check validity of fingers, a peer asks to every finger its pred value.
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If pred is the new responsible for the ideal finger key, the finger pointer is
updated. In Figure 2.4(b), q asks k for its pred. Peer k answers j, where
j ∈ (N/2, k], and then, j is a better finger because it is the responsible for
key N/2. Note that this mechanism also relies on transitive connectivity
between q, k and j. If the finger is found to have left the ring, as in the case
of b leaving the network, a new lookup for the key N/4 must be performed.

Successors list Every peer holds a list of peers that follows its successor
clockwise, which we call successors list. The size of this list is log2N , as in
the finger table. When the current successor leaves the network, either vol-
untarily or due to a crash, the peer takes the closest peer is the successors list
as its successor candidate, fixing the ring. It is possible that the successors
list is not accurate due to churn, and some peers will be missing, but this
problem is corrected by periodic stabilization.

Network partitions Chord can survive a network partition as long as
every peer can find a valid successor candidate in its successor list. This
means that no more than log2N − 1 consecutive peers have to reside on the
same partition. Even when the ring survives the partition, it is not possible
to provide consistency and availability at the same time. This is not a par-
ticular problem of Chord but of every network following Brewer’s conjecture
on partition-tolerant web services, formalized and proven in [GL02]. Even
though Chord and other ring-based systems can survive network partition-
ing, none of these systems addressed correctly the problem of merging the
rings when the partition is gone. Recently, a nice gossip-based solution was
presented in [SGH07, SGH08], being general enough to apply it to many
ring-based networks.

Self management Note that no central entity organizes peers’ position in
the ring. Every joining peer finds autonomously its successor, and every peer
runs periodic stabilization independently. We identify this behaviour as self-
organization, and it is essential to almost every SON. Periodic stabilization
also reconfigures the finger table to provide efficient routing on the network.
Considering fingers update only from the point of view of a single peer, we
identify this behaviour as self-configuration. If we consider the global result,
we observe that the network route messages more efficiently, therefore, we
identify this behaviour as a basic self-optimization. The resilient information
of the successors list, combined with periodic stabilization, can be clearly
identify as self-healing.

It is important to remark that these self-management behaviour are in-
trinsic to Chord, as they are too almost every decentralized peer-to-peer net-
work. Without these properties the system basically does not exist. This
contradicts some views on self management that attempt to analyze de-



2.3. STRUCTURED OVERLAY NETWORKS 19

centralized systems as autonomic systems that have evolved from manually
controlled systems. For instance, some methodologies [Mil05, LML05, ST05]
define their model to evaluate the system with and without autonomic be-
haviour. They define the maturity of the system by the ability of turning
on and off each autonomic behaviour. As we said, Chord would not work
correctly without periodic stabilization, and one could not turn off self-
organization of the ring. According to those methodologies, that would mean
that the system is not mature enough, which actually does not reflect what
a decentralized system is.

It would be more interesting to discuss how hidden a self-* property can
be. For instance, the lookup procedure is orthogonal to the protocols that
maintain the ring and the routing table. Therefore, the four self-* properties
we already mentioned are hidden to the lookup. When the message arrives
to the peer and it needs to be forwarded, the mechanism does not need to
know how the pointers were defined. It just takes the most convenient finger.
We realize that even when lookup is a low-level primitive in SONs, it is at a
higher level with respect to routing table and ring maintenance.

Observations One of the advantages of Chord is that their protocols for
maintaining the ring are quite simple and lock free. But, they rely on periodic
stabilization to fix lookup inconsistencies, and on transitive connectivity to
complete the protocols. It is shown in [KA08] that exist a given value for the
ratio of churn with respect to the frequency of periodic stabilization, where
the longest finger of any peer is always dead at the moment of performing
a lookup. This means that routing efficiency is highly degraded preventing
the correct execution of any application built on top of the network. To
solve this problem, periodic stabilization has to be triggered more often. We
already mentioned that the join algorithm is not lookup-inconsistency free.
Since periodic stabilization fix those inconsistencies, making it run more
often also contributes to a better ring maintenance. The big disadvantage
is that periodic stabilization is very costly, making an inefficient use of the
bandwidth.

The circular address space, as it is used by Chord and many other ring-
based systems, relies on the uniformity of the identifiers of the peers. If
the keys present a skewed distribution, many fingers will point to the same
peer creating points of congestion. Another problem that can appear, even
if peers’ identifiers are uniformly distributed, is that the keys of the stored
items have a skewed distribution. For instance, consider the words on a
dictionary. If every peer has to store the words of a given letter, some
peers will have to store a lot more information than others, unbalancing the
network. This issue is address in Oscar [GDA06].

Chord was designed to scale to very large networks and it does it well,
providing logarithmic routing cost. Unfortunately, if we would like to use
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Figure 2.5: Partition of the address space in DKS.

Chord to create very small systems, the topology and routing tables would
be too sophisticated and less efficient than a full mesh, which is completely
reasonable to use in very small networks. Chord scales up very well, but it
is not its goal to scale down.

There are several Chord implementations and services built upon it,
among which we find the main implementation [Cho04] and i3 [SAZ+02],
a DNS service [CMM02] and a cooperative file-sharing service [DKK+01].

2.3.2 DKS

Overlay DKS [AEABH03] is also a ring-based peer-to-peer network with a
circular address space as Chord. Its design presents improvements in routing
complexity, cost maintenance of the ring, and replication of the data. DKS
stands for Distributed k-ary Search. As it names suggests, the address space
is divided into k intervals rather than 2 as in Chord. An example of the
division strategy can be seen in Figure 2.5. In the example, node n divides
the space into k = 4 intervals, having a finger to each peer at the beginning of
every interval. The closest interval is again divided into k subintervals with
the correspondent fingers. The figure shows a new division of the closest
interval, even though the arrows of the fingers are not drawn. The division
continues until an interval is not dividable by k any more. The lookup process
works exactly as in Chord, forwarding the message to the closest preceding
finger. Since there are always k intervals, the lookup process converge in
O(logkN) hops, which is better than Chord. The larger the value of k, the
smaller the amount of hops, but the larger the size of the routing table,
which is a disadvantage because its maintenance becomes more costly. We
can say that DKS generalizes Chord, where Chord becomes an instance of
DKS where k = 2.

Correction-on-change and correction-on-use Another fundamental im-
provement with respect to Chord is that DKS does not rely on periodic
stabilization. This can be achieved by having atomic join/leave operations,
and more interestingly, it introduces the principles of correction-on-use and
correction-on-change. Correction-on-use means that every time messages are
routed, information is piggy backed to correct fingers. The more the network
is used, the more accurate the routing tables become. Correction-on-change
is more concerned with the detection of nodes joining or leaving the network.
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Every time such an event is detected, the correction of pointers is triggered
immediately instead of waiting for the next round on periodic stabilization.

Atomic join/leave To solve the problem of correcting the succ and pred
pointers, DKS uses an atomic join/leave algorithm [Gho06] based on dis-
tributed locks. Providing atomic join/leave operations does not only reduce
the need for periodic stabilization, but it also reduces lookup inconsistencies,
which is a more important contribution. Previous attempts to provide atomic
join/leave operations [LMP04, LMP06] failed to provide safety and liveness
properties. The main problem was their use of three locks: succ, pred, and
the joining/leaving peer. In DKS instead, only two locks are needed. To join
or leave, every peer needs to get its own lock and the lock of its successor. In
the case of joining this is simpler, because nobody knows about the joining
peer except for itself. Then, its join operation is guaranteed as soon as it gets
the lock of its successor. Leaving is relatively more difficult, because a peer
cannot depart from the network if its predecessor or successor is leaving as
well, and getting their locks first. We consider this an important drawback.

The algorithm guarantees safety and liveness properties. It is proven to
be free of deadlocks, livelocks and starvation. However, all the proofs are
given in a failure-free scenario which is unrealistic for a peer-to-peer network.
If a peer crashes holding the lock of its successor, it will prevent its succes-
sor from answering lookup requests, increasing unavailability. If the peer is
falsely suspected of having failed, errors can be introduced by having dupli-
cations of locks. The algorithm is also broken in presence of non-transitive
connections, because peers will not be able to acquire the relevant locks in
order to perform a join or a leave. Distributed locks must not be used unless
it is unavoidable, as we will see when we discuss consistent replication of
storage.

Storage With respect to storage, DKS also introduces an interesting strat-
egy to locate replicas symmetrically on the network [GOH04], instead of
placing them on the successor list as Chord does. Symmetric replication
contributes better to load-balancing and makes recovery on failure more ef-
ficient. We will discuss more about symmetric replication in Chapter 6.

Self management DKS presents very similar self-management proper-
ties to Chord but their mechanism to achieve them differ. Both rings are
self-organized, self-optimized and self-healing, and peers’ routing tables are
self-configured. Chord achieve many of these properties through periodic
stabilization and some through immediate reaction on join events and fail-
ure detection. DKS achieve self-organization through atomic join/leave al-
gorithms, self-optimization and self-configuration through correction-on-use
and correction-on-change, and self-healing through correction-on-change.
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2.3.3 P2PS and P2PKit

Overlay P2PS [MCV05] is also a ring-based peer-to-peer system with log-
arithmic routing. It is the predecessor of Beernet [Pro09] and the relaxed-
ring. P2PS uses the Tango protocol [CM04] for building the finger table and
routing messages across the network. Tango is very similar to Chord and
DKS, but it takes into account the redundancies found in the finger tables
of different nodes. One can observe that there are different paths from peer
i to j with the same amount of hops, and any of those paths could be taken
to resolve a lookup operation. Tango exploits these redundancies providing
a more scalable and efficient solution. As drawback, it needs to take into
account the information of other nodes, and therefore, it is expensive to
maintain the routing tables up to date. To compensate this cost, by exploit-
ing redundancy, routing tables in Tango are smaller than those of DKS and
Chord. The average cost for routing messages is also O(logkN) hops, but it
is claimed to be 25% faster that Chord in worse cases.

Ring maintenance Taking into account the fact that two simultaneous
join with the same successor candidate created lookup inconsistencies in
Chord, P2PS designed its own join algorithm. Similarly to DKS, P2PS does
not use periodic stabilization to fix succ and pred pointers. It uses correction-
on-change instead. Contrary to DKS, P2PS does not use distributed locks
to guarantee atomic join/leave operations, which is in fact an advantage.
An important contribution to fault tolerance is that graceful leaves where
not considered in the design of the protocol. They are treated as failures.
The reason is that if a node fails while performing a graceful-leave protocol, a
failure-recovery strategy must be design for that particular case, adding more
complexity to the ring maintenance. If leave due to a failure is already handle
by correction-on-change, an algorithm for graceful leaves is not needed.

The join algorithm of P2PS is claimed to be atomic, and in fact, it
does not introduce lookup inconsistencies even if two nodes join the ring
simultaneously within the responsibility range of a given peer. Even so, the
algorithm relies on network transitive to complete. Although the algorithm
is atomic for two simultaneous join, we proved in [MJV06] that the algorithm
did not work in particular cases of three and more simultaneous join, and that
the inconsistency persist until new the compromised peers left the network.
Unfortunately, we wrongly conclude in that technical report that a lock-based
algorithm, such as the one of DKS, was needed so as to guarantee atomicity
for join and leaves. Later, taking inspiration from P2PS’s lock-free algorithm
we developed the relaxed-ring, which is presented in Chapter 3.

Architecture The implementation architecture of P2PS is designed in lay-
ers going bottom-up from the communication layer to more general services.
Figure 2.6 is based on the architecture presented in [MCV05], and it is com-
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Figure 2.6: P2PS/P2PKit architecture.

plemented with P2PKit’s architecture, which we will soon describe. P2PS is
implemented in Mozart [Moz08], which is an implementation of the Oz lan-
guage [MMR95, Smo95]. The Mozart virtual machine is at the bottom of the
architecture and it is accessed no only by P2PS, but also by P2PKit and the
peer-to-peer application. Messages are divided into two groups: events and
messages. Events are those corresponding to the maintenance and function-
ing of the network, such as joins, leaves, acknowledgements, etc. Messages
are those sent by the application and propagated to other peers through the
network. Both sets of messages goes across the three layers if P2PS, where
each layer triggers new messages and new events. At the bottom of P2PS we
find the Com layer, which is in charge of providing a reliable communication
channel between peers. The Core layer is in charge of the ring maintenance,
handling join and leave events, and keeping the routing table up to date.
Functionalities such as general message sending, multicast, broadcast, and
others, and provide in the Services layer.

P2PKit The API of P2PS was considered to be too basic so as to develop
peer-to-peer applications in an easy way. The design of P2PKit [Gly05] aims
to simplify the task of developers providing high-level abstractions to deploy
peer-to-peer services. Although P2PKit is independent of the underlaying
peer-to-peer system, we present it together with P2PS because of their tight
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implementations [Pro08, Gly07]. Continuing with the analysis of the archi-
tecture of Figure 2.6, we observe that P2PKit creates a client separated from
the peer, giving the possibility of using multiple clients for the same peer.
Network events are still triggered to the application level, and new events
are added by P2PKit. The crucial part of P2PKit’s approach is the use of
the message stream. It creates many different services as channels. These
services are provided by the application working with a publish/subscribe
mechanism. There is a message dispatcher in charge of filtering all messages
received by the peer, putting them into the correspondent service. If the ap-
plication decides not to listen to a service any more, those messages simple
won’t reach the application layer as in P2PS.

Storage One of the earliest work on generic decentralized transactional
protocols for replicated ring-based SONs was done on P2PS [MCGV05]. The
protocol is based on two-phase locking and provides fault tolerance for the
peers holding replicas. Partial fault-tolerance is provided for the transaction
manager, but if the manager die once it has taken the decision, the protocol
run into inconsistencies. No implementation and no API was provided for
this protocol. We will discuss again this protocol in Chapter 6.

Self management P2PS and DKS share many means to achieve self-
management properties. Both systems rely on correction-on-change and
correction-on-use to obtain self-configuration, self-optimization and part of
self-healing. They basically differ in the way of handling join, leave and
failure events for self-organization and self-healing. DKS attempts to pro-
vide atomic join/leave with a lock-based algorithm without handling failures
very well. P2PS treats leaves and failures as the same event focusing more
on fault-tolerance, using a lock-free algorithm. Both systems has problem
with non-transitive connectivity.

2.3.4 Chord#, SONAR and Scalaris

Overlay The ring-based peer-to-peer systems we have presented until now
rely on the keys having a uniform distribution in order to balance the net-
work. If the keys present a different distribution, some peer will be more
loaded than others, causing degradation in the performance of the system.
Chord# [SSR07] proposes a change on the address space and support for
multiple range queries transforming the ring into a multi-dimensional torus.
Chord#has been derived from Chord by substituting Chord’s hashing func-
tion by a key-order preserving function. The address space goes from char-
acters A to Z, continuing with characters from 0 to 9. These characters are
just the first on of a string that determines the key. The address space is
therefore infinite, circular and with total order. It has a logarithmic routing
performance and it supports range queries, which is not possible with Chord.
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Figure 2.7: Two-dimensional data space in SONAR with routing fingers.

Its O(1) pointer update algorithm can be applied to any peer-to-peer routing
protocol with exponentially increasing pointers.

The change on the address space from integers to strings of characters
can be applied to any of the previously discussed rings, so as to provide
better load-balance when it is known that the application to be developed
has not a uniform distribution of keys. The support for multiple dimensions
is less evident and we will discuss it more in detail when we describe SONAR.
Problems with non-transitive connectivity remain unsolved by Chord#.

SONAR Chord# is extended to support multiple dimensions, resulting
in SONAR, a Structured Overlay Network with Arbitrary Range queries.
SONAR covers multi-dimensional data spaces and, in contrast to other ap-
proaches, SONAR’s range queries are not restricted to rectangular shapes
but may have arbitrary shapes. Empirical results with a data set of two
million objects show the logarithmic routing performance in a geospatial
domain. The case scenario corresponds to an overlay network storing the
locations of 1,904,711 cities. The graphical location of the cities follows a
Zipf distribution [Zip29].

Figure 2.7 is adapted from [SSR07]. It depicts a routing table in a two-
dimensional data space. Instead of a ring, it can be seen as a torus. The keys
are specified by coordinates (x, y) and hypercuboids cover the complete key
space. In the example, peer a has coordinates (xa, ya). The hypercuboids
are presented in the figure as rectangular boxes which are managed by the
peers. Their different area is due to the key distribution, which confirms
that this data would not be balanced in a ring architecture. In SONAR, at
runtime, the load balancing scheme ensures that box holds about the same
number of keys.

Neighbours are determined by adjacent areas, as in CAN [RFH+01], with
the difference that not only the neighbours are used for routing but also
additional fingers as in Chord. These fingers are chosen along the x and y
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axes as it is shown in Figure 2.7 for peer a. Note that every finger doubles
the distance to the peer. This routing table allows a routing of any message
in O(logN), which is much better than O( d

√
N) of CAN. What it is not that

evident is to decide which neighbour will be taken as finger, because peers can
have many neighbours along the same axis. Failure recovery also remains
unclear. On the figure, if peer d crashes, it is clear that peer c who can
take over the responsibility of the area, even though the storage will remain
unbalanced. In a more difficult case, when peer has more that one neighbour
per axis, as peer b. Which peer should take over the responsibility? None
of them could do it without loosing the square figure. Some none obvious
changes of keys would be necessary, and therefore, failure recovery becomes
very expensive. This is the main drawback we observe on this approach.

Storage and Scalaris Storage in SONAR is done with multidimensional
ranges as we just described, but because their fault tolerance mechanism re-
mains unclear, we will describe the storage in unidimensional Chord#. If we
just consider a plain DHT, Chord#’s storage is just like Chord, except that
the responsibility of every peer is infinite, although with well define bound-
aries. Chord#provides one of the most mature fault-tolerant general-purpose
storage service. They have implemented symmetric replication as described
in [Gho06], where replicas are kept consistent with their own transactional
layer [MH07]. The layer provides atomic transactions with the guarantee
that at least the majority of the replicas stores the latest value of every
item. The transaction would abort otherwise. We will analyse this layer in
details in Chapter 6.

Scalaris [SSR08, PRS07] uses this transactional layer over a unidimen-
sional address space in Chord# to provide a decentralized peer-to-peer ver-
sion of the Wikipedia. The system has been tested on Planetlab [The03]
with around 20 nodes, proving to be more scalable that Wikipedia [Wik09]
itself. Wikipedia works with a server farm running MySQL database [AB95].
Their structure is centralized and not very flexible. It does not allow them to
easily add new servers to the farm in case their capacity is reached. Scalaris
on the contrary, thanks to its peer-to-peer architecture, can easily add new
nodes to the network to increase the capacity of the service, scaling without
problems.

2.3.5 Pastry and Tapestry

Pastry [RD01b] and Tapestry [ZHS+03] also use a circular address space,
but we can classify them as trees because of their finger table and routing
algorithm. Apart from trying to achieve a logarithmic routing on the over-
lay network, they also use IP locality to achieve a better proximity on the
underlay network. Pastry and Tapestry differ basically in the way they try
to achieve IP locality. We continue the description of Pastry.



2.3. STRUCTURED OVERLAY NETWORKS 27

Overlay Pastry has three set of nodes: leaf set, locality set and routing
table. The leaf set is composed by the L/2 successors and predecessors used
for replication and failure recovery. The locality set is form by M nodes
selected with a metric coming from the underlay network. The routing table
is like a tree derived from the way of creating the identifier for every peer,
which is a string of digits of base 2b. The first level of the tree keeps a pointer
to 2b − 1 peers, with each peer having a different starting digit on its string
key. The second level of the tree share the same first digit with the peer, but
differ in the second one. Consecutively, the tree has log2bN levels to achieve
logarithmic routing. Since there can be several nodes matching the criteria
to be part of the routing table, the one with the better IP locality is chosen.
To route messages, the peer forwards it to the peer with the most similar
string. The values L, M and b are arbitrarily defined by the implementation.

Join, leaves and failures When a peer joins the network, it triggers a
lookup for its key and join next to its responsible according to the circular
address space. Responsibility is determined by proximity between the string
key of a peer and key of the item. Once the peer join, it takes the leaf set
of its entry point as its own leaf set, and initialize its routing table base on
the routing table of its neighbour. Then, it sends a message to every peer in
each of the three sets, making the joining operation very costly. Even though
Pastry works as a tree, failure recovery is less expensive than expected. This
is basically because tree layers do not depend on the previous one, but only
on the key of the owner of the routing table. When a peer fails, it is removed
from the three sets, and it is replaced by asking another peer in the same
row to provide a new candidate. Furthermore, a total of L nodes needs
to update their leaf sets. It is unclear what happens if a peer is falsely
suspected of having crashed only by some peers. This situation arrives in
case of non-transitive connections.

Lookup Considering the tree structure of logarithmic height, we can de-
duce that the lookup process takes O(log2bN) hops to be resolved. This
is competitive with DKS, which is a generalization of Chord, but the rout-
ing table it is much larger and more expensive to maintain. Even though
there is a nice effort to improve IP locality, we consider that the construc-
tion of the routing table leads to some ambiguities that makes unclear its
implementation.

2.3.6 OpenDHT and Bamboo

Bamboo [RGRK04] is very similar to Pastry and Tapestry. We will not re-
view its topology because of their similarities. We present it in a different
section because its implementation, OpenDHT [RGK+05], have a nice con-
tribution by offering a standard API for general purpose DHT. It include
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security aspects and it has been running on Planetlab [The03] for several
years already, allowing researchers to run their experiments by implement-
ing only the clients to connect to the peer-to-peer infrastructure, without
having to implement the whole overlay.

API OpenDHT extends the basic put(key, value) and get(key) opera-
tors to support storage using a secret, which can be used to remove the item.
There is also a TTL value to make the item expire. A function H(x) is the
SHA-1 hash of x. The three new operators are:

• put(k, v, H(s), t) : write item (k, v) using secret s that expires
after time t.

• get(k) : returns {v, H(s), t}

• remove(k, H(v), s, t) : removes item (k, v) using secret s. Time
t > TTL remaining for put.

It is also possible to put immutable items that cannot be removed. They
only expires. The API for doing this is the following:

• put-immut(k, v, t) : write immutable item (k, v) that expires after
time t. Note that since the value cannot be removed, there is no secret
associated.

• get-immut(k) : returns item (k, v).

There is a third interface for authentication which we will not describe
because it is only an option, not a requirement. An important observation
is that OpenDHT only guarantees eventual consistency on these three inter-
faces. Programmers should learn to deal with this property, which we believe
is one of the drawbacks of OpenDHT.

Another interesting interface is the inclusion of a namespace to identify
different applications running independently on the same peer-to-peer net-
work. The namespace is used to join and lookup for keys. It is a simple
addition that ease the isolation of applications.

• join(host, id, namespace) : add (host, id) to the list of host
participating on the application identified with namespace.

• lookup(k, namespace) : returns (host, id) in namespace where
host is the responsible for key k.

It is important to remark that this API can be used by almost any
peer-to-peer system we are reviewing on this chapter, specially to improve
security. Consequently, we can also use it to improve relaxed-ring’s API, but
since the research on these two topics can be done independently, we will
not use it for this dissertation for the sake of simplicity.
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2.3.7 Kademlia

Overlay Kademlia [MM02] and Pastry has the same way of partitioning
the address space, but the routing strategy is quite different. The partition
is done by assigning every peer an identifier made out of a chain of digits.
Peers use a binary tree for routing where they organize other peers according
to their shortest unique prefix. Figure 2.8 shows an example of an address
space of size N , where we observe the routing table from the point of view
of peer with prefix 8, which binary representation (1000)2. The figure is
inspired in an example taken from [EAH05]. Note that peers on the tree are
just at the leaf level, then, removing peers because of leave or failure is not
too costly.

Each peer, as it is shown for peer 8, has at least one finger to each sub-
tree doubling the size of the subtree each time. Ideally, a peer should have
k pointers to a subtree, and this is called a k-bucket. Kademlia does not
store any close references such as the leaf-set in Pastry or the successor list
in Chord. The height of the tree is also logarithmic due to its binary con-
struction. These properties guarantee a logarithmic routing, more precisely
O(log2N). The criteria for chosen the k fingers in any subtree can depend
on every application, and it gives room for IP locality. Kademlia in par-
ticular uses metrics to determine which peer has a probably to stay longer
connected.

A good point in Kademlia, as in Pastry and Tapestry, is that leaves are
treated as failures. To provide fault-tolerance, the k-bucket is very impor-
tant. Because of its size, it is very unlikely that a peer loses all pointers to a
subtree. Although this strategy is robust, it is very expensive to maintain.

Storage and implementations Items are originally stored on the peer
that is closest to its key. To determine the distance, Kademlia uses the
bitwiseexclusiveor, XOR distance. The item is replicated k times to the
closest set of peers. There is a periodic stabilization based on republication
of the value of the item. The closest peer to the item republish it to the other
k− 1 peers holding a replica. Routing works iteratively and answers as soon
as it finds a valid item. Since this is not synchronized with republication,
some inconsistencies might occur, but they are eventually fixed thanks to
republication. We consider these kind of networks better suitable for file-
sharing application where the items do not change their values.

The main implementation of Kademlia is Coral [FFME04], and its DHT
protocol has also been used outside the academic world, by the file-sharing
applications Emule [Emu04] and Overnet [Ove04].



30 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

Figure 2.8: Routing strategy in Kademlia from peer 8 (1000)2.

2.3.8 CAN

CAN [RFH+01] is the predecessor of SONAR [SSR07], partitioning the ad-
dress space exactly as we presented in Section 2.3.4. It overlay graph can be
interpreted as an hypercube or a multi-dimensional torus. Our example of
SONAR in Figure 2.7 is similar to an instance of CAN with two dimensions.
The main differences are the way of dividing the areas of responsibility and
the construction of the routing table. SONAR makes a division of the area
load balancing the existing stored items, whereas CAN always divides the
region in two halves. SONAR has d sets of long fingers along every dimen-
sion but not references to all direct neighbours, whereas CAN does not have
such fingers, and it only holds references to direct neighbours. The impli-
cation of these differences is that CAN is simpler to partition, the routing
tables are smaller, but the lookup cost is higher. SONAR resolves lookups
in logdN hops, whereas CAN resolves them in O( d

√
N) hops, where d is the

dimension of the torus. Even when routing works well in both systems, the
hypercube structure is not very tolerant to failures. Adding nodes is simpler
because it just increments the division of the dimensions, but removing a
node makes the recovery not evident in many cases, as we described already
in Section 2.3.4.

2.3.9 Viceroy

Overlay Viceroy [MNR02] partitions the address space exactly as Chord,
mapping items to every peer according to their responsibility, defined by the
key of the predecessor and its own key. However, the routing strategy makes
us classify it with a different topology, because it is based on the Butterfly
graph [Mat04]. All nodes are organized in log2N levels, being N the size of
the address space. The routing table of every peer has only three fingers.
One finger goes to the immediate upper level (up-finger), and two fingers to
the immediate lower level (down-fingers). One down-finger is short, in order
to converge lookups, and the other one is long, in order to make significant
forwarding. Obviously, peers at the top level do not have up-finger, and
peers at the bottom level do not have down-fingers.
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The lookup process is quite simple. The lookup request is always for-
warded to the upper level until it reaches the top level, and then it follows
the down-fingers until reaching the responsible. Each change of level is sent
to the closest preceding finger to avoid cycles. The lookup message goes
up and down only once, and at least 2log2N hops are performed, therefore,
routing is also O(log2N). Even though the cost of this routing algorithm is
very good with a very small routing table, it is not efficient in networks with
high amount of traffic, because all messages has to go through the peers at
the top level, creating congested nodes. Peers in the second most upper level
are also congested, but in a lower degree. As a rule, the higher the level, the
more congested the node it is.

Storage and churn The decision about where to store the items is exactly
the same as in Chord, so any consistency and replication strategy can be
reused in Viceroy. Churn is although treated different. The maintenance of
successor and predecessor pointers is done as in Chord, relying on periodic
stabilization. The routing table is more difficult to maintain. When a peer
joins, it needs to find its level according to some load-balancing estimation.
Then, it has to choose its up and down pointer with a combination of lookups,
it has to be known by other peers in the two directly upper and down layer.
Removing several nodes from the same level may imply more congestion in
some level because of the shorter amount of peers.

2.4 Distributed Storage

The initial and still most common goal of peer-to-peer system is file-sharing.
Users share with other peers files they store locally. As soon as another peer
gets the file, it becomes a replica and starts sharing the file with the rest of
the network. The rest of the network can access any of the two replicas to
get the file, and add a new replica to the network as soon as the transfer
is finished. Improvements on file sharing, as in BitTorrent [PGES05], allow
peers to share files divided into small chunks. Peers do not need to wait until
the whole file is transferred to start sharing the chunks already downloaded.
As soon as they get a chunk, they can offer their replica to the network.
An even better advantage is that peers can get chunks from different peers
at the same time, so the file is transferred much faster. All these protocols
work very well based on the assumption that files do not change, which is a
very important issue. With that assumption, any replica is a valid one, and
therefore, peers need to find only one replica to get the file. This simplifies a
lot of problems such as efficient routing and lookup consistency. For routing,
you can follow several different paths in parallel until you find one replica.
There are no consistency concerns because every replica is a valid one. This
is one of the reasons why unstructured overlay networks are still popular for
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(a) (b)

Figure 2.9: Strategies for replica placement using the neighbours of the re-
sponsible peer: (a) using the successor list, and (b) using the leaf set.

file sharing.
Our work considers items to be not just files, but any sort of data, and

particularly application-specific data, which is constantly updated. Most
applications rely on reachability and consistency of their data, which is not
guarantee on unstructured overlay networks. That is why we focus on SONs
providing DHTs, with the basic put(key, value) and get(key) operations,
which store and retrieve items using key ’s responsible. Naturally, using only
one responsible to store an item associated to a certain key is not enough to
provide fault tolerance. It is necessary to provide some kind of replication.
Since we are more concerned about ring-based SONs, we are going to discuss
some replication techniques used in literature in the following section.

2.4.1 Replication strategies

Successor List There are several techniques to organize replicas on a ring.
The most basic mechanism is probably the first one proposed in [SMK+01],
where log2N replicas are stored on the successor list of the responsible of
each key. When a node fails, the successor takes over the responsibility,
and therefore, it is a good idea that the successor store the replicas of the
items. Like that, it does not need to ask the value to other peers to continue
hosting the item. This implies that each peer in the successor list must have
the latest value of the item. The strategy is depicted in Figure 2.9(a). We
can observe in the figure peers p and q, and their replicas stored in their
respective successor lists. The replicas of peer p are shown in colour grey.
The replicas of peer q are shown with a double circle. The pointers to the
replica set are also added, because they are part of the resilient information
that every peer needs to have, so it does not add extra connections. An
important observation is that q belongs to the replica set of p, but p does
not belong to q’s replica set. Actually, every replica set is different.

Leaf Set A very similar strategy is the one used by networks having an
overlay topology like Pastry, using the leaf-set [RD01b, RD01a] for storing
the replicas. Figure 2.9(b) shows the replica set of peers p and q following
this strategy. As in Figure 2.9(a), peers in grey are the replicas of p, and
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peers in double circle are the replicas of q. This strategy also generates a
different replica set for each peer. It has the same advantages as in the
successor list strategy, because it does not add extra connections, and the
peer that should take over the responsibility in case of a failure already has
the values of the replicas.

There are two main disadvantages on these two schemes. First of all,
churn introduces many changes on the participants of the replica sets. Each
join/leave/fail event introduces changes in log2N replica sets, affecting peers
that are not directly involved with the churn events. When a new peer n
joins the network, it becomes part of the replica set of all peers of which n
becomes a member of the successor list. This is still reasonable, but it also
implies that the farthest peer on each successor list affected by n will stop
being part of the replica set. In a similar way, every leave or failure will
imply that a new peer needs to be added at the border of the successor list,
and therefore at the border of the replica set. These changes make replica
maintenance more costly. The second disadvantage is that there is a unique
entry point for each replica set. To find the successor list of the responsible
of a key, first you need to find who is the responsible. This means that the
main peer of the replica set is a point of congestion. And if the main peer
fails, first, the network needs to recover from the failure in order to give
access to the other replicas.

Multiple Hashing CAN [RFH+01] and Tapestry [ZHS+03] used multiple
hashing as replication strategy. The idea is that every item is stored with
different hash functions known to all peers in the network. In Figure 2.10(a)
we observe replicated items with keys i and j. The result of applying hash
function h1 to key i results in having peer p as responsible. Applying h2(i)
and h3(i) gives peers a and d as responsible of the other replicas (painted in
grey). Similarly, peers q, b and c (drawn with a double circle) represent the
replica set of the item stored using key j. Note that replicas can be stored
any where, and that hash function does not represent any order on the ring.
One disadvantage claimed in [Gho06] is that you need to know the inverse of
the hash functions to recover from failures. For instance, if peer p crashes,
peer a would need to know the inverse function of h2(i) in order to retrieve
the value of i, and discover where to store the replica h1(i). This problem
can be solved by also storing the original key of the item, instead of only the
hash key, as it is discussed in Section 2.4.2.

A more crucial disadvantage is the lack of relationship between the replica
sets per item. In the example of Figure 2.10(a), the replica set of item i
is formed by p, a and d. If we take another item with key k, where the
responsible peer of h1(k) is also peer p, it is very unlikely that h2(k) and
h3(k) would result in hash keys within the responsibility of peers a and d.
Therefore, there will be a different replica set for almost every item stored in
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the network, making the reorganization of replicas under every churn event
very costly. When a new peer takes over the responsible of another peer,
either because the other peer failed, or because the new peer joined the
network as its predecessor, the new peer will have to contact the responsible
peers of h2 and h3 of every item stored in the range involved in the churn
event.

Symmetric Replication This is a simple and effective replication strat-
egy presented in [Gho06] with several advantages and few disadvantages.
First of all, it does not have an entry point of congestion as with the suc-
cessor list and the leaf sets. Members of the replica set are not indirectly
affected by churn, and as in multiple hashing, the replicas are spread across
the network, with the advantage that they are symmetrically placed using
a regular polygon of f sides, where f is the chosen replication factor. This
strategy provides an easier way of finding the replicas, and it balances the
load more uniformly.

An example of symmetric replication is depicted in Figure 2.10(b). The
replicas of the items where peer p is the original responsible are painted in
grey using f = 4 as replication factor. Replicas of peer q are drawn with
a double circle as in previous examples. A small disadvantage is that it
is not possible to guarantee that all replicas of all items stored on p will
have exactly the same replica set. It will depend on the distribution of
the address space amount the nodes. Even though this is guaranteed in
strategies using the successor list or the leaf sets, there is another advantage
of symmetric replication that overcome this drawback. As we saw in the
analysis of the successor list, every peer has a different replication set. In
symmetric replication, it is possible that f peers share the same replication
set in the ideal case, and in real cases, they will share most of the replicas
with the same peers. In Figure 2.10(b) we have added peer m as if it were an
ideal case. In this example, the replica set of peer m is exactly the same as
the one of peer p, where every peer stores the replica of the other members
of the set. This property cannot be guaranteed for all keys, but it minimizes
enormously the amount of nodes that a peer needs to contact in order to
recover from a failure.

