
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

The Adventures of Selfman - Year Three

Due date of deliverable: July 15, 2009
Actual submission date: July 15, 2009

Start date of project: June 1, 2006
Duration: 36 months
Dissemination level: PU

Contents

1 Introduction 14

2 D3.1c: Final report on formal models for transactions over
structured overlay networks 16
2.1 Executive Summary . 16
2.2 Partners Contributing to the Deliverable 17
2.3 Introduction . 18

2.3.1 Transaction algorithm described using components . . 18
2.3.2 Evaluation . 18
2.3.3 Visualization of the Transaction Algorithm 20
2.3.4 Eager locking for synchronous collaboration 20

2.4 Papers and publications . 22

3 D3.2b: Report on replicated storage service over a struc-
tured overlay network 25
3.1 Executive summary . 25
3.2 Contractors contributing to the Deliverable 26
3.3 Results . 27
3.4 Papers and publications . 29

3.4.1 Scalaris: Users and Developers Guide 29
3.4.2 Scalaris: Reliable Transactional P2P Key/Value Store . 29
3.4.3 A Scalable, Transactional Data Store for Future Inter-

net Services . 30
3.4.4 Visualizing Transactional Algorithms for DHTs 30
3.4.5 DeTransDraw: Decentralized transactional collabora-

tive drawing . 31

4 D3.3b: Report on simple database query layer for replicated
storage service 32
4.1 Executive summary . 32
4.2 Contractors contributing to the Deliverable 33

2

CONTENTS

4.3 Results . 34
4.3.1 Scalaris . 34
4.3.2 Beernet . 35

4.4 Papers and publications . 38
4.4.1 Scalaris: Users and Developers Guide 38
4.4.2 Scalaris Java Interface 38

5 D4.1b: Second report on self-configuration support 39
5.1 Executive summary . 39
5.2 Contractors contributing to the Deliverable 40
5.3 Results . 41

5.3.1 A formal specification of the Fractal deployment model 41
5.3.2 Self-configurable dynamic architectures in Oz 43
5.3.3 Self-configuration mechanisms in the Kompics compo-

nent model . 46
5.3.4 Self-configuration mechanisms in PeerTV 48

5.4 Papers and publications . 50

6 D4.1c: Self-configuration support (software) 51
6.1 Executive summary . 51
6.2 Contractors contributing to the Deliverable 52
6.3 The WorkflOz library . 53

6.3.1 Design . 53
6.3.2 Patterns . 53

7 D4.2b: Second report on self-healing support 62
7.1 Executive summary . 62
7.2 Contractors contributing to the Deliverable 63
7.3 Results . 64

7.3.1 Self-healing in structured overlay networks 64
7.3.2 Self-healing mechanisms in the Kompics component

model . 65
7.3.3 Self-healing mechanisms in cluster systems using Fractal 67

7.4 Papers and publications . 70

8 D4.2c: Self-healing support (software) 71
8.1 Executive summary . 71
8.2 Contractors contributing to the Deliverable 72
8.3 The SicSim Architecture . 73

SELFMAN Deliverable Year Three, Page 3

CONTENTS

9 D4.3b: Second report on self-tuning support 75
9.1 Executive summary . 75
9.2 Contractors contributing to the Deliverable 76
9.3 Results . 77

9.3.1 Load Balancing in a Distributed Key/Value store . . . 77
9.3.2 Network Size Estimation 80

9.4 Papers and publications . 83

10 D4.3c: Self-tuning support (software) 84
10.1 Executive summary . 84
10.2 Contractors contributing to the Deliverable 85
10.3 Results . 86

10.3.1 Algorithm . 86

11 D4.4b: Self-protection support 89
11.1 Executive summary . 89
11.2 Contractors contributing to the deliverable 90
11.3 Software for small world network and social network experiments 91
11.4 Initial SWN simulator . 92
11.5 Social network crawler . 97
11.6 A more efficient SWN simulator for social networks 99

12 D5.2b: Demonstrator application for J2EE (software) 102
12.1 Executive summary . 102
12.2 Contractors contributing to the Deliverable 103
12.3 Results . 104
12.4 Papers and publications . 106

12.4.1 Scalaris: Reliable Transactional P2P Key/Value Store . 106
12.4.2 A Scalable, Transactional Data Store for Future Inter-

net Services . 107

13 D5.3: Demonstrator application for Mozart (software) 108
13.1 Executive summary . 108
13.2 Contractors contributing to the Deliverable 109
13.3 Sindaca recommendation system 110

13.3.1 Introduction . 110
13.3.2 After sign-in and voting 111
13.3.3 Making a recommendation 112
13.3.4 Data storage structure 113
13.3.5 Configuration . 115

SELFMAN Deliverable Year Three, Page 4

CONTENTS

14 D5.4a: Qualitative evaluation of autonomic features of Self-
man applications 117
14.1 Executive summary . 117
14.2 Contractors contributing to the Deliverable 119
14.3 Methodology and process . 120

14.3.1 Background under discussion 120
14.3.2 Approach specificities 124

14.4 Assessment process . 128
14.4.1 Qualitative assessment of elementary AB 129
14.4.2 Qualitative assessment of global ABs 131

14.5 Experimental assessment of local ABs 133
14.5.1 PeerTV (Peerialism(P6)) 133
14.5.2 Scalaris (ZIB(P5)) . 142
14.5.3 The gPhone application (UCL(P1)) 155

14.6 Experimental assessment of autonomics in Selfman applications171
14.6.1 PeerTV (Peerialism(P6)) 171
14.6.2 Scalaris (ZIB(P5)) . 173
14.6.3 The gPhone application (UCL(P1)) 175

14.7 Discussion . 176
14.7.1 Experimental results 176
14.7.2 Evaluation methodology 178

15 D5.4b: Quantitative evaluation of autonomic features of Self-
man applications 179
15.1 Executive summary . 179
15.2 Contractors contributing to the Deliverable 181
15.3 Methodology and process . 182

15.3.1 Background under discussion 182
15.3.2 Approach specificities 184

15.4 Assessment process . 185
15.4.1 Quantitative assessment of elementary AB 185
15.4.2 Quantitative assessment of global ABs 187

15.5 Experimental assessment of local ABs 188
15.5.1 PeerTV (Peerialism(P6)) 188
15.5.2 Scalaris (ZIB(P5)) . 193
15.5.3 The gPhone application (UCL(P1)) 196

15.6 Discussion . 202
15.6.1 Experimental results 202
15.6.2 Evaluation methodology 203

SELFMAN Deliverable Year Three, Page 5

CONTENTS

16 D5.6: Evaluation of security mechanisms 205
16.1 Executive summary . 205
16.2 Contractors contributing to the deliverable 206
16.3 Self-protection support & mechanisms 207

16.3.1 Small world networks (SWN) as a kind of SON 207
16.3.2 Software component security 221

16.4 Application level security . 223
16.4.1 Security issues for Wikipedia 224

16.5 Papers and publications . 229

17 D5.7: Guidelines for building self-managing applications 232
17.1 Executive summary . 232
17.2 Contractors contributing to the Deliverable 234
17.3 Introduction . 235

17.3.1 Context of this report 236
17.3.2 General guidelines . 236
17.3.3 Phase transitions . 237
17.3.4 Interdisciplinary nature 238
17.3.5 Structure of this report 239

17.4 The general architecture . 240
17.4.1 Three-layered architecture 241
17.4.2 Combining structured overlay networks and components242
17.4.3 Failure detection . 243

17.5 Examples of the general architecture 244
17.5.1 A self-management architecture built with the Kom-

pics component model 245
17.5.2 Using self management to provide availability and scal-

ability: the Scalaris example 248
17.5.3 Using a relaxed ring to simplify overlay maintenance:

the Beernet example 250
17.6 Design rules for feedback structures 251

17.6.1 Stigmergy should be used with care 252
17.6.2 Loop management corresponds to data abstraction . . 252
17.6.3 Loop management should control a natural parameter . 252
17.6.4 Take advantage of different time scales 253
17.6.5 Complex components should be sandboxed 253
17.6.6 Use push-pull to improve regulation 254
17.6.7 Handle failures with reversible phase transitions 254

17.7 Overall design of a self-managing system 254
17.7.1 Decomposition: defining the management tasks 255
17.7.2 Orchestration: handling the interactions 255

SELFMAN Deliverable Year Three, Page 6

CONTENTS

17.7.3 Forms of interaction 256
17.7.4 Examples of interaction 257

17.8 Design rules for the self-management axes 258
17.8.1 Making it self-tuning 258
17.8.2 Making it self-protecting 259
17.8.3 Making it self-healing 263
17.8.4 Making it self-configuring 263

17.9 Conclusions . 264
17.9.1 Future work . 264

18 D5.8: Self-managing distributed collaborative drawing tool
on mobile devices 266
18.1 Executive summary . 266
18.2 Contractors contributing to the Deliverable 267
18.3 Introduction . 268
18.4 Specification . 269
18.5 Architecture . 271

18.5.1 DeTransDraw for computers 271
18.5.2 DeTransDrawid . 274

18.6 Implementation . 276
18.6.1 DeTransDraw . 276
18.6.2 DeTransDrawid . 276

18.7 Future work . 279
18.8 Papers and publications . 280

19 D6.5c: Final progress and assessment report with lessons
learned 281
19.1 Executive summary . 281
19.2 Contractors contributing to the Deliverable 282
19.3 Results . 283

19.3.1 Lessons learned . 283
19.3.2 SELFMAN and the problem of parallel research 283

A Publications 285
A.1 Overcoming Software Fragility with Interacting Feedback Loops

and Reversible Phase Transitions 286
A.2 Dealing with Network Partitions and Mergers 298
A.3 Network Size Estimation for Structured Overlays 313
A.4 The Relaxed-Ring: a Fault-Tolerant Topology for Structured

Overlay Networks . 327
A.5 Visualizing Transactional Algorithms for DHTs 350

SELFMAN Deliverable Year Three, Page 7

CONTENTS

A.6 Transactional DHT Algorithms 353
A.7 The Design of a Transactional Key-Value Store Using the

Kompics Component Model 394
A.8 Scalaris: Users and Developers Guide 406
A.9 Scalaris: Reliable Transactional P2P Key/Value Store 446
A.10 A Scalable, Transactional Data Store for Future Internet Services454
A.11 Scalaris Java Interface . 467
A.12 Developing, Simulating, and Deploying Peer-to-Peer Systems

using the Kompics Component Model 498
A.13 Practical Protocol Composition, Encapsulation and Sharing

in Kompics . 507
A.14 Kompics Programming Manual 514
A.15 A Design Methodology for Self-Management in Distributed

Environments . 531
A.16 Using Global Information for Load Balancing in DHTs 539
A.17 Node Placement in a Distributed Key/Value-store 546
A.18 Security issues in small world network routing 559
A.19 Small world networks as (semi)-structured overlay networks . . 562
A.20 Wiki credibility enhancement 568
A.21 A Toolkit for Peer-to-Peer Distributed User Interfaces: Con-

cepts, Implementation, and Applications 573
A.22 Decentralized Transactional Collaborative Drawing 584
A.23 Decentralized Transactional Collaborative Drawing (demo) . . 590

SELFMAN Deliverable Year Three, Page 8

List of Figures

2.1 Performance of Scalaris: (a) Read operation, (b) Modify op-
eration for different numbers of local threads and cluster sizes. 19

2.2 Adapted Paxos consensus algorithm with eager locking, no
read-phase, and eager notification to readers. 21

5.1 A composition of task components. 45
5.2 Kompics “HelloWorld” example. 47
5.3 Examples component architectures. 48

6.1 An example of cycle in task control flow 61

7.1 Kompics “HelloWorld” example. 65
7.2 Kompics control port. 66
7.3 Examples component architectures. 67
7.4 A managed system and its replicated management subsystem. 69

8.1 SicSim main modules . 74

9.1 Impact of global information on a randomized load balancing
algorithm. 78

9.2 The effect of different access workloads and key distributions. . 79
9.3 Imbalance of the system using difference balancing strategies

and increasing the system size. 80

10.1 A node ni with successor and predecessor and the ranges of
responsibilities . 87

10.2 Pseudo code of Karger’s algorithm. 88

11.1 Simulator Interface . 93
11.2 Ring Structure - Perfect SWN node positions 94
11.3 Ring Structure - Shuffled node positions 94
11.4 Ring Structure - Recovered node positions 95
11.5 An example of a Social Network Database 97

9

LIST OF FIGURES

12.1 Wikipedia on Scalaris. 104
12.2 Screenshot of the Bavarian Wikipedia on Scalaris. Images are

not included in the dump. 106

13.1 Sindaca’s welcome page with sign in form 111
13.2 After sign in, users can vote for suggested recommendations. . 112
13.3 Adding a new recommendation. 113
13.4 State of recommendation proposed by the user. 114
13.5 Sindaca’s relational model . 115

14.1 Organization of autonomic computing characteristics based
on ISO/IEC 9126 standard quality factors (inspired from [71]
and [98]) . 123

14.2 Hierarchy between autonomic computing characteristics (ex-
tracted from [49]) . 123

14.3 Definition of adaptation time, reaction time and stabilization
time . 124

14.4 Adaptation of ISO/IEC 9126 to autonomic computing field . . 126
14.5 Mapping between MAPE-loop stages and their duration . . . 127
14.6 PeerTV System Architecture 134
14.7 Sequence diagram of a join and stabilization. 142
14.8 Sequence diagram of the join AB 155
14.9 Ring maintenance as a feedback loop. New peer join as new

predecessor of the current responsible of its key 156
14.10Ring maintenance as a feedback loop. New peer is accepted to

join between p and r, and becomes the new successor of peer p 156
14.11Ring maintenance as a feedback loop. A peer is notified about

its new successor . 157
14.12Failure recovery sequence diagram 163
14.13Failure recovery as a feedback loop 163
14.14Finger maintenance with failure detection and correction-on-use166

15.1 Effect of Self-Optimization Level on Saving Percentage 191
15.2 Effect of Self-Optimization Level on Total Performance Score . 191
15.3 K-ary routing in Chord and Chord# 193
15.4 Performance of Scalaris: (a) Read operation, (b) Modify op-

eration for different numbers of local threads and cluster sizes. 195
15.5 Average amount of branches depending on the size of the net-

work and the quality of the connectivity. 197
15.6 Average size of branches depending on the quality of connections.199

SELFMAN Deliverable Year Three, Page 10

LIST OF FIGURES

15.7 Bandwidth consumption of ring maintenance in Chord and
the Relaxed-Ring. 199

15.8 Bootstrapping bandwidth usage on different networks. 200
15.9 Average number of hops vs number of peers. 204

16.1 Network topology of Chord, SWN, and Random Network . . . 208
16.2 Routing Success and Node Failure 210
16.3 SWN vs. Chord on Greediness 211
16.4 Average and Deviation in Routing Length vs. Greediness . . . 212
16.5 Consecutive range ID attack 213
16.6 Increase in the average number of hops due to the range attack 213
16.7 Infection Percentage vs. Malicious Nodes and Restart Proba-

bility . 215
16.8 Successful Routing vs. Malicious Nodes and Restart Probability215
16.9 Switching Percentage vs. Malicious Nodes and Restart Prob-

ability . 216
16.10Facebook social network graph of 1000 nodes. 218
16.11Node Degree Distribution . 219
16.12Clustering Coefficient Distribution 220
16.13Routing Failure Ratio . 220
16.14Routing Length . 221
16.15Wikipedia Credibility Extension 225
16.16Wikipedia Credibility Proxy 226
16.17Wikipedia Verifier Tag Extension 227
16.18Wikipedia showing a credible enhanced text 227

17.1 A self-management architecture built with Kompics 246
17.2 A feedback loop . 251

18.1 State diagram of a user . 269
18.2 On the left, the user is in Asking for locks state. On the right,

the user is in Got locks mode. 270
18.3 User interface for managing the peer 271
18.4 Example of objects . 272
18.5 Selection of an object . 273
18.6 Selection of an object already locked 273
18.7 Structure of the application for Android 274
18.8 DeTransDrawid in application launcher 275
18.9 Application is starting . 275
18.10Example of objects drawn with DeTransDraw and displayed

by DeTransDrawid . 276

SELFMAN Deliverable Year Three, Page 11

LIST OF FIGURES

18.11Minimum of code for the activity class 277
18.12Sample of code to invoke mozart 278
18.13Main function to receive messages from Java. 278

SELFMAN Deliverable Year Three, Page 12

List of Tables

7.1 Comparison of Simple Ring Unification and Gossip-based Ring
Unification. 65

14.1 Decomposition of quality factors in quality criteria in ISO/IEC
9126 standard . 122

14.2 Qualitative assessment grid for elementary AB 129
14.3 Qualitative assessment grid for global ABs 131
14.4 Scale and levels description of autonomic computing maturity 132
14.5 Joining peer assignment . 134
14.6 Failing peer assignment . 137
14.7 Overlay Optimization Process 139
14.8 Joining Node . 143
14.9 Periodic stabilization of successor’s predecessor 144
14.10Periodic stabilization . 146
14.11Periodic stabilization . 147
14.12Fingers . 148
14.13Load-balancing . 150
14.14Replica maintenance . 153
14.15Predecessor update on join . 157
14.16Predecessor and successors initialization on join 160
14.17Successor update on join . 161
14.18Handling peer leaving/failure - Correction-on-change 163
14.19Failure recovery of fingers enhanced with correction-on-use . . 166
14.20PeerTV: qualitative assessment of global ABs 171
14.21Scalaris: qualitative assessment of global ABs 173
14.22The gPhone application: qualitative assessment of global ABs 175
14.23Synthesis of qualitative assessment on local ABs coming from

Selfman applications . 176

15.1 Quantitative assessment grid for elementary AB 185

13

Chapter 1

Introduction

This document presents all the deliverables of the final year of the SELFMAN
project except the Periodic Activity Report which is submitted as a separate
document. Each deliverable is a separate chapter in this document. Relevant
published papers are included as appendices, which may be referenced from
several deliverables. In its third year, SELFMAN research has matured:

• The SicSim discrete event simulator, Kompics component model, Scalaris
transactional store, and Mozart version 1.4.0 are publicly released.

• The PeerTV product has been released and Peerialism is the subject
of a pending acquisition by GGF.

• Other software has been developed as well, to be released later: the
Beernet transactional store, the WorkflOz/FructOz/LactOz self-configuration
suite, and the MyP2PWorld application-level network and concurrency
emulator.

• Three demonstrator applications have been written using the SELF-
MAN technology, including a new one running on a network of mobile
devices (gPhones).

• In-depth research has been done on self-* services, for self configuration,
self healing, self tuning, and self protection.

• In-depth evaluations have been done of qualitative and quantitative
autonomic mechanisms in the demonstrator applications and of security
mechanisms.

• A set of guidelines has been written for building self-managing appli-
cations.

14

CHAPTER 1. INTRODUCTION

We have extended the project by four months in order to continue the mo-
mentum of SELFMAN and to prepare a successor project.

SELFMAN Deliverable Year Three, Page 15

Chapter 2

D3.1c: Final report on formal
models for transactions over
structured overlay networks

2.1 Executive Summary

Application developers using a storage system such as a relational database
or a file-system requires well-defined semantics for reading and writing data.
In a database storage layer this also include transaction functionality where
read and write over multiple data entries are Atomic, Consistent, Isolated
and Durable (ACID). We aim to develop a self-managing and scalable storage
layer supporting transactions based on Structured Overlay Networks. A sys-
tem with these properties will enable applications with higher requirements
on data consistency and transaction support. An example is the Wikipedia
demonstrator application presented in D5.2b. In this deliverable we present
the final version of the transaction algorithm including results from a perfor-
mance evaluation and we present the design of a component architecture for
the transactional DHT algorithms, using the Kompics component model.

16

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

2.2 Partners Contributing to the Deliverable

ZIB(P5), KTH(P2) and UCL(P1) have contributed to this deliverable.

ZIB(P5) ZIB has contributed on the transaction model and the DHT con-
sistency model. The largest focus during the report period was to perform
evaluation of the transaction model implementation. ZIB collaborated with
KTH to represent the transactional DHT as components using the Kompics
component model.

KTH(P2) KTH contributed by providing expertise on Kompics and on
component-based software design. KTH has collaborated with ZIB on de-
signing a component architecture for the transactional DHT algorithms, us-
ing the Kompics component model.

UCL(P1) UCL contributed to empirically validate the advantages of Paxos
consensus atomic commit over Two-phase commit. UCL and ZIB worked to-
gether on the implementation of both algorithms and demonstrated them
on a conference. UCL also adapted and extended Paxos algorithm to allow
synchronous collaborations of users.

SELFMAN Deliverable Year Three, Page 17

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

2.3 Introduction

A SON-based DHT is a self-managing storage layer providing basic item ma-
nipulation primitives such as put(key, value), for inserting a new (key, value)-
pair and get(key), for retrieving a value associated with a given key [75].
Traditionally, DHTs have been used by applications with immutable state
or weak consistency guarantees. Applications with higher requirements on
data consistency and interface flexibility are increasingly demanding easier
to manage and more scalable storage layers than what current systems can
provide [20, 65].

The transaction processing framework initially presented in D3.1a and
D3.1b enables updates and/or reads over multiple data items stored in a
DHT. In this deliverable we present the algorithm using the concepts de-
veloped in the Kompics component model. Additionally, the algorithms are
evaluated in an experimental setting using the Scalaris key/value-store. A
detailed description of the algorithm and the results is available in the tech-
nical report found in Appendix A.6.

2.3.1 Transaction algorithm described using compo-
nents

We designed a component architecture for the transactional DHT algorithms
using the Kompics component model [2, 7]. Entities in the system are mod-
eled as Kompics components. Components local to one system node com-
municate by passing events, through well-defined ports. Ports specify the
types of events communicated by components. Components residing on dif-
ferent system nodes communicate by messages. Messages are events that a
network component on the source node marshals and sends to the network
component on the destination node which unmarshals and delivers them to
other components residing on the destination node.

We present the component architecture of the system nodes, the compo-
nents with the protocols they implement and the messages they exchange.
We also enumerate the possible failure scenarios and how they should be
handled. Please consult Appendix A.7 for the full text of the design report.

2.3.2 Evaluation

We tested the performance of Scalaris and the transaction algorithm imple-
mentation on an Intel cluster up to 16 nodes. Each node has two Quad-Core
E5420s (8 cores in total) running at 2.5 GHz and 16 GB of main memory.

SELFMAN Deliverable Year Three, Page 18

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

The nodes are connected via GigE and Infiniband; we used the GigE network
for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

We tested two operations: a read and a modify operation. The read
operation reads a key-value pair. The modify operation reads a key-value
pair, increments the value and writes the result back to the distributed
Scalaris store. To guaran- tee consistency, the read-increment-write is ex-
ecuted within a transaction. The read operation, in contrast, simply reads
from a majority of the keys. The benchmarks involved the following steps:

• Start watch.

• Start n Erlang client processes in each VM.

• Execute the read or modify operation i times in each client.

• Wait for all clients to finish.

• Stop watch.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Read

1 client
2 clients
5 clients

10 clients

(a) Read throughput

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Modify

1 client
2 clients
5 clients

10 clients
50 clients

100 clients

(b) Write throughput

Figure 2.1: Performance of Scalaris: (a) Read operation, (b) Modify opera-
tion for different numbers of local threads and cluster sizes.

Figure 2.1 shows the results for various numbers of clients per VM (see
the colored graphs). In the read benchmarks depicted in Fig. 2.1(a), each
thread reads a key 2000 times while the modify benchmarks in Fig. 2.1(b)
modify each key 100 time in each thread.

As can be seen, the system scales about linearly over a wide range of
system sizes. In the read benchmarks (Fig. 2.1(a)), two clients per VM
produce an optimal load for the system, resulting in more than 20,000 read

SELFMAN Deliverable Year Three, Page 19

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

operations per second on a 16 node (=128 core) cluster. Using only one client
(red graph) does not produce enough operations to saturate the system, while
five clients (blue graph) cause too much contention. Note that each read
operation involves accessing a majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 2.1(b)) is of course lower,
but still scales nicely with increasing system sizes. Here, the best performance
of 5,500 transactions per second is reached with fifty load generators per VM,
each of them generating approximately seven transactions per second. This
results in 344 transactions per second on each server.

Note that each modify transaction requires Scalaris to execute the adapted
Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transac-
tion participants and transaction managers, plus the communication between
them. The performance graphs illustrate that a single client per VM does
not produce enough transaction load, while fifty clients are optimal to hide
the communica- tion latency between the transaction rounds. Increasing the
concurrency further to 100 clients does not improve the performance, because
this causes too much contention. Note that for the 100-clients-case, there are
actually 16*100 clients issuing increment transactions. Overall, both graphs
illustrate the linear scalability of Scalaris.

2.3.3 Visualization of the Transaction Algorithm

The focus of this demonstrator is on the study of algo- rithms for implement-
ing transactions on peer-to-peer net- works. Their visualization contributes
to the analysis and test of the protocols, verifying their tolerance to failures.
In particular, we show a DHT running two-phase commit and the Paxos
consensus algorithm.

2.3.4 Eager locking for synchronous collaboration

We have observed how Paxos consensus algorithm for atomic transactions on
DHTs (see Appendix A.6) is extremely useful for building systems with de-
centralized storage based on symmetric replication. The protocol works very
well for applications such as Wikipedia on Scalaris [65, 73] or the recommen-
dation system Sindaca (see Chapter 13). These systems are designed to sup-
port asynchronous collaboration between application’s users. The fact that
Paxos consensus protocol works with optimistic locking fits well asynchronous
collaboration. However, this locking strategy limits the functionality of syn-
chronous collaborative applications such as DeTransDraw, a collaborative
drawing tool (see Chapter 18).

SELFMAN Deliverable Year Three, Page 20

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

DeTransDraw has a shared drawing area where users actively make up-
dates and observe the changes made by other users. If two users make mod-
ifications to the same object at the same time, at the end of the their work,
when they decide to commit, only one of them will get her changes com-
mitted, and the other one will loose everything. Because users are working
synchronously, the probability that this happens is much larger than in ap-
plications such as Wikipedia or Sindaca. This is why a pessimistic approach
with eager locking is needed.

Figure 2.2: Adapted Paxos consensus algorithm with eager locking, no read-
phase, and eager notification to readers.

We have adapted Paxos to support eager locking adding a notification
mechanism for the registered readers of every shared item. We have imple-
mented this new protocol in Beernet [54] with the possibility of dynamically
choosing between the two Paxos protocols. Like that, the application can de-
cide the protocol to be used depending on the functionality that is provided.

Figure 2.2 depicts the adapted protocol with eager locking. A new role has
been added: the readers. The read-phase and commit-phase from the original
protocol has been replaced by locking-phase and commit-phase. The read
phase disappears because the transaction manager tries eagerly to get the
needed to lock to proceed with the transaction. Once the locks are collected,
the client is informed of the result, and all other readers are informed too.
The goal is to prevent users from trying to start working on items that are
already locked. The client of the transaction starts working on the changes
on the items as soon as the transaction begins. Starting to work on an item

SELFMAN Deliverable Year Three, Page 21

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

is actually the trigger of the transaction. The thicker grey line on the client
represents the working time of the client. The line turns green if the locks
are granted after the voting process is finished. The read line on the readers
of the item prevents them to work on the locked items as long as the client
has not finished the modifications.

When the user stops making modifications, it triggers the commit-phase.
The transaction manager can take the decision immediately because the ma-
jority of the votes have been already collected at this stage. The decision is
propagated no only to the client, the replicated transaction managers and
transaction participants, as in the original Paxos algorithm, but also to the
readers. Like this, the readers get notified about the release of the lock and
they get the update of the modified items. Because there is no read-phase,
it is important that the decision is transmitted together with the new state
of the item, and not only a commit/abort message.

Using this adapted protocol we have successfully implemented DeTrans-
Draw (see Chapter 18), and we will demonstrate it [56] during the extension
period of the project.

2.4 Papers and publications

Transactional DHT Algorithms

We present a framework for transactional data access on data
stored in a DHT. It allows to atomically read and write items
and to run distributed transactions consisting of a sequence of
read and write operations on the items. Items are symmetri-
cally replicated in order to achieve durability of data stored in
the SON. To provide availability of items despite the unavail-
ability of some replicas, operations on items are quorum-based.
They make progress as long as a majority of replicas can be ac-
cessed. Our framework processes transactions optimistically with
an atomic commit protocol that is based on Paxos atomic com-
mit. We present algorithms for the whole framework with an
event based notation. Additionally we discuss the problem of
lookup inconsistencies and its implications on the one-copy serial-
izability property of the transaction processing in our framework
(see Appendix A.6).

SELFMAN Deliverable Year Three, Page 22

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

Decentralized transactional collaborative drawing

When multiple users collaboratively edit a vector image, avoiding
conflicts requires synchronizing exclusive access to the objects of
the image. This synchronization needs a true concurrency con-
trol algorithm. One of the most common strategy to achieve this
synchronization is to use a centralized architecture where a sin-
gle server becomes the transactional manager. Unfortunately, a
central point of control is also a single point of failure. This pa-
per proposes a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with repli-
cated storage. As a consequence, there is a gain in fault-tolerance
and the transactional protocol eliminates the problem of network
delay improving usability and network transparency. The same
result can be applied to text edition and other collaborative edit-
ing tasks (see Appendix A.22).

Visualizing Transactional Algorithms for DHTs

The focus of this demonstrator is on the study of algorithms for
implementing transactions on peer-to-peer networks. Their visu-
alization contributes to the analysis and testing of the protocols,
verifying their tolerance to failures. In particular, we show a DHT
with symmetric replication running two-phase commit and the
Paxos consensus algorithm. We validate the advantages of Paxos
by introducing failures on the transaction managers in both pro-
tocols, where Paxos is the only one being able to tolerate such
failure (see Appendix A.5).

The Design of a Transactional Key-Value Store Using the Kompics
Component Model

We document the architectural design of a transactional key-value
store, based on a distributed hash-table (DHT). The DHT is built
on top of the Chord# overlay network. Data items are replicated
within the DHT using a key-based replication scheme, namely
symmetric replication. Replica agreement for committing trans-
actions is achieved using the Paxos Commit protocol. The system
assumes a trusted deployment infrastructure, like a data-center
or a set of connected data-centers. We model the system en-
tities as Kompics components. We also describe the messages
exchanged by the components of the system as well as enumerate

SELFMAN Deliverable Year Three, Page 23

CHAPTER 2. D3.1C: FINAL REPORT ON FORMAL MODELS FOR
TRANSACTIONS OVER STRUCTURED OVERLAY NETWORKS

the possible failure scenarios and how they should be handled
(see Appendix A.7).

SELFMAN Deliverable Year Three, Page 24

Chapter 3

D3.2b: Report on replicated
storage service over a
structured overlay network

3.1 Executive summary

This deliverable reports on the replicated storage service over structured
overlay networks. It is based on Chord# and the transaction framework
developed in WP3. It implements so called symmetric replication to increase
failure tolerance and includes basic load-balancing schemes based on the
self-tuning techniques developed in WP4. This work is complemented by the
replicated storage service developed on Beernet based on the relaxed-ring,
which also offers a notification layer and an eager locking protocol.

25

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

3.2 Contractors contributing to the Deliver-

able

ZIB(P5) and UCL(P1) have contributed to this deliverable.

ZIB(P5) ZIB has contributed on the design and implementation of the
replicated storage service: Scalaris.

UCL(P1) UCL has contributed with the design and implementation of the
replicated storage service: P2PS/Beernet.

SELFMAN Deliverable Year Three, Page 26

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

3.3 Results

The replicated storage service is based on Chord# and the transaction frame-
work developed in WP3. It is completely developed in Erlang and released
under an Apache License as Open-Source. The latest release is available at
http://code.google.com/p/scalaris.

The current release implements so called symmetric replication with a
configurable replication degree r. Every item is stored under r keys on the
ring and the transactions can be performed on an item as long as the majority
of replicas is available.

Some of the self-tuning techniques developed in WP4, especially load
balancing, were implemented. In contrast to Chord, Chord# is a non-hashing
structured overlay. Whereas Chord can rely on hashing to evenly spread the
load over all participating nodes, Chord# has to implement explicit load-
balancing.

For future version, we are investigating how to implement replica place-
ment policies. These policies can be used to place replicas nearby the users
to decrease access latency. At the same time, the placement policies can be
used to host the replicas in different failure domains to minimize the effects
of correlated node failures.

We are also investigating, how to design the overlay so that it can au-
tonomously infer the network topology, i.e. how many datacenters are there
and where are they. Once the network topology is known, the overlay can
adapt itself to the environment to maximize failure tolerance and minimize
maintenance cost.

Further details about the service including the user and developer guide
are included in the appendix.

Complementary, we have also implemented a symmetric replication stor-
age service on Beernet [54] influenced by the work developed in Scalaris. This
work is released as Free Software under X11/MIT License, and is available at
http://beernet.info.ucl.ac.be . The main difference of this implemen-
tation is that it also includes two other protocols: Two-phase commit and
Paxos with eager locking.

The reason for including Two-phase commit is purely academic. We
have shown already in Chapter 2 and Appendix A.6 that two-phase commit
does not provide enough fault-tolerance in peer-to-peer networks because of
relying too much on the survival of the transaction manager. This imple-
mentation allowed us to evaluate and validate our theoretical analysis, and
we demonstrate it in Appendix A.5.

Beernet release does not include techniques for load balancing, but it
provides an adaptation of the Paxos consensus algorithm with a pessimistic

SELFMAN Deliverable Year Three, Page 27

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

approach. This provides eager locking that helps building functionalities for
synchronous collaborative applications. This protocol, as reported in more
details in Chapter 2, is enriched with a notification layer that sends notifica-
tions to a set of readers whenever an item is updated. Two implementations
were implemented on this replicated storage service: Sindaca, reported in
Chapter 13, and DeTransDraw, reported in Chapter 18.

SELFMAN Deliverable Year Three, Page 28

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

3.4 Papers and publications

3.4.1 Scalaris: Users and Developers Guide

Florian Schintke, Thorsten Schütt. Scalaris: Users and Developers Guide
(see A.8).

3.4.2 Scalaris: Reliable Transactional P2P Key/Value
Store

Thorsten Schütt, Florian Schintke, Alexander Reinefeld. Scalaris: Reliable
Transactional P2P Key/Value Store. ACM SIGPLAN Erlang Workshop,
September 2008 (see A.9).

We present Scalaris, an Erlang implementation of a distributed
key/value store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this imple-
ments the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing,
arbitrary key-ranges can be assigned to nodes, thereby allowing
a better load-balancing than would be possible with traditional
DHTs. Consequently, Scalaris can be tuned for fast data ac-
cess by taking, e.g. the nodes’ geographic location or the regional
popularity of certain keys into account. This improves Scalaris’
lookup speed in datacenter or cloud computing environments.

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to
access Scalaris.

Additionally, we present a generic design pattern to implement a
responsive server in Erlang that serializes update operations on a
common state, while concurrently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. Wiki-
pedia is a challenging application. It requires—besides thousands
of concurrent read requests per seconds—serialized, consistent
write oper ations. For Wikipedia’s category and backlink pages,

SELFMAN Deliverable Year Three, Page 29

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

keys must be consistently changed within transactions. We dis-
cuss how these features are implemented in Scalaris and show its
performance.

3.4.3 A Scalable, Transactional Data Store for Future
Internet Services

Alexander Reinefeld, Florian Schintke, Thorsten Schütt, Seif Haridi.A Scal-
able, Transactional Data Store for Future Internet Services. EU Future of
the Internet Conference, May 2009 (see A.10).

Future Internet services require access to large volumes of dy-
namically changing data records that are spread across different
locations. With thousands or millions of distributed nodes storing
the data, node crashes or temporary network failures are normal
rather than exceptions and it is therefore important to hide fail-
ures from the application.

We suggest to use peer-to-peer (P2P) protocols to provide self-
management among peers. However, today’s P2P protocols are
mostly limited to write-once/read-many data sharing. To extend
them beyond the typical file sharing, the support of consistent
replication and fast transactions is an important yet missing fea-
ture.

We present Scalaris, a scalable, distributed key-value store. Scalaris
is built on a structured overlay network and uses a distributed
transaction protocol. As a proof of concept, we implemented a
simple Wikipedia clone with Scalaris which outperforms the pub-
lic Wikipedia with just a few servers.

3.4.4 Visualizing Transactional Algorithms for DHTs

Boris Mej́ıas, Mikael Högqvist, Peter Van Roy. Demonstrator at the Eighth
International IEEE Peer-to-peer Conference, September 2008.

This demonstrator evaluates the advantages of Paxos consensus
algorithm over Two-phase commit. It is implemented using the
replicated storage service of P2PS/Beernet (see A.5).

SELFMAN Deliverable Year Three, Page 30

CHAPTER 3. D3.2B: REPORT ON REPLICATED STORAGE
SERVICE OVER A STRUCTURED OVERLAY NETWORK

3.4.5 DeTransDraw: Decentralized transactional col-
laborative drawing

Boris Mej́ıas, Jérémie Melchior, Yves Jaradin. Demonstrator at the Internet
of Services 2009 Collaboration Meeting.

This demonstrator is a collaborative drawing tool where users
work synchronously, taking advantage of the eager locking mech-
anism implemented in P2PS/Beernet, together with the notifica-
tion layer (see A.23).

SELFMAN Deliverable Year Three, Page 31

Chapter 4

D3.3b: Report on simple
database query layer for
replicated storage service

4.1 Executive summary

This deliverable present the APIs for Scalaris. They allow applications to
run arbitrary transactions on the key-value pairs stored in the database. A
simple API allows to read and write single key-value pairs. A second API
allows to specify custom transactions. This deliverable also presents the
API in Mozart to make use of the replicated storage service implemented in
P2PS/Beernet.

32

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

4.2 Contractors contributing to the Deliver-

able

ZIB(P5) and UCL(P1) have contributed to this deliverable.

ZIB(P5) ZIB has contributed on the simple database query layer for Scalaris.

UCL(P1) UCL has contributed on Beernet’s replicated storage API.

SELFMAN Deliverable Year Three, Page 33

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

4.3 Results

4.3.1 Scalaris

Scalaris provides two different ways for accessing data stored in the database:

• the Java API and

• the JSON API.

The former is a Java library which can talk directly to Scalaris using the
Erlang native network protocol. The latter uses the so called JSON-RPC
mechanism to talk to Scalaris. JSON-RPC uses HTTP for the transport
layer and JSON to serialize data. There are JSON libraries for most major
programming languages.

For Java, the Java API will perform better because the serialization over-
head is smaller than for JSON. But JSON is supported by more languages.

The Scalaris class The de.zib.scalaris.Scalaris class provides
methods for reading and writing values, publishing topics, subscribing to
urls and getting a list of subscribers with both erlang objects
(com.ericsson.otp.erlang.OtpErlangObject) and Java
java.lang.String objects.

Example:

try {
Scalaris sc = new Scalaris();
String value = sc.read("key");

} catch (ConnectionException e) {
System.err.println("read failed: " + e.getMessage());

} catch (TimeoutException e) {
System.err.println("read failed with timeout: " + e.getMessage());

} catch (UnknownException e) {
System.err.println("read failed with unknown: " + e.getMessage());

} catch (NotFoundException e) {
System.err.println("read failed with not found: " + e.getMessage());

}

See the de.zib.scalaris.Scalaris class documentation for more de-
tails.

SELFMAN Deliverable Year Three, Page 34

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

The Transaction class The de.zib.scalaris.Transaction class pro-
vides means to realise a scalaris transaction from Java. After starting a trans-
action, there are methods to read and write values with both erlang objects
(com.ericsson.otp.erlang.OtpErlangObject) and Java java.lang.String
objects. The transaction can then be committed, aborted or reset.

Example:

try {
Transaction transaction = new Transaction();
transaction.start();
String value = transaction.read("key");
transaction.write("key", "value");
transaction.commit();

} catch (ConnectionException e) {
System.err.println("read failed: " + e.getMessage());

} catch (TimeoutException e) {
System.err.println("read failed with timeout: " + e.getMessage());

} catch (UnknownException e) {
System.err.println("read failed with unknown: " + e.getMessage());

} catch (NotFoundException e) {
System.err.println("read failed with not found: " + e.getMessage());

} catch (TransactionNotFinishedException e) {
System.out.println("failed: " + e.getMessage());
return;

}

See the de.zib.scalaris.Transaction class documentation for more
details.

JSON API The JSON API is described in detail in the Scalaris user
and developer guide (see A.8).

4.3.2 Beernet

Currently, nodes on Beernet [54] are not created with transactional support
by default. Therefore, the API for getting access to the storage service of
Beernet begins with the creation of nodes. The notation inherits systax from
P2PS [66] because the system is still in migration state. The following code
is an example for creating a node with transactional support.

SELFMAN Deliverable Year Three, Page 35

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

import
Beernet at ‘P2PSNode.ozf’

define
Node = {Beernet.newP2PSNode args(transactions:true)}

The most basic support provided by Beernet corresponds to the DHT
operations put and get. This operations do not replicated the value of the
item, but they are also part of the implementation of the transactional layer
which actually realizes the replication. What follows is an example of how
put and get can be used.

{Node put(key value)}
Value = {Node get(key $)}

To use the transactional layer, the user must write a procedure with one
argument, typically named Obj. This argument represents a transactional
object, which is an instance of the transaction manager that triggers the
transaction. The object receives the operations read and write, which are
almost equivalent to put and get. The main semantic difference between the
operations is that if the transaction is aborted, write has no effect on the
stored data. And if the transaction succeeds, the value is written at least
on the majority of the replicas. Other operations received by the transac-
tional object are commit and abort, to explicitly trigger those actions on the
protocol.

To run the transaction, user must invoke the method executeTransaction,
which receives three arguments. The procedure containing the operations, a
port to receive the outcome of the transaction, and the protocol to be used
for running the transaction. Note that at the creation of the node, we did
not specify the protocol to be use by every transaction. This is because the
protocol can be chosen dynamically, allowing the users to choose the best
suitable protocol for every functionality. What follows is a complete example
for writing two items with key/value pairs: hello/“Charlotte′′ and foo/bar.
The outcome of the transaction appears on variable Stream, which is the
output of port Client.

SELFMAN Deliverable Year Three, Page 36

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

declare
Stream Client
Trans = proc {$ Obj}

{Obj write(hello ‘‘Charlotte’’)}
{Obj write(foo bar)}
{Obj commit}

end
{NewPort Stream Client}
{Node executeTransaction(Trans Client paxos)}
if Stream.1 == commit then
{Browse ‘‘transaction succeeded’’}

end

To retrieve the values the user passes a variable which has no value yet.
The value is given by the transactional object. The next example shows how
to retrieve the values stored under keys hello and foo.

declare
V1 V2
Trans2 = proc {$ Obj}

{Obj read(hello V1)}
{Obj read(foo V2)}

end
{Node executeTransaction(Trans2 Client paxos)}
{Browse ‘‘for hello I got’’#V1}
{Browse ‘‘for foo I got’’#V2}

Note that it is not necessary to catch exceptions using Beernet, because
the outcome is reported on the stream of the client’s port. If there is a failure
on the transaction, the outcome will be abort, and the user will be able to
take the corresponding failure recovery action.

SELFMAN Deliverable Year Three, Page 37

CHAPTER 4. D3.3B: REPORT ON SIMPLE DATABASE QUERY
LAYER FOR REPLICATED STORAGE SERVICE

4.4 Papers and publications

4.4.1 Scalaris: Users and Developers Guide

Florian Schintke, Thorsten Schütt. Scalaris: Users and Developers Guide
(see A.8).

4.4.2 Scalaris Java Interface

Nico Kruber, Thorsten Schütt. Scalaris Java Interface (see A.11).

SELFMAN Deliverable Year Three, Page 38

Chapter 5

D4.1b: Second report on
self-configuration support

5.1 Executive summary

The work on self-configuration support during the third year of the Selfman
project has covered several inter-related aspects:

1. The formal definition in the Alloy specification language of a reference
model for component deployment.

2. The continued development of an Oz/Mozart framework for the con-
struction of self-configurable and self-deployable components, now com-
prising the FructOz, LactOz and WorkflOz libraries.

3. The development and implementation of self-configuration mechanisms
in the Kompics component model, which provides a specialization for
event-based programming of the Fractal model, also used by FructOz.

4. The development of an self-configuration mechanisms in the PeerTV
platform.

5. The development of an infrastructure for dynamic deployment in a
WAN-based overlay network. Part of this infrastructure includes a
NAT-resilient gossip-based peer-sampling service, and a protocol for
dynamic slicing of resources under application profiling constraints.

The last item will be dealt with in the final deliverable on self-configuration
due at the end of the project extension.

39

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

5.2 Contractors contributing to the Deliver-

able

INRIA(P3), Peerialism(P6), and KTH(P2) have contributed to this deliver-
able.

INRIA(P3) INRIA has worked on providing self-configuration mecha-
nisms in the Fractal component model.

KTH(P2) KTH worked on providing self-configuration mechanisms in the
Kompics component model.

Peerialism(P6) Peerialism has worked on providing self-configuration mech-
anisms for connectivity in the PeerTV platform.

SELFMAN Deliverable Year Three, Page 40

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

5.3 Results

This section is dedicated to report on the results of year three in this deliv-
erable.

5.3.1 A formal specification of the Fractal deployment
model

In deliverable D4.1a, the first report on self-configuration produced in year
two of the project, we had described informally a “reference model” for de-
ployment which was broadly supported by the FructOz implementation (also
described in D4.1a). We have now developed a formal specification for this
programming-language-independent deployment model, developed in the Al-
loy specification language. This specification refines considerably the infor-
mal one, adding in particular crucial concepts to ensure that the model is
general yet precise enough to model existing software deployment tools and
concepts. The specification builds on the formal specification in Alloy of the
Fractal component model, reported in deliverable D2.3b, produced in year
two of the project.

We have developed the Fractal deployment model with three specific ob-
jectives in mind:

1. To ensure that one could describe, using the model, heterogeneous de-
ployment processes, i.e. deployment processes involving executables in
different programming languages, relying on different deployment tools
at different software layers (e.g. deploying Java applications using OSGI
bundles for Java code and RPM packages for the supporting C libraries
in a Linux environment).

2. To make explicit relations between different entities involved in a de-
ployment process so as to be able to monitor them and to control
them in a self-managed distributed environment, where configuration
management extends as much to running components than to the exe-
cutables they depend upon.

3. To develop a formal model that can ultimately be used to reason about
deployment processes, deployment-related functions and abstractions,
and to characterize correctness conditions associated to such functions
and processes.

Interestingly, although there have been numerous works on software de-
ployment, especially, during the past decade, on architecture-based approaches

SELFMAN Deliverable Year Three, Page 41

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

to deployment (approaches that exploit software architecture descriptions to
drive deployment processes), there are few works that address the above ob-
jectives. The three works most closely related to the Fractal deployment
model are the Buildbox model [50], the OpenRec framework [86], and the
Deployware framework [22]. The OpenRec framework uses the Alloy spec-
ification to formally characterize component configurations and to describe
reconfiguration operations, however it supports only a non-hierarchical com-
ponent model, and does not provide an analysis of deployment concepts and
operations. The Builbox model provides a formal analysis of key deploy-
ment operations by means of a labelled transition system which are close to
those described in our deployment model, but the Buildbow model does not
consider deployment in a distributed context, and does not provide a modu-
lar analysis of the key components involved in a deployment process, a key
requirement to address our second objective above. The Deployware frame-
work addresses heterogeneous deployment processes, and relies on a UML
meta-model to describe key deployment abstractions, which are modelled,
as in our work, as Fractal components. The Deployaware metamodel is not
formally specified, however, and provides an insufficiently detailed analysis
in comparison to our model to meet our second objective.

The main concepts in the Fractal deployment model belong roughly to
three main categories: software unit concepts, that capture the notion of
executable software; transformer concepts, that capture basic forms of oper-
ations that can be applied to executables in the process of delivering them in
a distributed environment; and support concepts, that capture key function-
ality required to enact the actual deployment of executables in a distributed
environment. All these different concepts are specified as Fractal compo-
nents, which makes the model fully recursive: components that implement
a deployment process can themselves be deployed and configured, using the
same abstractions and supporting mechanisms.

The software unit concepts are: software unit (SU), software unit sys-
tem (SUS), and descriptor. A software unit corresponds to some software
executable. Each software unit belongs primitively to a software unit sys-
tem, i.e. a set of rules, APIs, or tools that define an executable format, and
the operations that can be applied to it. For instance, an RPM package
[1] corresponds to a software unit, while the set of tools, conventions, for-
mat rules, etc that define how RPM packages are formed and how they can
be manipulated (mostly implicitly by the RPM tools), constitute a software
unit system. Ditto for OSGI bundles (software units) and the OSGI spec-
ifications and tools (software unit system) [63]. From the point of view of
formal model, one distinguishing feature of a software unit system is that it
constitutes a naming context, as defined by the Fractal specification. This

SELFMAN Deliverable Year Three, Page 42

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

allows to freeely combine within the same deployment process, software units
from different software unit systems, with no risk of confusion.

A software unit is charecterized primarily by its set of descriptors. These
are typed interfaces, i.e. access points for interaction with a component, ac-
cording to the Fractal model, and can be server interfaces or client interfaces.
The server descriptors of a software unit define the elements that are pro-
vided by a software unit (its exports – which can be as simple as sets of
procedures or values), whereas the client descriptors define the elements it
depends upon (its imports – which will be provided by other software units).
As with general Fractal components, software units can be bound with other
components (which may or may not be other software units), and can be
composites i.e. contain subcomponents (typically, other software units). De-
scriptor types abstract constraints attached to imports, such as versioning
constraints.

The transformer concepts encompass the following components: launcher,
installer, and resolver. A launcher takes as input a set of software units and
produces a running component. An installer takes as input a set of soft-
ware units and produces other software units. A resolver takes as input
a set of software units and binds the client and server descriptors of these
software units, thus (possibly only partially) resolving the dependencies be-
tween the given software units. Deploying an executing component thus
typically involves a combination of installers, resolvers, and launchers. The
software architecture of an application, as envisaged with the Fractal deploy-
ment model, thus encompasses both the relations (binding and containment)
between running components, but also the relations between running compo-
nents and software units that have been transitively involved in their launch.

The last concepts of the Fractal deployment model are: (deployment)
node and (software unit) repository. A node is an abstraction of a set of
computing resources, that are capable of executing components. We require
a node to comprise at least a binding factory, to support some form of re-
mote communication with its environment (other computing nodes), and a
launcher, to support the creation of executing components from some soft-
ware units. A repository is a store of software units, possibly from different
software unit systems, and that provides access to software units through
their names or their types.

5.3.2 Self-configurable dynamic architectures in Oz

The FructOz and LactOz Oz/Mozart libraries, described in deliverable D4.1a
from year two of the project, have been refined and evaluated in particular
in relation to the work which appears closest to it, the Smartfrog system

SELFMAN Deliverable Year Three, Page 43

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

[29]. They are described in detail in C. Taton PhD thesis (in French). To
complement these two libraries, we have developed the WorkflOz library, also
developed in Oz/Mozart, and that builds on FructOz. WorkflOz can be un-
derstood an Oz-based framework for defining component-based workflows.
The main goal of WorkflOz is to enable programmers to write succinct de-
scriptions of complex processes, involving both control flow and data flow, in
a compositional and intuitive style. To achieve this goal, WorkflOz provides
direct support for all common workflow patterns, which represent widely
used, recurring constructs in modern workflow management systems and lan-
guages. Unlike most workflow management systems and languages, WorkflOz
can be extended with abstractions that capture new patterns, which can be
assembled to express arbitrary workflow situations.

WorkflOz is based on the concept of a task, which represents a unit of
computation that can be in different states (e.g., executing, terminated). A
task has a set of input/output pins through which it receives/emits data val-
ues while it is executing. WorkflOz enables composing tasks using operators
that capture workflow patterns. For example, consider the operator Seq that
captures the sequence pattern. The following expression defines a composite
task T3 that represents the sequence of tasks T1 and T2.

T3={Seq T1 T2}

WorkflOz provides a set of operators similar to Seq (e.g., Sync, Parallel)
which can be combined to express complex workflows and corresponding com-
ponent configurations. For example, the following simple expression creates
the component configuration depicted in Figure 5.1:

T5={Seq {MultiMerge {Sync T1 T2} T3} T4}

Primitive tasks can be created using helper functions, such BasicWrapper.
This function takes as input an Oz unary function and creates a primitive
task with one input pin and one output pin. When this task is executed, it
invokes the Oz function with the input pin value, and emits the result to the
output pin. Using BasicWrapper, T1 and T2 could be defined as follows:

T1={ BasicWrapper fun {$ X} X+1 end}

T2={ BasicWrapper fun {$ X} X*2 end}

T3 can be executed or cancelled using the following calls:

{Execute T3}

{Cancel T3}

SELFMAN Deliverable Year Three, Page 44

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

Sync

T1

T2

T3 T4

MultiMerge

Seq

Figure 5.1: A composition of task components.

Pins can be accessed directly to send or read data. For example, one can
send the value 8 to the single input pin of T3 (the input pin identifier is 1)
through the call:

{Send T3 1 8}

Tasks are realised as FructOz components with a particular type of con-
troller (i.e., the task controller) and specially-marked server and client in-
terfaces representing input and output pins respectively. Composite and
primitive tasks correspond to composite and primitive FructOz components.
Input and output pins are realised respectively as server and client interfaces.
Following the FructOz design, pins are connected through bindings and hold
a potentially unbounded list of values (i.e., an Oz stream). Input and output
pins are identified using their order (from 1 to the number of input/output
pins). When a task is executing, it continuously reads values from its input
pins and writes values to its output pins, thus supporting streaming-style
data flow. Tasks may be primitive or composite, containing any number of
interconnected sub-tasks.

Tasks expose a task controller interface through which their lifecycle is
managed. A basic task controller is defined in WorkflOz, in which tasks can

SELFMAN Deliverable Year Three, Page 45

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

be in one of four states: Ready, Executing, Cancelling, Terminated. The task
controller exposes operations to trigger state changes (i.e., execute and can-
cel), to obtain the current state of the task, and to subscribe/unsubscribe to
events corresponding to state changes (e.g., from Cancelling to Terminated).
These operations are invoked by components external to the task (e.g., task
controllers of containing components). The transitions from Executing and
Cancelling to Terminated are triggered by the task itself when its computa-
tion or the cancellation process are terminated.

