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1 EXECUTIVE SUMMARY

1 Executive summary

In this document the work done in workpackage 3 of the SELFMAN project is
presented. The aim of workpackage 3 is to design and build a self-managing storage
service, which will provide data replication and the ability to perform transactions.
It will be built on top of a structured overlay network. This report contains first
results on the development of formal models for transactions over structured overlay
networks (D3.1).

When building a transactional storage service on top of a structured overlay
network (SON) we have to deal with different system properties than in classic dis-
tributed database systems. Nodes which are part of the structured overlay network
crash more frequently than rather highly reliable nodes of classic database systems.
In an Internet-based SON we even cannot rely on having perfect failure detectors.
It is impossible to distinguish between a node which has failed and a node with a
long communication delay. Also the system has to be scalable to be able to handle
a growing number of nodes. Protocols for the transactional storage service on top
of a SON have to deal with dynamically changing set of nodes which constitute the
system.

In this report we present an outline of a framework for DHTs which provide
strong data consistency and transactions on their data. Two different approaches
for replication and consistency of data are introduced. The first one is based on
symmetric replication and the other one on so called cells. To provide transactions
on the data basically two mechanisms are needed. One mechanism guarantees that
either all operations of a transaction are performed or none of them will affect the
storage system - Atomic commit. We developed an atomic commit protocol which
is non-blocking and does make process despite a number of failures. The second
mechanism ensures that concurrent transactions do not interfere with each other -
Concurrency control. Different concurrency control mechanisms which take into
account different characteristics of transactions are presented in this report.
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2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

ZIB (P5) and KTH (P2) have contributed to this deliverable.

ZIB (P5) ZIB has contributed on the transaction model. The deliverable mainly
includes content of two papers [6], included in Appendix B, and [5], included in
Appendix A, together with additional work done on the topic.

KTH (P2) KTH contributed on the transaction model, especially to the paper
[5], included in Appendix A.
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3 RESULTS

3 Results

3.1 Introduction

The storage service is a core service for self-managing applications. Research in
structured overlay networks (SONs) and Distributed Hash Tables (DHTs) has lead
to systems with basic primitives on which a self managing storage service can be
built. They provide efficient routing and communication algorithms, fault tolerance,
dynamic behavior and the ability to store data in a distributed and replicated
way. However most storage systems built with DHTs concentrate on providing
low latency for operations on their data items. Our focus is on building a storage
system with strong consistency guarantees on its data and on providing the ability
to perform transactions on the data.
In the following we show how a transaction can look like. A typical example for a
transaction are bank accounts. The following one includes operations on instances
of three different bank accounts A, B and C.

Begin of Transaction
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

End of Transaction

Assume the bank accounts were distributed on three different nodes. Distributed
transactions require the coordination of all nodes which are responsible for data ad-
dressed in the transaction. One issue of transactions is to ensure that either all
nodes can execute the operations on their data or none of them will make changes
to the data (atomicity property). Another issue is to ensure that concurrent trans-
actions do not interfere with each other. They may not see intermediate results
made by other transactions (isolation property).

DHTs store data as key-value-pairs which are referred to as items. Transactions
considered in this report include operations on such items, which are distributed
over the nodes of the DHT.

To ensure the atomicity property we developed an atomic commit protocol which
is based on Paxos atomic commit. Paxos atomic commit is a protocol which can
handle a number of failures and does not rely on a perfect failure detector. We pro-
vide an adaption of this protocol which takes into account the consistency mecha-
nisms of the underlying storage system and utilizes the replication scheme to create
pseudo static groups of nodes which run the atomic commit protocol.

To ensure the second property of transactions - isolation - concurrency control
mechanisms are needed. For centralized and distributed database systems there
already exist a number of concurrency control mechanisms. To utilize them in
structured overlay networks, they have to be adapted to take into account the
systems properties. We worked on two general approaches of concurrency control,
a simple protocol that is well suited for low-conflict scenarios and a more complex
protocol which is simultaneously targeted at long-running update and simple read-
only transactions. Both protocols are based on optimistic concurrency control.
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This is a natural choice for structured overlays that helps reducing the impact of
replication on communication overhead related to concurrency control.

Atomic commit and concurrency control are considered in the context of two dif-
ferent replication mechanisms. One is based on symmetric replication as described
in DKS [1, 2]. To ensure consistency of the data items all operations on them have
to include a majority of nodes. Besides the model with symmetric replication which
provides consistency and replication on top of a DHT, we additionally present an
outline of a system where a DHT is built on top of replicated nodes, which are
called cells. These cells consist of a number of nodes which constitute a replicated
state machine and thereby provide consistency and replication within the cell. On
top of this cell the DHT is built.

Finally we show how the storage system can be utilized to build a distributed
Wiki on it. A distributed Wiki is one of the usage scenarios which are presented in
the deliverable of workpackage 5.

Outline. In section 3.2 we introduce differences between transactional DHTs and
classic databases. Section 3.3 describes replication and consistency mechanisms of
a storage system to which transactions are related to. An outline of how to do
transactions in a DHT is given in section 3.4. The usage scenario is presented in
section 3.5.

3.2 Transactional DHTs vs. Databases

Classic distributed database systems usually consist of reliable servers. As a con-
sequence they consider the failure of a server as a seldom event and optimize their
protocols for the failure-free case. However in transactional DHTs the failure of
a node is a normal event. Protocols for these systems have to make progress de-
spite the failure of nodes and provide a correct execution even if a node is falsely
suspected to have crashed by an imperfect failure detector.

Whereas in classic databases the failure model usually is crash-recovery, we
consider a crash-stop failure model. If a node of a DHT fails it would rejoin the
system as a new node.

Due to the dynamic behavior of nodes in a DHT - frequent joins, leaves, crashes
- the protocols for transactional DHTs have to deal with dynamic groups of nodes
involved in a transaction. In classic distributed database systems the set of nodes
is rather static.

3.3 Replication and Consistency Mechanisms

In this section we give an outline of the replication scheme and consistency mech-
anisms for a transactional DHT. Models for transactions have to be considered in
conjunction with these mechanisms.

We will present two different replication models. One which uses symmetric
replication within the DHT and another one which is built on so called cells.
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Figure 1: Identifier space of size N = 16 with replication factor f =, using sym-
metric replication

3.3.1 System Model with Symmetric Replication

Replication

Items which are stored in the DHT are replicated according to the DKS symmetric
replication scheme [2, 1]. The number of replicas for each item is determined by
the system’s replication factor f . Symmetric replication describes how to find the
nodes which are responsible for a replica. There each identifier is associated with
f −1 other identifiers. Figure 1 illustrates part of an identifier space of a DHT with
size N = 16 and replication factor f = 4.

Consistency mechanisms

A short outline of our consistency mechanisms is included in “Atomic Commitment
in Transactional DHTs” of Appendix A. In the following we give a more detailed
outline of them. Basically our consistency mechanisms are including a majority
of nodes holding a replica in each operation on an item. The number of nodes
constituting a majority is dependent on the replication factor. A majority has to
include bf/2c+1 nodes. The system makes progress as long as a majority of nodes
storing a replica is available.

A second requirement is that each item gets a version number. Operations on
items work as follows:

• Write: A write operation first has to read the latest version number of the
item it wants to write. Therefore it has to query at least a majority of the
nodes being responsible for a replica. In a second phase the write operation
tries to impose the write on at least a majority of nodes together with a
timestamp which is higher than the one from the current version.

• Read: A read operation queries at least a majority of nodes being responsible
for a replica of the item. The result will be the value of all returned replicas
with the highest timestamp.
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By including a majority in both the write and the read operation we ensure always
to include the latest version of the item. However instead of using a majority one
could also implement another quorum based mechanism, where e.g. read an write
operations do require a different number of nodes.

In addition to operations on items, mechanisms to handle node join, leave and
failure on the data level also have to maintain the invariant that at least a majority
of nodes is storing the latest version of an item.

• Node join: Whenever a node joins the system and becomes responsible for a
certain range of identifiers in the identifier space, it has to retrieve the items
it will be responsible for. Either it will get them from the node which was
responsible for the replicas before and therefore just replace this node without
violating the majority invariant. Another approach would be to retrieve the
items by reading from a majority being responsible for replicas of an item.
Here we would possibly even increase the number of nodes holding a replica
with the current version of the item.

• Node leave: This is done accordingly to the node join. Either the node
which will take over the responsibility for the items of the leaving node gets
the replicas from the leaving node or it will read from a majority of nodes.