A disadvantage shared by multiple hashing and symmetric replication
is that both rely on a uniform distribution of peers on the address space.
However, this assumption is very reasonable since many SONs also rely on
this property in order to achieved the promised logarithmic routing. In case
of very skewed distribution, one could observe that one peer is the responsi-
ble of two replica keys, decreasing the size of the replica set, and therefore,
decrease the fault tolerance factor. This is less probable in symmetric repli-
cation, and the larger the network, the less probable this event is to happen,
so it scales up without problems.



2.4. DISTRIBUTED STORAGE 35

(a) (b)

Figure 2.10: Strategies for replica placement across the network: (a) using
multiple hash functions, and (b) using symmetric replication.

2.4.2 How to store an item

One of the most basic operations offered by a DHT is put(key, value),
where a hash function h(key) is used to determine the hash key so as to find
the responsible of the item to be stored in the network. But how is the item
stored in the peer? Let us consider the example of the operation put(foo,
bar). Then, let us say that h(foo) = 42, then, most networks assume that
the item to be stored is i = (42, bar). That is why in [Gho06] it is claimed
that you need the inverse hash function to work with multiple hashing as
replication strategy. Another problem is that the diversity of keys that can
be used is limited by the chosen size of the address space. If N + 1 keys are
used in an address space of size N , there will be at least two keys having the
same hash key, meaning that one of the two values will be lost. Choosing a
very large value of N will unnecessarily result in a large routing table based
on the value of N , and it still represents a limit on the maximum amount if
keys to be used.

A better way of storing an item, however more costly, it is to store the
hash key and the key together with the value. Like that, our put(foo,
value) operation would result in storing the item i = (42, foo, bar). If an-
other operation has the same hash key, say put(alice, bob), with h(alice) =
42, it would simply add item j = (42, alice, bob). The chosen value of N
would not limit the amount of keys to be used, but only the amount of peers
that can join the network. This simple analysis is actually often omitted by
several network description, but as we can see, it can has some implications
on the need for inverse hash functions.
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2.4.3 Transactions

A general architecture for building DHTs organizes the functionalities in
bottom-up layers. The overlay graph maintenance together with lookup
resolution is placed at the bottom layer. The DHT functionalities put and
get are normally built on top of the bottom layer. Replica management, with
the chosen replication strategy as we discussed in Section 2.4.1, is a layer
built on top of the basic DHT. We will continue discussing this architecture
in the following chapters but now we will say a word about keeping the
replicas consistent. There are basically two choices: adding the consistent
maintenance at the replica layer, or built a transactional layer on top of it
that can guarantee not only that the replica set of an item is kept consistent,
but also that the replica set of several items is kept consistent in an atomic
operation.

We will discuss transaction in detail in Chapter 6, but first we will review
what has been done in the subject. The transactional layer has the goal of
providing the ACID properties to data storage on the DHT. This goal also
holds even if the transaction is applied to only one item. ACID properties
concern: Atomicity, Consistency, Isolation and Durability. Orthogonally to
the election of where to store the replicas, the main issue to solve is how
to manage the update of the replicas to provide a consistent access to the
state. The classical approach is Two-phase-commit, which is not suitable for
peer-to-peer because it presents a single point of failure. This problem can
be overcome using replicated transaction managers, and Paxos consensus
algorithm where the majority of the replicas decides on the update of the
value of an item. Another alternative is Three-phase-commit, which even
though uses less messages per round, it introduces an extra round to the
protocol which is undesirable on peer-to-peer networks. Later on we will
discuss the validation of such algorithms, and how Paxos consensus can be
adapted to provide a more eager way of performing a distributed transaction.
This is optimistic vs pessimistic approach.

Ivy [MMGC02] is one of the earliest work having a transaction-like sys-
tem for distributed storage. It is built on top of Chord [SMK+01], and it is
based on versioning logs per peer. Updates on the replicas do not guarantee
consistency, but the log information is meant to be useful for conflict res-
olution. A more complete and fully transactional protocol [MCGV05] was
designed for P2PS [MCV05], but it was never implemented. This protocol
was based on two-phase commit having the problem of relying on the survival
of the temporary transaction manager, in order to complete the transaction.
The goal of their protocol was to show that it was feasible to build decen-
tralized transactions. Paxos consensus algorithm was presented in [MH07]
and implemented in Scalaris [SSR08] and Beernet [MHV08].
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2.5 Summary of Overlay Networks

In previous sections of this chapter, we have described the main features,
advantages and disadvantages of several overlay networks. In this section we
summaries them trying to apply the same criteria to all of them. For the
sake of visibility, sometimes we will present the information in tables, and
sometimes as lists.

2.5.1 Unstructured and Structured Overlays

As we already presented it, most of peer-to-peer networks can be classified
into three different generations. The first one still relied on an hybrid archi-
tecture where servers were needed to bootstrap any peer-to-peer service, and
peers were not able to route message. We are more interested in the second
and third generations also called unstructured and structured overlay net-
works, both of them being completed decentralized and able to self-organize.
Table 2.1 shows a summary of the main features of these two generations.
Both of them use the most suitable routing strategy according to the overlay
topology uses to organized the peer. SONs provides stronger guarantees, and
by providing a DHT, file sharing is also possible, and not only for popular
items, because reachability is also guaranteed. An interesting issue related
to the topology used is the fact that unstructured networks do not need tran-
sitive connectivity, whereas SONs really upon this property which cannot be
guaranteed in all cases on the Internet, basically due to latency and NATs.
The fact that the overlay topology is more relaxed in unstructured network
provide this advantage, with the cost that lack of structure prevent from
providing strong guarantees. This conclusion will become very important
when we motivate the relaxed-ring in Chapter 3.

2.5.2 Structured overlay graphs comparison

We now have a look at the features of the structured overlay networks de-
scribed in Section 2.3. Table 2.2 summarizes their overlay graph and the
complexity of their routing cost. The routing cost considers only the amount
of hops a lookup request needs to reach the responsible of a key. It does not
considering the total amount of messages sent. For instance, in Kademlia,
the lookup request follows several paths in parallel until it reaches one of the
replicas. But, the table only considers the amount of hops of the successful
path. We have classified Pastry, Tapestry and Kademlia as trees, because
the graphs defined by the fingers and leaf sets form a tree. However, they
also use a circular address space organizing peers in a ring. This means that
failure handling is similar to the networks we have classified as rings, with
the addition of the extra updates that are needed on the leaf sets.

We have classified Chord#and SONAR differently, even though both of
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Table 2.1: Comparing unstructured and structured overlay networks.
Unstructured Structured

Topology Random Ring, Hypercube,
Tree, etc.

Routing Flooding Directed using
meaningful routing
tables

Guarantees Lookup converges
most of the time

Routing cost is bound,
mostly logarithmic.
All peers are reachable

Provides File sharing DHT

Transitive
connectivity

Not needed It relies upon it

them support multiple range queries, and therefore, both could be considered
multidimensional torus. The reason why we have put Chord#together with
other rings, is that its most common used is a ring as in Chord, with a
different distribution of the address space. We can observe in Table 2.2 that
almost all networks guarantee logarithmic routing, except for CAN, even
though its complexity is also very good. The base of the logarithm is the
main difference between networks, and it is directly influence by the election
of the routing table. Our conclusion is that in general, structured overlay
networks are very competitive in terms of routing.

With respect to fault tolerance, failures in a ring mainly affect the suc-
cessor and predecessor of the failed node. Fingers are also affected but this
only comprises efficiency, not correctness. Failures in other overlays, such
as trees, hypercubes or butterfly graphs imply changes in a lot more peers
that need to reorganize the overlay graph. Adding nodes to these structures
can be done very efficiently, but removing peers is very costly. Therefore, we
arrive to the same conclusion given in [GGG+03], that ring-based networks
are competitive in routing cost, but they are more tolerant to failures.

2.5.3 Ring based overlays

We focus now in the analysis of the different peer-to-peer networks built
using a ring as overlay graph. We know that Chord, Chord# rely on pe-
riodic stabilization to fix successor, predecessor and finger pointers. Such
strategy has the advantage of treating leaves as failures. Therefore, there is
no need to define a protocol for gentle leaves, because pointers will be fixed
in the next round of stabilization. However, this implies that stabilization
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Table 2.2: Properties of structured overlay networks.
Network Overlay Routing

Chord, Chord#, OpenDHT Ring O(log2N)
DKS, P2PS Ring O(logkN)
Pastry, Tapestry Tree O(log2bN)
Kademlia Tree O(log2N)
CAN Multidim. Torus O( d

√
N)

SONAR Multidim. Torus O(logdN)
Viceroy Butterfly graph O(log2N)

Table 2.3: Failure handling on ring-based overlay networks
Network Mechanism Leaves and Failures

Chord, Chord# Periodic stabilization Leave = Failure
DKS Correction-on-change Gentle leave is fundamental
P2PS Correction-on-change Leave = Failure

needs to be run often enough, increasing bandwidth consumption. It has
been shown in [Gho06] that lookup inconsistencies can appear in Chord just
because of churn, even if failures do not occur. These is a serious prob-
lem for correctness. To avoid this problem, DKS introduces the concept of
correction-on-change, meaning that pointers are fixed as soon as a failure,
leave or join is detected. Peers do not wait for a periodic check. To avoid
lookup inconsistencies, DKS defines a protocol for atomic join/leave, requir-
ing that a peer respect the locking protocol before it leaves the network.
Unfortunately, this strategy is not very fault-tolerant, and it relies on peers
not leaving the network before they acquire the needed locks. P2PS also
addresses ring maintenance with correction-on-use, but it does not require
gentle leave in order to fix the departure of peers. This approach allows
P2PS to solve the problem of leaving peers by handling peer failures. A peer
that leaves the network could send messages to provide a more efficient fix
of pointers, but it is not needed for correctness. The problem with P2PS is
definitely not the approach, but the protocol does not work in some cases, as
it is shown in [MJV06]. A more fundamental issue, also shared by the other
networks, is that P2PS relies on transitive connectivity, and it expects to
create a perfect ring with respect to successor and predecessor pointers. Ta-
ble 2.3 summarises these differences, but it only talks about fixing successor
and predecessor pointers. Fingers are also solved with periodic stabilization
in Chord and Chord#, but they are addressed with correction-on-use in DKS
and P2PS.
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2.6 Self-Management properties

In this dissertation we claim that self-management is essential for building
dynamic distributed systems. We mentioned six different axes to analyze self-
management, and we try to identify them in the overlay networks we have
reviewed in this chapter. Since several of these axes are shared by many of
the networks, with some small differences, we will not build a comparative
table, but we will summary what we have observed for each axis.

Self organization This is the property that it is most intrinsically present
in the overlay networks we have reviewed, even in networks such as Gnutella
and Freenet, where self-organization is very basic considering the lack of
structure. Self organization comes naturally as there is no central point
of control, and peers needs to agree their position only by talking to the
direct neighbours. The only pre-existing infrastructure needed to boot the
system is the Internet, or any underlying network that provides mean to
establish point-to-point communication channels. None of these networks
have human intervention that assign peers their position in the network.
Everything is self-organized. Table 2.3 gives us some hint about some of the
mechanisms used to achieved self-configurations. Networks such as Chord
and Chord# use periodic stabilization to keep the ring organized. DKS and
P2PS use correction-on-change for the same purpose.

Self configuration First of all we need to clarify what is that we want to
configure. This property is usually used to mean self-configuration of compo-
nents. But that would imply already a design decision of implementing the
system using components. Although that would be a very good decision, the
networks we have reviewed could be implemented in many different ways.
We will discuss self-configuration of components in Chapter 7, here, we are
interested in the configuration of the overlay graph. Someone could argue
that this is already covered by the property of self-organization, but, if we
compare Chord with Pastry, both are organized as rings, but their overlay
graphs if configured differently, making Pastry work as a tree. What needs
to be configured is the routing table of each peer, which could actually be
seen as a component. Self-configuration is achieved in Chord, Chord#, and
the majority of the networks, with periodic stabilization. Peers constantly
check the status of the neighbours of their fingers, and update the routing ta-
ble according to these information. Similarly to self-organization, DKS and
P2PS use correction-on-change to re-configure their routing tables, but also
correction-on-use, piggy-backing configuration messages to the regular mes-
sages that are routed through the network, without increasing unnecessarily
bandwidth consumption.
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Self healing In the context of peer-to-peer networks, this property deals
with handling disconnection between peers. Disconnection can be produced
not only by the failure of peers, but also due to problems in the commu-
nication channel between them. Because of this, it is very important to
know if the protocols for failure handling rely on perfect failure detection or
not. Internet style are typically strongly complete and eventually accurate,
therefore, eventually perfect. As a consequence, a expensive failure recovery
mechanism can become very impractical if the network is to be built on top
of the Internet. As we conclude earlier on this section, ring-based overlay
networks can handle failures more efficiently. Not surprisingly, Chord-like
rings achieve self-healing with periodic stabilization. If a node disappears
from the network, ring pointers will be fixed in the next stabilization round.
If it was a false suspicion, the incorrectness will be fix in the stabilization
round after the accuracy is achieved. P2PS and DKS rely on correction-
on-change to provide self-healing. This approach requires that the failure
detector triggers the corresponding crash and alive events to react to fail-
ures and false suspicions. DKS has the drawback of relying on gentle leaves
of peers to respect the locking protocol providing atomic join/leave. What
is missing from all the networks we have reviewed, it is a correct handling of
non-transitive connections, which can be seen as permanent false suspicions.
This is an area where this dissertation also makes a contribution.

Self-healing is not only about fixing pointers on the overlay graph, it also
covers repairing stored items. We discussed that plain DHT was not enough
to guarantee fault tolerance, and therefore, some replication mechanism is
needed. We described several strategies to place replicas, such as leaf sets
or symmetric replication. The mechanism that trigger self-healing in any
of these strategies is orthogonal to the mechanism for fixing the overlay
graph pointers. For instance, Chord#and DKS can implement symmetric
replication having the same self-healing mechanism to restore replicas, but
they have different mechanism to fix the overlay graphs, namely periodic
stabilization and correction-on-change.

Self tuning This topic is not really discussed by the designers of the net-
works we have studied, but we can identify variables which values can be
tuned in order to provide a better behaviour. Periodic stabilization is a clear
example where self-tuning makes sense, because the frequency of each stabi-
lization round can be too short, consuming too much bandwidth. Or it can
be too long, having always dead pointers that have not been updated, break-
ing the guarantees the network provides, as it is shown in [KA08]. Other
variables than can be tuned are those involved in failure detection: how often
a peer needs to be pinged? Or how long does the timeout has to be? These
parameters will affect how fast correction-on-change will react. Evidently,
since every network needs failure detection, tuning these parameters will not
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help only P2PS and DKS, but any network we have described here.

Self optimization The most important value to optimize in peer-to-peer net-
works is routing. It is very important than fingers are constantly updated
to work with routing tables that are optimize. Therefore, there is some
overlap with self-configuration, because both properties actuates over the
routing tables. As we mentioned before, DKS and P2PS clearly provide self-
optimization by means of correction-on-use. The more the network is used
to route messages between peers, the more optimized it becomes.

Self protection The only network we have presented in this section that
explicitly treated security issues is OpenDHT with its API prepared for stor-
ing data with encryption. However, this API does not provide self-protection,
because once the keys are compromised, there is not mechanism to detect
and repair the encrypted storage. One of the few works on self-protection
we are aware of in the scope of peer-to-peer networks, is the study of Small
world networks [HWY08] to provide self-protection against the Sybil at-
tack [Dou02]. The work claims that overlay graphs built as small world
network is the only solution to the Sybil attack, and therefore, rings, trees
or hypercubes, are subject to such attack. In our view, the work is actually
based on the good properties of social networks that can identify when an
attacker is trying to pretend being different persons to gain reputation. So-
cial networks typically built small world graphs, but the self-protection does
not come from the graph, but from the fact that real people is behind the
nodes participating in the network.

2.6.1 Scalability

With respect to scalability, there are no major differences between the dif-
ferent structured overlay networks. Almost all of them scale well to very
large networks. Viceroy could have some problems considering the bottle
neck presented on the highest layer of routing, but the larger the network
becomes, more peers will be placed at the highest layer, balancing the load
of routing messages. Still, the bottle neck we previously identified remains
an issue. What is interesting to observe is that none of these networks seems
to be suitable to scale down. In small peer-to-peer networks one could ben-
efit from full mesh networks, instead of using sophisticated routing tables
to provide logarithmic routing. This dissertation also makes a contribution
in this topic with a self-optimized routing table that is able to scale up and
down, a property that can also result interesting in Cloud Computing, as we
will discussed in Section 2.8.
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2.6.2 Replicated Storage

While discussing self-healing, we mentioned that several strategies could be
adopted in order to provide storage replication. A summary of the four
replication strategies described in Section 2.4.1 is presented here based on
where are the replicas stored, which network implements it, what is the
semantic of the replica set, advantages and disadvantages.

• Successor List.

– Implemented in Chord.

– Replica set per peer. Placed in the successor list.

– Advantages In case of failure, the successor has already the repli-
cated values.

– Disadvantages To find the replicas, the responsible of the hash
key needs to be found first. There is a central point of congestion.
Churn affects border members of the set.

• Leaf Set.

– Implemented in Pastry.

– Replica set per peer. Placed in f/2 successors + f/2 predeces-
sors.

– Advantages Same as successor list, plus, since some replicas can
be found earlier because they are place on the predecessors.

– Disadvantages Same as successor list.

• Multiple Hashing.

– Implemented in CAN and Tapestry.

– Replica set per key. Placed on the responsible of every hash
function.

– Advantages Spread across the network. No point of congestion.

– Disadvantages Too many replica sets. Depending on the stor-
age, the inverse hash function might be needed.

• Symmetric Replication.

– Implemented in Chord#and Beernet.

– Replica set per key but approximately organized in sets of f
peers. Placed symmetrically across the network.
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– Advantages Load balancing of replicas symmetrically spread
across the network. Any replica can be accessed without hav-
ing to contact the main responsible. Most of the time one replica
set groups several items and f peers, making groups more closely
connected. No point of congestion. No need for inverse hash
function.

– Disadvantages It relies on uniform distribution of peers on the
address space.

2.7 A Note on Grid Computing

Peer-to-peer networks and Grid computing have the common goal of shar-
ing resources and make them available to their users. Both systems need to
locate the resources coming from different heterogeneous processes. Despite
these similarities, the approaches differ in several aspects due to their differ-
ent characteristics. Peer-to-peer is conceived to allow collaboration among
untrusted and anonymous users, whereas Grid users are typically trusted and
identified members from research institutions. Peer-to-peer is fundamentally
decentralized and can scale to very large networks. Grid networks on the con-
trary, are comparatively smaller and do not scale because Grids are mainly
built gathering sets of clusters from well connected organizations. This
means that there is almost no churn and failure detection is much more accu-
rate. Such scenario has allowed Grids to be designed as centralized and hier-
archical. However, Grids are becoming larger and larger, and the centralized
approach will have to leave its place to decentralized self-management. As
mentioned in [FI03, TT03], Grid computing and peer-to-peer will eventually
converge. There is already research that targets Grid computing from a peer-
to-peer approach [IF04, TTZH06a, TTZH06b, TTF+06, MGV07, TTH+07],
providing fault-tolerance, resource discovery, resource management and dis-
tributed storage. These works indicate us that the results from this dis-
sertation can be applied to Grid computing if the design is merged with
peer-to-peer systems. Even so, our research is orthogonal to Grid.

2.8 A Note on Cloud Computing

Cloud computing is one of the latest emerging research topics in distributed
computing, and therefore, it is necessary to contextualize it in this disser-
tation. Cloud computing has many definitions with different views within
industry and academia, but everybody agrees on that cloud computing is the
way of making possible the dream of unlimited computing power with high
availability. Cloud computing has been active in the IT industry for a couple
of years already, calling immediately the attention of the research community
thanks to its possibilities and challenges. Projects such as Reservoir [Res09],
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Figure 2.11: General Cloud Computing architecture.

XtreemOS [Par09] and OpenNebula [Dis09] are just examples of the interest
of the research community. However, defining Cloud computing it is not that
simple. One of the interpretations sees Cloud computing as ubiquitous com-
puting, focusing on high availability and on the idea that computations are
mainly done elsewhere, and not on user’s machine. Another view considers
any application provided as a web service to be living in the cloud, where
the cloud is simply the Internet. We share Berkeley’s view of Cloud Com-
puting [AFG+09] and the conclusions of 2008 LADIS workshop [BCvR09].
We see Cloud Computing as the combination of hardware and software that
can provide the illusion of infinite computing power with high availability.

Large companies provide this illusion of infinite computing power by hav-
ing real large data centers with software capable to provide access on demand
to every machine on the data center. Industrial examples supporting Cloud
Computing are Google AppEngine [Goo09a], Amazon Web Services [Ama09]
and Microsoft Azure [Mic09]. This three companies follows the architecture
described in [AFG+09] where the base of the whole system is such a large
company being the cloud provider. Cloud users are actually smaller com-
panies or institutions that use the cloud to become Software as a Service
(SaaS) providers. The end user is actually a SaaS user, which is indifferent
to the fact that a cloud is providing the computational power of the SaaS.

Figure 2.11 depicts the general architecture described in [AFG+09]. The
cloud provider is at the base of the architecture offering utility computing to
the cloud user. Utility computing can be understood as a certain amount
of resources during a certain amount of time, for instance, a web server
running for one hour, or several Tera bytes of storage for a certain amount
of days. The cloud user, which is actually a SaaS provider, has a predefined
utility computing request, which can vary enormously depending on its users
demands. At the top of the architecture we find the SaaS user which requests
services from the SaaS provider. The service that the SaaS provider offers
to its users is usually presented as a web application.

Given such architecture, there are two parts that might be relevant to
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this dissertation: the cloud provider and the SaaS provider. First of all, it is
necessary to build a network capable of managing the resources at the bottom
of the architecture. XtreemOS [Par09] focuses on that part, and sees Cloud
computing as an extension to Grid computing. OpenNebula [Dis09] not only
allows the management of local cloud infrastructure, but it also abstracts the
cloud provider introducing an interface layer to the SaaS provider. Like this,
the SaaS provider could choose to manage its own infrastructure, or hire a
large cloud provider such as Amazon. The interesting thing here is that once
the cloud provider is abstracted, it raises the possibility of using multiple
cloud providers behind the interface layer. The interface layer would then
work as a resource broker that decides to which provider the request will
be sent. Like this, a company can rely only on its own resources until a
peak in users’ demand appears, and then, it hires some extra resources from
Amazon, only the necessary. Schemes like this are starting to be developed
by projects such as Reservoir [Res09] and Nimbus [The09b]. In the later,
they also talk about sky computing environment where several clouds are
constantly providing the needed resources. A very similar idea is presented
as work in progress in XtreemOS under the names of community cloud and
cloud federation, making the difference on who is providing the resources.
Having several cloud providers behind the interface layer will make the use
of a centralized resource broker unusable considering fault tolerance and
scalability, giving room for research on decentralized systems.

From the point of view of the SaaS provider, it has to be able to request
and release resources according to the demand of its SaaS users. In other
words, its own network must quickly scale up and down to maximize quality
of service, and to minimize costs. This looks as a network with controlled
churn which might be interesting to investigate as a peer-to-peer network.

2.9 Conclusion

This chapter summarizes large part of the work that has been done in decen-
tralized systems. We went through the three generations of peer-to-peer net-
works, making a deep analysis of structured overlay networks, known as the
third generation. We still identify interesting properties from the second
generation, represented by unstructured overlay networks. We have reviewed
them in section 2.2.3, analysing how they where able to build a completely
decentralized system where peers did not need any central point of manage-
ment to organize themselves. Although unstructured overlay networks are
successful for building file-sharing services, their applicability is quite lim-
ited to that. This is, among other reasons, due to their lack of guarantees
of reachability and lookup consistency. SON is the attempt to provide these
properties in peer-to-peer networks, and the way to achieve them is by giving
structure and increasing self-management.
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From all SON topologies, we have observed that all of them are very
competitive in terms of routing complexity, and that ring-based networks
performed better in terms of failure recovery. We have also analyzed the net-
works using six axes of self-management: self-organization, self-configuration,
self-healing, self-tuning, self-optimization and self-protection. We have iden-
tify that within ring networks there are two main tendencies to achieve sev-
eral of the self-management properties. Chord-like networks based their
network management on periodic stabilization, whereas DKS and P2PS use
correction-on-change and correction-on-use, have a more efficient bandwidth
consumption.

We have also discussed the problem that nearly all protocols we have
reviewed rely on transitive connectivity. It has been observed even by the
authors of Chord, Kademlia and DHT, that non-transitive connectivity gen-
erates several problems when these networks have been deployed as real sys-
tems running on top of the Internet. The lesson learn was that non-transitive
connectivity should be taken into account from the design of the network.
We also add imperfect failure detection as one of the issues that needs to be
considered in the designed. We also noted that transitive connectivity is not
really an issue in Gnutella or Freenet, partly because of their relaxed overlay
network.

The most characteristic feature of SONs is that they provide DHTs. Be-
ing aware that plain DHT support is not enough to provide storage fault
tolerance, we showed several replication strategies in Section 2.4. Two of
them try to take advantage of the overlay graph placing replicas either on
the successor list or on the leaf set. The disadvantages are that in both
cases there is a single entry point that creates a bottle neck, and that churn
generates a lot of traffic associated to replica maintenance. To balance the
load of replica storage, we have analyzed multiple hashing and symmetric
replication. This last one is the simplest one to implement and minimizes
the differences between related replica sets. Therefore, symmetric replication
appears as the most convenient replication strategy.

Finally, we have briefly reviewed how peer-to-peer networks are related to
Grid computing and Cloud Computing. Basically, peer-to-peer has mainly
been used to implement resource-discovery services on the Grid but they
are rarely used as overlay network to organize them. There is no direct
connection to Cloud Computing as it is now, having its business model based
on a single large cloud provider. We believe that the new academic tendency
to conceive Cloud Computing with several small cloud providers will give a
chance to decentralized systems and peer-to-peer networks to contributed to
the self-management of the system.
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Chapter 3
The Relaxed-Ring

One ring to rule them all
One ring to find them
One ring to bring them all
and in the network bind them

freely adapted from “The Lord of the Rings” -
J.R.R. Tolkien.

Chord [SMK+01] is the canonical structured overlay network using ring
topology. Its algorithms for ring maintenance handling joins and leaves have
been already studied [Gho06] showing problems of temporary inconsistent
lookups, where more that one node appears to be the responsible for the
same key. Peers need to trigger periodic stabilization in order to fix incon-
sistencies. Existing analyses conclude that the problem comes from the fact
that joins and leaves are not atomic operations, and they always need the
synchronization of three peers, which is hard to guarantee with asynchronous
communication, which is inherent to distributed programming.

Existing solutions [LMP04, LMP06] introduce locks in the algorithms
in order to provide atomicity of the join and leave operations, removing
the need for a periodic stabilization. Unfortunately, locks are also hard to
manage in asynchronous systems, and that is why these solutions only work
on fault-free environments, which is not realistic. Another problem with
these approaches is that they are not starvation-free, and therefore, it is not
possible to guarantee liveness. A better solution using locks is provided by
Ghodsi [Gho06], using DKS [AEABH03] for its results. This approach is
better because it gives a simpler design for a locking mechanism and proves
that no deadlock occurs. It also guarantees liveness by proving that the
algorithm is starvation-free. Unfortunately, the proofs are given in fault-free
environments.

The DKS algorithm for ring maintenance goes already in the right di-
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rection because it request the locks of only two peers instead of three (as in
[LMP04, LMP06]. More details about how it works are given in Section 2.3.2.
One of the problem with this algorithm is that it relies on peers gracefully
leaving the ring, which is neither efficient nor fault-tolerant. The algorithm
becomes very slow if a peer holding a relevant lock crashes.

As we have already discussed in Chapter 2, the fundamental problem that
affects all these algorithms is that they all rely on transitive connectivity, a
property that is not guaranteed by Internet style networks. If we observe
the matrix of delays of the King Data Set [GSG02], we observe that 0.8% of
the nodes cannot talk to each other, introducing non-transitive connectivity.
The authors of Chord, Kademlia and OpenDHT described in [FLRS05] that
their measurements on PlanetLab [The03] presented 2.3% of all pairs having
problems to communicate. The conclusion is that non-transitive connectivity
must be taken into account from the design of a decentralized system, and
this is what the Relaxed-Ring pretends to do. Create a ring-based network
with good properties on lookup consistency, despite the existence of non-
transitive connectivity.

3.1 The Relaxed-Ring

As any overlay network built using ring topology, in our system every peer
has a successor, predecessor, and fingers to jump to other parts of the ring
in order to provide efficient routing. Ring’s key-distribution is formed by
integers from 0 to N − 1 growing clockwise. For the description of the algo-
rithms we will use event-driven notation. When a peer receives a message,
the message is triggered as an event in the ring maintenance component.
Range between keys, such as (p, q] follows the key distribution clockwise,
so it is possible that p > q, and then the range goes from p to q passing
through 0. Parentheses ‘(’ and ‘)’ excludes a key from the range and, ‘[’ and
‘]’ includes it.

As we previously mentioned, one of the problem we have observed in
existing ring maintenance algorithms is the need for an agreement between
three peers to perform a join/leave action. We provide an algorithm where
every step only needs the agreement of two peers, which is guaranteed with a
point-to-point communication. In the specific case of a join, instead of having
one step involving 3 peers, we have two steps involving 2 peers. Lookup
consistency is guaranteed after every step, therefore, the network can still
answer lookup requests while simultaneous nodes are joining the network.
Another relevant difference is that we do not rely on graceful leaving of
peers. We treat leaves and failures as the same event. This is because failure
handling already includes graceful leaves as a particular case.

Normally the overlay is a ring with predecessor and successor knowing
each other. If a new node joins in between these two peers, it introduces
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Figure 3.1: A branch on the relaxed-ring created because peer q cannot
establish communication with p. Peers p and s consider t as successor, but
t only considers s as predecessor.

two changes. The first one is to contact the successor. This step already
allows the new peer to be part of the network through its successor. The
second step, contacting the predecessor, will close the ring again. Following
this reasoning, our first invariant is that every peer is in the same ring as
its successor. Therefore, it is enough for a peer to have connection with its
successor to be considered inside the network. Secondly, the responsibility
of a peer starts with the key of its predecessor, excluding predecessor’s key,
and it finishes with its own key. Therefore, a peer does not need to have
connection with its predecessor, but it must know its key. These are two
crucial properties that allow us to introduce the relaxation of the ring. When
a peer cannot connect to its predecessor, it forms a branch from the “perfect
ring”. Figure 3.1 shows a fraction of a relaxed ring where peer t is the root
of a branch, and where the connection between peers q and p is broken.

Having the relaxed-ring architecture, we introduce a new principle that
modifies the routing mechanism of Chord. The principle is that a peer p
always forwards the lookup request to the possible responsible, even if p is the
predecessor of such responsible. Considering the example in figure 3.1, p may
think that t is the responsible for keys in the interval (p, t], but in fact, there
are three other nodes involved in this range. In Chord, p would just reply t
as the result of a lookup for key q. In the Relaxed-Ring, the p forwards the
message to t. When the message arrives to node t, it is sent backwards to
the branch, until it reaches the real responsible. Forwarding the request to
the responsible is a conclusion we have already presented in [MV07], and it
has been recently confirmed by Shafaat [SMS+08].

Introducing branches into the lookup mechanism modifies the guarantees
about proximity offered by Chord. Reaching the root of a branch takes
O(logk(n)) hops as in Chord, because the root of the branch belongs to the
core-ring. Then, the lookup will be delegated a maximum of b hops, where
b corresponds to the size of the branch. Then, lookup on the relaxed-ring
topology corresponds to logk(n) + b. We will see in Chapter 5 that the
average value b is smaller than 1 for large networks.

Before continuing with the description of the algorithms that maintain
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the relaxed-ring topology, let us define what do we mean by lookup consis-
tency.

Def. Lookup consistency implies that at any time there is only one re-
sponsible for a particular key k, or the responsible is temporary not available.

Algorithm 1 describes the initial procedure of a node that wants to join
the ring. First, it gets its own identifier from a random key-generator. In the
implementation, identifiers also represent network references. For simplicity
of the description of the algorithms, we will just use the key as identifier
and as connection reference. Initially, the node does not have a successor
(succ), so it does not belong to any ring, and it does not know its predecessor
(pred), so obviously, it does not have responsibilities. For resilient purposes,
the node uses two sets: a successor list (succlist) and an old-predecessor
sets (predlist). Having an access point, that can be any peer of the ring,
the new peer triggers a lookup request for its own key in order to find its
best successor candidate. This is quite usual procedure for many Chord-alike
systems. When the responsible of the key contacts the new peer, the event
reply_lookup is triggered in the new peer. This event will generate a joining
message that will be discussed in section 3.2.

Algorithm 1 Starting a peer and the lookup algorithm
procedure init(accesspoint) is

self := getRandomKey()
succ := nil
pred := nil
predlist := ∅
succlist := ∅
send 〈 lookup | self, self 〉 to accesspoint

end procedure

upon event 〈 lookup | src, key 〉 do
if (key ∈(pred, self ]) then

send 〈 reply_lookup | self 〉 to src
else

p := getBetterResponsible(key)
send 〈 lookup | src, key 〉 to p

end if
end

upon event 〈 reply_lookup | i 〉 do
send 〈 join | self 〉 to i

end

The lookup event verifies if the current node is responsible for key. If it
is not, it picks the best responsible for the key from its routing table, and
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forwards the request, passing the key and the original source src. Choosing
the best responsible of a key follows the same mechanism as Chord, with
the extra consideration of rooting to the branch when needed, as explained
above. One way to decide that a lookup must jump into the branch is by
adding a flag to the message called last. In the case of Figure 3.1, when
p forwards the messages to t, it sets the flag to true. Then, the function
getBetterResponsible will decide to forward to the predecessor, jumping in
to the branch.

3.2 Join algorithm

As we have previously mentioned, the relaxed-ring join algorithm is divided
in two steps involving two peers each, instead of one step involving three
peers as in existing solutions. The whole process is depicted in figure 3.2,
where node q joins in between peers p and r. Following algorithm 1, r
replies the lookup to q, and q send the join message to r triggering the
joining process.

The first step is described in algorithm 2, and following the example, it
involves peer q and r. This step consists of two events, join and join_ok.
Since this event may happen simultaneously with other joins or failures, r
must verify that it has a successor, respecting the invariant that every peer
is in the same ring as its successor. If it is not the case, q will be requested
to retry later.

Figure 3.2: The join algorithm.

If it is possible to perform the join, peer r verifies that peer q is better
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predecessor than p. Function betterPredecessor checks if the key of the
joining peer is in the range of responsibility of the successor candidate. In
the example, r verifies that q ∈ (p, r]. If that is the case, p becomes the
old predecessor and is added to the predlist for resilient purposes. The pred
pointer is set to the joining peer, and the message join_ok is send to it.