WorkflOz provides operators for creating different types of composite
tasks, each type corresponding to a particular workflow pattern. A type
of composite task (e.g., sequence type) specifies data- and control-flow de-
pendencies between its sub-tasks. Specifically, it specifies the number of pins
of the composite and the binding structure among sub-tasks and the com-
posite. Moreover, it specifies control and lifecycle dependencies between the
composite and its sub-tasks (e.g., the composite terminates when any of its
subtasks terminate). Those dependencies are implemented by the task con-
troller of the composite task using the controllers of the sub-tasks. In the
previous sequence example, the task controller of T3 uses the task control
interface of T1 to register for state change events; when a termination event
is received, the controller triggers the execution of T2 through the T2 task
controller.

Extending WorkflOz with support for a new pattern involves (1) defin-
ing the control- and data-flow semantics of the corresponding composite task,
and (2) implementing the associated task controller and any supporting func-
tionality. This implementation is facilitated by utility classes for managing
the task lifecycle, sending events, and accessing and connecting pins.

5.3.3 Self-configuration mechanisms in the Kompics
component model

Here we describe the Kompics mechanisms that enable the construction of
self-configuring systems. Other details of the Kompics component model
are provided in appendixes A.12 and A.13 which contain published papers
describing Kompics. An initial Kompics programming manual is included in
Appendix A.14.

Kompics components communicate with other components in their en-
vironment by asynchronously sending and receiving events through bidirec-
tional typed ports. A simple “Hello World” example is given in Figure 5.2.

Kompics components are configured within the implementation language.
Configuration operations are fundamentally part of the model. They allow

SELFMAN Deliverable Year Three, Page 46

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

Component 2

Component 1

Hello

World

Hello

World

h2

h1
start

+

+

required
port provided

port
x

Hello

Hello World

World

Figure 5.2: Component1 requires a HelloWorld port
which allows it to send out Hello events and re-
ceive World events. Component2 provides a Hel-
loWorld port which allows it to receive Hello events
and send out World events. Since their HelloWorld
ports are connected by channel x, Component1 and
Component2 can communicate. The start handler
of Component1 triggers a Hello event on its Hel-
loWorld port. This Hello event is received by Com-
ponent2 and handled by its h2 handler which trig-
gers a World event. This World event is received by
Component1 and handled by its h1 handler.

the architecture of the system to evolve dynamically. A few example of com-
ponent architectures are given in Figure 5.3. The basic component configu-
ration operations are: create, destroy, connect, disconnect, subscribe,
and unsubscribe.

The create operation takes a component definition and creates a new
component instance, as a child component of the component invoking create.
This enables the dynamic creation of components inside a running system,
in the same way as new objects are created in an object-oriented language
runtime. When a new component is created from a component definition, the
declared required and provided ports are automatically created, and they are
visible in the scope of the creating component (the parent component). None
of the new component’s ports are connected immediately after the component
is instantiated. At the time of instantiation, the new component’s construc-
tor is executed. This may lead to the recursive creation of subcomponents
inside the newly created component.

Component instances are explicitly destroyed using the destroy oper-
ation. This is used by a parent component to destroy one of its children
components. All external ports of the child component need to be discon-
nected and the parent component must have no event handler subscribed to
any of these ports. The destruction of the child component is disallowed if
these conditions are not met. The destruction of a component leads to the
recursive destruction of all subcomponents of the destroyed component.

For two sibling components to be able to communicate, they must have
compatible ports of opposite polarity, and these ports must be connected by
a channel. For example, in the left architecture of Figure 5.3, components C1
and C2 can communicate through their ports of type Q, because these ports
are connected by channel x1. Immediately after the Main component has

SELFMAN Deliverable Year Three, Page 47

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

MainMain

C1

C2

C2

p3:Q

p4:R

x2

C1

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:Q

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

p3:Q

p4:S

x2

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:S

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

Main Main

C1

C1

C2

p3:Q

p4:R

x1

p1:P

h1

3

C3

p5:R

p6:S

1

x2

h2

p2:S

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

C2

p3:Q

p4:R

x2

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:R

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

Figure 5.3: Examples component architectures.

created C1 and C2, they are disconnected. Main would execute a connect

operation to connect ports p2 and p3, and hence enable the communication
between C1 and C2. A connect operation can be used to connect both the
compatible ports of two sibling components (as in the example above), and
a port of a child component with a compatible port of the parent component
(for example ports p4 and p2 in the architecture on the right of Figure 5.3).
A disconnect operation disconnects two connected ports.

To subscribe one of its event handlers to a port visible within its encap-
sulation scope, a component executes a subscribe operation. A subscribe

operation for port p and handler h is allowed only if the type of events
handled by h are flowing through port p in the direction of the component
(towards the component). A component executes an unsubscribe opera-
tion to unsubscribe an event handler from a port to which it was previously
subscribed.

The create, destroy, connect, disconnect, subscribe, and unsubscribe

operations enable components to dynamically change the architecture of a
system by adding and/or removing components and re-wiring their inter-
action. These operations provide basic primitives for implementing self-
configurating Kompics systems.

5.3.4 Self-configuration mechanisms in PeerTV

The main Self-Configuration aspect in the PeerTV platform is the one en-
titled with the task of coordinating the connection establishment process

SELFMAN Deliverable Year Three, Page 48

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

between peers. This task is particularly challenging as peers in consumer
networks present many connectivity limitations due mainly to the presence
of Network Address Translators and Corporate Firewalls. We hereby provide
a short summary about the work done by Peerialism(P6)to tackle this issue.

Dealing with Network Address Translators (NATs) and Firewalls is nowa-
days an essential need for any P2P application. The techniques used to deal
with those have been more or less “coined” and there are several widely-used
methods[23][?]. Some of them are rather a defacto standard like STUN[?],
TURN[69], ICE[68]. In the context of our a P2P live video streaming appli-
cation PeerTV, we are mainly concerned with media streaming using UDP
and therefore the scope of this paper is UDP NAT traversal. Moreover, we
are strictly interested in solutions that do not use relay, such as TURN for
instance, due to the high bandwidth requirements of video streaming. We
have found lots of of previous work on the subject that aims to answer the
following question: For every t in the set of NAT types T , which s in the
set of traversal strategies S should be used to traverse t? The answer is of
the form f : T → S. i.e. the following is an example with a couple of types
f : { Simple Hole Punching, Port-Prediction } → { Full-Cone, Symmetric}
[95]. However, the point which we found not gaining enough attention is
that the presence of a feasible traversal technique that enables two peers be-
hind NAT to communicate depends on the “combination” of the NAT types
and not on the type of each peer separately. Thus, the question should be:
“Given 2 peers pa and pb with respective NAT types t(pa) and t(pb), which
traversal strategy s is needed for p1 and p2 to talk? The answer is of the form
f : T ×T → S”, i.e we need to analyze traversable combinations rather than
traversable types.

Most works contain a few examples of combinations for explanation pur-
poses [95][?]. However, we have failed to find any comprehensive analysis
that states, for every possible combination of NAT types, whether direct (i.e.
with no relay) connectivity is possible and how. The analysis is more topical
given that NAT community is switching from the classical set of NAT types
Tclassic = { Full-Cone, Restricted-Cone, Port-Restricted, Symmetric} [?] to
a more elaborate set that defines a NAT type by a combination of three
different policies, namely, port mapping, port allocation and port filtering
[?].

In this work, we have conducted a comprehensive analysis of what com-
binations of NAT types are traversable. We have shown that using a semi-
formal reasoning that covers all cases and we provided a slightly augmented
versions of the well-known traversal techniques and shown which ones are
applicable for which combinations.We have shown also that about 80% of all
possible combinations are traversable.

SELFMAN Deliverable Year Three, Page 49

CHAPTER 5. D4.1B: SECOND REPORT ON SELF-CONFIGURATION
SUPPORT

5.4 Papers and publications

The work reported in this deliverable has been published as follows:

1. Cosmin Arad and Seif Haridi. Practical Protocol Composition, Encap-
sulation, and Sharing in Kompics. In the Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW ’08). IEEE Computer Society, October 2008.

2. Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, Simulat-
ing, and Deploying Peer-to-Peer Systems using the Kompics Compo-
nent Model. In the Fourth International Conference on COMmuni-
cation System software and middlewaRE (COMSWARE ’09). ACM
SIGSOFT, ACM SIGAPP, June 2009.

3. Roberto Roverso, Sameh El-Ansary, and Seif Haridi NATCracker: NAT
Combinations Matter To appear in proceedings of The 18th Interna-
tional Conference on Computer Communications and Networks, IEEE
Communications Society, August 2009.

4. Anne-Marie Kermarrec, Alessio Pace, Vivien Quéma and Valerio Schi-
avoni. NAT-resilient Gossip Peer Sampling. 29th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE Computer
Society, June 2009.

SELFMAN Deliverable Year Three, Page 50

Chapter 6

D4.1c: Self-configuration
support (software)

6.1 Executive summary

In this deliverable, we present the Oz implementation of the WorkflOz library
described in Chapter 5. WorkflOz is built using the FructOz library, which
was described in deliverable D4.1a, produced in year 2 of the project.

Additional software for self-configuration support is available with the
Kompics component model implementation, described in Chapters 5 and 7.

The Java implementation of the Fractal deployment model described in
Chapter 5 is not yet completed and is not reported here.

51

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

6.2 Contractors contributing to the Deliver-

able

INRIA(P3)has contributed to this deliverable.

INRIA(P3) has developed the WorkflOz library, which builds on the Fruc-
tOz library that was developed during year two of the project and that is
described in deliverable D4.1a.

SELFMAN Deliverable Year Three, Page 52

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

6.3 The WorkflOz library

6.3.1 Design

WorkflOz offers a framework for composing tasks and a functional language
for creating task configurations.

A task is a FructOz software component representing a unit of compu-
tation. Tasks have a set of input and output pins, realised respectively as
server and client interfaces. Following the FructOz design, pins are connected
through bindings and hold a potentially unbounded list of values (i.e., an Oz
stream). Input and output pins are identified using their order (from 1 to
the number of input/output pins). When a task is executing, it continuously
reads values from its input pins and writes values to its output pins, thus
supporting streaming-style data flow. Tasks may be primitive or composite,
containing any number of interconnected sub-tasks.

Tasks expose a task controller interface through which their lifecycle is
managed. Tasks can be in one of four states: Ready, Executing, Cancelling,
Terminated. The task controller exposes operations to trigger state changes
(i.e., execute and cancel), to obtain the current state of the task, and to
subscribe/unsubscribe to events corresponding to state changes (e.g., from
Cancelling to Terminated). These operations are invoked by components
external to the task (e.g., task controllers of containing components). The
transitions from Executing and Cancelling to Terminated are triggered by the
task itself when its computation or the cancellation process are terminated.

WorkflOz provides operators for creating different types of composite
tasks, each type corresponding to a particular workflow pattern. A type
of composite task (e.g., sequence type) specifies data- and control-flow de-
pendencies between its sub-tasks. Specifically, it specifies the number of
pins of the composite and the binding structure among sub-tasks and the
composite. Moreover, it specifies control and lifecycle dependencies between
the composite and its sub-tasks (e.g., the composite terminates when any of
its subtasks terminate). Those dependencies are implemented by the task
controller of the composite task using the controllers of the sub-tasks.

6.3.2 Patterns

This section examines how WorkflOz supports a number of common workflow
patterns, using Oz functions.

The signatures of the functions are shown as:

{Seq Ts ?T}

SELFMAN Deliverable Year Three, Page 53

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

The last argument (here T) is the output of the function. The types of the
arguments are indicated by their name, using the following abbreviations:

• I Integer

• T Task

• Ts List of tasks

• BF Nullary function that evaluates to a boolean

• TF Nullary function that evaluates to a task

• M Milestone

We use indices such as T1 and T2 to denote several occurrences of ar-
guments of the same type. For each operator, we detail its syntax, and its
effects in terms of data flow (how inputs and outputs of composed tasks are
connected), and control flow (how execution proceeds among the composed
tasks).

Sequence

• Syntax

{Seq Ts ?T}

• Data flow. The tasks in the list Ts are bound sequentially with the
outputs of one bound to the inputs of the following. The created task
T is bound to the first and last sub-task.

• Control flow. When a sub-task terminates (i.e., enters the Terminated
state), the next sub-task is executed. Task T terminates when the last
sub-task has terminated.

Parallel split

• Syntax

{Parallel Ts ?T}

• Data flow. The task T has a pin corresponding to each pin of the
sub-tasks; all tasks in Ts are bound directly to T.

• Control flow. The subtasks are executed in parallel. Task T terminates
when all the sub-tasks have started executing.

SELFMAN Deliverable Year Three, Page 54

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

Synchronisation

• Syntax

{Sync Ts ?T}

• Data flow. The task T has an input pin corresponding to each input
pin of the sub-tasks. It has an output pin corresponding to all the
output pins of the sub-tasks of the same order (i.e., all n-th output
pins of tasks correspond to the n-th output pin of T). In other words,
the outputs of the tasks in Ts are merged into the output of T.

• Control flow. The sub-tasks are executed in parallel. Task T terminates
when all the sub-tasks have terminated.

Exclusive choice

• Syntax

{ExChoice BF T1 T2 ?T}

• Data flow. The input pins of T1 and T2 are merged into the input/out-
put pins of the composite (i.e., the n-th input pin of composite is linked
to both the n-th input pin of T1 and T2), and similarly for the output
pins.

• Control flow. The boolean function BF is evaluated at execution time,
and depending on the result, one of the two tasks is executed. Task T
terminates when both T1 and T2 have terminated.

Simple merge The pattern is supported implicitly by combing ExChoice
with Seq. For example, the following expression describes a simple merge
between T1 and T2:

{Seq {ExChoice F T1 T2} T3}

When the tasks to be merged can run in parallel, the MultiMerge operator
should be used (see next).

SELFMAN Deliverable Year Three, Page 55

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

Multi-choice

• Syntax

{MultiChoice BFTs ?T}

where BFTs is a list of pairs composed of a nullary boolean function
and a task.

• Data flow. The input pins of the tasks are merged into the input pins
of the composite. Their output pins are linked to separate output pins
of the composite.

• Control flow. When T executes, it triggers all the tasks whose corre-
sponding function evaluates to true.

Synchronising merge No new construct is required for supporting this
pattern. It can be expressed by combining Seq and MultiChoice. For ex-
ample, the following expression describes a synchronising merge between T1
and T2:

{Seq {MultiChoice [F1#T1 F2#T2]} T3}

Multi-merge

• Syntax

{MultiMerge T1 T2 ?T}}

• Data flow. The tasks T1 and T2 are bound to each other and to T,
similarly to the sequence pattern.

• Control flow. If any of the sub-tasks of T1 terminates, then task T
schedules execution of T2. Scheduled executions of T2 are performed
atomically. Task T terminates when T1 has terminated and all sched-
uled executions of T2 have terminated. The MultiMerge operator is
designed to be combined with a T1 created by a split pattern, such as
Parallel or MultipleChoice. For example, in MultiMerge Parallel [T1
T2] T3, T3 will be triggered two times, after T1 terminates and after
T2 terminates.

SELFMAN Deliverable Year Three, Page 56

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

Structured Discriminator

• Syntax

{StructDiscriminator T1 T2 ?T}

• Data flow. T1 and T2 are bound to each other and to T similarly to
the sequence pattern.

• Control flow. When the first of the sub-tasks of T1 terminates, task T
executes T2 and waits for the termination of all remaining sub-tasks
of T1. Task T terminates when T2 and all the sub-tasks of T1 have
terminated. Similarly to MultiMerge, this operator is designed to be
combined with a split pattern such as Parallel or MultipleChoice.

Multiple instances without synchronisation

• Syntax

{MultiInst TF I ?T}

• Data flow. The created task T contains I task instances, created by
invoking function TF. The single input pin of T receives lists, whose
elements are distributed in a round-robin fashion among the input pins
of the I sub-tasks. The values from their output pins are collected in a
list which is passed to the single output pin of T.

• Control flow. T terminates when the I sub-tasks have started executing.

Multiple instances with a priori design-time knowledge

• Syntax

{MultiInstD TF I ?T}

• Data flow. The created task T contains I task instances, created by
invoking function TF. The single input pin of T receives lists, whose
elements are distributed in a round-robin fashion among the input pins
of the I sub-tasks. The values from their output pins are collected in a
list which is passed to the single output pin of T.

• Control flow. T terminates when the I sub-tasks have terminated.

SELFMAN Deliverable Year Three, Page 57

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

Multiple instances with a priori run-time knowledge Supported by
the same operator MultiInstD, seen previously.

Multiple Instances without a priori run-time knowledge

• Syntax

{MultiInstNR TF I ?T}

• Data flow. The created task T contains I task instances, created by
invoking function TF. T has two input pins. The first pin receives lists
whose elements are distributed to the input pins of the I sub- tasks.
The second pin receives values that are sent to dynamically created
task instances; every value results in an additional instance. T has an
output pin that collects to a list the values from the output pins of the
(initial and any additional) sub-tasks.

• Control flow. T terminates when all (initial and additional) sub-tasks
have terminated.

Deferred Choice

• Syntax

{DeferredChoice Ts ?T}

• Data flow. The input pins of the tasks in Ts are merged into the input
pins of the created task. Task T has also a special input pin which
receives the identifier of the task to be activated. The output pins of
the tasks in Ts are merged into the output pins of T.

• Control flow. When task T is executed, it waits for a value k in its
special pin, and then executes the corresponding task (i.e., the k-th
task in the list). The composite task terminates when the selected
sub-task has terminated.

Interleaved parallel routing

• Syntax

{InPar Ts TTs ?T}

SELFMAN Deliverable Year Three, Page 58

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

where TTs is a list of pairs of tasks and specifies the partial order of
Ts tasks.

• Data flow. The created task T has a pin corresponding to each pin of
the sub-tasks.

• Control flow. The tasks in Ts are executed one at a time in an order
that conforms to the partial order. T terminates when all sub-tasks
have terminated.

Milestone This pattern is supported by the following functions which cre-
ate and use milestone entities.

• Syntax

{CreateMilestone ?M}

{MilestoneStart M T1 ?T}

{MilestoneEnd M T1 ?T}

{Milestone M T1 ?T}

• Data flow. The tasks created by MilestoneStart, MilestoneEnd, and
Milestone have the same number and type of pins as their arguments
and the corresponding pins are connected together (i.e., they are simple
wrappers that do not affect data flow).

• Control flow. A milestone entity can be in two states: set and cleared.
The functions MilestoneStart and MilestoneEnd set and clear the mile-
stone M when their enclosed task (T1) terminates. When executed,
the task created by Milestone checks its argument M and, if M is set,
executes T1.

Cancel activity / case Supported for all tasks through their task con-
troller, which can be invoked through the function Cancel T. Cancelling a
task cancels also its sub-tasks.

Arbitrary cycles Arbitrary cycles are supported using the Call function.

• Syntax

{Call TF ?T}

where TF is a function that evaluates to a task.

SELFMAN Deliverable Year Three, Page 59

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

The Call function creates a placeholder task T. When T is executed,
it invokes the TF function to obtain a new task Tnew, binds T to Tnew
(effectively replacing T by Tnew), and delegates execution to Tnew. Invo-
cations of Call are useful for repeating workflow fragments captured by the
TF function.

For example, the arbitrary cycle example in Figure 6.1 can be modelled
as follows (A, B, C, D, E, F, End are tasks):

FD=fun {$} {Seq D {Call FE}} end

FE=fun {$} {Seq E {ExChoice BF2 End {Seq F {Call FD}}}} end

Task={Seq A {ExChoice BF1 {Seq B {Call FD}}{Seq C {Call FE}}}}

SELFMAN Deliverable Year Three, Page 60

CHAPTER 6. D4.1C: SELF-CONFIGURATION SUPPORT
(SOFTWARE)

Figure 6.1: An example of cycle in task control flow

SELFMAN Deliverable Year Three, Page 61

Chapter 7

D4.2b: Second report on
self-healing support

7.1 Executive summary

This deliverable reports on work done to provide self-healing support. The
work on self-healing has been done on two fronts. First, self-healing mecha-
nisms have been developed to tolerate network partitions in structured over-
lay networks. Second, self-healing mechanisms have been explored in com-
ponent models, specifically in Kompics and Fractal.

62

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

7.2 Contractors contributing to the Deliver-

able

KTH(P2) and INRIA(P3) have contributed to this deliverable.

KTH(P2) KTH worked on two fronts: (1) providing self-healing function-
ality in structured overlay networks to heal from physical network partitions
and mergers, and (2) providing self-healing mechanisms in the Kompics com-
ponent model.

INRIA(P3) INRIA enhanced their work on their component model, Frac-
tal, to provide self-healing components. The work on components, Fractal
and Kompics, was done in collaboration between INRIA and KTH.

SELFMAN Deliverable Year Three, Page 63

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

7.3 Results

This section is dedicated to report on the results of year three in this deliver-
able. We describe the work in three parts, the work done on the self-healing
of structured overlay networks, the work done on self-healing mechanisms in
the Kompics component model, and the Fractal component model.

7.3.1 Self-healing in structured overlay networks

In our work for this deliverable, we have motivated that handling under-
lying network partitions and mergers is a core requirement for structured
overlays. We argue that since fault-tolerance, self-healing, scalability and
self-management are the basic properties of overlays, they should tolerate
network partitions and mergers.

Our contribution is two-fold. First, we propose a mechanism for detect-
ing a scenario where a partition occurred and later, the underlying network
merged. Second, we propose two algorithms for merging overlays, simple ring
unification and gossip-based ring unification. In our solution, one the parti-
tion and merger is automatically detected, the merging algorithm is invoked.
Thus, the structured overlay network becomes self-healing under network
partitions and mergers.

Simple ring unification is a low-cost solution with respect to the number
of messages sent (message complexity), yet it suffers from two problems: (1)
slow convergence time (O(N) time for a network size of N), and (2) less
robustness to churn.

Gossip-based ring unification addresses both short-comings of simple ring
unification, i.e. it has a high convergence rate (O(logN) time for a network
size of N), and is robust to churn, yet it is a high-cost solution in terms of
message complexity. In our solution, we provide a fanout parameter that
can be used to control the trade-off between message and time complexity in
gossip-based ring unification. A comparison of the two algorithms is given
in Table 7.3.1.

We have evaluated both algorithms extensively. Furthermore, we com-
pared our solution to a self-stabilizing algorithm presented by Shaker et. al.
[78], as, a self-stabilizing algorithm can be used to merge multiple overlays.
The comparison is presented in our journal paper [77], which also appears
as Appendix A.2. The comparison shows that our solution consumes lesser
time and messages compared to the self-stabilizing algorithm.

Lookups made after the merge is complete perform normally. An interest-
ing issue is the behaviour of lookups made during the merger of the overlays.
Such lookups may not always succeed in finding the related data item, and

SELFMAN Deliverable Year Three, Page 64

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

thus, some keys may temporarily appear unavailable. A trivial solution to
this problem is that when n learns that the key is currently unavailable, it
retries the lookup after a while.

Simple Ring Unification Gossip-based Ring Unification
Time Complexity High Low
Message Complexity Low High
Resilience to Churn Low High

Table 7.1: Comparison of Simple Ring Unification and Gossip-based Ring
Unification.

7.3.2 Self-healing mechanisms in the Kompics compo-
nent model

Here we describe the Kompics mechanisms that enable the construction of
self-healing systems. Other details of the Kompics component model are
provided in appendixes A.12 and A.13 which contain published papers de-
scribing Kompics. An initial Kompics programming manual is included in
Appendix A.14.

Kompics components communicate with other components in their en-
vironment by asynchronously sending and receiving events through bidirec-
tional typed ports. A simple “Hello World” example is given in Figure 7.1.

Component 2

Component 1

Hello

World

Hello

World

h2

h1
start

+

+

required
port provided

port
x

Hello

Hello World

World

Figure 7.1: Component1 requires a HelloWorld port
which allows it to send out Hello events and re-
ceive World events. Component2 provides a Hel-
loWorld port which allows it to receive Hello events
and send out World events. Since their HelloWorld
ports are connected by channel x, Component1 and
Component2 can communicate. The start handler
of Component1 triggers a Hello event on its Hel-
loWorld port. This Hello event is received by Com-
ponent2 and handled by its h2 handler which trig-
gers a World event. This World event is received by
Component1 and handled by its h1 handler.

In addition to any functional ports, Kompics components have a con-
trol port. The control port is used to transmit life-cycle commands to the
component, as well as to notify the parent component of uncaught software

SELFMAN Deliverable Year Three, Page 65

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

faults that occurred inside the component during event handler execution.
We extend our “HelloWorld” example in Figure 7.2 to show the control ports
of the two components.

Component2

Component1

Hello

World

Start,Stop,Init

Fault

h2

h1start

+

+

control port

Start,Stop,Init

Fault+

Hello

World+

control port

x

Hello World

Start

Hello World

Figure 7.2: Each Kompics component has a con-
trol port. A component can use the control port
to subscribe to life-cycle events like Start, Stop,
and Init. This is exemplified in Component1 which
subscribed its start handler to the control port.
The control port of a component is also used by
the runtime system to report uncaught exceptions
that occur during the execution of an event han-
dler. An uncaught exception occurring in handler
h1 of Component2, is caught by the runtime system
and wrapped into a Fault event which is triggered
on Component2’s control port. The parent of Com-
ponent2 (not shown) can handle the Fault event.

Kompics components form a containment hierarchy rooted at a Main
component. A few examples of composite components are given in Figure 7.3.
A component can subscribe a fault handler to the control channel of its
children components. Thus, whenever a fault occurs in a child component,
the parent component can handle it and take some repairing action. A parent
component needs not subscribe a fault handler for its children components.
In that case, the default behavior is to forward faults up the containment
hierarchy, i.e., the runtime system traverses the containment hierarchy until
it finds a parent component with a subscribed fault handler. If no such
component is found and the traversal reached the Main component, a system-
default fault handler handles the Fault by printing it out to the standard
output and halting the computation.

This mechanism enables any component to act as a supervisor for its
children components, and take healing actions once faults are detected. The
supervisor component can manage/reconfigure the faulty component, for ex-
ample by replacing it with a new instance. Hence this fault management
mechanism provides basic primitives for implementing self-healing Kompics
systems. Given any component, a self-healing wrapper component can be
configured around it.

SELFMAN Deliverable Year Three, Page 66

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

MainMain

C1

C2

C2

p3:Q

p4:R

x2

C1

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:Q

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

p3:Q

p4:S

x2

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:S

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

Main Main

C1

C1

C2

p3:Q

p4:R

x1

p1:P

h1

3

C3

p5:R

p6:S

1

x2

h2

p2:S

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

C2

p3:Q

p4:R

x2

p1:P

h1

3

C3

p5:R

p6:S

1

x1

h2

p2:R

4

2

h3

5

3

h4

6

4

h5

7

5

h6

8

6

+
–

+
–

+
–

+
–

+
–

+
–

Figure 7.3: Examples of hierarchies of composite components rooted at Main.

7.3.3 Self-healing mechanisms in cluster systems using
Fractal

As part of the work on this deliverable, we have developed using the Fractal
model an architecture for the provision of self-repair mechanisms in cluster-
size systems, such as Web application servers or file system servers. This
architecture builds on the Jade framework developed at INRIA for the con-
struction of self-managed systems as explicit control loop structures acting
on component-based architectures. The original aspect of this work is the
fact the self-repair capabilities extends to the management subsystem itself,
through the use of replication. The uniform atomic broadcast replication
protocol we adopted limits the use of our design to systems of a cluster size
(extending our design to larger scale, WAN-based environments, is for further
study). We describe here the main ideas behind our design for self-repair in
cluster systems.

In our approach, a managed system appears as a distributed Fractal com-
ponent structure. Control interfaces of components corresponding to man-
aged elements (either developed natively with Fractal, or wrapped by Fractal
components in the case of legacy systems) provide the required effectors to act
on a managed system. Control interfaces of managed elements (or interfaces
on components implementing suitable event detection protocols) provide the
required sensors to monitor a managed system. A managed system in our
approach primarily appears as a collection of components, called nodes that
correspond to abstractions of physical machines (typically, a set of PCs in

SELFMAN Deliverable Year Three, Page 67

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

a cluster environment). Managed elements executing on these physical ma-
chines are thus subcomponents of nodes. The set of nodes together with their
subcomponents constitutes a management domain, i.e. a set of entities under
the control of a single management authority and asociated set of policies.

To support repair of a managed system requires in our control-based
approach to set up a control loop with feedback that monitors managed el-
ements, analyzes reported state changes, plans a response to these changes,
and executes it. In the case of repair, which requires recovering from failures
of managed elements, some knowledge must be maintained of the runtime
configuration of the system that persists even in presence of failures. We call
System Map the knowledge of a managed system runtime configuration that
needs to be maintained for the purpose of self-repair. The System Map is
actually maintained and exploited (for analysis and planning purposes) by
a set of components called manager components, which are responsible for
the analysis of observations on the managed system, the planning and (ul-
timately) execution of management operations in response to observations
and according to management objectives and policies. Manager components
execute on a subset of nodes in a managed system, which are called manager
nodes. Manager nodes are an integral part of the managed system in our
design, which is a necessary condition for self-repair. We call management
subsystem the set of manager nodes together with their manager subcom-
ponents. The System Map is actually an active structure that serves as an
intermediate between manager components and managed components, and
that carries out reconfiguration operations originating with manager com-
ponents. Thus a repair control loop in our framework, is constructed as
a distributed software architecture which connects managed components to
manager components and the System Map.

Constructing the System Map of a managed system litterally corresponds
in our approach to building an explicit and causally connected representation
of the managed system. A self-repairable system is thus a doubly reflective
system:

• Each managed system element, as a Fractal component, provides in-
trospection and meta-level capabilities through its control interfaces.

• The System Map provides introspection and meta-level capabilities to
control a managed system as a whole.

Support for self-repair in our approach can be understood as constructing
logically a hierarchy of meta-level feedback loops to ensure that any failure
occurring in the set of manager nodes can be properly recovered, or, equiva-
lently, as a way to ensure that the System Map (i) is indeed made persistent

SELFMAN Deliverable Year Three, Page 68

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

Node 4 Node 5Node 3

Replicated
Jade

Node 2Node 1

System Map

Node 4

Node 5

Repair Manager

System Map

Node 4

Node 5

Repair Manager

Managed
Distributed

System

Figure 7.4: A managed system and its replicated management subsystem.

even in presence of failures among manager nodes, and (ii) properly reflects
the whole managed system runtime configuration, including the configura-
tion of manager nodes. This is realized by replicating components including
manager nodes, and through an appropriate organization of the System Map.

Figure 7.4 illustrates our Jade self-repair architecture. In the figure, nodes
4 and 5 are managed nodes, nodes 1 and 2 form the management subsystem
(node 3 is a spare node that can be used for repairing the system in case of a
node failure in the managed system or the management subsystem). Nodes 1
and 2 are actively replicated, and each maintains a copy of the System Map,
which itself reflects the architecture of the overall system.

This self-repair architecture has been used to demonstrate self-repair in
JEE Web servers. We have also applied it to the repair of NFS servers in a
cluster, demonstrating that our design is effective and applicable to legacy
systems as well as native Fractal-based systems.

SELFMAN Deliverable Year Three, Page 69

CHAPTER 7. D4.2B: SECOND REPORT ON SELF-HEALING
SUPPORT

7.4 Papers and publications

The work described in this deliverable has been published as follows:

1. Tallat M. Shafaat, Ali Ghodsi, Seif Haridi. Dealing with Network Par-
titions in Structured Overlay Networks. Journal of Peer-to-Peer Net-
working and Applications (PPNA), 2009 (To appear). DOI: 10.1007/s12083-
009-0037-7

2. Tallat M. Shafaat, Ali Ghodsi, Seif Haridi. Managing Network Parti-
tions in Structured P2P Networks. Book Chapter in X. Shen, H. Yu, J.
Buford, and M. Akon, editors, Handbook of Peer-to-Peer Networking.
Springer-Verlag, July 2009.

3. Tallat M. Shafaat. Dealing with Network Partitions in Structured
Overlay Networks. Licentiate Thesis - KTH, The Royal Institute of
Technology, Sweden. ISBN 978-91-7415-290-6. May, 2009.

4. Tallat M. Shafaat, Ali Ghodsi, Seif Haridi. Handling Network Parti-
tions and Mergers in Structured Overlay Networks. In Proceedings of
the 7th International Conference on Peer-to-Peer Computing (P2P’07),
pages 132–139. IEEE Computer Society, September 2007.

5. Cosmin Arad and Seif Haridi. Practical Protocol Composition, Encap-
sulation, and Sharing in Kompics. In the Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW ’08). IEEE Computer Society, October 2008.

6. Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, Simulat-
ing, and Deploying Peer-to-Peer Systems using the Kompics Compo-
nent Model. In the Fourth International Conference on COMmuni-
cation System software and middlewaRE (COMSWARE ’09). ACM
SIGSOFT, ACM SIGAPP, June 2009.

7. Fabienne Boyer, Noel de Palma, Olivier Gruber, Sylvain Sicard, and
Jean-Bernard Stefani. A self-repair architecture for cluster systems.
To appear in Architecting Dependable Systems 6. R. de Lemos, J.-C.
Fabre, C. Gacek, F. Gadducci, M. H. ter Beek eds. Springer,2009.

SELFMAN Deliverable Year Three, Page 70

Chapter 8

D4.2c: Self-healing support
(software)

8.1 Executive summary

In this deliverable, we present a software implementation of the structured
overlay network self-healing algorithms presented in D4.2b (see Chapter 7).

The algorithms presented in Chapter 7 for self-healing in structured over-
lay networks have been designed for healing from multiple overlays into one.
A typical scenario being a physical network partition and later, merger. The
algorithms had to implemented, tested and evaluated. Unfortunately, Off-
the-shelf simulators, like PeerSim [4] and P2PSim [3], do not provide func-
tionality to simulate multiple networks. Thus, in this deliverable, we imple-
mented a discrete event-based simulator with the functionality of simulating
multiple physical networks.

71

CHAPTER 8. D4.2C: SELF-HEALING SUPPORT (SOFTWARE)

8.2 Contractors contributing to the Deliver-

able

KTH(P2)has contributed to this deliverable.

KTH(P2) KTH proposed algorithms for self-healing in structured over-
lay networks, presented in D4.2b. These algorithms were implemented in a
discrete event-based simulator that was implemented by KTH, called SicSim.

SELFMAN Deliverable Year Three, Page 72

CHAPTER 8. D4.2C: SELF-HEALING SUPPORT (SOFTWARE)

8.3 The SicSim Architecture

SicSim allows for various types of overlays to be implemented. Currently, we
have implementations of DKS [27], Chord [81], Chord# [74], Kademlia [52]
and Cyclon [85]. The simulator has a separate layer simulating the network.
A physical partition in the network can be simulated by this layer by dividing
the nodes into different components based on user supplied parameters. The
messages sent from one component are not allowed to reach another compo-
nent. Once the user wants to merge the physical network, all the components
are merged into one. Thus, all nodes can send messages to all other nodes.

Further functionality of simulating network bandwidth has also been
added to SicSim. This is useful to simulate applications that depend on
network bandwidth, such as live streaming.

The SicSim discrete event-based simulator is available as a public release
at http://www.sics.se/ amir/sicsim.

The main modules of SicSim are as follow:

• Peer: A peer models a node of the network and can be of any cus-
tomized type.

• Link: Each peer connects to the system through a link. The links are
referred to as physical link in Figure 8.3.

• Core: Each message, which is sent from one peer to another, is passed
through core network. The core modules is aimed to model Internet,
while abstracting away from the underlying layers of the network.

• Network: Network contains all the peers in the system, no matter
whether they have already joined the overlay or not.

• Overlay: It contains the peers who have joined the overlay.

• Monitor: Monitor is an auxiliary object that have a global view of
peers in network and can monitor the behaviour of each peer and struc-
ture of the whole overlay.

• Failure Detector: For the sake of simplicity we assume there is one
failure detector in the system. Each peer can register for the peers of
its interest. Upon failure of a peer, all the peers who have registered
for that peer, will be notified.

Figure 8.3 shows each of these modules and their relation. Details on the
architecture of SicSim, along with a step-by-step example can be found at
http://www.sics.se/ amir/sicsim.

SELFMAN Deliverable Year Three, Page 73

CHAPTER 8. D4.2C: SELF-HEALING SUPPORT (SOFTWARE)

Figure 8.1: SicSim main modules

SELFMAN Deliverable Year Three, Page 74

Chapter 9

D4.3b: Second report on
self-tuning support

9.1 Executive summary

Self-tuning of large systems, such as Structured Overlay Networks (SONs), is
complex since the overall system must be optimized through the interaction
of many independent components. The work on self-tuning is focused on
two parts. First, we introduce two variations on decentralized load balancing
algorithms used in the context of the replicated storage service developed in
SELFMAN. Second, we present a technique for SON size estimation.

75

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

9.2 Contractors contributing to the Deliver-

able

KTH(P2) has developed an algorithm for estimating the network size in
a structured overlay. The algorithm is completely decentralized, and the
estimate can then be used for tuning different parameters of the overlay.

ZIB(P5) has performed the work on load balancing. The main contribu-
tion is a simulated analysis of a replicated storage service.

SELFMAN Deliverable Year Three, Page 76

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

9.3 Results

In this Deliverable we report on our work related to Self-tuning of the
replicated storage service (Deliverable 3) and Structured Overlay Networks
(SONs). First, we present a decentralized load balancing algorithm used to
even out the load between contributing nodes. This is important in order to
avoid excessive overload resulting in for example denied write requests.

Second, we provide an algorithm for estimating the network size in a
structured overlay. The algorithm is designed for ring-based overlays, such
as DKS [27], Chord [81] and Chord# [74].

9.3.1 Load Balancing in a Distributed Key/Value store

Ring-based Structured Overlay Networks (SONs) provide algorithms for node
membership management and efficient look-ups for finding a node responsi-
ble for a key. The overlay construction in a SON requires that a range of
subsequent keys belong to a node. In a distributed key/value store, where a
value is associated with a key, this tight coupling between the data layer and
the overlay has direct implications on node utilization. In particular, a stored
key uses a node’s storage capacity while access to the key requires bandwidth
and processing to handle the request. The storage and access load can differ
significantly when comparing the nodes. Our goal with balancing the load
is fairness, i.e. the load of individual nodes should be as close as possible to
the average system load.

A common approach to load balancing in SONs is to use hashing, which
ensures that the system storage imbalance is at mostO(logN), whereN is the
number of nodes [42]. The system imbalance is defined as the ratio between
the highest loaded node and the average load. By using hashing, both key IDs
and node IDs are derived from the same uniform hash function. However,
using a hash function that generate uniform IDs from a key makes range
queries impossible, a requirement of the replicated storage service described
in Deliverable 3. Therefore we cannot use hash-based load balancing of keys.

Without hash-based key balancing, keys and the load will follow the dis-
tribution of the data. To balance the system, the nodes must therefore also
follow this distribution. In this work we have focused on randomized balanc-
ing algorithms which efficiently adapt the position of nodes to better fit the
key distribution. These algorithms allow a node to take balancing decisions
based on information available either locally or collected from a small subset
of the nodes. Generally, randomized algorithms have the following phases:

Collect data Data is collected by periodically contacting a set of random

SELFMAN Deliverable Year Three, Page 77

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

nodes asking them for their state, e.g. used storage or current workload.
Additionally, data can be collected through an out-of-band mechanism
such as a gossiping protocol calculating the average system load.

Decide on balancing operation By analyzing the collected data, a node
can make a decision to either do nothing or to balance with an over-
loaded node. In our model, nodes are limited to a single operation
resulting in a leave followed by a re-join of the overlay at a new posi-
tion.

Execute balancing operation The node executes the balancing operation
by either failing or leaving gracefully and then re-joining the system at
a new location.

We have worked on two parts of the load balancing algorithm within the
last year. First, we made the assumption that the system would require
less bandwidth when knowing the average load for balancing. Second, we
designed a node placement function that considers several load attributes
when selecting its new position.

Using Global Information

In A.16, we argue for the benefits of introducing approximations of global
knowledge for DHT load balancing algorithms with the goal of reducing the
network utilization. To support this claim, we extended a randomized load
balancing algorithm to use the average storage load.

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.05 0.1 0.15 0.2 0.25
 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000
 0 0.05 0.1 0.15 0.2 0.25

m
ov

ed
 it

em
s

epsilon

Karger
Karger +avg load

(a) Moved items with increasing balancing
factor

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000
 0 100000 200000 300000 400000 500000 600000 700000 800000 900000

st
an

da
rd

 d
ev

ia
tio

n

moved items

Karger (e=0.21)
Karger +avg load (e=0.21)

(b) Moved items vs. standard deviation

Figure 9.1: Impact of global information on a randomized load balancing
algorithm.

The results of this enhancement showed two things. First, the num-
ber of moved items was significantly reduced (see Fig. 9.1(a)). Second, the

SELFMAN Deliverable Year Three, Page 78

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

load imbalance improved faster compared to the algorithm that did not have
knowledge about the average load (see Fig. 9.1(b)).

Placement Function

In a distributed key/value-store, a node contributes storage for key/value-
pairs and network and CPU-time for accessing the stored items. The goal
of load balancing is to improve the fairness of resource usage between the
contributing nodes. Imbalance between nodes mainly occurs due to; 1) non-
uniform key distribution, 2) skewed access frequency of keys and 3) node
heterogeneity.

(a) Uniform key distribution (b) Dictionary key distribution

Figure 9.2: The effect of different access workloads and key distributions.

Figure 9.2 shows how different workloads and key distributions affects
the imbalance of the storage, workload and node responsibility size. In Fig-
ure 9.2(a) a uniform key distribution was used while in Figure 9.2(b) we used
a dictionary-like distribution derived from a subset of the Wikipedia article
titles. The access workload on the keys was either uniform (u), exponential
(e) or range (r), where a set of subsequent keys were accessed. In these re-
sults we see that a uniform key distributions have minimal impact on the
imbalance. However, a non-uniform distribution can in this case create a dif-
ference in the imbalance up to a factor 3. Thus, we conclude that a balanced
system must consider more than a single metric when balancing.

In this work, we have developed a node placement function that take
multiple load metrics into account. The placement itself occurs when a node
is joining the system. A new node first samples a set of possible nodes where
it can join, it then greedily selects the node with highest load. Using the
placement function, this node then calculates the best position before the
new node joins.

SELFMAN Deliverable Year Three, Page 79

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

(a) Increasing nodes and items (b) Capacity

Figure 9.3: Imbalance of the system using difference balancing strategies and
increasing the system size.

Results from a simulation-based evaluation show that the proposed al-
gorithm improves the load balance by a factor 6-12 in a system with 1000
nodes (Fig. 9.3(a)). In addition, we also show that load balancing reduces the
extra storage capacity necessary in an overloaded system from a factor 10 to
8 (Fig. 9.3(b)). Further results and a detailed description of the algorithms
can be found in the Appendix A.17.

9.3.2 Network Size Estimation

The network size is a global variable which is not accessible to individual
nodes in the system as they only know a subset of the other nodes. This
information is, nevertheless, of great importance to many structured p2p
systems, as it can be used to tune the rates at which the topology is main-
tained. Moreover, it can be used in structured overlays for load-balancing
purposes [28], deciding successor-lists size for resilience to churn [48], choos-
ing a level to determine outgoing links [51], and for designing algorithms that
adapt their actions depending on the system size [12].

Due to the importance of knowing the network size, several algorithms
have been proposed for this purpose. Out of these, gossip-based aggrega-
tion algorithms [41], though having higher overhead, provide the best ac-
curacy [59]. Consequently, we focus on gossip-based aggregation algorithms.
While aggregation algorithms can be used to calculate different aggregates,
e.g. average, maximum, minimum, variance etc., our focus is on counting
the number of nodes in the system.

Although Aggregation [41] provides accurate estimates, it suffers from a
few problems. First, Aggregation is highly sensitive to the overlay topology

SELFMAN Deliverable Year Three, Page 80

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

that it is used with. Convergence of the estimate to the real network size is
slow for non-random topologies. On the contrary, the majority of structured
p2p overlays have non-random topologies. Thus, it is not viable to directly
use Aggregation in these systems. Second, Aggregation works in rounds, and
the estimate is considered converged after a predefined number of rounds.
This can be problematic. Finally, Aggregation is highly sensitive to node
failures.

In our work, we suggest a gossip algorithm based on Aggregation to be
executed continously on every node to estimate the total number of nodes in
the system. The algorithm is aimed to work on structured overlay networks.
Furthermore, the algorithm is robust to failures and adaptive to the network
delays in the system.

The network size estimation algorithm

A naive approach to estimate the network size in a ring-based overlay would
be pass a token around the ring, starting from, say node i and containing a
variable v initialized to 1. Each node increments v and forwards the token
to its successor i.e. the next node on the ring. When the token reaches back
at i, v will contain the network size. While this solution seems simple and
efficient, it suffers from multiple problems. First, it is not fault-tolerant as the
node with the token may fail. This will require complicated modifications
for regenerating the token with the current value of v. Second, the naive
approach will be quite slow, as it will take O(n) time to complete. Since
peer-to-peer systems are highly dynamic, the actual size may have changed
completed by the time the algorithm finishes. Lastly, at the end of the
naive approach, the estimate will be known only to node i which will have
to broadcast it to all nodes in the system. Our solution aims at solving all
these problems at the expense of a higher message complexity than the naive
approach.

Our goal is to make an algorithm where each node tries to estimate the
average inter-node distance, ∆, on the identifier space, i.e. the average dis-
tance between two consecutive nodes on the ring. Given a correct value of
∆, the number of nodes in the system can be estimated as N

∆
, N being the

size of the identifier space.
Every node p in the system keeps a local estimate of the average inter-

node distance in a local variable dp. Our goal is to compute
P

i∈P di

|P| . The
philosophy underlying our algorithm is the observation that at any time the
following invariant should always be satisfied: N =

∑
i∈P di.

We achieve this by letting each node p initialize its estimate dp to the dis-
tance to its successor on the identifier space. In other words, dp = succ(p)	p,

SELFMAN Deliverable Year Three, Page 81

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

where 	 represents subtraction modulo N . Note that if the system only con-
tains one node, then dp = N . Clearly, a correctly initialized network satisfies
the mentioned invariant as the sum of the estimates is equal to N .

Details of the algorithm, along with extensive evaluations, can be found
in Appendex A.3.

SELFMAN Deliverable Year Three, Page 82

CHAPTER 9. D4.3B: SECOND REPORT ON SELF-TUNING SUPPORT

9.4 Papers and publications

Using Global Information for Load Balancing in DHTs

In A.16, we argue for the benefits of introducing approximations of global
knowledge to DHT load balancing algorithms with the goal of reducing the
network utilization. To support this claim, we have extended a randomized
load balancing algorithm to use the average storage load.

Node Placement in Distributed Key/Value-stores

Distributed key/value stores are a basic building block for large-scale Inter-
net services. Support for range queries introduces new challenges to load-
balancing since both the key and workload distribution can be non-uniform.

We build on previous work based on the power of choice to present algo-
rithms suitable for active and passive load-balancing that adapts to both the
key and workload distribution. The algorithms are evaluated in a simulated
environment, focusing on the impact of load-balancing on scalability and in
an overloaded system.

Network Size Estimation in Structured Overlays

A Practical Approach to Network Size Estimation for Structured Overlays.
Tallat M. Shafaat, Ali Ghodsi, Seif Haridi. In the Third International Work-
shop on Self-Organizing Systems (IWSoS’08), December, 2008, Austria.

This paper has been included as Appendix A.3. It describes in detail the
importance of knowing an estimate of the current network size, the function-
ing of the algorithm, and a detailed evaluation of the proposed algorithm.

SELFMAN Deliverable Year Three, Page 83

Chapter 10

D4.3c: Self-tuning support
(software)

10.1 Executive summary

This deliverable describes the implementation of self-tuning support in the
replicated storage service (Deliverable 3). The introduced mechanism contin-
uously tunes the system load balance towards an even load over the partici-
pating nodes. Load balancing is necessary to handle non-uniform distribution
of the items stored by the system as well as avoiding extreme load conditions
for certain nodes. The implementation itself is part of the Scalaris source
distribution available at http://scalaris.googlecode.com/.

84

CHAPTER 10. D4.3C: SELF-TUNING SUPPORT (SOFTWARE)

10.2 Contractors contributing to the Deliv-

erable

ZIB(P5) Provided an implementation of load balancing in the replicated
storage service.

SELFMAN Deliverable Year Three, Page 85

CHAPTER 10. D4.3C: SELF-TUNING SUPPORT (SOFTWARE)

10.3 Results

In this deliverable we present the software implementation for self-tuning
support. The implementation is a load balancing algorithm part of the repli-
cated storage service (Scalaris) presented in Deliverable 3. The algorithm is
based on Karger’s item-balancing scheme [42].

This deliverable is related to Deliverable 9 where we presented two tech-
niques for load-balancing and one for estimating the network size estimation.
These techniques have been verified through simulation. A simulation en-
vironment was necessary to simplify studies showing the impact of different
algorithm parameters such as the frequency of performing load balancing.
The result of these studies can be found in Section 9.3 and the accompany-
ing papers of Deliverable 9.

10.3.1 Algorithm

Classical DHTs such as CAN, Pastry and Chord [81, 70, 67] use a hash func-
tion to distribute the keys evenly among the nodes in the system. However,
by using a hash function it is not possible to support range queries since the
order of the stored keys would be destroyed. A direct issue when remov-
ing the hash function is that the storage load on the nodes depend on the
key distribution (a storage load of a node is the number of items stored on
it). In the worst case, this imbalance can lead to network congestion and
unresponsive nodes. In order to avoid this, Scalaris has been extended with
an algorithm (build upon Karger’s Algorithm [42]) that balances the storage
load fairly over the nodes based on the item distribution. The implementa-
tion of this load balancing algorithm is the core of this deliverable. It can
be found in src/cs_lb.erl as part of the Scalaris open source distribution1.
In the following, we describe this implementation at the algorithmic level.

Karger’s Algorithm. Karger et al. [42] present a randomized item bal-
ancing scheme where each node contacts another random node periodically.
If the load of the nodes differs by more than a factor 0 < ε < 1

4
, they share

each others load by either jumping or sliding. Karger provides a theoretical
analysis of the protocol, but does not evaluate the algorithms in an experi-
mental or real-world setting.

We start with description of our model. A DHT consist of N nodes and
an identifier space in the range [0, 1). This range wraps around at 1.0 and can
be seen as a ring. A node, ni, at position i has an identifier nID

i , a part of the

1http://scalaris.googlecode.com/

SELFMAN Deliverable Year Three, Page 86

CHAPTER 10. D4.3C: SELF-TUNING SUPPORT (SOFTWARE)

ID space. Each node ni has a successor -pointer to the next node in clockwise
direction, ni+1, and a predecessor -pointer to the first counter-clockwise node,
ni−1. The last node, nN−1, has the first node, n0 as successor. Thus, the
nodes and their pointers create a double linked list where the first and last
node are linked.

Figure 10.1: A node ni with successor and predecessor and the ranges of
responsibilities

Each node in the DHT stores a subset of items, I(ni), where each item
has a key in the range [0, 1) and a uniform weight of one. A node ni is
responsible for a key iff it falls within the node’s key range (nID

i−1, n
ID
i]. Each

node has a load l(ni) indicating the number of stored data items. Figure 10.1
shows three nodes and their respective responsibilities.

The two fundamental operations in the Karger’s Algorithm - jump and
slide - are described in the following.

Jump allows a node to move to an arbitrary position in the ID space. A
jumping node ni first leaves its current position and re-joins at a new
position, ni′ , with ni′+1 as its successor. Data is moved two times.
First, the items in the range (nID

i−1, n
ID
i] are transferred to ni+1. Second,

when ni′ joins at its new position, all data in the range (nID
i′−1, n

ID
i′] is

transferred from ni′+1 to ni′ .

Slide is a specialized form of jumping where ni moves to an ID in the range
(nID

i−1, n
ID
i+1]. Since a node does not need to leave and re-join the system,

which results in extra data transfer, sliding is always preferred over
jumping.

We rely on the heuristics introduced for Karger’s item balancing algo-
rithm. Expressed in our notation, a load-balance operation is only performed
between any pair of nodes ni, nj, iff l(ni) < εl(nj) or l(nj) < εl(ni), 0 < ε < 1

4
.

Under these conditions and assuming l(ni) > l(nj), the following cases are
possible:

Case 1 i = j + 1, ni is the successor of nj. Slide nj towards ni, letting nj

take responsibility for
l(ni)−l(nj)

2
of ni’s items.

SELFMAN Deliverable Year Three, Page 87

CHAPTER 10. D4.3C: SELF-TUNING SUPPORT (SOFTWARE)

Case 2 i 6= j + 1, if l(nj+1) > l(ni), set i = j + 1 and go to case 1. That
is, when the load of nj’s successor is larger then the load of ni, slide
nj towards the overloaded node nj+1. Otherwise, nj jumps to an ID in
the range (nID

i−1, n
ID
i), taking half of l(ni).

1 def balance decision (ni , nj) :
2 i f ni == nj+1 :
3 # j inc r ea s e s i t s ID so t ha t the (l i −
4 # l j)/2 i tems wi th l owe s t keys g e t
5 # re−ass i gned from ni to nj

6 return (SLIDE , nj+1)
7 # case 2 : load (nj+1) > l oad (ni)
8 e l i f load (nj+1) > load (ni) :
9 # se t i = j + 1 and go to case 1

10 # Assume tha t t h i s means t ha t we shou ld move j
11 # to take h a l f o f i t s succe s sor ’ s load s ince
12 # t h i s i s more than the load o f node i .
13 return (SLIDE , ni)
14 else :
15 # load (nj) < l oad (ni)
16 # and load (ni) > l oad (nj+1)
17 # move j to the middle o f i ’ s item space
18 return (JUMP, ni)
19
20 def balance (ni) :
21 for nj in random nodes () :
22 i f load (nj) ≤ load (ni)∗ε :
23 execute (balance decision (nj , ni))
24 e l i f load (ni) ≤ load (nj)∗ε :
25 execute (balance decision (ni , nj))

Figure 10.2: Pseudo code of Karger’s algorithm.