• Node failure handling: If a node is considered to have crashed another node
in the system has to take over the responsibility of the crashed node’s replicas.
Therefore it reads the items from a majority of nodes being responsible for
them and thereby possibly increases the number of nodes storing a current
version of the item as the crashed node could have stored an old version.

A consequence of providing strong consistency on data is that we cannot opti-
mize our system for availability and network partition tolerance at the same time
according to Brewer’s conjecture [3]. A data item will only be available as long as
a majority of nodes that is responsible for a replica is available. During a network
partition the part with a minority of nodes won’t be able to operate on the data.

3.3.2 System Model based on Cells

As an alternative approach to replication and consistency, we have developed the
cell model. The general idea of the cell model is to build the DHT on top of groups
of replicated nodes (cells) in contrast to doing replication on top of the DHT.

Instead of constructing the overlay from single nodes it is built from cells. Each
cell is a group of physical nodes that together constitute a replicated state ma-
chine [8]. Cells are implemented using suitable total order broadcast or atomic
group multicast protocols. Such protocols are usually based on some variant of
consensus and provide replicated, atomic, and totally ordered operations over the
state of the cell. This state is stored at each physical node and kept synchronized
through the chosen protocol.

Cells have to use a dynamic atomic group multicast protocol (e.g. [7]). Dynam-
icity allows adding new and removing old nodes from the cell. When a new node
enters the system, it is added to a randomly selected cell. The chosen protocol has
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Client Target cell

Route using dirty reads.
Deliver with an atomic and 

replicated operation.

Figure 2: Routing in the cell model

to ensure that the new node is provided with the current cell state before it gets
activated as a full member of the cell.

When cells consist of too many nodes they split into separate new cells to re-
duce communication overhead. Cells lacking enough nodes, are either dissolved
by merging remaining nodes and their data with an adjacent cell (topology main-
tenance) or are healed by adding new replacement nodes from neighboring cells
(node re-provisioning). Adjacency/Neighborship here depends on the chosen over-
lay topology. For the future, we intend to look deeper into these dynamic aspects
of the cell model, especially the assignment of nodes to cells (e.g. using simulation
techniques).

By basing cells on the aforementioned protocols, they already provide (per-cell)
atomicity as a building block for a full transaction processing scheme. Additionally,
the use of atomic group multicast protocols increases availability through replica-
tion. Together with topology maintenance and node re-provisioning, this can be
exploited to mask churn from node failures completely.

Node re-provisioning reduces the number of necessary topological changes. Topol-
ogy maintenance ensures that the one-on-one mapping between cells and key-space
partitions always is complete and non-disjoint. Through this, atomic delivery of
replicated data operations only occurs at a well-defined and currently responsi-
ble cell. Thus the cell model allows the creation of reliable overlay networks that
guarantee lookup consistency – an important requirement for proper resource man-
agement in any transaction processing scheme.

Topology maintenance requires atomically updating the routing table of multi-
ple, adjacent cells. This can be implemented using transaction processing. The cell
model approach here leads to a circular synergy: Topology maintenance using cells
provides lookup consistency. Lookup consistency is a necessary precondition for
transaction processing. Transaction processing in turn can be used to implement
topology maintenance.

The main disadvantage of the cell model is the high communication cost in terms
of messages and, more important, latency that is associated with replicated opera-
tions. Thus any overlay built using the cell model must minimize the number of such
operations. For regular routing, this can be done by using dirty reads. Intermediate
routing steps are executed using dirty reads at single nodes of the routing cell. Final
message delivery is executed using a replicated operation. If this delivery attempt
fails because the presumed target cell is not responsible for the message, routing
continues. This scheme has the benefit that alternative intermediate routing hops
can be selected using some latency estimation metric.
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The main advantages of the cell model are its ability to mask churn and thus
ensure lookup consistency, saving unnecessary replica lookups (cell nodes know each
other), providing atomicity, exchangeable failure models and replication schemes
at the level of single cells, and supporting the aforementioned latency minimizing
node selection strategies. In addition, the cell model is topology agnostic and only
depends on a notion of cell neighborship. Whether these advantages outweigh the
heavy cost induced of state machine replication protocols is an open question for
future work.

3.4 Distributed Transactions over Structured Overlay Net-
works

The storage service built on top of a SON will provide a transactional interface.
The kind of transactions we consider here are simple transaction with a sequence of
operations on a number of items. Items which are involved in a transaction can be
distributed over a number of nodes. However we have even two levels of distributions
as items are replicated and replicas again are distributed over a different nodes. The
set of nodes which are involved in a particular transaction protocol can differ for
each transaction.

3.4.1 Properties of Distributed Transactions

Transactions provide the so called ACID-Properties:

• Atomicity: Operations of a transaction are performed in an all-or-nothing
manner.

• Consistency: A transaction does not violate the system’s consistency rules.
After completion the system is in a legal state.

• Isolation: Each transaction is independent from other transactions. Concur-
rent transactions can’t observe one another’s intermediate results.

• Durability: Once a transaction is committed the results are persistent.

For the atomicity protocol we have to ensure that all nodes that are responsible
for an item have to decide on the same outcome of the transaction. Basically this
requires an atomic commit protocol which is a sort of consensus among them. The
consistency property will be ensured by enforcing the majority invariant of the
consistency model described in 3.3.1. To isolate transactions from each other we
have to provide means to detect concurrent transaction and prevent them from
interfering with each other. This is covered by the concurrency control mechanism.
Durability has to be considered dependent on the assumption that a majority of
nodes storing a replica will survive, which is an assumption of the whole framework
in order to work correctly.
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3.4.2 Transaction System

We define two different roles for nodes involved in a transaction. One role is the
transaction manager (TM), which is responsible for coordinating the transaction.
The other role is the transaction participant (TP). A TP is a node which is respon-
sible for a replica of an item that is involved in the transaction. Each node in the
system can both act as TM and as TP.

In the following we describe two important mechanisms for transactions: an
atomic commit protocol and concurrency control mechanisms. We give different
approaches for concurrency control which are optimized for transactions with dif-
ferent characteristics.

3.4.3 Atomic Commit

An atomic commit protocol ensures that all nodes which are involved in the trans-
action decide on the same outcome of the transaction. The outcome of the protocol
will be commit, if all nodes are prepared and could commit their part of the trans-
action. The overall outcome will be abort if there exists at least one node that
wants to abort the transaction. This constitutes a special case of consensus. All
nodes have to decide on the same outcome, even if they fail. The last property is
called uniform agreement.

Adapted Paxos Commit

In “Atomic Commit for Transactional DHTs” included in Appendix A we describe
an atomic commit protocol for transactional DHTs. There we provide an outline for
a DHT that provides strong data consistency and describe how atomic commit can
be implemented there. The atomic commit protocol is based on the Paxos atomic
commit [4] which was introduced by Lamport and Gray. Paxos is a majority based
consensus protocol. It uses a set of acceptors which collect the votes of the partici-
pants and it can handle the failure of a minority of the acceptors. We adapted this
protocol to a DHT with symmetric replication. We utilize the replication scheme to
determine a group of acceptors which are responsible for the transaction manage-
ment. The decisions of the transaction participants whether they are prepared and
could commit their operations or whether they have to abort are distributed to this
set of acceptors. In contrast to the most common atomic commit protocol, 2-Phase-
Commit (2PC), this protocol is non-blocking. 2PC is blocking as it uses a single
transaction manager. The failure of the TM after having collected the decisions of
the participants causes the participants to be blocked as they cannot retrieve the
outcome of the overall transaction and do not know whether they have to abort or
make the changes permanent. By introducing a set of acceptors the outcome can
still be retrieved from the acceptors as long as a majority of them is alive. As in our
system the acceptors have the role of the TM we call them replicated transaction
managers, while there exists one of them acting as the leader. The leader usually
is the node to which the client or application is connected to. Figure 3 illustrates
how the set of nodes for a transaction is determined. For simplification we assume
an ID space of size N = 16, with replication factor f = 4, where for each ID there
exists one node. On the top left-hand of Figure 3 nodes which participate in the
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Figure 3: Transaction system for the transaction example shown on the right side.
The top left side is without replication, the bottom left side with replication

protocol for the transaction example of the top right-hand part of the figure are
shown without replication. There exists one transaction manager which is the node
the client issuing the transaction is connected to. The nodes which are responsible
for the items involved in the transaction become transaction participants. The part
of the figure below illustrates the roles the nodes take when taking into account
replication. There are three additional nodes which act as replicated transaction
managers and three additional transaction participants for each item. For each
replica of the item exists one transaction participant.