It is possible that the responsibility of r has change between the events
reply_lookup and join. In that case, q will be redirected to the correspond-
ing peer with the goto message, eventually converging to the responsible of
its key.

When the event join_ok is triggered in the joining peer q, the succ
pointer is set to r and succlist is initialized. Then, q must set its pred pointer
to p acquiring its range of responsibility. At this point the joining peer has a
valid successor and a range of responsibility, and then, it is considered to be
part of the ring, even if p is not yet notified about the existence of q. This
is different than all other ring networks we have studied.

Note that before updating the predecessor pointer, peer q must verify that
its predecessor pointer is nil, or that it belongs to its range of responsibility.
This second condition is only used in case of failure recovery and it will be
described in section 3.4. In a regular join, pred pointer at this stage is always
nil.

Once q set pred to p, it notifies p about its existence with message
new_succ, triggering the second step of the algorithm.

The second step of the join algorithm basically involves peers p and q,
closing the ring as in a regular ring topology. The step is described in
algorithm 3. The idea is that when p is notified about the join of q, it
updates its successor pointer to q (after verifying that is a correct join), and
it updates its successor list with the new information. Functionally, this is
enough for closing the ring. An extra event has been added for completeness.
Peer p acknowledges its old successor r, about the join of q. When join_ack
is triggered at peer r, this one can remove p from the resilient predlist.

If there is a communication problem between p and q, the event new_succ
will never be triggered. In that case, the ring ends up having a branch, but
it is still able to resolve queries concerning any key in the range (p, r]. This
is because q has a valid successor and its responsibility is not shared with
any other peer. It is important to remark the fact that branches are only
introduced in case of communication problems. If q can talk to p and r, the
algorithm provides a perfect ring.

No distinction is made concerning the special case of a ring consisting
in only one node. In such a case, succ and pred will point to self and
the algorithm works identically. The algorithm works with simultaneous
joins, generating temporary or permanent branches, but never introducing
inconsistencies. Failures are discussed in section 3.4. The following theorem
states the guarantees of the relaxed ring concerning the join algorithm.
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Algorithm 2 Join step 1 - adding a new node
upon event 〈 join | i 〉 do

if succ == nil then
send 〈 try_later | self 〉 to i

else
if betterPredecessor(i) then

oldp := pred
pred := i
predlist := {oldp} ∪ {predlist}
send 〈 join_ok | oldp, self, succlist 〉 to i

else if (i < pred) then
send 〈 goto | pred 〉 to i

else
send 〈 goto | succ 〉 to i

end if
end if

end

upon event 〈 join_ok | p, s, sl 〉 do
succ := s
succlist := {s} ∪ sl \ getLast(sl)
if (pred == nil) ∨ (p ∈ (pred, self)) then

pred := p
send 〈 new_succ | self, succ, succlist 〉 to pred

end if
end

upon event 〈 goto | j 〉 do
send 〈 join | self 〉 to j

end

Theorem 3.2.1 The relaxed-ring join algorithm guarantees consistent lookup
at any time in presence of multiple joining peers.

Proof 1 Let us assume the contrary. There are two peers p and q responsible
for key k. If p and q have the same successor is not relevant, because both
peers would forward the lookup to the successor, and the successor can resolve
the conflict. The problem is when p and q have the same predecessor j,
sharing the same range of responsibility. This means that k ∈ (j, p] and
k ∈ (j, q] introducing a inconsistency because of the overlapping or ranges.
Let us see now that the algorithm prevents two nodes from having the same
predecessor. The join algorithm updates the predecessor pointer upon events
join and join_ok. In the event join, the predecessor is set to a new joining
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Algorithm 3 Join step 2 - Closing the ring
upon event 〈 new_succ | s, olds, sl 〉 do

if (succ == olds) then
oldsucc := succ
succ := s
succlist := {s} ∪ sl \ getLast(sl)
send 〈 join_ack | self 〉 to oldsucc
send 〈 upd_succlist | self, succlist 〉 to pred

end if
end

upon event 〈 join_ack | op 〉 do
if (op ∈ predlist) then

predlist := predlist \ {op}
end if

end

peer j. This means that no other peer was having j as predecessor because it
is a new peer. Therefore, this update does not introduce any inconsistency.
Upon event join_ok, the joining peer j initiates its responsibility having
a member of the ring as predecessor, say i. The only other peer that had
i as predecessor before is the successor of j, say p, which is the peer that
triggered the join_ok event. This message is sent only after p has updated
its predecessor pointer to j, and thus, modifying its responsibility from (i, p]
to (j, p], which does not overlap with j’s responsibility (i, j]. Therefore, it is
impossible that two peers has the same predecessor.

3.2.1 Resilient Information

During the starting and join algorithms we have mentioned predlist and
succlist for resilient purposes. The basic failure recovery mechanism is trig-
gered by a peer when it detects the failure of its successor. When this
happens, the peer will contact the members of the successor list successively.
The objective of the predlist is to recover from failures when there is no pre-
decessor that triggers the recovery mechanism. This is expected to happen
only when the tail of a branch has crashed.

Algorithm 4 describes how the update of the successor list is propagated
while the list contains new information. The predecessor list is updated only
during the join algorithm and upon failure recoveries.
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Algorithm 4 Update of successor list
upon event 〈 upd_succlist | s, sl 〉 do

newsl := {s} ∪ sl \ getLast(sl)
if (s == succ) ∧ (succlist 6= newsl) then

succlist := newsl
send 〈 upd_succlist | self, succlist 〉 to pred

end if
end

3.2.2 Pruning Branches

Let us consider again figure 3.1. If nodes keeps on joining as predecessors
of peer t, the branch will increase its size, even if they could have a good
connection with peer p. An improvement on the join algorithm will be that
node t sends a hint message to node p avoid new joining peer. If p cannot
talk to q, it does not mean that it can not talk to r or s. If the p can contact
the hinted node, it will add it as its successor, making the branch shorter.
This hint message will not modify the predecessor pointers of r or s. Peer t
uses its predlist list for sending hints.

To implement the hint message, a first naive approach was to send the
hint to all the peers in the predlist as soon as join_ok was sent to the
joining node. There is a possible mix of successors here, and even some
possible lookup inconsistencies that could be introduced. It is related to non-
transitivity, but it could also be caused just by the wrong order of messages.
A correct solution is to send hint only when join_ack arrives to the root
of the branch. Moreover, the hint is sent to only one peer and not to the
whole predList. The message is sent to the closest peer in that set.

3.3 Leave Algorithm

There is no algorithm for handling graceful leaves. This is because any
protocol designed to handle these kinds of leaves will have to deal anyway
with partial failure during the leave, so the work will be redundant. We
consider graceful leave a special case of a failure. There can be some leave
message in order to speed up failure detection, but that would be just for
efficiency.

3.4 Failure Recovery

In order to provide a robust system that can be used on the Internet, it
is unrealistic to assume a fault-free environment or perfect failure detec-
tors, meaning complete and accurate. We assume that every faulty peer will
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eventually be detected (strongly complete), and that a broken link of com-
munication does not implies that the other peer has crashed (inaccurate).
To terminate failure recovery algorithms we assume that eventually any in-
accuracy will disappear (eventually strongly accurate). This kind of failure
detectors are feasible to implement on the Internet.

When the point-to-point communication layer detects a failure of one of
the nodes, the crash event is triggered as it is described in algorithm 5. The
detected node is removed from the resilient sets succlist and predlist, and
added to a crashed set. If the detected peer is the successor, the recovery
mechanism is triggered. The succ pointer is set to nil to avoid other peers
joining while recovering from the failure, and the successor candidate is taken
from the successors list. The variable succ_candidate should be initialized
to nil in the init event of Algorithm 1, but it was not included to avoid
confusion at that part of the analysis of the algorithm. The real value is
initialized at line 7 of the crashed event. The function getF irst returns
the peer with the first key found clockwise, and removes it from the set. It
returns nil if the set is empty. Function getLast is analogous. Note that
as every crashed peer is immediately removed from the resilient sets, these
two functions always return a peer that appears to be alive at this stage.
The successor candidate is contacted using the join message, triggering the
same algorithm as for joining. If the successor candidate also fails, a new
candidate will be chosen. This is verified in the if condition.

Algorithm 5 Failure recovery
upon event 〈 crash | p 〉 do

succlist := succlist \ {p}
predlist := predlist \ {p}
crashed := {p} ∪ crashed
if (p == succ) ∨ (p == succ_candidate) then

succ := nil
succ_candidate := getFirst(succlist)
send 〈 join | self 〉 to succ_candidate

end if
end

upon event 〈 alive | p 〉 do
crashed := crashed \ {p}

end

If a peer p detects that its predecessor pred has crashed, it will not
trigger the recovery mechanism. It is pred’s predecessor who will contact
p. In case that no peer contacts p for recovery, p could guess a predecessor
candidate from its predlist, at the risk of breaking lookup consistency, but
closing the ring again. We will not explore this case further in this chapter
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because it does not violate our definition of consistent lookup. To solve it,
it is necessary to set up a time-out to replace the faulty predecessor by the
predecessor candidate, but it would always take the risk of a reacting to a
false suspicion.

When a link recovers from a temporary failure, the alive event is trig-
gered. This can be implemented by using watchers or a fault stream per
distributed entity [CV06]. In this case, it is enough to remove the peer from
the crashed set. This will terminate any pending recovery algorithm. The
faulty peer will trigger by itself the corresponding recovery events with the
relevant peers.

Figure 3.3 shows the recovery mechanism triggered by a peer when it
detects that its successor has a failure. The figure depicts two equivalent
situations. The above one corresponds to a regular crash of a node in a
perfect ring. The situation below shows that a crash in a branch is equivalent
as long as there is a predecessor that detects the failure.

Figure 3.3: Failures simple to handle: (a) In a branch, q and s detect that r
has crashed. Only q triggers failure recovery. (b) Pers p and r detects q has
crashed. Peer p triggers the recovery mechanism.

Having now the knowledge of the crashed set, algorithm 6 gives complete
definition of the function betterPredecessor used in algorithm 2. Since the
join event is used both for a regular join and for failure recovery, the function
will decides if a predecessor candidate is better than the current one if it
belongs to its range of responsibility, or if the current pred is detected as a
faulty peer.

Algorithm 6 Verifying predecessor candidate
function betterPredecessor(i) is

if (i ∈ (pred, self)) then
return (true)

else
return (pred ∈ crashed)

end if
end function

Knowing the recovery mechanism of the relaxed-ring, let us come back to
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our joining example and check what happens in cases of failures. If q crashes
after the event join, peer r still has p in its predlist for recovery. If q crashes
after sending new_succ to p, p still has r in its succlist for recovery. If p
crashes before event new_succ, p’s predecessor will contact r for recovery,
and r will inform this peer about q. If r crashes before new_succ, peers p
and q will contact simultaneously r’s successor for recovery. If q arrives first,
everything is in order with respect to the ranges. If p arrives first, there will
be two responsible for the ranges (p, q], but one of them, q, is not known by
any other peer in the network, and it fact, it does not have a successor, and
then, it does not belong to the ring. Then, no inconsistency is introduced in
any case of failure. In case of a network partition, these peers will get divided
in two or three groups depending on the partition. In such case, they will
continue with the recovery algorithm in their own rings. Global consistency
is impossible to achieve, but every ring will be consistent in itself.

Since failures are not detected by all peers at the same time, redirection
during recovery of failures may end up in a faulty node. The correct version
of the goto event is described in algorithm 7. If a peer is redirected to a faulty
node, it must insist with its successor candidate. Since failure detectors are
strongly complete, the algorithm will eventually converge to the correct peer.

Algorithm 7 Modified goto
upon event 〈 goto | p 〉 do

if (p /∈ crashed) then
send 〈 join | self 〉 to p

else
send 〈 join | self 〉 to succ_candidate

end if
end

Figure 3.4 shows two simultaneous crashes together with a new peer
joining before the peer used for recovery. If the recovery join message arrives
first, the ring will be fixed before the new peer joins, resulting in a regular
join. If the new peer starts the first step of joining before the recovery, it will
introduce a temporary branch because of its impossibility of contacting the
faulty predecessor. When the recovery join message arrive, the recovering
peer will contact the new joining peer, fixing the ring and removing the
branch.

There are failures more difficult to handle than the ones we have already
analysed. Figure 3.5 depicts a broken link and the crash of the tail of a
branch. In the case of the broken link (inaccuracy), the failure recovery
mechanism is triggered, but the successor of the suspected node will not
accept the join message. The described algorithm will eventually recover
from this situation when the failure detector eventually provides accurate
information.
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Figure 3.4: Multiple failure recovery and simultaneous join. Peer p detects
the crash of its successor q. First successor candidate r has also crashed.
Peer p contacts t at the same time peer s tries to join the network. Both
join messages are the same.

Figure 3.5: Failures difficult to handle: (a) failure of the tail of branch, no-
body is responsible for range (p, q] (b) broken link generating a false suspicion
of p about q.

In the case of the crash of the node at the tail of a branch, there is no
predecessor to trigger the recovery mechanism. In this case, the successor
could use one of its nodes in the predecessor list to trigger recovery, but that
could introduce inconsistencies if the suspected node has not really failed. If
the tail of the branch has not really failed but it has a broken link with its
successor, then, it becomes temporary isolated and unreachable to the rest
of the network. Having unreachable nodes means that we are in presence of
network partitioning. The following theorem describes the guarantees of the
relaxed-ring in case of temporary failures with no network partitioning.

Theorem 3.4.1 Simultaneous failures of nodes never introduce inconsistent
lookup as long as there is no network partition.

Proof 2 Every failure of a node is eventually detected by its successor, pre-
decessor and other peers in the ring having a connection with the faulty node.
The successor and other peers register the failure in the crashed set, and re-
move the faulty peer from the resilient sets predlist and succlist, but they
do not trigger any recovery mechanism. Only the predecessor triggers failure
recovery when the failure of its successor is detected, contacting only one peer
from the successor list at the time. Then, there is only one possible candidate
to replace each faulty peer, and then, it is impossible to have two responsible
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for the same range of keys. If a simultaneous join occurs (as in figure 3.4),
there are two possible cases. If the recovery happens first, the join will just be
as regular join. If the join happens first, the successor candidate will reject
the recovery forwarding to the recovery to the new peer. This means that only
one successor candidate for recovery will be contact at the time, preventing
inconsistencies.

The problem with respect to network partition is inherent to any overlay
network, where a temporary uncertainty cannot be avoid, and some guaran-
tees must be sacrificed. A deeper analysis is provided by Ghodsi [Gho06],
and it is related to the proof given in [Bre00] about limitations of web services
in presence of network partitioning.

Figure 3.6 depicts a network partition that can occur in the relaxed-
ring topology. The proof of theorem 3.4.1 is based on the fact that per every
failure detected, there is only one peer that triggers the recovery mechanism.
In the case of the failure of the root of a branch, peer r in the example, there
are two recovery messages triggered by peers p and q. If message from peer q
arrives first to peer t, the algorithm handle the situation without problems.
If message from peer p arrives first, the branch will be temporary isolated,
behaving as a network partition introducing a temporary inconsistency. This
limitation of the relaxed-ring is well defined in the following theorem.

Figure 3.6: The failure of the root of a branch triggers two recovery events

Theorem 3.4.2 Let r be the root of a branch, succ its successor, pred its
predecessor, and predlist the set of peers having r as successor. Let p be any
peer in the set, so that p ∈ predlist . Then, the crash of peer r may introduce
temporary inconsistent lookup if p contacts succ for recovery before pred. The
inconsistency will involve the range (p, pred], and it will be corrected as soon
as pred contacts succ for recovery.

Proof 3 There are only two possible cases. First, pred contacts succ before
p does it. In that case, succ will consider pred as its predecessor. When p
contacts succ, it will redirect it to pred without introducing inconsistency.
The second possible case is that p contacts succ first. At this stage, the
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range of responsibility of succ is (p, succ], and of pred is (p′, pred], where
p′ ∈ [p, pred]. This implies that succ and pred are responsible for the range
(p′, pred], where in the worse case p′ = p. As soon as pred contacts succ
it will become the predecessor because pred > p, and the inconsistency will
disappear.

Theorem 3.4.2 clearly states the limitation of branches in the systems,
helping developers to identify the scenarios needing special failure recovery
mechanisms. Since the problem is related to network partitioning, there
seems to be no easy solution for it. An advantage of the relaxed-ring topology
is that the issue is well defined and easy to detect, improving the guarantees
provided by the system in order to build fault-tolerant applications on top
of it.

3.5 Adaptable Routing-Table Construction

In this section, we propose a hybrid reconfiguration mechanism for the rout-
ing table called palta: a Peer-to-peer AdaptabLe Topology for Ambient in-
telligence. It was originally conceived for an ambient intelligent scenario,
but it can be able to any kind of networks. This algorithm takes advantage
of the best features of a fully connected network when the number of peers
is small enough to allow the devices manage this kind of topology. When
the network becomes too large to maintain a fully connected topology, the
algorithm will automatically adapt the network configuration to become a
relaxed-ring, which can handle a large number of peers by executing more
complex algorithms for self-managing the distributed network. We consider
different aspects concerning the transition between networks: adaptation of
the base algorithms, maintaining the network’s coherence and self-healing
from inefficient configurations. Evaluation follows in Chapter 5.

palta finger table will change its organization when the network size
reaches a defined threshold. We will refer to this limit as ω. Even when
during the discussion of this chapter we consider the value of ω as uniform
for all nodes, the algorithm is designed such that every node can define its
own ω to adapt its behaviour according to its own capacities.

To successfully implement this dynamic schema, we need to analyze how
the topology will evolve when peers join or leave the network. When the
network is created and the number of peers is below ω, the joining peers
will perform the fully connected algorithm which simply creates a full mesh
of peers. When peers detect a network size above ω, all the incoming join-
ing requests will be handled using the Relaxed Ring algorithm. The same
methodology is followed when, after a number of disconnections, the net-
work becomes smaller than ω. In such case, peers will change their joining
algorithm from Relaxed Ring to fully connected.
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To be able to make the transition from a fully connected network to a
ring, peers need to precisely identify their successors and predecessors at all
times. Algorithm 8 shows that the join even in palta can be seen almost
as a method dispatcher, with the subtlety that it checks its predecessor and
predecessor pointers in every join before triggering the join event of the
full module. In case that ω is already reached, it is the algorithm of the
relaxed ring who will take care of pred and succ accordingly.

Algorithm 8 Join for palta: Adapted fully connected algorithm with tran-
sition to relaxed-ring
upon event 〈 join | new 〉 do

if size(peers) < ω then
check_succ_pred(new)
trigger 〈 full.join | new 〉

else
trigger 〈 ring.join | new 〉

end if
end

procedure check_succ_pred(id) is
if better_successor(id) then

succ := id
end if
if better_predecessor(id) then

pred := id
end if

end procedure

The procedure that checks predecessor and successor uses the same func-
tions better_successor and better_predecessor, which are equivalent to the
one described earlier in this chapter, verifying if the key belongs to the cor-
responding range.

The value of ω can change right after sending message join and-or
join_ok. Due to that, there is no way of knowing if a reply message join_ok
will correspond to the full connected topology or to the relaxed-ring. Peers
need to adapt dynamically to this situation whenever is needed. Algorithm
9 shows how this event is overloaded in palta. The first case corresponds to
join_ok as in the ring, with information of the predecessor, successor and
sucessor list. If the routing table is higher than ω, the event is delegated
to the relaxed-ring module. If we are in a small network, predecessor and
successor are accordingly check, and the successor list is used to trigger the
full connected algorithm, which will be used until reaching ω.
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Algorithm 9 Join for palta: Overloaded event join_ok

module palta

upon event 〈 join_ok | p, s, sl 〉 do
if size(peers) < ω then

check_succ_pred(new)
trigger 〈 full.join_ok | s, sl 〉

else
trigger 〈 ring.join_ok | p, s, sl 〉

end if
end

upon event 〈 join_ok | src, srcPeers 〉 do
if size(peers) < ω then

check_succ_pred(new)
succList := succList ∪ srcPeers
trigger 〈 full.join_ok | src, srcPeers 〉

end if
end

3.6 Conclusion

In this chapter we have presented the Relaxed-Ring topology for fault-
tolerant and self-organizing peer-to-peer networks. The topology is derived
from the simplification of the join algorithm requiring the synchronisation of
only two peers at each stage. As a result, the algorithm introduces branches
to the ring. These branches can only be observed in presence of connectivity
problems between peers, and they help the system to work in realistic sce-
narios. The complexity of the lookup algorithm is a bit degraded with the
introduction of branches. However, we will analyse the real impact of this
degradation in Chapter 5, and we will see that it is almost negligible. In any
case, we consider this issue a small drawback in comparison to the gain in
fault tolerance and cost-efficiency in ring maintenance.

The topology makes feasible the integration of peers with very poor con-
nectivity. Having a connection to a successor is sufficient to be part of the
network. Leaving the network can be done instantaneously without having
to follow a departure protocol, because the failure-recovery mechanism will
deal with the missing node. The guarantees and limitations of the system are
clearly identified and formally stated providing helpful indications in order
to build fault-tolerant applications on top of this structured overlay network.

This chapter was also dedicate to described our self-adaptable finger ta-
ble called palta. It is based on the existing fully connected and Relaxed
Ring topologies, with adaptations to make them work together. This hybrid
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topology features self-organizing and self-adapting mechanisms to ensure a
complete connectivity among the connected peers and take advantage of the
current network state to have a better use of the available resources. It ben-
efit from fully connected small networks and it makes a smooth transition
to larger ones, being able to scale as a large scale structured peer-to-peer
network.



Chapter 4
The Relaxed-Ring in a Feedback
Loop

The objective of modeling the Relaxed-Ring as a set of feedback-loops, is that
it will allows us to understand and analyse its self-management behaviour in
a better way. Feedback-loops, as we will see in the next section, are present in
every self-managing system, and therefore, applying them in software design
seems to be a reasonable path to follow.

4.1 Background

Taken from system theory, feedback loops can be observed not only in exist-
ing automated systems, but also in self-managing systems in nature. Several
examples of this can be found in [Van06], where feedback loops are intro-
duced as a designing model for self-managing software. The loop consists
out of three main concurrent components interacting with the subsystem.
There is at least one agent in charge of monitoring the subsystem, passing
the monitored information to a another component in charge of deciding a
corrective action if needed. An actuating agent is used in order to perform
this action in the subsystem. Figure 4.1 depicts the interaction of these
three concurrent components in a feedback loop. These three components
together with the subsystem forms the entire system. It has similar proper-
ties to PID-controllers, with the difference that the evolution of a running
software application is measured discretely.

The goal of the feedback loop is to keep a global property of the system
stable. In the simplest cases, this property is represented by the value of a
parameter. This parameter is constantly monitored. When a perturbation
is detected, a corrective action is triggered. A negative feedback will make
the system reacts in the opposite direction to the perturbation. Positive
feedback increases the perturbation.

67
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Figure 4.1: Basic structure of a feedback loop (taken from [Van06]).

Taking an air-conditioning as example, we can see the room where the
system is installed as the subsystem. A thermometer constantly monitors
the temperature in the room giving this information to a thermostat. The
thermostat is the component in charge of computing the correcting action.
If the monitored temperature is higher than the wished temperature, the
thermostat will decide to run the air-conditioning to cool it down. That
action corresponds to the actuating agent.

Since every component executes concurrently, the model fits very well
for modelling distributed systems. There are many alternatives for imple-
menting every component and the way they interact. They can represent
active objects, actors, functions, etc. Depending on the chosen paradigm,
the communication between components can be done for instance by mes-
sage passing or event-based communication. The communication may also
be triggered by pushing or pulling, resulting on eager or lazy execution.

Independent of the strategy used for communication, it is important to
consider asynchronous communication as the default when distributed sys-
tems are being modelled.

As a rule for using feedback loops in the design of a system, actuators and
monitors appear as verbs, while the subsystem and the computing component
appear as substantives, as in the air-conditioning example. The reason why
it is not like this in Figure 4.1, is because that is a description of the model,
and not the model applied to a system.

4.2 Join Algorithm

In this section we describe the same join algorithm from Chapter 3, but
now using a feedback loop. Thinking about the peer-to-peer network as self-
managing system, the network is the subsystem we want to monitor, because
we want it to keep is functionality despite the changes that can occur. The
structure of the ring is the global property that needs to be kept stable. New
peers joining, and current peers leaving or failing represent perturbations to
the ring structure. Therefore, these events must be monitored.
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Messages sent during the process of joining, and the update of the prede-
cessor and successor pointers are shown in figure 3.2. In the example, node
q wants to join the network having r as successor candidate. Peer r is a
good candidate because it is the responsible for key q. Node q send a join
request to r. Whereas event join triggered by peer q is a perturbation, event
join_ok is a correcting action providing negative feedback. It is negative
because it is an action that goes in the opposite direction of the perturbation.
After join_ok is triggered, a branch is created. Then, a second correcting
action is needed to entirely close the ring. This action is represented by the
event new_succ sent from peer q to p.

Figure 4.2 describes the feedback loop that keeps the structure of the
relaxed-ring stable. The monitoring agents are in charge of detecting per-
turbations in the network. Correcting actuators can be seen as three different
actions: update routing table (successor and predecessor), trigger event (cor-
recting ones) and forward request (in case a peer wants to join in the wrong
place). The routing table does not only include predecessor and successor. It
also includes fingers for efficient routing and resilient sets for failure recovery.

Figure 4.2: Join algorithm as a feedback loop.

Every peer is independently monitoring the network, and the correcting
action performing the ring maintenance is running concurrently in every
peer. Every event triggered by a peer is monitored by the destination peer,
unless there is a failure in the communication. In that case, a crash event
will be triggered and treated by the failure recovery mechanism.

4.3 Failure Recovery

Instead of designing a costly protocol for peers leaving the network, leav-
ing peers are treated as network nodes having a failure. Like this, solving
problem of failure recovery will also solve the issue of leaving the network.

Observing the relaxed-ring as a self-managing system, we identify that
the crash of a peer also introduces perturbations to the structure of the
ring. Therefore, crashes must be monitored. In order to provide a realistic
solution, perfect failure detectors cannot be assumed. Perfect failure detec-
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Figure 4.3: Failure recovery as a feedback loop.

tors are strongly complete and strongly accurate. Being complete means
that every crashed node is detected. Being accurate means that a node be-
ing suspected of failure is effectively in failure. In reality, broken links and
nodes with slow network connection are very often, generating a considerable
amount of false suspicions. Because of this, not only crashed events must
be monitored, but also “I am alive” messages. When these two events are
appear as perturbations, the network must update routing tables and trigger
correcting events.

In the relaxed-ring architecture we reuse the join event as correcting
agent for stabilising the relaxed-ring. If the network become stable, the
join_ok event will be monitored. This negative feedback can be observed
in figure 4.3.

The interaction between feedback loops is an interesting issue to analyse
because big systems are expected to be designed as a combination of several
loops. Let us consider a particular section of the ring having peers p, q and r
connected through successor and predecessors pointers. Figure 4.4 describes
how the ring is perturbed and stabilised in the presence of a failure of peer
q. Only relevant monitored and actuating actions are included in the figure
to avoid a bigger and verbose diagram.

Figure 4.4: Peers p and r detect failure of q, fixing the ring with an inter-
action of feedback loops.
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Initially, the crash of peer q is detected by peers p and r (1). Both peers
will update their routing tables removing q from the set of valid peers (2b).
But, since p is q’s predecessor, only p will trigger the correcting event join
(2a). This first iteration corresponds to a loop from the failure recovery
mechanism. The join event will be monitored by peer r (3), starting an
iteration in the join maintenance loop. The correcting action join_ok will
be triggered (4a) together with the corresponding update of the routing table
(4b). Then, the event join_ok will be monitored (5) by the failure recovery
component in order to perform the correspondent update of the routing table
(6). Since the join_ok event is also detected by the join loop, both loops
will consider the network stable again.

4.4 Adaptable Routing-Table Construction

Following the strategy we use to model the Relaxed-Ring as a feedback loop
in the previous sections, we can also model palta as shown in Figure 4.5. The
monitors, actuators and the component that decides the corrective actions
are placed at every node. The monitored subsystems correspond to the whole
peer-to-peer network, and the routing table. The last one is also placed at
the node.

Figure 4.5: Self-Adaptable topology as a feedback loop.

As explained in Section 3.5, when a new node wants to enter the net-
work, it sends a join message to its successor candidate. This message is
sent through the network. Since every node is monitoring the network, the
join message will be received by the palta component. palta is also moni-
toring the load of the routing table. This information is used to decide how
to react to the join message. If the load is below ω, palta will use the fully
connected mechanism together with its own verification of the predecessor
and successor. Both actions are used to update the routing table, modify-
ing its load, which will be monitored once again, as in every loop. The fully
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connected mechanism will also trigger some messages in the peer-to-peer net-
work in order to modify its state. If the load of the routing table has already
passed the ω threshold, palta will use the relaxed-ring joining mechanism,
which will also update the routing table and trigger some messages for the
involved nodes.

We can observe some similitude between palta’s feedback loop and the
acclimatized room. The thermostat in the room will use the heating system
or the air-conditioner depending on whether the temperature is below or
above the desired goal. palta decides its actuators according to load of the
routing table with respect to ω. In the acclimatized room, the temperature
is measure periodically, being trigger by a timer. In palta, it is the join
message the one that triggers the monitoring process and the rest of the
loop.

The loop also monitors failures of peers triggering the corresponding
failure recovery mechanism. This mechanism is chosen by palta according
to the load of the routing table, as it is done with the joining process. This is
coherent with what is explained in Section 3.5. All other messages related to
the joining process and the failure recovery, such as join_ok, new_succ, are
also present as monitoring event, but they have been omitted from Figure 4.5
for legibility.

4.5 Conclusion

Decentralised systems in the form of peer-to-peer networks presents many
advantages over the classical client-server architecture. Even though, the
complexity of a decentralised system is higher, requiring the increase of
self-management. In this chapter we show how feedback-loops, taken from
existing self-managing systems, can be applied in the design of a peer-to-
peer network. Using feedback-loops, we can observe that the system is able
to monitor and correct itself, keeping the ring structure stable despite the
changes due to regular operations of due to network and node failures.

We have also shown how feedback-loops are combined using the subsys-
tem as a way of interacting from one loop to the other. The self-adaptable
behaviour of the palta finger table becomes more accessible but modelling
it as a feedback loop. It is clear that the ω value is constantly monitored in
order to adapt the behaviour of the routing table whenever the threshold is
reached. It is also clearer how actuators are chosen dynamically according
to the values that were monitored.



Chapter 5
Evaluation

After the analysis we have done about the algorithms and self-management
behaviour of the Relaxed-Ring, we do now the empirical evaluation com-
paring it with other networks, specially with Chord [SMK+01]. We start
by describing CiNiSMO, our concurrent simulator, and then describe the
results we have obtain measuring cost-efficient ring maintenance, lookup
consistency, size and amount of branches, and efficient routing.

5.1 Concurrent Simulator

CiNiSMO is a Concurrent Network Simulator implemented in Mozart-Oz.
It has been used for evaluating the claims made about the Relaxed-Ring
in Chapter 3, and we continue to use it for ongoing research with other
network topologies. In CiNiSMO, every node run autonomously on its own
lightweight thread. Nodes communicate with each other by message passing
using ports. We consider that these properties make the simulator much
more realistic. We have released it as a programming framework that can
be used to run other tests with other kinds of structured overlay networks.
Another motivation for releasing CiNiSMO is to allow other researchers to
reproduce the experiments we have run to generate our conclusions.

The general architecture of CiNiSMO is described in Figure 5.1. At
the center, we observe the component called “CiNetwork”. This one is in
charge of creating n peers using the component “Core Node”. The core node
delegates every message it receives to another component which implements
the algorithms of a particular network. Currently, we have implemented
in CiNiSMO the Relaxed-Ring [MV08], Chord [SMK+01], Fully connected
networks and Palta [CMV+08]. To add a new kind of network to this simu-
lator it is sufficient to create the correspondent component that handles the
messages delegated by the core node.

Every core node transmit information about the messages it receives to
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Figure 5.1: Architecture of CiNiSMO.

a component called “Stats”, which can summarize information such as how
many lookup messages were generate, or how many crash events were trig-
gered. The component that typically demands this kind of information is the
“Test”. This is another component that can be implemented to define the size
of the network and the kind of event we want to study. Only one CiNetwork
is created per every Test. When the relevant information is gathered, it sent
to a “Logger”, which outputs the results into a file.

Since it is cumbersome to run every test individually many times, it is
possible to implement the component called “Master Test”, which can orga-
nize the execution of many testing, changing the seed for random generation
numbers, or a parameter that is used for the creation of the CiNetwork. The
software can be dowloaded at http://beernet.info.ucl.ac.be/cinismo,
with documentation about how to use it.

5.2 Branches in the Relaxed-Ring

To test the amount of branches that appear on a network, we have boot-
strapped networks with different sizes, and using different seeds for random
number generation. Every networks starts with a single node, and peers are
constantly joining until the network reaches the desire size. Even though
there are no failures, the joining activity generates a considerable amount
of churn. Since the Relaxed-Ring maintenance is based on correction-on-
change, there is no rate we can provide for the churn until we compare it
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Figure 5.2: Average amount of branches generated on networks with con-
nectivity problems. Networks where tested with peers having a connectivity
factor c, representing the probability of establishing a connection between
peers, where c ∈ {0.9, 0.95, 1}.

with Chord rings, because then we introduce periodic actions that can be
compared with churn.

Figure 5.2 shows the amount of branches that can appear on networks
with 1000 to 10000 nodes. The coefficient c represents the connectivity level
of the network, where for instance c = 0.95 means that when a node con-
tacts another one, there is only a 95% of probability that they will establish
connection. A value of c = 1.0 means 100% of connectivity. On that value,
no branches are created, meaning that the relaxed-ring behaves as a perfect
ring on fault-free scenarios. The worse case corresponds to c = 0.9. In that
case, we can observe that the amount of branches is less than 10% of the size
of the network, as expected. Consider peers i and k, where i is the current
predecessor of k. If they cannot talk to each either, k will form a branch. If
another peer j joins in between i and k having good connection with both
peers, the branch disappears.

On the contrary, if a node l joins the network between k and its successor,
it will increase the size of the branch, decreasing the routing performance.
For that reason, it is important to measure the average size of branches.
If message hint, explained in section 3.2.2, works well for peer l, then, the
branch will remain on size 1. Having this in mind, let us analyse figure
5.3. The average size of branches appears to be independent of the size of
the network. The value is very similar for both cases where the quality of
the connectivity is poor. In none of the cases the average is higher than 2
peers, which is a very reasonable value. If we want to analyse how the size
of branches degrades routing performance of the whole network, we have
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Figure 5.3: Average size of branches depending on the quality of connections:
avg corresponds to existing branches and totalavg represents how the whole
network is affected.

to look at the average considering all nodes that belong to the core ring as
providing branches of size 0. This value is represented by the curves totalavg
on the figure. In both cases the value is smaller that 0.25. Experiments with
100% of connectivity are not shown because there are no branches, so the
average size is always 0.