Figure 10.2 contains pseudo-code describing Karger’s balancing algorithm.
balance is called with a node ni that represents the local node. Thereafter, a
set of random nodes are sampled in the overlay. If any of the sampled nodes
differ by a factor of ε from the local load, the algorithm executes a jump
or a slide operation. By varying ε, we can trade-off the bandwidth used for
balancing vs. the achieved system imbalance.

SELFMAN Deliverable Year Three, Page 88

Chapter 11

D4.4b: Self-protection support

11.1 Executive summary

This deliverable describes the software developed for the self-protection. Self-
protection focuses on the robustness of Small World Networks (SWN) from
attacks on the overlay network and protection from identity attacks using
social networks. The software consists of two SWN simulators. One has
visualization and is targeted at experiments on artifical SWNs. The other is
a more efficient simulator for simulating experiments on social networks. In
order to work with real social networks, we developed a crawler to extract
the social network graph from popular social network sites, namely, Facebook,
Live Spaces and MySpace.

89

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

11.2 Contractors contributing to the deliver-

able

NUS(P7) has contributed to this deliverable.

NUS(P7) implemented the small world network simulators and the social
network crawler.

SELFMAN Deliverable Year Three, Page 90

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

11.3 Software for small world network and

social network experiments

The self-protection software developed in WP4 consists of Small World Net-
work (SWN) simulators and a crawler to extract social networks. The fol-
lowing software is described in the remainder of this chapter:

• SWN simulator for synthetic SWNs:
This simulator described in Section 11.4 supports routing, failure, self-
tuning and self-protection experiments on synthetic SWNs which are
embeddable in a ring. It supports animated visualizations of the ex-
periment.

• SWN simulator for social networks:
This simulator described in Section 11.6 is a more efficient simulator
meant for experimenting on real social networks. It also has specific
functionality for social networks such as extracting specific sub-graphs
of the social network graph and visualizing the graph.

• Social network crawler:
The crawler described in Section 11.5 extracts the social network graph
from several social networking sites.

SELFMAN Deliverable Year Three, Page 91

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

11.4 Initial SWN simulator

We have built two Small World Network (SWN) simulators. The first SWN
simulator was built to investigate and explore the feasibility of SWN as a
form of semi-structured overlay network. In what follows, we use n to denote
the number of nodes in the SWN or the network. The SWN simulator was
designed to investigate the following questions (see Section 16.3.1):

• Evaluated the performance of basic routing of SWN under different
number of edges which follow power law distributions.

• Measure the performance and the robustness SWN under static and
dynamic settings (churn).

• Evaluate the effect of node and link failures and their effect on the
routing success rate.

• Evaluate the Sandberg self-tuning method for optimizing the SWN.

• Investigate self-tuning issues such as simulate effectiveness of self-tuning
under poisoning attack and protection against poisoning.

As we wanted to investigate how SWNs behave, we developed a GUI
interface which shows graphically what is happening in the network as the
simulation progresses. The simulator also provides a snapshot of the current
state of the SWN in the form of a ring visualization. The various visuals in
the simulator are animated and change as time progresses in the simulation.

Figure 11.1 shows the interface of the simulator. The top left is a visu-
alization of the network which is mapped onto a 2-dimensional ring. This
visualization is meant to show the state of the SWN with respect to the node
identifiers which is relevant to the performance of decentralized routing, in
particular, greedy routing. A perfect SWN state is when all the node iden-
tifiers are positioned correctly on the ring so that the edge distance between
nodes according based on their positions follow a power law distribution. The
visualization displays a perfect SWN state by coloring the nodes so that the
ring forms a continuous red-green-blue ring color as in Figure 11.2. A SWN
with random node identifiers is equivalent to shuffling the perfect SWN state
and is shown in Figure 11.3. The effect of the randomization can be seen
as breaking up the smooth color continuity of the ring. The self-tuning tries
to re-optimize the shuffled SWN node positions to be more similar to the
perfect state by reorganizing the node positions. A recovered ring structure
is shown in Figure 11.4. The outer ring shows the imbalance of the partic-
ular node that resides in that position. The imbalance is calculated by how

SELFMAN Deliverable Year Three, Page 92

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

Figure 11.1: Simulator Interface

many edges are pointing to the left of the ring (in a clockwise manner, this
is the lower node identifier) and how many edges are pointing to the right
of the ring. The greater the difference between left and right, the darker the
outer ring for that particular position. This essentially means that the node
residing in that position is dissimilar to its correct position in the perfect
state because a good state should be roughly balanced between the number
of left and right edges. The nodes in the inner ring are colored using shades
of red-green-blue and it shows relative positions of the current state with
respect to the perfect state. The closer the self-tuning gets to the perfect
state, the more continuous will be the color in the inner ring. The visualiza-
tion is animated so that it is shown with the colors possibly changing as the
self-tuning progresses as the nodes swap positions and hence colors.

The right side of Figure 11.1 shows nine visualizations of statistics to do
with the SWN simulation for monitoring the other properties of the SWN as
the self-tuning or poisoning experiment is run. The statistics also changes
from round to round providing a realtime visualization of the current state of
the network. The hops frequency histogram tells us the distributions of the
routing length. The edge distance frequency shows the edge distributions.
This example shows a power law distribution — there are more edges that
have a short distance and fewer edges that have a long distance. The edge
count frequency shows the number of friends’ distributions. The success rate

SELFMAN Deliverable Year Three, Page 93

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

Figure 11.2: Ring Structure - Perfect SWN node positions

Figure 11.3: Ring Structure - Shuffled node positions

SELFMAN Deliverable Year Three, Page 94

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

Figure 11.4: Ring Structure - Recovered node positions

shows out of 1000 routing tests, how many are successful (complete in less
than log2(n) hops). The average (AVG) routing hops gives the average of the
successful routing length for 1000 routing tests. The routing hops percentile
gives the distribution of the routing length. The switch percentage shows the
percentage of nodes that are involved in switching operations within a round.
The infection percentage shows the percentage of nodes that are poisoned by
a malicious node. The clustering coefficient shows the clustering coefficient
of individual nodes.

The input for the simulator is parameters that can be entered directly in
the bottom left part of the UI in Figure 11.1. Examples of the parameters
that can be changed in the configuration text are:

• Network generation algorithm: The choice of the network being ana-
lyzed. Currently it can generate 3 different networks (Chord, SWN,
and Random).

• Network optimization algorithm: The self-tuning optimization works
to reshape the network identifiers to follow a power law distribution.
There is one option which is the Sandberg self-tuning algorithm based
on switching node positions.

SELFMAN Deliverable Year Three, Page 95

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

• Network routing algorithm: There are many ways to do routing in the
network as well as different decision whenever a cycle is found. Several
variants of greedy routing are possible.

• Network parameters such as the number of nodes, number of edges, the
edge type (directed/undirected), the length of the random walk for the
network optimizer, number of routing tests, number of rounds.

• Poisoning experiment parameters such as the number of malicious nodes,
the infection rate of a malicious node, and the restart probability for the
node positions per round (this is used to reduce the effect of malicious
nodes).

The current round is shown at the bottom left textbox and we can see the
state of the previous round by changing the value of the textbox. The “tailing
checkbox” is to disable the animation when we are looking for a particular
round. By checking the checkbox, the animation will update the entire visu-
alizations to show the latest round.

The ring visualization and the statistics help in deciding the correct pa-
rameters for the self-tuning algorithm and for picking the correct strategy to
reduce the impact of the poisoning attack.

SELFMAN Deliverable Year Three, Page 96

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

11.5 Social network crawler

In order to simulate our SWN described in Section 16.3.1 on real social net-
works, we have developed website crawlers for the following social networks:
Windows Live Spaces, MySpace, and Facebook. We chose these three social
networks because they are among the largest social networks publically avail-
able. The three crawlers are very similar except for the HTML analysis part,
thus we only describe the Facebook one. The HTML analysis is used for
extracting the friend list from the HTML data downloaded from the web
server.

In Facebook, by default, users’ friend list is visible to all users logged in
to Facebook. Users can “close” their profile by changing the policy to only
allow viewing from their friends. In this case, our crawler cannot view the
friend list. We found out that 87.7% of the users’ friend list is publicly visible
in Facebook.

In MySpace, friend list is by default visible publicly to everyone including
non-logged in users. Thus our crawler for MySpace does not have to perform
login before crawling. After crawling a few hundred thousand users, we found
out that the average number of friends per user is very high. Having more
than 5000 friends is quite common in MySpace. We believe that it is a culture
in MySpace to add friends even if people do not know each other. Thus the
social network in MySpace can be very different from real life. We decided
not to continue crawling MySpace.

In Windows Live Spaces, before November 2008, the policy was similar to
MySpace, i.e. friend list was by default visible to even non-logged in users.
After November 2008, the policy was changed to be similar to Facebook to
only allow viewing by logged in users. Similar to Facebook, users can “close”
their profile as well. We found out that 67.0% of the users’ friend list is
publicly visible in Windows Live Spaces.

The crawler is implemented using a combination of bash scripts, awk

scripts, and some UNIX text processing tools. The actual downloading is
handled by wget.

30 Tono%20Aguilar 28 29 53 58 189 192 209 ...

171 Qian%20Zhang 117 190 201 824 949 967 ...

216 Egle%20Cekanaviciute 112 327 444 450 ...

220 Helen%20Chou 48 56 60 85 89 120 149 ...

233 Michael%20Blickstead 37 40 42 44 48 ...

Figure 11.5: An example of a Social Network Database

SELFMAN Deliverable Year Three, Page 97

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

The crawled social network database is stored in tab separated variable
format. Figure 11.5 shows an example of the social network database from
Facebook. Each line represents a downloaded user in Facebook. The first
column is the user ID of the downloaded user. The second column is the
user’s name. User names are not used in our simulation program. They are
stored to make it easier to recognize users. The rest of the columns are the
friends’ IDs of the downloaded user. All user IDs in Facebook are represented
using integers.

The crawler consists of three bash scripts: crawl.sh, login.sh and
getfl.sh.

• crawl.sh is the main script which executes the other two scripts. It
executes login.sh and then forks a number of processes to execute
getfl.sh in parallel to download a list of users. After all users are
downloaded, it reads the database to determine the new users to be
downloaded in the next round and restart the procedure.

• login.sh takes a user name and password and then it logins to Face-
book. It checks if the login is successful. The cookie which contains
the login session ID is that stored so that it can be used by getfl.sh.

• getfl.sh takes a user ID and download the friend list of the user
and append to the database file. The friend list is downloaded from
the URL http://www.facebook.com/friends/?id=[uid]&s=[page],
where uid is the user ID in decimal integer and page is the page number
starting from 0. (Facebook lists 400 users per page). The friend’s user
IDs is then extracted from the downloaded webpages.

To make the crawling server-friendly, i.e. not to cause significant load to
Facebook servers or appear to be an attack, we applied some rate limiting
constraints. Firstly, crawl.sh creates no more than 60 downloading threads
regardless of the number of users to be downloaded and downloading speed.
Secondly, we use linear backoff in the case of download failure. The first
failure causes a sleep of one second, the second causes two seconds and so
on. The average download speed we obtained is about 6 users/second or 500
KB/s.

Statistics of the crawled Facebook graphs can be found in Section 16.3.1.

SELFMAN Deliverable Year Three, Page 98

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

11.6 A more efficient SWN simulator for so-

cial networks

The initial Java Simulator described in Section 11.4 was suitable to simulate
the “synthetic” SWN behavior under various environments and under poi-
soning attack. In order to run simulation on a real social network that is
collected using the crawler (from Section 11.5), we developed a new version
of the simulator in C++. There are several reasons why we needed to de-
velop the second simulator. Firstly, it needs to deal with real social networks.
Secondly, the first simulator was meant for exploration but the visualization
is less useful and becomes to slow for large networks. Furthermore, the ring
visualization cannot be used to visualize the progress of the self-tuning with
a real social network as it relies on knowing the correct synthetic SWN which
is then shuffled. Thirdly, as visualization is not effective for social networks
and difficult on large networks, a new implementation which runs self-tuning
until the network is sufficiently restored is more efficient. Lastly, we added a
number of features to the new simulator to support social networks. These
include pruning the graph to reduce the number of edges and adding another
attack model for the network such as the consecutive range ID attack (see
Section 16.3.1).

The second simulator does not use a graphical user interface. All sim-
ulations are controlled from the command line. We briefly describe how to
use the simulator. The simulator accepts the following options from the
command line:

• −T denotes number of routing tests per round (default is 1000)

For each self-tuning round, we do T routing tests to measure perfor-
mance of routing on the selected graph. Statistics are given per round
based on the routing tests. These include how many routing tests are
successful and their average routing length.

• −H denotes maximum number of hops (default log2(n))

Each routing test is done by picking 2 random nodes in the network and
trying to route from one to another. The maximum number of hops
behaves as a TTL (time to live) for the message. If the routing uses
more than H hops, then routing is stopped and considered as failed.

• −L denotes random walk length (default 10)

The self-tuning algorithm requires two nodes to switch node positions
for the optimization. In order to find a partner to switch a node needs
to do a random walk of length L.

SELFMAN Deliverable Year Three, Page 99

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

• −R denotes the number of self-tuning rounds (default 10000)

• −X denotes the percentage of node failure (randomly picked)

Node failure affects the routing performance. Whenever a routing ar-
rived at a node that is marked as failed, the message will be bounced
back to the previous node, which cost 2 routing steps for visiting a
failed node.

• −Y denotes the percentage of link failure (randomly picked)

Link failure behaves similarly with the node failure.

• −A denotes the consecutive range ID attack enabled

This is similar to the node failure parameter X except that there are A
consecutive failed nodes. This parameter is used to simulate the attack
model of a consecutive range ID attack.

• −D random seed for the simulator to run the experiments with a dif-
ferent random seed

• −G output the graph in Graphviz dot file format

To visualize the real social network, we need to translate the input
format to the dot file format that is supported by Graphviz.1

• −C the maximum clustering coefficient for each node (default 1.0)

Facebook has more than 200 million users. Since we only analyze a
subset of the real social network graph, the proportion of the number of
nodes and the number of edges in the subgraph may not be balanced.
Therefore we need to adjust the number of edges in respect to the
number of nodes. The maximum bound on the clustering coefficient
is used to limit the maximum number of edges that can exist in the
neighbours of a node.

A sample of run of the new simulator is as follows:

$./sim < facebook-data.txt

N = 3996, Connected = 3996

F = 124.028

EP = 33 57 69 80 92 106 123 144 171 215 768

CCP = 0.093 0.288 0.344 0.397 0.437 0.480 0.521 0.566 0.617 0.683 0.977

1http://www.graphviz.org

SELFMAN Deliverable Year Three, Page 100

CHAPTER 11. D4.4B: SELF-PROTECTION SUPPORT

1 1640 487.808000 0.112

2 1044 679.570000 0.820

3 889 917.364000 0.790

...

many rounds elapsed

...

9997 23 50.613000 0.003

9998 41 62.379000 0.003

9999 23 78.613000 0.002

The input for the simulator data is a social network graph in the format
produced by the social network crawler in Section 11.5. The output of
the simulator is the result of running the self-tuning algorithm on the input
graph. The first line shows the number of nodes N in the real social network
followed by the number of nodes that are reachable from the first node. This
is used to check that the network is fully connected — the value should be
the same as the number of nodes in the network. The second line denotes
the average number of friends F in the network. The third line shows the
distribution of the number of edges over all nodes displayed as percentiles.
The percentiles shown in the output are from 0 to 100th percentile with
an interval of 10. The fourth line gives the distribution of the clustering
coefficient over all nodes also in percentile form. The remaining lines gives
the self-tuning results formatted as 3 numbers per line: the first number is
the number of the round (or iteration), the second number is the number of
switches in that round, the third number is the average routing length using
T routing tests, and the last number is the failure ratio of the routing tests.
This gives the fraction of the T routing test that are failed (i.e. those routing
tests that takes more than H hops).

SELFMAN Deliverable Year Three, Page 101

Chapter 12

D5.2b: Demonstrator
application for J2EE (software)

We decided to implement a distributed Wikipedia-clone based on Scalaris
instead of a more traditional J2EE application. As we describe later, the
application’s architecture is similar to traditional J2EE applications but the
tools are more lightweight.

12.1 Executive summary

We implemented a Wikipedia-clone with Scalaris as the database. The pre-
sentation layer is completely written in Java. A part of the business logic is
written in Java. The lower levels, which directly interact with the database,
were written in Erlang.

For demonstrations, we loaded Wikipedia dumps into our system and
presented basic features like browsing, page histories, and editing.

The presentation layer as well as the business logic are completely state-
less. All data is stored in Scalaris. This architecture allows us to easily scale
these two layers by simply adding more servers. Adding fault-tolerance and
self-* properties to these layers is also simple. For scaling the database layer
we rely on Scalaris.

102

CHAPTER 12. D5.2B: DEMONSTRATOR APPLICATION FOR J2EE
(SOFTWARE)

12.2 Contractors contributing to the Deliv-

erable

ZIB (P5) has contributed to this deliverable.

ZIB (P5) ZIB has contributed on the simple database query layer for
Scalaris.

SELFMAN Deliverable Year Three, Page 103

CHAPTER 12. D5.2B: DEMONSTRATOR APPLICATION FOR J2EE
(SOFTWARE)

12.3 Results

We implemented a Wikipedia-clone with Scalaris as the database. The pre-
sentation layer is completely written in Java. A part of the business logic is
written in Java. The lower levels, which directly interact with the database,
were written in Erlang. Fig. 12.1 shows this architecture.

HTTP Load Balancer

Client

Request for page A Page A

Replica of page AWebserver

Chord#,
replication,
and transac-
tions
written in Er-
lang

HTTP

Figure 12.1: Wikipedia on Scalaris.

The public Wikipedia uses PHP to render the Wikitext to HTML and
stores the content and page history in MySQL databases. Instead of using a
relational database, we map the Wikipedia content to Scalaris [65]. We use
the following mappings, using prefixes in the keys to avoid name clashes:

key value

page content title list of Wikitext
for all versions

backlinks title list of titles

categories category name list of titles

The page rendering of the Wikitext is done in Java in the web servers (see
Fig. 12.1) running jetty. For that we had to modify the Wikitext renderer of
the plog4u project.

SELFMAN Deliverable Year Three, Page 104

CHAPTER 12. D5.2B: DEMONSTRATOR APPLICATION FOR J2EE
(SOFTWARE)

Using this data layout, users may view pages by typing the URL, they
can navigate to other pages via hyperlinks, they can edit pages and view the
history of changes, and create new pages (see the screenshot in Fig. 12.2).
Since the Wikipedia dumps do not include images, we render a proxy image at
the corresponding positions instead. Moreover, we do not maintain a full text
index and therefore full text search is not supported by our implementation.
This could easily be performed by external crawling and search indexing
mechanisms.

When modifying a page, a transaction over all replicas of the responsible
keys is created and executed. The transaction includes the page itself, all
backlink pages for inserted and deleted links, and all category pages for
inserted and deleted categories.

Dissemination We published several papers on Scalaris and the Wikipedia-
clone. Sec. 12.4 shows the new papers for this reporting period. Additionally,
we presented the demonstrator at two industrial conferences (Google Con-
ference on Scalability and Erlang eXchange) and participate successfully in
the first IEEE Scale Challenge.

• T. Schuett, M. Moser S. Plantikow F. Schintke A. Reinefeld. A Trans-
actional Scalable Distributed Data Store: Wikipedia on a DHT. IEEE
Scale, May 2008. First Prize.

• T. Schtt. Scalable Wikipedia with Erlang. Google Conference on Scal-
ability, June 2008.

• A. Reinefeld. Building a transactional distributed data store with Er-
lang. Erlang eXchange, June 2008.

SELFMAN Deliverable Year Three, Page 105

CHAPTER 12. D5.2B: DEMONSTRATOR APPLICATION FOR J2EE
(SOFTWARE)

Figure 12.2: Screenshot of the Bavarian Wikipedia on Scalaris. Images are
not included in the dump.

12.4 Papers and publications

12.4.1 Scalaris: Reliable Transactional P2P Key/Value
Store

Thorsten Schütt, Florian Schintke, Alexander Reinefeld. Scalaris: Reliable
Transactional P2P Key/Value Store. ACM SIGPLAN Erlang Workshop,
September 2008 (see A.9).

We present Scalaris, an Erlang implementation of a distributed
key/value store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this imple-
ments the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing,
arbitrary key-ranges can be assigned to nodes, thereby allowing
a better load-balancing than would be possible with traditional
DHTs. Consequently, Scalaris can be tuned for fast data ac-
cess by taking, e.g. the nodes’ geographic location or the regional
popularity of certain keys into account. This improves Scalaris’
lookup speed in datacenter or cloud computing environments.

SELFMAN Deliverable Year Three, Page 106

CHAPTER 12. D5.2B: DEMONSTRATOR APPLICATION FOR J2EE
(SOFTWARE)

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to
access Scalaris.

Additionally, we present a generic design pattern to implement a
responsive server in Erlang that serializes update operations on a
common state, while concurrently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. Wiki-
pedia is a challenging application. It requires—besides thousands
of concurrent read requests per seconds—serialized, consistent
write oper ations. For Wikipedia’s category and backlink pages,
keys must be consistently changed within transactions. We dis-
cuss how these features are implemented in Scalaris and show its
performance.

12.4.2 A Scalable, Transactional Data Store for Future
Internet Services

Alexander Reinefeld, Florian Schintke, Thorsten Schütt, Seif Haridi.A Scal-
able, Transactional Data Store for Future Internet Services. EU Future of
the Internet Conference, May 2009 (see A.10).

Future Internet services require access to large volumes of dy-
namically changing data records that are spread across different
locations. With thousands or millions of distributed nodes storing
the data, node crashes or temporary network failures are normal
rather than exceptions and it is therefore important to hide fail-
ures from the application.

We suggest to use peer-to-peer (P2P) protocols to provide self-
management among peers. However, today’s P2P protocols are
mostly limited to write-once/read-many data sharing. To extend
them beyond the typical file sharing, the support of consistent
replication and fast transactions is an important yet missing fea-
ture.

We present Scalaris, a scalable, distributed key-value store. Scalaris
is built on a structured overlay network and uses a distributed
transaction protocol. As a proof of concept, we implemented a
simple Wikipedia clone with Scalaris which outperforms the pub-
lic Wikipedia with just a few servers.

SELFMAN Deliverable Year Three, Page 107

Chapter 13

D5.3: Demonstrator application
for Mozart (software)

13.1 Executive summary

The objective of this software deliverable is to implement a service that
can benefit for the results presented in other work packages, mainly WP1
and WP3. We have developed a community-driven recommendation system
called Sindaca. The system is built on a peer-to-peer network which uses
the relaxed-ring topology to self-organize the peers that hold the state. The
relaxed-ring is a result from WP1. The state is consistently and symmetri-
cally replicated across the network using the transactional layer designed in
WP3.

We have implemented a web interface to interact with the Sindaca peer-
to-peer network. It provides basic functionality for a recommendation system
with explicit collection of data. Users can recommend titles to the commu-
nity, which are voted by other users. The state of every recommendation is
also displayed as part of the feedback to the users.

108

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

13.2 Contractors contributing to the Deliv-

erable

This software deliverable is the result of the work of partner UCL(P1).

UCL(P1) implemented the peer-to-peer network using the relaxed-ring
topology. It also implemented the transactional layer with contribution of
ZIB(P5) as reported in in deliverable D3.1c, Chapter 2. UCL(P1) also im-
plemented the web pages to interact with the application running on the
peer-to-peer network.

SELFMAN Deliverable Year Three, Page 109

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

13.3 Sindaca recommendation system

13.3.1 Introduction

This deliverable presents a community-driven recommendation system named
Sindaca, which stands for Sharing Idols N Discussing About Common Ad-
dictions. The name spots the main functionality of this application which is
making recommendations on music, videos, text and other cultural expres-
sions. It is not meant for file sharing to avoid legal issues, but for providing
links to official sources of titles. The whole system is implemented using a
peer-to-peer network self-organized with the relaxed-ring protocol, which is
a result from WP1, see Appendix A.4. The state of the system is symmetri-
cally replicated on the network using the transactional layer for decentralized
storage management, presented in Chapter 2, being a result of WP3.

We have implemented a web interface to access the application. All re-
quests done through the web interface are transmitted to a peer in the net-
work which triggers the corresponding operations on the peer-to-peer net-
work. The results are transmitted back to the web server, which presents the
information in HTML format as in any web page. The way the application is
interfaced through web and the way the information is stored in the network
is similar to the architecture developed to implement the Wikipedia using
Scalaris [65], see Chapter 12. We have extended this architecture with a
notification layer which allows eager information updates. This layer is also
used in the DeTransDraw application [56], reported in Chapter 18. However,
this eager notification feature is not provided on the web interface.

To generalize the similitudes and differences between Sindaca and the
above mentioned applications, we can say the following: the Wikipedia on
Scalaris uses optimistic transactions using the Paxos consensus algorithm.
DeTransdraw uses pessimistic eager-locking transactions using Paxos con-
sensus algorithm with a notification layer. Sindaca is a combination of the-
ses strategies. It uses optimistic transactions with Paxos extended with the
notification layer.

Sindaca is available for demo testing at url:
http://beernet.info.ucl.ac.be/sindaca

Use the following login information to enter the system:

• Username: selfman

• Password: sindaca

Any modifications done will be stored in the network, but they are not
persistent to the reinitialization of the network. In case of problems during
the test, please check contact information on the web page.

SELFMAN Deliverable Year Three, Page 110

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

Figure 13.1 shows Sindaca’s welcome page with the sign in form on the
left of the page, together with the menu. The screenshot shows user fbrood
logging in.

Figure 13.1: Sindaca’s welcome page with sign in form

13.3.2 After sign-in and voting

If username and password are successfully provided, the user is taken to the
profile page where information about the recommendations stored in the sys-
tem is displayed. Figure 13.2 is a screenshot of the web page displayed after
user fbrood has signed in. There is a welcome message both in the menu and
in the center of the content. What follows is a list of recommendations sug-
gested by members of the Sindaca community. This recommendation could
have been made by other members or by the user itself. The recommendation
is composed by a title, the name of the artist, and a link where the title can
be found. As mentioned before, Sindaca does not provide storage for content
preventing legal issues.

The listed recommendations are only those that has not received a vote
from the user. A radiobutton is provided to express the preference which goes
from no good to good. We have actually chosen a scale from No beer to Beer,

SELFMAN Deliverable Year Three, Page 111

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

Figure 13.2: After sign in, users can vote for suggested recommendations.

because Sindaca is implemented on Beernet citeBeernet. The vote are sub-
mitted to the network when the user press the Vote button. Once the voting
submission is sent, a transaction is triggered to modify the item that stores
the recommendation. There are more items involved in this transaction, but
the details will be explained in section 13.3.4.

13.3.3 Making a recommendation

The form to add a new recommendation is presented in the same page where
the recommendations to be voted are displayed. The form can be seen in
Figure 13.3 where the data for a new recommendation is already completed.
The data to be filled in corresponds to the title, author, and link to the title.
Once the data is submitted by pressing the button Recommend, a new item
will be created in the network to store the recommendation, and this one will
be associated to the user that creates it.

Every user has a list of recommendations she has made. This list is
displayed in the same profile page, below the form for adding new recom-
mendations. Therefore, the full profile page displays from top to bottom:
welcome message, list of recommendations to be voted, form to add a new
recommendation, and the list of recommendations already made by user.

SELFMAN Deliverable Year Three, Page 112

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

Figure 13.3: Adding a new recommendation.

Figure 13.4 shows how the last list is presented. Apart from the above men-
tioned fields, namely title, artist and link, the information contains two other
fields being part of the state of every recommendation: the amount of votes,
and the average score. The screenshot we display in Figure 13.4 was taken
after the addition of the recommendation made in Figure 13.3. For that item
we can observe that no vote is registered, and therefore there is no average
score either.

13.3.4 Data storage structure

In the previous sections we described the functionalities of Sindaca, and we
briefly introduced the effects of every action in the storage of the network.
This section is dedicated to explain more about the details on the implemen-
tation of Sindaca.

First of all, it is important to remark that Sindaca it is not implemented
on top of a database supporting SQL queries. Sindaca is implemented on
top of a transactional distributed hash table with symmetrically replicated
state. Therefore, the basic unit for storage is the key-value pair, which is
what it is called item. The information of every user is stored as one item.
The value of such item is a record with the basic information: user’s id,

SELFMAN Deliverable Year Three, Page 113

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

Figure 13.4: State of recommendation proposed by the user.

username and password. We have chosen a very minimal record to build
the prototype, but the value can potentially store any data such as user’s
real name, contact information, age, description, etc. The key of the item
is an Oz name [62], which is unique and unforgeable, acting as a capability
reference. This strategy provides us with a certain level of security, because
only programs that are able to map usernames with their capability can
have access to the key, and therefore to the item. The username-capability
mapping is only available to programs holding the corresponding capability
to the mapping table.

The functionality of adding a new recommendation, shown in Figure 13.3,
makes it clear that a recommendation belongs to a user. Therefore, every
user item contains a list of capabilities which are references to recommen-
dations. The functionality of voting also implies that every user item hold
a list of capability references to votes. The relational model is depicted in
Figure 13.5, and we can observe that a user can have multiple recommen-
dations and multiple votes. What it is also stored in user’s item is the list
of recommendations already voted. That list will allows us to filter all other
recommendations, presenting to the user only those she still have not voted
yet.

From the relational model we can also observe that every recommendation

SELFMAN Deliverable Year Three, Page 114

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

Figure 13.5: Sindaca’s relational model

has a list of votes associated to it. Every vote contains information about the
score, the user who made the vote, and the voted recommendation. What
it is not shown in the relational model is how to find all the items on the
network. There are two other items which store the list of all user’s keys
and all recommendation keys. Every time a new user or recommendation is
created, these global items are modified. There is no global item for votes,
because votes are accessible through the users and the recommendations.

The most complex transaction is triggered with the voting functionality.
First of all, a new vote item is created. Then, the item of the voting user is
modified in two fields. The list of voted recommendations is increased with
the capability of the voted recommendation. The capability of the newly
created vote is added to the list of votes of the user. Three fields of the voted
recommendation are affected. The created vote is added to its list of votes,
and the vote counter is increased by one, and the score average is recomputed
taking the new value into account.

13.3.5 Configuration

The current version of Sindaca available for demo testing is configured with
a peer-to-peer network of 42 nodes. All of the nodes are currently running
on the server hosting Beernet’s web page. The current state is a proof of

SELFMAN Deliverable Year Three, Page 115

CHAPTER 13. D5.3: DEMONSTRATOR APPLICATION FOR
MOZART (SOFTWARE)

concepts, and we are planing to deploy the service on different machines.
Some initial information is stored in the network in order to bootstrap the
network and run the test. This information includes the creation of user
selfman, which is available for testing. We have successfully run the service
for several days allowing other users in our department to test the function-
alities of the system by providing their own recommendations and voting on
the recommendations of other users. The data provided by the testers is not
persistent to the failure of the system. If the network needs to be restarted,
the data provided by the testers is lost.

To transmit the information from the web interface to the network, we
have running Mozart [62] process that listens to the Apache [25]-PHP [31]
module which is reading the web requests. This Mozart process connects
to a peer in the network in order to trigger the corresponding transaction.
The implementation of the peer-to-peer network is done with P2PS/Beernet
rev396 [54] or later, which is available for downloading on Beernet’s web site,
under the download section.

SELFMAN Deliverable Year Three, Page 116

Chapter 14

D5.4a: Qualitative evaluation
of autonomic features of
Selfman applications

14.1 Executive summary

Many experimental works on autonomic computing aim at showing that such
a disruptive technology can improve information systems in terms of quality
of service and, de facto, in terms of return on investment as well. However
still little research has attempted to demonstrate this intuition. Moreover
such works can be characterized by their qualitative and fragmented ap-
proach. Thus there is still no generic (i.e. independent from business domain,
technology, architecture and implementation choices) autonomic computing
benchmarking tool for evaluating and/or comparing autonomic systems in
terms of efficiency, reliability, availability, costs, etc.

The task T5.4 of Selfman WP5 aims at carrying out the first step toward
a benchmark for evaluating autonomic computing in a technical and econom-
ical perspective. Its goal is to assess autonomic features both qualitatively
and quantitatively. Thus it is worth noticing from the Selfman DoW that the
goal is to demonstrate the effectiveness of autonomics capabilities of informa-
tion systems. This goal will be achieved by comparing Selfman applications
(provided by Peerialism(P6), ZIB(P5) and UCL(P1)) with and without au-
tonomic features. So the purpose consists in focusing only on autonomic
features in these applications and not in evaluating them functionally.

This deliverable intends to provide a methodology and process for eval-
uating qualitatively the self-management features. Section 14.3 provides a
definition of these methodology and process. It is divided into two subsec-

117

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

tions.

• First section 14.3.1 describes the existing background by putting for-
ward the state of the art related to autonomics benchmarking.

• Then section 14.3.2 defines the specificities of the approach that has
been applied to Selfman applications.

Section 14.4 consists in carrying out assessment grids in order to apply this
process on the Selfman applications (Peerialism(P6)’s PeerTV, ZIB(P5)’s
Wiki on Scalaris and the UCL(P1)’s gPhone application). Section 14.5 and
section 14.6 focus on the results obtained thanks this evaluation process.
Finally section 14.7 aims at analyzing the methodology itself.

SELFMAN Deliverable Year Three, Page 118

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.2 Contractors contributing to the Deliv-

erable

Peerialism(P6), ZIB(P5), UCL(P1) and FT R&D(P4) participate to the writ-
ing of this deliverable.

FT R&D(P4) defined the evaluation framework (methodology and pro-
cess) and provided support for applying it to the Selfman applications.

Peerialism(P6), ZIB(P5) and UCL(P1) provided feedback to the de-
sign of the evaluation framework, and then applied the assessment method-
ology on their own application (by fulfilling assessment grids).

SELFMAN Deliverable Year Three, Page 119

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.3 Methodology and process

14.3.1 Background under discussion

Autonomic computing context

[40] and [43] define autonomic computing thanks to four main character-
istics (self-configuration, self-healing, self-protection and self-optimization)
and four secondary characteristics (self-awareness, context-awareness, open-
ness and anticipation). The autonomic features provided by a system are
embedded into autonomic managers. Each autonomic manager is responsi-
ble for a set of managed resources. Its processing can be divided into four
stages [40].

Monitoring: the autonomic manager collects data coming from the con-
stituents with which it is in charge (resources, probes, etc.) It can
eventually handle these data with simple technical process like aggre-
gating or filtering.

Analyzing: collected data are then analyzed regarding management policy.

Planning: according to analyzing results, the autonomic manager decides
if a set of actions has to be executed and build a reaction plan.

Execution: in this last stage, the autonomic manager carries out the plan
built in planning phase for replying to the original stimulus.

This decomposition into four stages is named MAPE-loop (for “Monitoring
Analyzing Planning Executing-loop”) or control loop. The term loop high-
lights the fact that the autonomic manager continuously and sequentially
repeats these four stages. Such a decomposition is purely conceptual. In ex-
isting autonomic systems some phases can be merged together like monitoring
with analyzing or analyzing with planning or else planning with execution. In
the scale of autonomic computing maturity (see Table 14.4) for instance, the
managed level consists of both monitoring and analyzing implementation. A
MAPE-loop is independent from each different autonomic computing main
characteristic and can be applied similarly to self-configuration, self-healing,
self-protection and self-optimization. Each main autonomic characteristic
–and each autonomic computing system as well– consists of many MAPE-
loops that can interoperate together. A hierarchy can also exist between
these MAPE-loops.

In the following, autonomic behavior (AB) designates the autonomic fea-
ture that is implemented by a MAPE-loop. Many ABs can so be associated
with each main autonomic characteristic.

SELFMAN Deliverable Year Three, Page 120

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Models and metrics

The idea that underlies the definition of a global evaluation model of auto-
nomic computing, consists in declining the eight autonomic characteristics
from the well-known Factors-Criteria-Metrics (FCM) model [24]. Such FCM
models enclose three levels of abstraction.

Factors (to specify): these characteristics contribute actively to the soft-
ware quality by giving an external view (e.g. a user perception) of it.
They can be directly or indirectly linked to the costs they imply.

Criteria (to build): these are system internal attributes that participate
to quality factors estimation and definition (developer level). Each
criterion can participate for estimating one or many factors. Each
criterion is associated with one metric. A criterion can be objective
(quantitative) or subjective (qualitative).

Metrics (to control): a metric provides a scale and a method for measur-
ing the value of the associated criterion.

Each factor is made up of multiple criteria, each criterion being the result of
a combination (heuristic) function of one or many metrics.

Since autonomic computing aims essentially at improving the QoS of sys-
tems, [71] and [98] try to define an autonomic computing evaluation model
based on the standardized ISO/IEC 9126 software quality model [60]. The
ISO/IEC 9126 software quality model defines six factors specifying external
user views and about twenty criteria describing the internal view of the sys-
tem. However no metrics are defined for evaluating these criteria due to the
tight coupling between software quality and business domain. Table 14.1
describes the relationships between factors and metrics in ISO/IEC 9126
standard.

[71] and then [98] define the relationships between the eight autonomic
computing characteristics and the six quality factors of ISO/IEC 9126 (see
figure 14.1).

Moreover [49] intends to give a first standardized and quantifiable defi-
nition of autonomic computing. It notices effectively that for now research
works only focus to answer to requirements without any industrial process.
This lack of common and quantifiable definition leads to a collection of het-
erogeneous autonomic behaviors unable to interoperate in order to reach a
common target. Thus [49] bases its approach on the Quality Metrics Frame-
work (QMF) defined in IEEE 1061-1998 specification. Its purpose is to define
some quality factors that would be evaluated thanks quality metrics. The

SELFMAN Deliverable Year Three, Page 121

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Table 14.1: Decomposition of quality factors in quality
criteria in ISO/IEC 9126 standard

Quality factors Quality criteria
Functionality Suitability

Accuracy
Interoperability

Compliance
Security

Reliability Maturity
Recoverability
Fault-tolerance

Compliance
Usability Learnability

Understandability
Operability

Attractiveness
Compliance

Efficiency Time behavior
Resource behavior

Compliance
Maintainability Stability

Analyzability
Changeability

Testability
Compliance

Portability Installability
Replaceability
Adaptability
Conformance

SELFMAN Deliverable Year Three, Page 122

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 14.1: Organization of autonomic computing characteristics based on
ISO/IEC 9126 standard quality factors (inspired from [71] and [98])

main result that this paper exposes is a hierarchy between autonomic com-
puting characteristics (see figure 14.2).

Figure 14.2: Hierarchy between autonomic computing characteristics (ex-
tracted from [49])

Finally concerning criteria evaluation, [53], [17] and [19] propose a non-
exhaustive set of metrics which are not related to any evaluation standard
such as ISO/IEC 9126. For instance [53] suggest the evaluation of two spe-
cific durations for measuring autonomics sensitivity. These metrics are the
adaptation time (between the change detection and the while the adapta-
tion has been done) and the reaction time (between the change occurrence
and the while the system adaptation can start). Comparably [19] defines a

SELFMAN Deliverable Year Three, Page 123

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

third metric which is the stabilization time (between adaptation start and
the while the system is back to a stable state). See figure 14.3 for more
details.

Figure 14.3: Definition of adaptation time, reaction time and stabilization
time

All these works concerning models and metrics constitute indispensable
steps toward providing a full autonomics benchmark, but they can be char-
acterized by a qualitative and fragmented approach. [71] and [98] do not pro-
vide a quantitative composition of the factors for evaluating experimentally
the autonomic characteristics, nor an adaptation of ISO/IEC 9126 model to
autonomic computing field. [49] is not based on any FCM model and still
has to be quantitatively validated. Finally, most of the metrics listed by [53],
[17] and [19] are qualitative: their evaluation remains subjective.

14.3.2 Approach specificities

The main purpose of benchmarking is to estimate the improvement provided
by a technology. Concerning autonomic computing benchmarking, a two-
stage approach will be adopted.

• The first step consists in providing a technical benchmark for measuring
the impact of ABs on the efficiency of the system in terms of availability,
reliability and quality of service. This tool should be generic in order
to be coupled with any convenient QoS benchmarking tool, according
to the business domain of the evaluated system.

• The second step consists in coupling these technical measurements with
known (industrial) management costs models in order to infer econom-
ical gains.

This approach intends to providing an autonomics benchmarking tool as in-
dependent as possible from the architecture and from the business domain of

SELFMAN Deliverable Year Three, Page 124

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

the system under test (SUT). Thus it will be applied on many applications
(differing according their business domain and/or their software architec-
ture).

The task T5.4 of Selfman project aims at providing a qualitative and
quantitative evaluation of ABs. Then future works will use these results for
carrying out the technical and thereafter the economical benchmarks.

So we developed a hierarchical and extensible1 model for characterizing
autonomic capabilities. This model defines the whole constituents (i.e. fac-
tors, criteria and metrics) of an hybrid ISO/IEC 9126 model for the au-
tonomic computing field (see figure 14.4), similarly to the adaptation of
ISO/IEC 9126 model proposed by [97] and addressing the concrete case of
test specification. We adopted a bottom-up approach integrating, supple-
menting and adapting the existing works (see section 14.3.1).

At the same time we identified a set of metrics (by using and enriching
the list defined by [53], [17] and [19]) participating in the empirical evaluation
of the model. These metrics must be generic, measurable and quantifiable
–for those implied in the definition of quantitative high-level indicators–:

Generic (or business independent), in order to carry out an evaluation and
comparison tool applicable to any business domain;

Measurable i.e. these metrics can be assessed independently of the choices
related to the system in terms of architecture, design, implementation
or technologies;

Quantifiable for metrics processed by composition functions as inputs in
order to calculate quantitative higher-level indicators. Quantitative
metrics are de facto quantifiable. Concerning qualitative metrics they
are characterized by the subjectivity of their evaluation. However some
of them are composed of discrete but orderable values (for instance, the
level of maturity of an AB) whereas others are made of non orderable
values (like the list of standards or technologies to which a component
conforms). Only the first ones are quantifiable;

Let us shortly focus on some metrics mentioned in figure 14.4.

1. Monitorability, analyzability, planning capability and changeability are
four time measurements mapped on each phase of the MAPE-loop (see
figure 14.5). This decomposition results from the widely accepted con-

1We are conscious that autonomic benchmarking approach presents limits or difficulties
because of some business domain specificities. However we would try to exhibit a model
with generic criteria and metrics (macroscopic properties) and domain specific criteria and
metrics as well e.g. for P2P systems, J2EE systems, etc. (microscopic properties). Hence
the notion of an extensible model.

SELFMAN Deliverable Year Three, Page 125

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 14.4: Adaptation of ISO/IEC 9126 to autonomic computing field

SELFMAN Deliverable Year Three, Page 126

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 14.5: Mapping between MAPE-loop stages and their duration

cept of control loop. Moreover autonomic systems offer different levels
of maturity that are mapped on the MAPE-loop as well. So it will be
possible to quantify each duration according to the system maturity
level.2

2. Anticipatory is the criterion in charge of evaluating the system ability
for dealing with events, without modifying its QoS efficiency. Thus,
among the whole disturbances the system is able to compute, the im-
pacting ones are those which modify system efficiency.

3. Stability tends to measure the time the system needs to return to a
stable state (i.e. where QoS values are stable).

2Similarly, this would have needed an important adaptation of time metrics proposed
by [53]

SELFMAN Deliverable Year Three, Page 127

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.4 Assessment process

For assessing ABs qualitatively, we defined two evaluation grids.

• The first one consists in grouping together the qualitative metrics de-
fined in the hybrid ISO/IEC 9126 model (see figure 14.4). It allows to
assess each AB independently.

• The second one contains higher level metrics for giving a synthesized
view of the autonomic features of a given application.

SELFMAN Deliverable Year Three, Page 128

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.4.1 Qualitative assessment of elementary AB

Table 14.2 allows the evaluation of each AB independently: one table / AB.

Table 14.2: Qualitative assessment grid for elementary
AB

Autonomic Behaviour title (Bandwidth Optimization in P2PTV for example)
Criterion Description Example
Related to self-*
characteristic

{self-configuration, self-healing,
self-optimization,
self-protection}

self-optimization

Description of
autonomic
behaviour

Free text. Short description of
the autonomic behaviour.

The bandwidth
optimization in
P2PTV consists
in. . .

Internal
constituents
knowledge

Free text. Internal features
that need to be monitored for
this AB

External
environment
knowledge

Free text. Environmental (i.e.
outside the AB) features that
need to be monitored for this
AB

Level of
automation

{-, M, MA, MAP, MAPE} MAPE (full loop)

Monitoring
conformance

Free text. Technologies for
monitoring used : probe
frameworks, standard (e.g.
JMX)

Analysing
conformance

Free text. Technologies used for
event correlation and diagnosis

Planning
conformance

Free text. Technologies used for
decision making : deductive
rules, actives rules, machine
learning

Explicitly
programmed

Executing
conformance

Free text. Technologies used for
execution of reconfiguration
plan

SELFMAN Deliverable Year Three, Page 129

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Coupling {Tight, Loose}. Free text.
Description of coupling between
autonomic and functional
capabilities inside the
Autonomic Behaviour.

Tight. The AB can
not be enabled /
disabled
independently from
the business
features

Manageability {High, Medium, Low}. Free
text. Capability to be managed
(typically change policy at
runtime). This criterion does
not imply the AB ability to
interoperate with other ones
but just its ability to be
monitored, introspected, driven
an external entity.

Low. The AB is
inline coded. No
possibility to
change at runtime.

Interdependency {High, Medium, Low}. Free
text. Description of the other
Autonomic Behaviours and
components the current
Autonomic Behaviour is
depending on.

Low. This AB has
no dependencies
and no
collaborations with
other ABs

Coverage Free text. List of disturbances
with which the AB is able to
deal

Peer joining and
peer leaving

SELFMAN Deliverable Year Three, Page 130

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.4.2 Qualitative assessment of global ABs

Table 14.3 provides a synthesized view of the whole autonomic features of an
application: one table / application.

Table 14.3: Qualitative assessment grid for global ABs

Application name (Application1 for example)
Criterion Description Example

“CHOP radar”

On a radar chart with
four axis, each self-* main
characteristic (Configura-
tion, Healing, Optimiza-
tion, Protection) is re-
ported [19]. Each axis
has for scale its associated
level of maturity (see ta-
ble 14.4)

Self-
configuration
maturity level3

{Basic, Managed,
Predictive, Adaptive,
Autonomic}

Adaptive

Self-healing
maturity level3

{Basic, Managed,
Predictive, Adaptive,
Autonomic}

Basic

Self-optimisation
maturity level3

{Basic, Managed,
Predictive, Adaptive,
Autonomic}

Predictive

Self-protection
maturity level3

{Basic, Managed,
Predictive, Adaptive,
Autonomic}

Managed

Support for
interacting
control loops

{Yes, No}. Free text.
Description of ABs
interactions

No

3Self-* characteristic maturity is evaluated thanks the scale proposed by IBM [92] (see
table 14.4). At the AB level (local) we kept a scale with a better adequation to MAPE-
lopp stages. Here are the equivalences between these two scales : (- ⇔ Basic, M ⇔
<not applicable>, MA ⇔ Managed, MAP ⇔ Predictive, MAPE ⇔ Adaptative, <not
applicable> ⇔ Autonomic)

SELFMAN Deliverable Year Three, Page 131

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Support for
stability

{Yes, No}. Have a
stabilisation mechanism
been developed in order
to prevent from system
instability or oscillations.

No

Table 14.4 contains the scale with the description of the five corresponding
levels of autonomic computing maturity that have been proposed by IBM [92]
and that are widely accepted.

Table 14.4: Scale and levels description of autonomic
computing maturity

Level Description
Basic The product and environment expertise resides

in human minds
Managed Scripting and logging tools automate routine

execution and reporting. Autonomic systems so
carries out monitoring and analyzing phases from
MAPE-loop providing human specialists with
synthesized data for building action plans.

Predictive Autonomic system is able to raise warning flags
when predefined threshold are tripped. It also is
able to propose some reaction plans according to
the content of its centralized knowledge base.

Adaptive Building on the predictive capabilities, the
adaptive system takes action itself based on the
situation.

Autonomic Management policy drives system activities
within a framework dealing with priorities

SELFMAN Deliverable Year Three, Page 132

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.5 Experimental assessment of local ABs

This section contains the results obtained by applying the qualitative assess-
ment grids for evaluating each local AB of each Selfman application.

14.5.1 PeerTV (Peerialism(P6))

The structure of the PeerTV platform comprises of a number of entities,
as seen in Figure 14.6, but only four major ones are involved in content
distribution: the Client, the Source, the Tracker and the Optimization engine
(Opto). Clients are responsible of both retrieving content and distributing
it to other clients, the source can be considered as a client which has all the
content and can always provide other clients. The tracker is the central point
of reference for all clients, it receives requests and issues responses following
directions given by the optimization engine. The latter instead decides how to
organize the overlay network such that the content is distributed efficiently
to the clients. The Optimization engine keeps an overview of the overlay
network state. Such information is built and maintained upon reception of
periodic update messages from the clients. The network overview is vital
for all decision processes which happen in the Optimization Engine. Three
ABs are active in the PeerTV platform: a first one deals with the event of
a new peer joining the system, i.e. of the self-configuration type, a second
one of self-healing type is in charge with peer leaving or failure and the third
one which is responsible of optimizing the flow of content over the overlay
network which is a self-optimization AB.

Overlay Creation and Maintenance

When a new Client intends to join the overlay network, it contacts the Tracker
on a well-known address. The Tracker receives the request and hands it out
to the Optimization Engine which decides which peer(s) should the new client
contact in order to receive content, being that a source or a normal client
which has already received such content. The decision regarding the latter
assignment is made taking into account a number of different factors, such as:
bandwidth availability of provider peers, connectivity constraints observed on
the underlying network and the preservation of content locality. Information
which is included in the network image that has been built over time in
the Optimization Engine. The aforementioned self-configuration mechanism
ensures that all joining clients are provided with content and consequently
that the overlay network is connected, i.e. all peers have a path to the source.
Such Autonomic behavior cannot be switched off for evaluation purpose since

SELFMAN Deliverable Year Three, Page 133

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 14.6: PeerTV System Architecture

it has vital role for maintaining the structure and functionality of the peer-
to-peer network.

Another autonomic behavior of the self-healing type makes sure that all
peers that experience problems during the receiving of the content are re-
assigned to a new peer. This process is triggered by the client reporting
a delivery failure to the tracker/opto. Such a failure might be caused by
congestion of the network or a malfunction of providing peers. This AB
cannot be disabled, since it would compromise the ability of the system to
serve all peers, even those which experience problems over time.

Table 14.5: Joining peer assignment

Related to self-*
characteristic

self-configuration

SELFMAN Deliverable Year Three, Page 134

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior:

This AB is embedded in the Optimization Engine.
It aims at assigning a set of provider peers P to a
joining peer n, such that n is able to receive the
requested content from peers in P . Switching o this
behavior will prevent any new node to enter the
delivery system. Peers are not authorized to
provide content unless previously notified by the
Tracker on behalf of the Optimization Engine, this
prevents joining peers to contact directly content
providers and makes the joining process essential.
Upon event < join > event from n:
• Check if n is authorized to enter the system

• Choose a set of peers P to assign to n using
overview O, which represents the state of the
overlay network.

• Update overview O with the outcome of the
new assignment.

• Forward set P to Tracker and then to n.

Internal
constituents
knowledge

Overview (O) built with information from actual
members of the overlay network

External
environment
knowledge

The identifier and characteristics (Bandwidth
capacity, connectivity constraints, public/private
address, etc...) of peer (n).

Level of
automation

MAPE

Monitoring
conformance

Proprietary implementation of a Rendez-vous
server (Tracker). Proprietary communication
protocol between the server and the peers.

Analyzing
conformance

Proprietary Processing engine for interpreting
information provided by peers.

Planning
conformance

Proprietary Assignment Algorithm.

Executing
conformance

Proprietary communication protocol.

SELFMAN Deliverable Year Three, Page 135

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Coupling This AB is built-in in the Optimization Engine.
The system cannot accept any new peer if the AB
is disabled .

Manageability The AB can be stopped manually if needed but it
will prevent new peers to join the system .

Interdependency It does not depend on any other AB. Instead, it’s
the other self-optimization AB which depends on
this one. This because the self-optimization process
involves only peers that have already joined the
system.

Coverage This AB deals with the < join > event,
corresponding to the occurrence of a new peer
joining the system

SELFMAN Deliverable Year Three, Page 136

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Table 14.6: Failing peer assignment

Related to self-*
characteristic

self-healing

Description of
autonomic
behavior:

This AB is embedded in the Optimization Engine.
It aims at substituting the peers in set P serving n
which have not succeeded to provide content.
Switching o this behavior will prevent any failing
node to re-enter the delivery system.
Upon event < failure > event from n:
• Check if n is authorized to enter the system

• Choose a set of peers P to assign to n using
overview O, which represents the state of the
overlay network.

• Update overview O with the outcome of the
new assignment.

• Forward set P to Tracker and then to n.

Internal
constituents
knowledge

Overview (O) built with information from actual
members of the overlay network

External
environment
knowledge

The identifier of peer (n) and updated information
on its status, e.g. buffers’ status.

Level of
automation

MAPE

Monitoring
conformance

Proprietary implementation of a Rendez-vous
server (Tracker). Proprietary communication
protocol between the server and the peers.

Analyzing
conformance

Proprietary Processing engine for interpreting
information provided by peers.

Planning
conformance

Proprietary Assignment Algorithm.