Further we adapt the protocol to the consistency mechanisms of the storage
system. The set of TPs which vote in the protocol is composed by the nodes which
are responsible for a replica of an item involved in the transaction. As our read and
write operations require a majority of nodes we also decide on prepared or abort for
each item by requiring a majority of nodes being responsible for a replica to vote
for the same decision. This means that the decision for one item can be commit
even if there exists one node holding a replica that votes to abort, as long as a
majority votes to commit. The overall decision for the transaction is retrieved from
the respective decisions for each item. It will be abort, if for at least one item the
decision is abort, otherwise it will be commit, if for all items the decision is commit.

Figure 4 illustrates the whole protocol as it is described in the paper in Ap-
pendix A. First the leading TM sends a Prepare message to all participants. This
message basically starts the transactions. Each TP decides whether it is prepared
and could validate its part of the transaction or whether it’s decision is to abort the
transaction. Then each TP sends a Prepared or an Abort message to each replicated
TM. Whenever a replicated TM has collected for each item Prepared messages from
a majority of nodes being responsible for a replica of the item, it sends Commit to
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Figure 4: Communication steps of the adapted Paxos atomic commit protocol

the leading TM. Otherwise it sends Abort to the leading TM. The leading TM can
send the decision of the transaction to the TPs as soon as it has collected the de-
cision from a majority of replicated TMs. As we are requiring only a majority of
nodes to answer for certain phases we have used dashed arrows for the messages
which aren’t necessary to switch to the next step.

Evaluation of Paxos Atomic Commit

Paxos Atomic Commit needs one more message delay than 2PC for the failure free
case [4]. This is the theoretically minimal message delay for a non-blocking protocol.
It requires around 2fi (f : replication factor, i : number of items involved in the
transaction) more messages than 2PC, with a negligible size of messages.

We implemented Paxos Commit in Erlang and ran it on PlanetLab to get some
latency measurements. We simulated a failure-free execution of the protocol with
a varying replication factor and a varying number of items involved. The nodes
which participated in the execution of the distributed protocol were distributed all
over the world. Figure 5 shows the latencies for the commit protocol and the round
trip time measurements between TPs and TMs. Round trip times where gained
asynchronously, therefore they only reflect an approximation of the round trip times
during the atomic commit protocol. The implementation of the the protocol does
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Figure 5: Latency Measurements for the failure free execution of Paxos Atomic
Commit on PlanetLab, I : number of items involved, f : replication factor

not yet reflect the consistency mechanisms. It required that all replicas for an
item have to be able to commit instead of a majority of replicas. The simulation
included 20 runs for each particular setting. For each setting we extracted the
average, maximum and minimum commit latency as well as the average, maximum
and minimum round trip time (RTT). As expected the average commit time was
not increased with a larger number of nodes involved in the protocol, since this
does not lead to a higher number of communication steps. For example the setting
with I = 2, f = 3 involves 9 nodes. 3 nodes for each item and 3 nodes for the
replicated transaction managers, whereas the setting I = 2, f = 4 involves 12
nodes. However we can see that the maximum round trip time seems not to be
reflected in the maximum commit time. Since the leading transaction manager
can make an overall decision on the outcome of the transaction if it got the single
decisions from a majority of the replicated transaction managers, it does not have
to wait for the minority of the replicated transaction managers which introduce the
highest communication delays.

3.4.4 Hybrid optimistic concurrency control

In the Wiki scenario, some hotspot pages (e.g. pages covering current events) will be
frequently read and written by many clients. This can lead to high abort rates of up-
date transactions. In order to support such long running update transactions we are
investigating the adaptation of hybrid optimistic concurrency control (HOCC, [9])
techniques to structured overlay networks. Additionally, we have enhanced HOCC
with support for read-only multiversioning (ROMV). ROMV provides fast read-only
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transactions that can be utilized to read Wiki pages quickly.
This work is part of an ongoing effort to develop a suitable transaction pro-

cessing protocol for the cell model as outlined in the article “Distributed Wikis on
Structured Overlays”. Therefore, in the following, we assume that atomic opera-
tions (e.g. for locking) can be executed for each replica group without specifying a
concrete mechanism that achieves this.

Overview

HOCC is an optimistic multi-phase concurrency control method that allows guar-
anteed progress of update transactions under the assumption of access invariance.
Access invariance is given if read and write sets of failed transactions do not grow
during their re-execution.

HOCC transactions start in the work phase. All objects are accessed optimisti-
cally. Reads are performed against a single, possibly outdated replica. Writes are
performed in a local transaction workspace.

At commit time, the transaction first enters a validation phase. Validation
starts by getting all required locks. Locks are kept until the transaction finally
aborts or commits (Strong two-phase locking, SS2PL). Next, it is verified that no
conflicts exist between operations on accessed objects accessed and operations of
other concurrently executed and already committed transactions. Conflicts arise
when a concurrently executing transaction (a) overwrites already written objects,
(b) overwrites previously read objects, or (c) reads objects that are overwritten
later by the validated transaction. If no such conflicts are detected, the transaction
is committed using a distributed atomic commit protocol.

If validation fails, the TM aborts the transaction and initiates transaction re-
execution without releasing any locks (re-execution phase). All locks are kept and
thus validation of the re-execution is guaranteed to be successful if the transaction
is access invariant.

The distributed execution of HOCC requires handling one major problem: In
order to avoid deadlocks, validation starts of transactions must be executed in the
same order at all replica groups.

In a LAN scenario this can easily be ensured by using a central node or a suitable
message broadcast medium. For a structured overlay in a WAN, these solutions are
unsuited. However, a different approach using timestamps can be used. This is
explained next.

Validation synchronization with timestamps

We assume that every node has access to a loosely synchronized local clock that
can be used for the generation of timestamps. Uniqueness of timestamps is easily
ensured by appending a node id. For every replica group or cell a monotonically
increasing validation timestamp is maintained. This timestamp is always updated
atomically. In the cell model, this can be done using replicated operations.

When validation starts, the TM suggests a global transaction commit timestamp
to a TP of each replica group. This timestamp is selected larger than the local time
and the largest known validation timestamp. To support this, the current validation
time stamp of replica groups is communicated as part of regular control messages.
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Upon receipt of the initially suggested commit timestamp, each TP tries to up-
date its replica groups validation timestamp. This is only successful, if the suggested
timestamp is actually larger than the replica group’s current validation timestamp.
After that, validation with locking is performed for the replica group. In any case,
the TM is informed of the outcome. If all replica groups acknowledge the commit
timestamp, regular commit can be performed. Otherwise, a new timestamp is cho-
sen by the TM. Already validated replica groups discard previous validation results
and drop associated locks upon receipt of a newly suggested commit timestamp.
They then continue as if this timestamp would have been the initially suggested
commit timestamp and repeat the protocol.

Read-Only Multiversioning

HOCC can easily be extended with support for read-only transactions using mul-
tiversioning. Read-only multiversioning (ROMV) has the advantage, that it does
not require the execution of an atomic commitment protocol.

Multiple versions of all objects are stored in the system. Versions are identified
by the commit timestamp of the transaction that wrote them. In addition, for every
object a current version is maintained.

Update transactions execute using HOCC on the current version of objects. The
current version is implicitly associated with the replica group’s validation times-
tamp. At commit, new versions of all written objects are created using the trans-
actions suggested commit timestamp.

Read-only transactions are associated with their start timestamp. Read opera-
tions return the youngest object version that is older than the reading transaction.
If this version is the object’s current version, two cases arise. (a) If no update
transaction has entered validation at this replica group, it is sufficient to update
the group’s validation timestamp to the start timestamp of the read-only trans-
action and then proceed with reading. (b) Otherwise, the read operation blocks
until either all update transactions finish (case as above) or until the commit times-
tamps of currently validating update transactions are larger than the start time of
the read-only transaction (possibly conflicting transactions have finished execution).

Next steps

The above outline of a possible concurrency control approach for the cell model
needs to be refined. Thorough treatment of possible failure situations and integra-
tion with the presented commit protocol are required next steps.

An analysis of the communication overhead of the different techniques would
allow us to select an optimal approach.