The chosen values for coefficient c are a bit worse than some real mea-
surements on the internet. The King Data Set [GSG02] has 0.8% of the
nodes that cannot connect with each other. According to [FLRS05], 2.3% of
all pairs of nodes in PlanetLab [The03] cannot talk to each other. Therefore,
our values for coefficient c seems to be reasonable to study the relaxed-ring.

5.3 Bandwidth consumption

In this section we try to answer the following questions: How many messages
are exchanged by peers in order to maintain the relaxed-ring structure? How
much is the contribution of the hint messages to the load in order to keep
branches short? These questions are answered in figure 5.4. We can observe
that the amount of messages increases linearly with the size of the network
keeping reasonable rates. The fault-free scenario has no hint messages as
expected, but the total amount of messages is still pretty similar to the cases
where connectivity is poor. This is because there are less normal join mes-
sages in case of failures, but this amount is compensated by the contribution
of hint messages. We observe anyway that the contribution of hint messages
remains low.



5.4. COMPARISON WITH CHORD 77

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

M
e
s
s
a
g

e
s

Peers

total c=0.90
total c=0.95
total c=1.00
hint c=0.90
hint c=0.95
hint c=1.00

Figure 5.4: Number of messages generated by the relaxed-ring maintenance.
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5.4 Comparison with Chord

As we previously mentioned, we have also implemented Chord in our simu-
lator CiNiSMO. Experiments were only run in fault-free scenarios with full
connectivity between peers, and thus, in better conditions than our experi-
ments with the relaxed-ring. The idea is to respect the assumptions made
by Chord authors as much as possible. We make our comparison considering
two parameters: lookup consistency and bandwidth consumption.

5.4.1 Lookup Consistency

Even though the connectivity conditions of the experiments running Chord
were much better than those of the relaxed-ring, we observed many lookup
inconsistencies on high churn. To reduce inconsistency, we trigger periodic
stabilization on all nodes at different rates. The best results appeared when
only 4 nodes joined the ring in between every periodic stabilization. The
amount of nodes joining the ring during that period is what we call stabi-
lization rate. As seen in figure 5.5, the largest the network, the less incon-
sistencies are found. An inconsistency is detected when two reachable nodes
are signalized as responsible for the same key. We can observe that stabiliza-
tion rates of 5 converges pretty fast to 0 inconsistencies. Stabilization every
6 new joining peers only converge on networks of 4000 nodes. On the con-
trary, rate values of 7 and 8 presents immediately a high and non-decreasing
amount of inconsistencies. Those networks would only converge if churn is
reduced to 0. These values are compared with the worse case of the relaxed-
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Figure 5.5: Amount of peers with overlapping ranges of responsibilities, in-
troducing lookup inconsistencies, on Chord networks under different stabi-
lization rates for different network sizes. Comparison with the Relaxed-Ring
with a bad connectivity. The stabilization rate represent the amount of
peers joining/leaving the network between every stabilization round. The
value of zero in the Y-axis has been raised in order to spot the curve of the
Relaxed-Ring and Chord with a very frequent stabilization rate equal to 5.

ring (connectivity factor 0.9) where no inconsistencies where found. In this
experiment, every instance of a Chord network of a given size was run with
six different random number generators. What it is shown in the graph is
the average of those instances.

5.4.2 Bandwidth consumption

We have observed that lookup consistency can be maintained in Chord at
very good levels if periodic stabilization is triggered often enough. The prob-
lem is that periodic stabilization demands a lot of resources. Figure 5.6
depicts the load related to every different stabilization rate. Logically, the
worse case corresponds to most frequently triggered stabilization. If we only
consider networks until 3000 nodes, it seems that the cost of periodic stabi-
lization pays back for the level of lookup consistency that it offers, but this
cost seems too expensive with larger networks.

In any case, the comparison with the relaxed-ring is considerable. While
the relaxed-ring does not pass 5×104 messages for a network of 10000 nodes,
a stabilization rate of 7 on a Chord network, starts already at 2× 105 with
the smallest network of 1000 nodes. Figure 5.6 clearly depicts the difference
on the amount of messages sent. The point is that there are too many
stabilization messages triggered without modifying the network. On the
contrary, every join on the relaxed-ring generate more messages, but they
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Figure 5.6: Load of messages in Chord due to periodic stabilization, com-
pared to the load of the Relaxed-Ring maintenance with bad connectivity.
Y-axis presented in logarithmic scale.

are only triggered when they are needed.

5.5 Efficiency of the Routing Table

This section presents an analysis of the results obtained by simulating palta,
the self-adaptable finger table we described in Section 3.5. This finger table
uses a full mesh graph when the estimated size of the network is smaller
than a given value ω. When this threshold is reached, the finger table of new
peers will only work with DKS fingers. If network’s size decrements back
below the value of ω, all peers with adapt their finger tables to get closer to
a full mesh, taking more advantage of the connectivity.

To validate this finger table strategy, we simulate with two different val-
ues of ω, and we compare them with the Relaxed-Ring using plain DKS, and
with fully connected network, which always have full mesh connectivity. In
order to measure the efficient use of resources, we have measured the aver-
age amount of active connection a node has in every of these networks. To
study the performance of the topologies, we have measured the total amount
of messages needed to build the network, and the average hops needed to
perform a lookup.

Every topology is tested by building networks from 20 to 1000 nodes, in-
creasing the size by 20 nodes at every iteration. Plotted values represent the
average of running every experiment with several seeds for random number
generation. In the case of palta, we tested the algorithm using two different
values for ω, being 100 and 200. Reaching 1000 nodes might be considered
not large enough for large scale networks, but it is enough to observe the
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behavior after the ω threshold is reached and extrapolate the scalability from
the curves obtained.

5.5.1 Active connections

One of the goals of palta is to dynamically adapt its topology in order to
optimize the use of the network. For small networks that means that we
want to directly connect as much peers as possible, in order to reach every
peer in the minimum amount of hops. Small is defined in terms of the ω
value.

Figure 5.7 shows the average amount of active connections per peer in
the different topologies. We can observe that the fully connected network
increments the amount of connections linearly, and therefore, it does not
scale at all. Part of the curve is missing, but it clearly corresponds to n− 1,
being n the size of the network, because every node is connected to all the
other peers. As expected, the relaxed-ring with plain DKS appears as the
topology where peers manage the smallest amount of connections, showing
that it has good scalability for large networks. Let us analyze now the
behavior of palta. In both cases, with ω 100 and 200, we observe that the
amount of connections increases linearly as a fully connected network until
reaching ω peers. From that point on, the average of connections decreases
very fast, converging asymptotically to the values of the relaxed-ring. This
is because all new nodes that join the network after the threshold of ω is
reached, create only the amount of fingers needed by a relaxed-ring. In fact,
ω peers manage ω − 1 connections, and N − ω peers manage k fingers, with
N being the size of the network. Meaning that the larger the network, the
smallest the average. Of course, this decreasing behavior continuous until
it almost reaches the curve of the relaxed-ring, then, the average can only
increasing according to the size of the network.

In conclusion, Figure 5.7 shows us that palta uses actively more re-
sources than a regular ring, but it is capable of self-adapting when the net-
work becomes too large and provide a good scalability.

5.5.2 Network traffic

When peers enter in a distributed network, they generate a number of mes-
sages in order to correctly join without leading the network to an unstable
state. In the case of a fully connected network, the joining peer will always
need 2 ∗ n messages to contact all peers in a network of size n. Therefore,
the cost of a new joining peer increases as the size of the network increases.
In our simulation we contact directly every peer. In case a broadcast mech-
anism is used to propagate the join of a new peer, n messages are needed to
reach every peer, plus n message to acknowledge the new peer, making 2 ∗n
messages. These measurements about fully connected network do not apply
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Figure 5.7: Average amount of active connections vs number of peers. This
chart evaluates if a small network take advantage the proximity by opening
more networks, and it validates the scalability of the solution.

to small networks using Bluetooth, where one hoop broadcasting is avail-
able. On the other hand, Bluetooth cannot currently handle the amount
of connection we are testing. They actually belong to a different problem
domain.

In the Relaxed-Ring with plain DKS, the joining peer needs to send mes-
sages for contacting the predecessor, successor and the k fingers. Therefore,
the marginal cost of a joining peer is almost independent of the size of the
network. The only difference occurs with the amount of messages needed for
localizing the k finger, which increases logarithmically with respect to the
size of the network, as we will see in Section 5.5.3.

Figure 5.8 does not show the marginal cost of joining a network, but
the total amount of messages generated to construct every network we have
studied in section 5.5.1. We can see that with less active connections, as in
palta or the relaxed-ring, the number of messages remains small, generating
less network traffic. The curve of the fully connected network increases
quadratically, generating n ∗ (n − 1) messages, with n being the size of the
network, we can conclude that this network cannot scale.

The curve of the relaxed-ring with DKS shows a constant and controlled
increment in the amount of messages, keeping them at a very low rate,
showing that it scales very well. Now, the results obtained from experiments
with palta are very interesting because both perform better than the ring
for larger networks. One can observe that palta with ω = 100 and ω =
200 increases quadratically the amount of messages, as in a fully connected
network. This happens only until the network reaches a size of ω peers. Then,
the amount of messages increases slower that in a ring, and furthermore, after
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a certain size of the network, both palta networks remain at better values
that the relaxed-ring. The explanation for this is that when a new peer
join in the network, it needs less messages to find the k fingers. This is
because palta has ω peers with a larger routing table (ω > k), making a
more efficient jump during the routing process. We study this further in the
following section.
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Figure 5.8: Total amount of messages to build the network vs number of
peers. This chart evaluates how costly is every network. It is interesting to
see that PALTA networks start by behaving as a fully connected network,
but then they are more efficient than the relaxed-ring with DKS. This is
explained in the next chart.

This means that the cost of maintaining a small fully connected network
can help a larger network to be more efficient for routing, generating less
network traffic. We observe that palta could not only be used for ambient
intelligent networks as it was in their original conception, but also as the
topology for large scale systems. This is why we have actually adopted for
the implementation of Beernet.

5.5.3 Hops

In order to confirm our conclusions from the previous experiment, we decided
to measure the average amount of hops needed for a message to reach its
destination. This is known as a lookup operation in a ring. This experiment
does not consider fully connected networks, because there is no concept of
responsibility is such systems. In addition, because of its characteristics,
peers in a fully connected network reach any other peer in the network in 1
hop.

In Figure 5.9 we can observe the results obtained. The relaxed-ring with
DKS fingers shows that the number of needed hops increase logarithmically
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when the network size increases. palta performs better than the relaxed-
ring due to fact that some peers have a larger routing table, confirming
the results from the previous experiment. In both cases, palta presents an
average number of hops slightly smaller than 2 if the network consist of less
than ω peers. This is because the network is fully connected, and therefore,
in can reach the predecessor of the responsible of the looked up key in only
one hop. The second hop is needed to reach the responsible. The average
is smaller than 2 because the randomized experiments sometimes generates
lookups where the responsible is the peer triggering the lookup. This section
includes figure 5.9

After the value of ω is reached, the average increases faster in palta
with ω = 100 that with ω = 200. This is clearly due to the amount of peers
having a larger routing table. We observe that in both cases the system
behaves much better than the ring. We expect that for larger networks the
value would converge to the curve of the ring, but still performing better.
What we cannot currently explain is the behavior of palta with ω = 100
when the network is in between 100 and 200 nodes. It seems to perform even
better than a ω = 200.
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Figure 5.9: Average number of hops vs number of peers. The relaxed-ring
with DKS fingers follows a logarithmic distribution in the amount of hops
that are needed to reach any peer in the network. PALTA network converge
to this value for large networks, but they remain lower because there are
some peers with more connections than the average peer in the network,
providing a more significant jump to complete the lookup request.

Something that we still need to investigate is the construction of a net-
work where every peer define its own ω vale according to its own resources.
We want to palta in ambient intelligent network formed by heterogeneous
devices, each one with its own resources.
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5.6 Conclusion

This chapter has allowed us to validate our claims presented in Chapters 3
and 4. We have shown that the relaxed-ring presents much less lookup
inconsistencies compared to Chord with different stabilization rates. This
result is observed even when the connectivity conditions of the experiment
we used for the relaxed-ring where much worse that the conditions of Chord
experiments. We also observe that ring maintenance is much efficient in the
relaxed-ring thanks to the correction-on-change strategy.

The price that has to be paid to not introduce inconsistencies in the
relaxed-ring, is the degradation of the routing complexity by adding the size
of a branch to the O(logN) achieved by Chord. The experimental result has
shown us that the average size of a branch is less that two peers, and that
the impact on the whole network is actually less than 0.5. This means that
the degradation is minimal.

We have also seen that palta strategy to provide a self-adaptable finger
table can be efficient in two directions. It makes a more efficient use of the
connectivity in small networks, and it reduces the amount of hops to resolve
lookups in larger network. This is thank to some peers that manage more
peers that a regular DKS finger table, making more significant jumps to
route messages.



Chapter 6
Transactional DHT

The most basic operations provided by a DHT are put(key value) and
get(key). We have seen in Chapter 2 that this is not enough to provide
fault tolerance, and that a replication strategy should be used in order to
guarantee data storage. Replicas are not simple to maintain independently of
the chosen replication strategy. Therefore, it is very convenient to add trans-
actional support to the DHT so as to manage the replicas, and to provide
atomic operations over a set of items.

The two-phase commit protocol (2PC) is one of the most popular choices
for implementing distributed transactions, being used since the 1980s. Un-
fortunately, its use on peer-to-peer networks is very inefficient because it
relies on the survival of the transaction manager, as explained further in sec-
tion 6.1. A three-phase commit protocol (3PC) has been designed in order
to overcome the limitation of 2PC. However, 3PC introduces an extra round-
trip which results in higher latency and increased message load. We will see
how transactional support based on Paxos consensus [MH07, GL06] works
well in decentralized systems. This algorithm is especially adapted for the
requirements of a DHT and can survive a crash of the coordinator during a
transaction. Compared to 3PC, it reduces latency and overall message load
by requiring less message round-trips.

We extends the Paxos consensus algorithm with an eager locking mech-
anism, so as to fit the requirements we identify in synchronous collaborative
applications. A notification layer is also added to the transactional layer
support, which can be used by any of the transactional protocols we will
describe. In this chapter we also make an analysis of replica maintenance,
and how it is related to the transactional layer.

85
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6.1 Two-Phace Commit

The pseudo-code in Algorithm 10 implements a swap operation within a
transaction. The objective is that the instructions from the beginning of
the transaction (BOT) until its end (EOT) are executed atomically to avoid
race conditions with other concurrent operations. The values of item_i
and item_j are stored on different peers. The operators put and get are
replaced by read and write in order to differentiate a regular DHT from a
transactional DHT. Since the operations have different semantics, as we will
see in section 6.6, it is justified to use different keywords.

Algorithm 10 Swap transaction

BOT
x = read(item_i);
y = read(item_j);
write(item_j, x);
write(item_i, y);

EOT

In order to guarantee atomic commit of a transaction on a decentralized
storage, two-phase commit uses a validation phase and a write phase, coor-
dinated by a transaction manager (TM). All peers responsible for the items
involved in the transaction, as well as their replicas, become transaction par-
ticipants (TP). Initially, the TM sends a request to every TP to prepare the
transaction. If the item is available, the TP will lock it and acknowledge the
prepare request. Otherwise, it will reply abort. The write phase follows val-
idation once the replies are collected by the TM. If none of the participants
voted abort, then the decision will be commit. When the participants receive
the commit message from the TM, they will make the update permanent
and release the lock on the item. An abort message will discard any update
and release the item locks.

The problem with the 2PC protocol is that relies too much on the sur-
vival of the transaction manager. If the TM fails during the validation
phase, it will block all the TPs that acknowledged the prepare message. A
very reliable TM is required for this protocol, but it cannot be guaranteed on
peer-to-peer networks. Figure 6.1 depicts 2PC protocol showing two possible
execution. The diagrams do not include the client, but they concentrate on
the interaction between the TM and the TPs. Figure 6.1(a) shows a success-
ful execution of the protocol where the TPs get the confirmation of the TM
about the result of the transaction. Figure 6.1(b) spots the main problem of
this protocol. If the TM crashes after collecting the locks of the TPs, the TPs
remained locked forever if the algorithm is crash-stop. PostgreSQL [Pos09]
implements 2PC as a crash-recovery algorithm, meaning that the TM can
reboot and recover the state before the crash to continue with the protocol.
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(a) (b)

Figure 6.1: Two Phase Commit protocol (a) reaching termination and (b)
not knowing how to continue or unlock the replicas because of the failure of
the transaction manager.

Discussing with PostgreSQL developers, they have said that a transaction
could hang for a whole weekend before the locks are released again. This
kind of behaviour is not feasible in peer-to-peer networks when there is no
certainty that a peer that leaves the network will ever come back.

6.2 Paxos Consensus Algorithm

The 3PC protocol avoids the blocking problem of 2PC at the cost of an extra
message round-trip. This solution might be acceptable for cluster-based
applications but not for peer-to-peer networks, where it is better to have less
rounds with more messages than adding extra rounds to the protocol. This
problem lead to the recent introduction of [MH07] based on Paxos consensus
[GL06].

The idea is to add replicated transaction managers (rTM) that can take
over the responsibility of the TM in case of failure. The other advantage
is that decisions can be made considering a majority of the participants
reaching consensus, and therefore, not all participants needs to be alive or
reachable to commit the transaction. This means that as long as the majority
of participants survives, the algorithm terminates even in presence of failures
of the TM and TPs, without blocking the involved items.

Figure 6.2 describes how the Paxos-consensus protocol works. The client,
which is connected to a peer that is part of the network, triggers a trans-
action in order to read/write some items from the global store. When the
transaction begins, the peer becomes the transaction manager (TM) for that
particular transaction. The whole transaction is divided in two phases: read
phase and commit phase. During the read phase, the TM contact all trans-
action participants (TPs) for all the items involved in the transaction. TPs
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Figure 6.2: Paxos consensus atomic commit on a DHT.

are chosen from the peers holding a replica of the items. The modification
to the data is done optimistically without requesting any lock yet. Once all
the read/write operations are done, and the client decides to commit the
transaction, the commit phase is started.

In order to commit the changes on the replicas, it is necessary to get the
lock of the majority of TPs for all items. But, before requesting the locks,
it is necessary to register a set of replicated transaction managers (rTMs)
that are able to carry on the transaction in case that the TM crashes. The
idea is to avoid locking TPs forever. Once the rTMs are registered, the TM
sends a prepare message to all participants. This is equivalent to request
the lock of the item. The TPs answer back with a vote to all TMs (arrow
to TM removed for legibility). The vote is acknowledged by all rTMs to the
leader TM. Like that, the TM will be able to take a decision if the majority
of rTMs have enough information to take exactly the same decision. If the
TM crashes at this point, another rTM can take over the transaction. The
decision will be commit if the majority of TPs voted for commit. It will be
abort otherwise. Once the decision is received by the TPs, locks are released.

The protocol provides atomic commit on all replicas with fault tolerance
on the transaction manager and the participants. As long as the majority
of TMs and TPs survives the process, the transaction will correctly finish.
These are very strong properties that will allow the development of collabo-
rative applications on a decentralized system without depending on a server.

6.3 Paxos with Eager Locking

We have observed how Paxos consensus algorithm for atomic transactions
on DHTs is extremely useful for building systems with decentralized storage
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Figure 6.3: Paxos consensus with eager locking and notification to the read-
ers.

based on symmetric replication. The protocol works very well for applica-
tions such as Wikipedia on Scalaris [SSR08, PRS07] or the recommendation
system Sindaca, presented in Section 8.1. These systems are designed to
support asynchronous collaboration between application’s users. The fact
that Paxos consensus protocol works with optimistic locking fits well asyn-
chronous collaboration. However, this locking strategy limits the function-
ality of synchronous collaborative applications such as DeTransDraw, a col-
laborative drawing tool that we will describe in Section 8.2.

DeTransDraw has a shared drawing area where users actively make up-
dates and observe the changes made by other users. If two users make mod-
ifications to the same object at the same time, at the end of the their work,
when they decide to commit, only one of them will get her changes com-
mitted, and the other one will loose everything. Because users are working
synchronously, the probability that this happens is much larger than in ap-
plications such as Wikipedia or Sindaca. This is why a pessimistic approach
with eager locking is needed.

We have adapted Paxos to support eager locking adding a notification
mechanism for the registered readers of every shared item. We have im-
plemented this new protocol in Trappist, the transaction layer support of
Beernet, with the possibility of dynamically choosing between the two Paxos
protocols. Like that, the application can decide the protocol to be used
depending on the functionality that is provided.

Figure 6.3 depicts the adapted protocol with eager locking. The read-
phase and commit-phase from the original protocol has been replaced by
locking-phase and commit-phase. The read phase disappears because the
transaction manager tries eagerly to get the needed to lock to proceed with
the transaction. Once the locks are collected, the client is informed of the
result. The goal is to prevent users from trying to start working on items
that are already locked. The client of the transaction starts working on the
changes on the items as soon as the transaction begins. Starting to work on
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(a) (b)

Figure 6.4: Notification layer protocol. Peers register to each item by be-
coming readers. Figure (a) shows one notification for the decision if the
transaction is run with Paxos. Figure(b) shows notifications for locking and
decision, if transaction is run with Eager Paxos.

an item is actually the trigger of the transaction.
When the user stops making modifications, it triggers the commit-phase.

The transaction manager can take the decision immediately because the ma-
jority of the votes have been already collected at this stage. The decision
is propagated to the client, the replicated transaction managers and trans-
action participants, as in the original Paxos algorithm. Because there is no
read-phase, it is important that the decision is transmitted to the TPs and
rTMs together with the new state of the item, and not only a commit/abort
message.

6.4 Notification Layer

The modification with eager locking provides notification to the readers every
time an item is locked and updated. Sometimes it is not necessary to get a
notification on locking, and only the update is important. In such case, it is
interesting to have a layer of notification independent of the protocol used
to update the item. This kind of feature is useful to implement applications
such an online score board, where only a few peers modify the state of the
application, and many peers participate as readers. For the readers is not
necessary to get a notification that some value is currently being update.
They just need to get the last value of the item.

The layer consist on a reliable multicast that sends a notification to all
subscribed readers of an item. In order to make the multicast efficient, if the
amount of readers is smaller than log(N), a direct message sending can be
performed. If the amount is larger, the update message can be transmitted
using the multicast layer of the peer-to-peer network.
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6.5 Replica management

During the description of the transactional protocols, we have assumed that
transaction participants are members of the replica set of each item, and
that they are chosen by an underlying layer corresponding to the replica
management. This layer needs to keep a consistent set of replicas even
under churn. Systems such as Scalaris [SSR08] and DKS [Gho06] consider
that the replica layer is completely orthogonal to the transactional layer. We
understand it differently, because we see that restoring a lost replica needs
the transactional support in order to know how to retrieve the latest value
from the surviving replicas.

Let us analyse more deeply replica management. The replica set of each
item is form with f replicas. One of the problems we can encounter is that
f + 1 peers claim to hold a valid replica. There are a couple of things to
consider here. First of all, why is it a problem to have f + 1 replicas? The
problem is that you could potentially have two majorities with respect to f .
In Beernet, as in Scalaris, we take f as an even number. Like that, you will
need f + 2 replicas so as to have two majorities. With f + 1 is not enough
to break majority if f is an even number.

Second question is, how can the system end up having f + 1 replicas?
The first possible cause is lookup inconsistency: two nodes thinking that
they have to store a replica. Reducing the amount of lookup inconsistencies
is a way of addressing this issue, and this is what we do with the Relaxed-
Ring. The second way of having f + 1 replicas is churn. The only problem
actually comes when there is churn affecting the responsibility of one of the
transaction participants. In that case, following the more detail description
of Paxos consensus algorithm [MH07], the items involved in the transaction
are actually locked, and they are not transfered to the new responsible until
the transaction has finished.

One suggestion to avoid two majorities of replicas is to add group man-
agement to the replica sets. This idea can become too expensive to imple-
ment and maintain because there is a replica set per each stored item. It
is true that because of symmetric replication many replica sets overlap, but
there is no guarantee on this property so as to define a cost-efficient group
maintenance. We consider that there is no need for group management on
symmetric replication. Peers do not store references to every peer in the
replica set of every item or replicated item is stored in the peer. It would
be too expensive. This is actually one of the advantages of symmetric repli-
cation: when a peer needs to find the other replicas, it uses the symmetric
function and lookup requests to identify the other members of the set.

Let us consider that there is group management for the replica set in
order to make the replica layer completely orthogonal to the transactional
layer. When there is churn, the peer that takes over a range of responsibility
of one of the members of the replica set, needs to read from the majority
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of the replicas in order to decide the value of the items it is going to host.
Therefore, some transaction is still needed anyway when a new peer “joins
the replica set”. We discuss now two possible ways of getting a new peer
in the replica set: a new peer joins the network, and a peer fails and it is
replace by the recovery mechanism.

6.5.1 New peer joins the network

Symmetric replication was introduced in [Gho06], without discussing any
transactional support. To maintain the replica set, the new joining peer
should ask its successor for the values of the items its storing. Note that
the new peer replace its successor as member of the replica set of a certain
amount of items. Asking the successor is fine, but it has the problem that
relies on the fact that all replicas are up to date. Of course, if the successor
does not have the latest value, it does not introduce real problems because it
would replace a bad replica for another bad replica. Not a good replica for a
bad one. Still, it might be a good idea to retrieve the value of the item from
the replica set in order to replace a bad replica by a good one. However,
performing read from majority every time a new peer joins the network is
expensive.

6.5.2 Failure handling

Whenever there is failure, DKS [Gho06] makes use of the startbulkown oper-
ator which is in charge of finding the owner of a replicated key, and retrieve
the values from that peer. We believe that here we arrive to a similar anal-
ysis of the joining peer: is it enough to retrieve the items from only one
node? In the case of the failure recovery it is more important to read from
the majority, because the recovery node cannot know if the dead peer was
holding the latest value or not. Let us say the replica set is form by peers
a, b, c, d and e, where a, b, and e have the last up to date value of item i.
Therefore, c and d hold and old value of i. Let us suppose now that peer
e dies, and f takes over its responsibility. Peer f reads i from c or d, and
then, the system ends up having a majority c, d and f holding an old value
of i, which is incorrect. This problem can already be improved by choosing
an even amount of replicas, but if the read is done from the majority, it does
not matter if the replication factor is odd or even.

6.6 Trappist

As we have previously mentioned in this chapter, the transactional layer im-
plementing these three protocol is called Trappist, which stands for Trans-
actions over peer-to-peer with isolation, where isolation means that transac-
tions are atomic and with concurrency control. In this section we show how
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to use the transactional support of Beernet, which is implemented with the
Mozart [Moz08] programming system. By describing Trappist’s API, we also
analyse the high level abstractions provided by the system, and how replica
maintenance is hidden from the programmer. We stat by creating a Beernet
peer. Currently, nodes in Beernet are created by default with transactional
support. However, to prevent conflicts with previous versions we explicitly
flag transactions to be included in the following example:

functor
import

Pbeer at ‘Pbeer.ozf’
define

Node = {Pbeer.new args(transactions:true)}
...

The most basic support provided by Beernet corresponds to the DHT
operations put and get. This operations do not replicated the value of the
item, but they are also part of the implementation of the transactional layer
which actually realizes the replication. What follows is an example of how
put and get can be used.

{Node put(key value)}
Value = {Node get(key $)}

To use the transactional layer, the user must write a procedure with one
argument, typically named Obj. This argument represents a transactional
object, which is an instance of the transaction manager that triggers the
transaction. The object receives the operations read and write, which are
almost equivalent to put and get. The main semantic difference between the
operations is that if the transaction is aborted, write has no effect on the
stored data. And if the transaction succeeds, the value is written at least on
the majority of the replicas. Other operations received by the transactional
object are commit and abort, to explicitly trigger those actions on the pro-
tocol. The operation remove is also implemented in order to delete an item
from the DHT.

To run the transaction, user must invoke the method executeTransaction,
which receives three arguments. The procedure containing the operations, a
port to receive the outcome of the transaction, and the protocol to be used
for running the transaction. Note that at the creation of the node, we did
not specify the protocol to be use by every transaction. This is because the
protocol can be chosen dynamically, allowing the users to choose the best
suitable protocol for every functionality. Algorithm 11 is a complete example
for writing two items with key/value pairs: hello/“Charlotte′′ and foo/bar.
The outcome of the transaction appears on variable Stream, which is the
output of port Client. If the outcome of the transaction is commit, it guar-
antees that both items where successfully stored at least in the majority of
the correspondent replicas.
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Algorithm 11 Using transactions with Paxos consensus to write two items

declare
Stream Client
Trans = proc {$ Obj}

{Obj write(hello "Charlotte")}
{Obj write(foo bar)}
{Obj commit}

end
{NewPort Stream Client}
{Node executeTransaction(Trans Client paxos)}
if Stream.1 == commit then

{Browse "transaction succeeded"}
end

To retrieve the values the user passes a variable which has no value yet.
The value is bound by the transactional object. Algorithm 12 shows how to
retrieve the values stored under keys hello and foo.

Note that it is not necessary to catch exceptions using Beernet, because
the outcome is reported on the stream of the client’s port. If there is a failure
on the transaction, the outcome will be abort, and the user will be able to
take the corresponding failure recovery action. If the item is not found, the
variable used to retrieve the value is bound to a failed value. This language
abstraction will raise an exception whenever is used. Like this, exceptions
are triggered in the calling site, and not at any of the peers. Now, to prevent
catching exceptions when using the value, the Mozart programming system
provides boolean checkers to test whether a variable is bound to a failed
value or not.

Algorithm 12 Using transactions with Paxos consensus to read two items

declare
V1 V2
Trans2 = proc {$ Obj}

{Obj read(hello V1)}
{Obj read(foo V2)}

end
{Node executeTransaction(Trans2 Client paxos)}
{Browse "for hello I got"#V1}
{Browse "for foo I got"#V2}
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6.7 Conclusion

In this chapter we have described the transactional protocols that are used
to build Trappist, the transactional layer of Beernet. Trappist is built on
top of the Relaxed-Ring and it uses symmetric replication, however, it is
independent of the overlay graphs and the replication strategy that is in use.
But, it influences how the replication layer handles replica maintenance.
We have reviewed Two-Phase commit, which is one of the most classical
protocols for transactions on distributed systems. We also explained why
2PC is not suitable for peer-to-peer and decentralized applications in general.
By introducing Paxos consensus algorithm we described a solution to the
limitations of 2PC. Paxos introduces replicated transaction managers and
the concept of majority to improve fault-tolerance and still remain efficient.

Apart from the analysis and validation of these protocols, our contri-
bution is the extension of Paxos consensus algorithm by adding an eager
locking protocol, and a notification layer that helps the development of syn-
chronous collaborative applications. During this chapter we also discussed
replica management techniques, and how it is affected by the transaction
layer. We finally described Trappist’s API to analyse its design as high level
abstract to use transactional DHTs.
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Chapter 7
Beernet’s Implementation

Beernet stands for pbeer-to-pbeer network, where words peer and beer are
mixed to emphasise the fact that this is a peer-to-peer network built on
top of a relaxed -ring topology, considering that beers are usually a mean to
achieve relaxation. This chapter describes Beernet’s implementation. We
will review its architecture and design decisions putting more attention to
some of the components. First, we will need to review some general concepts
on concurrent and distributed programming so as to understand the design
decision we have taken. This chapter is written not only in the context of
self-management and decentralized systems, but also with an interest for
programming language abstraction and software engineering.

7.1 Distributed Programming and Partial Failure

The key issue in distributed programming is partial failure. It is what makes
distributed programing different from concurrent programming. This un-
avoidable property causes uncertainty because we cannot know whether a
remote entity is ever going to reply to a message. It is also the reason why
remote procedure call and remote method invocation (RPC and RMI) are
difficult to use. In “A note on Distribution” [WWWK94], four main con-
cerns on distributed programming are discussed: latency, memory access,
concurrency and partial failure. Latency is not a critical problem because
it does not change the semantics of performing an operation on a local or
a distributed entity. It just makes things go a bit slower. Memory access
is solved by using a virtual machine that abstracts the access, and then it
does not change the operational semantics either. A more difficult problem
is concurrency. The middleware has to guarantee exclusive access to the
state in order to avoid race conditions. There are different techniques such
as data-flow, monitors or locks, that makes possible the synchronization be-
tween processes achieving a coherent state. Given that, and even though it

97
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is not trivial to write concurrent programs correctly, it is not a critical prob-
lem either. What really breaks transparency is partial failure. Basically,
distribution transparency works as long as there is no failure.

A partial failure occurs when one component of the distributed system
fails and the others continue working. The failure can involve a process or a
link connecting processes, and the detection of such a failure is a very difficult
task. In distributed environments such as the Internet, it is impossible to
build a perfect failure detector because when a process p stops responding,
another process p′ cannot distinguish if the problem is caused by a failure
on the link connecting process p or the crash of the process p itself. This
explanation might be trivial, but it is usually forgotten. Failures are a reality
on distributed systems, this is why we consider the definition of a distributed
system given by Leslie Lamport very accurate:

“A distributed system is one in which the failure of a computer
you did not even know it existed can render your own computer
unusable”

Even though this definition does not describe the possibilities of a dis-
tributed system, it makes explicit why distributed computing is special. It
is very important to know how the system handles the failure of part of the
system. We have already discussed this concept in the motivation of this
dissertation. We have used the concept along the analysis of the state of the
art, and we have use it in the design of the relaxed-ring and the transactional
layer.

The classical view of distributed computing sees partial failure as an er-
ror. For instance, a remote method invocation (RMI) on a failed object raises
an exception. This approach actually goes against distribution transparency,
as it is explained in [GGV05] because the programmer is not supposed to
make the distinction between a local and a distributed entity. Therefore,
an exception due to a distribution failure is completely unexpected, break-
ing transparency. Another less fundamental issue but still relevant, is that
RMI and RPC are conceived as synchronous communication between dis-
tributed processes. Due to network latency, synchronous communication is
not able to provide good performance because the execution of the program
is suspended until the answer (or an exception) arrives.

New trends in distributed computing, such as ambient intelligence and
peer-to-peer networks, see partial failure as an inherent characteristic of the
system. A disconnection of a process from the system is considered normal
behaviour, where the disconnection could be a gentle leave, a crash of the
process, or a failure on the link. We believe that this approach leads to more
realistic language abstractions to build distributed systems. We believe that
the most convenient mechanism to develop peer-to-peer applications effec-
tively is by using active objects that communicate via asynchronous message
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passing. These active object are very similar to actors [AMST97] . We also
use fault streams per distributed entity in order to perform failure handling.
In this chapter we show that this works better than the usual approach of
using RMI. We define our peers as lightweight actors and we use them to
build a highly dynamic peer-to-peer network that deals well with partial
failure and non-transitive connectivity. Our model is influenced by the pro-
gramming languages Oz [Moz08, VH04] and Erlang [Arm96], and by the
algorithms of the book “Introduction to Reliable Distributed Programming”
[GR06], which we already introduced in Chapter 3 to describe our algorithms
for the Relaxed-Ring. In the following section we describe the model more
in detail, focusing also in their component architecture.