Executing
conformance

Proprietary communication protocol.

Coupling This AB is built-in in the Optimization Engine.
The system cannot recover from any failure if the
AB is disabled.

SELFMAN Deliverable Year Three, Page 137

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Manageability The AB can be stopped manually if needed but it
will create a big disruption in the system as peers
fail and are discarded.

Interdependency It does not depend on any other AB.
Coverage This AB deals with the < failure > event,

corresponding to the occurrence of an existing peer
reporting a failure in the content delivery.

SELFMAN Deliverable Year Three, Page 138

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Content Distribution Optimization

The third AB in the PeerTV system is of the self-optimization type and
performs the task of reorganizing the structure of the overlay network to
optimize content distribution. This optimization process is executed period-
ically after T number of seconds, where T may vary according to the state
of the overlay network, e.g. if the distribution load is not balanced among
peers, the optimization process is executed more often, hence smaller val-
ues of T are chosen. The optimization process consists in re-organizing the
assignments between peers, taking into account the following characteristics
of the distribution network: bandwidth availability, connectivity constraints
and issues, data locality, network delays and peering costs. Note that this
information is contained in the overview that the Opto has built using de-
tailed state messages from the client. The optimization process returns as a
result the new assignments that must be enforced between the peers.

Table 14.7: Overlay Optimization Process

Related to self-*
characteristic

self-optimization

SELFMAN Deliverable Year Three, Page 139

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior

This is a full-fledge Autonomic Behavior where the
MAPE loop can be easily identified.
Monitoring:
• Monitoring phase is carried out by both

Client and Tracker entities, as the former
sends information about its local state and
the latter aggregates it before handing it out
to the Opto.

Analysis:

• When the period T is expired, the Opto
engine aggregates all information provided
previously by the peers during the monitoring
phase in a matrix structure (the previously
mentioned network overview O).

Processing:

• The matrix built during the Analysis phase is
given as input to the Optimization engine.
The Optimization engine solves the linear
optimization problem associated with the
assignment of peers to each others.

Execution:

• The Optimization engine returns a set of new
assignments. Note that not all assignments
are changed but only the ones considered not
optimal. The actual sending of the messages
is performed by the tracker on behalf of the
Opto.

Internal
constituents
knowledge

Overview (O) built with information from actual
members of the overlay network acquired over time

External
environment
knowledge

Overview (O) of the network status can also be
considered as external knowledge, since it
represents the status of the peers.

Level of
automation

MAPE

SELFMAN Deliverable Year Three, Page 140

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Monitoring
conformance

PeerTV’s proprietary communication protocol

Analyzing
conformance

Proprietary Processing engine for interpreting
information provided by peers.

Planning
conformance

Proprietary Assignment Algorithm.

Executing
conformance

Proprietary communication protocol.

Coupling This AB can be disabled at any time, although this
will lead to poor performance of the whole system.

Manageability The AB can be stopped manually. There is no
automatic way to stop such mechanism

Interdependency This self-optimization AB depends on the overlay
maintenance one. This because the
self-optimization process considers only peers that
have already joined the system.

Coverage This AB deals with periodic self-configuration
process of the system

SELFMAN Deliverable Year Three, Page 141

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.5.2 Scalaris (ZIB(P5))

Note: Scalaris and the gPhone application are built on top of structured over-
lay networks (SONs) providing distributed hash tables (DHT), Chord# and
the relaxed-ring respectively. Some of the ABs overlap in the two projects
whereas others are implemented differently.

Ring Maintenance

Two ABs are in charge of the ring maintenance regarding respectively Chord#
and the relaxed-ring. The first one is related to self-configuration and deals
with new node joining the network. The second one is related to self-healing
and fixes the ring when a peer leaves the network. Both of these ABs provide
ring maintenance under churn. Each AB works slightly differently on each
network.

Peer joining process in the Chord# ring. All nodes in Chord# provide
look-up functionality for finding the node succeeding an identifier. A new
peer joining the overlay contacts a bootstrap node already part of the overlay
for determining its successor using a look-up (see fig. 14.7). We do not
describe the bootstrap node as part of the AB since it is not involved further
than providing the basic look-up functionality.

Figure 14.7: Sequence diagram of a join and stabilization.

When the new node has located its successor, it uses the stabilization
protocol (see paragraph concerning Chord# stabilization in section 14.5.2)
to repairs the ring (i.e. ensures that a node has both successor and predeces-
sor). This is not done by a central point of control but by local arrangement
of peers in the neighborhood of the joining peer. This stabilization mecha-
nism cannot be switched off because it role is essential for maintaining the

SELFMAN Deliverable Year Three, Page 142

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

coherence of the peer-to-peer network. A node consist of an overlay ID and
a network address.

At the joining node.

Table 14.8: Joining Node

Related to self-*
characteristic

self-configuration

Description of
autonomic
behavior

The node starts with an empty predecessor. This is
updated as part of the stabilization. The successor
is retrieve by performing a look-up to the
bootstrap node.
Upon lookup response event: Set our successor
with the returned successor.

Internal
constituents
knowledge

Internal state: successor node, bootstrap node,
local node

External
environment
knowledge

The identifier of the bootstrap node used to find a
successor

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement. I.e. proprietary
protocols and event-handling.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency Stabilization finalizes the join.
Coverage lookup response

SELFMAN Deliverable Year Three, Page 143

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Stabilization of a Chord# ring This behavior is used to correct the suc-
cessor/predecessor of nodes due to failures, joining nodes and leaves. When
the stabilization executes on a node, it first asks for the successors predeces-
sor. If this node is not the local node, it changes the successor to this node.
The last step is to notify the successor that the local node thinks it is the
predecessor (see fig. 14.7).

Check correctness of the successor’s predecessor.

Table 14.9: Periodic stabilization of successor’s predeces-
sor

Related to self-*
characteristic

self-healing

Description of
autonomic
behavior

This AB is embedded in each peer. It aims at
checking regularly that the predecessor p of the
successor s of the considered node n is still the
correct node in the ring. Switching off this behavior
will quickly lead to an inconsistent ring since any
node uses its predecessor to know its responsibility
range. A stabilize event is triggered periodically by
the node (e.g. called first time the node is started
and then re-sent with a periodic delay at the end of
the handling of the stabilize event)
Upon stabilize event: send predecessor? to s in

order to retrieve p from s. Resend a stabilize
event to ourselves with some delay
(configuration parameter).

Upon pred response event: This event contains
p. If p is between the overlay identifiers of n
and s, the successor of n is set to p.
Thereafter, tell s that we think we are its
predecessor by sending notify to s. The last
step is used by s to set p.

Internal
constituents
knowledge

Local node (n) and the successor (s)

SELFMAN Deliverable Year Three, Page 144

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

External
environment
knowledge

Predecessor p of the successor (p)

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency Notify at successor, Predecessor request
Coverage stabilize and pred response events

SELFMAN Deliverable Year Three, Page 145

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Notify at successor.

Table 14.10: Periodic stabilization

Related to self-*
characteristic

self-healing

Description of
autonomic
behavior

Make sure that the considered node n has the
correct predecessor p. Waits for a notification from
a node that thinks is our predecessor, p′. Updates
the local predecessor variable if it is better than the
current predecessor p.
Upon notify event: If the overlay ID of p′ (that

sent notify) is between the current p and n,
update p = p′.

Internal
constituents
knowledge

Predecessor identifier (p)

External
environment
knowledge

Predecessor candidate identifier (p′)

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency Check correctness of the successors predecessor.
Coverage notify event

SELFMAN Deliverable Year Three, Page 146

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Predecessor request.

Table 14.11: Periodic stabilization

Related to self-*
characteristic

self-healing

Description of
autonomic
behavior

Returns a predecessor p as requested by a possible
predecessor p′.
Upon pred request event: Return the current

value of p to p′ via the pred response event.

Internal
constituents
knowledge

Predecessor identifier (p)

External
environment
knowledge

Predecessor candidate identifier (p′)

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency Check correctness of the successors predecessor.
Coverage pred request event

SELFMAN Deliverable Year Three, Page 147

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Periodic maintenance of Chord# fingers The finger table contains
long-range pointers used to reduce the number of hops required to find a
node responsible for a given key. The finger table is updated periodically with
a similar mechanism as described for the ring maintenance (see paragraph
concerning Chord# stabilization in section 14.5.2). The table itself contains
a mapping from an ID to a node and is local state at each node in the system.
The maintenance mechanism tries to find the node in the system that is the
next closer to the ID.

Fix finger.

Table 14.12: Fingers

Related to self-*
characteristic

self-optimization, self-healing

Description of
autonomic
behavior

Let n represent the local node and n.id the local
node’s ID. Note that the ID is part of a larger ID
space, typically in the range [0, 2k), where k = 256
for example. fix fingers is called periodically.
Upon fix fingers event: the peer generates a

set of IDs which are increased exponentially
with the local ID as reference, e.g.
x = n.id+ 2i for i in the range [0, k − 1]. For
each of these IDs, a lookup request is sent by
the local node n containing the ID and i
identifying the position in the finger table.

Upon lookup response event: This event
contains a remote node n′ and i. Let fi be
node i in the lookup table. If n′.id is closer in
the ID space to x = n.id+ 2i, then set fi = n′.

Internal
constituents
knowledge

Local node n

External
environment
knowledge

Finger table

Level of
automation

MAPE

SELFMAN Deliverable Year Three, Page 148

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Loose. System works without, but look-ups will be
O(n) instead of O(logN)

Manageability None.
Interdependency Standard look-up functionality of DHT, however

this is not detailed since it is not an AB .
Coverage lookup response, fix fingers

SELFMAN Deliverable Year Three, Page 149

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Global Data Storage

The storage service uses the SON for membership maintenance and to assign
data items to nodes. An item is mapped into the identifier range used by
the overlay and is stored at the node responsible for the item. Each item is
replicated to a set of other nodes in the overlay according to a predefined
scheme such as successor list or symmetric replication. Below we describe
the MAPE-loops for load balancing and replica maintenance.

Load-balancing Due to key distribution skew, data access (read/write)
and churn (node join/leave/failure) nodes in the system can become over-
loaded. The goal of load balancing is to even out the load over the nodes
according to the current system state and the nodes capacity. The protocol
is periodically triggering the local node to request the load of a set of other
nodes, typically log(N).

Table 14.13: Load-balancing

Related to self-*
characteristic

self-optimization

SELFMAN Deliverable Year Three, Page 150

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior

This AB is embedded in each peer. It deals with
two kinds of event:

Upon event load request requests the local node
to provide its load attributes to the sender of
this event;

Upon event load response contains the load
attributes of a node to a load request event.

Periodically (triggered by a local timed event loop)
the local node starts by sending load request
events to a set of other nodes. The members of this
set are determined randomly. Each remote node
sends a load response event containing information
about its load. This stage lasts until the local node
get the responses of all remote nodes or till the
expiration of a time out. Thereafter the load
attribute from the random sampling and from the
local node load are compared. According to the
results from all load response messages, the AB
greedily find the node that can be used to lower the
imbalance the most. It decides if to perform either
a jump (leave/re-join), slide (leave/re-join within
the range of the predecessor and successor) or no
operation.
Upon load request event reception, the AB triggers
a load response event containing information on its
load. This event is addressed to the node whose
identifier is contained in that load request event.

Internal
constituents
knowledge

Load state and node identifier

External
environment
knowledge

State of other node’s load. IDs of nodes are
retrieved by performing a look-up on a randomly
generated ID in the ID space of the SON.

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

SELFMAN Deliverable Year Three, Page 151

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling loose, System works without this AB, but it leads
to worse performance and reliability due to
overloaded nodes.

Manageability None.
Interdependency None
Coverage load request and load response events (i.e.

balancing of data)

SELFMAN Deliverable Year Three, Page 152

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Replica Maintenance The replica maintenance is a continuous process
ensuring that a node stores the replicas it is responsible for. That is, all
items which are in the range between a node’s successor and itself. In addi-
tion, each node is storing replicated items from an identifier range according
to a predefined schema, e.g. symmetric over the ring. We call the nodes
storing replicas of a range its replica set. The periodic maintenance of repli-
cas described below is orthogonal to the placement schema. To simplify, we
also ignore details on consistency management such as item locking and ver-
sions. The algorithm first synchronizes the set of items stored in the replica
ranges. In the second step the node fetches any items which are missing in
the local store. For a detailed description of replica maintenance, we refer to
deliverables 9 and 3.

Table 14.14: Replica maintenance

Related to self-*
characteristic

self-healing

Description of
autonomic
behavior

Each node is having a local store in memory or
persistently on disk that store items, (key,
value)-pairs. A key is part of the overlay ID space,
i.e. [0, 2k), where k = 256 for example.

Upon event replica range request contains a
range [rstart, rend] and a source node n′.
Return all keys in the specified range found
in the local storage to n′ via the
replica range response event.

Upon event replica range response Compare
the difference between the local store and the
result of the replica range response, any
items missing locally is fetched by using the
look-up mechanism of the SON.

Upon event replica maintenance Generate
replica range request messages for the nodes
in the replica set according to the replication
scheme (see deliverable 9).

Internal
constituents
knowledge

Local data store

SELFMAN Deliverable Year Three, Page 153

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

External
environment
knowledge

The nodes storing replicas and the stored items.

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. There will be data loss without replica
maintenance

Manageability Rate of maintenance
Interdependency None
Coverage replica range request, replica range response,

replica maintenance

SELFMAN Deliverable Year Three, Page 154

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.5.3 The gPhone application (UCL(P1))

Note: Scalaris and the gPhone application are built on top of structured over-
lay networks (SONs) providing distributed hash tables (DHT), Chord# and
the relaxed-ring respectively. Some of the ABs overlap in the two projects
whereas others are implemented differently.

Ring Maintenance

Two ABs are in charge of the ring maintenance regarding respectively Chord#
and the Relaxed-Ring. The first one is related to self-configuration and deals
with new node joining the network. The second one is related to self-healing
and fixes the ring when a peer leaves the network. Both of these ABs provide
ring maintenance under churn. Each AB works slightly differently on each
network.

Peer joining process in the relaxed ring. A new peer q joins in between
two nodes p and r, where p, q and r are identifiers in a circular address space
where p < q < r. We say that p is the predecessor of q and q is the successor
of p. The identifiers of a peer and its predecessor (respectively its successor)
constitute the both ends of an interval of hash-keys in a Distributed Hash
Table (DHT). Thus each peer is responsible for the keys included in the
interval delimited by its predecessor identifier (excluded from the interval)
and its own one (included in the interval). its own one.

Three peers are interacting in order to provide the full process dealing
with a new peer joining the network. A distinct role is associated to each
of them: successor, predecessor and new peer. The successor role aims at
dealing with a new predecessor, the predecessor role handles with a new suc-
cessor and the new peer role gets its first successor and predecessor pointers,
performing a join. Figure 14.8 shows the sequence of events resulting on the
insertion of the new peer in the Relaxed Ring. Each role participating to a

Figure 14.8: Sequence diagram of the join AB

SELFMAN Deliverable Year Three, Page 155

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

new peer joining consists in a local AB embedded in the corresponding peer.
Figures 14.9, 14.10 and 14.11, depicts the feedback loop of each AB.

Figure 14.9: Ring maintenance as a feedback loop. New peer join as new
predecessor of the current responsible of its key

Figure 14.10: Ring maintenance as a feedback loop. New peer is accepted to
join between p and r, and becomes the new successor of peer p

SELFMAN Deliverable Year Three, Page 156

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 14.11: Ring maintenance as a feedback loop. A peer is notified about
its new successor

newpred : new predecessor.

Table 14.15: Predecessor update on join

Related to self-*
characteristic

self-configuration

SELFMAN Deliverable Year Three, Page 157

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior

When a new peer joins the relaxed ring it sends a
request to a peer randomly selected. Then this one
determines if the new peer is a better predecessor.
In such a case, it replaces its old predecessor with
this new peer. Otherwise, the joining request if
forwarded to another peer. Role succ in figure 14.8
illustrates this AB.
Upon join reception: the successor peer

determines if the new peer is a better
predecessor, i.e. if the new peer owns an
identifier included between its own identifier
and the identifier of its predecessor. If this is
the case, the current peer accepts its request
by sending it a join ok event. Otherwise the
current peer forwards the join event to
another peer. Another reason to accept a
join request is when the current predecessor
is detected to have failed. In such case, an
alive predecessor is always better than a dead
one.

Upon join ok: such an event consists in the final
acknowledgment sent by the old predecessor
to the successor in order to indicate the
normal end of the join process. However the
lack of this last event does not avoid the
relaxed ring to properly work.

Internal
constituents
knowledge

Internal state: own identifier, predecessor identifier

External
environment
knowledge

Joining peer identifier

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement 4

4Existing peer-to-peer networks implementing Distributed Hash Tables (DHT) use the
notion of peer joining and leaving the network, and exchanging messages between them in

SELFMAN Deliverable Year Three, Page 158

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency newpred depends on join. It depends on newsucc

as well, but not strongly. Independently from the
join ack event that is 1) an output of newsucc AB
and 2) an input of newpred AB, the relaxed-ring
can still continue to works

Coverage join and join ack events

order to handle these events. The messages exchanges, such as join, new succ, etc., are
the commonly accepted and understood by the community. We take the same approach

SELFMAN Deliverable Year Three, Page 159

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

join : new peer joins the ring.

Table 14.16: Predecessor and successors initialization on
join

Related to self-*
characteristic

self-configuration

Description of
autonomic
behavior

This is the AB carried out by the new peer joining
the relaxed ring. The new peer first contacts the
successor candidate by triggering a join event. If it
succeeds, the new peer will get a join ok back,
with the needed information to contact the
predecessor. Then it will trigger a new succ to the
old predecessor (of the successor) notifying it that
it becomes its new successor. The role new in
figure 14.8 illustrates this AB.

Internal
constituents
knowledge

Internal state: own identifier

External
environment
knowledge

Successor identifier and predecessor identifier

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency join depends on newsucc
Coverage join ok event

SELFMAN Deliverable Year Three, Page 160

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

newsucc: new successor.

Table 14.17: Successor update on join

Related to self-*
characteristic

self-configuration

Description of
autonomic
behavior

A peer in the relaxed ring is contacted by a new
joining peer: it receives a notification (i.e.
new succ event) indicating that this new peer
requests for becoming its new successor. Then it
checks the identifier of the new peer and compares
it with the identifier of its own current successor. If
the new joining peer is a better successor, it
accepts it, and notifies the old successor with a
join ack. A better successor is a peer whose
identifier is ranged between the identifier of the
current peer and the identifier of its own successor.
The role pred in figure 14.8 illustrates this AB.

Internal
constituents
knowledge

Internal state: own identifier, successor identifier

External
environment
knowledge

Joining peer identifier (new successor)

Level of
automation

MAPE

Monitoring
conformance

General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability None.
Interdependency newsucc depends on join
Coverage new succ event

SELFMAN Deliverable Year Three, Page 161

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

SELFMAN Deliverable Year Three, Page 162

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Peer leaving and failing process in the relaxed ring We do not handle
gentle leaves on the relaxed-ring, because in case of failure during the process
of leaving, the failure mechanism would still be necessary. Therefore, double
work would be needed. By handling correctly failure recovery, both cases are
covered at once.

When a peer q crashes, it is detected by its predecessor and its successor.
Only q’s predecessor reacts to this crash event by sending a join message to q’s
successor. This join message triggers the join loop (see paragraph concerning
peer joining in section 14.5.3). The reaction to failure detection is described
as a sequence diagram in Figure 14.12. Because the failure recovery triggers
the join autonomic behavior to fix the ring, the full feedback loop for failure
recovery is shown in Figure 14.13.

Figure 14.12: Failure recovery sequence diagram

Figure 14.13: Failure recovery as a feedback loop

Table 14.18: Handling peer leaving/failure - Correction-
on-change

Related to self-*
characteristic

self-healing

SELFMAN Deliverable Year Three, Page 163

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior

The failure of a peer is detected by the successor
and the predecessor by monitoring the crash event.
Only the predecessor takes action in order to fix
the ring. If the peer is falsely suspected, an event
alive will be monitored, rolling back the changes.
This AB is embedded in each peer.
Upon crash event: the local peer determines if

the crashed peer is its successor. In this case,
the AB runs the failure recovery by removing
crashed peer from routing table and then
triggering join on successor candidate in
order to start self-configuration loop.

Upon alive event: if this events contains the
identifier of the ’supposed’ crashed peer (i.e.
peer was false suspected), the AB undoes
changes: routing table is fixed.

Upon join ok event: the AB is informed that the
failure recovery mechanism succeed.

Internal
constituents
knowledge

Its own identifier

External
environment
knowledge

Identifier of the crashed peer and successor’s
identifier

Level of
automation

MAPE

Monitoring
conformance

Eventually perfect failure detector: strongly
complete and eventually accurate. Strongly
complete means that all crashed peers will be
detected. Eventually accurate means that if an
alive node is falsely suspected of having crashed,
this inaccuracy will eventually be corrected.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

SELFMAN Deliverable Year Three, Page 164

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Executing
conformance

General DHT common agreement.

Coupling Tight. This AB is built-in the code of each peer.
Moreover the system can not work if this AB is
disabled.

Manageability Parameter of failure detector can be tuned:

• keep alive rate: How often keep alive
messages are sent to other peers.

• timeout value: How long is the time to wait
for an acknowledgment of the keep alive
message.

Interdependency It strongly depends on newpred and join (see
paragraph concerning peer joining in section 14.5.3)

Coverage crash and alive event (i.e. peer leaving the
relax-ring, peer failure in the relax-ring and false
suspected (to leave/fail) peer

SELFMAN Deliverable Year Three, Page 165

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Finger maintenance with correction-on-use. The following evaluation
grid describe the autonomic behavior in charge of maintaining the finger table
for routing on the relaxed-ring. The behavior is divided in two parts: failure
handling and correction-on-use.

A failure detector constantly monitors fingers. A change on the fault
state of a finger will be triggered to the upper layer which will try to fix the
broken finger.

The traffic that goes through a particular peer is also monitored. If new
peers that can be better fingers are discovered, then, the finger table can be
updated accordingly.

The combination of both monitoring actions combined into the mainte-
nance of the finger table is depicted in the feedback loop of figure 14.14.

Figure 14.14: Finger maintenance with failure detection and correction-on-
use

Table 14.19: Failure recovery of fingers enhanced with
correction-on-use

Related to self-*
characteristic

self-healing

SELFMAN Deliverable Year Three, Page 166

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Description of
autonomic
behavior

In order to maintain the finger-table as correct as
possible, the fingers are constantly monitored to
detect failures on them. The traffic going through
the peer is also monitored in order to discover new
peers in the neighborhood of the fingers. See
figure 14.14.
Monitoring:
• Failure detector constantly checks the state of

every fingers. A suspicion of failure is
triggered as a crash event.

• Communication layer receives messages and
trigger them to the upper layers as events.
This is the way to monitor traffic.

Analysis:

• upon event crash(p) and p is in finger-table,
then prepare finger recovery.

• upon event lookup reply(p, q), test finger p
with q.

Processing:

• if finger p crashes, update finger table and
trigger lookup for key p in order to find a
better finger.

• when lookup reply(p, q) is received, fix finger
p with q.

Execution:

• trigger lookup(p) to find a replacing finger.

• update finger tables upon crashes and lookup
replies (fixes).

Internal
constituents
knowledge

Finger-table

SELFMAN Deliverable Year Three, Page 167

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

External
environment
knowledge • fault-state of fingers.

• Identifier of new peers detected monitoring
the traffic.

Level of
automation

MAPE

Monitoring
conformance • Eventually perfect failure detector: strongly

complete and eventually accurate. Strongly
complete means that all crashed peers will be
detected. Eventually accurate means that if
an alive node is falsely suspected of having
crashed, this inaccuracy will eventually be
corrected.

• General DHT common agreement.

Analyzing
conformance

General DHT common agreement.

Planning
conformance

General DHT common agreement.

Executing
conformance

General DHT common agreement.

Coupling Semi-tight. It is not meant for correctness of the
system, but for efficiency. But, if the fingers are
not efficient enough, the whole system could
become unusable in practice.

Manageability Parameter of failure detector can be tuned:

• keep alive rate: How often keep alive
messages are sent to other peers.

• timeout value: How long is the time to wait
for an acknowledgment of the keep alive
message.

Interdependency It does not depend on other ABs

SELFMAN Deliverable Year Three, Page 168

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Coverage Finger-table (routing-table) maintenance.

SELFMAN Deliverable Year Three, Page 169

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Global Data Storage

Refer to section 14.5.2

SELFMAN Deliverable Year Three, Page 170

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.6 Experimental assessment of autonomics

in Selfman applications

This section provides the global and qualitative evaluations of autonomics
obtained for each Selfman application. In the following grids, the “CHOP
radar” has been a bit modified. It shows the number of local ABs relative
to each autonomic main characteristic. This allows to assess the distribution
of ABs on each characteristic for a given application. However, notice that
such a type of figures does not include the events coverage of each AB. So
they can not offer a comparison of autonomy level between two applications.
As written before they just show the distribution among the four autonomic
main characteristics.

14.6.1 PeerTV (Peerialism(P6))

Table 14.20: PeerTV: qualitative assessment of global
ABs

“CHOP radar”

Self-
configuration
maturity level

Adaptive. One AB among 3 concerns
self-configuration. It offers a MAPE maturity level
without any knowledge management.

SELFMAN Deliverable Year Three, Page 171

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Self-healing
maturity level

Adaptive. One AB among 3 concerns self-healing.
It offers a MAPE maturity level without any
knowledge management.

Self-optimization
maturity level

Adaptive. One AB among 3 concerns
self-optimization. It offers a MAPE maturity level
without any knowledge management.

Self-protection
maturity level

Basic. No AB concerns self-protection.

Support for
interacting
control loops

Yes (see section 14.5.1)

Support for
stability

Not completed by Peerialism(P6)

SELFMAN Deliverable Year Three, Page 172

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.6.2 Scalaris (ZIB(P5))

Notice: the number of ABs concerned by a criterion can be sometimes a float
number because some AB concerns many autonomic characteristics simulta-
neously

Table 14.21: Scalaris: qualitative assessment of global
ABs

“CHOP radar”

Self-
configuration
maturity level

Adaptive. One AB among four concerns
self-configuration. It offers a MAPE maturity level
without any knowledge management.

Self-healing
maturity level

Adaptive. 1.5 ABs among four concerns
self-healing. It offers a MAPE maturity level
without any knowledge management.

Self-optimization
maturity level

Adaptive. 1.5 ABs among four concerns
self-optimization. It offers a MAPE maturity level
without any knowledge management.

Self-protection
maturity level

Basic. No AB concerns self-protection.

Support for
interacting
control loops

Yes (see section 14.5.2)

SELFMAN Deliverable Year Three, Page 173

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Support for
stability

Yes. For example, the load balancing algorithm
has a target load range to avoid oscillations.

SELFMAN Deliverable Year Three, Page 174

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.6.3 The gPhone application (UCL(P1))

Table 14.22: The gPhone application: qualitative assess-
ment of global ABs

“CHOP radar”

Self-
configuration
maturity level

Adaptive. Three ABs among seven concerns
self-configuration. It offers a MAPE maturity level
without any knowledge management.

Self-healing
maturity level

Adaptive. Three ABs among seven concerns
self-healing. It offers a MAPE maturity level
without any knowledge management.

Self-optimization
maturity level

Adaptive. One AB among seven concerns
self-optimization. It offers a MAPE maturity level
without any knowledge management.

Self-protection
maturity level

Basic. No AB concerns self-protection.

Support for
interacting
control loops

Yes (see section 14.5.3)

Support for
stability

Every feedback loop is designed as a negative loop.
Combination of loops have also been tested to
present a negative loop behaviour.

SELFMAN Deliverable Year Three, Page 175

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

14.7 Discussion

14.7.1 Experimental results

Table 14.23 summarizes the main tendencies highlighted by the qualitative
evaluations of local and global ABs.

Table 14.23: Synthesis of qualitative assessment on local
ABs coming from Selfman applications

Criterion Tendency
Related to self-*
characteristic

None of the assessed ABs is related to
self-protection. Moreover, the distinction between
self-optimization and self-configuration is not
self-evident.

Coverage All of these ABs can be considered elementary:
they only deal with one or two low-level events

Interdependency Most of these ABs interoperates with another one
but this interaction is limited to a single
query/reply and does not consist in a structured
dialog

Internal
constituents
knowledge

The whole of these ABs run according to the
monitoring data they get from the resources they
manage

External
environment
knowledge

The whole of these ABs have very little (or even
no) knowledge of their external environment

Level of
automation

However all are fully autonomous regarding their
level of maturation: none of them claims to be
autonomic without fully implementing the four
stages of the MAPE-loop

Monitoring
conformance

Concerning their conformance to a standard
and/or a wide spread / opened technology, all ABs
propose highly proprietary implementation for this
MAPE-loop stage

Analyzing
conformance

Concerning their conformance to a standard
and/or a wide spread / opened technology, all ABs
propose highly proprietary implementation for this
MAPE-loop stage

SELFMAN Deliverable Year Three, Page 176

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Planning
conformance

Concerning their conformance to a standard
and/or a wide spread / opened technology, all ABs
propose highly proprietary implementation for this
MAPE-loop stage

Executing
conformance

Concerning their conformance to a standard
and/or a wide spread / opened technology, all ABs
propose highly proprietary implementation for this
MAPE-loop stage

Coupling Only two ABs are loosely coupled with the
business functionalities in term of implementation
and execution.

Manageability Less than 30% of the evaluated ABs include
manageability capabilities. However the
management policy elements they can get are quite
rudimentary (like a timer value or a combination of
simple conditions). This illustrates the difficulty for
converting high-level management policies into
simpler rules understandable by the autonomic
managers

Among these strong tendencies, the lack of self-protection ABs is ex-
plained by the systems editors as follows: some of them assume that their
solution runs in a safe environment whereas others estimate that security
has to be delegated to another system contributor. Unfortunately, these hy-
potheses seem to be invalid especially regarding open architectures such as
peer-to-peer approach. A more likely explanation is that self-protection ABs
have to deal with more complex events and thus can not be elementary be-
haviors, exclusively focusing on their internal resources. They might result
from the composition (implying sophisticated interoperability) between dif-
ferent lower-level ABs. Thus the composition of ABs becomes an important
research domain. However the lack of conformance to open standards, which
characterizes elementary ABs, prevents any progress on their interoperability.

Concerning the tight coupling between autonomic features and business
functionalities, it results essentially from:

1. the systems architecture of Selfman applications that lie on a wide
distributed multi-agents architecture. Each of these agents is supposed
to handle independently and must so embed autonomic behaviors;

2. the preexistence of managed resources. Selfman applications have been

SELFMAN Deliverable Year Three, Page 177

CHAPTER 14. D5.4A: QUALITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

developed from scratch and do not consists in the adding of an auto-
nomic overlay on existing applications.

14.7.2 Evaluation methodology

This section analyses the proposed qualitative methodology for evaluating
autonomic computing whereas section 14.7.1 focuses on presenting and ana-
lyzing the results coming from the technical benchmark.

The methodology for qualitatively assessing autonomic features is quite
generic. It has been applied simultaneously to many systems differing ac-
cording their business domain, their architecture and their implementation:

1. the three Selfman applications;

2. an application dealing with workload management in an environment
composed of J2EE application servers.

In both cases this evaluation process highlighted some strong, macroscopic
and common tendencies concerning the autonomic capabilities. It provides
a quite wide and easy-to-measure set of criteria. However the composition
of these criteria for obtaining higher level indicators –relative to the entire
application for example– is difficult because of their qualitativeness (even if
some of them are measurable (see section 14.3.2)). This is the main reason
why a quantitative methodology has been provided as well: it tends to be
more business specific whereas the qualitative one demonstrates its generic
approach.

SELFMAN Deliverable Year Three, Page 178

Chapter 15

D5.4b: Quantitative evaluation
of autonomic features of
Selfman applications

15.1 Executive summary

Many experimental works on autonomic computing aim at showing that such
a disruptive technology can improve information systems in terms of quality
of service and, de facto, in terms of return on investment as well. However
still little research has attempted to demonstrate this intuition. Moreover
such works can be characterized by their qualitative and fragmented ap-
proach. Thus there is still no generic (i.e. independent from business domain,
technology, architecture and implementation choices) autonomic computing
benchmarking tool for evaluating and/or comparing autonomic systems in
terms of efficiency, reliability, availability, costs, etc.

The task T5.4 of Selfman WP5 aims at carrying out the first step toward
a benchmark for evaluating autonomic computing in a technical and econom-
ical perspective. Its goal is to assess autonomic features both qualitatively
and quantitatively. Thus it is worth noticing from the Selfman DoW that the
goal is to demonstrate the effectiveness of autonomics capabilities of informa-
tion systems. This goal will be achieved by comparing Selfman applications
(provided by Peerialism(P6), ZIB(P5) and UCL(P1)) with and without au-
tonomic features. So the purpose consists in focusing only on autonomic
features in these applications and not in evaluating them functionally.

This deliverable intends to provide a methodology and process for eval-
uating quantitatively the self-management features. Section 15.3 provides a
definition of these methodology and process. It is divided into two subsec-

179

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

tions.

• First section 15.3.1 describes the existing background by putting for-
ward the state of the art related to autonomics benchmarking.

• Then section 15.3.2 defines the specificities of the approach that has
been applied to Selfman applications.

Section 15.4 consists in carrying out assessment grids in order to apply this
process on the Selfman applications (Peerialism(P6)’s PeerTV, ZIB(P5)’s
Wiki on Scalaris and the UCL(P1)’s gPhone application). Section 15.5 fo-
cuses on the results obtained thanks this evaluation process. Finally sec-
tion 15.6 aims at analyzing the methodology itself.

SELFMAN Deliverable Year Three, Page 180

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.2 Contractors contributing to the Deliv-

erable

Peerialism(P6), ZIB(P5), UCL(P1) and FT R&D(P4) participate to the writ-
ing of this deliverable.

FT R&D(P4) defined the evaluation framework (methodology and pro-
cess) and provided support for applying it to the Selfman applications.

Peerialism(P6), ZIB(P5) and UCL(P1) provided feedback to the de-
sign of the evaluation framework, and then applied the assessment method-
ology on their own application (by fulfilling assessment grids).

SELFMAN Deliverable Year Three, Page 181

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.3 Methodology and process

15.3.1 Background under discussion

Autonomic computing context

Refer to section 14.3.1.

Models and metrics

Refer to section 14.3.1.

Methodologies and tools for quantitative benchmarking

[13] underlines the challenges and pitfalls related to the development of an
autonomic computing benchmark. A “classical” performances benchmark
consists in a system under test (SUT) that is deployed in a stable environ-
ment (i.e. without any disturbance). A workload is then injected in the SUT.
This workload is as representative (realistic) as possible compared to the load
the SUT will have to deal during the exploitation phase. No management
intervention occur during the benchmarking process. The response of the
SUT to the injected work-load consists in evaluating some QoS metrics char-
acterizing its efficiency (duration, throughput, etc.). The knowledge of the
profile of the injected workload and the guarantee of environmental stability
confer on the benchmark reproducibility.

The main goal of autonomic computing is to improve the system QoS.
Thus the evaluation of autonomics efficiency consists in measuring the im-
pact on system QoS metrics when injecting a disturbance1. An autonomic
computing benchmarking tool so consists of the system under test (SUT),
a workload injector and a disturbance injector. It provides both business
specific (QoS) metrics and autonomic computing measures.

A “classical” performance benchmark and an autonomic computing bench-
mark differ along three main axes according [13].

Environment stability that is questioned for autonomic computing by the
injection of disturbances.

1A disturbance consists in:

• an event implying configuration change for self-configuration;

• a workload variation for self-optimizing;

• faults for self-healing;

• attack for self-protection.

SELFMAN Deliverable Year Three, Page 182

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Management interactions that must not occur in a classical performance
benchmark, but that constitute the AB as well.

the antagonism between test realism (regarding the representativeness of
the workload or the disturbances load the system under test will have
to face) and the benchmark requirements, especially in terms of repro-
ducibility, cost and legality.

Among the works dealing with the experimental evaluation of autonomics
efficiency, [14] seems to be one of the most advanced. It describes one of the
first autonomic computing benchmark dealing with self-healing evaluation.
It details its experimental protocol for validating the tool. This consists
in measuring the impact of thirty different classes of disturbances on two
metrics. The disturbances are sequentially injected.

The three main specificities of an autonomic computing benchmark (high-
lighted by [13]) illustrate the addition of a second dimension into an auto-
nomic computing benchmark compared to a classical QoS benchmark. Each
benchmark can indeed be associated with a function that get injection pro-
files as inputs and that returns a vector of evaluated metrics. Thus a classical
QoS benchmark is a function with a single input (i.e. the injected workload
profile) whereas an autonomic computing benchmark consists in a function
getting two inputs (i.e. the injected workload profile and the injected distur-
bance profile). Concerning this last type of benchmark, constraints relative
to costs, reproducibility and legality, which are antagonistic to test realism,
can be declined into constraints on the injection profiles (synchronization of
workload and disturbances injections, stability of workload injection, etc.).
In other words an autonomic computing benchmark consists of two coupled
evaluation tools. The first one is dedicated to the QoS measurement: it is
business specific and is essentially made of quantitative metrics. The second
one focuses on the evaluation of self-management behaviors. It should include
only generic (i.e. business independent) aspects. Concerning the experimen-
tal assessment works like [14], [64], [90], although they tend to demonstrate
that autonomic features improve information systems efficiency, they do not
achieve to define a scale offering a synthesized and absolute2view. Thus [14]
and [17] define a value ranged between 0 (non autonomic) and 1 (fully au-
tonomic) for assessing self-* features. However this indicator is obtained by
restraining the number of different disturbances.

2By absolute we designate a scale that could classify the results from a system without
any autonomic features to an idealistic system that could autonomously anticipate or deal
with any disturbances (without any delay and any impact on the quality of service)

SELFMAN Deliverable Year Three, Page 183

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.3.2 Approach specificities

Refer to section 14.3.2.
The scope of this benchmark approach can be divided as follow.

• In the ideal situation the single autonomic system under test (SUT)
offers the capability:

– to easily enable / disable its autonomic capabilities and then the
bench will allow the comparison of the SUT with or without au-
tonomic behaviors;

– to configure the policy (rules) applied to an AB. Thus it will be
possible to evaluate the efficiency of different policy of a given AB
in the unique SUT.

• Otherwise, if autonomic features are built-in the system and not con-
figurable thanks to policy rules:

– the benchmark can provide the comparison of an autonomic SUT
to another one that is non-autonomic but functionally equivalent;

– it can also be interesting to compare autonomic systems as black
boxes, i.e. to compare the similar or common autonomic capabil-
ities of two autonomic SUT that are not functionally equivalent.
However this last benchmark should not only compare autonomic
capabilities but global features.

Concerning quantitative evaluation process, in order to face to the diffi-
culties linked to autonomic computing benchmarking (see section 15.3.1), an
evaluation process –similar to those used by [14] concerning self-healing– has
been adopted. It consists in a three-step test process for evaluating ABs.

1. First a workload, that will be maintained constant during all the three
stages, is injected in the system under test (SUT). This step lasts until
the system reaches a stable state regarding its QoS metrics.

2. Then a single disturbance is injected in order to trigger an autonomic
reaction of the SUT.

3. The last step consists in observing metrics (related to QoS and au-
tonomic computing) until the SUT returns in a stable state (possibly
different from the initial one) regarding the QoS metrics.

SELFMAN Deliverable Year Three, Page 184

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.4 Assessment process

For assessing ABs quantitatively, we defined one evaluation grid. It consists
in grouping together the quantitative metrics defined in the hybrid ISO/IEC
9126 model (see section 14.3.2). It allows to assess each AB independently.

15.4.1 Quantitative assessment of elementary AB

Table 15.1 allows the evaluation of each AB independently: one table / AB.

Table 15.1: Quantitative assessment grid for elementary
AB

Autonomic Behaviour title (AB1 for example)
Criterion /
Metric

Sub-
division

Description Example

Evaluation
process

Free text Load injection on 3
systems under test
(SUT):
SUT1: PeerTV

SUT2:
Implementation
of PeerTV with
random overlay

SUT3:
Implementation
of PeerTV with
no overlay

Experimental
settings

Free text Load injection has
been conducted N
times. . .

Efficiency Initial
latency

QoS metrics SUT2 is x% better
than SUT1 and SUT1
x% better than SUT3
on this metrics

Throughput SUT1 is x% better on
this metrics

SELFMAN Deliverable Year Three, Page 185

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Sensitivity Monitor-
ability

Mean time for
monitoring (see
figure 14.5)

Analyz-
ability

Mean time to
analyze (see
figure 14.5)

Reactivity Planning
capability

Wait for plan
duration +
Mean time to
plan (see
Figure 14.5)

Change-
ability

Wait for
execution
duration +
Mean time to
execution (see
figure 14.5)

Anticipatory Mean time
between
impacting
disturbances

Stability Mean time to
stabilisation

Composition Function on
these metrics to
get one
aggregated
decisional metric

SUT1 is x% better
than SUT2. SUT 2 is
x% better than SUT3

SELFMAN Deliverable Year Three, Page 186

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.4.2 Quantitative assessment of global ABs

Evaluating the overall autonomic features of a complete application from a
quantitative perspective does not make sense. However future work will con-
sists in composing quantitative elementary evaluations for obtaining global
evaluation a different abstraction levels, like composite ABs or else autonomic
characteristics.

SELFMAN Deliverable Year Three, Page 187

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.5 Experimental assessment of local ABs

This section contains the results obtained by applying the quantitative as-
sessment grids for evaluating each local AB of each Selfman application.

15.5.1 PeerTV (Peerialism(P6))

PeerTV is an application developed by Peerialism(P6) Inc. It is a platform
for Content Live Streaming based on Peer-To-Peer technologies. It utilizes
proprietary overlay network algorithms and optimization techniques. In this
context, we will examine the performance of the Self-configuration Auto-
nomic Behaviour presented in 14.5.1, which it is entitled with the task of
reorganizing the structure of the overlay network connecting all client hosts
according to a number of criteria, such as bandwidth utilization.

The Optimization Process

In Section 14.5.1, we introduced the entities which constitute the PeerTV
platform and their roles. As mentioned in that context, peers periodically
report their status to the Tracker. This periodic update includes some general
information such as the playback point and the number of packets in the
playing buffer, plus some more detailed ones about each ongoing transfer
with other peers, e.g. observed connectivity issues such as packet loss and
excessive delay. The data received from the peers is processed and aggregated
to form a matrix, called the “Happiness Matrix“ A(i, j), which represents
all possible interconnections between peers in the system and whose inner
values express the worthiness of such combinations. An “Happiness Value
“ in the matrix is a weighted sum of all characteristics observed and/or
expected from a certain combination. The resulting value can be considered
as a grade for a certain combination. If many combinations for a certain
peer are available, the one with highest grade of all will be chosen. Which
means that., for a certain peer A, a providing peer B will be selected which
is expected to provide the best performance in the future transfer between A
and B. Such mechanism of assigning peers to one another has been modeled
as a Linear Programming Optimization problem of the type Linear Sum
Assignment. The task of solving the optimization problem is carried out by
the Optimization Engine. Once a result is produced, the Tracker notifies the
peers so that the new transfers can be established.

There are two sensible steps in this process: the calculation of the “Hap-
piness“ values and the actual solving of the Optimization Problem. In the
first case, it’s trivial to understand that the choice of the happiness values

SELFMAN Deliverable Year Three, Page 188

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

will directly impact the performance of the system. For instance, one of the
parameters in the calculation of the Happiness values is the “Stickiness “, i,e.
how importartant is the fact that there already exists an ongoing transfer
between two peers.. If high Stickiness values are chosen, the system might
result more stable but the overall bandwidth utilization might be affected,
since the system will give higher priority to the preservation of successful
connections than to load balancing.

The other sensible step in the Optimization process is the actual solving
of the linear optimization problem. In fact, the computation associated with
it might take long time to execute since the number of potential peer combi-
nations is typically quite large. In presence of high churn, disruptions in the
network which happen during the calculation might totally change the initial
information which the ongoing computation is based upon. This will cause
the results of the calculation to be totally erroneous. It’s therefore vital for
the calculation to happen as fast as possible to avoid such situation. For this
purpose, PeerTV uses Auctioning algorithms to solve the Optimization prob-
lem, which are known to be the most performant for solving complex Linear
Sum Optimization Problems. Bersekas et al.[11] propose a state-of-the-art
parallel/distributed auctioning approach which provides optimal results and
the best performance for Linear Sum Optimization Problems. However once
implemented in our system, the algorithm turned out to perform poorly given
the size of the problem to be solved. Consequently, a new heuristic for auc-
tioning based on Bersekas’ approach has been developed by Peerialism(P6)
which guarantees 98% results optimality but it is up to four times faster than
Bersekas’.

Optimization Levels

To test the performance of the aforementioned self-optimization behaviour
we proceeded defining three test configurations which we will call ”Levels”.

• Level 0. In this configuration setting, provider and requester peers are
associated to each others randomly given that providers have enough
data to serve the requester peers. No method is used to improve con-
nectivity among peers or to guarantee that the overall bandwidth uti-
lization is balanced among the participants of the overlay network.
However, the Optimizer does always make sure that all requester peers
are associated to enough peers to receive the content.

• Level 1. This setting is very similar to Level 0, a part from the fact
that the Stickiness optimization technique is used in this case. As

SELFMAN Deliverable Year Three, Page 189

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

previously mention, the Stickiness makes sure that ongoing successfull
transfers are kept through different optimization processes.

• Level 2 All optimizer’s features are enabled in this setting. The fol-
lowing characteristics are considered in the Optimization process.

Static Characteristics, which are supposed to remain constant for a
certain pair of peers:

– Connectivity Issues (Routing, Nat Constraints)

– Bandwidth Capacity

– Average Delay

– ISP Friendliness, i.e. the distance between two peers’ ASs.

Dynamic Characteristics, which vary in time for each pair of peers (i, j):

– Experienced Connectivity Issues, experienced issues observed by
i or j in a previous connection attempt.

– Stickiness, i.e. how stable were the previous transfers between i
and j.

– Buffer State.

Results

In Figure 15.5.1, we can observe the result of the tests regarding saving per-
centage at the Source, i.e. how much bandwidth was spared at the Source
with respect to the situation where all peers would receive the content di-
rectly from the Source and not from other peers. Results from 5 different
simulation scenarios are shown in the same graph. The simulation scenario’s
difficulty is given by a number of parameters such as: number of peers in
private networks, delay and bandwidth distributions, Internet Autonomous
Region distances between peers, etc.. As we can observe, the performance
across all scenarios of Level 0 decreases substantially as the scenario diffi-
culty increases. This is trivial to understand, since its’ clear that the choice
of random peers becomes less and less effective as peers present more peculiar
features in the more complicate scenarios which might hinder their perfor-
mance. The same kind of result is observed for Level 1 , where Stickiness just
partially compensates for the random assignment of peers. Level 2 instead
constantly shows better performance than the other settings. This difference
is manifest in the worst case scenario where not only Level 2 performs better

SELFMAN Deliverable Year Three, Page 190

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

Figure 15.1: Effect of Self-Optimization Level on Saving Percentage

Figure 15.2: Effect of Self-Optimization Level on Total Performance Score

SELFMAN Deliverable Year Three, Page 191

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

than the other levels but it also shows performance comparable to the eas-
ier simulation scenarios. In Figure 15.5.1 are shown the results of the same
series of tests presented in 15.5.1, in this case however the evaluation met-
ric for the system is the “Score“, which is a weighted sum of the following
measured metrics: Max/Average Initial buffering, Max/Average Playback
buffering, Total Successfull streaming sessions and Total Failed streaming
sessions. The ”Score“ is therefore a measure which tries to entail the user
average experience of the system. As shown in 15.5.1, the results are very
similar to the ones based on the savings metric, showing that Level 2 always
performs better than the other levels and that the performance of the system
stabilizes as the difficulty of the scenario increases.

All tests have been obtained using our emulation environment MyP2PWorld
previously published in Selfman SASOW 2008.

SELFMAN Deliverable Year Three, Page 192

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.5.2 Scalaris (ZIB(P5))

Scalaris is the implementation of the replicated storage service presented in
Deliverable 3. The quantitative evaluation of the autonomic behaviors in
Scalaris include the performance of transaction and the impact of the finger
table. Chord# is the name of the SON that Scalaris implements.

Note that part of these results also can be found in other Deliverable 2
and 9.

Impact of the Finger Table

Rowstron et al. [70] introduced in 2001 with Pastry a DHT which supports
routing in logk N hops where k is a system parameter. The lookup perfor-
mance increase was bought by increasing the size of the routing table from
log2N to (k − 1) logk N . DKS [27] presented a similar idea as a generaliza-
tion of Chord. In the following, we compare DKS, as a representatitve of
Chord-style overlays, with Chord# for k > 2.

 0

 2

 4

 6

 8

 10

 12

 14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 0

 20

 40

 60

 80

 100

R
ou

tin
g

D
is

ta
nc

e

R
ou

tin
g

Ta
bl

e
Si

ze

Base (k)

 0

 2

 4

 6

 8

 10

 12

 14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 0

 20

 40

 60

 80

 100

R
ou

tin
g

D
is

ta
nc

e

R
ou

tin
g

Ta
bl

e
Si

ze

Base (k)

Chord
Chord#

State (Chord)
State (Chord#)

Figure 15.3: K-ary routing in Chord and Chord#

For Fig. 15.3, we simulated the respective overlays. It shows the differ-
ences between Chord and Chord# are negligible for larger k. But it also
shows the decreasing returns for larger k. In many applications, the in-
creased maintenance overhead for the larger routing tables will outweigh the
improved routing performance. Proximity routing could be more beneficial.

The drops/steps in the maximum path length are near powers of two in
Fig. 15.3 because the size of the system is a power of 2. In general, the
maximum path length is dlogk Ne. The steps in the graph are the steps of
this function.

Here are the steps for a chordal ring with 4096 nodes:

SELFMAN Deliverable Year Three, Page 193

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

k max hops
2 12
3 8
4 6
6 5
8 4

16 3
64 2

Transaction Performance

We tested the performance of Scalaris and the transaction algorithm imple-
mentation on an Intel cluster up to 16 nodes. Each node has two Quad-Core
E5420s (8 cores in total) running at 2.5 GHz and 16 GB of main memory.
The nodes are connected via GigE and Infiniband; we used the GigE network
for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

We tested two operations: a read and a modify operation. The read op-
eration reads a key-value pair. The modify operation reads a key-value pair,
increments the value and writes the result back to the distributed Scalaris
store. To guarantee consistency, the read-increment-write is executed within
a transaction. The read operation, in contrast, simply reads from a majority
of the keys. The benchmarks involved the following steps:

• Start watch.

• Start n Erlang client processes in each VM.

• Execute the read or modify operation i times in each client.

• Wait for all clients to finish.

• Stop watch.

Figure 15.4 shows the results for various numbers of clients per VM (see
the colored graphs). In the read benchmarks depicted in Fig. 15.4(a), each
thread reads a key 2000 times while the modify benchmarks in Fig. 15.4(b)
modify each key 100 time in each thread.

SELFMAN Deliverable Year Three, Page 194

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Read

1 client
2 clients
5 clients

10 clients

(a) Read

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Modify

1 client
2 clients
5 clients

10 clients
50 clients

100 clients

(b) Write

Figure 15.4: Performance of Scalaris: (a) Read operation, (b) Modify oper-
ation for different numbers of local threads and cluster sizes.

As can be seen, the system scales about linearly over a wide range of
system sizes. In the read benchmarks (Fig. 15.4(a)), two clients per VM
produce an optimal load for the system, resulting in more than 20,000 read
operations per second on a 16 node (=128 core) cluster. Using only one client
(red graph) does not produce enough operations to saturate the system, while
five clients (blue graph) cause too much contention. Note that each read
operation involves accessing a majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 15.4(b)) is of course lower,
but still scales nicely with increasing system sizes. Here, the best performance
of 5,500 transactions per second is reached with fifty load generators per VM,
each of them generating approximately seven transactions per second. This

SELFMAN Deliverable Year Three, Page 195

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

results in 344 transactions per second on each server.
Note that each modify transaction requires Scalaris to execute the adapted

Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transac-
tion participants and transaction managers, plus the communication between
them. The performance graphs illustrate that a single client per VM does
not produce enough transaction load, while fifty clients are optimal to hide
the communica- tion latency between the transaction rounds. Increasing the
concurrency further to 100 clients does not improve the performance, because
this causes too much contention. Note that for the 100-clients-case, there are
actually 16*100 clients issuing increment transactions. Overall, both graphs
illustrate the linear scalability of Scalaris.

15.5.3 The gPhone application (UCL(P1))

The gPhone application developed by UCL(P1), see Chapter 18, is built on
top of the relaxed-ring, which results where presented in the first two years
of the project, and it uses the transactional support for DHTs presented in
Chapter 2.

Apart from the analysis done during the design and implementation of
the relaxed-ring, we also made qualitative and quantitative evaluation of it.
This report is about the quantitative evaluation. Qualitative evaluation is
presented in chapter 14.

The main focus of the quantitative evaluation we performed was on the
branches that were created by our ring maintenance algorithm. We also
evaluated cost-efficiency by measuring the amount of messages generated by
the relaxed-ring during the ring maintenance, and we compare it with the
periodic stabilization technique of the Chord [81] ring.

Branches on the relaxed-ring

The relaxed-ring topology does not require a perfect successor-predecessor
chain along the ring. That is why it is called relaxed. This relaxation im-
proves lookup consistency with respect to other ring-based networks such as
Chord [81]. However, it implies a small degradation on the lookup complex-
ity that goes from log(N) to log(N) + b, where b is the size of the branch
where the responsible node is to be found. If there is no branches, the routing
algorithm is exactly the same.