3.5 Usage Scenario: Distributed Wiki

In this section we show how the transaction model fits for the usage scenario which
is part of deliverable 5.1. Instead of running Wiki on several racks full of servers, it
could be run on a decentralized storage service as it was introduced before. Figure
6 illustrates such a distributed Wiki. The nodes of the structured overlay network
store the content of the Wiki as items where the key is the name of the page and the
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Figure 6: Distributed Wiki using a decentralized storage service built on top of a
SON

value is the content of the page. For simplicity Figure 6 does not include hashing
of the keys.

3.5.1 Transactions in a distributed Wiki

Here we illustrate a simple transaction sample for a distributed Wiki. It includes
an update of the Wiki page on Konrad Zuse and an update of the category page
for Famous computer scientists. The content of the category page should only be
updated if both pages can be updated.

Begin of Transaction
Read wiki page (Konrad Zuse)
Update wiki page (Konrad Zuse)
Update wiki category page (Famous computer scientists)

End of Transaction

When a user wants to change a wiki page, he first reads the page and then makes
some changes to it. Between reading and submitting the changes, a different user
could have made changes to the same page. The transaction has to check whether
the read wiki page is still the current one and changes were based on the current
version. Additionally in this example updates on the wiki page Konrad Zuse should
only be made if changes in the wiki category page Famous computer scientists can
be made at the same time.
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4 Papers and publications

Atomic Commitment in Transactional DHTs M. Moser, S. Haridi. Atomic
Commitment in Transactional DHTs. In proceedings of the CoreGRID Symposium
(to appear).

Abstract: We investigate the problem of atomic commit in transactional database
systems built on top of Distributed Hash Tables. Therefore we present a framework
for DHTs to provide strong data consistency and transactions on data stored in a
decentralized way. To solve the atomic commit problem within distributed transac-
tions, we propose to use an adaption of Paxos commit as a non-blocking algorithm.
We exploit the symmetric replication technique existing in the DKS DHT to deter-
mine which nodes are necessary to execute the commit algorithm. By doing so, we
achieve a lower number of communication rounds in contrast to applying traditional
Three-Phase-Commit protocols. We also show how the proposed solution can cope
with dynamism due to churn in DHTs. Our solution works correctly relying only
on an inaccurate failure detection of node failure, what is necessary for systems
running over the Internet.

Distributed Wikis on Structured Overlays S. Plantikow, A. Reinefeld, and
F. Schintke. Distributed Wikis on Structured Overlays. Presented in CoreGRID
Workshop on Grid Programming Model, Grid and P2P System Architecture, Grid
Systems, Tools and Environments, Heraklion, Crete, June 2007.

Abstract: We present a transaction processing scheme for structured overlay
networks and use it to develop a distributed Wiki application that is based on a
relational data model. The Wiki supports rich metadata and additional indexes
for navigation purposes. Ensuring consistency and durability requires handling of
node failures. We mask such failures by providing high availability of nodes by
constructing the overlay from replicated state machines (Cell model). Atomicity
is realized using two phase commit with additional support for failure detection
and restoration of the transaction manager. The developed transaction processing
scheme provides the application with a mixture of pessimistic, hybrid optimistic and
multiversioning concurrency control techniques to minimize the impact of replica-
tion on latency and optimize for read operations. We present pseudocode of the
relevant Wiki functions and evaluate the different concurrency control techniques
in terms of message complexity.
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built on top of Distributed Hash Tables. Therefore we present a framework
for DHTs to provide strong data consistency and transactions on data stored in
a decentralized way. To solve the atomic commit problem within distributed
transactions, we propose to use an adaption of Paxos commit as a non-blocking
algorithm. We exploit the symmetric replication technique existing in the DKS
DHT to determine which nodes are necessary to execute the commit algorithm.
By doing so, we achieve a lower number of communication rounds in contrast
to applying traditional Three-Phase-Commit protocols. We also show how the
proposed solution can cope with dynamism due to churn in DHTs. Our solution
works correctly relying only on an inaccurate failure detection of node failure,
what is necessary for systems running over the Internet.
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1. Introduction
DHTs provide the ability to store and lookup data in a fully decentralized

manner. They can be utilized to build a distributed database on top of it. We
consider such a database which provides the user with an interface to perform
transactions on its data, and where all operations on distributed data are done
in a transactional manner. For distributed transactions an atomic commit pro-
tocol is needed to guarantee that either all operations of the transaction take
place or none of them. Only committed states are made visible. Another im-
portant mechanism of distributed transactional systems is concurrency control,
which ensures that concurrent transactions cannot interfere with each other. We
present a framework for having transactions on DHTs and consequently strong
notion of data consistency in DHTs. Our focus in this paper is on the atomic
commit problem.

A typical transaction is a sequence with an arbitrary number of operations
on different items. This sequence of operations is enclosed by a Begin of
Transaction (BOT) and an End of Transaction (EOT). BOT signals that a client
or application wants to start a transaction. The end of a transaction is marked
with EOT. At this point the system has to ensure that either all of the operations
contained in the transaction take place or none of them will affect the system.
Therefore a node receiving EOT starts a distributed commit protocol where it
determines whether all nodes, which are responsible for items that are involved
in the transaction, can execute the operations. If all those nodes confirm that
they can do so, the transaction will be committed.

We propose a solution for atomic commit which is based on the Paxos commit
algorithm introduced in [5]. We show how it can be adapted for a DHT-based
database. The Paxos commit algorithm defines different roles for nodes running
the protocol. We use the specific structure and services of the DHT to determine
which nodes have to act in which role. As DHTs are systems that are highly
dynamic, we show how we can cope with the dynamism and when we have to
fix the group of nodes involved in the protocol. Another advantage of the Paxos
commit algorithm is that it can handle a number of failures among the nodes
without relying on a perfect failure detector, which is an important property for
distributed systems running on the Internet.

Outline. Section 2 gives the problem description for this paper. In section 3
we describe the architecture of our system. Our approach for atomic commit
in a transactional DHT-based database system is presented in 4. Section 5 lists
some related work. As this paper summarizes some work in progress, we add
an outlook on our future work to the final conclusions presented in 6.
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2. Problem Description
DHTs are utilized to efficiently find data items stored in a P2P system. They

use a hashing function to assign each data item consisting of (Key, Value) an
identifier in a typically large identifier space. Each node that is part of the DHT
is responsible for at least one subrange in the identifier space. Examples for
DHTs are DKS [3], Chord [1]and CAN [9].

There exist a number of storage systems which are built on DHTs, e.g.
Bamboo1 which is based on Pastry and DHash2 which is based on Chord.
Mostly items in such systems are replicated for a higher degree of availability
and reliability. These systems are typically read-only storage systems.

Atomicity is one of the four ACID properties of a transaction. A transaction
will be executed either completely or will have no effects on the data at all.
Changes on data made by a transaction will be made persistent when it reaches
its commit point at EOT. A transaction will either end with commit or with
abort, in which case the data modifications are canceled, and the transaction
has no effect. In distributed databases, items involved in a transaction may be
spread over different nodes. There is one node that acts as the Transaction
Manager (TM), which is responsible for coordinating the transaction. Nodes
that are responsible for items which are involved in the transaction are the
Transaction Participants (TP). A transaction can only be committed if each of
the TPs is able to commit its part of the transaction. All TPs have to agree
on the same outcome of the transaction. Well known solutions to this problem
are Two-Phase-Commit (2PC) algorithms. In the first phase (voting phase) the
TM initially asks all the TPs to prepare. The TPs answer whether they are
prepared and were able to commit. In the second phase (decision phase) the
TM tells the TPs to commit if all TPs are prepared and are able to make their
changes durable. Figure 1 shows the possible states of a 2PC protocol with one
Transaction Manager and two Transaction Participants.

One Problem with the basic 2PC is that it is a blocking protocol. If the TM
fails in the decision phase (state Collecting), the TPs are not able to receive
the outcome of the transaction and are blocked. A number of non-blocking
algorithms were introduced. Three-Phase-Commit (3PC) algorithms introduce
an extra phase to circumvent a blocking state. For DHT-based systems adding
an extra phase might be very costly in terms of latencies, in particular if nodes
are distributed worldwide. Most of them are also relying on timeouts, which
might impact the performance for Internet-based systems with fluctuating link
delays. We therefore use the Paxos based commit algorithm introduced in
[5]. Instead of using an extra phase, votes of the TPs are sent to a number

1http://www.bamboo-dht.org/
2http://pdos.csail.mit.edu/chord/
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Figure 1. State-charts for a 2-Phase-Commit Protocol with 2 Participants and 1 Transaction
Manager

of so called acceptors. The non-blocking property is introduced at the cost of
a higher number of messages, instead of an additional communication round.
We think that in a P2P environment it is more important to reduce latency than
reducing the number of messages sent, to achieve an acceptable performance.
Besides the size of the messages needed for the protocol is small. Another
important property of the Paxos commit protocol is that it does not rely on a
perfect failure detector.