7.2 Event-driven Components

The algorithms for reliable distributed programming presented in [GR06] are
designed in terms of components that communicate through events. Every
component has its own state, which is encapsulated, and every event is han-
dled in a mutually exclusive way. The model avoids shared-state concurrency
because the state of a component is modified by only one event at the time.

Every component provides a specific functionality such as point-to-point
communication, failure detection, best effort broadcast, and so forth. Com-
ponents are organized in layers where the level of the abstraction is organized
bottom-up. A higher-level abstraction requests a functionality from a more
basic component by triggering an event (sending a request). Once the re-
quest is resolved, an indication event is sent back to the abstraction (sending
back a reply). Algorithm 13 is taken from the book, where only the syntax
has been slightly modified. It implements a best-effort broadcast using a
more basic component, (pp2p), which provides a perfect point-to-point link
to communicate with other processes.

Algorithm 13 Best Effort Broadcast
upon event 〈 bebBroadcast | m 〉 do

for all p doother_peers
trigger 〈 pp2pSend | p, m 〉

end
end

upon event 〈 pp2pDeliver | p, m 〉 do
trigger 〈 bebDeliver | p, m 〉

end

The best-effort broadcast (beb) component handles two events: bebBroad-
cast as requested from the upper layer, and pp2pDeliver as an indication com-
ing from the lower layer. Every time a component requests beb to broadcast a
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message m, beb traverses its list of other peers, triggering the pp2pSend event
to send the message m to every peer p. Every p is a remote reference, but it
is the pp2p component which takes care of the distributed communication.
At every receiving peer, the pp2p component triggers pp2pDeliver upon the
reception of a message. When beb handles this event, it triggers bebDeliver
to the upper layer, as seen in Algorithm 13. It is important to mention
that beb does not have to wait for pp2p every time it triggers pp2pSend,
and that pp2p does not wait for beb or any other component when it triggers
pp2pDeliver. This asynchronous communication between components means
that each component can potentially run in its own independent thread.

Using layers of components allows programmers to deal with issues con-
cerning distribution only at the lowest layers. For instance, the component
beb is conceived only with the goal of providing a broadcast primitive. The
problem of communicating with a remote processes through a point to point
communication channel is solved in pp2p. If a process p crashes while the
message is being sent, it does not affect the code of beb, thus improving the
transparency of the component. There is no need to use something like

try 〈send m to p〉 catch 〈failure〉
It is the responsibility of pp2p to deal with the failure of p. It is also possible
that pp2p triggers the detection of the crash of p to the higher level, and
then it is up to beb to do something with it, for instance, removing p from
the list of other peers to contact. In such a case, the failure of p is consid-
ered as part of the normal behaviour of the system, and not as an exception.
Even though the code for the maintenance of other_peers set is not given
[GR06], we can deduce it from the implementation of the other components.
In Algorithm 14 the register event is a request made from the upper layer,
and crash is an indication coming from the pp2p layer.

Algorithm 14 Best Effort Broadcast extended
upon event 〈 bebRegister | p 〉 do

other_peers := other_peers ∪ {p}
end

upon event 〈 crash | p 〉 do
other_peers := other_peers \ {p}

end

Even though we advocate defining algorithms using event-driven compo-
nents using the approach of [GR06], there are some important drawbacks to
consider. To compose layers, it is necessary to create a channel, connect the
components using the channel, and subscribe them to the events they will
handle. We find this approach a bit over sophisticated. It could be simplified
by talking directly to a component and using a default listener only when
necessary. A related problem concerns the naming convention of events. The
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name reflects the component implementing the behaviour, making the code
less composable. For instance, if we want to use a fair-loss point-to-point link
(flp2p) instead of pp2p, we would have to change the beb code by replacing
pp2pSend by flp2pSend, and instead of handling pp2pDeliver we would have
to handle flp2pDeliver.

Since the architecture considers components and channels, an alternative
and equivalent approach would be to use objects with explicit triggering of
events as method invocation, instead of using anonymous channels. Using
objects as collaborators, they could be replaced without problems as long
as they implement the same interface. In such an approach, both flp2p and
pp2p would handle the event send and trigger deliver.

The other problem of [GR06] is that there is no explanation of how to
transfer a message from one process to the other. The more basic component
flp2p is only specified in terms of the properties it holds, but it is not im-
plemented. There is no language abstraction to send a message to a remote
entity.

7.3 Event-driven Actors

As we have previously mentioned during this dissertation, we have imple-
mented Beernet in Mozart/Oz [Moz08]. Mozart is an implementation of the
Oz language, which is a multi-paradigm programming language supporting
functional, concurrent, object-oriented, logic and constraint programming
paradigms [VH04]. It offers support for distributed programming with a
high degree of transparency. Thanks to the multi-paradigm support of Oz,
we were able use more convenient language abstractions for distribution and
local computing while building Beernet. In this section we discuss the ba-
sic language abstractions that we considered appropriate and necessary to
implement event-driven components. In addition, we discuss the abstrac-
tions that allowed us to improve the approach towards an event-driven actor
model, that we also call active objects.

7.3.1 Threads and data-flow variables

One of the strengths of the Oz language is its concurrency model which is
easily extended to distribution. The kernel language is based on procedural
statements and single-assignment variables. When a variable is declared, it
has no value yet, and when it is bound to a value, it cannot change the value.
Attempting to perform an operation that needs the value of such a variable
will wait if the variable has no value yet. In a single-threaded program, that
situation will block forever. In a multi-threaded program, such a variable
is very useful to synchronize threads. We call it a data-flow variable. Oz
provides lightweight threads running inside one operating system process
with a fair thread scheduler.
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The code in Algorithm 15 shows a very simple example of data-flow
synchronization. First, we declare variables Foo and Bar in the main thread
of execution. Then, a new thread is created to bind variable Bar depending
on the value of Foo. Since the value of Foo is unknown, the ‘+’ operation
waits. A second thread is created which binds variable Foo to an integer. At
this point, the first thread can continue its execution because the value of
Foo is known.

Algorithm 15 Threads and data-flow synchronization

declare Foo Bar
thread Bar = Foo + 1 end
thread Foo = 42 end

This synchronization mechanism does not need any lock, monitor, or
semaphore, because there is no explicit state, and therefore, no risk for race
conditions. The values of Foo and Bar will be the same for all possible
execution orders of the threads. Single-assignment variables are also used
in languages such as E [MTSL05] and AmbientTalk [DVM+06, VMG+07],
where they are called promises or futures. They are combined with the when
operator as one of the mechanisms for synchronization.

The execution of a concurrent program working only with single-assignment
variables is completely deterministic. While this is an advantage for correct-
ness (race conditions are impossible), it is too restrictive for general-purpose
distributed programming. For instance, it is impossible to implement a server
talking to two different clients. To overcome this limitation, Oz introduces
Ports, which are described in the following section.

7.3.2 Ports and asynchronous send

A port is a language entity that receives messages and serializes them into an
output stream. After creating a port, one variable is bound to the identity
of the port. That variable is used to send asynchronous messages to the
port. A second variable is bound to the stream of the port, and it is used to
read the messages sent to the port. The stream is just like a list in Lisp or
Scheme, a concatenation of a head with a tail, where the tail is another list.
The list terminates in an unbound single-assignment variable. Whenever a
message is sent to the port, this variable is bound to a dotted pair containing
the message and a fresh variable.

Algorithm 16 combines ports with threads. First we declare variables P
and S. Then, variable P is bound to a port having S as its receiving stream.
A thread is created with a for-loop that traverses the whole stream S. If
there is no value on the stream, the for-loop simply waits. As soon as a
message arrives on the stream, it is shown on the output console. A second
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thread is created to traverse a list of beers (BeerList, declared somewhere
else), and to send every beer as a message to port P . This is a like a barman
communicating with a client. Everybody who knows P can send a message
to it, as in the third thread, where the list of sandwiches is being traversed
and sent to the same port. Beers will appear on the stream in the same
order they are sent. Beers and sandwiches will be merged in the stream of
the port depending on the order of arrival, so the order is not deterministic
between them.

Algorithm 16 Port and asynchronous message passing

declare P S
P = {NewPort S}
thread

for Msg in S do
{Show Msg}

end
end
thread

for Beer in BeerList do
{Send P Beer}

end
end
thread

for Sdwch in SandwichList do
{Send P Sdwch}

end
end

The send operation is completely asynchronous. It does not have to wait
until the message appears on the stream in order to continue with the next
instruction. The actual message send could therefore take an arbitrary finite
time, making it suitable for distributed communication where latency is an
issue. With the introduction of ports, it is already possible to build a multi-
agent system running in a single process where every agent runs on its own
lightweight thread. The non-determinism introduced with ports allows us to
work with explicit state, and there is no restriction on the communication
between agents.

7.3.3 Going distributed

Event though full distribution transparency is impossible to achieve because
of partial failures, there is some degree of transparency that is feasible and
useful. Ports and asynchronous message passing as they are described in
the previous section can be used transparently in a distributed system. The
semantics of {Send P Msg} is exactly the same if P is a port in the same
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process or in a remote peer. In both cases the operation returns immediately
without waiting until the message is handled by the port. If there is a need
for synchronization, the message can contain an unbound variable as a future.
Then, the sending peer waits for the variable to get a value, which happens
when the receiving peer binds the variable. This implies that the variable,
and whatever is contained in the message, is transparently sent to the other
peer. Variable binding must therefore be transparent.

Algorithm 17 does a ping-pong between two different peers. The first
lines of the code represent peer A who sends a ping message to peer B. The
message contains an unbound variable Ack, which is bound by peer B to the
value pong. Binding variable Ack resumes the Wait operator at peer A. Peer
B, code below peer A and indented at the right, makes a pattern matching
of every received message with pattern ping(A). If that is the case, it binds
A to pong and continues with the next message. The pattern matching is
useful to implement a method dispatcher as we will see in the next section.

Algorithm 17 Ping-Pong

\% at Peer A
declare Ack
{Send PeerB ping(Ack)}
{Wait Ack}
{Show "message received"}

\% at Peer B
for Msg in Stream do

case Msg of ping(A) then
A = pong

end
end

This sort of transparency is not difficult to achieve, except when a partial
failure occurs. An older release of Mozart, version 1.3.0, takes the classical
approach to deal with partial failures: it raises an exception whenever an
operation is attempted on a broken distributed reference. Most program-
ming languages take the same approach. This approach has two important
disadvantages. First of all, it is cumbersome because it is necessary to add
try . . . catch instructions whenever an operation is attempted on a remote
entity. More fundamentally, exceptions break transparency when reusing
code meant for local ports. If a distribution exception is raised, it will not
be caught because the code was not expecting that sort of exception.

AmbientTalk [DVM+06, VMG+07] adopts a better approach. In ambient-
oriented programming, failures due to temporary disconnections are a very
common thing, therefore, no exception is raised if a message is sent to a
disconnected remote reference. The message is kept until the connection is
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restored and the message is resent. Otherwise if the connection cannot be
fixed after a certain time, it will be garbage collected. Failures are also a
common thing in peer-to-peer networks. The normal behaviour of a peer is
to leave the network after some time. Therefore, a partial failure should not
be considered as an exceptional situation.

A more recent Mozart release, version 1.4.0, does not raise exceptions
when distributed references are broken. It simply suspends the operation
until the connection is reestablished or the entity is killed. If the operation
needs the value of the entity, for instance in a binding, the thread blocks
its execution. If a send operation is performed on a broken port, because
of its asynchrony, it still returns immediately, but the actual sending of
the message is suspended until the connection is reestablished. This failure
handling model [CV06, Col07] is based on a fault stream that is attached
to every distributed entity [MCPV05, KMV06]. An entity can be in three
states, ok, tempFail, or permFail. Once it reaches the permanent failure
state, it cannot come back to ok, so the entity can be killed. If the entity is
in temporary failure for too long, it can be explicitly killed by the application
and forced to permFail. To monitor an entity’s fault stream, the idea is to
do it in a different thread that does not block and that can take actions over
the thread blocking on a failed entity.

7.3.4 Actors

The actor model [AMST97] provides a nice way of organizing concurrent
programming, benefiting from encapsulation and polymorphism in analogous
fashion to object-oriented programming. We extend the previous language
abstractions with Oz cells which are containers for mutable state. State is
modified with operator ‘:=’, and it can be read with operator ‘@’. We do
not need to add new language abstractions in order to build our event-driven
actors. Without language support, actors are a programming pattern in Oz
as is shown in Algorithm 18. Having ports, the cell is not strictly neces-
sary but we use it to facilitate state manipulation. Every actor runs in its
own lightweight thread and communicates asynchronously with other actors
through ports. Encapsulation of state is achieved with lexical scoping, and
exclusive access to state to avoid race conditions is guaranteed by handling
only one event/message at a time.

Algorithm 18 is a working implementation of Algorithms 13 and 14 using
the language abstractions we have described in this section. It is written in
Oz without syntactic support for actors but the semantics are equivalent.
The function NewBestEffortBroadcast creates a closure containing the state
of the actor and its behaviour. The state includes a list of OtherPeers and
another actor implementing perfect point-to-point communication, which is
named ComLayer to make explicit that it could be replaced by any actor
that understands event send, and not only pp2p.
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The behaviour is implemented as a set of procedures where the signa-
ture of the event is specified in each procedure’s argument. For instance,
the declaration on code line 9 reads that procedure Receive implements the
behaviour to handle upon event deliver(Src Msg). The variable Listener
represents the actor in the upper layer.

Algorithm 18 Beernet Best Effort Broadcast

fun {NewBestEffortBroadcast Listener}
OtherPeers ComLayer
SelfPort SelfStream
proc {Broadcast broadcast(Msg)}

for Peer in OtherPeers do
{Send ComLayer send(Peer Msg)}

end
end

proc {Receive deliver(Src Msg)}
{Send Listener Msg}

end

proc {Add register(Peer)}
OtherPeers := Peer | @OtherPeers

end

proc {Crash crash(Peer)}
OtherPeers := {Remove Peer @OtherPeers}

end
in

OtherPeers = {NewCell nil}
ComLayer = {NewPP2Point SelfPort}
SelfPort = {NewPort SelfStream}
thread

for M in SelfStream do
case {M.label}
of broadcast then {Broadcast M}
[] deliver then {Receive M}
[] register then {Add M}
[] crash then {Crash M}
end

end
end
SelfPort

end

Variable SelfPort is bound to the port that will receive all messages com-
ing from other actors. A thread is launched to traverse the SelfStream. For
every message that arrives on the stream, pattern matching checks the label



7.4. THE RING AND THE PROBLEMS WITH RMI 107

of the message in order to invoke the corresponding procedure. This part
of the code represents the method dispatching of the actor. In the Beernet
implementation, the creation of the port and the method dispatching are
modularized to avoid code duplication, thus reducing the code size of every
actor.

The book [GR06] contains complementary material including a Java im-
plementation of the beb component. Discarding comments and import lines,
the implementation takes 67 lines of code, with the component infrastructure
already abstracted. It is worth mentioning that a large number of lines are
dedicated to catch exceptions. Equivalent functionality within the Beernet
actor model takes only 33 lines.

7.4 The Ring and the Problems with RMI

The architecture of Beernet is based on layers that abstract the different
concepts involved in the construction of the peer-to-peer network. A closely
related work is the Kompics component framework [AH08], which follows
the component-channel approach of [GR06] using a similar architecture. The
main difference with Beernet is that instead of having components that com-
municate through channels, we decided to use event-driven actors. We will
describe more in detail Beernet’s architecture in section 7.6. In this section
we give more details about the lower layer concerning the overlay mainte-
nance, so as to spot the differences between the Relaxed-Ring and the Chord
ring [SMK+01]. This last one being the starting point of many other SONs.

In previous chapters we have explained how a ring-based DHT works.
As a summary, peers are organized clockwise in a ring according to their
identifiers, forming a circular address space of N hash keys. Every peer joins
the network with an identifier. The identifier is used to find the correct
predecessor and successor in the ring. When peer q joins in between peers p
and s, it means that p < q < s following the ring clockwise. Peer s accepts
q as predecessor because it has a better key than p. Another reason to
be a better predecessor, is that the current predecessor is detected to have
crashed. Hence, the maintenance of the ring involves join and crash events,
and it must be handled locally by every peer in a decentralized way.

In order to keep the ring up to date, Chord performs a periodic sta-
bilization that consists in verifying each successor’s predecessor. From the
viewpoint of the peer performing the stabilization, if the predecessor of my
successor has an identifier between my successor and myself, it means that
it is a better successor for me and my successor pointer must be updated.
Then, I notify my successor. Algorithm 19 is taken from Chord [SMK+01].
Only the syntax is adapted. The big problem with this algorithm is the
instruction

x := successor.predecessor
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Asking for successor’s predecessor is done using RMI. This means that the
whole execution of the component waits until the RMI is resolved. There
is no conflict resolution if successor is dead or dies while the RMI is taking
place. If there is a partial failure, the algorithm is simply broken.

Algorithm 19 Chord’s periodic stabilization
upon event 〈 stabilize | 〉 do

x := successor.predecessor
if x ∈ (self, successor) then

successor := x
end
successor.notify(self)

end
upon event 〈 notify | src 〉 do

if predecessor is nil or src ∈ (predecessor, self) then
predecessor := src

end
end

An improved version of the stabilization protocol is given in Algorithm
20 using event-driven actors. The representation of a peer is a data structure
having Peer.id as the integer identifying the peer, and Peer.port as the remote
reference, being actually an Oz port. The ‘.’ is not an operator over an actor
or an object. It is just an access to a local data structure. The ‘. . . ’ in the
algorithm hide the state declaration and the method dispatcher loop. The
‘<’ operator defines the order in the circular address space. We use it here
for simplicity without changing the semantics of the algorithm.

Stabilization starts by sending a message to the successor with an un-
bound variable X to examine its predecessor. The peer then launches a
thread to wait for the variable to have a value, and once the binding is
resolved, it sends a message to itself to verify the value of the predeces-
sor. This pattern is equivalent to the when abstraction in E [MTSL05] and
AmbientTalk [VMG+07]. By launching the thread, the peer can continue
handling other events without having to wait for the answer of the remote
peer. If the remote peer crashes, the Wait will simply block forever without
affecting the rest of the computation. When the Wait continues, the peer
sends a message to itself in order to serialize the access to the state with the
handling of other messages. Otherwise there would be a race condition.

Beernet uses a different strategy for ring maintenance as it was explained
in Chapter 3. Instead of running a periodic stabilization, it uses a strategy
called correction-on-change. Peers react immediately when they suspect an-
other peer to have failed. The failed peer is removed from the routing table,
and if it happens to be the successor, the peer must contact the next peer
in order to fix the ring. To contact the next successor, every peer manages



7.4. THE RING AND THE PROBLEMS WITH RMI 109

Algorithm 20 Chord’s improved periodic stabilization

fun {NewChordPeer Listener}
...
proc {Stab stabilize}

X
in

{Send Succ.port getPredecessor(X))}
thread

{Wait X}
{Send Self.port verifySucc(X)}

thread
end
proc {Verify verifySucc(X)}

if Self.id < X.id < Succ.id then
Succ := X

end
{Send Succ.port notify(Self))}

end
proc {GetPred getPredecessor(X)}

X = Pred
end
proc {Notify notify(Src)}

if Pred == nil orelse Pred.id < Src.id < Self.id then
Pred := Src

end
end
...

end
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a successor list, which is constantly updated every time a new peer join or
if there is a failure.

Algorithm 21 presents part of a PBeer actor, which is a Beernet peer.
The algorithm has been already presented in Chapter 3 as language inde-
pendent. In this section we presented how it is really implemented. Failure
recovery works as follows: when peer P fails, a low-level actor running a
failure detector triggers the crash(P ) event to the upper layer, where PBeer
handles it. PBeer adds the crashed peer to the crashed set and removes it
from its successor list. If the crashed peer is the current successor, then the
first node from the successor list is chosen as the new successor. A notify
message is sent to the new successor. When a node is notified by its new
predecessor, it behaves as a Chord node, but in addition, it replies with the
updSL message containing its successor list. In this way, the successor list is
constantly being maintained.

Algorithm 21 Beernet’s failure recovery

fun {NewPBeer Listener}
...
proc {Crash crash(Peer)}

Crashed := Peer | @Crashed
SuccList := {Remove Peer @SuccList}
if P == @Succ then

Succ := {GetFirst SuccList}
{Send Succ.port notify(Self)}

end
end
proc {Notify notify(Src)}

if {Member Pred @Crashed}
orelse Pred.id < Src.id < Self.id then

Pred := Src
end
{Send Src.port updSL(Self @SuccList)}

end
...

end

7.5 Fault streams for failure handling

As described at the end of subsection 7.3.3, we use a fault stream associ-
ated to every distributed entity in order to handle failures. An operation
performed on a broken entity does not raise any exception, but it blocks
until the failure is fixed or the thread is garbage collected. This blocking
behaviour is compatible with asynchronous communication with remote en-
tities. In the fault stream model, presented by Collet et al [CV06, Col07],
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the idea is that the status of a remote entity is monitored in a different
thread. The monitoring thread can take decisions about the broken entity,
in order to terminate the blocking thread. For instance, there are language
abstractions to kill a broken entity so it can be garbage collected.

Algorithm 22 describes how we use the fault stream in the implemen-
tation of Beernet. There is an actor in charge of monitoring distributed
entities called FailureDetector. Upon event monitor(Peer), the actor uses
the system operation GetFaultStream in order to get access to the status of
the remote peer. The fault stream is updated automatically by the Mozart
system, which sends heartbeat messages to the remote entity in order to
determine its state. When the state changes, the new state appears on the
fault stream. If the connection is working, the state is set to ok. If the
remote entity does not acknowledge a heartbeat, it is suspected of having
failed, and therefore, the state is set to tempFail. Since Internet failure de-
tectors cannot be strongly accurate, the state can switch between tempFail
and ok indefinitely. As soon as the state is set to permFail, however, the
entity cannot recover from that state.

If the state is tempFail or permFail, the actor triggers the event crash(Peer)
to the Listener, which represents the upper layer. If the state switches back
to ok, the event alive(Peer) is triggered. It is up to the upper layer to de-
cide what to do with the peer. In the case of Beernet, this is described in
algorithm 21.

Algorithm 22 Fault stream for failure detection

fun {FailureDetector Listener}
...
proc {Monitor monitor(Peer)}

FaultStream = {GetFaultStream Peer}
in

for State in FaultStream do
case State
of tempFail then {Send Listener crash(Peer)}
[] permFail then {Send Listener crash(Peer)}
[] ok then {Send Listener alive(Peer)}
end

end
end
...

end
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7.6 General Architecture

Now that we have reviewed the fundamental concepts that allowed us to
implements our components as event-driven actors, we review the general
architecture of Beernet. In this section we use the words actors and compo-
nent indifferently. We have mentioned that Beernet is globally organized as
a set of layers providing higher level abstract with a bottom-up approach.
Figure 7.1 gives the global picture of how actors are organized.

The bottom layer is the Network component. This actor is composed
by four other actors. The most basic communication is provided by per-
fect point-to-point link (Pp2p link) that simply connects two ports. The
Peer-to-peer link allows a simpler way of sending messages to a peer using
its global representation, instead of extracting the port explicitly every time
a message is to be sent. Peer-to-peer link uses Pp2p link. Network uses
two failure detectors: one provided by the Mozart, and the other one imple-
mented in Beernet itself. The Mozart failure detector is the one described
in Algorithm 22, taking advantage of the fault-stream of every distributed
entity. Beernet failure detector is built as a self-tunning failure detector that
uses its own protocol to change the frequency and timeout values of the keep
alive messages. Both failure detectors are eventually perfect, meaning that
they are strongly complete, and eventually accurate.

The Relaxed-Ring component uses the Network component to exchange
messages between directly connected peers, and to detect their failures. It
has two main components: the Relaxed-Ring maintenance and the Finger
Table. The relaxed-ring maintenance runs essentially the protocols we have
described in Chapter 3. The finger table is in charge of efficiently rout-
ing messages that are not sent neither to the successor nor the predeces-
sor of a node. The finger table actor can implement several of the routing
strategies we discussed in Chapter 2, as long as it is consistent with the
relaxed-ring topology. For Beernet, we have decided to implement fingers
as they are described in Section 3.5, using palta strategy, which combines
DKS [AEABH03] fingers with self-adaptable behaviour to improve efficiency.
This actor is also in charge of monitoring the messages in order to provide
correction-on-use of the routing table. Algorithm 23 shows that when a mes-
sage arrives to the relaxed-ring maintenance, it first verify is the message is
for the self node, for any of branches (backward) or for its successor. If none
of the cases is valid, it delegates the event to the FingerTable component.

The reliable message-sending layer is implemented on top of the relaxed-
ring maintenance. This layer includes the basic services Realiable Send, Mul-
ticast and Broadcast. Each of them is running on its own actor, but they can
collaborate if necessary, as the relaxed-ring maintenance collaborate with the
finger table. The basic DHT with its put and get operations is implemented
on top of the messaging services.

In Beernet, we have decided to implement the transactional layer, Trap-
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Figure 7.1: Beernet’s actor architecture. Every component run on its own
lightweight thread and they all communicate asynchronously through mes-
sage passing.
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Algorithm 23 Messages in the relaxed-ring maintenance component are
routed to direct neighbours or delegated to the Finger Table

proc {Route Event}
route(msg:Msg src:_ target:Target ...) = Event

in
if {BelongsTo Target @Pred.id @SelfRef.id} then
%% This message is for me
{Send Self Msg}

elseif {HasFeature Event last} andthen Event.last then
%% Backward to the branches
{Backward Event Target}

elseif {BelongsTo Event.src.id @SelfRef.id @Succ.id} then
%% I think my successor is the responsible
{Send @Succ {Record.adjoinAt Event last true}}

else
%% Forward the message using the Finger table
{Send @FingerTable Event}

end
end

pist, having the replication layer as part of the Trappist component. This
is a major difference with Scalaris [SSR08], because they present their ar-
chitecture having replication and transaction as two independent layers. We
claim that replication needs the transactional mechanism in order to restore
replicas in case of failures. Let us suppose a set of six replicas i, j, k, l,m and
n. where the majority i, j, k and l, holds the latest value of the replicated
item. If k fails and it is replaced by k′, how does k′ knows from where to read
in order to restore the replica? If it only reads from m or n, the majority is
broken. If it reads from all replica set is doing unnecessary work, because it
only needs to read from the majority. Having the knowledge of the protocol
that is used to manage the replica is the best option to keep replica mainte-
nance efficient. That is why in Beernet the replica maintenance also belongs
to the transactional layer instead of being an independent component.

There are still some orthogonal components within the replica manage-
ment that can be changed by equivalent ones. For instance, we have chosen
to work with Symmetric replication instead of successor list replication, or
leaf set replication. To reach the replicas, the transactional layer will use the
Bulk operations [Gho06] which can be written for any replication strategy.

The Trappist layer includes three different protocols to provide transac-
tional support: Paxos Consensus, Eager Paxos Consensus and Two-Phase
Commit. The three of them are explained in detail in Chapter 6. Two-phase
commit is not included in Figure 7.1 because its used is not recommended
for building applications. We have implemented it for purely academic pur-
poses. These protocols are enriched by a Notification Layer component that
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contributes to develop more synchronous collaborative applications.

7.7 Discussion

One of the principles we respect in this paper is to avoid shared-state concur-
rency. We achieve this by encapsulating state, by doing asynchronous com-
munication between threads and processes, by using single-assignment vari-
ables for data-flow synchronization, and by serializing event handling with a
stream (queue) providing exclusive access to the state. The language prim-
itives of lightweight threads and ports are also present in Erlang [Arm96],
and they are not specific to object-oriented programming. Single-assignment
variables also appear in E [MTSL05] and AmbientTalk [VMG+07] in the form
of promises, and they are meant for synchronization of remote processes in-
stead of lightweight threads.

The actor model presented here through programming patterns is further
developed and supported by E and AmbientTalk. There is one important
difference related to the use of lightweight threads. Since they are not sup-
ported by these two languages, there is basically only one actor running
per process. The actor collaborates with a set of passive objects within the
same process. Communication with local objects is done with synchronous
method invocation. Communication with other actors, and therefore with
remote references, is done with asynchronous message passing. This dis-
tinction reduces transparency for the programmer because it establishes two
types of objects: local and distributed.

In Beernet, we organize the system in terms of actors only, making no
distinction in the send operation between a local and a remote port. Trans-
parency is respected by not raising an exception when a remote reference
is broken. There is only one kind of entity, an actor, and only one send
operation.

As mentioned in the previous section, Kompics [AH08] is closely related
because it is also a component framework conceived for the implementation
of peer-to-peer networks. Instead of using actors for composition, it uses
event-driven components which communicate through channels, analogous
to events in [GR06].

7.8 Conclusion

We have presented examples in this chapter to highlight the importance of
partial failure in distributed programming. The fact that failures cannot be
avoided has a direct impact on the goal of transparent distribution which
cannot be fully achieved. Therefore, it has also an impact on remote method
invocation, the most common language abstraction to work with distributed
objects. Because of partial failure, it is very difficult to make RMI work
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correctly. In other words, RMI is considered harmful. Therefore, we have
implemented Beernet where communication between processes and compo-
nents is done with asynchronous message passing.

Even though full transparency in distributed programming cannot be
achieved, it is important to provide some degree of transparency. We have
shown how port references and the send operation can be used transparently.
This is because send works asynchronously and because a broken distributed
reference does not raise an exception in Mozart 1.4.0. Instead, a fault stream
associated to every remote entity provides monitoring facilities.

We have also described the language abstractions we use to implement
Beernet. We have chosen an actor model based on lightweight threads, ports,
asynchronous message passing, single-assignment variables and lexical scop-
ing. We have reviewed the general structured of Beernet and we have shown
how components interact with each other.



Chapter 8
Applications

This chapter describe four applications designed and implemented using
Beernet: Sindaca, DeTransDraw, a decentralized wiki and twitbeer. The
first one, Sindaca, uses intensively the transactional DHT layer Trappist.
DeTransDraw benefits from the Eager locking protocol in order to provide
synchronized collaboration. The other two applications are designed and
developed by other researchers and by students. We present them here to
show the impact of the contribution of this dissertation.

8.1 Sindaca

This section presents the design and functionality of our community-driven
recommendation system named Sindaca, which stands for Sharing Idols N
Discussing About Common Addictions. The name spots the main function-
ality of this application which is making recommendations on music, videos,
text and other cultural expressions. It is not designed for file sharing to
avoid legal issues with copyright. It allows users to provide links to official
sources of titles. Users get notifications about new suggestions, and they can
vote on the suggestions to express their preferences. It is expected that users
built communities based on their common taste. The system is implemented
on top of Beernet [Pro09], presented in Chapter 7. The data of the system
is symmetrically replicated on the network using the transactional layer for
decentralized storage management, Trappist, presented in Chapter 6.

We have implemented a web interface to have access to Sindaca. All
requests done through the web interface are transmitted to a peer in the
network which triggers the corresponding operations on the peer-to-peer net-
work. The results are transmitted back to the web server, which presents
the information in HTML format as in any web page. Using a web interface
to transmit information between the end user and the peer-to-peer network
has been used previously in different projects. A very related one is the
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peer-to-peer version of the Wikipedia using Scalaris [PRS07, SSR08]. We
have extended this architecture with a notification layer which allows eager
information updates. This layer is also used in the DeTransDraw applica-
tion, as we will see in section 8.2. However, this eager notification feature is
not provided on the web interface.

To generalize the similitudes and differences between Sindaca and the
above mentioned applications, we can say the following: the Wikipedia on
Scalaris uses optimistic transactions using the Paxos consensus algorithm.
DeTransDraw uses pessimistic eager-locking transactions using Paxos con-
sensus algorithm with a notification layer. Sindaca is a combination of theses
strategies. It uses optimistic transactions with Paxos extended with the no-
tification layer, both implemented in Trappist.

Sindaca is available for demo testing at url:
http://beernet.info.ucl.ac.be/sindaca

Use the following login information to enter the system:

• Username: fbrood

• Password: sindaca

Any modifications done by the tester user will be stored in the network,
but they are not persistent to the reinitialization of the network. In case of
problems during the test, please check contact information on the web page.

Figure 8.1 shows Sindaca’s welcome page with the sign in form on the
left of the page, together with the menu. The screenshot shows user fbrood
logging in.

8.1.1 After sign-in and voting

If username and password are successfully provided, the user is taken to the
profile page where information about the recommendations stored in the sys-
tem is displayed. Figure 8.2 is a screenshot of the web page displayed after
user fbrood has signed in. There is a welcome message both on the menu and
on the center of the content. What follows is a list of recommendations sug-
gested by members of the Sindaca community. This recommendation could
have been made by other members or by the user itself. The recommenda-
tion is composed by a title, the name of the artist, and a link where the title
can be found. As mentioned before, Sindaca does not provide storage for
content preventing legal issues with copyright.

The listed recommendations are only those that has not received a vote
from the user. A radiobutton is provided to express the preference which
goes from no good to good. We have actually chosen a scale from No beer
to Beer. The votes are submitted to the network when the user press the
Vote button. Once the voting submission is sent, a transaction is triggered
to modify the item that stores the recommendation. There are more items
involved in this transaction, but the details will be explained in section 8.1.3.
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Figure 8.1: Sindaca’s welcome page with sign in form.

Figure 8.2: After sign in, users can vote for suggested recommendations.
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Figure 8.3: Adding a new recommendation.

8.1.2 Making a recommendation

The form to add a new recommendation is presented in the same page where
the recommendations to be voted are displayed. The form can be seen in
Figure 8.3 where the data for a new recommendation is already completed.
The user must fill in the title, author, and link to the title. Once the data
is submitted by clicking the button Recommend, a new item will be created
in the network storing the recommendation. This item will be associated to
the user that creates it.

Every user has a list of recommendations she has made. This list is
displayed in the same profile page, below the form for adding new recom-
mendations. Therefore, the full profile page displays from top to bottom:
welcome message, list of recommendations to be voted, form to add a new
recommendation, and the list of recommendations already made by the user.
Figure 8.4 shows how the last list is presented. Apart from the above men-
tioned fields, namely title, artist and link, the information contains two other
fields being part of the state of every recommendation: the amount of votes,
and the average score of the title. The screenshot we display in Figure 8.4
was taken after the addition of the recommendation made in Figure 8.3. For
that item we can observe that no vote is registered, and therefore there is no
average score either.
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Figure 8.4: State of recommendations proposed by the user.