Branches appear on the relaxed-ring only if there are problems on the
quality of the connectivity between peers. Therefore, we have perform a
quantitative evaluation of the size of the branches for many different network
sizes with different quality of connectivity. Figure 15.5 presents the results

SELFMAN Deliverable Year Three, Page 196

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

obtained for networks going from 1000 to 10000 nodes. Each size was tested
with a connectivity factor c, representing the probability of establishing a
connection between any pair of peers, where c ∈ {0.9, 0.95, 1}. We can
observe that the average amount of branches follows linearly the quality of
the connectivity of the simulated network.

 0

 200

 400

 600

 800

 1000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
ra

nc
he

s

Peers

c=0.90
c=0.95
c=1.00

Figure 15.5: Average amount of branches depending on the size of the net-
work and the quality of the connectivity.

Figure 15.6 presents the average size of branches in different networks
following the same size and connectivity factors as in Figure 15.5. The data
of the networks with perfect connectivity has been removed, because there
are no branches in such scenario. We can observe on the two above lines
that average size of branches is constantly bellow 2, independent of the size
of the network so the topology scale very well. To conclude something about
the complexity of the routing algorithm, we have to observe the amortized
average size of branches, which is represented by the two lower lines. We can
observe that they are constantly bellow 0.5 independent of the size of the
network, meaning that empirically we could eliminate b from the complexity
of the routing algorithm, keeping it to log(N).

Bandwidth consumption

It is known by the peer-to-peer research community that periodic stabiliza-
tion is a reasonable solution to constantly fix the ring, but it is very expensive
in terms of bandwidth usage. It basically generates too many messages con-
stantly. Therefore, one of the effort of the relaxed-ring was to reduce this

SELFMAN Deliverable Year Three, Page 197

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

problem by fixing the ring with correction-on-change instead of by a period-
ical check. Figure 15.7 shows the load of messages in Chord due to periodic
stabilization, compared to the load of the Relaxed-Ring maintenance with
bad connectivity. Y-axis is presented in logarithmic scale. We have chosen
only the worse case we studied for the relaxed-ring which still performs much
better than Chord. The different values for Chord are obtained by tuning
the frequency of the periodic stabilization. This frequency is expressed as a
relative value with respect to the modifications on the network. For instance,
a stabilization rate of 4 means that every node performs a periodic stabiliza-
tion round after a total amount of 4 joins/leaves have occurred in the whole
ring.

One of the results presented in year two of the project was a self-adaptable
topology called PALTA, which stands for Peer-to-peer AdaptabLe Topology
for Ambient intelligence. It is an adaptation of the relaxed-ring in order to
provide a better routing algorithm for small networks. In small networks,
the ring presents a fully connected network, which is much faster to perform
lookups, but it is more expensive to bootstrap and to maintain every time
a new node join. As soon as the network reaches a size of a pre-defined
value ω, the routing table adapts itself to behave as a regular peer-to-peer
ring. Because of the high bandwidth consumption of fully connected network,
it was necessary to evaluate the amount of messages exchanged within the
network.

Figure 15.8 does not show the marginal cost of joining a network, but the
total amount of messages generated to construct a fully connected network,
a relaxed-ring, and two PALTA networks with ω values equal to 100 and 200.
We can see that with less active connections, as in PALTA or the relaxed-
ring, the number of messages remains small, generating less network traffic.
The curve of the fully connected network increases quadratically, generating
n ∗ (n− 1) messages, with n being the size of the network, we can conclude
that this network cannot scale.

The curve of the relaxed-ring shows a constant and controlled increment
in the amount of messages, keeping them at a very low rate, showing that it
scales very well. Now, the results obtained from experiments with PALTA
are very interesting because both perform better than the ring for larger
networks. One can observe that PALTA with ω = 100 and ω = 200 increases
quadratically the amount of messages, as in a fully connected network. This
happens only until the network reaches a size of ω peers. Then, the amount
of messages increases slower that in a ring, and furthermore, after a certain
size of the network, both PALTA networks remain at better values that the
relaxed-ring. The explanation for this is that when a new peer join in the
network, it needs less messages to find the k fingers. This is because PALTA

SELFMAN Deliverable Year Three, Page 198

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

 0

 0.5

 1

 1.5

 2

 2.5

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
of

 B
ra

nc
h

(p
ee

rs
)

Peers

avg c=0.90
avg c=0.95

total avg c=0.90
total avg c=0.95

Figure 15.6: Average size of branches depending on the quality of connec-
tions.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
es

sa
ge

s

Peers

chord stab rate 5
chord stab rate 6
chord stab rate 7
chord stab rate 8

p2ps connect 0.90

Figure 15.7: Bandwidth consumption of ring maintenance in Chord and the
Relaxed-Ring.

SELFMAN Deliverable Year Three, Page 199

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

has ω peers with a larger routing table (ω > k), making a more efficient jump
during the routing process. We study this further in the following figure.

This means that the cost of maintaining a small fully connected network
can help a larger network to be more efficient for routing, generating less
network traffic.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600 700 800 900 1000

M
e
s
s
a
g

e
s

Peers

Fully Connected
PALTA w=100
PALTA w=200
Relaxed-Ring

Figure 15.8: Bootstrapping bandwidth usage on different networks.

In order to confirm our conclusions from the previous experiment, we de-
cided to measure the average amount of hops needed for a message to reach
its destination. This is known as a lookup operation in a ring. This experi-
ment does not consider fully connected networks, because there is no concept
of responsibility is such systems. In addition, because of its characteristics,
peers in a fully connected network reach any other peer in the network in 1
hop.

In Figure 15.9 we can observe the results obtained. The relaxed-ring
shows that the number of needed hops increase logarithmically when the
network size increases. PALTA performs better than the relaxed-ring due to
fact that some peers have a larger routing table, confirming the results from
the previous experiment. In both cases, PALTA presents an average number
of hops slightly smaller than 2 if the network consist of less than ω peers.
This is because the network is fully connected, and therefore, in can reach
the predecessor of the responsible of the looked up key in only one hop. The
second hop is needed to reach the responsible. The average is smaller than
2 because the randomized experiments sometimes generates lookups where
the responsible is the peer triggering the lookup.

After the value of ω is reached, the average increases faster in PALTA

SELFMAN Deliverable Year Three, Page 200

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

with ω = 100 that with ω = 200. This is clearly due to the amount of peers
having a larger routing table. We observe that in both cases the system
behaves much better than the ring. We expect that for larger networks the
value would converge to the curve of the ring, but still performing better.
What we cannot currently explain is the behavior of PALTA with ω = 100
when the network is in between 100 and 200 nodes. It seems to perform even
better than a ω = 200.

SELFMAN Deliverable Year Three, Page 201

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.6 Discussion

15.6.1 Experimental results

A major pitfall we had to face for carrying out the quantitative evaluation
of autonomics in Selfman applications was to measure the efficiency of ABs
themselves and not only the QoS of the different systems.

Thus the results reported in section 15.5.2 are highly interesting but focus
especially on the global system efficiency –in terms of QoS– of Scalaris and
not on the ABs embedded in the system. The numbers of handled read
and/or write requests (QoS indicators) are evaluated according to different
configurations (i.e. node numbers) instead to be measured either by (refer
to section 15.3.2):

1. enabling / disabling the AB under test;

2. modifying the configurable settings of the AB under test;

3. comparing the AB under test with a similar one –or even none– coming
from a business equivalent SUT.

Concerning the experimental results obtained in section 15.5.3, they have
been reported by providing some synthetic figures. This allows to avoid from
a huge number of quantitative evaluation grids. These results try to compare
similar ABs (i.e. the behaviors relative to the ring maintenance) of two
different structured overlay networks (SONs), Chord and the relaxed ring.
The main consequence of such a comparative approach is to obtain results
that put together autonomics and QoS measurements, i.e. that should be
hardly extended to other business domain. Thus the major limitations of
this assessment work lies in:

• the “aggregated” evaluation of every ABs in charge of ring-maintenance,
which tend to limit fine-grained comparison;

• the lack of generic metrics for evaluating ABs quantitatively like they
have been defined in the assessment methodology. However, this sec-
ond restriction is essentially due as well to the inadequacy of the quan-
titative evaluation methodology to the peer-to-peer domain (see sec-
tion 15.6.2).

Although these two difficulties tend to constraint the quantitative benchmark
in terms of business independence and re-usability, they would not prevent
from a future economical evaluation by binding a cost model to the technical
benchmark.

SELFMAN Deliverable Year Three, Page 202

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

15.6.2 Evaluation methodology

As mentioned in section 15.6.1, the quantitative evaluation methodology,
which has been proposed, is still highly business domain and architecture
specific. It questions in particular the possibility to apply the test process
(see section 15.3.2) to any system under test.

1. This evaluation methodology basically consists in measuring the impact
of the execution of an AB on the system QoS. So it implies that the
QoS metrics and the autonomic indicators are evaluated at the same
abstraction level. This is the main reason why, it was impossible to
apply it to the Selfman applications (as shown in section 15.5): the
QoS metrics were global (i.e. macroscopic level) whereas the autonomic
indicators were local to the AB (i.e. microscopic level). In such a
situation, an injected disturbance triggers an autonomic adaptation
that has no measurable effect on the QoS (due to the important number
of agents/peers contributing to the QoS). 3

2. The definition of anticipation and stabilization durations independently
of the business domain and architecture is also a challenge for a quan-
titative autonomics benchmark. We have experimented indeed that
for now, in some cases, the stabilization duration can be difficult or
even impossible to measure (for example in an AB running period-
ically without any “real” triggering event and for which this period
duration cannot be configured).

Concerning the first limitation, a solution could consist in defining a
methodology for composing the results obtained at the agent/peer (local)
level in order to extrapolate the impact of ABs at a global level. Another ap-
proach consists in decomposing global QoS into many local values. However
this last solution is business domain specific.

3However this methodology is adapted for evaluating systems for which QoS and auto-
nomic metrics are evaluated at the same abstraction level: it has been successfully applied
on an application dealing with workload management in an environment composed of
J2EE application servers.

SELFMAN Deliverable Year Three, Page 203

CHAPTER 15. D5.4B: QUANTITATIVE EVALUATION OF
AUTONOMIC FEATURES OF SELFMAN APPLICATIONS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

A
v
g

 h
o

p
s

Peers

Relaxed-Ring
PALTA w=100
PALTA w=200

Figure 15.9: Average number of hops vs number of peers.

SELFMAN Deliverable Year Three, Page 204

Chapter 16

D5.6: Evaluation of security
mechanisms

16.1 Executive summary

This deliverable reports on the work in D4.4b which is on self-protection
mechanisms and D5.6 which is on application-level security mechanisms.
Self-protection mechanisms center on the use of Small World Networks (SWN)
and social networks as an alternative to structured overlay networks. We de-
velop a SWN simulator to show that SWNs can be effective. SWNs can
approach the efficiency of structured overlay networks while being robust to
network failure/churn. In particular, SWNs are more resilient to targeted
attacks. Self-protection mechanisms are also needed for special attacks such
as self-tuning attacks on the SWN. We also collect real world social networks
and show that the SWN techniques can work with real social networks which
approximate the structure of SWNs.

Application-level security focuses on a security infrastructure for Wikipedia.
In Wikipedia, the attackers are the users rather than the server infrastruc-
ture and the attack is on the Wikipedia content. One of the main problems
with Wikipedia is to ensure that open and anonymously submitted content
is credible. Our infrastructure is usable with Wikipedia and Wikis using
WikiMedia and serves to inject credibility information into a Wiki.

205

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

16.2 Contractors contributing to the deliver-

able

Peerialism(P6), NUS(P7) and ZIB contributed to this deliverable.

Peerialism(P6) contributed to refining the application self-protection is-
sues pertinent to SELFMAN.

NUS(P7) performed the work on self protection in Deliverable D4.4b
which is also reported here. The main contribution is the use of small world
and social networks as a form of overlay network which is more robust to
attacks. Self protection issues at the application level were analyzed in this
deliverable. An infrastructure which leverages on social networks and third
parties to add trust was developed as a credibility mechanism for Wikipedia.

ZIB(P5) contributed to the refining the application self-protection issues
pertinent to SELFMAN and Wikipedia.

SELFMAN Deliverable Year Three, Page 206

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

16.3 Self-protection support & mechanisms

This deliverable also reports on the work in WP4, Deliverable 4.4b. Deliv-
erable 4.4b focuses on the use of small world and social networks as a self-
protection mechanism to mitigate identity and routing attacks in structured
overlay networks. It also looks at some new security issues which are raised
by small world networks when self-tuning is employed to optimize routing.
The software developed is described in Deliverable 4.4b (Section 11).

A small extension is also reported on the self-protection mechanism in De-
liverable D1.3b (from Year 2). As much of the SELFMAN self-configuration
work is in languages such as Java, the software component authentication
mechanism is extended to deal with non-binary files such as Java class files.

16.3.1 Small world networks (SWN) as a kind of SON

Introduction and motivation

Small World Networks (SWN) have properties which help to counter some of
the drawbacks of Structured Overlay Networks (SON). SONs rely on the as-
sumption that most of the nodes are non-malicious. A Sybil-type attack gives
the attacker the opportunity to control many nodes which breaks the assump-
tion. Furthermore as the SON is self-organizing but it requires maintenance
to preserve a particular network topology. This maintenance is vulnerable
various attacks, e.g. the eclipse attack [80] and attacks which exploit churn
and network failures.

SWNs are a model for social networks which have trust and identity rela-
tionships which mitigate the serious problems caused by Sybil-type attacks
in SONs. Sybilguard [96] provides a method to limit the number of Sybil
nodes a malicious user can create based on the number of his friends. Link
maintenance is also cheaper than a SON because the links are much more
static in a SWN. They are also more robust because they have a stochastic
element which makes the network somewhere in between a structured net-
work and a random one. The random properties make it harder to disconnect
a SWN during churn. The network partitioning and merging described in
Section 7.3.1 can utilize SWN to make it more robust under churn.

Figure 16.1 shows the topology of three graphs: a SON (a Chord network),
a SWN, and a Random Network. All the graphs have the same number of
nodes and links. Throughout our discussion, we will use n to refer to the
number of nodes/peers in the graph/network. The leftmost graph is a SON
(in this case a Chord ring [81])1 where the links are very structured with inter-

1Since n is not a power of two, the longest edges do not cross the center.

SELFMAN Deliverable Year Three, Page 207

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.1: Network topology of Chord, SWN, and Random Network

node distances given in powers of two. The middle graph is a SWN where the
links are created according to power-law distributions. The rightmost graph
is a Random Network where the links are randomly connected between any
two nodes. Although each of the three graphs has the same number of nodes
and edges, they look rather different because of how they are structured.

The Sindaca recommendation system described in Deliverable D5.3 (Sec-
tion 13.3) can suffer from Sybil attacks. In such an attack, a malicious user
tries to manipulate the votes by creating a large number of user accounts
in the system. SWNs based on social networks can be used to prevent such
Sybil attacks. An additional benefit of using social networks in such recom-
mendation systems is that social information may give more accurate rec-
ommendation. This is because people in a social group tend to have similar
interests.

Routing in SWN

One of the first SWN models was introduced by Watts and Strogatz as a
network that have a high clustering coefficient and low diameter [87]. The
clustering coefficient Ci of node i is the fraction of edges between the neigh-
bors of node i divided by the number of possible edges that could possibly
exists between them. The clustering coefficient C of the network is the av-
erage of the clustering coefficient for each node Ci. Kleinberg showed that
a drawback of SWNs based on the Watts and Strogatz model is that decen-
tralized algorithm for routing will not have small expected routing length
[45]. The insight is that the missing geometric information can be obtained
by using a power law edge distribution on the adjacent nodes. A power law
edge distribution means that there are many links to nearby nodes and few
links to far away nodes according to some functions. Assuming a power law
edge distribution, decentralized routing can achieve a small expected routing

SELFMAN Deliverable Year Three, Page 208

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

length of O(log2(n)).
We are interested in purely decentralized algorithms for routing which are

attractive as they are based on local knowledge rather than relying on global
knowledge. Usually this is done with greedy-based routing — node s routes
the message to node t by forwarding it to its neighbor whose node position
is the closest to the target node t. A cycle avoidance measure is for the node
to remember the message and forward it to a not yet forwarded next closest
neighbor. In what follows, we will assume that routing will be considered
to be failed when it reaches more than O(log2(n)) steps. (The experiments,
actually use a bound of log2(n)).

We propose the use of SWN as a kind of semi-structured SON where
the edge connections are more relaxed. Preliminary results show that SWN
can achieve good routing given more edges. Adding more edges in SWN
doesn’t directly contribute to larger overhead.2 Experiments in [35] show
that having (O(log(n))) connections/friends in the SWN leads to comparable
performance with DHTs and routing lengths of (O(log(n))) is observed.

In order for a SWN to be usable as a semi-structured SON, it should also
be robust in the face of node failures. Figure 16.2 shows experiments which
investigate the robustness of the SWN under node failures for n = 105 nodes.
A route is considered successful if the routing length falls below log2(n). We
see that as long as the SWN has a reasonable number of edges, the probability
of successful routing is high. When there is node failure, the probability of
routing success is still very high even with 60% of the nodes failing.

Both SWN and Chord use a form of greedy routing, i.e. the message is
forwarded to the neighbor which has ID that is the closest (has the most
similar) to the target node ID. Routing is more robust when there are more
alternative paths. One way of getting more alternative paths is to vary the
greediness of the routing. Note that this requires some minor changes to the
Chord lookup algorithm.

We consider the greediness percentage G as a parameter is used during
routing. A message will be forwarded with probability G to the neighbor
that has the closest node ID to the destination otherwise, the next closest
node will be picked with probability G, and so on. The lower the G, the
larger the effect of randomness in selecting a neighbour.

Figure 16.3 shows the tradeoff between routing performance and ro-
bustness for a network based on a SWN versus a Chord SON where both
networks have n = 105 nodes. As the greediness approaches 100%, we get
the expected result that the Chord SON gives shorter routing lengths com-

2Note that a SWN would typically have more edges than a SON, however, maintenance
for a SWN is simple under churn.

SELFMAN Deliverable Year Three, Page 209

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.2: Routing Success and Node Failure

SELFMAN Deliverable Year Three, Page 210

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.3: SWN vs. Chord on Greediness

pared to the SWN. However with less greediness (less than 80% greediness),
SWN still maintain good routing performance while Chord degrades quicker.
This shows that SWN has more routing alternatives than Chord. As for the
percentage of successful routing, SWN has more successful routing over the
range of greediness values.

Another way to look at the robustness is to examine the distribution of
the routing lengths as G varies. Figure 16.4 shows the standard deviation
and mean of the routing with varying greediness on the same network as
Figure 16.3. The error bars show one standard deviation for routing length
across 1000 routing tests while the line gives the average. We can see that
the SWN has shorter routing over Chord (the lower line in the graph) and
the standard deviation is also less (the shorter error bars in the graph). This
shows that SWN routing is more robust than Chord if less greedy routing is
used.

As SWNs have much less structure than SONs like Chord, they can be
more robust to an adversarial churn model or a selective attack. In a highly
structured network, it is easy to know the location of the nodes in the net-
work. This means that a selected node in the network can be the subject of
a denial of service if some other selected nodes also fail.

Assume the following attack model, the adversary is able to bring down
a consecutive region of nodes. That is, the attacker can cause nodes with

SELFMAN Deliverable Year Three, Page 211

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.4: Average and Deviation in Routing Length vs. Greediness

consecutive IDs in the network to fail. In such a scenario, for Chord, the
next node after the largest consecutive ID that fail will suffer the most in
terms of successful routing to that node, followed by the next node with less
severe damage and so on. This attack does not have much effect on an SWN
because of the more flexible network and routing.

Figure 16.5 shows that SWN can withstand a consecutive range ID at-
tack. The figure shows the average routing length for 1000 routing tests on
a Chord and SWN network with n = 105 nodes. We marked a range of 50
consecutive node identifiers in both networks as “failed nodes” (i.e. nodes
with identifiers i− 1, i− 2, . . . , i− 50 are marked as failed). The experiment
then measures routing to nodes with identifiers i, i+ 1, . . . , i+ 49 to measure
the impact of the selective failure on the routing to the most affected nodes.
The figure shows the condition before and during the attack for i = 0. For
Chord, the impact is severe for the immediate nodes after the failed nodes
(in this case, it is node i and the following nodes) and the impact become
smaller further out. We see that while routing on the SWN is longer before
the attack, the impact is considerably smaller and for the immediate nodes
around i, the effect is much less than with Chord.

To more clearly see the impact of the attack, Figure 16.6 shows the
difference in the average hops from a normal non-attack scenario to what

SELFMAN Deliverable Year Three, Page 212

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.5: Consecutive range ID attack

Figure 16.6: Increase in the average number of hops due to the range attack

SELFMAN Deliverable Year Three, Page 213

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

happens during the attack. The increase in the average hops is the average
routing length during the attack subtracted from the average routing length
before the attack. For Chord, the node that has the most increase in average
routing length during the attack is node i since most of the incoming nodes
are down (i.e. node i − 1, i − 2, i − 4, i − 8, i − 16, i − 32) while the SWN
has no node that has significant increase in routing hops during the attack.
This showed that a SWN can be more robust than Chord under this attack
model.

We remark that SONs need more complex self-healing to deal with net-
work partitioning because of the interaction with self-stabilizing for ring
maintenance (see Deliverable D4.2b, Section 7.3.1). It might be the case
that the robust nature of a SWN could be useful in a hybrid network to deal
with network merging after a network partition occurs.

SWN security issues

In order to be able to use greedy routing which only has local knowledge,
the node identifiers should reflect the geometric information in the power
law edge distribution. If the node identifiers are instead randomly assigned,
greedy routing will not be successful. A feasible self-tuning approach is to
reorganize the node identifiers in the network to form a power law distribution
[72]. We show that this self-tuning approach fails when there are malicious
nodes which do not obey the self-tuning protocol [34]. The problem is that
the self-tuning requires all nodes to be honest about their node identifier.
Malicious nodes can attack this assumption by lying about its node position.
This effect propagates throughout the network because of the self-tuning
protocol and after some number of self-tuning rounds, the entire network
can be poisoned.

We devised two self-protection mechanisms. The first is a simple dis-
tributed self-tuning based protection against the poisoning attack. The node
positions are reset periodically such that the routing performance can still be
good while reducing the effect of the poisoning. Figure 16.7 shows the effect
of this mechanism on the poisoning attack with different numbers of mali-
cious nodes and the restart probability. The network used has n = 105 nodes.
We see that poisoning easily spreads to the whole network and poisons all
nodes when there is no self-protection (restart probability = 0). When the
number of malicious nodes is small, e.g. 0.1% (100 nodes), poisoning occurs
but the number of poisoned nodes is controlled. Figure 16.8 shows that the
successful routing percentage is still reasonable for 0.1% malicious nodes.

In summary, the distributed protection mechanism works for small num-
ber of malicious nodes (e.g. 0.1% * n). We observe that with 0.008 restart

SELFMAN Deliverable Year Three, Page 214

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.7: Infection Percentage vs. Malicious Nodes and Restart Proba-
bility

Figure 16.8: Successful Routing vs. Malicious Nodes and Restart Probability

SELFMAN Deliverable Year Three, Page 215

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.9: Switching Percentage vs. Malicious Nodes and Restart Proba-
bility

probability of node restarting the self-tuning each round, a small infection
percentage and switch percentage (as shown in Figure 16.9) while maintain-
ing a high successful routing percentage.

The second mechanism is to directly deal with how the poisoning attack
works when there are malicious nodes. Nodes can monitor whenever its own
token (which is a derived by a function on the position) is being swapped.
The requirement is that the owner of the token has to be available (node is
alive) during switching so that the owner can verify and certify the switching
as a transaction. This incurs some overhead for switching. By keeping track
of the token, a malicious node will not be able to cause a switch with the
incorrect node identifier. This protection mechanism prevents the malicious
nodes from lying but incurs more overhead since every node switch requires
three nodes rather than two nodes which means more communication costs.
Unlike the first mechanism which can work in a darknet where the overlay
network is also the underlay network, this needs the SWN to be an overlay
network on top of some other network which is able to route between all
nodes.

Real social networks

We have studied SWNs as a way of understanding real world social networks.
We employ the fact that a social network allows us to have additional trust
mechanisms which are not present in an arbitrary network like a SON. We
investigated how the SWN assumptions and routing behave on a real social

SELFMAN Deliverable Year Three, Page 216

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

network.
We choose to use a network extracted from Facebook’s social network

as our real social network. In Facebook, each user is identified by a inte-
ger. Each user has a list of friends which are users in Facebook as well.
We downloaded about 6 million users’ friend list. The whole list contains
about 114 million different users. The average number of friends per user
(i.e. average node degree) is 135.89. This is not the entire Facebook net-
work for two reasons. Firstly, some profiles are closed, so they cannot be
collected. Secondly, it takes too long to query and crawl through the social
network because of network restrictions and we do not want to be appear to
be attacking Facebook.

We started by downloading 100 users, some are randomly selected, others
are the users we know. Then we did breadth-first search by downloading the
friends of the 100 users, then friends’ friends and so on.

Although the graph we obtained is a portion of the entire social network,
there are some computational difficulties in using the data because it is too
large to be computationally practical to run experiments both in time and
space. Thus, we selected some subgraphs. The selected subgraph has to
be well connected and satisfy small world network properties, thus random
selecting some nodes will not work. The algorithm to select a subgraph of n
nodes from a larger graph G is based on the one in [72]:

1. Initially the node set S is empty.

2. Select a random node in G and add to S.

3. For the all nodes which are directly connected to nodes in S, select the
node with the most number of edges to nodes in S and add it to S.
If there are no such nodes, the algorithm terminates with fewer than
n nodes. If there is more than one node having most number of links,
randomly select one of them.

4. Terminate if there are n nodes in S.

5. Go to Step 3.

The above method selects a group of nodes which are well connected. Figure
16.10 shows a subgraph with 1000 nodes selected using this algorithm where
the dots are the users and the edges denote the friend relationship. Note that
in Facebook, the friend relationship is not symmetric. That means “A is B’s
friend” does not necessarily mean “B is A’s friend”. However, our SWN
model assumes an undirected graph. Thus we have converted the Facebook

SELFMAN Deliverable Year Three, Page 217

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.10: Facebook social network graph of 1000 nodes.

SELFMAN Deliverable Year Three, Page 218

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.11: Node Degree Distribution

data to an undirected graph by defining an edge between A and B as “A is
B’s friend or B is A’s friend”.

The average degree of the graph is 110.97, which is very high comparing
to DHTs. To study graphs with smaller degree, we removed some edges to
get 4 other graphs. In the remainder of this section, we call the original
graph A, and the 4 other graphs as B, C, D, and E.

Figure 16.11 and 16.12 shows the node degree and node clustering coef-
ficient distribution for the five graphs. Graph A’s maximum degree is about
500, which means there some nodes which connects to a lot (in this case,
half) of nodes in the graph. This is very common in social networks. Some
people are very popular in the community and some are not. Also note that
although the node degree distribution of Graph C and D are similar, their
clustering coefficients are different.

Figure 16.13 and 16.14 shows the routing failure ratio and routing length
of the 5 graphs during the self-tuning process which remaps the node iden-
tifiers. The routing failure ratio is the number of routes which fail over all
routes tested. All the graphs reach a steady state after about 300 iterations.
This shows that routing in an actual social network can be more difficult
than in am artificially constructed SWN. However, the failure ratio is small,

SELFMAN Deliverable Year Three, Page 219

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.12: Clustering Coefficient Distribution

Figure 16.13: Routing Failure Ratio

SELFMAN Deliverable Year Three, Page 220

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.14: Routing Length

under 2%. The average routing length is larger than a SON with that num-
ber of nodes and edges. This is partly because the distribution of friends is
skewed towards friends which are clustered together. However, it shows that
routing length is still small enough to be reasonable.

16.3.2 Software component security

SELFMAN is concerned also with self-configuring software components. This
means that the code and possibly data for the components needs to be up-
dated. In order to make software update scalable, the dissemination mecha-
nism should be distributed. This leads to security problems since attackers
can attempt to attack or manipulate software updates and self-configuration
as another way of attacking a system.

In the case software in Java, authentication can be achieved by signing
the software archives. However, this security is only as secure as the JVM
implementation. Integrity of distribution of software components is more
secure at the operating system level [33]. We extended the authentication
in BinAuth [33, 93] which was developed in D1.3b to also authenticate Java
classes and archives. A policy file is used to specify the classes and archives

SELFMAN Deliverable Year Three, Page 221

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

which can be used Java. The BinAuth extension provides a transparent way
of ensuring mandatory verification of the integrity of every file loaded by the
Java Virtual Machine as per a policy.

The following example demonstrates a policy to authenticate Java byte-
code coming from .class and .jar files except for project foo. This policy
can be shared by many Java programs such as java.exe, javac.exe, etc.

allow E:\\projects\\foo\\.*\.class

allow E:\\projects\\foo\\.*\.jar

verify .*\.class

verify .*\.jar

SELFMAN Deliverable Year Three, Page 222

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

16.4 Application level security

Deliverable D5.6 was envisaged to be about the evaluation of security mech-
anisms from WP1 and WP4 in the context of the SELFMAN applications.
There are some differences between the proposal and the work in D5.6.
Firstly, due to changes in partners, SELFMAN had different demonstrator
applications and any security considerations depend on the precise nature
of the application. Secondly, while some of the security mechanisms from
WP1 and WP4 are relevant, the main consideration would be the security
as defined in the particular application. The resulting developed security
mechanisms in D5.6 were developed based on these constraints.

Peerialism(P6) joined SELFMAN only in the middle of the project. Con-
sequently there was only sufficient resources for Peerialism(P6) to focus on
one of the self-* aspects. Peerialism(P6) focused on autonomous evaluation
and while we had discussion on security issues, no person-months were allo-
cated to security mechanisms and evaluation in the context of PeerTV.

The main application developed for SELFMAN is the distributed Wikipedia-
clone based on Scalaris (see D5.2b). As such, the focus in D5.6 was on secu-
rity mechanisms appropriate for Wikipedia which would fit with the Scalaris
enhanced version of Wikipedia. The question then is what kinds of security
issues and mechanisms are appropriate for Wikipedia. Both Scalaris and
Wikipedia servers are data-centric focused. They assume that the machines
in the data center(s) are secure which also implies that the right question is
not on the infrastructure security at the heart of WP1 and WP4 but other
Wikipedia specific security issues. Nevertheless, it made sense to look at
what security problems and corresponding solutions which apply both to
Wikipedia as well as other contexts.

An appropriate attack model is one where the attackers are the contrib-
utors to Wikipedia content. As Wikipedia is intended to be both open and
anonymous, an attacker can abuse Wikipedia by deleting useful content and
adding useless or irrelevant content. A related problem is to prevent spam-
mers from taking over Wikipedia content. Wikipedia uses human editors
to police such content attacks. We develop in D5.6 automatic infrastruc-
ture which addresses such attacks. The focus in D5.6 is a general purpose
mechanism for adding trust to Wikipedia content and thereby making the
information more credible. The problem of spam prevention is a related one
which will be addressed in D5.11.

The mechanisms developed here for Wikipedia can also be seen as an
extension of the issues developed in WP4 since a major problem in a self-
managing system may be the lack of global trust. While the security infras-
tructure here is tailored for Wikipedia, the problem being addressed is a more

SELFMAN Deliverable Year Three, Page 223

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

general one, namely generating trust and preventing spam when there are
virtual identities. For example, the credibility mechanism is also useful for
the demonstrator application for Mozart, the community-driven recommen-
dation system for Beernet (D5.3). In the absence of global voter identities,
such voting mechanisms can also be attacked by Sybil or other identity at-
tacks.

16.4.1 Security issues for Wikipedia

The philosophy of Wikipedia is to generate content which is written by the
world at large. It is intended to be: (a) open so that anybody can contribute;
and (b) anonymous so that it is not censored or restricted as to who can
contribute content. One of the criticisms of Wikipedia is that the content is
written by “unknown strangers of unknown qualifications”. Since anybody
can register and make an edit to the content directly, the credibility of the
content becomes questionable to the readers. Moreover, authors of the edits
are anonymous — they are known only by pseudonyms or IP address. The
credibility of information written in Wikipedia is based on having references
to other sources.

An alternative to a user generated content like Wikipedia is Google Knol.
Google Knol uses a different philosophy where authors have identities which
have been certified by Google. For example, an author could be certified
by their credit card. This is rather different from the open and anonymous
approach in Wikipedia.

From a Wikipedia perspective there are two main security threats and
issues. The first is to ensure that the information content is credible or
trustworthy even with anonymity and openness. The second is that to reduce
or prevent spam in such an environment. We have developed an architecture
to facilitate the information transference between applications in a secure
fashion which addresses these issues in Wikipedia. Although our architecture
is useful for Wikipedia, we remark that the issue of trust/credibility and spam
reduction/prevention are more generic and is thus not limited to Wikipedia.

We also take advantage of and are compatible with open protocols for
authentication such as OpenID and OAuth. OpenID is an open standard for
user distributed authentication and access control. Another protocol which
is supported is OAuth which can be used to transfer more information.

Adding trust to Wikipedia

We propose an architecture which transfers trust between one or more inde-
pendent parties and application by sharing information securely and anony-

SELFMAN Deliverable Year Three, Page 224

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

mously. This architecture is used to as a credibility enhancement mechanism
which allows content in Wikipedia to be marked up with credibility informa-
tion [36].

An author may have existing credibility details which are available from
third parties. Some examples of such credibility information are author’s
profession, name, position, etc. Our Wikipedia mechanism allows authors to
bring a subset of these information into Wikipedia in anonymous manner in
order to write or edit an article. Figure 16.15 illustrates this process.

Figure 16.15: Wikipedia Credibility Extension

Figure 16.15 shows four components: C1 is the Wikipedia web server with
our credibility extension installed. C2 is the credibility proxy. The Wikipedia
web server stores a certificate of the credibility proxy so that Wikipedia can
verify the proxy’s signature using its public key. Credibility providers are the
sources of credibility information specified by the author to the credibility
proxy. C4 is the Wikipedia author using an ordinary web browser. The
communication between the credibility proxy (C2), the credibility provider
(C3) and the author (C4) is using widely used open protocols such as OpenID
or OAuth.

The steps to make a credible (and anonymous edit) in a Wikipedia page
is first to contact a trusted proxy (C2) and specify one of the credibility
providers (C3) that the author (C4) want to use. The author is authenti-
cated by the credibility provider and will be asked which kind of information
to disclose to the proxy. We employ open protocols for the communica-
tion between the credibility provider and credibility proxy, e.g. OpenID and
OAuth.

Once the proxy acquires the information of the author from the credi-
bility provider, the author then adds the content which is to be added to a
Wikipedia page. The proxy then signs the text together with the author’s
information from the provider. At this step, the author can select what

SELFMAN Deliverable Year Three, Page 225

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

credibility information to be attached to the text. These steps are shown in
Figure 16.16 which also shows a sample interface for using the credibility
proxy for Wikipedia.

Figure 16.16: Wikipedia Credibility Proxy

The last step is to add the signed text to Wikipedia page just like the
usual edit in Wikipedia as shown in Figure 16.17. The credibility information
about the author should be displayed in a special way. For example, Figure
16.18 shows the end result of adding the content from Figure 16.16. More
sophisticated user interfaces can also be easily employed.

To summarize, the Wikipedia credibility protection mechanism consists
of a number of components: an infrastructure for transferring information
securely between different parties; a credibility proxy which also serves as the
interface for performing a credibility edit; various credibility providers which
are the source of the credibility information; and a WikiMedia extension
which deals with the credibility edit which is just normal data to WikiMedia.

SELFMAN Deliverable Year Three, Page 226

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Figure 16.17: Wikipedia Verifier Tag Extension

Figure 16.18: Wikipedia showing a credible enhanced text

SELFMAN Deliverable Year Three, Page 227

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Vandalism/spam attack prevention

The other application level security problem is one of vandalism or spam
where there is a deliberate attempt to corrupt or maliciously change the con-
tent in Wikipedia. One approach is to analyze the content within Wikipedia
or to analyze the history of the edits. We take a different approach which
is more general and is applicable in more generic settings but still usable for
Wikipedia.

We have developed infrastructure which can mediate between Wikipedia
and other data sources such as the cloud in a secure fashion. We have al-
ready identified that social networks can be used as sources of trust and in
particular, we have developed some infrastructure, which extracts informa-
tion from Facebook. The work in the upcoming deliverable D5.11 ending at
month 40 will focus on the use of social networks such as Facebook as a kind
of credibility provider for controlling spam.

SELFMAN Deliverable Year Three, Page 228

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

16.5 Papers and publications

Security issues in small world network routing

Felix Halim, Yongzheng Wu, Roland H.C. Yap, Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2008 (see
A.18).

Small World Networks (SWN) have been shown to be navigable
– a short route can be found using efficiently using decentral-
ized algorithms. This routing relies on nodes having a position
to guide the routing such as its coordinates. Even in the ab-
sence of positional information such as node coordinates, by us-
ing local self-reorganization, it is possible to reconstruct a proxy
for the node coordinates which still allows for efficient routing.
This paper shows that in the presence of malicious nodes, the
self-reorganization mechanism breaks down. We investigate self-
protection mechanisms for such SWNs. Preliminary results using
a simple restart mechanism for self-tuning shows that much of
the effect of malicious nodes can be mitigated.

Small world networks as (semi)-structured overlay net-
works

Felix Halim, Yongzheng Wu, Roland H.C. Yap, Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASO),
2008 (see A.19).

Recent research has shown that Small World Network (SWN)
is navigable. In this position paper, we propose that SWN, for
example those which are social networks, have nice properties
which make them attractive as overlay networks. Such networks
occupy a space between structured and unstructured overlay net-
works. Our thesis is that SWN may be attractive enough to be
a replacement for traditional structured overlay networks which
are usually based on Chord-style Distributed Hash Tables. Pre-
liminary experiment results show that without node failure, the
performance of greedy routing in SWN works very well and with
additional links in SWN the robustness in routing can be im-
proved as well as the resilience against node/link failure.

SELFMAN Deliverable Year Three, Page 229

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

Establishing software integrity trust: a survey and lightweight
authentication system for Windows

Yongzheng Wu, Sufatrio, Roland H.C. Yap, Rajiv Ramnath and Felix Halim,
chapter in Trust Modeling and Management in Digital Environments: from
Social Concept to System Development, Zheng Yan (ed.), IGI Global, Dec.
2009 (to appear).

Malware causes damage by stealing confidential data or mak-
ing other software unusable. Ensuring software trustworthiness
is difficult because malware may disguise itself to appear benign
or trusted. This chapter explores the problem of making soft-
ware more trustworthy through the use of binary integrity mech-
anisms. We review the problem of devising an effective binary
integrity protection, and discuss how it complements other op-
erating system security measures. We analyze design factors for
binary integrity and compare existing systems. We then present a
prototype which exemplifies a mandatory binary integrity mecha-
nism and its integration within an operating system. Our system,
BinAuth, demonstrates a practical, lightweight in-kernel binary
authentication system for Microsoft Windows. A system like Bin-
Auth shows that mandatory authentication is practical on com-
plex commodity operating system like Windows. To deal with
various constraints in the user’s environments, BinAuth uses a
flexible scheme which does not mandate Public Key Infrastruc-
ture (PKI) although it can take advantage of it. We also combine
the authentication with a simple software-ID scheme which is use-
ful for software management and vulnerability assessment.

Wiki credibility enhancement

Felix Halim, Wu Yongzheng and Roland H.C. Yap, Fifth International Sym-
posium on Wikis and Open Collaboration (WikiSym), 2009 (to appear, see
A.20).

Wikipedia has been very successful as an open encyclopedia which
can be edited by anybody. However, the anonymous nature of
Wikipedia means that readers may have less trust since there is no
way of verifying the credibility of the authors or contributors. We
propose to transfer external information from outside Wikipedia
to Wikipedia pages. These additional information is meant to

SELFMAN Deliverable Year Three, Page 230

CHAPTER 16. D5.6: EVALUATION OF SECURITY MECHANISMS

enhance the credibility of the content. For example, it could
be the education level, professional expertise or affiliation of the
author. We do this while maintaining anonymity. In this paper,
we present the design and architecture of such system together
with a prototype.

SELFMAN Deliverable Year Three, Page 231

Chapter 17

D5.7: Guidelines for building
self-managing applications

17.1 Executive summary

This report outlines a methodology to build self-managing applications, con-
sisting of the following steps:

• We assume that self-managing applications use an underlying archi-
tecture based on loosely coupled components and asynchronous com-
munication. We show three acceptable variations of this architecture,
namely the Kompics component model, the Erlang language (used for
Scalaris), and the Oz language (used for Beernet).

• The self-managing application then consists of a set of self-managing
managers, each of which is assigned a specific management task.

• Each manager is built as a feedback structure. A feedback structure is
a set of interacting feedback loops.

• The application design now consists of two steps: decomposition (deter-
mining what managers are needed and what they do) and orchestration
(handling interactions between the managers).

• We give one complete example of a self-management architecture. To
justify each part of this architecture, we show step by step how it is
built in the Kompics model.

• Since feedback structures are omnipresent, we give design rules for
building them. The correct design of feedback structures is important
for building self-managing managers.

232

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

• Finally, we focus on the four main self-management axes, namely self
tuning, self protecting, self healing, and self configuring, and explain
what to do for each case.

This methodology is based on our experience in SELFMAN augmented with
important contributions from the GRID4ALL project and from the literature
on self-managing systems. Many of our examples are based on decentralized
applications that use a structured overlay network for communication and
storage, since that is the area where SELFMAN has mainly worked on. We
outline what remains to be done to flesh out our methodology.

SELFMAN Deliverable Year Three, Page 233

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.2 Contractors contributing to the Deliv-

erable

This deliverable was written by UCL(P1) (Peter Van Roy) based on SELF-
MAN results.

SELFMAN Deliverable Year Three, Page 234

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.3 Introduction

How should self-managing systems be designed? For practical system design,
it is important to have a methodology that is simple and that allows to design
systems with desired global properties. To our knowledge, such a methodol-
ogy does not yet exist. Most of the knowledge in this area is fragmented and
deriving formal properties is difficult. In the SELFMAN project we have ad-
dressed a particularly interesting part of the self-management design space:
structured overlay networks that survive in realistically harsh environments
(with imperfect failure detection and network partitioning) and that provide
a transactional storage interface. During the project we have accumulated
experience in how to design self-managing systems. This report summarizes
this experience. We have built libraries at different levels of abstraction and
we have built application demonstrators and self-* services:

• A self-managing structured overlay network for the communications
infrastructure. The Scalaris and Beernet libraries both have structured
overlay networks.

• A component model for building self-managing applications. The com-
ponent model supports isolated concurrent components, with hooks for
observation and reconfiguration.

• A replicated storage layer and a transaction protocol for managing
sharing and coordination for applications. The Scalaris and Beernet
libraries both implement transactions on top of the structured over-
lay network, using a modified version of the Paxos uniform consensus
protocol to handle atomic commit in the face of Internet failure model
(permanent node failures and temporary communication failures, i.e.,
false failure suspicions are possible) [61].

• Application demonstrators, such as a Distributed Wiki and a Decen-
tralized Collaborative Drawing Tool.

• Experiments with self-* services, such as load balancing, network par-
titioning handling, and security (small-world topologies, monitoring,
and component security).

From this experience, this report collects a set of guidelines that we provide
to future designers of self-managing applications. This report also takes ideas
and examples from other sources, including the GRID4ALL project, which
has addressed similar problems [6].

SELFMAN Deliverable Year Three, Page 235

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.3.1 Context of this report

This report gives guidelines for the design of a specific kind of self-managing
system, namely one that separates a design phase (done by human develop-
ers) and a self-managing execution phase (done by the system itself, which
is able to adapt itself according to the abilities contained in the design).
More general self-managing architectures exist, e.g., the robotic architecture
of Gat [26] as applied to self management by Kramer and Magee [47], in
which the system design is itself done by part of the system. In Gat’s design
there are three layers: a component control layer that consists of feedback
loops, a change management layer that applies plans to select new control
layers, and a top layer that creates new plans using time-consuming delib-
eration algorithms. In the present report we focus on the first two layers.
The first layer corresponds to our feedback loop architectures and the second
layer corresponds to our component reconfiguration. The third layer would
redesign the components and devise the plan to implement this redesign (i.e.,
reconfiguration). The third layer is beyond the scope of this report.

17.3.2 General guidelines

A self-managing application consists of a set of interacting feedback loops.
Each of these loops continuously observes part of the system, calculates a
correction, and then applies the correction. Each feedback loop can be de-
signed and optimized separately using control theory [38] or discrete systems
theory [16]. This works well for feedback loops that are independent. If the
feedback loops interact, then your design must take these interactions into
account. In a well-designed self-managing application, the interactions will
be small and can be handled by small changes to each of the participating
feedback loop. This is the kind of design that we will focus on in this report.

It can happen that parts of the self-managing application do not fit into
this “mostly separable single feedback loops” structure. We have encoun-
tered several examples of this in the SELFMAN project. We recommend the
following approach:

• In the case of a large number of agents that collaborate, the best ap-
proach is to design a distributed algorithm [32] or a multi-agent system
[79] to perform the task. For example, in SELFMAN we needed an al-
gorithm to perform atomic commit for distributed transactions, in the
face of possible node failures and communication interruptions (imper-
fect failure detection). We found that a modified version of the Paxos
uniform consensus protocol was an essential part of the solution. This
is a complex algorithm whose correctness is not trivial to prove [61].

SELFMAN Deliverable Year Three, Page 236

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

Instead of trying to reinvent it in terms of interacting simple feedback
loops, we used the existing knowledge about this algorithm.

• In the case when the feedback loop structure consists of more than one
loop intimately tied together, the global behavior must be determined
by analyzing the structure as a whole and not by trying to analyze
each loop separately. To our knowledge, no general methodology for
doing this exists. We have made progress on two fronts: design rules
for feedback structures and patterns for common feedback structures.
Section 17.6 summarizes some of the important design rules we have
encountered. We are preparing a comprehensive survey of feedback loop
patterns [15]. Many commonly occurring complex patterns, such as
“Tragedy of the Commons” and “Communication Congestion Control”,
have been extensively studied and it is possible to take an existing
pattern from the literature. Unfortunately, the literature is extremely
fragmented. Studies of feedback loop systems exist in widely different
disciplines, such as management [76], biology [44, 46], and computer
science [16, 38]. A future research topic is to devise a methodology at
a similar level of abstraction to an existing methodology of software
construction (e.g., such as object-oriented programming).

The SELFMAN project has partly studied these two cases (multiple agents
and complex feedback). But the domain is very rich and we can guide the
designer only along the paths that we have explored ourselves.

17.3.3 Phase transitions

Feedback loop architectures often show abrupt changes in behavior. These
shifts can be seen as phase transitions. A phase in a feedback structure is
similar to a phase in thermodynamics: a situation in which the system has
well-defined global properties and reacts in a well-defined way to external
stimuli. There is a phase transition when the system’s global properties and
reactions to stimuli change abruptly. If the feedback structure is properly
designed, then it reacts to an increasingly hostile environment by doing a
reversible phase transition [83]. For example, when the node failure rate
increases or the network has communication problems (e.g., a partition),
then a large overlay network may become a set of disjoint smaller overlay
networks. We can say that the overlay network has made a transition from
a “liquid” phase (connected with changing set of neighbors) to a “gaseous”
phase (disconnected).

This transition does not necessarily mean the end of the overlay network.
It can be a normal part of the overlay network’s behavior, if the system is

SELFMAN Deliverable Year Three, Page 237

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

properly designed. When the failure rate decreases, these smaller networks
will coalesce into a large network again if the system is properly designed,
e.g., with a merge algorithm. The first practical merge algorithm for SONs
was developed in SELFMAN [77]. Earlier SONs could not “condense” (move
from a gaseous back to a solid phase) as failure rates decreased or communi-
cation was reestablished. They would boil (become disconnected) in a hostile
environment and then stay disconnected forever. We conclude that network
merge is more than just an incremental improvement that helps improve reli-
ability. It is fundamental because it allows the system to sur vive any number
of phase transitions. The system is reversible and therefore does not break.
Without it, the system breaks after just a single phase transition.

The lesson for system designers is always to make a design that can per-
form reversible phase transitions. This implies designing algorithms for all
pairs of phases for which a transition is possible, in both directions. In addi-
tion to this, we recommend to make a design that takes advantage of phase
transitions by exposing them to the application as an API. For example, a
transactional store built on an overlay network will become a set of smaller
stores when there is a network partition. When the overlay network merges,
the application needs to merge the data stored in each subnetwork. How to
do this is application-dependent; the transaction layer can just provide an
API to permit it to be done. The main design issues are to determine what
this API should be and how it affects application design. Full answers to
these issues are outside the scope of the SELFMAN project. We propose to
address them in a follow-up project.

17.3.4 Interdisciplinary nature

It is clear that designing self-managing systems touches on many disciplines.
We have encountered the following disciplines:

• Control theory [38]. This allows quantitative design of systems with
one or two feedback loops, typically to optimize throughput or some
other quantitative property.

• Discrete event systems [16]. This discipline includes control of au-
tomata and queueing theory. This generalizes control theory to discrete
systems, in which each component is defined by an automaton. Control
of these systems can be defined theoretically but is a combinatorially
difficult problem in the general case.

• Multi-agent systems [79]. This discipline includes game theory, auction
theory, and collective intelligence. This provides practical solutions to

SELFMAN Deliverable Year Three, Page 238

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

well-defined collaboration problems, called “games” or “auctions”.

• Distributed algorithms [32]. This discipline underlies the construction
of distributed computing systems. The algorithms depend strongly on
the failure model (e.g., whether false suspicions of failure are possible)
and the synchronicity model (whether the system is asynchronous or
synchronous). This discipline has reached sufficient maturity to provide
algorithms for many practical design problems. In SELFMAN, we use
the Paxos uniform consensus algorithm as the heart of the transaction
commit algorithm.

• Various limited studies on biological or engineering systems that use
feedback. There exist many successful biological systems (e.g., the hu-
man respiratory and endocrine systems) and engineering systems (e.g.,
TCP/IP, which can be formulated as a feedback structure) [82, 84].
These systems can be used as examples when designing new systems.

There is no one body of theory on how to build self-managing applications.
For parts of the system we recommend to choose the appropriate discipline,
as listed above. For the overall system, we recommend to follow general de-
sign rules, as presented in the rest of this report, and to take inspiration from
existing successful self-managing systems, from biology, sociology, and engi-
neering. For isolated parts of the system and depending on the application
requirements, you may need to draw on one or more of these disciplines, as
we have done in SELFMAN.

17.3.5 Structure of this report

This report gives an outline of a methodology to build self-managing systems.
It is structured as follows:

• Section 17.4 proposes a general architecture for self-managing systems
based on loosely coupled components with asynchronous communica-
tion. This architecture supports feedback structures, which are the
basic design element in a self-managing system: a feedback structure
is a set of interacting feedback loops.

• Section 17.5 gives three examples of self-managing systems that were
built in SELFMAN using variants of this architecture, namely Kompics,
Scalaris, and Beernet. For each of these systems, we explain how it
performs self management. In particular, Section 17.5.1 gives a step-by-
step outline how to build a self-management architecture with Kompics.

SELFMAN Deliverable Year Three, Page 239

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

• Section 17.6 gives design rules for building feedback structures. This
section just scratches the surface of an area that we intend to investigate
further. Much of the literature in this area is fragmented; we are writing
a survey to bring this information together [15].

• Section 17.7 then explains how to design the overall structure of a self-
managing system, as a set of managers, each of which is implemented
as a feedback structure. We design this structure by means of two
techniques called decomposition (determining the managers’ roles) and
orchestration (handling interactions between managers).

• Section 17.8 targets these ideas to the four main self-management axes,
namely self tuning, self protecting, self healing, and self configuring. We
give specific examples and rules for each axis.

• Section 17.9 concludes by summarizing briefly the methodology pre-
sented in this report and by presenting two important unsolved prob-
lems for future work.

For all sections we take examples from SELFMAN and from the literature
and we reference the appropriate SELFMAN publications.

17.4 The general architecture

We propose to build self-managing systems as loosely coupled sets of con-
current and distributed components, with an asynchronous communication
mechanism between components. The default behavior is that components
do not communicate. We then gradually add well-defined communications
between components, to implement the algorithms in the design. Com-
ponents with no communications defined between them cannot affect each
other.

We have used this approach in designing the three main software artefacts
of SELFMAN: the Scalaris library [73], the Kompics component model [21],
and the Beernet library [54]. Scalaris is written in Erlang, a language based
on asynchronous message passing between isolated processes. Erlang’s failure
detection model creates asynchronous messages whenever the failure of a
process is detected by the system [8]. Kompics is written in Java and provides
independent concurrent components that are connected using channels. A
channel is a conduit for asynchronous typed events, and each component
connected to a channel can subscribe to specific types of events. Components
can be disconnected and reconnected, which is needed for reconfiguration.

SELFMAN Deliverable Year Three, Page 240

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

Beernet is written in Oz and uses active objects with asynchronous message
passing, and fault streams for failure detection [18]. Fault streams generalize
Erlang’s failure detection to handle also temporary failures (also known as
false failure suspicions).

17.4.1 Three-layered architecture

The general architecture has three layers:

1. Components and events. This basic layer corresponds to the service
architec- ture mentioned above: services based on concurrent compo-
nents that interact through events. There can be publish/subscribe
events, where any component that subscribes to a published type will
receive the events. There is a failure detection service that is even-
tually perfect with suspect and resume events. There can be more
sophisticated services, like a transaction service.

2. Feedback loop support. This layer supports building feedback loops.
This is sufficient for cooperative systems. The two main services needed
for feedback loops are a best-effort broadcast (for actuating) and a mon-
itoring layer. Best-effort broadcast guarantees that nodes will receive
the message if the originating node survives [32]. Monitoring detects
both local and global properties. Global properties are calculated from
local properties using a gossip algorithm [41] or using belief propaga-
tion [89]. The multicast and monitoring services are used to implement
self management abilities.