Next we will describe the architecture of the system for which our solution
is designed for.

3. Architecture of the Transactional System
In DHT-based transactional database systems each node can act as TM and as

TP. Clients and applications which invoke transactions are connected to arbitrary
nodes in the DHT. Any such node will act as a TM for the transaction started by
the associated client. During the commit phase all nodes which are responsible
for an item that is involved in the transaction act as TPs. Items in our DHT are
replicated. Our solution is illustrated with the symmetric replication scheme of
the DKS DHT as mentioned below. With symmetric replication replicas can
be accessed concurrently.

3.1 Symmetric Replication and Data Consistency
We consider symmetric replication as described in [4, 2]. The storage system

replicates each item with the replication factor f . An identifier of an item is
associated with f − 1 other identifiers. This corresponds to a partition of the
identifier space in N

f equivalence classes. The identifiers for replicas of an
item with identifier id are determined using the following function: ri(id) =
(id + (i− 1)N

f )modN for1 ≤ i ≤ f . Using symmetric replication, items can
be accessed concurrently by determining their associated identifiers.
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Our system maintains strong consistency among operations on data by in-
cluding at least a majority of replicas in these operations. All operations related
to data enforce the invariant that a majority of replicas for a certain data item
is up to date. A majority contains at least bf

2 c+ 1 replicas. As write and store
operations are performed on a majority, a read operation includes a majority
as well, to ensure to get the latest version of an item. As a consequence join,
leave and node failure handling have to maintain the replication factor. Espe-
cially they have to ensure that the number of replicas never exceeds f . When
a new node joins the system, it gets the data it will be responsible for, and then
takes over the responsibility from the node formerly responsible for those items.
There is no point where they are both responsible for the transfered items in
order to ensure that the number of replicas for each item does not exceed f .
When a node leaves, it transfers the responsibility for its items to its successor
node and thus again does not change the number of replicas for an item. When
a node failure is detected, another node in the system becomes responsible for
this node’s items. It will read the items from the remaining replicas. Here the
number of replicas is restored to f after some time, but it does not increase the
number of replicas

According to Brewer’s conjecture [11], we will only be able to maintain
availability until partitioned overlays merge. It is impossible to maintain con-
sistency, availability and partition-tolerance at the same time. Our emphasis is
on consistency.

3.2 System Properties
A DHT-based database system differs from a traditional distributed database

system in a number of points that are important for the design of the commit
algorithm. Traditional distributed database systems usually consist of a number
of reliable nodes connected through a LAN. In contrast a DHT is built on
unreliable nodes. The MTTF (Mean Time to Failure) of a node in a DHT
system is typically much smaller. The need for a non-blocking atomic commit
algorithm therefore is higher than in a traditional database system. Traditional
database systems often are optimized for the failure-free case as failures occur
quite seldom.

Another point is latency. In DHT-based database systems latencies are high
due to the WAN communication paths and the routing structure of a DHT. A
non-blocking atomic commit algorithm implemented in a DHT has to be low
in the number of communication rounds to achieve acceptable performance.

The number of nodes involved in a transaction is typically much higher for a
DHT-based system as items are distributed over a larger number of nodes. There
are even two levels of distribution. Additionaly distributed items are replicated
and again spread over the whole system. The number of nodes involved in a
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transaction depends on the number of items which are part of the transaction.
An atomic commit algorithm for a DHT therefore has to be scalable in the
number of participants.

The failure model for a traditional database system is normally based on
a crash-recovery process model. In contrast there are several possible failure
models for DHT-based database systems. In this paper we consider a DHT
database system that is based on a crash-stop process model. When a node
crashes and later recovers, it joins as a new node. Therefore it does not need
to remember any previously stored data, nor logs of uncommitted transactions.
Here we rely on the majority of nodes holding replicas of items involved in
ongoing transactions will survive. This is a consequence of our majority based
consistency mechanisms.

The atomic commit algorithm we present in the next section assumes the
crash-stop DHT model and symmetric replication. It is tailored for high laten-
cies, high distribution of items and it can handle the failure of the TM.

4. Atomic Commit Protocol for a DHT
As mentioned above nodes of the DHT can act as TMs and as TPs. A client

that invokes a transaction is connected to a node in the DHT. This node will be
the TM for that particular transaction. Invoking a transaction will result in the
creation of a transaction item, such that the key of the transaction item results
in an identifier that belongs to the responsibility of the TM and which we refer
to as the transaction-ID. This item will contain the result of the transaction and
will be stored in the transaction manager and also symmetrically stored in the
DHT.

As failures of nodes in DHTs may occur quite often, a non-blocking atomic
commit protocol is needed. Gray and Lamport [5] introduce a commit protocol
built on the Paxos consensus algorithm[7–8]. Our solution is an adaptation of
this commit protocol to work for DHTs. The Paxos commit protocol uses a
number of nodes that collect the votes of the TPs. These are called acceptors.
In the case of a TM’s failure the decision for the transaction can be requested
from the associated set of acceptors. We adapt this protocol by having the set
of nodes responsible for the replicated transaction item as our set of acceptors.
Therefore the number of acceptors is determined by the replication factor of
the whole system.

As mentioned above the Paxos commit algorithm provides an ability to cir-
cumvent the blocking problem of a Two-Phase-Commit protocol. In the next
section we will briefly introduce the properties of the Paxos consensus algorithm
and thereafter Paxos commit.
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4.1 The Paxos Protocol
Paxos is an algorithm which guarantees uniform consensus. Consensus is

necessary when a set of nodes has to decide on a common value. Uniform
consensus satisfies the following properties: 1. Uniform agreement, which
means that no two nodes decide differently, regardless of whether they fail
after the decision was taken; 2. Validity describes the property that the value
which is decided can only be a value that has been proposed by some node;
3. Integrity, meaning no node may decide twice and finally 4. Termination,
every node eventually decides some value [6]. Paxos assumes an eventual
leader election to guarantee termination. Eventual leader election can be built
by using inaccurate failure detectors.

Paxos defines different roles for the nodes. There are Proposers, which
propose a value, and Acceptors, which either accept a proposal or reject it in
a way that guarantees uniform agreement. Paxos as described in [8] assumes
that each node may act as both proposer and acceptor. In our solution presented
below we use different nodes as proposers and acceptors.

The above mentioned properties of uniform agreement can be guaranteed by
Paxos whenever a majority of acceptors is alive. That means, it tolerates the
failure of F acceptors out of initially 2F + 1 acceptors.

Paxos basically consists of two phases called the read and write phase. In
the read phase a node makes a proposal and tries to get a promise that his value
will be accepted by a majority or it gets a value that it must adopt for the write
phase. In the write phase a node tries to impose the value resulting from the
read phase on a majority of nodes. Either the read or write phase may fail.
Proposals are ordered by proposal numbers. By using an eventual leader to
coordinate different proposals, the algorithm will eventually terminate.

4.2 Atomic Commit with Paxos
Uniform consensus alone is not enough for solving atomic commit. Atomic

commit has additional requirements on the value decided. If some node pro-
poses abort or is perceived to have crashed by other nodes before a decision
was taken, then all nodes have to decide on abort. To decide on commit, all
nodes have to propose prepared.

In the Paxos Commit protocol [5] we have a set of acceptors, with a distin-
guished leader, and a set of proposers. The set of acceptors play the role of the
coordinator and the set of proposers are those who have to decide in the atomic
commit protocol.

Each proposer creates a separate instance of the Paxos algorithm with itself
as the only proposer to decide on either prepared or abort. All instances share
the same set of acceptors. It can be noted that the Paxos consensus can be
optimized, because there is only one proposer for each instance. If a proposer
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fails, one of the acceptors, normally the leader, acts on behalf of that proposer
in the particular Paxos instance and proposes abort.

Acceptors store the decisions of all proposers. Whenever an acceptor has
collected all decisions, it sends commit or abort to the leader. A leader needs to
receive the decision of a majority of acceptors to do the final decision. Thereafter
the final abort/commit is sent to the initial proposers. If the leader fails by
the eventual failure detector, another leader will take over and can extract the
decision from a majority of acceptors and complete the protocol.