8.1.3 Design and Implementation

In the previous sections we described the functionalities of Sindaca, and we
briefly introduced the effects of every action in the storage of the network.
This section is dedicated to explain more about the details on the design and
implementation of Sindaca.

First of all, it is important to remark that Sindaca is not implemented
on top of a database supporting SQL queries. Sindaca is implemented on
top of a transactional distributed hash table with symmetrically replicated
state. Therefore, the basic unit for storage is the key-value pair, which is
what it is called item. The information of every user is stored as one item.
The value of such item is a record with the basic information: user’s id,
username and password. We have chosen a very minimal record to build the
prototype, but the value can potentially store any data such as user’s real
name, contact information, age, description, etc. The key of the item is an
Oz name [Moz08], which is unique and unforgeable, acting as a capability
reference [MS03]. This strategy provides us certain level of security, because
only programs that are able to map usernames with their capability can have
access to the key, and therefore, access to the item. The username-capability
mapping is only available to programs holding the corresponding capability
to the mapping table.

The functionality of adding a new recommendation, shown in Figure 8.3,
makes it clear that a recommendation belongs to a user. Therefore, every
user item contains a list of capabilities which are references to recommen-
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Figure 8.5: Sindaca’s relational model.

dations. The functionality of voting also implies that every user item holds
a list of capability references to votes. The relational model is described
in Figure 8.5. We observe that a user can have multiple recommendations
and multiple votes. What it is also stored in user’s item is the list of rec-
ommendations already voted. That list will allows us to filter all other
recommendations, presenting to the user only those she still have to vote.

From the relational model we can also observe that every recommen-
dation has a list of votes associated to it. Every vote contains information
about the score, the user who made the vote, and the voted recommendation.
What it is not shown in the relational model is how to find all the items on
the network. There are two other items which store the list of all user’s keys
and all recommendation keys. Every time a new user or recommendation is
created, these global items are modified. There is no global item for votes,
because votes are accessible through the users and the recommendations.

Creating a user Code 24 shows the transaction to create a user. First of
all, it is necessary to read the list of users to verify that the new username
is not already in use. This is done by reading the item under key users,
and verifying if Username is a member of it. In such case, the transaction
is aborted with the operation {Obj abort}. If the transaction continues,
we read the item nextUser to get a user identifier. Then, we create a new
item with the capability key UserCap. The value of the new item is a record
with the fields we described above, and which follows the relational model
on Figure 8.5. Afterwards, the value of the nextUser item is incremented,
and the item with the list of users is also updated.
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As we can observe, this transaction consists of six different access to the
hast table, which include adding a new item, and modifying two existing
ones. It is very important that all writes done to the hash table are commit-
ted, and therefore the cost of performing a transaction pays off. Even though
the operation seems complicated from the point of view of distribution, we
can observe that it looks only as a combination of read/write operations that
could actually be local ones.

Algorithm 24 Creating a new user.

proc {CreateUser Obj}
Users UserId UserCap

in
UserCap = {NewName}
{Obj read(users Users)}
if {IsMember Username Users} then

UsernameInUse = true
{Obj abort}

else
{Obj read(nextUser UserId)}
{Obj write(UserCap user(username:Username

id:UserId
passwd:Passwd
cap:UserCap
recommed:nil
votes:nil
voted:nil))}

{Obj write(nextUser UserId+1)}
{Obj write(users {AddMember Users Username UserCap})}
{Obj commit}

end
end

Committing a vote The most complex transaction is triggered with the
voting functionality, and we will explain it using the implementation code
as guide. The PutVote transaction that performs the needed read/write
operations is shown in Code 25. First of all, it is necessary to know the
capabilities to access the user that is voting, and the recommendation that
is being voted. These are the variables UserCap and RecommCap, which belong
to the scope of PutVote. Another variable that belongs to the scope is Vote,
which contains the value of the vote. A new vote item is created with the
correspondent vote capability VoteCap. This item connects the vote with
the user and the recommendation. Then, the item of the voting user is
modified in two fields: the list of voted recommendations is increased with
the capability of the voted recommendation, and, the capability of the newly
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created vote is added to the list of votes of the user. Three fields of the voted
recommendation are affected. The created vote is added to its list of votes,
and the vote counter is increased by one. The score average is recomputed
taking the new vote into account. Here it is even clearer to observe the
sequence of read/write operations performed in the transaction. This is
because there is no condition to write the new values, as in Code 24. It is
important to clarify that the external functions Record.adjoin, NewScore
and InsertRecomm, do not perform any distributed operation. They are just
for manipulating values and data structures.

Algorithm 25 Committing a vote on a recommendation

proc {PutVote Obj}
User Recomm VoteCap

in
VoteCap = {NewName}
{Obj write(VoteCap vote(score:Vote

recomm:RecommCap
user:UserCap))}

{Obj read(RecommCap Recomm)}
{Obj write(RecommCap {Record.adjoin Recomm

recomm(score:{NewScore Recomm Vote}
nvotes:Recomm.nvotes+1.0
votes:VoteCap|Recomm.votes)})}

{Obj read(UserCap User)}
{Obj write(UserCap {Record.adjoin User

user(votes:VoteCap|User.votes
voted:{InsertRecomm Recomm.id

RecommCap
User.voted}

)})}
{Obj commit}

end

Create a recommendation We have seen already in the example of vot-
ing that each recommendation is stored in an item having a capability as key.
This capability is also used in the users item to identify the recommenda-
tions associated to a user. Therefore, to create a new recommendation, the
application needs to create a new item for it, increment the global counter of
recommendations, and add it to the list of recommendations of the user who
created it. We will not include the code sample of putting a recommendation
because it follows the pattern described by the previous two examples, and
it does not contribute anything new to the understanding of the ease of use
of Beernet and its Trappist layer for transactional DHT.



8.1. SINDACA 125

Jalisco transactions The code samples presented in Codes 24 and 25
represent single transactions that will be given to a peer to run it on the
network. The outcome of the transaction, either abort or commit, will be
sent to a port where the application will decide the next step. When the
transaction to create new users aborts because the username is already in
use, the application will need to request the new user to choose a different
username before attempting to run a new transaction. In the case of creating
new recommendation and voting, getting abort as outcome of the transaction
only means that there where some conflicting concurrent transactions that
committed first. In such case, the transaction can be retried without any
modification until it is committed. To simplify the process of retrying, we
have implemented the procedure Jalisco, which comes from the Mexican
expression “Jalisco never loses” (Jalisco nunca pierde). This procedure will
simply retry a transaction until it is committed. The code is shown in
Code 26.

Algorithm 26 Jalisco transaction retries a transaction until it is committed

fun {Jalisco Trans}
P S
proc {InsistingLoop S}

{ThePbeer executeTransaction(Trans P paxos)}
case S
of abort|T then

{InsistingLoop T}
[] commit|_ then

commit
end

end
in

{NewPort S P}
{InsistingLoop S}

end

The function creates a port to receive the outcome of the transaction.
The InsistingLoop executes the transaction on the peer ThePbeer, and it
waits on the stream of the port to check the outcome of the transaction. If
it is abort, it just continues with the loop. If it is commit, it simply return
that the transaction has committed.

8.1.4 Configuration

The current version of Sindaca available for demo testing is configured with
a peer-to-peer network of 42 nodes. All of the nodes are currently running on
the server hosting Beernet’s web page. The current state of development is a
proof of concepts. We are planing to deploy the service on different machines.
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Some initial information is stored in the network in order to bootstrap the
network and run the test. This information includes the creation of user
fbrood, which is available for testing. We have successfully run the service
for several weeks allowing other users in our department to test the function-
alities of the system by providing their own recommendations and voting on
the recommendations of other users. The data provided by the testers is not
persistent to the failure of the system. Unfortunately, if the network needs
to be restarted, the data provided by the testers is lost.

To transmit the information from the web interface to the network, we
have a running Mozart [Moz08] process that listens to the Apache [The09a]-
PHP [The09c] service which is reading web requests. This Mozart process
connects to a peer in the network in order to trigger the corresponding
transaction. The implementation of the peer-to-peer network is done with
P2PS/Beernet rev396 [Pro09] or later, which is available for downloading on
Beernet’s web site, under the download section.

8.2 DeTransDraw

DeTransDraw is a decentralized collaborative vector-based graphical edi-
tor with a shared drawing area. It provides synchronous collaboration be-
tween users with graphical support for notifications about other users’ ac-
tivities. Conflict resolution is achieved with a decentralized transactional
service with storage replication, and self-management replication for fault-
tolerance. The transactional service also allows the application to prevent
performance degradation due to network latency, which is an important fea-
ture for synchronous collaboration.

8.2.1 TransDraw

DeTransDraw is a redesign of TransDraw [Gro98], a collaborative draw-
ing tool based on a client-server architecture. We first describe Trans-
Draw to identify its advantages and weakness, and then we explain how
DeTransDraw can overcome the problems of its centralized predecessor.
TransDraw has a shared drawing area where all users has access to all figures
of the drawing. The main contribution of TransDraw is the introduction of
transactions to manage conflict resolution between users, and to reduce the
problems of network latency. The goal is that a user can manipulate the
figures immediately, without waiting for the confirmation of a distributed
operation. The transaction manager will solve the conflicts afterwards. A
transaction is done in two steps: getting the lock and committing. When
the user starts modifying one or more figures it request the corresponding
locks. When the user finishes the updates, it performs a commit of the
transaction with the new value. However, it is possible that the user loses
its modification is another user concurrently modify the figure first.
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(a) (b)

Figure 8.6: Transdraw coordination protocol. In (a) client 1 contacts the
server to get the lock and update a figure. Client 2 does another update
afterwards. In (b) client 2 get a rejection to its first attempt of acquiring the
lock. When figure’s lock is released, the client succeeds getting the lock.

Figure 8.6(a) describes the protocol where successful modifications done
by two users. Users are represented by client 1 and client 2, which are
connected to the Server. The server stores the full state of the drawing, and
manage the locks of every figure. The server is also the transaction manager
of all transactions triggered by the users. The protocol shows that client 1
starts to work on an object of the drawing and it request its lock. Since the
lock is not already taken, the Server grants it with a confirm message. We
can see the bar representing the work of client 1. While the bar is gray,
it is modifying the figure without knowing of the lock will be granted. The
work-bar becomes green when confirmation arrives, and it is finished when
modifications are done, which results in triggering a commit message to the
server, including the new value of the drawing object. Note that this message
also means that locks are released. Two notifications are sent from Server
to client 2: locked and update. The locked message prevent client 2
from modifying that particular object. This is what the red bar represents.
Was the new value is committed, the update also reaches client 2 allowing
it for requesting the lock, as it is done as its next step. This new lock is now
informed to client 1.

Figure 8.6(b) shows the same protocol, with the addition of a failed
request from client 2 to acquire the same locked obtained by client 1.
What we observe is that client 2 begins to work on the drawing object
resulting on requesting the lock. Its work-bar turns from gray to red when
the notification of the locked granted to client 1 arrives. If the notifica-
tion would have not been sent, the rejection notification would have had
the same effect. In this case we see that client 2 has lost some of its
work. Note that it is better to be notified earlier, because in other case the
transaction would have failed at the end, when all the work was done. This
is the main difference between asynchronous and synchronous collaboration.
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Asynchronous communication can take an optimistic approach, whereas syn-
chronous collaboration work better with a pessimistic approach, because it is
more likely to have a conflict with another user. TransDraw actually merges
optimistic and pessimistic approaches. It is optimistic because users can
start working immediately even if they do not get the lock. This is essen-
tially to minimize problems associated with latency. And it is pessimistic
because it first tries to get the locks, and then it tries to commit. This is to
provide a better collaboration between synchronous participants.

8.2.2 TransDraw weakness

Due to its centralized architecture, TransDraw’s main weakness is its single
point of failure. The server holds the whole state of the application. Other
problems are congestion and scalability. Both of them having the same
source we just mentioned. The server is the only transaction manager, and
therefore, it is a bottle-neck for all the traffic between users. It is a single
point of congestion and it does not scale beyond the capacity of the server.

A disputable issue concerns distributed locks. We will not discuss in
details how these problems are solved, but we will briefly describe some
possibilities to overcome the issues with locks. First of all, the application
has decided to keep strong consistency on the state of the drawing, so it is
very difficult to come up with a lock-free design. For the case that a client
holds a lock for too lock, there is a protocol to explicitly request the client
to release the lock. In case the client fails without releasing the lock, the
transaction manager can release the lock based on failure detection or time-
leasing, to prevent problems with false suspicions of failures. In conclusion,
there are workarounds to minimize the problems with distributed locks, but
the main issue with TransDraw is scalability and fault-tolerance. This is why
a decentralized approach appears as the way to go.

8.2.3 Decentralized TransDraw

We have already discussed the main features and weakness of TransDraw.
The aim of DeTransDraw is to provide the same functionality but it removes
the server from the design, building the application on top of a peer-to-peer
network, making the system fully decentralized. Each transaction runs with
its own transaction manager, and the state of the application is spread across
the network being symmetrically replicated. This provides not only load
balancing but also scalable and fault tolerance.

DeTransDraw is implemented on top of Beernet, and it uses the eager
paxos consensus algorithm provided by the transaction layer Trappist. Since
Beernet provides a DHT, the drawing information has to be stored in form
of items. Each drawing object is an item where its identifier is the key, and
the value corresponds to the position, shape, colour, and other properties
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Figure 8.7: DeTransDraw coordination protocol. It combines optimistic and
pessimistic approach, using Trappist’s eager locking Paxos and the notifica-
tion layer to propagate the information to the registered readers.

of the figure. The application has been implemented in our research group,
being Jérémie Melchior the main developer.

Figure 8.7 shows the protocol we described for TransDraw in Section 8.2.1,
but the client contacts a transaction manager (TM) instead of a server. In
other words, the server is replaced by the peer-to-peer network. The pro-
tocol is an instance of Eager Paxos consensus algorithm, as it is described
in Section 6.3, combined with the notification layer that communicates with
the readers. In this case, the readers are all the other users of DeTransDraw.
We can observe that the client performs the same operations as in the pro-
tocol of Figure 8.6 but with some different names. Requesting the lock is
actually begin transaction. Confirmation of acquiring the locks is locked
granted. The commit message is the same in both cases. As we mentioned
already, the TM is different for every transaction, and the set of replicated
TMs is chosen with the same strategy as symmetric replication. The key to
generate the replica set is the one of the TM. The transaction participants
(TPs) are all the peers storing a replica of the drawing objects involved in
the transaction. Therefore, two concurrent transactions modifying disjoint
sets of drawing objects could have completely different sets of TM, rTMs
and TPs.

We discuss now the graphical user interface of DeTransDraw. Figure 8.8
shows the drawing editor being run by a client. The editor consists of three
parts: the canvas, which is the shared drawing area, the toolbar, and the
status bar. The state of these last two parts are different on every user de-
pending on their actions. In the toolbar, button SEL stands for the selection
of an object. Multiple object selection is done by holding the Shift key while



130 CHAPTER 8. APPLICATIONS

Figure 8.8: DeTransDraw graphical user interface.

selecting the objects. The buttons rect and oval allows the user to draw
rectangles and ovals. These are the only figures provided on the first version
of DeTransDraw. The two colored buttons represent, from top to bottom,
the color of the object and its border. The status bar notifies the user of
the action he is currently doing. In the case of the example, the user has
clicked on the oval button, so it can draw a yellow oval with black border,
as it is described by the coloured buttons. If the user is in selection mode,
he is able to select either rectangles or ovals. A selected object appears with
eight dots surrounding the object, as it will shown on Figure 8.9.

Figure 8.9 shows how the action of selecting drawing objects change
the state of the network. The figure shows four application windows. The
window at the top left corner is a screenshot of PEPINO [GMV07], an ap-
plication that monitors the network and shows it state. In this case, the
network is composed by 17 peers. The other three windows are instances of
DeTransDraw which are connected to the network. Looking at the tool bars,
we can deduce that the user at the top right corner draw the yellow oval,
the user at the bottom left draw the blue square, and the highlighted user
at the bottom right corner draw the large blue-gray rectangle. This high-
lighted user has selected the two ovals acquiring the correspondent locks.
We observe in PEPINO some peers in blue, and some other in cyan. The
peers in blue are the transaction participants which are currently locked.
They are the replicas storing the state of the two ovals. Peers in cyan are
the replicated transaction manager, being the peer in green the transaction
manager for this operation. The other users do not see the modification of
the position of the figures, because the other user has not committed yet its
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Figure 8.9: Locking phase in Detransdraw. The user with highlighted win-
dow has selected two figures to move them on the drawing. Blue peers on
the ring show where are the locked replicas.
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Figure 8.10: Commit phase in DeTransDraw. The user commits the changes,
the new state is propagated to the other users, and locks are released.

modification.
We observe in Figure 8.10 that locks are released, and the new state of

the ovals is replicated. All three instances of DeTransDraw observe the new
state and the small black dots of selection disappear from the ovals that were
modified. Looking at the network, there are no more blue peers, meaning
that locks are released, but there still remains the information about the
transaction manager and some of its replicas.

The software still needs more development to become a real drawing tool,
but it is well advanced as a proof of concepts concerning its decentralized
behaviour. It provides the same advantages as TransDraw minimizing the
impact of network latency, allowing collaborative work with conflict resolu-
tion achieved with transactional protocols. It does not have any single point
of congestion or failure, because every transaction has its own transaction
manager, with a set of replicated transaction managers symmetrically dis-
tributed through the network. State is also decentralized on the DHT, hav-
ing each item symmetrically replicated. Each transaction guarantees atomic
updates of the majority of the replicas.

Instructions to download, install and run DeTransDraw can be found
on the web site http://beernet.info.ucl.ac.be/detransadraw. There is
also a work in progress version for Android mobile devices that soon will
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be availale. Currently, mobile phones can only connect to existing peer-to-
peer networks, run the GUI client and use an existing peer to transmit the
messages to the network. The mobile phone is no yet a peer on its own
because of performance issues. The development of the graphics has to be
done in Java, and therefore, interacting Java with Mozart-Oz makes the
application a bit slow. These implememtation problems are only associated
to the graphical part, and they do not represent a problem at the level of
peer-to-peer protocols.

8.3 Other applications

We present in this section two other applications implemented by other peo-
ple using Beernet and the relaxed-ring. One is a student project, and the
other one is an attempt to decentralize Twitter so as to not depend on the
availability of their servers. These applications help us to show the impact
of the contribution of this work.

8.3.1 Decentralized Wikipedia

Wikipedia [Wik09] is an online encyclopedia written collaboratively by vol-
unteers, reaching currently more than 13 million articles. A large community
of users constantly updates the articles and create new ones. Such sys-
tem can certainly benefit from scalable storage and atomic commit, being a
good case study for self-organizing peer-to-peer networks with transactional
DHT. A fully decentralized Wikipedia [PRS07] was successfully built with
Scalaris [SSR08], which is based on Chord# [SSR07] using a transactional
layer implementing Paxos consensus algorithm [MH07]. We presented the
main characteristics of Chord# in Chapter 2, and we described in detail
Paxos consensus algorithm in Section 6.2. The real Wikipedia runs on a
server farm with a fix amount of nodes, with a centrally-managed database.
The decentralized version allows the network to add more nodes to the sys-
tem when more storage capacity is needed. The stored items are symmetri-
cally replicated, and each transaction runs its own instance of a transaction
manager, preventing the system from having a single point of congestion.

To validate our implementation of the atomic transactional DHT using
Paxos consensus algorithm, which is part of Trappist, running on top of
the Relaxed-Ring, we decided to give the task of implementing a decentral-
ized Wikipedia to the students of the course “Languages and Algorithms
for Distributed Applications” [Van09], given at the Université catholique de
Louvain, as a course for engineering and master students. The students had
two weeks to develop their program having access to Beernet’s API for build-
ing their peer-to-peer network, and for using the transactional layer to store
and retrieve data from the network.



134 CHAPTER 8. APPLICATIONS

Figure 8.11: Users A and B modify different paragraphs of the same doc-
ument. Both can successfully commit their changes because there are no
conflicts.

To store data in a DHT, the information has to be stored as items with a
key-value pair. A paragraph in an article was the granularity used to organize
the information of the wiki. Articles where stored as a list of paragraphs.
Using articles as the minimal granularity would have not been convenient
because users never update more than one article at the time. Therefore,
the transactional layer would have been used to update only an item at the
time, being useful only for managing replica consistency. Furthermore, such
granularity would not allow concurrent user to work on the same article.
Figure 8.11 depicts how using paragraphs as the minimal granularity can be
useful to allow concurrent users updating the same article. On the figure,
both users get a copy of an article composed by three paragraphs. Each
paragraph has its own version, marked as timestamps (ts). User A modifies
paragraph 1 and 3, while user B modifies paragraph 2. When user A com-
mits her changes, the transactional layer guarantees that both paragraph will
be updated, or none of them will. This property is particularly interesting
if we consider that the article could be source code of a program instead.
Allowing only one change could introduce an error in the program. Contin-
uing with the example, since modifications of users A and B do not conflict,
both transactions commit successfully. Consequently, if user B would have
also modified either paragraph 1 or 3, only one of the commits would have
succeeded. It is up to the application to decide how resolve the conflict.

The code samples used in this section are taken and modified from one of
the student projects, which was called WikiPi2Pedia, with permission of the
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authors Alexandre Bultot and Laurent Herbin. Getting a copy of an article
was divided into two transactions. The first one, wrapped inside the function
GetArticle, return the list of keys representing the paragraphs associated to
a given article, see Code 27. The title of the article is given as the key of the
item. The variable Node represents the peer, and the operation performed
is executeTransaction(Trans Client paxos) with the following parame-
ters: Trans is a procedure receiving a transactional object as parameter,
which actually the one over which the operation read is performed. The
global variable Client its a port where the outcome of the transaction, ei-
ther commit or abort, will be sent. The argument paxos is given to chose
the protocol to be used for this transaction.

Algorithm 27 Getting the list of paragraphs keys from an article

fun {GetArticle Title}
Value
Trans = proc {$ Obj}

{Obj read(Title Value)}
end

in
{Node executeTransaction(Trans Client paxos)}
Value

end

The second steps for getting the text of an article is to retrieve the values
of all the paragraphs. This is done in a similar way in Code 28, with the
main difference that many items are read on this transaction. Every resulting
Value from the read operation is added to the list of paragraphs, as it is
shown in the following sample code. The operator ’|’ is used to put the Value
at the head of the existing list of Paragraphs.

Reading an article is divided on these two steps to separate the issue
of knowing is an article exist or not. If the article does not exist, a failed
value will be the result of the transaction. The disadvantage is that the
list of paragraphs can change in between these two steps, and therefore, the
displayed article could miss some recently new paragraphs, or still display
some deleted information. However, the risk that some other user makes
these updates during the session of reading the article is even higher. So the
disadvantage can be neglected.

Code 29 performs several transactions so as to update the article. The
modifications are divided into two list of paragraphs, which are determined
by the application: ToCommit, containing all paragraphs with modifications,
and newly added paragraphs too; ToDelete are obviously the paragraph
that will be deleted. These procedure implies several calls to write and
remove on the transactional object. Calling executeTransaction on the
Node guarantees that all of them will be committed, or the whole update fails.
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Algorithm 28 Get the text from each paragraph

proc {GetPars ParIds}
Paragraphs = {NewCell nil}
Trans = proc {$ Obj}

for K in ParIds do
Value in
{Obj read(K Value)}
Paragraphs := Value|@Paragraphs

end
end

in
{Node executeTransaction(Trans Client paxos)}
@Paragraphs

end

This version is slightly simplified, because adding and removing items has
also implications on the list of paragraphs of the article. The representation
of such list is application dependent, so we will not include it on these code
samples.

As we can see, reading an article and commit the correspondent updates
is fairly simple using the transactional DHT API. As an average, the student
projects were about 600 lines of code, including the graphical interface, and
the code for bootstrapping the peer-to-peer network. The students were not
asked to implemented an HTML interface. Instead, they could implement
a simple GUI using the Mozart programming system [Moz08], to make it
simpler to interact with Beernet. Figure 8.12 is a screenshot of another sub-
mitted project called WikipediOz’s, with permission of the authors Quentin
Pirmez and Laurent Pierson. The figure depicts how the GUI works, and
opposite to Figure 8.11, it represents an example of a failed transaction due
to a conflict on the edition.

The user running the window at the left of the image has modified para-
graph 1 of the article entitled Patagonia1. The user running the window on
the right has also modified paragraph 1 of the same article, in addition to
modifications on paragraph 4. Even without reading the test, we can observe
that paragraphs 1 and 4 are longer on the right side of the screenshot. By
clicking on button Save, the commit transaction is triggered by the user on
the right side, receiving a message Commit successful on green. The user on
the left, executing the transaction afterwards, gets an error message Commit
failed in red. To complete the description of the screenshot, at the bottom
of the window there is a text field that allows searching for articles. The
Search action performs the reading transactions. At the op of the window

1First four paragraphs taken from the Wikipedia http://en.wikipedia.org/wiki/
Patagonia
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Algorithm 29 Committing updates and removing paragraphs

proc {RobustCommit ToCommit ToDelete}
Trans = proc {$ Obj}

for UpdPar in ToCommit do
{Obj write(UpdPar.id UpdPar.text)}

end
for DelPar in @ToDelete do
{Obj remove(DelPar.id DelPar.text)}

end
{Obj commit}

end
in

{Node executeTransaction(Trans Client paxos)}
end

Figure 8.12: The user at the left modifies paragraph 1 of the article, but the
commit fails because the user at the right just committed modifications on
paragraphs 1 and 4. Note that the size of paragraphs 1 and 4 is larger at
the right window.
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Figure 8.13: Twitter’s centralized architecture. If Twitter servers are down,
the services disappears.

there is a button that allows to create new articles.
The feedback from the students helped us to improve our system, and

it confirmed us that the provided API is suitable for other programmers to
develop applications on top of our system. They said that all the complexity
of building the network, routing messages, storing and retrieving data from
the replicas, was well hidden behind the API. Unfortunately, they got the
feeling that their student project did not let them test their skills on dis-
tributed programming for decentralized systems, because they were working
on a higher level. This is of course positive for Beernet as programming
framework, but we need to reconsider the project as an academic activity.

8.3.2 Twitbeer

Twitter [Twi09a] is a very popular service that allows its users to quickly
communicate what they are doing to the rest of the users. The concept
is known as micro-blogging, because messages can not be longer that 140
characters. Whenever a new message is posted, it is delivered to the author’s
subscribers, known as the followers. Therefore, these messages, known as
tweets, are not really meant for establishing one-to-one communication, but
to tell all your friends or followers what are you doing at any time. Author-
follower relationship is mainly based on social connections, and thus, Twitter
is also considered a social network.

Twitter has a well documented API [Twi09b], based on HTML, that has
allowed the development of many applications and means to interact with
Twitter services. Tweets can sent using Twitter’s web form, via SMS using a
regular mobile phone, using a supported instant messaging (IM) applications,
or via third parties applications such as other social networks. Independent
of the way the message is submitted, it has to arrive to Twitter’s servers.
Followers can received tweets from the people they are subscribed to via
the web pages of Twitter, via SMS, reading RSS, or by other application
that interface the services of Twitter. Figure 8.13 shows a very general
architecture about how messages are sent and delivered. The diagram says
nothing about how users are authenticated, and how it delivers the message
to the followers. It only depicts the means of sending and receiving tweets,
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spotting the main issue with the architecture: it is centralized. It highly
relies on the servers of Twitter. If the servers are down, the whole twitter
service is temporary unavailable.

Due to its centralized architecture, Twitter has suffered scalability prob-
lems preventing the service to accept and deliver any tweet returning the er-
ror message: “Too many tweets! Please wait a moment and try again.” This
is known as the “fail whale” error message, which has appeared correlated
with popular technological events such as the “2008 Macworld Conference &
Expo keynote address”. In August 2009, Twitter was down for several hours
due to a denial of service attack. These are real examples that evidence the
problem of centralized architectures. The latest one inspired the develop-
ment of Twitbeer, a twitter service running on top of the relaxed-ring as
a peer-to-peer service. The idea is from Alfredo Cádiz, a researcher of the
Université catholique de Louvain, which was disappointed of not being able
to send tweets to his friends, and he was not able to follow them either.
However, he was able to contact some of them via IM applications such as
Jabber [Jab09], GTalk [Goo09b] and ICQ [Ame09]. They realized that they
could bootstrap a peer-to-peer service with the same capabilities as Twitter,
but without the need for a centralized server.

Twitbeer’s architecture is depicted in Figure 8.14. All nodes in the dia-
gram represent Twitter users. Some of the users are also connected to ICQ,
and some others to Jabber. Not all connection lines are drawn to keep good
visibility of the example. Several nodes form a Twitbeer ring that interface
the original Twitter service. If the Twitter server goes down, the peer-to-
peer service keeps running and users can submit tweets to their followers.
Other peers that are not connected to the ring can establish contact us-
ing their respective IM application. Finally, all nodes become peers of the
Twitbeer network. When the Twitter service is back, Twitbeer’s log can be
resubmitted to keep historical information. Of course, this last feature is
limited by the possibilities offered by Twitter’s API.

Twitbeer will not be implemented directly on top of Beernet. It will use
its own implementation of the relaxed-ring, written in Objective-C [App09b],
which is an object-oriented programming language that uses SmallTalk se-
mantics for C programs. The election of the progrmming language is driven
by the idea of running the relaxed-ring on the OS X iPhone [App09a].

8.4 Conclusion

We have presented four applications on this chapter that make use of Beer-
net, which implements the contributions of this thesis, being the Relaxed-
Ring peer-to-peer network topology, and the transactional layer Trappist.
Sindaca, a community driven recommendation system makes a extensive
use of transactions exploiting mainly the Paxos consensus algorithm. Al-
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Figure 8.14: Twitbeer’s decentralized architecture. Users connected to Twit-
ter have other means to reach other. If Twitter fails, using other services
they can contact with each other and keep on twitting.

most every transaction modify at least three series of items. All information
is stored according to the DHT, and each item is symmetrically replicated.
DeTransDraw is a redesign and implementation of centralized application for
collaborative drawing. Since the collaborative work is done synchronously, it
uses mainly the Eager Paxos protocol to notify all users about changes and
potential changes on the shared area. The application is a combination of
optimistic and pessimistic approach for transactions, and it does not suffer
from the single points of failure or congestion. A version for Android mobile
phones is in progress.

We have also described applications not written or design by the au-
thor to validate Beernet as a programming framework to build decentralize
applications. A minimal version of a Wikipedia has been implemented by
pre-graduate students in only two weeks. Students said that the API was
simple to work with, avoiding the problems to deal with decentralized and
replicated storage. Twitbeer is the design of a project that aims to be an
alternative to the centralized server of Twitter when this one is down.



Chapter 9
Conclusions

We have started this dissertation discussing about the complexity of build-
ing dynamic distributed systems. We have identified important issues in
the foundations of distributed programming such as partial failure and non-
transitive connectivity. We spot the problems of centralized systems which
cannot scale and are very fragile because of their single point of failure. The
thesis of this dissertation is that one way of dealing with the complexity
of such systems is to build them self-managing and decentralized, and that
global state of the system must be replicated across the network.

We review existing solutions with similar goals to our thesis in Chapter 2,
where we identify the advantages and disadvantages of each of them, and
their degree of self-management. In Chapters 3 and 4, we have presented a
novel Relaxed-Ring topology for fault-tolerant and self-organizing peer-to-
peer networks. The topology is derived from the simplification of the join
algorithm requiring the synchronisation of only two peers at each stage. As
a result, the algorithm introduces branches to the ring. These branches can
only be observed in presence of connectivity problems between peers, and
they help the system to work in realistic scenarios. The topology adds some
complexity to the routing algorithm, but it does not degrade the complexity
of its performance. These claims are evaluated and validated in Chapter 5.
We consider the performance degradation a small drawback in comparison
to the gain in fault tolerance and cost-efficiency in ring maintenance.

The topology makes feasible the integration of peers with very poor con-
nectivity. Having a connection to a successor is sufficient to be part of the
network. Leaving the network can be done instantaneously without having
to follow a departure protocol, because the failure-recovery mechanism will
deal with the missing node. The guarantees and limitations of the system are
clearly identified and formally stated providing helpful indications in order
to build fault-tolerant applications on top of this structured overlay network.
The Relaxed-Ring is enhanced with a self-adaptable finger table that is able
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to scale up and down, building a more efficient routing table according to
the size of the network.

The basic DHT provided by the Relaxed-Ring has been improved with
a replication layer built op top of it. The layer is built using symmetric
replication as the strategy to place the items in the network. To guarantee
the consistency and coherence of the replicas, a transactional layer called
Trappist is in charge of providing atomic updates of the items, with the
guarantee that the majority of the replicas store the latest value. Trappist
implements three different transactional protocols, which are described in
Chapter 6. This layer is part of the whole implementation of Beernet, which
provides a self-managing peer-to-peer network with transactional replicated
DHT. The fundamental concepts used on the implementation of Beernet and
its architecture are described in detail in Chapter 7.

To validate the ideas presented in this dissertation, we show in Chapter 8
a set of applications built on top of Beernet. They take advantages of the
different transactional protocols to provide synchronous and asynchronous
collaborative tools. Two of the applications we present in the chapter are
design and implemented by third parties, validating Beernet as programming
framework.
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ABSTRACT
The key issue in distributed programming is partial failure:
how to handle failures of part of the system. This unavoid-
able property causes uncertainty because we cannot know
whether a remote object is ever going to reply to a message.
It is also the reason why RMI/RPC is difficult to use. In
this paper we describe the most convenient object-oriented
mechanism we have found to develop peer-to-peer applica-
tions effectively, namely by using active objects that commu-
nicate via asynchronous message passing and fault streams
for failure handling. We show that this works better than
the usual approach of using RMI to communicate and dis-
tributed exceptions for failure handling. We define our peers
as lightweight actors and we use them to build a highly
dynamic peer-to-peer network that deals well with partial
failure and non-transitive connectivity. We give many code
examples to show the simplicity and naturalness of our ap-
proach.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed Programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent
programming structures

General Terms
Languages, Design

Keywords
actors, message-passing, distributed-programming

1. INTRODUCTION
The goal of distributed computing is to achieve the col-

laboration of a set of different processes. A process is an ab-
straction of an entity that can perform computations. This
entity can be a computer, a processor in a computer, or a
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thread of execution in a processor. In order to achieve the
collaboration of processes, there are several programming
paradigms aiming to help developers to build distributed
systems. One definition of a distributed system is given by
Tanenbaum and van Steen [13]:

“A distributed system is a collection of inde-
pendent computers that appears to its users as a
single coherent system”

This definition suggests using distribution transparency,
where all the effort of distributed programming is moved to
the construction of a middleware that supports the distri-
bution of the programming language entities. But network
and computer failures cause unexpected errors to appear
at higher abstraction levels, which breaks transparency and
complicates programming.