3. Multiple user support. This layer supports users that compete for re-
sources. This is a general problem that requires a general solution in
the area of self protection. If the users are independent, one possible
approach is to use collective intelligence techniques. These techniques
guarantee that when each user maximizes its private utility function,
the global utility will also be maximized. This approach does not work
for Sybil attacks (where one user appears as multiple users to the sys-
tem). No general solution to Sybil attacks is known. A survey of
partial solutions is given in [94]. We cite two known partial solutions.
One solution is to validate the identities of users using a trusted third
party. Another solution is to use algorithms designed for a Byzantine
failure model, which can handle multiple identical users up to some
upper bound. Both solutions give significant performance penalties. It
seems that the only solutions that make sense in a distributed context
are ones that exploit graph properties of social networks. See Section

SELFMAN Deliverable Year Three, Page 241

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.8.2 for more information on how to implement self protection using
collective intelligence and the graph properties of social networks.

17.4.2 Combining structured overlay networks and com-
ponents

The SELFMAN project is based on the observation that there is a synergy
between structured overlay networks (SONs) and component models. This
synergy has confirmed itself during the project as we have built the transac-
tional store and the application demonstrators. This leads to a set of loosely
coupled services built on top of a structured overlay network. Feedback loop
structures are built within this framework. We recapitulate the initial rea-
soning:

• SONs already provide low-level self-management abilities. We are reim-
plementing our SONs using a component model that adds lifecycle
management and hooks for supporting services. This makes the SON
into a substrate for building services.

• The component model is based on concurrent components and asyn-
chronous message passing. It uses the communication and storage abil-
ities of the SON to enable it to run in a distributed setting. Because
the system may need to update and reorganize itself, the components
need introspection and reconfiguration abilities. We have designed a
process calculus, Oz/K, that has these abilities in a practical form [23].

This leads to a simple service architecture for decentralized systems: a SON
lower layer providing robust communication and routing services, extended
with other basic services and a transaction service. Applications are built on
top of this service architecture. The transaction service is important because
many realistic application scenarios need it (see, e.g., the three SELFMAN
demonstrator applications: Distributed Wiki, Sindaca recommendation sys-
tem, and DeTransDraw collaborative drawing tool).

The structured overlay network is the base. It provides guaranteed con-
nectivity and fast routing in the face of random failures [81]. It does not
protect against malicious failures: in our current design we must consider
the network nodes as trusted. We assume that untrusted clients may use the
over- lay as a basic service, but cannot modify its algorithms. See chapter
16 for more on security for SONs and its effect on SELFMAN. We have de-
signed and implemented robust SONs based on the DKS, Chord#, and P2PS
protocols. These implementations use different styles and platforms, for ex-
ample DKS is implemented in Java and uses locking algorithms for node join

SELFMAN Deliverable Year Three, Page 242

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

and leave. P2PS is implemented in Oz and uses asynchronous algorithms
for managing connectivity (which gives a relaxed ring topology, explained in
Appendix A.4). We have also designed an algorithm for handling network
partitions and merges, which is an important failure mode for structured
overlay networks [77].

The transaction service uses a replicated storage service (Section 6). The
transaction service is implemented with a modied version of the Paxos non-
blocking atomic commit and uses optimistic concurrency control [30, 61].
This algorithm is based on a majority of correct nodes and eventual leader
detection (the so-called partially synchronous model). It should therefore
cope with failures as they occur on the Internet.

17.4.3 Failure detection

An important part of a self-management architecture is the approach used
for failure detection. We find that using objects with RMI is difficult; it
breaks abstraction boundaries and is generally hard to program with [55]. A
much better approach is to use an independent failure detection component
in the system that informs the application asynchronously. We have explored
two variations of this idea:

a In Beernet, we use the Mozart failure detection architecture, which
uses fault streams attached to distributed language entities. The fault
stream is created by failure detection in the run-time system. The fault
stream is read asynchronously by a part of the application independent
of the failing part. The fault stream contains events for permanent fail-
ures, temporary failures (failure suspicions), and for resuming (lifting
a suspicion).

b In Scalaris, we use the Erlang failure detection architecture, which is
based on message passing. The run-time system creates messages when
it detects failures. The messages are sent to part of the application,
which can then take action. The messages detect permanent failures
only. Erlang does not support failure suspicions.

This general approach works well in both these cases and we can recommend
it for fault tolerance in new self-managing applications. The Erlang system
is designed for working in cluster or cloud computing environments, in which
there are only permanent failures. The Mozart system is designed for working
in an Internet environment, in which there can be frequent failure suspicions
(which are often unjustified, but which must be handled anyway).

SELFMAN Deliverable Year Three, Page 243

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

Critique of RMI for building distributed systems

Our experience shows that RMI (remote method invocation) is the wrong
primitive for building distributed systems, for two reasons: exceptions break
transparency and synchronous communication adds a useless and slow depen-
dency [55]. The classical view of distributed computing sees partial failure
as an error. For instance, a RMI on a failed object triggers an exception.
This goes against distribution transparency, because the programmer is not
supposed to make the distinction between a local and a distributed entity.
Therefore, an exception due to a distribution failure is completely unex-
pected, breaking transparency. Another issue is both that RMI and RPC
are conceived as synchronous communication between distributed processes.
Due to network latency, synchronous communication is not able to provide
good performance because the execution of the program is suspended until
the answer (or an exception) arrives. Synchronous communication also cre-
ates a dependency between the sender and the receiver. This dependency
is often not needed by the application, but it adds a failure mode to the
application that must be handled anyway.

Instead of RMI, we use asynchronous message sending and fault streams.
Asynchronous messages introduce no extra dependency. Fault streams in-
dicate errors independently of the rest of the application and hence do not
break abstraction boundaries. The Scalaris application is built in Erlang and
the Beernet application is built in Oz, both of which support asynchronous
messages and asynchronous notification of faults.

More recent trends, such as ambient intelligence and peer-to-peer net-
works, see partial failure as an inherent characteristic of the system. A
disconnection of a process from the system is considered normal behaviour,
where the disconnection could be a gentle leave, a crash of the process, or a
failure on the link. Together with asynchronous messages and fault streams,
our experience shows that this approach leads to more realistic language
abstractions to build distributed systems.

17.5 Examples of the general architecture

In SELFMAN we have built three significant software designs that use the
general architecture of the previous section: the Kompics component model,
the Scalaris library, and the Beernet library. Here we summarize these
three designs and highlight the lessons they have taught us for building self-
managing systems.

SELFMAN Deliverable Year Three, Page 244

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.5.1 A self-management architecture built with the
Kompics component model

We show how to build one self-management architecture with the Kompics
component model. Kompics was designed to support the operations needed
for self-managing systems [21] and the design of this section uses many of its
abilities. Here we give a brief overview of Kompics followed by a presentation
of the architecture that we have built. The architecture respects the following
rules of thumb:

• Fault tolerance requires Isolation requires Concurrency

• Isolation requires Loose Coupling requires Event Passing

• Loose Coupling requires Publish-Subscribe Interaction

• Complexity Management requires Compositionality and Encapsulation

• Resource Reuse requires Sharing

• Self-management requires Online Reconfiguration requires Loose Cou-
pling

We recommend to follow these rules in any self-managing application.

Overview of Kompics

The Kompics model consists of concurrent components that communicate
with each other by asynchronously passing typed events on channels (for more
information see the Kompics user manual [21]). The current implementation
of Kompics is in Java, however, we have made an effort to make it language-
independent. Events are different from messages in that they can be received
by all the components that are connected to the channel. Components are
loosely coupled: they do not know the type, availability, or identity of the
components with which they communicate. Components can be nested and
shared. Components react to events by atomically executing event handlers,
which may trigger new events. Because components are independent, it was
possible for us to make Kompics support multi-core scheduling, which allows
it to transparently take advantage of multi-core processors.

Building the architecture step by step

Figure 17.1 gives the structure of a realistic self-management architecture
that we have built in Kompics, with components for overlay networks and

SELFMAN Deliverable Year Three, Page 245

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

Peer Manager

Virtual Peer Virtual Peer Virtual Peer Virtual Peer

Timer Network

Discrete Event Simulator

Web Server

Peer Application

Structured Overlay Network

Failure Detector

Ring Router Merger

Bootstrap Client

Peer Monitor

Peer Network Web Handler

Fast Paxos
Replication

Group Multicast Aggregation

Peer Supervisor

Random Overlay

Broadcast Trees
Gradient Topology

Neighbor Caching

Transactional DHT

1 2 9

3

4,13

5

6

7

8

10

11

12 12

14

15

Figure 17.1: A self-management architecture built with Kompics

transactions and with various self-management services. This design seems
complex, with a lot of components and nesting structure, but it is actually
quite simple and coherent. We reconstruct the system in steps so that it
is clear why each component is needed. We build the design with reusable
components, instead of keeping it as a monolithic block. Here is a step-by-
step explanation of the design (item numbers correspond with the numbers
in Figure 17.1):

1. Encapsulate the communication primitives inside a Network abstrac-
tion.

2. Encapsulate the timeout and alarm primitives inside a Timer abstrac-
tion.

3. Encapsulate the failure detection primitives inside a Failure Detector
abstraction.

4. Decompose the SON into its functional aspects, namely the Ring (with
periodic stabilization), the Router (with topology maintenance), and
the Merger (ring unification). All of these fit into the SON abstraction,
which can be used as a building block for higher-level abstractions.

5. Encapsulate everything so far (Peer Application, SON, Failure Detec-
tor, Network, and Timer) into a Virtual Peer component. Making the

SELFMAN Deliverable Year Three, Page 246

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

complete application so far into a component is an important prereq-
uisite for reconfiguration.

6. Allow an enclosing Peer Manager component to add and remove Virtual
Peers.

7. The Peer Manager is now generally available as a component in its
own right; for example it can be driven by a Discrete Event Simulator
component for complex tests.

8. Encapsulate the bootstrapping procedure into a separate component,
the Bootstrap Client. This is again important for reconfiguration: the
procedure is itself a component that can be replaced.

9. Enable Web-based peer state visualization and debugging with a Web
Server component, added at the same level as Network and Timer.

10. Collect global state from local state pushed periodically by a monitoring
component, the Peer Monitor, added at same level as Peer Application
component (all inside Virtual Peer!).

11. Share the Network, Timer, and Web Server components among all
Virtual Peers. Note that the communication part of Kompics allows
the Virtual Peers to talk separately to each of these three components.

12. Inside Virtual Peer, keep peer subcomponents unchanged by adding a
Peer Network component and a Web Handler component. These are
actually proxies. Note that Peer Network can also act as a network
simulator.

13. The three SON subcomponents can be replaced, for example the Ring
component can be replaced by a Beernet relaxed ring [57] or a Chord#
ring [74], the Router component can be replaced by a Chord# router.
This can be done without changing anything else: it is a nice form of
modularization using the reconfiguration ability.

14. Now add protocol components: Transactional DHT, Fast Paxos, Repli-
cation, and Group Multicast. These are dependent: the Transactional
DHT uses the other three to implement the transactional store service.

15. We can also add a new pillar inside the Virtual Peer, of components that
provide other useful services: Peer Supervisor, Broadcast Trees, Gra-
dient Topology, Aggregation, Random Overlay, and Neighbor Caching.
The Peer Supervisor is inspired by Erlang: it supervises peer compo-
nents for software faults [8].

SELFMAN Deliverable Year Three, Page 247

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

This gives a fairly complex, but flexible and manageable software architec-
ture. Each part has its place and the whole works together well. Many of
the subcomponents perform self-management tasks. We propose this archi-
tecture as a guideline: it shows one way to bring components together in the
context of a structured overlay network. We have done many experiments
with Kompics and with this architecture. We are confident that it performs
well with no unexpected surprises.

17.5.2 Using self management to provide availability
and scalability: the Scalaris example

Scalaris is an example application providing a self-managing data manage-
ment service for Web 2.0 applications [73]. Web 2.0 initiated a business revo-
lution: service providers offer Internet services for many activities, shopping,
online banking, information, social networking, and recreation. In today’s
society Web 2.0 is no longer a convenience, but customers rely on its contin-
uous availability, regardless of time and space. How to cope with such strong
demands, especially in case of interactive community services that cannot be
simply replicated? All users access the same Wikipedia, meet in the same
Second Life environment and want to discuss with others via Twitter. Even
the shortest interruption, caused by system downtime or network partition-
ing may cause huge losses in reputation and revenue. Web 2.0 services are
not just an added value, but they must be dependable. Apart from 24/7
availability, providers face another challenge: they must, for a good user
experience, be able to respond within milliseconds to incoming requests, re-
gardless whether thousands or millions of concurrent requests are currently
being served. Indeed, scalability is a key challenge. Any scalable service, to
be affordable, somehow requires the system to be self managing.

Scalaris provides a comprehensive solution for self-managing scalable data
management. Scalaris provides the traditional ACID properties of transac-
tions in a scalable decentralized setting. Scalaris does not attempt to replace
current database management systems with their general, fullfledged SQL in-
terfaces. Instead our target is to support transactional Web 2.0 services like
those needed for Internet shopping, banking, or multiplayer online games.
Our system consists of three layers:

1. At the bottom, an enhanced structured overlay network, with logarith-
mic routing performance, provides the basis for storing and retrieving
keys and their corresponding values. In contrast to many other over-
lays, our implementation stores the keys in lexicographical order. Lex-
icographical ordering instead of random hashing enablescontrol of data

SELFMAN Deliverable Year Three, Page 248

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

placement which is necessary for low latency access in multidatacenter
environments.

2. The middle layer implements data replication. It enhances the avail-
ability of data even under harsh conditions such as node crashes and
physical network failures.

3. The top layer provides transactional support for strong data consis-
tency in the face of concurrent data operations. It uses a fast consen-
sus protocol with low communication overhead that has been optimally
embedded into the structured overlay.

As a challenging benchmark for Scalaris, we implemented the core of Wikipedia,
the “free encyclopedia, that anyone can edit”. The Wikipedia on Scalaris is
fast. Using eight servers it executes 2,500 transactions per second. All op-
erations are performed within transactions to guarantee data consistency
and replica synchronization. Adding more computers improves the per-
formance almost linearly. The public Wikipedia, in contrast, employs ten
servers to execute the 2,000 requests per second on its large master/slave
MySQL database in Tampa.

For many Web 2.0 services, the total cost-of-ownership is dominated by
the costs needed for personnel to maintain and optimize the service. Scalaris
greatly reduces the operation cost with two builtin self-management proper-
ties:

• Self healing: Scalaris continuously monitors the hosts it is running on.
When it detects a node crash, it immediately repairs the overlay net-
work and the database. Management tasks such as adding or removing
hosts require none or minor human intervention.

• Self tuning: Scalaris monitors the nodes’s workload and autonomously
moves items to distribute the load evenly over the system to improve
the response time of the system. When deploying Scalaris over multi-
ple datacenters, these algorithms are used to place frequently accessed
items nearby the users.

In traditional database systems these operations require human interference
which is error prone and costly. With Scalaris the same number of sys-
tem administrators can operate much larger installations than with legacy
databases.

SELFMAN Deliverable Year Three, Page 249

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.5.3 Using a relaxed ring to simplify overlay main-
tenance: the Beernet example

The Beernet library is similar in its functionality and underlying implemen-
tation platform to Scalaris. Both Beernet and Scalaris use asynchronous
message passing between lightweight “objects” to implement a replicated
transactional store over a structured overlay network. There are three main
differences between Beernet and Scalaris:

• Beernet is written in Oz (using the Mozart Programming System) [62]
and Scalaris is written in Erlang [9]. The Oz language provides a
network-transparent distribution layer that implements failure detec-
tion using fault streams. This can be seen as a generalization of Erlang’s
failure detection to detect temporary as well as permanent failures [18].

• Beernet uses a relaxed ring overlay network [58] and Scalaris uses a
Chord# overlay network [73]. The relaxed ring differs from overlays
descended from Chord, such as Chord# and DKS, in that it simpli-
fies ring maintenance. The node join and failure algorithms need the
agreement of only two nodes at each step instead of three. The latter
requires the atomic update of three peers, which leads to increased per-
ceived node failures when the update fails. In the relaxed ring, there is
no need for periodic maintenance of the ring, because the ring remains
correct after each step. The relaxed ring algorithms, failure detection
and join, are presented as feedback structures in [57].

• Beernet extends the transactional store algorithm to do eager locking
and to provide notifications of object updates also to nodes that do not
participate in transactions. This extension is needed for the collabora-
tive drawing application [56].

These differences are large enough to see Beernet as a different point in the
design space. One of the lessons learned from Beernet is to avoid shared-
state concurrency (i.e., threads accessing shared objects through monitors).
We achieve this by encapsulating state, by doing asynchronous communi-
cation between threads and processes, by using single-assignment variables
for dataow synchronization, and by serializing event handling with a stream
(queue) providing exclusive access to the state. The language primitives
needed, ports and lightweight threads, are also present in Erlang and are not
specic to object-oriented programming. Single-assignment variables also ap-
pear in other languages such as E and AmbientTalk, in the form of promises.

In Beernet as in Scalaris, we organize the system in terms of active ob-
jects only, where an active object consists of a single thread reading a message

SELFMAN Deliverable Year Three, Page 250

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

Subsystem

Monitoring agentActuating agent

Calculate corrective action

Figure 17.2: A feedback loop

queue and serializing messages to an internal object. We make no distinction
in the send operation between a local and a remote active object. Trans-
parency is respected by not raising an exception when a remote reference is
broken. There is only one kind of entity, an active object, and only one send
operation. The Kompics model is closely related to this: corresponding to
active objects and message queues, there are event-driven components and
typed event channels.

17.6 Design rules for feedback structures

When building a self-managing system, one of the basic building blocks is
the feedback structure: a set of interacting feedback loops. This section
gives some basic design rules for feedback structures. We first define what a
feedback loop is. A feedback loop consists of three parts that interact with a
subsystem (see Figure 17.2): a monitoring agent, a correcting agent, and an
actuating agent. The agents and the subsystem are concurrent components
that interact by sending each other messages. As explained in [82], feedback
loops can interact in two ways:

• Stigmergy: two loops monitor and affect a common subsystem.

• Management: one loop directly controls another loop.

How can we design systems with many feedback loops that interact both
through stigmergy and management? We want to understand the rules of
good feedback design, in analogy to structured and object-oriented program-
ming. Following these rules should give us good designs without having to
laboriously analyze all possibilities. The rules can tell us what the global
behavior is: whether the system converges or diverges, whether it oscillates
or behaves chaotically, and what states it settles in.

To find these rules, we start by studying existing feedback loop structures
that work well, in both biological and software systems. We have studied
different kinds systems: artificial systems (Wiener’s hotel lobby example),

SELFMAN Deliverable Year Three, Page 251

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

computing systems (TCP/IP implementation), and biological systems (hu-
man respiratory and endocrine systems). We summarize the design rules
that we have found. For more details on the particular examples we refer to
the original papers [82, 84, 83].

17.6.1 Stigmergy should be used with care

In Wiener’s hotel lobby example, two independent loops attempt to control
the temperature of a hotel lobby: a thermostat connected to an airconditioner
and a primitive savage lighting a bonfire. This is an example of uncontrolled
stigmergy: the two loops will compete and this may lead to a runaway sit-
uation such as the hotel being set on fire. The solution in this case is to
replace stigmergy by management: the primitive savage should control the
temperature by manipulating the thermostat. This is a case where stigmergy
is undesirable. In other cases, stigmergy can be used in a positive way. In
the example of Section 17.7.4, two agents (a replica manager and a storage
manager) communicate through stigmergy. One agent deliberately sets up a
situation that will be detected and corrected by the second agent. This is a
correct use of stigmergy.

17.6.2 Loop management corresponds to data abstrac-
tion

In the human respiratory system, breathing can be consciously controlled.
This is modeled by a complex component that manages a respiratory loop.
The respiratory loop handles the details of controlling the muscles of the
human breathing apparatus and timing the breathing cycles. The complex
component does not have to understand these details, but interacts through
several parameters in the respiratory loop: the timing of the cycle and the
depth of the breathing.

17.6.3 Loop management should control a natural pa-
rameter

In the TCP/IP implementation, an inner loop handles the sliding window
protocol and an outer loop manages the inner loop to control congestion. The
outer loop does this in a simple way: it changes the size of the sliding window.
This changes the bandwidth needed by the inner loop, since the size of the
sliding window determines the number of packets that can be “in transit”
at any moment in time. This is an example of a natural management: the

SELFMAN Deliverable Year Three, Page 252

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

outer loop adjusts a simple parameter of an inner loop. No other interaction
is needed.

17.6.4 Take advantage of different time scales

Different parts of a system, such as two feedback loops, can take advantage
of different time scales. For example, one loop can work at short times and
another at long times, thus avoiding interference. Or one loop can gather
information using short times, and then pass this information to another
loop that works at long times. Norbert Wiener [88] gives a simple example
of a human driver braking an automobile on a surface whose slipperiness
is unknown. The human “tests” the surface by small and quick braking
attempts; this allows to infer whether the surface is slippery or not. The
human then uses this information to modify how to brake the car. This
technique uses a loop at a short time scale to gain information about the
environment, which is then used for regulation at a long time scale. The fast
loop manages the slow loop.

17.6.5 Complex components should be sandboxed

In the human respiratory system, there is a conscious control of the breathing
apparatus. This has the advantage that all the power of conscious reasoning
can be brought to bear in the case of catastrophes. For example, if the person
is in a car that falls into a river, the conscious control can stop breathing
temporarily until the person is outside of the car. Conscious control is also
dangerous, however: it can introduce instability. If the person decides to stop
breathing (for example, because of a wager), then the system must somehow
defend itself. This can be done by having an outer loop observe the con-
scious control. In the case of the human respiratory system, the brain falls
unconscious if the blood oxygen level drops too low. When this happens,
the conscious control disappears and the breathing apparatus starts working
normally again. The general rule is that complex components can improve
the power of the system (for example, they can stabilize an unstable sys-
tem, like a pilot who stabilizes an unstable airplane) at the price of possibly
introducing instability at other occasions. They must therefore always be
observed by an outer loop that can take action when this happens.

With respect to stability, there is no essential difference between human
components and programmed complex components; both can introduce sta-
bility and instability. Human components excel in adaptability (dynamic
creation of new feedback loops) and pattern matching (recognizing new situ-
ations as variations of old ones). They are poor whenever a large amount of

SELFMAN Deliverable Year Three, Page 253

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

precise calculation is needed. Programmed components can easily go beyond
human intelligence in such areas. Whether or not a component can pass a
Turing test is irrelevant for the purposes of self management.

17.6.6 Use push-pull to improve regulation

Many systems are regulated by simple negative feedback. When a parameter
becomes too high, there is a reaction to reduce its value. The reaction is a
initiated by a second parameter, which is a regulator. The effectiveness of
this kind of regulation can be improved by making it “push-pull”, that is,
by having two regulators, one which actively increases the parameter and
one which actively decreases it. In this way, the parameter can be changed
quickly in both directions (“pushed” and “pulled”).

We give two examples from biology [84]. In the first example, the glucose
level in the blood stream is regulated by the hormones glucagon and insulin.
In the pancreas, A cells secrete glucagon and B cells secrete insulin. An
increase in the blood glucose level causes a decrease in the glucagon concen-
tration and an increase in the insulin concentration, and conversely. These
hormones act on the liver, which releases glucose in the blood. The second
example is the calcium level in the blood, which is regulated by parathyroid
hormone (parathormone) and calcitonine, both of which act on the bone but
in opposite directions. The pattern here is of two hormones that act in oppo-
site directions on the regulated substance. This allows improved regulation:
quicker changes in the substance’s concentration and faster convergence. This
pattern is a generally useful one to improve control.

17.6.7 Handle failures with reversible phase transitions

The basic idea is that a system controlled by feedback loops may have several
macroscopic (global) states, similar to “phases” in thermodynamics. If the
system is exposed to a hostile environment, it may change its global state.
In order for the system to survive such changes, they should be reversible.
This is explained in detail in Section 17.3.3.

17.7 Overall design of a self-managing system

We now focus on the overall design of a self-managing system: how it is
organized as a set of feedback structures. There are two main steps in deter-
mining the structure of a self-managing system: decomposition and orches-
tration. We first explain what each step is and then we give examples to

SELFMAN Deliverable Year Three, Page 254

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

show how it is done.
This overall design technique is taken from [6]. In that article, there are

two other steps: assignment (of tasks to autonomic managers) and mapping
(of autonomic managers to nodes in the distributed environment). These
two steps are not relevant for SELFMAN since the autonomic managers in
SELFMAN are not separate entities in the system, but rather feedback loop
structures that exist in distributed fashion.

17.7.1 Decomposition: defining the management tasks

The first step is to perform a decomposition, i.e., divide the management
into separate tasks. Each task will be performed by a single manager, where
a manager corresponds to a feedback loop structure. For example, in the
distributed store, we can distinguish connectivity, routing, replicated storage,
and transactions. Each of these is done by a different feedback structure.
Connectivity is done through ring maintenance. Routing is done through
finger table maintenance. And so forth for the other tasks.

To bring clarity into the decomposition, we can divide the tasks into
five general areas: functionality and the four non-functional areas of self
tuning, self protection, self configuration, and self healing. In the four tasks
mentioned before, we distinguish the following non-functional areas:

• Connectivity management is self healing (correctness is the issue) (de-
liverable D4.2b, see chapter 7).

• Routing is self tuning (performance is the issue) (deliverable D4.3b, see
chapter 9).

• Replicated storage is self healing (creating a new replica when one fails)
and self configuration (coherent updating of the replicas) (deliverable
D4.2b in chapter 7 and deliverable D4.1b in chapter 5).

• Transaction management is self healing (Paxos uniform consensus al-
gorithm for coherent concurrency control [61]).

Each of these four tasks is studied in detail in the corresponding deliverable
or paper.

17.7.2 Orchestration: handling the interactions

The second step is to perform the orchestration. This consists of handling
the interaction between the management tasks. Each management task is
done by a manager, which is a self-contained feedback loop structure that

SELFMAN Deliverable Year Three, Page 255

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

maintains itself and pursues its own goals. But because all these tasks affect
parts of the same system, there can be interactions between them. The
possible interactions must be carefully studied and each management task
must be written to take them into account.

We find that orchestration is the most challenging part of building a self-
managing application. Ideally, the self-management tasks will be designed to
have minimal interaction. But some interaction always exists, therefore some
coordination is always necessary. For example, the finger table maintenance
has to take the connectivity management into account. The replicated stor-
age has to take the routing into account. If a node fails, then the replicated
storage has to create a new replica, but taking the routing into account which
must also be repaired. We give some rules of thumb to help the designer ap-
proach this ideal goal. One rule of thumb is to program each task using a
monotonic function, which always increases as the task is performed. In that
way, each task can be done with as little interference as possible from other
tasks.

17.7.3 Forms of interaction

It is important to understand how managers can interact [5]. We identify
three possible ways that interaction can happen:

• Stigmergy: This is the most ubiquitous and hardest to control. Stig-
mergy happens because managers make changes to a shared subsystem.
Each change made by a manager may be sensed by another manager.
Stigmergy is unavoidable. We address it in two ways: by using it to aid
coordination when possible and when this is not possible by minimizing
its ill effects.

• Hierarchical management: This occurs when a manager directly con-
trols another manager. This situation occurs inside a feedback loop
structure, when an outer loop controls an inner loop. For example,
this situation occurs in the TCP structure or in the human respiratory
system. We will not address this further as part of orchestration, but
as part of the design of a single feedback loop structure.

• Direct interaction: This occurs when two managers interact directly
with one another. It does not mean that a manager controls the other,
but one manager may request something from another. We also call this
peer-to-peer interaction since the managers are peers (not client and
server). Direct interaction is sometimes needed since two independent
loops managing the same resource may cause undesired behavior. It

SELFMAN Deliverable Year Three, Page 256

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

must be handled carefully to avoid oscillation or other undesirable be-
havior. In our case, we handle this by giving each manager a monotonic
function with a limiting value that corresponds to perfect behavior. If
each manager increases its own function in discrete steps greater than
some existing minimal increment then there will be no oscillation.

17.7.4 Examples of interaction

We give some examples of how managers work and interact. These exam-
ples are taken from storage management architectures developed in both the
SELFMAN project and from other work (in particular, from the GRID4ALL
project).

Replica management

This manager is responsible for maintaining the desired replication degree
for each stored object in spite of nodes failing and leaving. One possible
implementation is as follows. The manager consists of two agents, a replica
aggregator and a replica manager. The aggregator subscribes to fail and
leave events caused by any object’s node. The manager then performs the
restoration by creating a new replica.

Storage management

This manager is responsible for maintaining the total storage capacity and to-
tal free space of storage, in the presence of dynamism, to meet QoS (tuning)
requirements. The dynamism comes from nodes failing or leaving (affect-
ing both total and free storage space) or objects being created or deleted
(affecting free storage space). The manager will reconfigure the total free
space and/or the total storage space to meet the requirements. The recon-
figuration is done by allocating free nodes and deploying additional storage
components.

Direct interaction between replica and storage management

There is a race condition between the two above managers. If a node fails, the
storage manager may start allocating more nodes and deploying components.
Meanwhile the replica manager will be restoring the objects on the failed
node. The replica manager might fail to restore the files due to space shortage
if the storage manager is slower and does not have time to finish. This may
prevent the users, temporarily, from creating objects.

SELFMAN Deliverable Year Three, Page 257

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

The solution is to let the replica manager wait until the storage manager
has completed its work. This can be done through direct interaction between
the two managers. This direct interaction does not mean that one manager
controls the other. For example, if there is only one replica available for an
object, the replica manager may ignore the request to wait from the storage
manager and proceed anyway.

Interaction between the replica and storage managers gives an example
of stigmergy. When the utilisation of storage on the nodes drops, the storage
manager can deallocate some nodes. This deallocation resembles a node
failure at the replica manager, which will then restore replicas on other nodes.
Because of stigmergy, the replica manager has done the right thing.

Availability of an object can be increased by changing the replication
degree. This can be done by an “availability manager” that monitors the
frequency of access to the object. If the frequency increases, the availability
manager can decide to change the object’s replication degree. Before doing
this, the replica manager checks with the storage manager to see whether
there is enough storage for the new replicas. In this example, the managers
collaborate. It is not so that one manager controls another.

17.8 Design rules for the self-management axes

Now that we have explained how to build feedback structures and how to
organize them into a self-managing system, we narrow our focus to the four
main main self-management axes: self tuning, self protection, self healing,
and self configuration. We illustrate the principles in the previous sections
with examples taken from the SELFMAN project and from the literature
on self management and feedback. We assume that all examples use the
right programming model, i.e., concurrent components with asynchronous
messages and fault streams instead of distributed exceptions. The examples
given have been implemented in different systems, mainly Kompics, Erlang,
or Oz, which all provide this basic programming model, with variations.

17.8.1 Making it self-tuning

We outline a load-balancing algorithm for structured overlay networks with
good properties and explain how it interacts with replica management. See
[39] for a precise definition of the algorithm and an evaluation of its behavior.
The load-balancing algorithm is decentralized, i.e., each node acts indepen-
dently depending on knowledgte at the node. Each node selects a set of
nodes with which to balance. A balancing operation consists of an under-

SELFMAN Deliverable Year Three, Page 258

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

loaded node leaving the network and rejoining at its new location. When the
node leaves it first moves its data items to adjacent nodes. When it joins it
takes part of the load of adjacent nodes. It takes a maximum of the average
global load at its new location. This heuristic reduces the number of data
items that are moved unnecessarily. The algorithm uses gossip to maintain
an approximation to the average global load.

There is a dependency between the load balancing and the replica man-
agement since each node is responsible for a set of items depending on its
position in the overlay. If a node decides to balance (leave and rejoin), then
the replica manager must recreate the data according to the changes in re-
sponsibility. So there is a trade-off between how often to do load-balancing
steps (this affects the convergence towards the balanced state) and the cost
of replica maintenance. The rate of load balancing needed is mainly dictated
by the churn.

To summarize, the replica manager and the load-balancing algorithm are
independent of each other, but their parameters must be tuned to reduce
impact on the system stability.

17.8.2 Making it self-protecting

Depends on threat model. We propose an approach based on three suc-
cessive steps, for successively higher levels of security. Each step can work
only if the previous step has been successfully implemented. SELFMAN has
done experiments in these three steps but we have not built a full security
architecture. We can give advice but we do not have user experience.

1. Assume nodes are trusted and network is not. After this step, we can
forget about the network and think only about the nodes/users. Node
authentication is performed here.

2. Handle non-collusion (nodes do not communicate with each other di-
rectly) We distinguish two cases: first where the nodes each use a ser-
vice independently, and second where the nodes depend on each other.
We explain each of the two cases below. The first case is the simplest
and can be handled with local techniques. The second case can be
handled with collective intelligence techniques.

3. Handle collusion (malicious nodes can communicate with each other
directly) This is the most difficult case. In the case of structured overlay
networks, changing the topology of the network to become a small-
world network can help.

SELFMAN Deliverable Year Three, Page 259

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

No collusion, with independent nodes

If there is no collusion in a system in which nodes each use a service indepen-
dently, then end-to-end techniques and trust component techniques suffice.
End-to-end security assumes that the nodes are trusted and the network
is not. Communication between nodes is encrypted. Then, to assure the
trusted nodes are correct, authentication is used to verify the integrity of
installed components at the user nodes.

The Scalaris library is designed for working in a data center, which is
implicitly considered secure. The Peerialism product is a closed network in-
frastructure with end-to-end security. So for both of these software products,
no security mechanisms are identified. But this does not mean that security
is irrelevant. For Scalaris, we have looked at Wikipedia-specific issues, which
are relevant to applications using Scalaris. In Wikipedia there can be anony-
mous edits. Information may not be trustworthy. There may be spam. The
question is how to increase the credibility of the content. One technique
is to use citations. But this does not directly address credibility, since the
cited documents may not be easily accessible or applicable. In the Google
Knol application, anonymous edits are not possible. Edits are signed with
Google accounts. Edits are signed and therefore put the author’s reputation
on the line. To enhance Wikipedia credibility (and any application using
storage tools such as Scalaris), we propose to use author credentials which
are attached to the edits and verified using a secure mechanism.

No collusion, with dependent nodes

It is possible for a system to have no collusion, but the global performance can
still depend on the nodes collaborating in some way. A promising technique
to achieve this is collective intelligence, which can give good results when
the users are independent (no Sybil attacks or collusion). The basic question
is how to get selfish agents to work together for the common good. Let
us define the problem more precisely. We have a system that is used by a
set of agents. The system (called a “collective” in this context) has a global
utility function that measures its overall performance. The agents are selfish:
each has a private utility function that it tries to maximize. The system’s
designers define the reward (the increment in its private utility) given to
each of the agent’s actions. The agents choose their actions freely within
the system. The goal is that agents acting to maximize their private utilities
should also maximize the global utility. There is no other mechanism to force
cooperation. This is in fact how society is organized. For example, employees
act to maximize their salaries and work satisfaction and this should benefit

SELFMAN Deliverable Year Three, Page 260

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

the company.
A well-known example of collective intelligence is the El Farol bar prob-

lem [10], which we briefly summarize. People go to El Farol once a week to
have fun. Each person picks which night to attend the bar. If the bar is
too crowded or too empty it is no fun. Otherwise, they have fun (receive a
reward). Each person makes one decision per week. All they know is last
week’s attendance. In the idealized problem, people do not interact to make
their decision, i.e., it is a case of pure stigmergy! What strategy should each
person use to maximize his/her fun? We want to avoid a “Tragedy of the
Commons” situation where maximizing private utilities causes a minimiza-
tion of the global utility [37].

We give the solution according to the theory of collective intelligence.
Assume we define the global utility G as follows:

G =
∑

w

W (w) (17.1)

W (w) =
∑

d

Φd(ad) (17.2)

This sums the week utility W (w) over all weeks w. The week utility W (w) is
the sum of the day utilities Φd(ad) for each weekday d where the attendance
ad is the total number of people attending the bar that day. The system
designer picks the function Φd(y) = adye

−y/c. This function is small when y
is too low or too high and has a maximum in between. Now that we know
the global utility, we need to determine the agents reward function. This is
what the agent receives from the system for its choice of weekday. We assume
that each agent will try to maximize its reward. For example, [91] assumes
that each agent uses a learning algorithm where it picks a night randomly
according to a Boltzmann distribution distributed according to the energies
in a 7-vector. When it gets its reward, it updates the 7-vector accordingly.
Real agents may use other algorithms; this one was picked to make it possible
to simulate the problem.

How do we design the agents reward function R(w), i.e., the reward that
the agent is given each week? There are many bad reward functions. For ex-
ample, Uniform Division divides Φd(y) uniformly among all ay agents present
on day y. This one is particularly bad: it causes the global utility to be min-
imized. One reward that works surprisingly well is called Wonderful Life:

RWL(w) = W (w)−Wagent absent(w) (17.3)

Wagent absent(w) is calculated in the same way as W (w) but assuming the

agent is missing (dropped from the attendance vector). We can say that

SELFMAN Deliverable Year Three, Page 261

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

RWL(w) is the difference that the agent’s existence makes, hence the name
Wonderful Life taken from the eponymous the Frank Capra movie. We can
show that if each agent maximizes its reward RWL(w), the global utility will
also be maximized. Let us see how we can use this idea for building collective
services. We assume that agents try to maximize their rewards. For each
action performed by an agent, the system calculates the reward. The system
is built using security techniques such as encrypted communication so that
the agent cannot “hack” its reward.

Collusion

The approach of the previous sections does not work when there is collusion,
i.e., when many agents get together to try to break the system. For collusion,
one solution is to have a monitor that detects suspicious behavior and ejects
colluding users from the system. This monitor is analogous to the SEC
(Securities and Exchange Commission) which regulates and polices financial
markets in the United States. Collective intelligence can still be useful as
a base mechanism. In some cases, the default behavior is that the agents
cannot or will not talk to each other, since they do not know each other or
are competing. Collective intelligence is one way to get them to cooperate.

Collusion and the topology of the overlay network

One kind of collusion is the Sybil attack, where an attacker can assume
identities of many users and gain a large influence on the system. SONs suffer
from the Sybil attack. They are vulnerable to attacks that exploit churn and
network failures. If Sybil attacks are to be expected, then the topology of the
overlay must be changed. We propose to use a small-world network topology
(SWN), which has a natural protection against Sybil attacks. It has low
maintenance cost and exploits random graph properties that make it hard
to disconnect. It is immune to a churn attack. Routing can be done well
assuming that node IDs follow a power law distribution.

The SWN routing has a vulnerability in the self-tuning algorithm. A
single malicious node can poison the entire network (the poison is propagated
through acquaintances) causing the self-tuning algorithm to break down,
since node IDs become incorrect. A decentralized self-protection algorithm
can help to contain the attack (contain the infection rate to 10%). The idea
is that each node resets its ID periodically, which corrects erroneous node
IDs.

SELFMAN Deliverable Year Three, Page 262

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

17.8.3 Making it self-healing

In SELFMAN we have three main examples of self-healing design:

• Replication of the storage over a structured overlay network. This
example uses redundancy (each stored item exists multiple times) to
allow self healing. Replication is used for keeping the storage intact (one
replica always must exist for this to be true) and for the transaction
algorithm (the Paxos algorithm requires a majority of replicas to exist
to allow a commit).

• Relaxing the structural invariant of a structured overlay network. This
is used in the relaxed ring underlying the Beernet library. The relaxed
ring handles failure suspicions by using a two-level structure: there is
a perfect ring at the center and there may be “bushes” sticking out
of it because of failure suspicions. The bushes are either merged back
into the perfect ring (when the suspicion goes away) or ejected from
the relaxed ring (if the suspicion persists). A node may be incorrectly
ejected if there are too many false failure suspicions; in that case the
node will simply ask to reconnect with the ring. The connectivity
manager is driven by the size of the bushes; as long as there is at least
one node in one bush, it will be active.

• Make phase transitions reversible. A phase transition happens in the
case of a network partition. The ring may be split into several smaller
rings because of network partitions. If node communication in the
smaller rings is restored, then the merge algorithm is activated to merge
the separate rings into one ring [77].

Each of these three examples uses a different technique to achieve self healing:
replication, relaxation of an invariant, and reversibility of a phase transition.

17.8.4 Making it self-configuring

To support self configuration, the system has to be built with components
that provide the appropriate reflective primitives. In SELFMAN we have
explored these primitives in two models: the Kompics component model and
the more extensive WorkflOz/FructOz/LactOz libraries. It is interesting to
look at both. Kompics provides primitives for monitoring and reconfigura-
tion; it is sufficient for many basic self-configuration tasks as well as other
tasks such as self healing (detection of failures and reconfiguration). The
WorkflOz/FructOz/LactOz libraries provide more extensive abilities: they

SELFMAN Deliverable Year Three, Page 263

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

support more sophisticated self-configuration structures. The basic opera-
tions needed for self configuration are the following:

• Observation and navigation. The LactOz library allows dynamic navi-
gating and monitoring of the component structure.

• Reconfiguration. The FructOz library allows dynamic deploying and
configuring of the component structure.

• Workflow. The WorkflOz library was designed in Year 3. It allows to
create dependencies between different managers through which infor-
mation can flow. This can simplify the system structure since managers
are informed in a more uniform way of important events in the system.

17.9 Conclusions

We have given a first approximation of a methodology to build self-managing
systems. We start by proposing a general architecture (Sections 17.4 and
17.5), with examples from Kompics, Scalaris, and Beernet. This architec-
ture supports feedback structures, which are the basic design element in a
self-managing system: a feedback structure is a set of interacting feedback
loops. Section 17.6 gives design rules for building feedback structures. Sec-
tion 17.7 then explains how to design the overall structure of a self-managing
system, which consists of self-management managers implemented with feed-
back structures. We determine this structure by means of two techniques
called decomposition and orchestration. Finally, Section 17.8 targets these
ideas to the four main self-management axes. All these sections take exam-
ples from SELFMAN and from the literature and reference the appropriate
SELFMAN publications.

17.9.1 Future work

SELFMAN has made some progress in understanding how to build self-
managing systems but much remains to do. We have encountered several im-
portant unsolved problems that are outside the scope of the project. Specif-
ically, here are two:

• To create a complete methodology for program design with feedback
structures that is usable by practicing programmers. This means it
should be at a similar abstraction level as existing methodologies, e.g.,

SELFMAN Deliverable Year Three, Page 264

CHAPTER 17. D5.7: GUIDELINES FOR BUILDING
SELF-MANAGING APPLICATIONS

for object-oriented programming. Two important parts of this method-
ology are feedback patterns and design rules. In SELFMAN we have ex-
plored a few patterns and rules in the context of building self-managing
applications, but we have only begun to formulate a methodology.

• To study how to build applications that can undergo reversible phase
transitions. This is essential for building long-lived applications that
can survive in realistically hostile situations. Any future research di-
rection in fault tolerance must take phase transitions into account. In
SELFMAN we have explored one case of reversible phase transitions,
namely the effect of network partitions on structured overlay networks
and the use of a merge algorithm to make the partition reversible.

These problems should be addressed in future research.

SELFMAN Deliverable Year Three, Page 265

Chapter 18

D5.8: Self-managing
distributed collaborative
drawing tool on mobile devices

The development of a drawing tool for Android phones based on P2PS/Beernet [66,
54] is the result of researches on mobile devices. We introduce the first ap-
plication running on mozart for Android.

18.1 Executive summary

DeTransDraw for Android runs as a drawing observer of a ring of P2PS/Beernet
nodes. The first important step to this result was to port mozart on the de-
vice. Mozart runs on top of the unix kernel below the Java API. In order
to create the user interface, we have implemented a bridge between mozart
and this API. DeTransDraw is an application with two different parts, the
computer application running as a peer is features complete and the mobile
part which only observes the action. Both applications are implemented in
OZ language [62].

266

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.2 Contractors contributing to the Deliv-

erable

UCL(P1)has contributed to this deliverable.

UCL(P1) have ported mozart on the Android operating system, added an
eager locking mechanism to P2PS/Beernet and developed the DeTransDraw
applications.

SELFMAN Deliverable Year Three, Page 267

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.3 Introduction

This software deliverable aims to be a real application of the concepts intro-
duced in Selfman and a first appearance on mobile phones. With their small
size, they are highly mobile and portable. But they have smaller memory
capacities and slower processors than computers.

In a ring, they are not stable peers because they can enter and leave it
quickly. It is a good test of the scalibity of the ring.

DeTransDraw is a decentralized collaborative vector-based graphical ed-
itor with a shared drawing area. It provides synchronous collaboration be-
tween users with graphical support for notifications about other users’ activi-
ties. Conflict resolution is achieved with a decentralized transactional service
with storage replication, and self-management replication for fault-tolerance.
The transactional service also allows the application to prevent performance
degradation due to network latency, which is an important feature for syn-
chronous collaboration.

SELFMAN Deliverable Year Three, Page 268

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.4 Specification

DeTransDraw is intended to be a drawing tool that allows multiple users
to collaborate on creating and editing a vector image. Each user may join
the network by creating a peer and joining the ring or by connecting to an
existing peer of the network.

There are two kinds of users. The normal users can draw forms, edit the
image and delete objects. While mobile users can only observe the system.

The application uses eager transactions to synchronize the modifications.
This means that when a user try to edit some part of the image, it asks for
locking this part. When the user have finished his work, he may commit his
work and release the lock.

The transactions allow the user to ensure fast reaction while keeping
coherence. On the state diagram of the Figure 18.1, the user have three
distinct states. No lock when he is not editing the image though he can draw
and observe. When he locks objects, he is in a new state waiting for an event
such as abort or locked. After he has received all the events, he will be in the
state Got locks if he got some locks or No lock if he got none. When all the
locks are released, the user is back in the state No lock.

Figure 18.1: State diagram of a user

As the modification is made locally before comitting, the responsiveness
is the same as a non-distributed drawing application. In all these states, the
user can edit the image. In No lock, he is not editing the image but he can

SELFMAN Deliverable Year Three, Page 269

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

ask for locks.
In Asking for lock, he can edit but is not sure that his changes will not be

lost. He may lose the changes on the objects to which he will get an abort
event. In Get lock, he can edit and he is sure that his changes will be saved.
The coherence is maintained because of the locks on objects. An example of
visual feedback of the difference between the two last states is in Figure 18.2

Figure 18.2: On the left, the user is in Asking for locks state. On the right,
the user is in Got locks mode.

In ordrer to add or remove an object on the image, the user does not
need the lock eagerly. This would lock the complete image and prevent users
from adding or removing objects which is not necessary. The transaction
will ask for the lock just before committing his changes. If it is aborted, the
transaction is repeated until it is comitted.

SELFMAN Deliverable Year Three, Page 270

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.5 Architecture

DeTransDraw is a two-part application. A computer part is a feature com-
plete application for drawing while an android part is only observing what is
happening on the system.

18.5.1 DeTransDraw for computers

DeTransDraw for computer is a drawing tool with the following features :

• draw objects such as rectangles, squares, ovals and circles

• change the colour that fill the object

• change the colour of the border of the object

• delete objects

• move objects

• collaborative drawing by joining a ring

• collaborative drawing by connecting to a peer of a ring

DeTransDraw offers a simple user interface to create a ring of P2PS/Beernet
nodes. The Figure 18.3 is the manager window for the node 21797. Two but-
tons named Save: and Save allow the user to save the ticket, while Load:
and Join help to connect to some already saved tickets. A ticket is a file used
by DeTransDraw to connect to a ring. When the ring is ready, the editor
window may be opened thanks to Open editor button.

Figure 18.3: User interface for managing the peer

In the Figure 18.4, it is the drawing area. The area is divided in three
parts : the toolbar, the drawing part and the status bar. Button SEL stands
for the selection of an object or multiple object with Shift key pressed. The
buttons rect and oval allows the user to draw rectangles and ovals. The two

SELFMAN Deliverable Year Three, Page 271

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

Figure 18.4: Example of objects

colored buttons represent the color of the object and its border. The status
bar notifies the user of the action he is currently doing.

Each object drawn has a well defined record such as :

val(id:ID xb yb xe ye fill outline form)

Where ID is used as a key in the transaction manager where the value is
the record itself. The value of another key, dt, is the list of all the keys stored
in the transaction manager. It represents all the objects of the application.

In selection mode, the user is able to select either rectangles or ovals. A
selected object appears with a virtual bounded box as in Figure 18.5. This
box has nine dots. One for each vertices and center of edges.

As it appears in the Figure 18.6, the dots may be filled in black or red.
The colour depends on the status of the lock for the object. Here, the user
on the left try to select the cyan rectangle which is already selected by the
user of the right window. When an object is selected, the node tries to lock
it.

The locking mechanism is different than in usual transactions systems.
The application asks for a lock before trying to commit any change. We have
implemented this eager locking mechanism in P2PS/Beernet 2.3.4.

While trying to get the lock, the dots are in red meaning that the lock
may not be accepted. The user on the left will see the object unselected and
back to the original position as soon as the lock is refused. The user on the
right has got the lock and the dots are black.

SELFMAN Deliverable Year Three, Page 272

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

Figure 18.5: Selection of an object

Figure 18.6: Selection of an object already locked

SELFMAN Deliverable Year Three, Page 273

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.5.2 DeTransDrawid

DeTransDrawid is the mobile part of DeTransDraw. It runs on mobile phones
with Android as operating system. We have implemented a ligher version of
DeTransDraw for mobile phones, it allows users to observe what’s going on
the shared drawing area.

An application for Android is quite different from an application on a
computer. Each application runs as a different user and extends the class
Activity. The activity allows Android to tell the application when she is cre-
ated, paused, resumed, and some other events. The application has to react
to these events. In order to create an application in Mozart environment,
there events are sent from Java side to the Mozart side.

As in Figure 18.7, there are two parts of DeTransDrawid running in a dif-
ferent level. The functional part is implemented in Oz language on the Unix
kernel while the activity part is implemented in Java on the API provided
by the Software Development Kit.

Figure 18.7: Structure of the application for Android

All the screenshots used in this section are taken from the emulator of the
software developer kit. It allows better visibility than pictures of the mobile
phone.

The Figure 18.8 illustrate the android launcher. Touching the icon De-
Transdraw starts DeTransDrawid. The result is a black screen as in Figure
18.9 waiting for a ring.

When the ring has started drawing, the whole screen is filled by the
drawing area as it appears in Figure 18.10.

SELFMAN Deliverable Year Three, Page 274

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

Figure 18.8: DeTransDrawid in application launcher

Figure 18.9: Application is starting

SELFMAN Deliverable Year Three, Page 275

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

Figure 18.10: Example of objects drawn with DeTransDraw and displayed
by DeTransDrawid

18.6 Implementation

18.6.1 DeTransDraw

Requirements : Mozart-trunk revision 17242 or newer
Installation : Download DeTransDraw binaries and extract it.
Run in real mode : Each user should execute DT.exe to get the manager

window. If there are more than ten users, one of the user may save a ticket
and send it to other users which will load it. A ring of nodes without drawing
features may be created with the Bootstrap binary with option dss.

Run in simulation mode : First create the ring with Bootstrap binary
with option sim. Each user can join the ring loading a ticket of this ring or
connect with this command :

./DT.exe sim URL

Where URL is the location of a ticket of this ring.

18.6.2 DeTransDrawid

Requirements :

SELFMAN Deliverable Year Three, Page 276

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

• Android 1.5 SDK or newer

• Eclipse and plugin for Android 1.5 SDK

Installation :

• Download DeTransDrawid sources

• Unzip DeTransDrawid

• Create a java project from existing sources (javaaccess directory from
zip) and named it javaaccess

• Create an android project from existing sources (DeTransDraw direc-
tory from zip)

• Create and Android Virtual Device (AVD) or use a device with Android
1.5 or newer

Implementation :

Figure 18.11: Minimum of code for the activity class

SELFMAN Deliverable Year Three, Page 277

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

In Figure 18.11, we see the minimum of code for running an application
controled by mozart bridge. A handle is created to allow mozart to know
when events happens.

When we want to notify the mozart part, we have to invoke such as in
Figure 18.12. This sample code notify that the java method onStart() has
been invoked in java part. The mozart part might react to this event.

Figure 18.12: Sample of code to invoke mozart

In order to get messages, we need to implement a function MainActivity
in a Main.oz file such as provided in DeTransDraw project. This function
gets a message when invoke in java part.

Figure 18.13: Main function to receive messages from Java.

SELFMAN Deliverable Year Three, Page 278

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.7 Future work

DeTransDrawid is a prototype of a Mozart application running on Android.
The application is separated in two parts which is not so easy to use.

For a real application, it would be better to have weak coupling between
the two sides. The idea is that a Java application will be silently started and
will be used by mozart applications. This application will only display GUIs.
Mozart applications will be independent from the Android application.

QTk for Android has to be completed and fully documented. Creating
an android application with Mozart should be as easy as a normal Mozart
application.

SELFMAN Deliverable Year Three, Page 279

CHAPTER 18. D5.8: SELF-MANAGING DISTRIBUTED
COLLABORATIVE DRAWING TOOL ON MOBILE DEVICES

18.8 Papers and publications

A Toolkit for Peer-to-Peer Distributed User Interfaces: Conceps,
Implementation, and Applications

Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt and Peter Van Roy.
ACM SIGCHI symposium on engineering interactive computing systems.
July 2009 (see Appendix A.21).

This paper presents a software toolkit for deploying peer-to-peer dis-
tributed graphical user interfaces across several dimensions. The toolkit
supports several platforms from desktop to mobile in order to develop col-
laborative applications.

Decentralized transactional collaborative drawing

Jérémie Melchior, Boris Mej́ıas, Yves Jaradin, Peter Van Roy, Jean Vander-
donckt. Submitted to COPS’09 (see Appendix A.22).

This paper proposes a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with replicated stor-
age. As a consequence, there is a gain in fault-tolerance and the transac-
tional protocol eliminates the problem of network delay improving usability
and network transparency. The same result can be applied to text edition
and other collaborative editing tasks.

Decentralized transactional collaborative drawing - Demo

Boris Mej́ıas, Jérémie Melchior and Yves Jaradin. Demonstrator at Collab-
oration Meeting for FP6 and FP7 projects. (see Appendix A.23).

This is a description of the demonstration we have presented of DeTrans-
Draw in Internet of Services 2009 Collaboration Meeting for FP6 and FP7
projects.