The state-chart of a proposer is similar to the state-chart of a TP in the
original 2PC protocol, as shown in figure 1. Also the state-chart of an acceptor
is similar to that of the TM, referring to the same figure. But instead of sending
the decision commit to the participants, the acceptors send the outcome to the
leader.

4.3 Adapted Paxos Commit for a DHT
Paxos is designed for a static environment with a fixed number of participants

and acceptors. However each transaction involving items of a DHT has different
nodes involved. Every node responsible for an item in a transaction becomes
a TP for that particular transaction. In fact the TM initially does not know
which nodes are TPs. The number of nodes varies according to whether or
not the node is responsible for an item that is involved in the transaction. As
mentioned earlier, each transaction has a certain transaction item. We therefore
use a certain group of acceptors for each particular transaction, that can be easily
determined from the transaction-ID of the transaction item, by using symmetric
replication. The set of acceptors consists of the nodes responsible for a replica
of the transaction item. One advantage is that we create a pseudo static group
of acceptors. The group of acceptors is fixed temporarily by the TM just before
the prepare request is sent to the TPs. With the prepare request the TM informs
the nodes responsible for items in the transaction about the set of acceptors.
When such a node receives the prepare request, it becomes a TP and starts its
Paxos instance. It has to be noted that a node could be responsible for several
items involved in the transaction. The TP runs a separate Paxos instance for
each item it is responsible for.

At this stage the group of TPs and the group of acceptors are fixed. It will
remain fixed during the atomic commit phase. If a node joins/leaves in a DHT,
the responsibility of certain items has to be transferred. The transfer of the
responsibility of items involved in an active commit protocol is deferred until
the protocol instance terminates.

One modification to the Paxos commit is that the acceptors collect the votes
from the TPs and classify them per item. When a majority of TPs holding a
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replica of an item votes prepared, the acceptors record a prepared vote for this
specific item. If the decision is prepared for all items, the transaction commits.

When a TM knows the decision for the transaction, it can store this infor-
mation in the transaction item. This item can then be replicated in the DHT
just like regular data items. Whenever a TP does not receive the result of the
transaction from the TM, it can query the result of the transaction by reading
the transaction item stored in the DHT.

Another issue is garbage collection of transaction items. As information
on previous transactions grows by time, garbage collection is needed to throw
away information which is no longer needed. This can be done in different ways
either by acknowledgment messages or expiry date associated with transaction
items.

Most of the operations mentioned in this particular DHT-based Paxos commit
are operations on a set of identifiers. This is supported efficiently by bulk
operations in DHTs as described in the DKS system[4, 2].

5. Related Work
In [10] Paxos is used to achieve consensus in DHTs. The authors present

a middleware service called PaxonDHT, which provides a mean to guarantee
strong consistency among a set or replicas. In contrast to PaxonDHT our work
is providing an approach for atomic commit with replicas of several items
involved.

OceanStore [12] provides the ability to concurrently update data stored in a
global persistent data store. A master replica is required which consists of a
set of nodes which run a Byzantine agreement protocol to cooperate with each
other. In [12] the authors mention that transactions could be built on top of the
API of OceanStore. Our work considers a system that provides transactions in
its own interface and provides strong consistency among operations on data.

6. Conclusion and Future Work
We presented a framework for having transactions on DHTs and conse-

quently strong notion of data consistency in DHTs. We focus on the atomic
commit problem. Our solution is based on the Paxos commit algorithm. We
showed why Paxos commit is suitable for DHT-based systems and how we
can adapt it for transactional DHT-based databases. Among nodes Paxos com-
mit defines a set of acceptor and a set of proposers. Our approach uses the
symmetric replication scheme for DHTs to determine a pseudo static group of
acceptors. The non-blocking property of this commit protocol is important as
failures in DHTs occur quite often. Another advantage is a lower number of
communication rounds compared to traditional non-blocking algorithms in dis-
tributed database systems like Three-Phase-Commit. Paxos commit can handle
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a number of failures among the nodes which are involved in the atomic commit
without violating the properties of atomic commit. Further we showed how to
handle dynamism in a DHT due to churn. We defined the phases when it is
necessary to fix the group of participants in the algorithm to enable a correct
atomic commit.

There is a number of issues left that will be addressed in the future. We
will investigate in a concurrency control for a DHT-based database system.
An optimistic concurrency control seems reasonable for this scenario. One
solution will be a timestamp based ordering. Further we will evaluate the
whole architecture and specify the algorithms formally.
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Abstract We present a transaction processing scheme for structured overlay networks and
use it to develop a distributed Wiki application that is based on a relational data
model. The Wiki supports rich metadata and additional indexes for navigation
purposes.

Ensuring consistency and durability requires handling of node failures. We
mask such failures by providing high availability of nodes by constructing the
overlay from replicated state machines (Cell Model). Atomicity is realized using
two phase commit with additional support for failure detection and restoration of
the transaction manager. The developed transaction processing schema provides
the application with a mixture of pessimistic, hybrid optimistic and multiver-
sioning concurrency control techniques to minimize the impact of replication on
latency and optimize for read operations. We present pseudocode of the rele-
vant Wiki functions and evaluate the different concurrency control techniques in
terms of message complexity.

Keywords: Distributed transactions, content management systems, structured overlay net-
works, consistency, concurrency control.

1. Introduction
Structured overlay networks provide a scalable and efficient means for stor-

ing and retrieving data in distributed environments without central control. Un-

∗This work was supported by the EU Network of Excellence Core-GRID and the EU SELFMAN project
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fortunately, in their most basic implementation, structured overlays do not pro-
vide any guarantees on the ordering of concurrently executed operations.

Transaction processing provides concurrently executing clients with a sin-
gle, consistent view of a shared database. This is done by bundling client oper-
ations together in a transaction and executing them as if there was a global,
serial transaction execution order. Enabling structured overlays to provide
transaction processing support is a sensible next step for building consistent
decentralized, self-managing storage virtualization services.

We propose a transactional system for an Internet-distributed content man-
agement system built on a structured overlay. Our emphasis is on supporting
transactions in dynamic decentralized systems where nodes may fail with a
relatively high rate. The chosen approach provides clients with different con-
currency control options to minimize latency.

The article is structured as follows: Section 2 describes a general model for
distributed transaction processing in structured overlay networks. The main
problem addressed is handling the unreliability of nodes. Section 3 presents
our transaction processing schema with a focus on concurrency control. This
schema is extended to the relational model and exemplified using the dis-
tributed Wiki in Section 4. Finally, in Section 5, we evaluate the different
proposed transaction processing techniques in terms of message complexity.

2. Transactions on Structured Overlays
Transaction processing is used to guarantee the four ACID properties: Atom-

icity (transactions are either executed completely or aborted and any effects
undone), consistency (transaction processing will never corrupt the database
state), isolation (data operations of concurrently executing transactions do not
interfere with each other), durability (results of successfull transactions survive
system crashes). These ACID properties can be separated into two aspects:
Concurrency control is responsible for isolation and consistency by proper
scheduling of elementary operations, and database recovery ensures atomic-
ity and durability of transactions.

Page model. In this paper we consider transactions in the page model [4]
in which a database contains a set of uniquely addressable, single objects. Valid
elementary operations are reading and writing of objects and transaction com-
mit and abort. The model does not support predicate locking and thus phan-
toms can occur and our scheme cannot support consistent aggregation queries.
The page model was chosen because it can be naturally applied to structured
overlays. Objects are stored by their identifier using the overlay’s policy for
data placement. In Section 4.1 we show how relational data models can be
mapped on top of this simple scheme.
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2.1 Distributed Transaction Processing
Distributed transaction processing guarantees the ACID-properties in sce-

narios where clients access multiple databases or different parts of the same
database located on different nodes. All accesses to local databases are con-
trolled by resource manager (RM) processes in each participating node. Addi-
tionally, for each active transaction one node takes the role of the transaction
manager (TM). The TMs coordinate with the involved RMs to execute trans-
actions on behalf of their clients. The TMs also plays an important role during
the execution of distributed atomic commit protocols.

Distributed transaction processing in a structured overlay network requires
to distribute resource- and transaction management. Transaction management
can be performed by the initiating peer. For resource management it is neces-
sary to minimize the required communication overhead between resource man-
ager and the storing node. Therefore, in the following, we assume that each
peer of the overlay performs resource management for all objects in its fraction
of the keyspace. For application scenarios where certain groups of objects are
accessed together, it could be preferable to perform resource management at a
dedicated peer for the whole group.