There are four main concerns that make distributed pro-
gramming harder than a sequential program running in a
single process. They are clearly described by Waldo et al. [16],
and they involve latency, memory access, concurrency and
partial failure. Latency is not a critical problem because it
does not change the semantics of performing an operation
on a local or a distributed entity. It just makes things go a
bit slower. Memory access is solved by using a virtual ma-
chine that abstracts the access, and then it does not change
the operational semantics either. A more difficult problem
is concurrency. The middleware has to guarantee exclusive
access to the state in order to avoid race conditions. There
are different techniques such as data-flow, monitors or locks,
that makes possible the synchronization between processes
achieving a coherent state. Given that, and even though it
is not trivial to write concurrent programs correctly, it is not
a critical problem either. What really breaks transparency
is partial failure. Basically, distribution transparency works
as long as there is no failure.

A partial failure occurs when one component of the dis-
tributed system fails and the others continue working. The
failure can involve a process or a link connecting processes,
and the detection of such a failure is a very difficult task. In
distributed environments such as the Internet, it is impossi-
ble to build a perfect failure detector because when a process
p stops responding, another process p′ cannot distinguish if
the problem is caused by a failure on the link connecting
process p or the crash of the process p itself. This expla-
nation might be trivial, but it is usually forgotten. Failures
are a reality on distributed systems. Another definition of a
distributed system is given by Leslie Lamport:

“A distributed system is one in which the fail-



ure of a computer you did not even know it ex-
isted can render your own computer unsuable”

Even though this definition does not describe the possi-
bilities of a distributed system, it makes explicit why dis-
tributed computing is special.

The classical view of distributed computing sees partial
failure as an error. For instance, a remote method invocation
(RMI) on a failed object raises an exception. This approach
actually goes against distribution transparency, because the
programmer is not supposed to make the distinction between
a local and a distributed entity. Therefore, an exception due
to a distribution failure is completely unexpected, breaking
transparency. Another less fundamental issue but still rel-
evant, is that RMI and RPC are conceived as synchronous
communication between distributed processes. Due to net-
work latency, synchronous communication is not able to pro-
vide good performance because the execution of the program
is suspended until the answer (or an exception) arrives.

New trends in distributed computing, such as ambient
intelligence and peer-to-peer networks, see partial failure as
an inherent characteristic of the system. A disconnection of
a process from the system is considered normal behaviour,
where the disconnection could be a gentle leave, a crash of
the process, or a failure on the link. We believe that this
approach leads to more realistic language abstractions to
build distributed systems.

In this paper we discuss the design decisions we have made
to build our peer-to-peer network Beernet [11]. Our ap-
proach is based on asynchronous message passing to commu-
nicate between processes, and on actors [1] as components
to organize every process, providing encapsulated state and
avoiding shared-state concurrency. We discard the use of
RPC or RMI between class-based objects, and we avoid rais-
ing exceptions due to broken distributed entities. We have
made these decisions based on the needs of building Beernet.
We believe that a peer-to-peer network is an interesting case
study for distributed systems, because it is highly dynamic
with respect to connectivity between peers and because it
does not have a central point of control. Both these proper-
ties make the management of the system more complex.

Our model is influenced by the programming languages
Oz [10] and Erlang [3], and by the algorithms of the book“In-
troduction to Reliable Distributed Programming” [7], which
presents an event-driven model that we describe in the fol-
lowing section. Section 3 presents incrementally the lan-
guage abstractions we have used in our approach. Section
4 summarizes the related work discussed along the paper.
Section 5 finishes by recapitulating our main conclusions.

2. EVENT-DRIVEN COMPONENTS
The algorithms for reliable distributed programming pre-

sented in [7] are designed in terms of components that com-
municate through events. Every component has its own
state, which is encapsulated, and every event is handled in
a mutually exclusive way. The model avoids shared-state
concurrency because the state of a component is modified
by only one event at the time.

Every component provides a specific functionality such as
point-to-point communication, failure detection, best effort
broadcast, and so forth. Components are organized in layers
where the level of the abstraction is organized bottom-up. A
higher-level abstraction requests a functionality from a more

basic component by triggering an event (sending a request).
Once the request is resolved, an indication event is sent back
to the abstraction (sending back a reply). Algorithm 1 is
taken from the book, where only the syntax has been slightly
modified. It implements a best-effort broadcast using a more
basic component, (pp2p), which provides a perfect point-to-
point link to communicate with other processes.

Algorithm 1 Best Effort Broadcast

1: upon event 〈 bebBroadcast | m 〉 do
2: for all p in other peers do
3: trigger 〈 pp2pSend | p, m 〉
4: end
5: end

6: upon event 〈 pp2pDeliver | p, m 〉 do
7: trigger 〈 bebDeliver | p, m 〉
8: end

The best-effort broadcast (beb) component handles two
events: bebBroadcast as requested from the upper layer, and
pp2pDeliver as an indication coming from the lower layer.
Every time a component requests beb to broadcast a mes-
sage m, beb traverses its list of other peers, triggering the
pp2pSend event to send the message m to every peer p. Ev-
ery p is a remote reference, but it is the pp2p component
which takes care of the distributed communication. At ev-
ery receiving peer, the pp2p component triggers pp2pDeliver
upon the reception of a message. When beb handles this
event, it triggers bebDeliver to the upper layer, as seen in
Algorithm 1. It is important to mention that beb does not
have to wait for pp2p every time it triggers pp2pSend, and
that pp2p does not wait for beb or any other component
when it triggers pp2pDeliver. This asynchronous communi-
cation between components means that each component can
potentially run in its own independent thread.

Using layers of components allows programmers to deal
with issues concerning distribution only at the lowest lay-
ers. For instance, the component beb is conceived only with
the goal of providing a broadcast primitive. The problem
of communicating with a remote processes through a point
to point communication channel is solved in pp2p. If a pro-
cess p crashes while the message is being sent, it does not
affect the code of beb, thus improving the transparency of
the component. There is no need to use something like

try 〈send m to p〉 catch 〈failure〉
It is the responsibility of pp2p to deal with the failure of p. It
is also possible that pp2p triggers the detection of the crash
of p to the higher level, and then it is up to beb to do some-
thing with it, for instance, removing p from the list of other
peers to contact. In such a case, the failure of p is considered
as part of the normal behaviour of the system, and not as
an exception. Even though the code for the maintenance of
other peers set is not given [7], we can deduce it from the
implementation of the other components. In Algorithm 2
the register event is a request made from the upper layer,
and crash is an indication coming from the pp2p layer.

Even though we advocate defining algorithms using event-
driven components using the approach of [7], there are some
important drawbacks to consider. To compose layers, it is
necessary to create a channel, connect the components us-
ing the channel, and subscribe them to the events they will
handle. We find this approach a bit over sophisticated. It



Algorithm 2 Best Effort Broadcast extended

1: upon event 〈 bebRegister | p 〉 do
2: other peers := other peers ∪ {p}
3: end

4: upon event 〈 crash | p 〉 do
5: other peers := other peers \ {p}
6: end

could be simplified by talking directly to a component and
using a default listener only when necessary. A related prob-
lem concerns the naming convention of events. The name
reflects the component implementing the behaviour, mak-
ing the code less composable. For instance, if we want to
use a fair-loss point-to-point link (flp2p) instead of pp2p, we
would have to change the beb code by replacing pp2pSend
by flp2pSend, and instead of handling pp2pDeliver we would
have to handle flp2pDeliver.

Since the architecture considers components and channels,
an alternative and equivalent approach would be to use ob-
jects with explicit triggering of events as method invocation,
instead of using anonymous channels. Using objects as col-
laborators, they could be replaced without problems as long
as they implement the same interface. In such an approach,
both flp2p and pp2p would handle the event send and trigger
deliver.

The other problem of [7] is that there is no explanation
of how to transfer a message from one process to the other.
The more basic component flp2p is only specified in terms
of the properties it holds, but it is not implemented. There
is no language abstraction to send a message to a remote
entity.

3. BEERNET
Beernet [11] is a library implemented in Mozart/Oz [10]

that provides an API to build peer-to-peer applications.
Mozart is an implementation of the Oz language, which is
a multi-paradigm programming language supporting func-
tional, concurrent, object-oriented, logic and constraint pro-
gramming paradigms [15], and offering support for distributed
programming with a high degree of transparency. Thanks
to the multi-paradigm support of Oz, we were able use more
convenient language abstractions for distribution and local
computing while building Beernet. In this section we discuss
the basic language abstractions that we considered appropri-
ate and necessary to implement event-driven components,
and which abstractions allowed us to improve the approach
towards an event-driven actor model.

The peer-to-peer network built by Beernet uses the relaxed-
ring network topology [8]. It provides a distributed hash ta-
ble (DHT) with replicated storage using distributed transac-
tions to guarantee data consistency. A peer-to-peer network
is a very interesting case study of a distributed system be-
cause it is very dynamic. Peers are constantly joining and
leaving the network, either as graceful leaves or due to fail-
ures. It does not use a central point of control and it can
be run without relying on an existing routing infrastructure
because it provides its own structured overlay network for
message routing. Because of the context, during the rest of
the paper we use the term peer as equivalent to the previ-
ously used process.

3.1 Threads and data-flow variables
One of the strengths of the Oz language is its concurrency

model which is easily extended to distribution. The ker-
nel language is based on procedural statements and single-
assignment variables. When a variable is declared, it has no
value yet, and when it is bound to a value, it cannot change
the value. Attempting to perform an operation that needs
the value of such a variable will wait if the variable has no
value yet. In a single-threaded program, that situation will
block forever. In a multi-threaded program, such a variable
is very useful to synchronize threads. We call it a data-flow
variable. Oz provides lightweight threads running inside one
operating system process with a fair thread scheduler.

The code in algorithm 3 shows a very simple example of
data-flow synchronization. First, we declare variables Foo
and Bar in the main thread of execution. Then, a new thread
is created to bind variable Bar depending on the value of
Foo. Since the value of Foo is unknown, the ‘+’ operation
waits. A second thread is created which binds variable Foo
to an integer. At this point, the first thread can continue its
execution because the value of Foo is known.

Algorithm 3 Threads and data-flow synchronization

1: declare Foo Bar
2: thread Bar = Foo + 1 end
3: thread Foo = 42 end

This synchronization mechanism does not need any lock,
monitor, or semaphore, because there is no explicit state,
and therefore, no risk for race conditions. The values of Foo
and Bar will be the same for all possible execution orders
of the threads. Single-assignment variables are also used in
languages such as E [9] and AmbientTalk [6, 14], where they
are called promises or futures. They are combined with the
when operator as one of the mechanisms for synchronization.

The execution of a concurrent program working only with
single-assignment variables is completely deterministic. While
this is an advantage for correctness (race conditions are im-
possible), it is too restrictive for general-purpose distributed
programming. For instance, it is impossible to implement
a server talking to two different clients. To overcome this
limitation, Oz introduces Ports, which are described in the
following section.

3.2 Ports and asynchronous send
A port is a language entity that receives messages and se-

rializes them into an output stream. After creating a port,
one variable is bound to the identity of the port. That vari-
able is used to send asynchronous messages to the port. A
second variable is bound to the stream of the port, and it is
used to read the messages sent to the port. The stream is
just like a list in Lisp or Scheme, a concatenation of a head
with a tail, where the tail is another list. The list terminates
in an unbound single-assignment variable. Whenever a mes-
sage is sent to the port, this variable is bound to a dotted
pair containing the message and a fresh variable.

Algorithm 4 combines ports with threads. First we de-
clare variables P and S. Then, variable P is bound to a
port having S as its receiving stream. A thread is created
with a for-loop that traverses the whole stream S. If there
is no value on the stream, the for-loop simply waits. As
soon as a message arrives on the stream, it is shown on the
output console. A second thread is created to traverse a list



of beers (BeerList, declared somewhere else), and to send
every beer as a message to port P . This is a like a barman
communicating with a client. Everybody who knows P can
send a message to it, as in the third thread, where the list
of sandwiches is being traversed and sent to the same port.
Beers will appear on the stream in the same order they are
sent. Beers and sandwiches will be merged in the stream of
the port depending on the order of arrival, so the order is
not deterministic between them.

Algorithm 4 Port and asynchronous message passing

1: declare P S
2: P = {NewPort S}
3: thread
4: for Msg in S do {Show Msg} end
5: end
6: thread
7: for Beer in BeerList do {Send P Beer} end
8: end
9: thread

10: for Sdwch in SandwichList do {Send P Sdwch} end
11: end

The send operation is completely asynchronous. It does
not have to wait until the message appears on the stream
in order to continue with the next instruction. The actual
message send could therefore take an arbitrary finite time,
making it suitable for distributed communication where la-
tency is an issue. With the introduction of ports, it is al-
ready possible to build a multi-agent system running in a
single process where every agent runs on its own lightweight
thread. The non-determinism introduced with ports allows
us to work with explicit state, and there is no restriction on
the communication between agents.

3.3 Going distributed
Event though full distribution transparency is impossi-

ble to achieve because of partial failures, there is some de-
gree of transparency that is feasible and useful. Ports and
asynchronous message passing as they are described in the
previous section can be used transparently in a distributed
system. The semantics of {Send P Msg} is exactly the same
if P is a port in the same process or in a remote peer. In
both cases the operation returns immediately without wait-
ing until the message is handled by the port. If there is a
need for synchronization, the message can contain an un-
bound variable as a future. Then, the sending peer waits for
the variable to get a value, which happens when the receiv-
ing peer binds the variable. This implies that the variable,
and whatever is contained in the message, is transparently
sent to the other peer. Variable binding must therefore be
transparent.

Algorithm 5 does a ping-pong between two different peers.
Code lines from 1 to 5 represent peer A who sends a ping
message to peer B. The message contains an unbound vari-
able Ack, which is bound by peer B to the value pong. Bind-
ing variable Ack resumes the Wait operator at peer A. Peer
B, from lines 6 to 10, makes a pattern matching of every
received message with pattern ping(A). If that is the case,
it binds A to pong and continues with the next message.
The pattern matching is useful to implement a method dis-
patcher as we will see in the next section.

This sort of transparency is not difficult to achieve, except

Algorithm 5 Ping-Pong

1: % at Peer A
2: declare Ack
3: {Send PeerB ping(Ack)}
4: {Wait Ack}
5: {Show “message received”}

6: % at Peer B
7: for Msg in Stream do
8: case Msg of ping(A) then
9: A = pong

10: end
11: end

when a partial failure occurs. An older release of Mozart,
version 1.3.0, takes the classical approach to deal with par-
tial failures: it raises an exception whenever an operation is
attempted on a broken distributed reference. Most program-
ming languages take the same approach. This approach has
two important disadvantages. First, it is cumbersome be-
cause it is necessary to add try . . . catch instructions when-
ever an operation is attempted on a remote entity. More
fundamentally, exceptions break transparency when reusing
code meant for local ports. If a distribution exception is
raised, it will not be caught because the code was not ex-
pecting that sort of exception.

AmbientTalk [6, 14] adopts a better approach. In ambient-
oriented programming, failures due to temporary disconnec-
tions are a very common thing, therefore, no exception is
raised if a message is sent to a disconnected remote refer-
ence. The message is kept until the connection is restored
and the message is resent. Otherwise if the connection can-
not be fixed after a certain time, it will be garbage collected.
Failures are also a common thing in peer-to-peer networks.
The normal behaviour of a peer is to leave the network af-
ter some time. Therefore, a partial failure should not be
considered as an exceptional situation.

A more recent Mozart release, version 1.4.0, does not raise
exceptions when distributed references are broken. It simply
suspends the operation until the connection is reestablished
or the entity is killed. If the operation needs the value of the
entity, for instance in a binding, the thread blocks its exe-
cution. If a send operation is performed on a broken port,
because of its asynchrony, it still returns immediately, but
the actual sending of the message is suspended until the con-
nection is reestablished. This failure handling model [5] is
based on a fault stream that is attached to every distributed
entity. An entity can be in three states, ok, tempFail, or
permFail. Once it reaches the permanent failure state, it
cannot come back to ok, so the entity can be killed. If the
entity is in temporary failure for too long, it can be explicitly
killed by the application and forced to permFail. To moni-
tor an entity’s fault stream, the idea is to do it in a different
thread that does not block and that can take actions over
the thread blocking on a failed entity.

3.4 Event-driven Actors
The actor model [1] provides a nice way of organizing

concurrent programming, benefiting from encapsulation and
polymorphism in analogous fashion to object-oriented pro-
gramming. We extend the previous language abstractions
with Oz cells which are containers for mutable state. State



is modified with operator ‘:=’, and it can be read with oper-
ator ‘@’. We do not need to add new language abstractions
in order to build our event-driven actors. Without language
support, actors are a programming pattern in Oz as is shown
in Algorithm 6. Having ports, the cell is not strictly nec-
essary but we use it to facilitate state manipulation. Every
actor runs in its own lightweight thread and communicates
asynchronously with other actors through ports. Encapsu-
lation of state is achieved with lexical scoping, and exclusive
access to state to avoid race conditions is guaranteed by
handling only one event/message at a time.

Algorithm 6 is a working implementation of Algorithms
1 and 2 using the language abstractions we have described
in this section. It is written in Oz without syntactic sup-
port for actors but the semantics are equivalent. The func-
tion NewBestEffortBroadcast creates a closure containing
the state of the actor and its behaviour. The state includes
a list of OtherPeers and another actor implementing perfect
point-to-point communication, which is named ComLayer
to make explicit that it could be replaced by any actor that
understands event send, and not only pp2p.

The behaviour is implemented as a set of procedures where
the signature of the event is specified in each procedure’s ar-
gument. For instance, the declaration on code line 9 reads
that procedure Receive implements the behaviour to han-
dle upon event deliver(Src Msg). The variable Listener
represents the actor in the upper layer.

Algorithm 6 Beernet Best Effort Broadcast

1: fun {NewBestEffortBroadcast Listener}
2: OtherPeers ComLayer
3: SelfPort SelfStream
4: proc {Broadcast broadcast(Msg)}
5: for Peer in OtherPeers do
6: {Send ComLayer send(Peer Msg)}
7: end
8: end
9: proc {Receive deliver(Src Msg)}

10: {Send Listener Msg}
11: end
12: proc {Add register(Peer)}
13: OtherPeers := Peer | @OtherPeers
14: end
15: proc {Crash crash(Peer)}
16: OtherPeers := {Remove Peer @OtherPeers}
17: end
18: in
19: OtherPeers = {NewCell nil}
20: ComLayer = {NewPP2Point SelfPort}
21: SelfPort = {NewPort SelfStream}
22: thread
23: for M in SelfStream do
24: case M.label
25: of broadcast then {Broadcast M}
26: [ ] deliver then {Receive M}
27: [ ] register then {Add M}
28: [ ] crash then {Crash M}
29: end
30: end
31: end
32: SelfPort
33: end

Variable SelfPort is bound to the port that will receive all
messages coming from other actors. A thread is launched to
traverse the SelfStream. For every message that arrives on
the stream, pattern matching checks the label of the mes-
sage in order to invoke the corresponding procedure. This
part of the code represents the method dispatching of the
actor. In the Beernet implementation, the creation of the
port and the method dispatching are modularized to avoid
code duplication, thus reducing the code size of every actor.

The book [7] contains complementary material including
a Java implementation of the beb component. Discarding
comments and import lines, the implementation takes 67
lines of code, with the component infrastructure already ab-
stracted. It is worth mentioning that a large number of lines
are dedicated to catch exceptions. Equivalent functionality
within the Beernet actor model takes only 33 lines.

3.5 Peer-to-peer
The architecture of Beernet is based on layers that ab-

stract the different concepts involved in the construction of
the peer-to-peer network. A closely related work is the Kom-
pics component framework [2], which follows the component-
channel approach of [7] using a similar architecture. The
main difference with Beernet is that instead of having com-
ponents that communicate through channels, we decided to
use event-driven actors.

Beernet is built on top of the relaxed-ring [8], a structured
overlay network providing a distributed hash table (DHT)
as in Chord [12]. In such a network peers are organized into
a ring. Hash keys goes from 0 to N − 1 forming a circular
address space. Every peer joins the network with an iden-
tifier. The identifier is used to find the correct predecessor
and successor in the ring. When peer q joins in between
peers p and s, it means that p < q < s following the ring
clockwise. Peer s accepts q as predecessor because it has
a better key than p. Another reason to be a better prede-
cessor, is that the current predecessor is detected to have
crashed. Hence, the maintenance of the ring involves join
and crash events, and it must be handled locally by every
peer in a decentralized way.

In order to keep the ring up to date, Chord performs a pe-
riodic stabilization that consists in verifying each successor’s
predecessor. From the viewpoint of the peer performing the
stabilization, if the predecessor of my successor has an iden-
tifier between my successor and myself, it means that it is
a better successor for me and my successor pointer must
be updated. Then, I notify my successor. Algorithm 7 is
taken from Chord [12]. Only the syntax is adapted. The
big problem with this algorithm is seen in line 2. Asking
for successor’s predecessor is done using RMI. This means
that the whole execution of the component waits until the
RMI is resolved. There is no conflict resolution if successor
is dead or dies while the RMI is taking place. If there is a
partial failure, the algorithm is broken.

An improved version of the stabilization protocol is given
in Algorithm 8 using event-driven actors. The representa-
tion of a peer is a data structure having Peer.id as the integer
identifying the peer, and Peer.port as the remote reference,
being actually an Oz port. The ‘.’ is not an operator over an
actor or an object. It is just an access to a local data struc-
ture. The ‘. . . ’ in the algorithm hide the state declaration
and the method dispatcher loop. The ‘<’ operator defines
the order in the circular address space. We use it here for



Algorithm 7 Chord’s periodic stabilization

1: upon event 〈 stabilize | 〉 do
2: x := successor.predecessor
3: if x ∈ (self, successor) then
4: successor := x
5: end
6: successor.notify(self)
7: end
8: upon event 〈 notify | src 〉 do
9: if predecessor is nil or src ∈ (predecessor, self) then

10: predecessor := src
11: end
12: end

simplicity without changing the semantics of the algorithm.
Stabilization starts by sending a message to the succes-

sor with an unbound variable X to examine its predecessor.
The peer then launches a thread to wait for the variable to
have a value, and once the binding is resolved, it sends a
message to itself to verify the value of the predecessor. This
pattern is equivalent to the when abstraction in E [9] and
AmbientTalk [14]. By launching the thread, the peer can
continue handling other events without having to wait for
the answer of the remote peer. If the remote peer crashes,
the Wait will simply block forever without affecting the rest
of the computation. When the Wait continues, the peer
sends a message to itself in order to serialize the access to
the state with the handling of other messages. Otherwise
there would be a race condition.

Algorithm 8 Chord’s improved periodic stabilization

1: fun {NewChordPeer Listener}
2: . . .
3: proc {Stab stabilize}
4: X in
5: {Send Succ.port getPredecessor(X))}
6: thread
7: {Wait X}
8: {Send Self.port verifySucc(X)}
9: end

10: end
11: proc {Verify verifySucc(X)}
12: if Self.id < X.id < Succ.id then
13: Succ := X
14: end
15: {Send Succ.port notify(Self))}
16: end
17: proc {GetPred getPredecessor(X)}
18: X = Pred
19: end
20: proc {Notify notify(Src)}
21: if Pred == nil
22: orelse Pred.id < Src.id < Self.id then
23: Pred := Src
24: end
25: end
26: . . .
27: end

Beernet uses a different strategy for ring maintenance. In-
stead of running a periodic stabilization, it uses a strategy
called correction-on-change. Peers react immediately when

they suspect another peer to have failed. The failed peer
is removed from the routing table, and if it happens to be
the successor, the peer must contact the next peer in order
to fix the ring. To contact the next successor, every peer
manages a successor list, which is constantly updated every
time a new peer join or if there is a failure.

Algorithm 9 presents part of a PBeer actor, which is a
Beernet peer. Failure recovery works as follows: when peer
P fails, a low-level actor running a failure detector triggers
the crash(P ) event to the upper layer, where PBeer handles
it. PBeer adds the crashed peer to the crashed set and
removes it from its successor list. If the crashed peer is the
current successor, then the first node from the successor list
is chosen as the new successor. A notify message is sent
to the new successor. When a node is notified by its new
predecessor, it behaves as a Chord node, but in addition, it
replies with the updSL message containing its successor list.
In this way, the successor list is constantly being maintained.

Algorithm 9 Beernet’s failure recovery

1: fun {NewPBeer Listener}
2: . . .
3: proc {Crash crash(Peer)}
4: Crashed := Peer | @Crashed
5: SuccList := {Remove Peer @SuccList}
6: if P == @Succ then
7: Succ := {GetFirst SuccList}
8: {Send Succ.port notify(Self)}
9: end

10: end
11: proc {Notify notify(Src)}
12: if {Member Pred @Crashed}
13: orelse Pred.id < Src.id < Self.id then
14: Pred := Src
15: end
16: {Send Src.port updSL(Self @SuccList)}
17: end
18: . . .
19: end

3.6 Fault streams for failure handling
As described at the end of subsection 3.3, we use a fault

stream associated to every distributed entity in order to han-
dle failures. An operation performed on a broken entity
does not raise any exception, but it blocks until the failure
is fixed or the thread is garbage collected. This blocking
behaviour is compatible with asynchronous communication
with remote entities. In the fault stream model, presented
by Collet et al [5, 4], the idea is that the status of a remote
entity is monitored in a different thread. The monitoring
thread can take decisions about the broken entity, in order
to terminate the blocking thread. For instance, there are
language abstractions to kill a broken entity so it can be
garbage collected.

Algorithm 10 describes how we use the fault stream in the
implementation of Beernet. There is an actor in charge of
monitoring distributed entities called FailureDetector. Upon
event monitor(Peer), the actor uses the system operation
GetFaultStream in order to get access to the status of the
remote peer. The fault stream is updated automatically by
the Mozart system, which sends heartbeat messages to the
remote entity in order to determine its state. When the state



changes, the new state appears on the fault stream. If the
connection is working, the state is set to ok. If the remote
entity does not acknowledge a heartbeat, it is suspected of
having failed, and therefore, the state is set to tempFail.
Since Internet failure detectors cannot be strongly accurate,
the state can switch between tempFail and ok indefinitely.
As soon as the state is set to permFail, however, the entity
cannot recover from that state.

If the state is tempFail or permFail, the actor triggers
the event crash(Peer) to the Listener, which represents the
upper layer. If the state switches back to ok, the event
alive(Peer) is triggered. It is up to the upper layer to decide
what to do with the peer. In the case of Beernet, this is
described in algorithm 9.

Algorithm 10 Fault stream for failure detection

1: fun {FailureDetector Listener}
2: . . .
3: proc {Monitor monitor(Peer)}
4: FaultStream = {GetFaultStream Peer}
5: in
6: for State in FaultStream do
7: case State
8: of tempFail then {Send Listener crash(Peer)}
9: [ ] permFail then {Send Listener crash(Peer)}

10: [ ] ok then {Send Listener alive(Peer)}
11: end
12: end
13: end
14: . . .
15: end

4. DISCUSSION AND RELATED WORK
One of the principles we respect in this paper is to avoid

shared-state concurrency. We achieve this by encapsulat-
ing state, by doing asynchronous communication between
threads and processes, by using single-assignment variables
for data-flow synchronization, and by serializing event han-
dling with a stream (queue) providing exclusive access to
the state. The language primitives of lightweight threads
and ports are also present in Erlang [3], and they are not
specific to object-oriented programming. Single-assignment
variables also appear in E [9] and AmbientTalk [14] in the
form of promises, and they are meant for synchronization of
remote processes instead of lightweight threads.

The actor model presented here through programming
patterns is further developed and supported by E and Ambi-
entTalk. There is one important difference related to the use
of lightweight threads. Since they are not supported by these
two languages, there is basically only one actor running per
process. The actor collaborates with a set of passive objects
within the same process. Communication with local objects
is done with synchronous method invocation. Communica-
tion with other actors, and therefore with remote references,
is done with asynchronous message passing. This distinction
reduces transparency for the programmer because it estab-
lishes two types of objects: local and distributed.

In Beernet, we organize the system in terms of actors only,
making no distinction in the send operation between a local
and a remote port. Transparency is respected by not raising
an exception when a remote reference is broken. There is

only one kind of entity, an actor, and only one send opera-
tion.

As mentioned in the previous section, Kompics [2] is closely
related because it is also a component framework conceived
for the implementation of peer-to-peer networks. Instead
of using actors for composition, it uses event-driven com-
ponents which communicate through channels, analogous to
events in [7].

5. CONCLUSIONS
We have presented examples in this paper to highlight the

importance of partial failure in distributed programming.
The fact that failures cannot be avoided has a direct impact
on the goal of transparent distribution which cannot be fully
achieved. Therefore, it has also an impact on remote method
invocation, the most common language abstraction to work
with distributed objects. Because of partial failure, it is very
difficult to make RMI work correctly. In other words, RMI
is considered harmful. Our position is that communication
within remote processes must be done with asynchronous
message passing.

Even though full transparency cannot be achieved, it is
important to provide some degree of transparency. We have
shown how port references and the send operation can be
used transparently. This is because send works asynchronously
and because a broken distributed reference does not raise an
exception in Mozart 1.4.0. Instead, a fault stream associated
to every remote entity provides monitoring facilities.

We have also described the language abstractions we use
to implement Beernet, a peer-to-peer network with a highly
dynamic interaction between peers. In order to organize
the behaviour of every peer, we have chosen an actor model
based on lightweight threads, ports, asynchronous message
passing, single-assignment variables and lexical scoping. These
language abstractions are very suitable for implementing ac-
tors, and they can be used in other programming paradigms.
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Abstract

Cloud computing has many definitions with different
views within industry and academia, but everybody agrees
on that cloud computing is the way of making possible the
dream of unlimited computing power with high availability.
However, being a cloud computing provider seems to be re-
served to very large companies that can achieve having a
huge data center. The rest of the companies and institutions
have to play the role of cloud users. We propose an archi-
tecture to organize a set of mini-clouds provided by different
institutions, in order to provide a larger cloud that appears
to its users as a single one. Such architecture requires self-
managing behaviour in order to deal with the complexity
of matching cloud users requests with the computing utility
that mini-clouds of institutions can offer.

Index Terms: Self-management, Cloud-computing, Sys-
tem architecture.

1. Introduction

Cloud Computing is an active area in the IT industry
for a couple of years already, calling immediately the at-
tention of the research community thanks to its possibili-
ties and challenges. Projects such as Reservoir [14], Nan-
oDataCenters [10], XtreemOS [18] and OpenNebula [4]
are just examples of the interest of the research commu-
nity. However, defining cloud computing is not that simple,
because there are many interpretations within industry and
academia. Interpretations go from seeing cloud computing
as ubiquitous computing, or that any application provided as
a web service is said to be living in the cloud. Consistently
with Berkeley’s view of Cloud Computing [2], and sharing
some of the conclusions of 2008 LADIS workshop [3], we
see Cloud Computing as the combination of hardware and
software that can provide the illusion of infinite computing
power with high availability.

Large companies provide this illusion of infinite com-
puting power by having real large data centers with soft-
ware capable to provide access on demand to every machine

on the data center. Industrial examples supporting Cloud
Computing are Google AppEngine [6], Amazon Web Ser-
vices [1] and Microsoft Azure [9]. This three companies
follows the architecture described in [2] where the base of
the whole system is such a large company being the cloud
provider. Cloud users are actually smaller companies or in-
stitutions that use the cloud to become Software as a Ser-
vice (SaaS) providers. The end user is actually a SaaS user,
which is indifferent to the fact that a cloud is providing the
computational power of the SaaS.

We assume such architecture for Cloud Computing to
develop our proposal, which focuses on the interaction be-
tween the cloud user and the cloud provider. We delegate
the interaction between SaaS provider and SaaS user to the
design of the SaaS application itself.

When a SaaS provider decides to move its service to
Cloud Computing, it has to deal with the API offered by the
cloud provider. Since every cloud provider has its own API,
it is not trivial to migrate from one cloud provider to another
one. Another limitation we see in Cloud Computing as it is
currently developed, is that only very large companies have
the resources to become cloud providers. Middle to large
companies with their own data center have not enough re-
sources to indefinitely scale up independently. This is not
a problem except when the service experience high peaks
on their demand curve. Most of the time those data cen-
ters remain not far from idle. This is why Cloud Computing
appears as a interesting solution.

Instead of focusing on companies, we consider academic
institutions, such as universities, for our case study. These
institutions usually have clusters and servers that most of
the time are running at a low percentage of their full capac-
ity, but they could run into problems when students generate
a large demand of university’s services. The same situa-
tion can occur to middle size companies. We consider that
these institutions could provide a mini-cloud that alone is
not enough, but that in combination with other mini-clouds
can provide scalable resources on demand. We define a
mini-cloud as a set of computers linked together within an
institution, with the ability to provide services such as web
pages and storage. A mini-cloud can‘ be one or more clus-
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ters, or several computers within the same local area net-
work.

We propose on this work an architecture that combines
several mini-clouds to become a large decentralized cloud
provider. The new cloud is interfaced to the SaaS provider
with a manager layer that transparently handles its resource
demands as if it were a single cloud provider. With respect
to computing power, it is not the goal to provide the same
amount of resources as a large cloud provider, which is pre-
pared to host general-purpose cloud services to many com-
panies using the same data center. The goal is to allow in-
stitutions to share their resources so as to use them when
their demand is higher that what their mini-clouds are able
to handle. As a consequence, the illusion of infinite com-
puting power is given to a certain amount of institutions,
instead of to an unbound amount of SaaS providers. The
difficulty of the approach lies on the management interface,
which has to be able to make the system scale up and down,
depending on the demand of the system. We believe that
scalability can be achieved in two ways: with a hierarchi-
cal and centralized structure being organized by a scheduler
as in grid computing, or with a decentralized peer-to-peer
network that can handle churn and scalable storage.

Scalability is certainly not the only challenge presented
in cloud computing. Avoiding data lock-in is also very im-
portant to allow SaaS providers to migrate from one cloud
provider to another at a low cost. To prevent data lock-in,
and independently of the chosen strategy for organizing the
nodes on the cloud, we identify the need of designing the
management interface layer as a self-managing set of com-
ponents that can follow a plan, but that it is also capable of
self-adapting the plan according to the state of the service.
Components can be reconfigured according to the adapta-
tion plan or they can simply be replaced by other compo-
nents.

In the next section we will present the general architec-
ture to provide Cloud Computing with a set of mini-clouds.
Section 3 discusses our strategy to design the interfacing
layer, and we conclude in Section 4.

2. Cloud Computing with mini-clouds

The most general architecture to represent how Cloud
Computing is provided by large companies, such as Google,
Amazon or Microsoft, is analyzed in [2]. We can observe
that architecture in Figure 1.a. The cloud provider is at
the base of the architecture offering utility computing to the
cloud user. Utility computing can be understood as a cer-
tain amount of resources during a certain amount of time,
for instance, a web server running for one hour, or several
Tera bytes of storage for a certain amount of days. The
cloud user, which is actually a SaaS provider, has a prede-
fined utility computing request, which can vary enormously

depending on its users demands. At the top of the architec-
ture we find the SaaS user which requests services from the
SaaS provider. The service that the SaaS provider offers to
its users is usually presented as a web application.