SELFMAN Deliverable Year Three, Page 280

Chapter 19

D6.5c: Final progress and
assessment report with lessons
learned

19.1 Executive summary

The final year of SELFMAN has given us many results and insights into how
to construct self-managing applications built on a structured overlay network.
All this content can be found in the other deliverables. Instead of repeating
it here, we explain where to find it. We then conclude by commenting on
the general characteristics of SELFMAN with the hindsight of three years of
work. This gives us some lessons for the structure of future projects.

281

CHAPTER 19. D6.5C: FINAL PROGRESS AND ASSESSMENT
REPORT WITH LESSONS LEARNED

19.2 Contractors contributing to the Deliv-

erable

This deliverable was written by UCL(P1) (Peter Van Roy) based on results
from the other partners.

SELFMAN Deliverable Year Three, Page 282

CHAPTER 19. D6.5C: FINAL PROGRESS AND ASSESSMENT
REPORT WITH LESSONS LEARNED

19.3 Results

19.3.1 Lessons learned

The progress and assessment of the project can be found in the following
deliverables:

• D4.1b (chapter 5): Second report on self-configuration support.

• D4.2b (chapter 7): Second report on self-healing support.

• D4.3b (chapter 9): Second report on self-tuning support.

• D5.6 (chapter 16): Evaluation of security mechanisms.

These four deliverables focus on specific self-* properties.

• D5.4a (chapter 14): Qualitative evaluation of autonomic features of
SELFMAN applications.

• D5.4b (chapter 15): Quantitative evaluation of autonomic features of
SELFMAN applications.

These two deliverables apply a general evaluation methodology for autonomic
behavior to the self-* properties.

• D5.7 (chapter 17): Guidelines for building self-managing applications.

This deliverable summarizes the lessons learned and experience from all the
self-* properties into a first approximation to a complete methodology for
building self-managing applications.

19.3.2 SELFMAN and the problem of parallel research

Looking back at SELFMAN after three years, we can make some general
reflections on the project’s structure and its results:

• An interesting characteristic of SELFMAN is the system-level holistic
approach, in which we do not concentrate on just one self-* property,
but attempt to combine all four of the main ones. This has worked out
well for self configuration, self healing, and self tuning, but has proved
more difficult for self protection.

SELFMAN Deliverable Year Three, Page 283

CHAPTER 19. D6.5C: FINAL PROGRESS AND ASSESSMENT
REPORT WITH LESSONS LEARNED

• Another characteristic of SELFMAN is that we have done several im-
plementations of our transactional store: one in Erlang, one in Oz, and
we are completing one in Java using the Kompics component model.
This has allowed us to strengthen our focus on the right kind of system
architecture, namely loosely coupled components with asynchronous
communication. By using variations of this architecture, we get a bet-
ter idea of what is essential and what is not.

• SELFMAN has worked on several parallel research tracks, especially
the following four: configuration tools (WorkflOz/FructOz/LactOz),
component model (Kompics), how to implement and combine self-*
properties, and the transactional store and demo applications (Scalar-
is/Beernet). These tracks have communicated with one another, but
because each one was itself a research issue, they could not take full
advantage of one another. It would be interesting to do another itera-
tion, where each track starts again but with the insights and results of
the other tracks at the beginning.

We conclude that a holistic approach (looking at characteristics together in-
stead of piecemeal) that does several implementations can work well. One
problem that cannot be avoided is how to make progress in different areas
and at the same time combine this progress together (the problem of par-
allel research tracks). The parallel research problem is more or less serious
depending on the particular system property that is studied. Some system
properties are especially sensitive to this problem, in particular security (self
protection). Our security work has shown that we need to change an ini-
tial assumption in the project (i.e., the topology of the structured overlay
network).

But despite the occurrence of the parallel research problem in SELFMAN,
we have made good progress in combining different self-* properties. Solving
the parallel research problem for security would require another project. In
our view this is not a defect of the project but an inherent property of security,
since security depends crucially on initial assumptions. We conclude that the
initial vision of the project, to build self-managing applications by combining
structured overlay networks and component models, is basically sound.

We intend to build on the results of SELFMAN by submitting a successor
project that uses the self-managing transactional store as just one part in the
development of an architecture for a future Internet.

SELFMAN Deliverable Year Three, Page 284

Appendix A

Publications

285

APPENDIX A. PUBLICATIONS

A.1 Overcoming Software Fragility with In-

teracting Feedback Loops and Reversible

Phase Transitions

SELFMAN Deliverable Year Three, Page 286

Overcoming Software Fragility with
Interacting Feedback Loops and

Reversible Phase Transitions
Peter Van Roy

Dept. of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium
peter.vanroy@uclouvain.be

Abstract

Programs are fragile for many reasons, including software errors, partial failures, and
network problems. One way to make software more robust is to design it from the
start as a set of interacting feedback loops. Studying and using feedback loops is
an old idea that dates back at least to Norbert Wiener’s work on Cybernetics. Up to
now almost all work in this area has focused on how to optimize single feedback
loops. We show that it is important to design software with multiple interacting
feedback loops. We present examples taken from both biology and software to
substantiate this. We are realizing these ideas in the SELFMAN project: extending
structured overlay networks (a generalization of peer-to-peer networks) for large-scale
distributed applications. Structured overlay networks are a good example of systems
designed from the start with interacting feedback loops. Using ideas from physics, we
postulate that these systems can potentially handle extremely hostile environments. If
the system is properly designed, it will perform a reversible phase transition when the
failure rate increases beyond a critical point. The structured overlay network will make
a transition from a single connected ring to a set of disjoint rings and back again when
the failure rate decreases. There is a complete research agenda based on the use of
reversible phase transitions for building robust systems. In our current work we are
exploring how to expose phase transitions to the application so that it can continue
to provide a service. For validation we are building three realistic applications taken
from industrial case studies, using a distributed transaction layer built on top of the
overlay.

Keywords: software development, self management, feedback, distributed computing, distributed
transaction, network partition, Internet, phase transition

1. INTRODUCTION

How can we build software systems that are not fragile? For example, we can exploit concurrency
to build systems whose parts are mostly independent. Keeping parts as independent as possible
is a necessary first step. But it is not sufficient: as systems become larger, their inherent fragility
becomes more and more apparent. Software errors and partial failures become common, even
frequent occurrences. Both of these problems can be made less severe by rigorous system
design, but for fundamental reasons the problems will always remain. They must be addressed.
One way to address them is to build systems as multiple interacting feedback loops. Each
feedback loop continuously observes and corrects part of the system. As much as possible of
the system should run inside feedback loops, to gain this robustness.

Building a system with feedback loops puts conditions on how it must be programmed. We find that
message passing is a satisfactory model: the system is a set of concurrent component instances
that communicate through asynchronous messages. Component instances may have internal
state but there is no global shared state. Failures are detected at the component level. Using
this model lets us reason about the feedback behavior. Similar models have been used by E for

Electronic Workshops in Computing
The British Computer Society 1

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

building secure distributed systems [18] and by Erlang for building reliable telecommunications
systems [1]. More reasons for justifying this model are given in [24]. For the rest of this paper, we
will use this model.

Now that we can program systems with feedback loops, the next question is how should these
systems be organized. A first rule is that systems should be organized as multiple interacting
feedback loops. We find that this gives the simplest structure and makes it easier to reason about
the system (see Sections 2 and 3). Single feedback loops can be analyzed using techniques
specific to their operation; for example Hellerstein et al [10] gives a thorough course on how to
use control theory to design and analyze systems with single feedback loops. The problem with
systems consisting of multiple feedback loops is their global behavior: how can we understand it,
predict it, and design for a desired behavior? We need to understand the issues before we can do
a theoretical analysis or a simulation.

In the SELFMAN project [20], we are tackling the problem by starting from an area where
there is already some understanding: structured overlay networks (SONs). These networks are
an outgrowth of peer-to-peer systems. They provide two basic operations, communication and
storage, in a scalable and guaranteed way over a large set of peer nodes (see Section 4). By
giving the network a particular topology and by managing this topology well, the SON shows self-
organizing properties: it can survive node failures, node leaves, and node joins while maintaining
its specification. By using concepts and techniques taken from theoretical physics, we are able to
understand in a deep way how SONs work and we can begin to understand how to design them
to build robust systems. The concepts of feedback loop and phase transition play an important
role in this understanding.

This paper is structured as follows:

• Section 2 defines what we mean by a feedback loop, explains how feedback loops can
interact, and motivates why feedback loops are essential parts of any system. We briefly
present the mean field approximation of physics and show how it uses feedback to explain
the stability of ordinary matter.

• Section 3 gives two nontrivial examples of successful systems that consist of multiple
interacting feedback loops: the human respiratory system and the Transmission Control
Protocol.

• Section 4 summarizes our own work in this area. We are building a self-management
architecture based on a structured overlay network. We conjecture that when designed to
support reversible phase transitions, a SON can survive in extremely hostile environments.
We support this conjecture by analytical work [14], system design [21], and by analogy
from physics [15]. We are currently setting up an experimental framework to explore this
conjecture. We target three large-scale distributed applications, built using a transactional
service on top of a structured overlay network.

Section 5 concludes by recapitulating how feedback loops can overcome software fragility and
why all software should be designed with feedback loops. An important lesson is that systems
should be constructed so that they can do reversible phase transitions. Most existing fault-tolerant
systems are not designed with this goal in mind, so they are broken in a fundamental sense. We
explain what this means for structured overlay networks and we show how we have fixed them.
We then explain what remains to be done: there is a complete research agenda on how to build
robust systems based on the principle of reverse phase transitions.

2. FEEDBACK LOOPS ARE ESSENTIAL

2.1. Definition and history

In its general form, a feedback loop consists of four parts: an observer, a corrector, an actuator,
and a subsystem. These parts are concurrent agents that interact by sending and receiving
messages. The corrector contains an abstract model of the subsystem and a goal. The feedback
loop runs continuously, observing the subsystem and applying corrections in order to approach

Electronic Workshops in Computing
The British Computer Society 2

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

the goal. The abstract model should be correct in a formal sense (e.g., according to the semantics
of abstract interpretation [5]) but there is no need for it to be complete.

An example of a software system that contains a feedback loop is a transaction manager.
It manages system resources according to a goal, which can be optimistic or pessimistic
concurrency control. The transaction manager contains a model of the system: it knows at all
times which parts of the system have exclusive access to which resources. This model is not
complete but it is correct.

In systems with more than one feedback loop, the loops can interact through two mechanisms:
stigmergy (two loops acting on a shared subsystem) and management (one loop directly
controlling another). Very little work has been done to explore how to design with interacting
feedback loops. In realistic systems, however, interacting feedback loops are the norm.

Feedback loops were studied as a part of Norbert Wiener’s cybernetics in the 1940’s [29] and
Ludwig von Bertalanffy’s general system theory in the 1960’s [3]. W. Ross Ashby’s introductory
textbook of 1956 is still worth reading today [2], as is Gerald M. Weinberg’s textbook of 1975
explaining how to use system theory to improve general thinking processes [27]. System theory
studies the concept of a system. We define a system recursively as a set of subsystems
(component instances) connected together to form a coherent whole. Subsystems may be
primitive or built from other subsystems. The main problem is to understand the relationship
between the system and its subsystems, in order to predict a system’s behavior and to design
a system with a desired behavior.

2.2. Feedback loops in the real world

In the real world, feedback structures are ubiquitous. They are part of our primal experience of
the world. For example, bending a plastic ruler has one stable state near equilibrium enforced by
negative feedback (the ruler resists with a force that increases with the degree of bending) and a
clothes pin has one stable and one unstable state (it can be put temporarily in the unstable state
by pinching). Both objects are governed by a single feedback loop. A safety pin has two nested
loops with an outer loop managing an inner loop. It has two stable states in the inner loop (open
and closed), each of which is adaptive like the ruler’s. The outer loop (usually a human being)
controls the inner loop by choosing the stable state.

In general, anything with continued existence is managed by one or more feedback loops. Lack
of feedback means that there is a runaway reaction (an explosion or implosion). This is true at all
size and time scales, from the atomic to the astronomic. For example, the binding of atoms in a
molecule is governed by a simple negative feedback loop that maintains equilibrium within given
perturbation bounds. At the other extreme, a star at the end of its lifetime collapses until it finds a
new stable state. If there is no force to counteract the collapse, then the star collapses indefinitely
(at least, until it is beyond our current understanding of how the universe works).

2.2.1. The mean field approximation

The stability of ordinary matter is explained by a feedback loop. An acceptable model for ordinary
matter is the mean field approximation, which gives good results outside of critical points (see
chapter 1 of [15]). To explain this approximation, we start by the simple assumption that a uniform
substance reacts linearly when an external force is applied:

Reaction = A× Force

For example, for a gas we can assume that density n is proportional to pressure p:

n = (1/kT)× p

This is the Boyle-Mariotte law for ideal gases, which is valid for small pressures. But this equation
gives a bad approximation when the pressure is high. It leads to the conclusion that infinite
pressure on a gas will reduce its volume to zero, which is not true.

Electronic Workshops in Computing
The British Computer Society 3

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

We can obtain a much better approximation by making the assumption that throughout the
substance there exists a force that is a function of the reaction. This force is called the mean
field. This gives a new equation:

Reaction = A× (Force + a(Reaction))

That is, even in the absence of an external force, there is an internal force a(Reaction) that causes
the reaction to maintain itself at a nonzero value. This internal force is the mean field. There is
a feedback effect: the mean field itself causes a reaction, which engenders a mean field, and so
on. It is this feedback effect that explains, e.g., why a condensed state such as a liquid can exist
at low temperatures independent of external pressure. J. Van der Waals applied this reasoning to
the ideal gas law, by adding a term:

n = 1/kT × (p + a(n))

where n is the density of the gas and p is the pressure. According to this equation, the density n
of a fluid can stay at a high value even though the external pressure is low: a condensed state
can exist at low temperature independent of the pressure. The internal pressure a(n) replaces
the external pressure. Van der Waals chose a(n) = a × n2 by following the reasoning that
internal pressure is proportional to n, the number of molecules per unit of volume, multiplied
by the influence of all neighboring molecules on each molecule. This influence is assumed to be
proportional to n. This gives a new equation that is a good approximation over a wide range of
densities and pressures.

The mean field approach can be applied to a wide range of problems. The limits of the approach
are attained near critical points. This is because the correlation distance between molecules
diverges. Near a critical point, there is a phase change of the fluid, e.g., a liquid can boil to
become a gas. The global behavior of the fluid changes. The behavior of matter near critical
points no longer follows the mean field approximation but can be explained using scale invariance
laws. We are using this behavior as a guide for the design of software systems (see Section 4).

2.3. Feedback loops in human society

Most products of human civilization need an implicit management feedback loop, called
“maintenance,” done by a human. Each human is at the center of a large number of these feedback
loops. The human brain has a large capacity for creating these loops; some are called “habits” or
“chores.” If there are too many feedback loops to manage, then the brain can no longer cope: the
human complains that “life is too complicated”! We can say that civilization advances by reducing
the number of feedback loops that have to be managed explicitly [28]. We postulate that this is
also true of software.

2.4. Feedback loops in software

Software is in the same situation as other products of human civilization. Existing software
products are very fragile: they require frequent maintenance by a human. To avoid this, we
propose that software must be constructed as multiple interacting feedback loops, as an effective
way to reduce its fragility. This is already being done in specific domains; here are five example:

• The subsumption architecture of Brooks is a way to implement intelligent systems by
decomposing complex behaviors into layers of simple behaviors, each of which controls
the layers below it [4].

• IBM’s Autonomic Computing initiative aims to reduce management costs of computing
systems by removing humans from low-level management loops [11]. The low-level loop
is managed by a high-level loop that contains a human.

• Hellerstein et al show how to design computing systems with feedback control, to optimize
global behavior such as maximizing throughput [10]. Hellerstein shows two examples of
adaptive systems with interacting feedback loops: gain scheduling (with dynamic selection
among multiple controllers) and self-tuning regulation (where controller gain is continuously
adjusted).

Electronic Workshops in Computing
The British Computer Society 4

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

• Distributed algorithms for fault tolerance handle a special case of feedback where the
observer is a failure detector [16]. The implementation of the failure detector itself requires
a feedback loop.

• Structured overlay networks (SONs, closely related to distributed hash tables, DHTs) are
inspired by peer-to-peer networks [23]. They use principles of self organization to guarantee
scalable and efficient storage, lookup, and routing despite volatile computing nodes and
networks. Our own work is in the area of SONs; we explain it further in Section 4.

3. EXAMPLES OF INTERACTING FEEDBACK LOOPS

We give two examples of nontrivial systems that consist of multiple interacting feedback loops
(for more examples see [25, 26]). Our first example is taken from biology: the human respiratory
system. Our second example is taken from software design: the TCP protocol family.

FIGURE 1: The human respiratory system as a feedback loop structure

3.1. The human respiratory system

Successful biological systems survive in natural environments, which can be particularly harsh.
Studying them gives us insight in how to design robust software. Figure 1 shows the components
of the human respiratory system and how they interact. The rectangles are concurrent component
instances and the arrows are message channels. We derived this figure from a precise medical
description of the system’s behavior [30]. The figure is slightly simplified when compared to reality,
but it is complete enough to give many insights. There are four feedback loops: two inner loops
(breathing reflex and laryngospasm), a loop controlling the breathing reflex (conscious control),
and an outer loop controlling the conscious control (falling unconscious). From the figure we can
deduce what happens in many realistic cases. For example, when choking on a liquid or a piece
of food, the larynx constricts so we temporarily cannot breathe (this is called laryngospasm). We
can hold our breath consciously: this increases the CO2 threshold so that the breathing reflex is
delayed. If you hold your breath as long as possible, then eventually the breath-hold threshold is
reached and the breathing reflex happens anyway. A trained person can hold his or her breath
long enough so that the O2 threshold is reached first and they fall unconscious without breathing.
When unconscious the breathing reflex is reestablished.

We can infer some plausible design rules from this system. The innermost loops (breathing reflex
and laryngospasm) and the outermost loop (falling unconscious) are based on negative feedback
using a monotonic parameter. This gives them stability. The middle loop (conscious control) is not

Electronic Workshops in Computing
The British Computer Society 5

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

stable: it is highly nonmonotonic and may run with both negative or positive feedback. It is by far
the most complex of the four loops. We can justify why it is sandwiched in between two simpler
loops. On the inner side, conscious control manages the breathing reflex, but it does not have to
understand the details of how this reflex is implemented. This is an example of using nesting to
implement abstraction. On the outer side, the outermost loop overrides the conscious control (a
fail safe) so that it is less likely to bring the body’s survival in danger. Conscious control seems to
be the body’s all-purpose general problem solver: it appears in many of the body’s feedback loop
structures. This very power means that it needs a check.

Send

Inner loop (reliable transfer)

Outer loop (congestion control)

Calculate policy modification

Actuator
(send packet)

Monitor Monitor
throughput

Calculate bytes to send

(modify throughput)

(sliding window protocol)

destination and receives ack)
(network that sends packet to

Subsystem

(receive ack)

Send
stream acknowledgement

FIGURE 2: TCP as a feedback loop structure

3.2. TCP as a feedback loop structure

The TCP family of network protocols has been carefully tailored over many years to work
adequately for the Internet. We consider therefore that its design merits close study. We explain
the heart of TCP as two interacting feedback loops that implement a reliable byte stream transfer
protocol with congestion control [12]. The protocol sends a byte stream from a source to a
destination node. Figure 2 shows the two feedback loops as they appear at the source node.
The inner loop does reliable transfer of a stream of packets: it sends packets and monitors
the acknowledgements of the packets that have arrived successfully. The inner loop manages
a sliding window: the actuator sends packets so that the sliding window can advance. The sliding
window can be seen as a case of negative feedback using monotonic control. The outer loop does
congestion control: it monitors the throughput of the system and acts either by changing the policy
of the inner loop or by changing the inner loop itself. If the rate of acknowledgements decreases,
then it modifies the inner loop by reducing the size of the sliding window. If the rate becomes zero
then the outer loop may terminate the inner loop and abort the transfer.

4. STRUCTURED OVERLAY NETWORKS AS A FOUNDATION FOR FEEDBACK
ARCHITECTURES

Our own work on feedback structures targets large-scale distributed applications. This work is
being done in the SELFMAN project [20]. Summarizing briefly, we are building an infrastructure
based on a transaction service running over a structured overlay network [19, 26]. We target our
design on three application scenarios taken from industrial case studies: a machine-to-machine

Electronic Workshops in Computing
The British Computer Society 6

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

messenging application, a distributed knowledge management application (similar to a Wiki), and
an on-demand media streaming service [6].

FIGURE 3: Three generations of peer-to-peer networks

4.1. Structured overlay networks

Structured overlay networks are inspired by peer-to-peer networks [23]. In a peer-to-peer network,
all nodes play equal roles. There are no specialized client or server nodes. Figure 3 summarizes
the history of peer-to-peer networks in three generations. In the first generation (exemplified by
Napster), clients are peers but the directory is centralized. In the second generation (exemplified
by Gnutella), peer nodes communicate by random neighbor links. The third generation is the
structured overlay network. Compared to peer-to-peer systems based on random neighbor
graphs, SONs guarantee efficient routing and guarantee lookup of data items. Almost all existing
structured overlay networks are organized as two levels, a ring complemented by a set of fingers:

• Ring structure. All nodes are connected in a simple ring. The ring is maintained connected
despite node joins, leaves, and failures.

• Finger tables. For efficient routing, extra links called fingers are added to the ring. The fingers
can temporarily be in an inconsistent state. This has an effect only on efficiency, not on
correctness. Within each node, the finger table is continuously converging to a consistent
state.

Atomic ring maintenance is a crucial part of the overlay. Peer nodes can join and leave at any
time. Peers that crash are like peers that leave but without notification. Temporarily broken links
create false suspicions of failure.

Structured overlay networks are already designed as feedback structures. They already solve the
problem of self management for scalable communication and storage. We are using them as the
basis for designing a general architecture for self-managing applications. To achieve this goal, we
are extending the SONs in three ways:

• We have devised algorithms for handling imperfect failure detection (false suspicions) [17],
which vastly reduces the probability of lookup inconsistency. Imperfect failure detection is
handled by relaxing the ring invariant to obtain a so-called “relaxed ring”, which maintains
connectivity even with nodes that are suspected (possibly falsely) to be failed. The relaxed
ring is always converging to a perfect ring as suspicions are resolved.

• We have devised algorithms for detecting and merging network partitions [21]. This is a
crucial operation when the SON crosses a critical point (see Section 4.3).

• We have devised and implemented a transaction algorithm on top of the SON using a
symmetric replicated storage and a modified version of the Paxos uniform consensus
algorithm to achieve atomic commit with the Internet failure model [19].

4.2. Transactions over a SON

The highest-level service that we are implementing on a SON is a transactional storage.
Implementing transactions over a SON is challenging because of churn (the rate of node leaves,

Electronic Workshops in Computing
The British Computer Society 7

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

TM

rTM

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

rTM

rTM

2,6,10,14

FIGURE 4: Distributed transactions on a structured overlay network

joins, and failures and the subsequent reorganizations of the overlay) and because of the
Internet’s failure model (crash stop with imperfect failure detection). The transaction algorithm
is built on top of a reliable storage service. We implement this using symmetric replication [7].

To avoid the problems of failure detection, we implement atomic commit using a majority
algorithm based on a modified version of Paxos [19, 8]. We use an imperfect failure detector to
change coordinators in this algorithm. This is implementable on the Internet; because the failure
detection is imperfect we may change coordinators too often, but this only affects efficiency, not
correctness. We have shown that majority techniques work well for DHTs [22]: the probability of
data consistency violation is negligible. If a consistency violation does occur, then this is because
of a network partition and we can use the network merge algorithm [21].

We give a simple scenario to show how the algorithm works. A client initiates a transaction by
asking its nearest node, which becomes a transaction manager. Other nodes that store data
are participants in the transaction. Assuming symmetric replication with degree f , we have f
transaction managers and f replicas for each other participating node. Figure 4 shows a situation
with f = 4 and two nodes participating in addition to the transaction manager. Each transaction
manager sends a Prepare message to all replicated participants, which each sends back a
Prepared or Abort message to all replicated transaction managers. Each replicated transaction
manager collects votes from a majority of participants and locally decides on abort or commit. It
sends this to the transaction manager. After having collected a majority, the transaction manager
sents its decision to all participants. This algorithm has six communication rounds. It succeeds if
more than f/2 nodes of each replica group are alive.

FIGURE 5: Conjectured phase transitions for a relaxed ring SON

Electronic Workshops in Computing
The British Computer Society 8

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

4.3. Phase transitions in SONs and their effect on application design

At low node failure rates, a SON is a single ring where each node has fixed neighbors. This
corresponds to a solid phase. At high failure rates, a SON will separate into many small rings. At
the limit, a SON with n nodes will separate into n single-node SONs. This is the gaseous phase.
In between these two extremes we conjecture that there is a liquid phase, the relaxed ring, where
the ring is connected but each node does not have a fixed set of neighbors. When a node is
subject to a failure suspicion then its set of neighbors changes.

We conjecture that for properly designed SONs phase transitions can occur for changing values
of the failure rate. Figure 5 shows the kind of behavior we expect for the relaxed ring. In this figure,
we assume that the node failure rate is equal to the node join rate, so that the total number of
nodes is stationary. In accord with the Internet’s failure model, we also assume that some of the
reported failures are not actual failures (they are called failure suspicions [9]). At low failure rates,
the ring is connected and does not change (solid phase). At high failure rates, the ring “boils” to
become a set of small rings (of size 1, in the extreme case). At intermediate failure rates, the ring
may stay connected but because of failure suspicions some nodes get pushed into side branches
(relaxed ring).

We support this conjecture by citing [14], which uses the analytical model of [13] to show that
phase transitions should occur in the Chord SON [23]. Specifically, [14] shows that three phases
are traversed when the average network delay increases, in the following order: a region of
efficient lookup, followed by a region where the longest fingers are dead (inefficient lookup),
followed by a region where the ring is disconnected. We are setting up simulation experiments
to verify this behavior and further explore the phase behavior of SONs.

A SON that behaves in this way will never “fail,” it will just change phase. Each phase has
well-defined behavior that can be programmed for. These phase transitions should therefore be
considered as normal behavior that can be exposed to the application running on top of the
SON. An important research question is to determine what the application API should be for
phase transitions. At high failure rates, the application will run as many separate parts. When
the rate lowers, these parts will combine (they will “condense” using the merge algorithm) and
the application should resolve conflicts by an appropriate merge of the information stored in the
separate rings. We can see that the application will probably have different consistency models at
different failure rates. The transaction algorithm of the previous section will need to be modified to
take this into account.

As a final remark, we conclude that the merge algorithm is a necessary part of a SON. Without
the merge algorithm, condensation of a gaseous system is not possible. The SON is incomplete
without it. With the merge algorithm, the SON and its applications can live indefinitely at any failure
rate.

5. CONCLUSIONS

To overcome the fragility of software, we propose to build the software as a set of interacting
feedback loops. Each feedback loop monitors and corrects part of the system. No part of the
system should exist outside of a feedback loop. We motivate this idea by showing how it exists in
real systems taken from biology and software (the human respiratory system and the Internet’s
TCP protocol family). If the feedback structure is properly designed, then it reacts to a hostile
environment by doing a reversible phase transition. For example, when the node failure rate
increases, a large overlay network may become a set of disjoint smaller overlay networks. When
the failure rate decreases, these smaller networks will coalesce into a large network again. These
transitions can be exposed to the application as an API so that it can be written to survive the
transition. Important research questions are to determine what this API should be and how it
affects application design.

In our own work in the SELFMAN project [20], we have built structured overlay networks
that survive in realistically harsh environments (with imperfect failure detection and network

Electronic Workshops in Computing
The British Computer Society 9

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

partitioning). We have developed a network merge algorithm that allows structured overlay
networks to do reversible phase transitions. We are extending our SON with transaction
management to implement three application scenarios derived from our industrial partners. We
are currently finishing our implementation and evaluating the behavior of our system. Much
remains to be done, e.g., we need to extend the transaction algorithm of Section 4.2 so that it
also works correctly during phase transitions.

One important lesson from this work is that all future software systems should be designed so
that they can support reversible phase transitions. For example, up to the work reported in [21],
SONs could not merge. That means that they could not “condense” (move from a gaseous back to
a solid phase) as failure rates decreased. They would “boil” (become disconnected) when failure
rates increased and they would stay disconnected when the failure rates decreased. We conclude
that network merge is more than just an incremental improvement that helps improve reliability.
It is fundamental because it allows the system to survive any number of phase transitions. The
system is reversible and therefore does not break. Without it, the system breaks after just a single
phase transition.1

6. ACKNOWLEDGEMENTS

This work is funded by the European Union in the SELFMAN project (contract 34084) and in
the CoreGRID network of excellence (contract 004265). Peter Van Roy is the coordinator of
SELFMAN. He acknowledges all SELFMAN partners for their insights and research results.
In particular, he acknowledges the work on the relaxed ring, network partitioning, symmetric
replication, distributed transactions, and the analytic study of SONs, all done by SELFMAN
partners. Some of this work was done in the earlier PEPITO and EVERGROW projects.

REFERENCES

[1] Armstrong, Joe. “Making reliable distributed systems in the presence of software errors,” Ph.D.
dissertation, Royal Institute of Technology (KTH), Kista, Sweden, Nov. 2003.

[2] Ashby, W. Ross. “An Introduction to Cybernetics,” Chapman & Hall Ltd., London, 1956. Internet (1999):
http://pcp.vub.ac.be/books/IntroCyb.pdf.

[3] von Bertalanffy, Ludwig. “General System Theory: Foundations, Development, Applications,” George
Braziller, 1969.

[4] Brooks, Rodney A. A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics and
Automation, RA-2, April 1986, pp. 14-23.

[5] Cousot, Patrick, and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints, 4th ACM Symposium on Principles of
Programming Languages (POPL 1977), Jan. 1977, pp. 238-252.

[6] France Télécom, Zuse Institut Berlin, and Stakk AB. User requirements for self managing applications:
three application scenarios, SELFMAN Deliverable D5.1, Nov. 2007, www.ist-selfman.org.

[7] Ghodsi, Ali, Luc Onana Alima, and Seif Haridi. Symmetric Replication for Structured Peer-to-Peer
Systems, Databases, Information Systems, and Peer-to-Peer Computing (DBISP2P 2005), Springer-
Verlag LNCS volume 4125, pages 74-85.

[8] Gray, Jim, and Leslie Lamport. Consensus on transaction commit. ACM Trans. Database Syst., ACM
Press, 2006(31), pages 133-160.

[9] Guerraoui, Rachid, and Luis Rodrigues, “Introduction to Reliable Distributed Programming,” Springer-
Verlag Berlin, 2006.

[10] Hellerstein, Joseph L., Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. “Feedback Control of Computing
Systems,” Aug. 2004, Wiley-IEEE Press.

[11] IBM. Autonomic computing: IBM’s perspective on the state of information technology, 2001,
researchweb.watson.ibm.com/autonomic.

[12] Information Sciences Institute. “RFC 793: Transmission Control Protocol Darpa Internet Program
Protocol Specification,” Sept. 1981.

[13] Krishnamurthy, Supriya, Sameh El-Ansary, Erik Aurell, and Seif Haridi. A statistical theory of Chord
under churn, Proceedings of the 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), Ithaca,
New York, Feb. 2005.

1An interesting question for physicists is to explain why matter behaves in reversible fashion. Software has to be designed
for reversibility while simple molecules have this property implicitly.

Electronic Workshops in Computing
The British Computer Society 10

Overcoming Software Fragility with Interacting Feedback Loops and Reversible Phase Transitions

[14] Krishnamurthy, Supriya, and John Ardelius. An Analytical Framework for the Performance Evaluation
of Proximity-Aware Overlay Networks, Tech. Report TR-2008-01, Swedish Institute of Computer Science,
Feb. 2008 (submitted for publication).

[15] Laguës, Michel and Annick Lesne. “Invariances d’échelle: Des changements d’états à la turbulence”
(“Scale invariances: from state changes to turbulence”), Belin éditeur, Sept 2003.

[16] Lynch, Nancy. “Distributed Algorithms,” Morgan Kaufmann, San Francisco, CA, 1996.
[17] Mejias, Boris, and Peter Van Roy. A Relaxed Ring for Self-Organising and Fault-Tolerant Peer-to-Peer

Networks, XXVI International Conference of the Chilean Computer Science Society (SCCC 2007), Nov.
2007.

[18] Miller, Mark S., Marc Stiegler, Tyler Close, Bill Frantz, Ka-Ping Yee, Chip Morningstar, Jonathan Shapiro,
Norm Hardy, E. Dean Tribble, Doug Barnes, Dan Bornstien, Bryce Wilcox-O’Hearn, Terry Stanley, Kevin
Reid, and Darius Bacon. E: Open source distributed capabilities, 2001, www.erights.org.

[19] Moser, Monika, and Seif Haridi. Atomic Commitment in Transactional DHTs, Proc. of the CoreGRID
Symposium, Rennes, France, Aug. 2007.

[20] SELFMAN: Self Management for Large-Scale Distributed Systems based on Structured Overlay
Networks and Components, European Commission 6th Framework Programme three-year project, June
2006 – May 2009, www.ist-selfman.org.

[21] Shafaat, Tallat M., Ali Ghodsi, and Seif Haridi. Dealing with Network Partitions in Structured Overlay
Networks, Journal of Peer-to-Peer Networking and Applications, Springer-Verlag, 2008 (to appear).

[22] Shafaat, Tallat M., Monika Moser, Ali Ghodsi, Thorsten Schütt, Seif Haridi, and Alexander Reinefeld. On
Consistency of Data in Structured Overlay Networks, CoreGRID Integration Workshop, Heraklion, Greece,
Springer LNCS, 2008 (to appear).

[23] Stoica, Ion, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, SIGCOMM 2001, pp. 149-160.

[24] Van Roy, Peter. Convergence in Language Design: A Case of Lightning Striking Four Times in the
Same Place, 8th International Symposium on Functional and Logic Programming (FLOPS 2006), April
2006, Springer LNCS volume 3945, pp. 2-12.

[25] Van Roy, Peter. Self Management and the Future of Software Design, Third International Workshop on
Formal Aspects of Component Software (FACS 2006), Springer ENTCS volume 182, June 2007, pages
201-217.

[26] Van Roy, Peter, Seif Haridi, Alexander Reinefeld, Jean-Bernard Stefani, Roland Yap, and Thierry
Coupaye. Self Management for Large-Scale Distributed Systems: An Overview of the SELFMAN Project,
Springer LNCS, 2008 (to appear). Revised postproceedings of FMCO 2007, Oct. 2007.

[27] Weinberg, Gerald M. “An Introduction to General Systems Thinking: Silver Anniversary Edition,” Dorset
House, 2001 (original edition 1975).

[28] Whitehead, Alfred North. Quote: Civilization advances by extending the number of important operations
which we can perform without thinking of them.

[29] Wiener, Norbert. “Cybernetics, or Control and Communication in the Animal and the Machine,” MIT
Press, Cambridge, MA, 1948.

[30] Wikipedia, the free encyclopedia. Entry “drowning,” August 2006. Internet:
http://en.wikipedia.org/wiki/Drowning.

Electronic Workshops in Computing
The British Computer Society 11

APPENDIX A. PUBLICATIONS

A.2 Dealing with Network Partitions and Merg-

ers

SELFMAN Deliverable Year Three, Page 298

Peer-to-Peer Netw Appl
DOI 10.1007/s12083-009-0037-7

Dealing with network partitions in structured
overlay networks

Tallat M. Shafaat · Ali Ghodsi · Seif Haridi

Received: 21 October 2007 / Accepted: 17 February 2009
© Springer Science + Business Media, LLC 2009

Abstract Structured overlay networks form a major
class of peer-to-peer systems, which are touted for their
abilities to scale, tolerate failures, and self-manage. Any
long-lived Internet-scale distributed system is destined
to face network partitions. Although the problem of
network partitions and mergers is highly related to
fault-tolerance and self-management in large-scale sys-
tems, it has hardly been studied in the context of struc-
tured peer-to-peer systems. These systems have mainly
been studied under churn (frequent joins/failures),
which as a side effect solves the problem of network
partitions, as it is similar to massive node failures. Yet,
the crucial aspect of network mergers has been ignored.
In fact, it has been claimed that ring-based structured
overlay networks, which constitute the majority of the
structured overlays, are intrinsically ill-suited for merg-
ing rings. In this paper, we present an algorithm for
merging multiple similar ring-based overlays when the
underlying network merges. We examine the solution
in dynamic conditions, showing how our solution is

T. M. Shafaat (B) · S. Haridi
KTH - Royal Institute of Technology,
Electrum 229, 164 40 Kista, Sweden
e-mail: tallat@kth.se

S. Haridi
e-mail: haridi@kth.se

A. Ghodsi
Swedish Institute of Computer Science (SICS),
Box 1263, 164 29 Kista, Sweden
e-mail: ali@sics.se

resilient to churn during the merger, something widely
believed to be difficult or impossible. We evaluate the
algorithm for various scenarios and show that even
when falsely detecting a merger, the algorithm quickly
terminates and does not clutter the network with many
messages. The algorithm is flexible as the tradeoff be-
tween message complexity and time complexity can be
adjusted by a parameter.

Keywords DHTs · Network partitions ·
Network mergers · Structured overlay networks ·
Loopy rings · Distributed hash tables

1 Introduction

Structured Overlay Networks (SONs)—such as Chord
[39], Pastry [34], and SkipNet [17]—are touted for
their ability to provide scalability, fault-tolerance,
and self-management, making them well-suited for
Internet-scale distributed applications. Such Internet-
scale systems will always come across network parti-
tions, especially if the system is long-lived. Although
the problem of network partitions and mergers is
highly related to fault-tolerance and self-management
in large-scale systems, it has, with few exceptions, been
ignored in the context of structured overlays. This is pe-
culiar, as the importance of the problem has long been
known in other problem domains, such as in distributed
databases [10] and distributed file systems [40].

Although network partitions are not very common,
they do occur. Internet failures, resulting in partitioned
networks can occur due to large area link failure, router
failure, physical damage to a link/router, router mis-
configuration and buggy software updates. Overloaded

Peer-to-Peer Netw Appl

routers, network wide congestion due to denial of
service (DoS) attacks and routing loops [32] can also
have the same effect as a network partition. Similarly,
natural disasters can result in Internet failures. This was
observed when an earthquake in Taiwan in December
2006 exposed the issue that global traffic passes through
a small number of seismically active “choke points”
[30]. Several countries in the region connect to the
outside world through these choke points. A number of
similar events leading to Internet failures have occurred
[6]. On a smaller scale, the aforementioned causes can
disconnect an entire organization from the Internet
[31], thus partitioning the organization.

It is our firm belief that a crucial requirement for
practical SONs is that they should be able to deal
with network partitions and mergers. As we show in
Section 2, SONs can, by a coincidence, cope with
network partitions. Unfortunately, most SONs cannot
cope with network mergers.

In fact, it has been claimed that ring-based struc-
tured overlays, which constitute the absolute majority
of the SONs, are inherently a poor fit for dealing with
network mergers. Datta et al. [8] focus on the merg-
ing of multiple SONs after a network partition ceases
(network merger). They argue that ring-based SONs
“cannot function at all until the whole merge process
is complete”.

The contribution of this paper is an algorithm for
merging any number of similar structured overlays.
We will limit ourselves to unidirectional ring-based
overlays, since they constitute a majority of the SONs.
The presented algorithm allows the system designer to
adjust, through a fanout parameter, the tradeoff be-
tween bandwidth consumption (message and bit com-
plexity) and time it takes for the algorithm to complete
(time complexity). Through experimental evaluation,
we show typical fanout values for which our algorithm
completes quickly, while keeping the bandwidth con-
sumption at an acceptable level. We examine the solu-
tion in dynamic conditions, showing how our solution
is resilient to churn during the merger, something be-
lieved to be impossible [8]. We verify that the algorithm
works efficiently even if only a single node detects the
partition merger. We show that even with large rings
with thousands of nodes, our solution is lean as it avoids
positive-feedback cycles and, hence, avoids congesting
the network. Finally, we show that the algorithm can
recover from pathological scenarios, such as loopy rings
[25, 38], which might result from network partitions.

The merging of SONs gives rise to problems on
two different levels: routing level and data level. The
routing level is concerned with healing of the routing
information after a partition merger.

The data level is concerned with the consistency of
the data items stored in the SONs. The solutions to
this problem might depend on the application and on
the semantics of the data operations, e.g. immutable
key/value pairs or monotonically increasing values. It
is also known that it is impossible to achieve strong
(atomic) data consistency, availability,1 and partition
tolerance in SONs [5, 14, 15].

We focus on the problem of dealing with partition
mergers at the routing level. Given a solution to the
problem at the routing level, it is generally known how
to achieve weaker types of data consistency, such as
eventual consistency [11, 40].

Outline Section 2 serves as a background by moti-
vating and defining our choice of ring-based SONs.
Section 3 introduces the main contributions of this
work, simple ring unification algorithm, as well as the
gossip-based ring unification algorithm. Since the latter
algorithm builds on the previous, we hope that this
has a didactic value. Thereafter, Section 4 evaluates
different aspects of the algorithms in various scenar-
ios. Section 5 presents related work. Finally, Section 6
concludes and presents an ambitious agenda for future
work.

2 Background

The rest of the paper focuses on ring-based structured
overlay networks. Next, we motivate this choice, and
thereafter briefly define ring-based SONs. Finally, we
show how Chord deals with network partitions and
failures.

Motivation for the unidirectional ring geometry We
confine ourselves to unidirectional ring-based SONs,
such as Chord [39], SkipNet [17], DKS [14], Koorde
[20], Mercury [4], Symphony [28], EpiChord [22], and
Accordion [23]. But we believe that our algorithms can
be adapted easily to other ring-based SONs, such as
Pastry [34]. For a more detailed account on direction-
ality and structure in SONs, please refer to Onana et al.
[3] and Aberer et al. [1].

The reason for confining ourselves to ring-based
SONs is twofold. First, ring-based SONs constitute a
majority of the SONs. Second, Gummadi et al. [16]
diligently compared the geometries of different SONs,

1By availability we mean that a get/put operation should eventu-
ally complete.

Peer-to-Peer Netw Appl

and showed that the ring geometry is the one most
resilient to failures, while it is just as good as the other
geometries when it comes to proximity.

To simplify the presentation of our algorithms, we
use notation that indicates the use of the Chord [39]
SON. But the ideas are directly applicable to all unidi-
rectional ring-based SONs.

A model of a ring-based SON A SON makes use of
an identifier space, which for our purposes is defined
as a set of integers {0, 1, · · · ,N − 1}, where N is some
apriori fixed, large, and globally known integer. This
identifier space is perceived as a ring that wraps around
at N − 1.

Every node in the system, has a unique identifier
from the identifier space. Node identifiers are typically
assumed to be uniformly distributed on the identifier
space. Each node keeps a pointer, succ, to its successor
on the ring. The successor of a node with identifier p
is the first node found going in clockwise direction on
the ring starting at p. Similarly, every node also has a
pointer, pred, to its predecessor on the ring. The prede-
cessor of a node with identifier q is the first node met
going in anti-clockwise direction on the ring starting at
q. A successor-list is also maintained at every node r,
which consists of r’s c immediate successors, where c is
typically set to log2(n), where n is the network size.

Ring-based SONs also maintain additional routing
pointers on top of the ring to enhance routing. To be
concrete, assume that these are placed as in Chord.
Hence, each node p keeps a pointer to the successor
of the identifier p + 2i (mod N) for 0 ≤ i < log2(N).
Our results can easily be adapted to other schemes for
placing these additional pointers.

Dealing with partitions and failures in chord Chord
handles joins and leaves using a protocol called periodic
stabilization. Leaves are handled by having each node
periodically check whether pred is alive, and setting
pred := nil if it is found dead. Moreover, each node
periodically checks to see if succ is alive. If it is found to
be dead, it is replaced by the closest alive successor in
the successor-list.

Joins are also handled periodically. A joining node
makes a lookup to find its successor s on the ring,
and sets succ := s. Each node periodically asks for its
successor’s pred pointer, and updates succ if it finds
a closer successor. Thereafter, the node notifies its
current succ about its own existence, such that the
successor can update its pred pointer if it finds that the
notifying node is a closer predecessor than pred. Hence,
any joining node is eventually properly incorporated
into the ring.

As we mentioned previously, a single node cannot
distinguish massive simultaneous node failures from a
network partition. As periodic stabilization can handle
massive failures [25], it also recovers from network
partitions, making each component of the partition
eventually form its own ring. We have simulated such
scenarios and confirmed these results. The problem that
remains unsolved, which is the focus of the rest of the
paper, is how several independent rings can efficiently
be merged.

3 Ring merging

For two or more rings to be merged, at least one node
needs to have knowledge about at least one node in an-
other ring. This is facilitated by the use of passive lists.
Whenever a node detects that another node has failed,
it puts the failed node, with its routing information2

in its passive list. Every node periodically pings nodes
in its passive list to detect if a failed node is alive again.
When this occurs, it starts a ring merging algorithm.
Hence, a network partition will result in many nodes
being placed in passive lists. When the underlying net-
work merges, this will be detected and rectified through
the execution of a ring merging algorithm.

A ring merging algorithm can also be invoked in
other ways than described above. For example, it could
occur that two SONs are created independently of each
other, but later their administrators decide to merge
them due to overlapping interests. It could also be that
a network partition has lasted so long, that all nodes in
the rings have been replaced, making the contents of
the passive lists useless. In cases such as these, a system
administrator can manually insert an alive node from
another ring into the passive list of any of the nodes.
The ring merger algorithm will take care of the rest.

The detection of an alive node in a passive list does
not necessarily indicate the merger of a partition. It
might be the case that a single node is incorrectly
detected as failed due to a premature timeout of a
failure detector. The ring merging algorithm should be
able to cope with this by trying to ensure that such false-
positives will terminate the algorithm quickly. It might
also be the case that a previously failed node rejoins
the network, or that a node with the same overlay and
network address as a previously failed node joins the
ring. Such cases are dealt with by associating with every

2By routing information we mean a node’s overlay identifier,
network address, and nonce value (explained shortly).

Peer-to-Peer Netw Appl

node a globally unique random nonce, which is gener-
ated each time a node joins the network. Hence, if the
algorithm detects that a node in its passive list is again
alive, it can compare the node’s current nonce value
with that in the passive list to avoid a false-positive, as
that node is likely a different node that coincidentally
has the same overlay and network address.

3.1 Simple ring unification

In this section, we present the simple ring unification
algorithm (Algorithm 1). As we later show, the algo-
rithm will merge the rings in O(N) time for a network
size of N. Later, we show how the algorithm can be im-
proved to make it complete the merger in substantially
less time.

Algorithm 1 Simple Ring Unification Algorithm
1: every time units and at
2: := .dequeue()
3: sendto : MLOOKUP ()
4: sendto : MLOOKUP ()
5: end event

6: receipt of MLOOKUP () from at
7: if and then
8: if then
9: sendto : TRYMERGE ()

10: else if then
11: sendto : TRYMERGE ()
12: else
13: sendto closestprecedingnode() : MLOOKUP ()
14: end if
15: end if
16: end event

17: receipt of TRYMERGE () from at
18: sendto : MLOOKUP ()
19: if then
20: :=
21: end if
22: sendto : MLOOKUP ()
23: if then
24: :=
25: end if
26: end event

Algorithm 1 makes use of a queue called detqueue,
which will contain any alive nodes found in the passive
list. The queue is periodically checked by every node
p, and if it is non-empty, the first node q in the list is
picked to start a ring merger. Ideally, p and q will be on
two different rings. But even so, the distance between
p and q on the identifier space might be very large, as
the passive list can contain any previously failed node.
Hence, the event mlookup(id) is used to get closer
to id through a lookup. Once mlookup(id) gets near

its destination id, it triggers the event trymerge(a, b),
which tries to do the actual merging by updating pred
and succ pointers to a and b respectively.

The event mlookup(id) is similar to a Chord lookup,
which tries to do a greedy search towards the destina-
tion id. One difference is that it terminates the lookup
if it reaches the destination and locally finds that it
cannot merge the rings. More precisely, this happens if
mlookup(id) is executed at id itself, or at a node whose
successor is id. If an mlookup(id) executed at n finds
that id is between n and n’s successor, it terminates
the mlookup and starts merging the rings by calling
trymerge. Another difference between mlookup and
an ordinary Chord lookup is that an mlookup(id) ex-
ecuted at n also terminates and starts merging the rings
if it finds that id is between n’s predecessor and n.
Thus, the merge will proceed in both clockwise and
anti-clockwise direction.

The event trymerge takes as parameters a candidate
predecessor, cpred, and a candidate successor csucc,
and attempts to update the current node’s pred and
succ pointers. It also makes two recursive calls to
mlookup, one towards cpred, and one towards csucc.
This recursive call attempts to continue the merging
in both directions. Figure 1 shows the working of the
algorithm.

1:mlookup(q)

2:mlookup(p)

3:trymerge

3a:csucc
3b:cpred

4:trymerge

4b:cpred
4a:csucc

P

q

clockwise progress

anti-
clo

ckwise
 p

ro
gre

ss

anti-c
lockwise

 progress

clockw
ise progress

Fig. 1 Filled circles belong to SON1 and empty circles belong
to SON2. The algorithm starts when p detects q, p makes an
mlookup to q and asks q to make an mlookup to p

Peer-to-Peer Netw Appl

In summary, mlookup closes in on the target area
where a potential merger can happen, and trymerge
attempts to do local merging and advancing the merge
process in both directions by triggering new mlookups.

3.2 Gossip-based ring unification

The simple ring unification presented in the previ-
ous section has two disadvantages. First, it is slow, as
it takes O(N) time to complete the ring unification.
Second, it cannot recover from certain pathological sce-
narios. For example, assume two distinct rings in which
every node points to its successor and predecessor in
its own ring. Assume furthermore that the additional
pointers of every node point to nodes in the other ring.
In such a case, an mlookup will immediately leave the
initiating node’s ring, and hence may terminate. We do
not see how such a pathological scenario could occur
due to a partition, but the gossip-based ring unification
algorithm (Algorithm 2) rectifies both disadvantages of
the simple ring unification algorithm. Moreover, the
simple ring unification is less robust to churn, as we
discuss in the evaluation section.

Algorithm 2 Gossip-based Ring Unification Algorithm
1: every time units and at
2: := .dequeue()
3: sendto : MLOOKUP ()
4: sendto : MLOOKUP ()
5: end event

6: receipt of MLOOKUP () from at
7: if and then
8: if then
9: :=

10: := randomnodeinRT()
11: at r : .enqueue()
12: end if
13: if then
14: sendto : TRYMERGE ()
15: else if then
16: sendto : TRYMERGE ()
17: else
18: sendto closestprecedingnode() : MLOOKUP ()
19: end if
20: end if
21: end event

22: receipt of TRYMERGE () from at
23: sendto : MLOOKUP ()
24: if then
25: :=
26: end if
27: sendto : MLOOKUP ()
28: if then
29: :=
30: end if
31: end event

Algorithm 2 is, as its name suggests, gossip-based.
The algorithm is essentially the same as the simple ring
unification algorithm, with a few additions. The intu-
ition is to have the initiator of the algorithm to imme-
diately start multiple instances of the simple algorithm
at random nodes, with uniform distribution. But since
the initiator’s pointers are not uniformly distributed,
the process of picking random nodes is incorporated
into mlookup. Thus, mlookup(id) is augmented so that
the current node randomly picks a node r in its current
routing table and starts a ring merger between id and r.
This change alone would, however, consume too much
resources.

Two mechanisms are employed to prevent the al-
gorithm from consuming too many messages, which
could give rise to positive feedback cycles that congest
the network. First, instead of immediately triggering
an mlookup at a random node, the event is placed
in the corresponding node’s detqueue, which is only
checked periodically. Second, a constant number of
random mlookups are created. This is regulated by
a fanout parameter called F. Thus, the fanout is de-
creased each time a random node is picked, and the
random process is only started if the fanout is larger
than 1. The detqueue, therefore, holds tuples, which
contain a node identifier and the current fanout pa-
rameter. Similarly, mlookup takes the current fanout
as a parameter. The rate for periodically checking the
detqueue can be adjusted to control the rate at which
the algorithm generates messages.

4 Evaluation

In this section, we evaluate the two algorithms from
various aspects and in different scenarios. There are
two measures of interest: message complexity, and time
complexity. We differentiate between the completion
and termination of the algorithm. By completion we
mean the time when the rings have merged. By termina-
tion we mean the time when the algorithm terminates
sending any more messages. Unless said otherwise,
message complexity is until termination, while time
complexity is until completion.

The evaluations are done in a stochastic discrete
event simulator [37] in which we implemented Chord.
The simulator uses an exponential distribution for the
inter-arrival time between events (joins and failures).
To make the simulations scale, the simulator is not
packet-level. The time to send a message is an expo-
nentially distributed random variable. The values in
the graphs indicate averages of 20 runs with different
random seeds.

Peer-to-Peer Netw Appl

We first evaluate the message and time complexity of
the algorithms in a typical scenario where after merger,
many nodes simultaneously detect alive nodes in their
passive lists. Next, we evaluate the performance of the
algorithm for a worst case scenario when only a single
node detects the existence of another ring. The worst
case scenario is similar to a case where an administrator
wants to merge two SONs and triggers the ring unifica-
tion algorithm on only a single node. Next, we assess
the algorithms for a loopy ring. Thereafter, we evaluate
the performance of the algorithms while node joins
and failures are taking place during the ring merging
process. Next, we compare our algorithm with a self-
stabilizing algorithm. Finally, we evaluate the message
complexity of the algorithms when a node falsely be-
lieves that it has detected another ring.