2.2 The Cell Model for Handling Churn
Distributing resource management over all peers puts tight restrictions on

the message delivery. Messages initiating operations under transaction control
must never be delivered to the wrong node. This property is known as lookup
consistency. Without lookup consistency, a node might erroneously grant a
lock on a data item or deliver outdated data. It is an open question how lookup
consistency can be efficiently guaranteed in the presence of frequent and un-
expected node failures (churn). Some authors [3, 6] have proposed protocols
based on atomic commit that ensure consistent lookup if properly executed
by all joining and leaving nodes. Yet large scale overlays are subject to con-
siderable amounts of churn [8]. Thus handling the unreliability of nodes is
important for any transaction processing scheme.

Relational databases usually assume the crash-recovery model in which
durability is guaranteed by a combination of persistent storage and certain
restart mechanisms. For structured overlays, the crash-recovery model is not
useful because it is often unknown whether a disconnected node will later re-
join again. As a consequence, traditional locking cannot be used, because
unreleased locks of crashed nodes would block the system forever. Hence, for
structured overlays, the crash-stop model is used instead. Here the positive
dynamics of structured overlays (neighboring nodes take over the keyspace
partition of a failed node) conflicts with transactional consistency.
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Cell model. Irrespective of the chosen failure model, data loss created
by terminal node failures will violate the durability property. Therefore we
propose the use of replicated state machines (RSMs) [16] to ensure (a) lookup
consistency (b) availability and (c) durability. Instead of constructing the over-
lay network from single nodes, the overlay is made up by cells. Each cell
is a dynamically sized group of physical nodes [15] that constitutes a RSM.
Performing replication below the overlay’s topology yields the advantage of
reduced communication costs. No overlay lookups are necessary to send mes-
sages between replicas.

The execution of replicated operations has considerable cost: Even modern
consensus algorithms like Fast Paxos [7] require at least N(b2N/3c+1) mes-
sages. While this cost is hardly avoidable for consistent replication, it is also
unacceptable for regular message routing. Routing using dirty reads avoids
these costs but may create routing errors if node and cell state are temporarily
deviating. To handle this, the presumed target cell will deliver the message
using a replicated operation (Fig. 1). If during the delivery attempt it is de-
tected that the cell is not responsible for the message, routing continues using
the cell’s proper routing table.

Client Target cell

Route using dirty reads.
Deliver with an atomic and 

replicated operation.

Figure 1. Cell routing using dirty reads.

We do not cover the distribution of physical nodes on cells, nor do we
consider Byzantine failures. For this paper, we assume that cells either have
enough nodes or are merged with topologically adjacent cells. In any case cells
never fail unexpectedly and always orderly execute the overlay algorithm. If
too many nodes of a cell fail, the cell destroys itself by executing the overlay’s
leave protocol. The freed nodes can then rejoin neighbouring cells. This has
the benefit that crash-recovery of failed nodes and the use of stable storage is
unnecessary. For simplification, we also assume that the keyspace partition
associated to each cell does not change during transaction execution.
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3. Concurrency Control and Atomic Commit in
Structured Overlays

We use hybrid optimistic concurrency control and two phase commit on top
of replicated state machines (cells). Additionally we support optimized read
transactions using read-only multiversioning.

Atomic Operations. Using RSMs directly allows the execution of
atomic and totally ordered operations. This already suffices to implement
transaction processing, e.g. by using pessimistic, strong two phase locking (2PL)
and an additional distributed atomic commit protocol. But each replicated op-
eration is expensive. Thus any efficient transaction processing scheme for cell-
structured overlays must aim at minimizing the number of replicated opera-
tions.

Optimistic concurrency control (OCC). OCC executes transac-
tions against a local working copy (working phase). This copy is validated
just before the transaction is committed (validation phase). The transaction is
aborted if conflicts are detected during validation. As every node has (a possi-
bly temporarily deviating) local copy of its cell’s shared state, OCC is a prime
candidate for reducing the number of replicated operations by executing the
transaction against single nodes of each involved cell.

3.1 Hybrid Optimistic Concurrency Control
Plain OCC has the drawback that long-running transactions which need ob-

jects that are frequently accessed by short-running transactions may suffer star-
vation due to consecutive validation failures. This is addressed by hybrid op-
timistic concurrency control (HOCC, [18]) under the assumption of access
invariance, i.e. repeated executions of the same transaction have identical read
and write sets.

HOCC works by executing strong 2PL for the transaction’s read and write
sets at the beginning of the validation phase. In case of a validation failure,
the locks are kept and the transaction logic is reexecuted. Because of access
invariance this second execution cannot fail. All necessary locks are already
held by the transaction.

The use of strong 2PL has the additional benefit that no distributed dead-
lock detection is necessary if a global validation order between transactions
with non-disjoint sets of accessed objects can be established. A possible tech-
nique for this has been described by Agrawal et. al [1]: Every cell v maintains
a strictly monotonic increasing timestamp tv for the largest, validated transac-
tion. Before the start of validation, the transaction manager suggests a valida-
tion time stamp t > tv to all involved cells v. After every cell v has acknowl-
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edged that t > tv and updated tv to t, the validation phase is started. Otherwise
the algorithm is repeated. Gruber [5] optimized this approach by including the
largest validation timestamp in every message.

3.2 Distributed Atomic Commit
Distributed atomic commit (DBAC) requires consensus between all transac-

tion participants on the transaction’s termination state (committed or aborted).
If DBAC is not guaranteed, all four ACID properties are violated.

We propose a blocking DBAC protocol that uses cells to treat TM failures
by replicating transaction termination state.1 A commit record holding the
state is stored under the transaction’s unique identifier (TXID) in the overlay
network (for example in the same cell as the transaction manager’s node). If
no failures occur, regular two-phase atomic commit (2PC) is executed. But
after prepared-messages have been received from and before the final commit
messages are sent, the TM first writes the commit record. If the record already
is set to abort, the TM aborts the transaction. If RMs suspect a TM failure,
they read the commit record to either determine the termination state or initiate
transaction abort.

3.3 Read-only Transactions
In many application scenarios simple read-only transactions are much more

common than update transactions. Therefore we optimize and extend our trans-
action processing scheme for read-only transactions by applying techniques
similar to read-only multiversioning (ROMV) [11].

All data items are versioned using unique timestamps generated from each
node’s loosely synchronized clock and globally unique identifier. Additionally
for each data item we maintain a current version. This version is accessed
and locked exclusively by HOCC transactions as described above and implic-
itly associated with the cell’s maximum validation timestamp tv. The current
version decouples read-only multiversioning and HOCC.

Our approach moves newly created versions to the future such that they
never interfere with read operations from ongoing read-only transactions. This
avoids the cost associated with distributed atomic commit for read-only trans-
actions but necessitates it to execute reads as replicated operations. Read-only
transactions are associated with their start time. Every read operation is exe-
cuted as a replicated operation using the multiversioning rule [14]: The result
is the oldest version that is younger than the transaction start time. If this ver-
sion is the current version, the maximum validation timestamp tv is updated.
This may block the read operation until a currently running validation is fin-

1For an alternative, non-blocking approach, see [12].
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ished. Update transactions create new versions of all written objects using
t > tv during atomic commit.

4. Algorithms for a Distributed Wiki
In the following sections we describe the basic algorithms of a distributed

content management system that is built on a structured overlay with transac-
tion support.

4.1 Mapping the Relational Model
So far we only considered uniquely addressable, uniform objects. In prac-

tice, many applications use more complex, relational data structures. This rises
the question of how multiple relations with possibly multiple attributes can be
stored in a single structured overlay. For this, we assume that the overlay sup-
ports range queries over a finite number of index dimensions.2

Storing multiple attributes requires mapping them on index dimensions. As
the number of available dimensions is limited, it is necessary to partition the
attributes into disjoint groups and map these groups instead. The partition must
be chosen in such a way that fast primary-key based access is still possible.
Depending on their group membership, attributes are either primary, index, or
data attributes. Multiple relations can be modeled by introducing an additional
primary attribute that contains a unique relation identifier.