There are basically two things that are important to the
SaaS provider: get more resources when users’ demand in-
creases more than what the current resources can handle,
and release resources when the SaaS users are not demand-
ing too much from the services. The objective is to max-
imize the quality of the service, and minimize the cost of
utility computing demanded to the cloud provider. The sys-
tem has to be able not only to scale up, but also to scale
down. Idle resources are an unnecessary cost to pay.

The analysis made in [2] identifies 10 challenges on
Cloud Computing. This proposal focuses on three of them:
data lock-in, scalable storage and scaling quickly. We will
discuss the challenges related to scalability in Section 3.
Now we will see how a possible solution to the first chal-
lenge can help us to introduce mini-clouds in the architec-
ture.

2.1. Abstracting the cloud provider

Data lock-in refers to the problem of SaaS providers of
not being able to easily migrate from one cloud provider to
another. This is because there is no common API for dif-
ferent cloud providers, and it is unlikely to expect the main
corporations to agree on something like that. The Reservoir
project [14] introduces a managing layer between the cloud
provider and the cloud user. This layer has its own API to
be used by the SaaS provider. The request for utility com-
puting is managed in this layer which is in charge of using
cloud provider’s API. This adapted architecture is depicted
in Figure 1.b. By abstracting the cloud provider, the appli-
cation runs independently of the cloud provider behind the
interface layer, reducing the problem of data lock-in. The
issue of data lock-in cannot be entirely removed because
it also depends on the functionality that the cloud provider
can offer with its API. Even though, having a layer between
cloud provider and user it is a great advantage.

2.2. Gathering mini-clouds

After abstracting the cloud provider behind the interface
layer, we can replace the base of the architecture with what-
ever is able to provide a similar functionality of a cloud
provider. Our proposal is to gather several mini-clouds
from different institutions willing to collaborate in order to
achieve a large amount of resources that can provide Cloud
Computing to those institutions.

We consider the following scenario to motivate the pos-
sibilities of such system. Our university has a web service
for students and the academic personnel to organize the ma-



Figure 1. a) General Cloud Computing architecture with a single large cloud provider. b) Adding a
managing layer that can interface any single large cloud provider. c) Replace the cloud provider with
many mini-clouds.

terial and projects of every course. Having independent
pages for every course has the inconvenience that each one
of them has different layout scheme, navigation map, and
different support for student collaboration. The web ser-
vice instead, provide a platform to host every course with an
equivalent scheme and functionality, so students can navi-
gate and use it more efficiently. But having one single plat-
form increases a lot the size of the system and the amount
of users. We know that most of the time students make a
light use of the service, but there are very identifiable peaks
of use. For instance, there are more students visiting the
courses at the beginning of the semester, but even more at
the end, during the period of exams. There are small peaks
when the deadline of a project is approaching and many
students want to submit their files at same time. All these
characteristics reflect that our scenario can be seen as reg-
ular web service that needs to optimize its resources to be
able to handle peaks on demand, and to minimize the use
of resources the rest of the time, when the system load is
minimum. We assume that many universities have imple-
mented their own platform to provide an equivalent service
with equivalent characteristics. Since every university has
already acquire the hardware to host these services, each of
them can be considered a mini-cloud with limited capabil-
ities to scale. Therefore, combining these mini-clouds to
emulate a large cloud provider can increase the benefits of
the everyone’s infrastructure.

Figure 1.c depicts our proposal where the cloud provider
is replaced by several mini-clouds. Comparing Figure 1.b
with Figure 1.c we observe that it is indifferent to the SaaS
provider what is providing the utility computing. There-

fore, it is also possible to migrate not only from one cloud
provider to a different one, but also from cloud provider to
mini-clouds and vice-versa, without changing the SaaS ap-
plication.

3. Self-managing interface

As we saw in the previous section, abstracting the cloud
provider with an interface layer reduces the problem of data
lock-in, and it allows us to introduce mini-clouds to behave
as a cloud-provider. The new issue now is to deal with
the higher complexity of designing the management layer
with have to interface different APIs from different cloud
providers or mini clouds. Using mini clouds raises also the
issue of organizing distributed resources. Working with one
single cloud provider is simpler because management can
be done in a centralized manner, and the resources are usu-
ally in the same location, but our challenge is to organize
the set of mini-clouds.

Even though the complexity is increased with the inter-
face layer, it also gives other possibilities, specially with
respect to scalability, which is part of the focus in our re-
search. We have extensively studied structured overlay net-
works in the Selfman project [16], where peer-to-peer net-
works can scale well and quickly. Some of the networks
developed in Selfman, Beernet [13, 8] and Scalaris [15, 12],
provide not only self-organization of peers to deal with
churn, but they also provide self-managing replicated stor-
age. These networks are prepared to deal with unanticipated
churn, because it cannot be known in advance when peers
are going fail, join or leave the network.



Working with the cloud presents an important advantage
with respect to churn. It is the cloud manager who decides
when are the new nodes going to be aggregated, and when
nodes can leave the network in order to released resources.
Failures are obviously still unpredictable, but they can be
more accurately detected, because the available resources
are known in advance. Therefore, building a peer-to-peer
network with cloud resources provides a self-organizing
system with controlled churn, which can help to deal with
the two of the challenges mentioned in [2]: scalable storage
and scaling quickly.

3.1. Three-layer architecture

Due to the complexity of the interface layer, we iden-
tify the need for self-management in the design of it. For
our proposal we use the three-layer architecture presented
in [7], which is an adaptation of [5] applied to software de-
sign.

The architecture is depicted in Figure 2. At the bottom
we find the component control layer, which communicates
directly with cloud resources. This layer consists of com-
ponents in charge of monitoring resources and triggering
actions on them. This layer, and actually the whole archi-
tecture, is full of feedback loops [17] that constantly moni-
tor the mini-clouds, analyze the information and decide on
actions to affect the state of the cloud in order to achieve
predefined goals. If we choose for a peer-to-peer architec-
ture to organize the resources, peers are living on this layer.

The state of components running at the bottom of the ar-
chitecture is reported to the change management layer. The
interaction between these two layers can be seen as a meta
feedback loop. Change management is constantly monitor-
ing the component control to introduce changes whenever
is needed. For instance, if a failure detector seems to trig-
ger false suspicions too often, it could be reconfigured or
replaced by another failure detector.

To analyze the top layer of the architecture we come back
to our scenario of the web service provided by the university
to administrate courses. Having logs of the web service it
is possible to create a predefined plan of requesting and re-
leasing resources from the cloud. This pre-planning would
consider the schedule of the students on a daily basis, and it
would take into account the yearly academic agenda to in-
clude exams periods on the demand of resources. The task
of the goal management layer is to guarantee that the plan
is going to be followed. Since pre-planning cannot be per-
fectly conceived, the layer must constantly monitor the sys-
tem, being able to change the plan to deal with unexpected
demand from the users.

Previous experience on adaptive planning systems gives
us the intuition that the goal-management layer can be con-
ceived with constraint programming. If the layer is to be

Figure 2. Three-layer architecture for a self-
managing interface layer.

applied on a pay-as-you-go scheme, either for commercial
cloud providers or as a strategy for fair use of mini-clouds,
we can imagine many constraints such as the amount of
money that can be spent, the maximum allowed delay to
provide the service, or the resources that can be provided.
Satisfying all these constraints is a constraint satisfaction
problem (CSP). Trying to find an optimum way of satis-
fying such constraints is a constraint optimization prob-
lem (COP). Because our case study involves many entities
that do not have a central point of control or global state,
this lead us to a distributed constraint satisfaction prob-
lem (DCSP) and distributed constraint optimization prob-
lem (DCOP). We believe that DCSP and DCOP are the right
paradigms to address the design of the goal-management
layer on this three layer architecture. Furthermore, the sys-
tem constantly changes the number of participants of the
problem scaling up and down, and therefore, we can model
it as Dynamic DCOP [11].

4. Conclusions

Research interest on cloud computing is constantly
growing with different views within industry and academia.
This work shares the view of a global architecture where
a SaaS provider requests utility computing to a cloud
provider. Such view presents many challenges from which
we focus our proposal on three of them: reduce data lock-
in, provide quick scalability and provide scalable storage.
We start our proposal from the architecture that introduces
a management interface layer between the SaaS provider



and the cloud provider, in order to make the application in-
dependent of the cloud provider. This abstraction allows as
to replace the cloud provider with a set of mini-clouds that
can be provided by different institutions for a global benefit.

To deal with the complexity of the middle layer we take
inspiration from three-layer architecture to provide self-
management. By combining these two ideas we believe
that it is possible to get cloud computing out of mini-
clouds. Since the resources of mini-clouds are distributed,
we identify the need for decentralized management with
self-organization, which can be provided by the inclusion
of structured overlay networks. Our system becomes a
scalable peer-to-peer network with controlled churn. We
also propose the use of constraint programming solvers to
achieve adaptable planning respecting the constraint on re-
source usage and quality of service.
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Abstract

The increment of network bandwidth and computing power has definitely
made an impact on distributed systems which are becoming larger, more
complex and therefore, difficult to manage. Although classical client-server
architecture provides a simple management scheme with centralized control
of the whole system, it does not scale because the server becomes a point of
congestion and a single point of failure. If the server fails, the whole system
collapses.

The key to deal with the complexity of large-scale distributed systems
is to make it decentralized and self-managing. Peer-to-peer networks, and
specially in their form of structured overlays, offer a fully decentralized archi-
tecture which is self-organizing and self-healing. These properties are very
important to build systems that are more complex than file-sharing, which
is currently the most common use of peer-to-peer. Despite the nice design of
many existing structured overlay networks, many of them present problems
when they are implemented in real-case scenarios. The problems arise due
to basic issues in distributed computing such as partial failure, imperfect
failure detection and non-transitive connectivity. This talk is about Beer-
net, a peer-to-peer network based on the relaxed-ring topology that provides
cost-efficient ring maintenance without relying on transitive communication.

Fault-tolerant distributed hash tables requires some replication mecha-
nism so as to deal with the failure of a peer without loosing data. Maintain-
ing the replicas is not just costly but it is also difficult to guarantee their
coherency. Beernet uses a transactional protocol based on Paxos consensus
algorithm over symmetric replication that guarantees that at least the ma-
jority of the replicas is kept coherent. The transactional layer is adapted to
provide synchronous and asynchronous collaboration between peers at the
application level.

∗This research is mainly funded by project SELFMAN (contract number: 034084),
with additional funding by CoreGRID (contract number: 004265).
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ABSTRACT
Wikipedia has been very successful as an open encyclope-
dia which is editable by anybody. However, the anony-
mous nature of Wikipedia means that readers may have
less trust since there is no way of verifying the credibility
of the authors or contributors. We propose to automati-
cally transfer external information about the authors from
outside Wikipedia to Wikipedia pages. This additional in-
formation is meant to enhance the credibility of the content.
For example, it could be the education level, professional ex-
pertise or affiliation of the author. We do this while main-
taining anonymity. In this paper, we present the design and
architecture of such system together with a prototype.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Web-based
services

General Terms
Security, Standardization, Verification

Keywords
Credibility, login, Wikipedia, OpenID, anonymity

1. INTRODUCTION
Wikipedia is perhaps one of the most successful efforts to

create collaborative content. It is an encyclopedia covering
a wide range of knowledge to exploit the “wisdom of the
crowds” and to which anybody can contribute. Arguably,
the success of Wikipedia is due to its open and self-policing
nature. Anonymity is also a key feature – anybody can
create an online persona with an account, or alternatively,
the IP address is used.

One of the criticisms of Wikipedia is that the material is
written by “anonymous strangers of unknown qualifications”

∗This work was supported by SELFMAN (contract: 034084)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’09, October 25-27, 2009, Orlando, Florida, U.S.A.
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[1]. Consider an entry on a technical subject, say a medi-
cal article, one might prefer an article written by a qualified
physician. In this paper, we propose to enhance the credi-
bility of the information contained in Wikipedia.

Consider the following scenario. The ACM maintains a
comprehensive library of computer science publications with
author information. If a contributor to a computer sci-
ence Wikipedia article has credentials such as published in x
ACM conferences and journals or affiliation being MIT, this
information can increase the credibility of an author. We call
such information, credibility information. In Wikipedia, au-
thors are identified by login id or IP address, but as anybody
can make one or more login ids, the login information of an
author does not by itself lend credibility. Rather, we want to
be able to make use of other information from credible and
trusted sources outside Wikipedia to transfer credibility in-
formation into Wikipedia. In the ACM example, anonymity
could be retained while asserting a statement like published
papers in CACM.

Unlike Wikipedia, Google Knol [2] attempts to provide
credibility information. In Knol, the credibility of the arti-
cles is based on the name of the author which can be cer-
tified by credential providers such as credit card companies
or manually by phone. The verification mechanism is pro-
prietary to Knol. Furthermore, it means that the author
cannot be anonymous. Essentially, name verification tells
one that a certain individual with a particular name as cer-
tified by Google contributed the article. However, the name
by itself may not be very credible with the exception of well
known authors. However, ambiguity still exists since sev-
eral individuals could have the same name. For example, a
Wikipedia author with pseudonym Essjay [3] claimed to be
a (bogus) tenured professor who taught theology. Such an
incident could also take place in Knol since a valid real name
does not provide information about expertise or profession
(i.e. professor of theology).

In this paper, we propose a simple extension to Wikipedia
(and MediaWiki) which enhances the information in Wikipe-
dia to make it more credible by automatically using credi-
bility information from trusted third parties. Our extension
maintains the open and anonymous nature of Wikipedia.
We transfer information from trusted third parties and as-
sociate that securely with the text written by the author.
We have implemented a prototype which utilizes the Medi-
aWiki tag extension together with OpenID [4] as either an
authentication or credibility provider although other credi-
bility providers could also be used. Some scenarios where
we can enhance Wiki:



• Verifying the author’s name: A credit card provider
such as Visa can certify that the author is a human and
optionally his/her actual name. This gives a Knol-like
flavor to Wikipedia. It can also help to make it more
difficult for robots to edit Wikipedia.

• Verifying the anonymous membership with an organi-
zation: A provider like ACM can provide university
or expertise credentials for an author without his/her
personal identity.

• Restricting anonymous voting system: A credibility
provider can be used to restrict the voting system in
Wikipedia [5] to from certain voters without disclosing
the name of the voters.

• Other services: can enhance wiki articles by giving
information about the author while preserving the ano-
nymity of the author.

2. DESIGN GOALS
Before discussing the design of the credibility enhance-

ment for Wikipedia, we first give our design objectives:

• Credibility: The purpose of the credibility enhance-
ment is to enable Wikipedia to show some external
trusted information about the authors. Such infor-
mation could be the authors’ real name, professional
affiliations, proof of identity, etc., essentially anything
which can give additional credibility to the text in an
article. This information has to be verified so that
authors cannot easily provide false information. We
also want to avoid an author stealing other author’s
identity to publish/edit pages.

• Anonymity: We want to preserve the capability of
authors to be anonymous if they want to, i.e. we do
not want Knol [2] which requires that the real names
of users be verified. Furthermore, we want to ensure
that users’ private data is not stored in Wikipedia, so
that even if Wikipedia is compromised, users’ private
data will not be exposed.

There is a trade-off between credibility and anonymity.
Authors sometimes want to be anonymous, but that
means their statements/edits may be less credible. Less
credible edits are more likely to be deleted by Wikipedia
administrators. We give the author the freedom of
balancing the trade-off and provide different levels of
credibility information.

• Ease of Use: The enhancement should not make
Wikipedia much harder to use, e.g. forcing authors
to download and run some software on their local ma-
chine is inconvenient and should be avoided.

We remark that the credibility information in our proposal
is independent of reputation. We preserve reputation [6]
on any edits, and, reputation can be linked to the author’s
credibility as well.

3. PROTOCOL DESIGN
The credibility extension involves four components includ-

ing the author which work together as shown in Fig. 1 C1-4.
C1 is the Wikipedia web server with our credibility exten-
sion installed. C2 is the credibility proxy. We suggest it

Wikipedia

extension
with credibility

C1

Credibility Proxy

C2

Author using

web browser
an ordinary

C4

OAuth Providers

OpenID Providers

Credibility Providers

......
C3

Step 1

Step 3
Step 2

Figure 1: Components and work flow of the credi-
bility extension.

be run in a different host to prevent author’s credential be-
ing compromised in case C1 is compromised. The Wikipedia
web server stores a certificate of the proxy so that Wikipedia
can verify signatures generated by the proxy. Note that it
is possible to have more than one proxy, but we use one for
the illustration purpose.

C3 is one or more credibility providers. The credibility
providers give credible information specified by the author to
the credibility proxy. They communicate with the credibility
proxy using the respective supported protocol. For example,
the OpenID protocol needs three-way communication among
the author, OpenID server, and credibility proxy. C4 is the
Wikipedia author using an ordinary web browser.

There are three main steps to get a credible edit in a
Wikipedia page:

• Step 1: acquiring author information
In the case of OpenID [4] or OAuth [7] protocol, this
step involves three-way authentication. After this step,
the credibility proxy should have the author’s informa-
tion. This step can be performed multiple times to get
information from multiple providers.

• Step 2: sign
The author selects the appropriate author information
(see Fig. 2) to be passed to Wikipedia and enters the
text to be published in Wikipedia. The credibility
proxy signs the author’s information together with the
text and generates the signed text, see the screen shot
in Fig. 2.

• Step 3: edit page
The author pastes the signed text to Wikipedia (shown
in Fig. 3). Note that the author does not have to lo-
gin to Wikipedia in order to use the credibility exten-
sion. The signed text can be published elsewhere on
the web and someone else can enter the signed text
into Wikipedia. It can also be copied between pages.

When the edited page is viewed, the credibility extension
verifies that the edit has been signed correctly using the
credibility proxy’s certificate. If the edit is verified, the au-
thor’s information will be displayed — this can be done in
various ways, e.g. as in Fig. 4. Our credibility extension is
compatible with caching which is important for Wikipedia
performance, the signed text does not have to be verified
every time it is viewed.

The trust relationships among the four components are:

• Wikipedia trusts the credibility proxy to sign the cor-
rect information. Wikipedia also trusts that the proxy’s
key is not compromised.



• The authors trust the credibility proxy to only release
information which they authorize. Note that the in-
formation can be filtered by the credibility providers
before it is given to the proxy, so the ideal case is that
the proxy only knows the information to be signed and
released. However, some information such as the user
ID in the OpenID server and user’s IP address are al-
ways known to the proxy.

• The credibility proxy does not have to trust the cred-
ibility providers because the providers’ name will be
shown together with the signed text. We leave the
Wikipedia readers to decide whether to trust the provi-
ders or not but Wikipedia could choose to trust prede-
fined providers so as to be able to conveniently display
them in the Wikipedia article.

• The authors implicitly trust the credibility providers
which are chosen by them.

4. CREDIBLE WIKI PROTOTYPE
We describe a credible wiki prototype to illustrate our

ideas. It consists of a credibility proxy and a MediaWiki
extension. Our prototype employs the OpenID 2.0 frame-
work [8] to communicate between the credibility proxy and
third party credibility providers to share information about
the particular user. However, other protocols could also be
used. The proxy anonymizes the user information selected
by the user and signs it along with the text. Wikipedia only
needs a lightweight extension to check the signature of the
text sent by the proxy. If the signature matches, it will be
published along with the assigned credibility information.
Otherwise no special credibility will be given to the text.

4.1 The Credibility Providers
Credibility providers are the source of the additional in-

formation for the authors to enhance the credibility of their
edits. Recently, http://www.myid.is provides a service to
certify a digital identity online which is similar to what Knol
uses for author name verification. One can imagine a variety
of credibility providers to provide a variety of information
which could include public and private organizations. The
information would be some property associated with the au-
thor such as professional association, real name verification,
geographic location or country, etc.

The credibility provider must have a protocol to share in-
formation to the credibility proxy or any other consumer.
We observed that OpenID [4, 8] and OAuth [7] are the two
most promising open protocols to be used widely for man-
aging the online identity and sharing information.

OpenID provides a decentralized open standard for user
authentication and access control. The user only needs to
setup one digital identity on an OpenID provider to gain
access to other systems. We take advantage of an OpenID
provider not for login but as a way of transferring informa-
tion about a digital identity, so we use an OpenID provider
as a credibility provider.

Our examples with our prototype use a free OpenID provi-
der (myopenid.com) as the credibility provider. Since there
is no particular trust associated with myopenid.com, the in-
formation in the examples is only illustrative.

4.2 The Credibility Proxy

Figure 2: A Proxy for Wikipedia.

Fig. 2 shows our prototype. The service field is filled with
the URL of the credibility provider. The gray area is the user
information retrieved from the OpenID credibility provider.
The text area is the text that will be signed by the proxy to-
gether with selected user information. The example chooses
to include the provider and the full name to be signed with
the text. The result area is the ready to use wiki text that
can be inserted anywhere in a wiki page.

We allow the author to select which information from
credibility providers to be attached. This information should
be thought of as credibility attributes to be attached to the
edit. Wikipedia could have a policy to require certain at-
tributes from trusted credibility providers in order to achieve
a certain category of credibility. For example, to get a cred-
ibility of a “scientist”, the author has to include informa-
tion such as: institution, position, and perhaps information
about publications (as in the ACM example in Sec. 1).

4.3 Wikipedia Extensions
MediaWiki is the software behind Wikipedia. MediaWiki

can be extended using extensions such as tag extensions,
parser functions, special pages, or template extensions. We
implement our credible wiki using a tag extension which we
call the verifier extension.

4.3.1 Wiki Verifier Extension
The text signed by the credibility proxy can be put inside

any page in Wikipedia (as well as outside Wikipedia since
verifying the signature can be easily done with the certificate
of the credibility provider). We created a verifier extension
tag to check that the text and additional attributes inside
the tag have been signed by the proxy.

There are three mandatory items and several optional at-
tributes within the verifier tag extension:

• proxy: the name or the public key of the proxy. Wiki-
pedia will be able to verify the signed text by having



Figure 3: Verifier tag extension for Wiki.

Figure 4: The end result in Wikipedia page.

a list of trusted proxies and their certificates.

• signature: the signature of the text inside the tag.
The signature should match with the digested text de-
crypted using the public key of the proxy.

• text: the text to add or edit.

• optional attributes: such as provider, full name,
country, email, etc. can be included as the attribute of
the verifier tag. Wikipedia then can use the additional
information to display the text.

Fig. 3 shows an example of a verifier extension tag. The
content of the signature attribute contains the signed digest
of the information in the verify tag. If any of the text or
attribute values are changed, the verify tag will treat the
text content as regular text rather than as credible text.

Credible text in a Wikipedia page should be presented
in a way which can show its credibility information. While
there are many ways of doing the presentation, Fig. 4 shows
displaying credible text by graying the background. The
displayed paragraph with grayed background provides the
“context” for the author when editing a paragraph in Wiki.
The idea of a context is to make it harder to abuse the
credible text (i.e. placing the text in different paragraph or
articles that have different context to get different meanings
from the same text).

The display of the text can be improved further with more
credibility information (other than 8 fields in Fig. 2). For
example, a badge-like display can be used to annotate the
text with particular properties to be associated with user
information matching a Wikipedia credibility category, e.g.
“computer scientist”.

The presentation of credible text, shown in Fig. 4, changes
the flow of text, thus it may not be scalable when there
are many small edits, where each sentence in a paragraph

is edited by a different author over time. More sophisti-
cated GUIs can be added to present credible text without
changing the flow, for example using JavaScript to highlight
any credible text upon mouse-over. The credibility provider
logo and other credibility information can be listed after the
main text which is similar to how citations are handled in
Wikipedia.

4.3.2 Wiki Poll Extension
The MediaWiki poll extension [5] can also benefit from the

credibility extension. Currently, the poll extension stores the
IP address and Wikipedia user name pair as the poll account
to vote for the poll. If the user does not have a Wikipedia
account then only the IP address will be used to vote. The
poll doesn’t allow duplicate votes for each poll account.

Credibility allows recording additional information about
the pool participants. Alternatively, we may want to restrict
the participants of the poll by only accepting, for example,
users from a particular country. This can be done by re-
quiring a “country” field from a trusted credibility provider
(other information could be hidden).

5. DISCUSSION
Wikipedia accumulates information through the efforts of

anonymous contributors and volunteers. While this is demo-
cratic, it has a weakness that the information may be per-
ceived as being less credible (regardless of whether or not it
is actually so). Normally, Wikipedia uses external citations
to add credibility to the information entered. However the
citation may either not be available or not easily accessible
(confidential). The text might also simply be just words of
wisdom from an expert author but it is hard to convince the
readers that the text they are reading has a certain quality
as it may lack sufficient citation.

Well known authors usually have credibility information
outside Wikipedia. Our enhancement allows them to trans-
fer the rich information about the author available from the
third party credential provider to Wikipedia. Our enhance-
ment can be seen as a complement to the citation mecha-
nism. It is important to note that, in the process of transfer-
ring the author information, we can maintain the anonymity
of the authors which is consistent with the philosophy of
Wikipedia and serves to protect the authors.

Our credibility mechanism can be used to enhance any
reputation mechanism. It may be also used by administra-
tors to manage edits.
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I. INTRODUCTION

The study of small-world networks (SWN) has become
popular with the growth of the World Wide Web (or simply
Web) and more recently with the rising growth of social
networking sites such as Facebook. The idea of a small world
can be simply described as between any two people there is
only a short chain linking them through their acquaintances.
SWNs was first studied in the pioneering work of Stanley
Milgram [3] who showed experiments forwarding letters that
the length of the chain was between five and six. This is also
popularly known as “six degrees of separation”.

SWNs have been applied in many contexts ranging from
social science, biological science to mathematics and computer
science. SWNs are also particularly relevant to the web. In
the context of this paper, we are interested in SWNs applied
to problems in networking, namely, routing in networks,
particularly in peer-to-peer systems.

The small world phenomena suggest that a graph modeling
a small world should have a small diameter. Furthermore,
SWNs are not just a random graph but they have structure.
A well studied model of a SWN is the one proposed by Watts
and Strogatz [2]. We will abbreviate the Watts and Strogatz
model as WS-SWN. WS-SWN has the virtue of simplicity,
while capturing structure in various networks and possessing
low diameter and has been shown to capture the structure real
small-world networks.

SWNs have been used in large scale self-management
systems for example as an alternative to structured overlay
networks because of their routability and flexibility. They have
been used to balance load [6], reduce maintenance cost of the
network [9], and efficiently disseminating data [8], [7]. When
the SWN is used as an overlay network, navigability becomes
an important issue.

It is usual to consider a network to be navigable if there
is a routing algorithm where the (expected) routing length
has a polylogarithmic bound (in the number of nodes). In
addition, the routing algorithm should not need to know global
information about the whole graph (a decentralized routing
algorithm).

The most popular SWN models are those based on the
Kleinberg model because of their navigability. However, it
may not be the best model to represent a self managing social

network since a social network typically has more localized
links, i.e. a high clustering coefficient. WS-SWN gives a better
fit to small networks arising from social networks as it has
parameters to adjust the clustering coefficient and the average
shortest path length.

In this position paper, we revisit the question of navigability
in WS-SWN. Firstly, the WS-SWN makes it easy to construct
SWNs with different amounts of clustering making it a useful
model for real SWNs. Secondly, WS-SWN is not navigable
using pure greedy routing. Our initial experiments suggest that
by considering other routing algorithms, WS-SWN may be
navigable. It is at least more navigable than might be expected.

II. BACKGROUND

Watts and Strogatz proposed a method to generate a graph
with small world-like properties: large mean clustering co-
efficient and small mean shortest path length. The cluster-
ing coefficient measures the level of clustering among the
neighborhood of a node. The larger the coefficient, the higher
the clustering. Let ki be the degree of node i, and ei be
the number of edges among the nodes directly connected to
node i. The clustering coefficient Ci of node i is defined
as Ci = 2ei/ki(ki − 1). Since ei is never larger than
ki(ki − 1)/2, the clustering coefficient is a fraction between
0 and 1 (when the neighborhood forms a clique, we get the
maximum clustering coefficient of 1).

We briefly describe WS-SWN here. Given three parameters:
n, k and p, where 1 � ln(n) � k � n and 0 ≤ p ≤ 1, the
algorithm constructs an undirected graph of n nodes with aver-
age degree k. First, construct a ring of n nodes, each connected
to k neighbors, k/2 on each side. Next, for each edge, rewire
it with probability p. Rewiring is done by replacing the edge
with an edge uniformly randomly distributed in the graph.

Kleinberg proposed another SWN model. We give a 1-D
example. First, construct a ring of n nodes, each connected
to its two neighbors. These edges are called base connections.
Next, for each node, randomly add q edges to another node
where the length of the edge follows power-law distribution
so that there are more shorter edges than longer edges. These
edges are called long links.

Kleinberg shows that this network model is navigable using
greedy routing, and the expected routing distance (number
of hops) is O(log2n). The greedy routing algorithm simply



chooses the neighbor which has the smallest lattice distance
to the destination as the next hop. Because of the base
connection, a node with smaller lattice distance can always
be found and the algorithm always terminates. The Kleinberg
result also shows that WS-SWN is not navigable using greedy
routing.

III. IMPROVING LOCAL ROUTING ALGORITHMS ON
WS-SWN

We will consider algorithms which are not strictly greedy
routing but can still be considered as local routing algorithms
which are greedy-routing like. The motivation is to get better
navigability in WS-SWN. We investigate a NoN-Greedy [4]
routing strategy. In NoN-Greedy routing, each node knows
the link information of its neighbors (1-lookahead). With
more (but still local) information, the idea is that the routing
algorithm can be better guided towards the target and avoid
wrong decisions which make lead to backtracking.

Fig. 1 illustrates the problem with greedy routing on WS-
SWN. The graph generated using the WS-SWN procedure has
p = 0.1, n = 1000, and k = 10. The source node is the green
square with one circle. The target node is the blue square
with two concentric circles. As the routing starts from the
source, it quickly approaches the target node region in few
hops. However, greedy routing has difficulty routing to the
target node although it’s very close. This is because only some
particular “gateway” nodes can lead to the target node, and it
is hard for the greedy routing to find them. In this example,
greedy routing fails after taking more than 100 hops.

The insight in this paper is that an improved routing
algorithm which still works as a local algorithm makes it
easier to find the “gateway”. Fig. 2 shows exactly same graph
as in Fig. 1 but with a different route. Each node has link
information contained in its neighborhood (1-lookahead). The
cyan squares denotes nodes which are one step away from
the target (the neighborhood of the target) while the magenta
squares denotes 2 steps away from the target (the 1-lookahead
neighborhood of the target). Here, we can see that if the
routing lands on one of the cyan or magenta nodes, it can
reach the target immediately if the additional neighborhood
information is available. In the figure we see that the last
2 hops to the target are guided by the 1-lookahead by first
visiting the magenta square which then guides the routing to
the cyan square and then directly to the target node.

1-lookahead dramatically increases the likelihood of the
greedy routing to find the target node. Without 1-lookahead
guidance, the route took more than 100 hops. Using 1-
lookahead, the routing completes in 13 hops. As we shall see
later, adding more edges also helps in widen the gates thus
making the greedy routing less likely to be stuck in a dead-
end.

IV. PRELIMINARY RESULTS

We now present some preliminary routing experiments on
WS-SWN graphs. All the experiments are run using 105 nodes
and p = 0.1.

A. The Effect of Lookahead on WS-SWN

Fig. 3. Average Routing Hops vs. Number of Edges for Lookahead Variants

In our experiments, we also include vanilla greedy routing
which is equivalent to 0-lookahead routing. Fig. 3 shows
the improvement achieved by having a 0,1, and 2 lookahead
strategy versus the average number of edges per node (average
degree of each node). The shortest-route shows the average
shortest path lengths to route between any two nodes. 1-
lookahead is a greedy routing strategy that can see the
neighbor’s friends (or links), thus, it has more vision than
0-lookahead. 2-lookahead has another level of vision over 1-
lookahead. As we can see, employing the lookahead reduces
the bottleneck effect of greedy routing on WS-SWN (which
tends to circle around the target node). The gain of having
1-lookahead is far greater than having 2-lookahead. Since 2-
lookahead is expensive (in space), it may not be practical
in real world situations. As such, we may want to limit
ourselves to 1-lookahead. This experiment shows that the
increase of the number of edges gives the biggest advantage
when it approaches O(log(n)) number of edges. Beyond that,
the benefit becomes less. We see in this experiment that 1-
lookahead can approach optimal routing when the number of
edges is more than log(n).

We observed that WS-SWN may not be as “un-navigable”
as thought. By having more (local) information than just what
a greedy routing uses (such as 1-lookahead), it is possible to
improve the routing performance further. Our position is this
paper is to ask whether there exist better distributed algorithms
that can achieve good routing performance for WS-SWN or
even a random network without having the cost of 1 or 2
lookahead to make them more navigable.

B. Kleinberg versus WS-SWN

The Kleinberg model which based on power-law edge
distribution has been shown to be navigable and the WS-SWN
is generally described as being non-navigable [1].

Fig. 4 shows the average routing hops versus the number of
edges of a Kleinberg-1D SWN and WS-SWN. We allow up
to 1-lookahead in both models. The poor routing performance



Fig. 1. Routing is harder when it’s closer to the target

Fig. 4. Kleinberg versus WS-SWN

of greedy (0-lookahead) on WS-SWN is readily apparent. But
as the number of edges increases 1-lookahead gets close to
Kleinberg with greedy routing. We see also that the Kleinberg
SWN doesn’t benefit much from 1-lookahead [5].

In terms of the graph structure, a WS-SWN graph is
more clustered than a Kleinberg graph. WS-SWN employs
a parameter p which determines the clustering coefficient and
the diameter of the graph [2]. The p values that give high

clustering coefficient and low diameter is from 0.01 to 0.5.
A Kleinberg SWN typically has a clustering coefficient of
0.01. In this case, WS-SWN model more closely resembles
real world social networks which typically has high clustering
coefficient (e.g. consider the students in the same course, they
would form a few cliques). We conjecture that a good routing
strategy for WS-SWN model might give clues how to design
routing algorithms for real social networks.

V. CONCLUSION

Routing in SWNs have mainly been studied in the context
of Kleinberg-like SWNs because of their navigability. If one
wants to employ real world SWNs such as social networks for
self-managing overlay networks, we believe that models like
WS-SWN may be more suitable because the resulting graphs
from the WS-SWN construction have properties closer to real
world SWNs. Furthermore, WS-SWN provides a parameter
p to adjust the clustering coefficient and the diameter of the
graph.

The drawback is that WS-SWN is not navigable using
greedy routing. We demonstrate some preliminary experiments
which suggest that WS-SWN may be more navigable than
previously thought. Using additional routing information (such
as 1-lookahead), routing performance in WS-SWN seems to
approach greedy routing performance in the Kleinberg SWN
model. This naturally leads to the question of what other



Fig. 2. Improving the routing

strategies can be used to improve the routing further in WS-
SWN and actual instances of real world SWNs. This is the
subject of further work.
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