4.2 Notation
Table 1 contains an overview of the pseudocode syntax from [13]. Relations

are represented as sets of tuples and written in CAPITALS. Relation tuples
are addressed using values for the primary attributes in the fixed order given
by the relation. For reasons of readability, tuple components are identified
using unique labels (Such labels easily can be converted to positional indexes).
Range queries are expressed using labels and marked with a "?".

4.3 Wiki
A Wiki is a content management system that embraces the principle of min-

imizing access barriers for non-expert users. Wikis like www.wikipedia.org
comprise millions of pages that are written in a simplified, human-readable
markup syntax. Each page has a unique name which is used for hyperlinking
with other Wiki pages. All pages can be read and edited by any user, which
may result in many concurrent modification requests for hotspot pages. This
makes Wikis a perfect test-case for our distributed transaction algorithm.

2Possible approaches can be found in [17, 2].
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Table 1. Pseudocode notation

Syntax Description

Procedure Proc (arg1, arg2, . . ., argn) Procedure declaration

Function Fun (arg1, arg2
de f
= "Value", . . ., argn) Function declaration, default for arg2

begin transaction . . .commit (abort) transaction Transaction boundaries
ADDRESS"ZIB" Read tuple from relation
ADDRESS"ZIB"← ("Takustr. 7","Berlin") Write tuple to relation
Πattr1, ..., attrn(M) = {πattr1, ..., attrn(t) | t ∈ M} Projection

∀t ∈ tuple set : RELATION
+← t bzw. −← t Bulk insert and delete

DHT?
key1="a", key2

or DHT?
key1="a", key2=∗ Range query (∗ asks for any value)

ADDRESS?
"ZI"<orga<"ZZ"

←−−orga,
−−−→street

#<50
Sorted range query with result limit

Modern Wikis extend provide a host of additional features, particularly to
simplify navigation. In this paper we exemplarily consider backlinks (list of
other pages linking to this page) and recent changes (list of recent modifica-
tions of this pages). We model our Wiki using the following two relations:

Relation Primary Index Data
attributes attributes attributes

CONTENT pageName ctime (change time) content
BACKLINKS referencing (page), referenced (page) - -

All Wiki operations use transactions to maintain the following consistency
invariants:

CONTENT always contains the page’s current content,

BACKLINKS contains proper backlinks for all pages given by CONTENT,

users cannot modify pages whose content has never been seen by them
(explained below).

The function WikiRead (Alg. 4.1) delivers the content of a page and all back-
links pointing to it. This requires a single read for the content and a range query
to obtain the backlinks. Both operations can be executed in parallel.

The function RecentChanges (Alg. 4.2) issues a range query to return a
sorted list of the limit newest pages that have been changed be f oreTime.

The function WikiWrite (Alg. 4.3) is more complex because conflicting writes
by multiple users must be resolved. This can be done by serializing the write
requests using locks or request queues. If conflicts are detected during (atomic) writes
by comparing last read and current content, the write operation is aborted.
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Algorithm 4.1 WikiRead: Read page content
1: function WikiRead (pageName)
2: begin transaction read-only
3: content← πcontent(CONTENTpageName)
4: backlinks←Πre f erenced(BACKLINKS?

referencing=pageName, referenced)
5: commit transaction
6: return content, backlinks
7: end function

Algorithm 4.2 RecentChanges: List of recently modified pages
1: function RecentChanges (beforeTime, limit)
2: begin transaction read-only
3: result←{CONTENT?

pageName, ctime>beforeTime}
←−−−
ctime
#<limit

4: commit transaction
5: return result
6: end function

Users may then manually merge their changes and retry. This approach is
similar to the compare-and-swap instructions used in modern microprocessors
and to the concurrency control in version control systems.3 For our distributed
Wiki, we realize the compare-and-swap in WikiWrite by using transactions.
First, we precompute which backlinks should be inserted and deleted. Then,
we compare the current and old page content and abort if they differ. Other-
wise all updates are performed by writing the new page content and modifying
BACKLINKS. The update operations again can be performed in parallel.

4.4 Wiki with Metadata
Often it is necessary to store additional metadata with each page (e.g. page

author, category). To support this, we add a third relation METADATA with pri-
mary key attributes pageName and attrName and data attribute attrValue. Al-
ternatively we could also add metadata attributes to CONTENT. But this would
not be scalable as current overlays only provide a limited number of index
dimensions.

Modifying page metadata requires checking that the page has not been changed
by some other transaction. Otherwise new metadata could be associated wrongly
to a page (This is similiar to storing the wrong backlinks). For reading page
metadata, a simple range query suffices ([13] contains the algorithms).

3Most version control systems provide heuristics (e.g. content merging) for automatic conflict resolution
that could be used for the Wiki as well.
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Algorithm 4.3 WikiWrite: Write new page content and update backlinks
1: procedure WikiWrite (pageName, contentold, contentnew)
2: refsold← Refs (contentold)
3: refsnew← Refs (contentnew)
4: refsdel← refsold \ refsnew — precalculation
5: refsadd← refsnew \ refsold
6: txStartTime← CurrentTimeUTC()
7: begin transaction
8: if πcontent(CONTENTpageName) = contentold then
9: CONTENTpageName = (txStartTime, contentnew)

10: ∀t ∈ {(ref , pageName) | ref ∈ refsadd} : BACKLINKS
+← t

11: ∀t ∈ {(ref , pageName) | ref ∈ refsdel} : BACKLINKS
−← t

12: else
13: abort transaction
14: end if
15: commit transaction
16: end procedure

5. Evaluation
It is noteworthy that the presented algorithms for ensuring consistency mainly

require the atomicity property. There are only few conditions on the serial ex-
ecution order of operations. Thus in theory, a high degree of concurrency is
possible. This is especially interesting for range queries like RecentChanges
which can utilize the overlay’s capabilities to multicast to many nodes in par-
allel.

Table 2. Comparison of concurrency control methods

Transaction type Once for N Parallel ops Total for k serial ops
involved cells on N cells

(1) Atomic Write 1L 1R 1L+1R, because k,N = 1
(2) Read-Only Trans. N L N R N L+ kN R
(3) Pess. 2PL + 2PC N L+2N R N R N L+(k +1)N R
(4) Hyb. Opt. + 2PC N L+2N R NU N L+(k−1)NU +2N R
(5) Hyb. Opt. + 2PC N L+3N R 2NU N L+(2k−2)NU +3N R
+ Validation Error

Table 2 compares the communication overhead of the different concurrency
control methods. We assume transactions consisting of k serial operations.
Every such operation is executed in parallel on N cells. U is a simple, un-
replicated, R is a replicated, and L is a lookup (routing) operation. The cost
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is split into one-time (initial and DBAC) overhead, overhead per k operations,
and total overhead. Totals include DBAC costs and respect possible combined
sending of messages (e.g. combining last data operation with validate and pre-
pare).

Table 2 contains (1) a simple, replicated operation on a single cell, (2) a
read-only multiversioning transaction (Sec. 3.3), (3) a pessimistic 2PL trans-
action, (4) a HOCC (Sec. 3.1) transaction without validation failure, and (5)
a HOCC transaction with validation failure and transaction logic reexecution.
(2)-(4) all use the 2PC variant described in 3.2 (For the evaluation, we assume
no failures occur during commit).

HOCC reduces the number of necessary replicated operations for k > 1. For
k = 1 and a operation on a single cell, ACID is already provided by using
a RSM and no DBAC is necessary. For k = 1 and a single operation over
multiple cells, HOCC degenerates into 2PL: the data operations on the different
cells are combined with validate-and-prepare messages and executed as single
replicated operations.

Read-only transactions use more replicated operations but save the DBAC
costs of HOCC. This makes them well-suited for quick, parallel reads. But
long running read transactions might be better off by choosing HOCC if the
performance gained by optimism outweights DBAC overhead and vaidation
failure chance.

Using cells yields an additional benefit. If replication would be performed
above the overlay layer, additional routing costs of (r−1)N lookup messages
would be necessary (r is the number of replicas).

6. Summary
In this article, we presented a transaction processing scheme suitable for a

distributed Wiki application on a structured overlay network. While previous
work on overlay transactions (e.g. [10]) has not treated handling the unreliabil-
ity of nodes, we identified this as a key requirement for consistent data storage
in structured overlays and proposed the cell model as a possible solution.

The developed transaction processing scheme provides applications with a
mixture of concurrency control techniques to minimize the required commu-
nication effort. We showed core algorithms for the Wiki that utilize overlay
transaction handling support and evaluated the different concurrency control
techniques in terms of message complexity.
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