For the first experiment, the simulation scenario had
the following structure. Initially nodes join and fail.
After a certain number of nodes are part of the system,
we insert a partition event, upon which the simulator
divides the set of nodes into as many components as
requested by the partition event, dividing the nodes
randomly into the partitions but maintaining an ap-
proximate ratio specified. For our simulations, we cre-
ate two partitions. A partition event is implemented
using lottery scheduling [42] to define the size of each
partition. The simulator then drops all messages sent
from nodes in one partition to nodes in another par-
tition, thus simulating a network partition in the un-
derlying network and therefore triggering the failure
handling algorithms (see Sections 2 and 3). Further-
more, node join and fail events are triggered in each
partitioned component. Thereafter, a network merger
event simply allows messages to reach other network
components, triggering the detection of alive nodes in
the passive lists, and hence starting the ring unification
algorithms.

We simulated the simple ring unification algorithm
and the gossip-based ring unification algorithm for par-
titions creating two components, and for fanout values
from 1 to 7. For all the simulation graphs to follow,
a fanout of 1 represents the simple ring unification
algorithm. A time unit was equal to the time it takes
for a message to reach its destination node.

Figures 2 and 3 show the time and message complex-
ity for a typical scenario where after a merger, multiple
nodes detect the merger and thus start the ring-
unification algorithm. The number of nodes detecting
the merger depends on the scenario; in our simulations,
it was 10–15% of the total nodes. As can be seen in
Figs. 2 and 3, the simple ring unification algorithm
(F = 1) consumes minimum messages but takes max-
imum time when compared to different variations of

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7

T
im

e
un

its

Fanout

256
512

2048
4096
8192

10240

Fig. 2 Evaluation of time complexity for a typical scenario with
multiple nodes detecting the merger for various network sizes
and fanouts

the gossip-based ring unification algorithm. For higher
values of F, the time complexity decreases while the
message complexity increases. Increasing the fanout
after a threshold value (around 3–4 in this case) will not
considerably decrease the time complexity, but will just
generate many unnecessary messages.

To proper understand the performance of the pro-
posed algorithm, we generated scenarios where only
one node would start the merger of the two rings.
We randomly select, with uniform probability, the two

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Fanout

256
512

2048
4096
8192

10240

Fig. 3 Evaluation of message complexity for a typical scenario
with multiple nodes detecting the merger for various network
sizes and fanouts

Peer-to-Peer Netw Appl

nodes that are involved in the merger, i.e. the node p
that detects the merger and the node that p detects
from its passive list. Hence, the distance between them
on the ring varies. For our experiments, each of the
two rings had approximately half of the total number of
nodes in the system before the merger. We choose the
rate of checking detqueue to be every five time units
and the rate of periodic stabilization (PS) to be every
ten time units. The motivation for choosing a lower PS
rate is to study the performance of the ring unification
algorithm with minimum influence from PS.

We simulated ring unification for various network
sizes of powers of 2 to study its scalability. Figure 4
shows the time complexity for varying network sizes.
The x-axis is on a logarithmic scale, while the y-axis
is linear. The graph for the gossip-based algorithms
is linear, which suggests a O(log n) time complexity.
In contrast, the simple ring unification graph (F = 1)
is exponential, indicating that it does not scale well,
i.e. ω(log n) time complexity. In Fig. 5, we plot the
number of ring unification messages sent by each node
during the merger, i.e. the total number of messages
induced by the algorithm until termination divided by
the number of nodes. The linear graph on a log-log
plot indicates a polynomial messages complexity. As
expected, the number of messages per node grows
slower for simple ring unification compared to gossip-
based ring unification.

Figure 6 illustrates the tradeoff between time and
message complexity. It shows that the goals of decreas-
ing time and message complexity are conflicting. Thus,
to decrease the number of messages, the time for com-

 20

 30

 40

 50

 60

 70

 80

 90

256 512 1024 2048 4096 8192 16384
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

T
im

e
un

its

T
im

e
un

its

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 4 Evaluation of time complexity when only one node starts
the merger. Only F 1 is plotted against the right y-axis

 1

 10

 100

 1000

 10000

256 512 1024 2048 4096 8192 16384

M
es

sa
ge

s/
no

de
 ti

ll
te

rm
in

at
io

n
(lo

g)

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 5 Evaluation of message complexity per node when only
one node starts the merger

pletion will increase. Similarly, opting for convergence
in lesser time will generate more messages. A suitable
fanout value can be used to adapt the ring unification
algorithm according to the requirements and network
infrastructure available.

For the rest of the evaluations, we use a worst case
scenario where only a single node detects the merger.

Next, we evaluated the time and message complexity
for a network to converge to a strongly stable ring from
a loopy state of two cycles. As defined by Liben-Nowell
et al. [25], a Chord network is weakly stable if, for
all nodes u, (u.succ).pred = u and strongly stable if, in
addition, for each node u, there is no node v such that

1000

10000

100000

1e+06

1e+07

1e+08

30 40 50 60 70 80 90 100

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Time units

256
512

1024
2048
4096
8192

Fig. 6 Tradeoff between time and message complexity

Peer-to-Peer Netw Appl

u < v < u.succ. A loopy network is one which is weakly
but not strongly stable. The scenario for the simulations
was to create a loop of two cycles from one-fifth of the
total number of nodes. Thereafter, we generated events
of node joins for the remaining four-fifth nodes at an
exponentially distributed inter-arrival rate. As in all
experiments, the identifiers of the joining nodes were
generated randomly with uniform probability. Thus,
the nodes joined at different points in the loop. We then
made one random node detect the loop by discovering
a random node from the other cycle, triggering the ring
unification algorithm. Figures 7 and 8 show the time and
message complexity for the loopy network to converge
to a strongly stable ring. The figures depict the effect of
fanout on time and message complexity.

We evaluated rings unification under churn, i.e.
nodes join and fail during the merger. Since we are using
a scenario where only one node detects the merger,
with low probability, the algorithm may fail to complete
and the merged overlay may not converge under churn,
especially for simple ring unification. The reason being
intuitive: for simple unification, the two mlookups gen-
erated by the node detecting the merger while traveling
through the network may fail as the node forwarding
the mlookup may fail under churn. With higher values
of F and in typical scenarios where multiple nodes
detect the merger, the algorithm becomes more robust
to churn as it creates multiple mlookups. The results
presented in Figs. 9 and 10 are only when the rings
successfully converge. For simulation, after a merge
event, we generate events of joins and fails until the

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

256 512 1024 2048 4096 8192
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
un

its

T
im

e
un

its

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 7 Evaluation of time complexity for a loopy network. Only
F 1 is plotted against the right y-axis

 1

 10

 100

 1000

 10000

 256 512 1024 2048 4096 8192

M
es

sa
ge

s/
no

de
 ti

ll
te

rm
in

at
io

n
(lo

g)

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 8 Evaluation of message complexity for a loopy network

unification algorithm terminates. With high churn, we
mean that the inter-arrival time between events of
joins and fails is less, thus representing highly dynamic
conditions. Choosing a high inter-arrival time between
events will create less joins and fails and thus churn will
be less. For the simulations presented here, we choose
inter-arrival time between events of joins and failures
to be 30 units for high churn and 45 units for low churn,
and an equal probability for a event to be a join or a fail.
Figures 9 and 10 show how different values of F affect
the convergence of the rings under different levels

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

T
im

e
un

its
 (

lo
g)

Fanout

3000 nodes - no churn
3000 nodes - high churn
3000 nodes - low churn
6000 nodes - no churn

6000 nodes - high churn
6000 nodes - low churn

Fig. 9 Evaluation of time complexity under churn

Peer-to-Peer Netw Appl

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n
(lo

g)

Fanout

3000 nodes - no churn
3000 nodes - high churn
3000 nodes - low churn
6000 nodes - no churn

6000 nodes - high churn
6000 nodes - low churn

Fig. 10 Evaluation of message complexity under churn

of churn, mainly showing the algorithm works under
churn without affecting message and time complexity
much.

Further, we simulated the algorithms under churn to
see how often they do not converge to a ring. We ran
experiments with 200 different seeds for sizes ranging
from 256 to 2048 nodes. We considered an execution
successful if 95% of the nodes had correct successor
pointers, as all successor pointers can not be correct
while nodes are joining and failing. Thereafter, the
remaining pointers are updated by Chord’s periodic
stabilization. For the 200 executions, we observed only
1 unsuccessful execution for network size 1024 and
2 unsuccessful executions for network size 2048. The
unsuccessful executions happened only for simple ring
unification, while executions with gossip based ring
unification were always successful. Even for the unsuc-
cessful executions, given enough time, PS updates the
successor pointers to correct values.

We compared our algorithm with a Self-Stabilizing
Ring Network (SSRN) [36] protocol. The results of our
simulations comparing time and message complexity
for various network sizes for the two algorithms have
been presented in Figs. 11 and 12, depicting that ring
unification consumes lesser time and messages com-
pared to SSRN. The main reason for the better per-
formance of our algorithm is that it has been designed
specifically for merging rings. On the other hand, SSRN
is a non-terminating algorithm that runs in the back-
ground like PS to find closer nodes. As evaluated
previously, simple ring unification (fanout = 1) does

 100

 1000

 10000

 100000

 256 512 1024 2048 4096 8192

T
im

e
til

l s
ta

bi
liz

at
io

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

Fig. 11 Comparison of time complexity of ring unification and
SSRN

not scale well for time complexity, which can be seen
in Fig. 11.

Finally, we evaluate the scenario where a node may
falsely detects a merger. Figure 13 shows the message
complexity of the algorithm in case of a false detection.
As can be seen, for lower fanout values, the message
complexity is less. Even for higher fanouts, the number
of messages generated are acceptable, thus showing
that the algorithm is lean. We believe this to be impor-
tant as most SONs do not have perfect failure detectors,
and hence can give rise to inaccurate suspicions.

 1

 10

 100

 1000

256 512 1024 2048 4096 8192

M
es

sa
ge

s
pe

r
no

de
 ti

ll
st

ab
ili

za
tio

n
(lo

g)

Network size (log2)

Ring network
F 1
F 2
F 3
F 4
F 5

Fig. 12 Comparison of message complexity of ring unification
and SSRN

Peer-to-Peer Netw Appl

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7

M
es

sa
ge

s
til

l t
er

m
in

at
io

n

Fanout

2000 nodes
4000 nodes
6000 nodes
8000 nodes

10000 nodes

Fig. 13 Evaluation of message complexity in case a node falsely
detects a merger for various network sizes and fanouts

Our simulations show that a fanout value of 3–4 is
good for a system with several thousand nodes, even
with respect to churn and false-positives.

5 Related work

Much work has been done to study the effects of churn
on a structured overlay network [27], showing how
overlays can cope with massive node joins and failures,
thus showing how overlays are resilient to partitions.
Datta et al. [8] have presented the challenges of merg-
ing two overlays, claiming that ring-based networks
cannot operate until the merger operation completes.
In contrast, we show how unification can work under
churn while the merger operation is not complete. In
a followup work, Datta et al. [9] show how to merge
two P-Grid [2] SONs. There work differs from ours as
P-Grid is a tree-based SON, while we focus on ring-
based SONs.

The problem of constructing a SON from a random
graph is, in some respects, similar to merging multi-
ple SONs after a network merger, as the nodes may
get randomly connected after a partition heals. Shaker
et al. [36] have presented a ring-based algorithm for
nodes in arbitrary state to converge into a directed ring
topology. Their approach is different from ours, in that
they provide a non-terminating algorithm which should
be used to replace all join, leave, and failure handling of
an existing SON. Replacing the topology maintenance
algorithms of a SON may not always be feasible, as
SONs may have intricate join and leave procedures to

guarantee lookup consistency [14, 24, 26]. In contrast,
our algorithm is a terminating algorithm that works as
a plug-in for an already existing SON.

Kunzmann et al. [21] have proposed methods to
improve the robustness of SONs. They propose to use
a bootstrapping server to detect a merger by making
the peer with the smallest identifier to send periodic
messages to the bootstrap server. As soon as the boot-
strap server receives messages from different peers, it
will detect the existence of multiple rings. Thereafter,
all the nodes have to be informed about the merger.
While their approach has the advantage of having min-
imum false detections, it depends on a central bootstrap
server. They lack a full algorithm and evaluation of
how the merger will happen. Evaluation of the merge
detection process and informing all peers about the
detection is also missing.

Montresor et al. [29] show how Chord [39] can be
created by a gossip-based protocol [18]. However, their
algorithm depends on an underlying membership ser-
vice like Cyclon [41], Scamp [13] or Newscast [19]. Thus
the underlying membership service has to first cope
with network mergers (a problem worth studying in
its own right), where after T-Chord can form a Chord
network. We believe one needs to investigate further
how these protocols can be combined, and their epochs
be synchronized, such that the topology provided by
T-Chord is fed back to the SON when it has converged.
Though the general performance of T-Chord has been
evaluated, it is not known how it performs in the pres-
ence of network mergers when combined with various
underlying membership services.

Fig. 14 A case where chord and the ring network protocol would
break a connected graph into two components. Lines represent
successor pointers while dashed lines represent a finger

Peer-to-Peer Netw Appl

As we show below, it might happen that an initially
connected graph can be split into two separate compo-
nents by the Chord [39] and SSRN [36] protocols. This
scenario is a counter-proof of the claim that SSRN is
self-stabilizing. Consider a network which consists of
two perfect rings, yet the nodes have fingers pointing to
nodes in the other ring. This can easily happen in case of
unreliable failure detectors [7] or networks partitions.
Normally, the PS rate is higher than fixing fingers, thus
due to a temporary partition, it might happen that
nodes update their successor pointers, yet before they
fix their fingers, the partition heals. In such a scenario,
SSRN splits the connected graph into two separate
partitions, thus creating a partition of the overlay, while
the underlay remains connected. An example of such a
scenario is shown in Fig. 14, where the filled circles are
nodes that are part of one ring and the empty circles
are nodes that are part of the other ring. Each node
has one finger pointing to a node in the other ring. The
fix-finger algorithm in Chord updates the fingers by
making lookups. In this case, a lookup will always
return a node in the same ring as the one making
the lookup. Consequently, the finger pointing to the
other ring will be lost. Similarly, the pointer jumping
algorithm used by SSRN to update its fingers will also
drop the finger pointing to a node in the other ring. On
the contrary, the ring-unification algorithm proposed in
this paper will fix such a graph and converge it to a
single ring.

Some SONs employ the ring based identifier space,
which they mix with a prefix-based tree [33]. For exam-
ple in Pastry [34], a responsible node for an identifier
is the node with numerically closest identifier and the
lookups are forwarded to nodes sharing the longest pre-
fix with the identifier being looked up. Our algorithm
can be modified for use by such SONs by replacing the
closestpreceedingnode-procedure with the equivalent
for the employed SON. The trymerge-procedure does
not have to be changed since updating the predecessor
and successor is similar to recording nodes with identi-
fiers closest to a node.

The problem of network partitions and mergers has
been studied in other distributed systems, such as in
distributed databases [10] and distributed file systems
[40]. These studies focus on problems created by the
partition and merger on the data level, while our focus
is on the routing level. We believe that such ideas, if
combined with algorithms such as those we propose,
can be used for handling data updates on SONs. That
is, nevertheless, outside the scope of this paper.

The results of this paper extend on our previous
work [35] by also considering loopy networks, the

SSRN protocol [36], and including additional experi-
mental results.

6 Conclusion

We have argued that the problem of partitions and
mergers in structured peer-to-peer systems, when the
underlying network partitions and recovers, is of crucial
importance. We have presented a simple and a gossip-
based algorithm for merging similar ring-based struc-
tured overlay networks after the underlying network
merges.

Though we believe that the problem of dealing
with network mergers is crucial, we think that such
events happen more rarely. Hence, it might be justifi-
able in certain application scenarios that a slow paced
algorithm runs in the background, consuming little
resources, while ensuring that any potential problems
with partitions will eventually be rectified. In such sce-
narios, our simple ring unification is more suitable. If
on the other hand, one would prefer to speed up the
unification process by consuming more messages, our
gossip-based ring unification is more suitable. We have
shown how the algorithm can be tuned to achieve a
tradeoff between the number of messages consumed
and the time before the overlay converges. We have
evaluated our solution in realistic dynamic conditions,
and showed that with high fanout values, the algorithm
can converge quickly under churn. We have also shown
that our solution generates few messages even if a
node falsely starts the algorithm in an already con-
verged SON. Finally, we have shown that our algorithm
recovers from pathological scenarios, such as loopy
rings, which might result from network partitions.

We tried many variations of the algorithms before
reaching those that are reported in this paper. Initially,
we had an algorithm that was not gossip-based, i.e.
was not periodic and did not have any randomization.
Albeit the algorithm was quite fast, it heavily over-
consumed messages, making it infeasible for a large
scale network. For that reason, we added the fanout
parameter, and made it run periodically. Without ran-
domization, we could construct pathological scenarios,
in which that algorithm would not be able to merge the
rings.

Future work We believe that dealing with partitions
and mergers is a small part of a bigger, and more im-
portant, goal: making SONs that can recover from any
configuration. We believe that it is desirable to make
a self-stabilizing ring algorithm, which can be proved

Peer-to-Peer Netw Appl

to recover from all possible states, including loopy
and partitioned while consuming minimum time and
messages.

We believe that it is interesting to investigate
whether gossip-based topology generators, such as
T-man [18] and T-chord [29], can be used to handle
network mergers. These services, however, make use
of an underlying membership service, such as Cyclon
[41], Scamp [13], or Newscast [19]. Hence, one has
to first investigate how well such membership services
recover from network partitions (we believe this to
be interesting in itself). Thereafter, one can explore
how such topology generators can be incorporated into
a SON.

Mathematical analysis of gossip-protocols is often
done through simple recurrence relations or by using
Markov chains, where the state of the chain can be the
number of infected nodes [12]. The algorithms we have
proposed mix deterministic DHT algorithms with that
of gossip protocols. Consequently, we believe that an
analysis of our algorithms will require modelling the
routing pointers of every node as part of the chain
state. We solicit such an analysis and believe it is an
interesting future direction for this research.

Acknowledgements This research has been funded by the
European Projects SELFMAN and EVERGROW, VINNOVA
2005-02512 TRUST-DIS, and SICS Center for Networked
Systems (CNS).

References

1. Aberer K, Alima LO, Ghodsi A, Girdzijauskas S, Haridi S,
Hauswirth M (2005) The essence of P2P: a reference
architecture for overlay networks. In: Proceedings of the 5th
international conference on peer-to-peer computing (P2P’05).
IEEE Computer Society, Los Alamitos, pp 11–20, August

2. Aberer K, Cudré-Mauroux P, Datta A, Despotovic Z,
Hauswirth M, Punceva M, Schmidt R (2003) P-grid: a self-
organizing structured P2P system. SIGMOD Rec 32(3):
29–33

3. Alima LO, Ghodsi A, Haridi S (2004) A framework for struc-
tured peer-to-peer overlay networks. In: Post-proceedings
of global computing. Lecture notes in computer science
(LNCS), vol 3267. Springer, Berlin Heidelberg New York,
pp 223–250

4. Bharambe AR, Agrawal M, Seshan S (2004) Mercury:
supporting scalable multi-attribute range queries. In: Pro-
ceedings of the ACM SIGCOMM 2004 symposium on com-
munication, architecture, and protocols. ACM, Portland,
pp 353–366, March

5. Brewer E (2000) Towards robust distributed systems. Invited
talk at the 19th annual ACM symposium on principles of
distributed computing (PODC’00)

6. Jahanian F, Labovitz C, Ahuja A (1998) Experimental
study of internet stability and wide-area backbone failures.
Technical report CSE-TR-382-98, University of Michigan,
November

7. Chandra TD, Toueg S (1996) Unreliable failure detectors for
reliable distributed systems. J ACM 43(2):225–267

8. Datta A, Aberer K (2006) The challenges of merging two sim-
ilar structured overlays: a tale of two networks. In: Proceed-
ings of the first international workshop on self-organizing
systems (IWSOS’06). Lecture notes in computer science
(LNCS), vol 4124. Springer, Berlin Heidelberg New York,
pp 7–22

9. Datta A (2007) Merging intra-planetary index structures:
decentralized bootstrapping of overlays. In: Proceedings of
the first international conference on self-adaptive and self-
organizing systems (SASO 2007). IEEE Computer Society,
Boston, pp 109–118, July

10. Davidson SB, Garcia-Molina H, Skeen D (1985) Consis-
tency in a partitioned network: a survey. ACM Comput Surv
17(3):341–370

11. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker
S, Sturgis H, Swinehart D, Terry D (1987) Epidemic algo-
rithms for replicated database maintenance. In: Proceedings
of the 7th annual ACM symposium on principles of distrib-
uted computing (PODC’87). ACM, New York, pp 1–12

12. Eugster P Th, Guerraoui R, Handurukande SB, Kouznetsov P,
Kermarrec A-M (2003) Lightweight probabilistic broadcast.
ACM Trans Comput Syst 21(4):341–374

13. Ganesh AJ, Kermarrec A-M, Massoulié L (2001) SCAMP:
peer-to-peer lightweight membership service for large-scale
group communication. In: Proceedings of the 3rd inter-
national workshop on networked group communication
(NGC’01). Lecture notes in computer science (LNCS),
vol 2233. Springer, London, pp 44–55

14. Ghodsi A (2006) Distributed k-ary system: algorithms for dis-
tributed hash tables. PhD dissertation, KTH—Royal Institute
of Technology, Stockholm, December

15. Gilbert S, Lynch NA (2002) Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web ser-
vices. ACM Spec Interest Group Algorithms Comput Theory
News 33(2):51–59

16. Gummadi K, Gummadi R, Gribble S, Ratnasamy S,
Shenker S, Stoica I (2003) The impact of DHT routing geom-
etry on resilience and proximity. In: Proceedings of the ACM
SIGCOMM 2003 symposium on communication, architec-
ture, and protocol. ACM, New York, pp 381–394

17. Harvey N, Jones MB, Saroiu S, Theimer M, Wolman A
(2003) Skipnet: a scalable overlay network with practical
locality properties. In: Proceedings of the 4th USENIX sym-
posium on internet technologies and systems (USITS’03).
USENIX, Seattle, March

18. Jelasity M, Babaoglu Ö (2005) T-man: gossip-based over-
lay topology management. In: Proceedings of 3rd workshop
on engineering self-organising systems (EOSA’05). Lecture
notes in computer science (LNCS), vol 3910. Springer, Berlin
Heidelberg New York, pp 1–15

19. Jelasity M, Kowalczyk W, van Steen M (2003) Newscast
computing. Technical report IR–CS–006, Vrije Universiteit,
November

20. Kaashoek MF, Karger, DR (2003) Koorde: a simple degree-
optimal distributed hash table. In: Proceedings of the 2nd
interational workshop on peer-to-peer systems (IPTPS’03).
Lecture notes in computer science (LNCS), vol 2735.
Springer, Berkeley, pp 98–107

Peer-to-Peer Netw Appl

21. Kunzmann G, Binzenhöfer A (2006) Autonomically improv-
ing the security and robustness of structured P2P overlays. In:
Proceedings of the international conference on systems and
networks communications (ICSNC 2006). IEEE Computer
Society, Tahiti, October–November

22. Leong B, Liskov B, Demaine E (2004) EpiChord: paralleliz-
ing the chord lookup algorithm with reactive routing state
management. In: 12th international conference on networks
(ICON’04). IEEE Computer Society, Singapore, November

23. Li J, Stribling J, Morris R, Kaashoek MF (2005) Bandwidth-
efficient management of DHT routing tables. In: Proceedings
of the 2nd USENIX symposium on networked systems design
and implementation (NSDI’05). USENIX, Boston, May

24. Li X, Misra J, Plaxton, CG (2004) Brief announcement:
concurrent maintenance of rings. In: Proceedings of the 23rd
annual ACM symposium on principles of distributed comput-
ing (PODC’04). ACM, New York, p 376

25. Liben-Nowell D, Balakrishnan H, Karger DR (2002)
Observations on the dynamic evolution of peer-to-peer net-
works. In: Proceedings of the first international workshop
on peer-to-peer systems (IPTPS’02). Lecture notes in com-
puter science (LNCS), vol 2429. Springer, Berlin Heidelberg
New York

26. Lynch NA, Malkhi D, Ratajczak, D (2002) Atomic data ac-
cess in distributed hash tables. In: Proceedings of the first
interational workshop on peer-to-peer systems (IPTPS’02).
Lecture notes in computer science (LNCS). Springer,
London, pp 295–305

27. Mahajan R, Castro M, Rowstron A (2003) Controlling the
cost of reliability in peer-to-peer overlays. In: Proceedings
of the 2nd international workshop on peer-to-peer systems
(IPTPS’03). Lecture notes in computer science (LNCS),
vol 2735. Springer, Berkeley, pp 21–32

28. Manku GS, Bawa M, Raghavan P (2003) Symphony: distrib-
uted hashing in a small world. In: Proceedings of the 4th
USENIX symposium on internet technologies and systems
(USITS’03). USENIX, Seattle, March

29. Montresor A, Jelasity M, Babaoglu Ö (2005) Chord on de-
mand. In: Proceedings of the 5th international conference on
peer-to-peer computing (P2P’05). IEEE Computer Society,
Los Alamitos, August

30. PINR (2008) Taiwan earthquake on December 2006. http://
www.pinr.com/report.php?ac=view_report&report_id=602.
Accessd January 2008

31. Oppenheimer D, Ganapathi A, Patterson DA (2003) Why
do internet services fail, and what can be done about it? In:
USITS’03: proceedings of the 4th conference on USENIX
symposium on internet technologies and systems. USENIX
Association, Berkeley, pp 1–1

32. Paxson V (1997) End-to-end routing behavior in the internet.
IEEE/ACM Trans Netw (TON) 5(5):601–615

33. Plaxton CG, Rajaraman R, Richa, AW (1997) Accessing
nearby copies of replicated objects in a distributed environ-
ment. In: Proceedings of the 9th annual ACM symposium
on parallelism in algorithms and architectures (SPAA’97).
ACM, New York, pp 311–320

34. Rowstron A, Druschel P (2001) Pastry: scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In: Proceedings of the 2nd ACM/IFIP international
conference on middleware (MIDDLEWARE’01). Lecture
notes in computer science (LNCS), vol 2218. Springer,
Heidelberg, pp 329–350, November

35. Shafaat TM, Ghodsi A, Haridi S (2007) Handling net-
work partitions and mergers in structured overlay networks.

In: Proceedings of the 7th international conference on
peer-to-peer computing (P2P’07). IEEE Computer Society,
Los Alamitos, pp 132–139, September

36. Shaker A, Reeves DS (2005) Self-stabilizing structured ring
topology P2P systems. In: Proceedings of the 5th interna-
tional conference on peer-to-peer computing (P2P’05). IEEE
Computer Society, Los Alamitos, pp 39–46, August

37. SicsSim (2008) http://dks.sics.se/p2p07partition/. Accessed
January 2008

38. Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek
MF, Dabek F, Balakrishnan H (2002) Chord: a scalable peer-
to-peer lookup service for internet applications. Technical
report TR-819, Massachusetts Institute of Technology (MIT),
January

39. Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek
MF, Dabek F, Balakrishnan H (2003) Chord: a scalable
peer-to-peer lookup protocol for internet applications. IEEE/
ACM Trans Netw (TON) 11(1):17–32

40. Terry DB, Theimer M, Petersen K, Demers AJ, Spreitzer M,
Hauser C (1995) Managing update conflicts in Bayou, a
weakly connected replicated storage system. In: Proceedings
of the 15th ACM symposium on operating systems principles
(SOSP’95). ACM, New York, pp 172–183, December

41. Voulgaris S, Gavidia D, van Steen M (2005) Cyclon: inexpen-
sive membership management for unstructured p2p overlays.
J Netw Syst Manag 13(2):197–217

42. Waldspurger CA, Weihl WE (1994) Lottery scheduling: flex-
ible proportional-share resource management. In: Proceed-
ings of the first symposium on operating systems design
and implementation (OSDI’94). USENIX, Seattle, pp 1–11,
November

Tallat M. Shafaat is a PhD candidate at KTH - Royal Institute
of Technology, Sweden and a member of CSL at SICS - Swedish
Institute of Computer Science. Earlier, he completed his B.Sc.
at GIK Institute of Engineering Sciences and Technology,
Pakistan and an M.Sc. at KTH - Royal Institute of Technology.
His research interests include large-scale distributed systems,
distributed algorithms and peer-to-peer systems.

Peer-to-Peer Netw Appl

Ali Ghodsi is a senior researcher at the Swedish Institute of
Computer Science (SICS). He got his PhD in Computer Science
from KTH–Royal Institute of Technology in 2006, and an M.B.A.
and an M.Sc. from Mid-Sweden University in 2002. His research
interest is in distributed computing in general, and in the the-
ory and practice of large-scale dynamic distributed systems in
particular.

Seif Haridi received the Ph.D. degree in computer systems from
the KTH - Royal Institute of Technology, Sweden, in 1981. He is
currently the scientific leader of the Computer Systems Labora-
tory and the Chief Scientist of the Swedish Institute of Computer
Science (SICS) in Kista, Sweden. He is also a Professor of com-
puter systems at the School of Information and Communication
Technology, the KTH - Royal Institute of Technology, Sweden.

APPENDIX A. PUBLICATIONS

A.3 Network Size Estimation for Structured

Overlays

SELFMAN Deliverable Year Three, Page 313

A Practical Approach to Network Size

Estimation for Structured Overlays

Tallat M. Shafaat1, Ali Ghodsi2, and Seif Haridi1

1 Royal Institute of Technology (KTH),
School of Information and Communication, Stockholm, Sweden

{tallat,haridi}@kth.se
2 Computer Systems Laboratory,

Swedish Institute of Computer Science, Stockholm, Sweden
ali@sics.se

Abstract. Structured overlay networks have recently received much at-
tention due to their self-* properties under dynamic and decentralized
settings. The number of nodes in an overlay fluctuates all the time due
to churn. Since knowledge of the size of the overlay is a core require-
ment for many systems, estimating the size in a decentralized manner is
a challenge taken up by recent research activities. Gossip-based Aggre-
gation has been shown to give accurate estimates for the network size,
but previous work done is highly sensitive to node failures. In this pa-
per, we present a gossip-based aggregation-style network size estimation
algorithm. We discuss shortcomings of existing aggregation-based size
estimation algorithms, and give a solution that is highly robust to node
failures and is adaptive to network delays. We examine our solution in
various scenarios to demonstrate its effectiveness.

1 Introduction

Structured peer-to-peer systems such as Chord [20] and Pastry [18] have received
much attention by the research community recently. These systems are typically
very scalable and the number of nodes in the system immensely varies. The
network size is, however, a global variable which is not accessible to individual
nodes in the system as they only know a subset of the other nodes. This infor-
mation is, nevertheless, of great importance to many structured p2p systems, as
it can be used to tune the rates at which the topology is maintained. Moreover,
it can be used in structured overlays for load-balancing purposes [4], deciding
successor-lists size for resilience to churn [12], choosing a level to determine out-
going links [14], and for designing algorithms that adapt their actions depending
on the system size [1].

Due to the importance of knowing the network size, several algorithms have
been proposed for this purpose. Out of these, gossip-based aggregation algo-
rithms [8], though having higher overhead, provide the best accuracy [17]. Con-
sequently, we focus on gossip-based aggregation algorithms in this paper. While

K.A. Hummel and J.P.G. Sterbenz (Eds.): IWSOS 2008, LNCS 5343, pp. 71–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 T.M. Shafaat, A. Ghodsi, and S. Haridi

aggregation algorithms can be used to calculate different aggregates, e.g. aver-
age, maximum, minimum, variance etc., our focus is on counting the number of
nodes in the system.

Although Aggregation [8] provides accurate estimates, it suffers from a few
problems. First, Aggregation is highly sensitive to the overlay topology that it is
used with. Convergence of the estimate to the real network size is slow for non-
random topologies. On the contrary, the majority of structured p2p overlays have
non-random topologies. Thus, it is not viable to directly use Aggregation in these
systems. Second, Aggregation works in rounds, and the estimate is considered
converged after a predefined number of rounds. As we discuss in section 4.1, this
can be problematic. Finally, Aggregation is highly sensitive to node failures.

In this paper, we suggest a gossip algorithm based on Aggregation to be
executed continously on every node to estimate the total number of nodes in
the system. The algorithm is aimed to work on structured overlay networks.
Furthermore, the algorithm is robust to failures and adaptive to the network
delays in the system.

Outline. Section 2 serves as a background for our work. Section 3 describes our
solution and discusses how the proposed solution handles the dynamism in the
network. Thereafter, section 4 gives a detailed evaluation of our work. Section 5
discusses the related work, and finally, section 6 concludes.

2 Background

In this section, we briefly define a model of a ring-based structured overlay
underlying our algorithm. We also describe the original Aggregation algorithm
suggested by Jelasity et. al. [8].

2.1 A Model of a Ring-Based Structured Overlay Network

A ring-based structured overlay network consists of nodes which are assigned
unique identifiers belonging to a ring of identifiers I = {0, 1, · · · , N − 1} for
some large constant N . This is general enough to encompass many existing
structured peer-to-peer systems such as Chord[20], Pastry[18] and many others.

Every node has a pointer to its successor, which is the first node met going
clockwise on the ring. Every node also has a pointer to its predecessor, which
is first node met going anti-clockwise on the ring. For instance, in a ring of size
N = 1024 containing the nodes P = {10, 235, 903}, we have that succP(10) =
235, succP(903) = 10, predP(235) = 10, and predP (10) = 903.

In this paper, we assume that there exists an out-of-bound mechanism to make
all of the predecessor and successor pointers correct. This can, for example, be
achieved by using periodic stabilization[20].

Apart from successor and predecessor pointers, each node has additional long
pointers in the ring for efficient routing. Different structured overlays use differ-
ent schemes to place these extra pointers. Our work is independent of how the
extra pointers are placed.

A Practical Approach to Network Size Estimation for Structured Overlays 73

While this model looks specific to ring topologies, other structured topologies
use similar metrics, for instance, the XOR-metric [16] or butterfly networks [14]
Our work can be extended to incorporate metrics other then that employed in
ring-based overlays.

2.2 Gossip-Based Aggregation

The Aggregation algorithm suggested by Jelasity et. al. [8] is based on push-pull
gossiping, shown in Algorithm 1.

Algorithm 1. Push-pull gossip executed by node p in Aggregation [8]
1: do periodically every δ time units do forever
2: q ← getneighbour() sq ← receive(*)
3: send sp to q send sp to sender(sq)
4: sq ← receive(q) sq ← update(sp, sq)
5: sq ← update(sp, sq)

(a) Active thread (b) Passive thread

The method GetNeighbour returns a uniform random sampled node over
the entire set of nodes provided by an underlying sampling service like News-
cast [7]. The method Update computes a new local state based on the node p’s
current local state sp and the remote node’s state sq.

The time interval δ after which the active thread initiates an exchange is
called a cycle. Given that all nodes use the same value of δ, each node roughly
participates in two exchanges in each cycle, one as an initiator and the other as
a receipient of an exchange request. Thus, the total number of exchanges in a
cycle are roughly equal to 2 · n, where n is the network size.

For network size estimation, one random node sets its local state to 1 while
all other nodes set their local states to 0. The global average is thus 1

n , where
n is the number of nodes. Executing the aggregation algorithm for a number of
cycles decreases the variance of local states of nodes but keeps the global average
the same. Thus, after convergence, a node p can estimate the network size as 1

sp
.

For network size estimation, Update(sp, sq) returns sp+sq

2 .
Aggregation [8] achieves up-to-date estimates by periodically restarting the

protocol, i.e. local values are re-initialized and aggregation starts again. This is
done after a predefined number of cycles γ, called an epoch.

The main disadvantage of Aggregation is that a failure of a single node early
in an epoch can severely effect the estimate. For example, if the node with
local state 1 crashes after executing a single exchange, 50% of the value will
disappear, giving 2 · n as the final size estimate. This issue is further elaborated
in section 4.3. Another disadvantage, as we discuss in section 4.1, is predefining
the epoch length γ.

74 T.M. Shafaat, A. Ghodsi, and S. Haridi

3 The Network Size Estimation Algorithm

A naive approach to estimate the network size in a ring-based overlay would
be pass a token around the ring, starting from, say node i and containing a
variable v initialized to 1. Each node increments v and forwards the token to
its successor i.e. the next node on the ring. When the token reaches back at i,
v will contain the network size. While this solution seems simple and efficient,
it suffers from multiple problems. First, it is not fault-tolerant as the node with
the token may fail. This will require complicated modifications for regenerating
the token with the current value of v. Second, the naive approach will be quite
slow, as it will take O(n) time to complete. Since peer-to-peer systems are highly
dynamic, the actual size may have changed completed by the time the algorithm
finishes. Lastly, at the end of the naive approach, the estimate will be known
only to node i which will have to broadcast it to all nodes in the system. Our
solution aims at solving all these problems at the expense of a higher message
complexity than the naive approach.

Our goal is to make an algorithm where each node tries to estimate the average
inter-node distance, Δ, on the identifier space, i.e. the average distance between
two consecutive nodes on the ring. Given a correct value of Δ, the number of
nodes in the system can be estimated as N

Δ , N being the size of the identifier
space.

Every node p in the system keeps a local estimate of the average inter-node
distance in a local variable dp. Our goal is to compute

∑
i∈P di

|P| . The philoso-
phy underlying our algorithm is the observation that at any time the following
invariant should always be satisfied: N =

∑
i∈P di.

We achieve this by letting each node p initialize its estimate dp to the distance
to its successor on the identifier space. In other words, dp = succ(p) � p, where
� represents subtraction modulo N . Note that if the system only contains one
node, then dp = N . Clearly, a correctly initialized network satisfies the mentioned
invariant as the sum of the estimates is equal to N .

To estimate Δ, we employ a modified aggregation algorithm. Since we do
not have access to random nodes, we implement the GetNeighbour method
in Alg. 1 by returning a node reached by making a random walk of length h.
For instance, to perform an exchange, p sends an exchange request to one of
its neighbours, selected randomly, with a hop value h. Upon receiving such a
request, a node r decrements h and forwards the request to one of its own
neighbours, again selected randomly. This is repeated until h reaches 0, after
which the exchange takes place between p and the last node getting the request.

Given that GetNeighbour returns random nodes, after a number of ex-
changes (logarithmic number of steps, to the network size, as show in [8]), every
node will have dp =

∑
i∈P di

|P| . On average in each cycle, each node initiates an
exchange once, which takes h hops, and replies to one exchange. Consequently,
the number of messages for the aggregation algorithm are roughly hops × n + n
per cycle.

A Practical Approach to Network Size Estimation for Structured Overlays 75

3.1 Handling Churn

The protocol described so far does not take into account the dynamicity of
large scale peer-to-peer systems. In this section, we present our solution as an
extension of the basic algorithm described in section 3 to handle dynamism in
the network.

The basic idea of our solution is that each node keeps different levels of esti-
mates, each with a different accuracy. The lowest level estimate is the same as
dn in the basic algorithm. As the value in the lowest level converges, it is moved
to the next level. While this helps by having high accuracy in upper levels, it
also gives a continuous access to a correct estimated value while the lowest level
is re-initialized. Furthermore, we restart the protocol adaptively, instead at a
predefined interval.

Our solution is shown in Algorithm 2. Each node n keeps track of the current
epoch in nEpoch and stores the estimate in a local variable ndvalue instead of
dn in the basic algorithm. ndvalue is a tuple of size l, i.e.

ndvalue = (ndvaluel−1, ndvaluel−2, · · · , ndvalue0)

The tuple values are called levels. The value at level 0 is the same as dn in the
basic algorithm and has the most recent updated estimate but with high error,
while level l−1 has the most accurate estimate but incorporates updates slowly.

A node n initializes its estimate, method InitializeEstimate in Alg. 2, by
setting level 0 to succP(n) � n. The method LeftShiftLevels moves the esti-
mate of each level one level up, e.g. left shifting a tuple e = (el−1, el−2, · · · , e0)
gives (el−2, el−3, · · · , e0, nil). The method Update(a, b) returns an average of
each level, i.e. (al−1+bl−1

2 , al−2+bl−2
2 , · · · , a0+b0

2).
To incorporate changes in the network size due to churn, we also restart the

algorithm, though not after a predefined number of cycles, but adaptively by
analyzing the variance. We let the lowest level converge and then restart. This
duration may be larger than a predefined γ or less, depending on the system-
wide variance in the system of the value being estimated. We achieve adaptivity
by using a sliding window at each node. Each node stores values of the lowest
level estimate for each cycle in a sliding window W of length w. If the coefficient
of variance of the sliding window is less than a desired accuracy e.g. 10−2, the
value is considered converged, denoted by the method Converged in Alg. 2.

Once the value is considered to have converged based on the sliding window,
there are different methods of deciding which node will restart the protocol,
denoted by the method IAmStarter in Alg. 2. One way is as used in [8],
each node restarts the protocol with probability 1/n̂, where n̂ is the estimated
network size. Given a reasonable estimate in the previous epoch, this will lead to
one node restarting the protocol with high probability. It does not matter if more
than one node restarts the protocol in our solution. On the contrary, multiple
nodes restarting an epoch in [8] is problematic since only one node should set
its local estimate to 1 in an epoch. Consequently, an epoch has to be marked
with a unique identifier in [8]. Another method is that a node n restarts the
protocol which has 0 ∈ [n, n.succ). For our simulations, we use the first method.

76 T.M. Shafaat, A. Ghodsi, and S. Haridi

Algorithm 2. Network size estimation
1: every δ time units at n
2: if converged() and iamstarter() then
3: simpleBroadcast(nEpoch)
4: end if
5: sendto randomNeighbour() : ReqExchange(hops, nEpoch, ndvalue)
6: end event

7: receipt of ReqExchange(hops, mEpoch,mdvalue) from m at n
8: if hops > 1 then
9: hops := hops − 1

10: sendto randomNeighbour() : ReqExchange(hops, mEpoch, mdvalue)
11: else
12: if nEpoch > mEpoch then
13: sendto m : ResExchange(false, nEpoch, ndvalue)
14: else
15: trigger 〈 MoveToNewEpoch | mEpoch 〉
16: ndvalue := update(ndvalue,mdvalue)
17: updateSlidingWindow(ndvalue)
18: sendto m : ResExchange(true, nEpoch, ndvalue)
19: end if
20: end if
21: end event

22: receipt of ResExchange(updated,mEpoch, mdvalues) from m at n
23: if updated = false then
24: trigger 〈 MoveToNewEpoch | mEpoch 〉
25: else
26: if nEpoch = mEpoch then
27: dvalue := mdvalues
28: end if
29: end if
30: end event

31: receipt of DeliverSimpleBroadcast(mEpoch) from m at n
32: trigger 〈 MoveToNewEpoch | mEpoch 〉
33: end event

34: upon event 〈 MoveToNewEpoch | epoch 〉 at n
35: if nEpoch < mEpoch then
36: leftShiftLevels()
37: initializeEstimate()
38: nEpoch := epoch
39: end if
40: end event

A Practical Approach to Network Size Estimation for Structured Overlays 77

Once a new epoch starts, all nodes should join it quickly. Aggregation [8]
achieves this by the logarithmic epidemic spreading property of random net-
works. Since we do not have access to random nodes, we use a simple broadcast
scheme [3] for this purpose, which is both inexpensive (O(n) messages) and fast
(O(log n) steps). The broadcast is best-effort, as even if it fails, the new epoch
number is spread through exchanges.

When a new node joins the system, it starts participating in the size estima-
tion protocol when the next epoch starts. This happens either when it receives
the broadcast, or its predecessor initializes its estimate. Until then, it keeps
forwarding any requests for exchange to a randomly selected neighbour.

Handling churn in our protocol is much simpler and less expensive on band-
width than other aggregation algorithms. Instead of running multiple epochs as
in [8], we rely on the fact that a crash in our system does not effect the end
estimate as much as in [8]. This is explored in detail in section 4.3.

4 Evaluation

To evaluate our solution, we implemented the Chord [20] overlay in an event-
based simulator [19]. For the first set of experiments, the results are for a network
size of 5000 nodes using the King dataset [5] for message latencies. Since we do
not have the King dataset for a 5000 node topology, we derive the 5000 node
pair-wise latencies from the distance between two random points in a Euclidean
space. The mean RTT remains the same as in the King data. This technique is
the same as used in [11]. For larger network sizes, the results are for 105 nodes
using exponentially distributed message latencies with mean 5 simulation time
units. For the figures, δ = 8 ∗ mean-com means the cycle length is 8 × 5.

4.1 Epoch Length γ

We investigated the effect of δ on convergence of the algorithm. The results are
shown in Figure 1, where error= 1

n

∑n
i=1 |di − N

n |. It shows that when the ratio
between communication delay and δ is significant, e.g. δ = 0.5 secs or 8 ∗ mean-
com, the aggregate converges slowly and to a value with higher error. For cases
where the ratio is insignificant, e.g. δ = 5 secs or 24∗mean-com, the convergence
is faster and the converged value has lower error. The reason for this behaviour is
that when δ is small, the expected number of exchanges per cycle do not occur.

Since δ and γ effect convergence rate and accuracy, our solution aims at having
adaptive epoch lengths. Another benefit of using an adaptive approach as ours
is that the protocol may converge much before a predefined γ, thus sending
messages in vain. If the protocol was restarted, these extra cycles could have
been used to get updated aggregate value or include churn effects faster.

4.2 Effect of the Number of Hops

Figure 2 shows convergence of the algorithm for different values of δ and number
of hops h to get a random node. For small values of δ, e.g. 0.5 secs and 8 ∗

78 T.M. Shafaat, A. Ghodsi, and S. Haridi

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(a) hops=0, n=5000

0.001

0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(b) hops=3, n=5000

0.01

0.1

 1

 10

100

 0 10 20 30 40 50 60

Cycle

δ=0.5sec
δ=1sec

δ=5secs

(c) hops=6, n=5000

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

M
ax

 E
rr

or
 (

lo
g)

Cycle

δ=8*mean-com
δ=24*mean-com

(d) hops=0, n=105

e-04

0.001

0.01

 0.1

 1

 10

 100

1000

 0 10 20 30 40 50 60

Cycle

δ=8*mean-com
δ=24*mean-com

(e) hops=4, n=105

Fig. 1. Error for the estimate of inter-node distance d in the system

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

E
rr

or
 (

lo
g)

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)
5 hop(s)
6 hop(s)

(a) δ=0.5 sec, n=5000

e-04

0.001

0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)
5 hop(s)
6 hop(s)

(b) δ=1 sec, n=5000

e-04

0.001

0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)
5 hop(s)
6 hop(s)

(c) δ=5 secs, n=5000

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

M
ax

. E
rr

or
 (

lo
g)

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)

(d) δ=8*mean-com, n=105

e-04

0.001

0.01

 0.1

 1

 10

 100

1000

 0 10 20 30 40 50 60

Cycle

0 hop(s)
1 hop(s)
2 hop(s)
3 hop(s)
4 hop(s)

(e) δ=24*mean-com, n=105

Fig. 2. Error for the estimate of inter-node distance d in the system

mean-com, h = 0 gives best convergence. The reason for this behaviour is that
since δ is very small (thus, is comparative to communication delays), having
multiple hops will not have enough exchanges in a cycle. Thus, convergence

A Practical Approach to Network Size Estimation for Structured Overlays 79

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 1 2 3 4 5 6 7

E
st

im
at

ed
 S

iz
e

Cycle

Experiment

(a) Our modified aggregation

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 1 2 3 4 5 6 7

E
st

im
at

ed
 S

iz
e

Cycle

Experiment

(b) Aggregation Jelasity et. al. [8]

Fig. 3. Estimated size when 50% of the nodes out of 5000 fail suddenly. X-axis gives
the cycle at which the sudden death occured in the epoch.

takes longer time and the error is larger for larger values of h. On the contrary,
as we increase δ, higher values of h give convergence in lesser time and lower
error. These results also advocate to have an adaptive epoch length.

4.3 Churn

Flash Crowds. Next, we evaluated a scenario where a massive node failure
occurs. Contrary to [8] where failure of nodes with higher local estimate effects
the end estimate more than with lower local estimate, failure of any node is
equal in our protocol. The results for a scenario where 50% of the nodes fail
at different cycles of an epoch is shown in Figure 3. Our modified aggregation
solution, Fig. 3(a), is not as severly affected by the sudden death as the original
Aggregation algorithm, fig. 3(b). Infact, in some experiments with Aggregation,
the estimate became infinite (not shown in the figure). This happens when all
the nodes with non-zero local estimates fail. For our solution, the effect of a
sudden death is already negligible if the nodes crash after the third cycle.

Continuous Churn. We ran simulations for a scenario with churn, where nodes
join and fail. The results are shown in figure 4, 5 and 7. The results are for
extreme churn cases, i.e. 50% nodes fail within a few cycles and afterwards, 50%
nodes join within a few cycles. The graphs show how the estimation follows the
actual network size. The standard deviation of level 2 is shown as vertical bars,
which depicts that all nodes estimate the same size. The standard deviation
is high only when a new epoch starts, because while evaluating the mean and
standard deviation, some nodes have moved to the new epoch, while others are
still in the older epoch. The estimate at level 1 converges to the actual size faster
than level 2, but the estimates has higher variance as the standard deviation for
level 1 (not shown) is higher than for level 2. Figure 5 also shows that compared
to h = 0, higher values of h follow the trend of the actual size faster.

Next, we simulated a network of size 4500 and evaluated our algorithm under
continous churn. In each cycle, we failed some random nodes and joined new
nodes. As explained in section 3, new nodes do not participate in the algorithm

80 T.M. Shafaat, A. Ghodsi, and S. Haridi

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120 140 160 180 200

N
et

w
or

k
si

ze

Cycle

Actual size
Est. level 2
Est. level 1

(a) hops=0

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120 140 160 180 200

N
et

w
or

k
si

ze

Cycle

Actual size
Est. level 2
Est. level 1

(b) hops=1

Fig. 4. Mean estimated size by each node with standard deviation

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100

N
et

w
or

k
si

ze

Cycle

Actual size
0 hops
1 hops
2 hops
3 hops
4 hops
5 hops

Fig. 5. Mean estimated size for different
values of h for level 2. Gives a comparison
of how fast the nodes estimation follows
the real network size.

 4200

 4300

 4400

 4500

 4600

 4700

 4800

 0 5 10 15 20

E
st

im
at

ed
 S

iz
e

%-age nodes substituted per cycle

Experiment

Fig. 6. Estimated network size for 4500
nodes under continuous churn. X-axis
gives the percentage of churn events
(joins+failures) that occur in each cycle.

till the next epoch starts, yet they can forward requests. Figure 6 shows the
results. The plotted dots correspond to the converged mean estimate after 15
cycles for each experiment. The x-axis gives the percentage of churn events,
including both failures and joins, that occur in each cycle. Thus, 10% means
that 4500 × 10

100 × 15 churn events occured before the plotted converged value.
Figure 6 shows that the algorithm handles continous churn reasonably well.

5 Related Work

Network size estimation in the context of peer-to-peer systems is challenging
as these systems are completely decentralized, nodes may fail anytime, the net-
work size varies dynamically over time, and the estimation algorithm needs to
continuously update its estimation to reflect the current number of nodes.

A Practical Approach to Network Size Estimation for Structured Overlays 81

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250

N
et

w
or

k
si

ze
 (

10
5)

Cycle

Actual size
Est. level 2
Est. level 1

(a) hops=0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50 100 150 200 250

N
et

w
or

k
si

ze
 (

10
5)

Cycle

Actual size
Est. level 2
Est. level 1

(b) hops=1

Fig. 7. Mean estimated size by each node with standard deviation

Merrer et. al. [17] compare three existing size estimation algorithms, Sample
& Collide [15], Hops Sampling [10] and Aggregation [8], which are representative
of three main classes of network size estimation algorithms. Their study yields
that although Aggregation is expensive, it produces the most accurate results.
Aggregation also has the additional benefit that the estimamte is available on
all nodes compared to only at the initiator in the case of Sample & Collide and
Hops Sampling. Our work can be seen as an extension of Aggregation, to handle
its shortcomings and extend it to non-random topologies, such as structured
overlay networks.

The work by Horowitz et. al. [6] is similar to ours in the sense that they also
utilize the structure of the system. They use a localized probabilistic technique
to estimate the network size by maintaining a structure: a logical ring. Each node
estimates the network size locally based on the estimates of its neighbours on the
ring. While their technique has less overhead, the estimates are not accurate, the
expected accuracy being in the range n/2 · · ·n. Their work has been extended
by Andreas et. al. [2] specifically for Chord, yet the extended work also suffers
similar inaccuracy range for the estimated size. Mahajan et. al. [13] also estimate
the network size through the density of node identifiers in Pastry’s leafset, yet
they neither prove any accuracy range, nor provide any simulation results to
show the effectiveness of their technique.

Kempe et. al. [9] have also suggested a gossip-based aggregation scheme, yet
their solution focuses only on push-based gossiping. Using push-based gossiping
complicates the update and exchange process as a normalization factor needs
to be kept track of. On the same, as noted by Jelasity et. al. [8], push-based
gossiping suffers from problems when the underlying directed graph used is not
strongly connected. Thus, we build our work on push-pull gossip-based aggre-
gation [8]. Similarly, to estimate the network size, Kempe et. al. also propose
that one node should initialize its weight to 1, while the other nodes initialize
to weight 0, making it highly sensitive to failures early in the algorithm.

The authors of Viceroy [14] and Mercury [1] mention that a nodes distance
to its successor can be used to calculate the number of nodes in the system,

82 T.M. Shafaat, A. Ghodsi, and S. Haridi

but provide no reasoning that the value always converges exactly to the correct
value, and thus that their estimate is unbiased.

6 Conclusion

Knowledge of the current network size of a structured p2p system is a prime
requirement for many systems, which prompted to finding solutions for size esti-
mation. Previous studies have shown that gossip-based aggregation algorithms,
though being expensive, produce accurate estimates of the network size. We have
demonstrated the shortcomings in existing aggregation approaches to network
size estimation and have presented a solution that overcomes the deficiencies. In
this paper, we have argued for an adaptive approach to convergence in gossip-
based aggregation algorithms. Our solution is resilient to massive node failures
and is aimed to work on non-random topologies such as structured overlay net-
works.

References

1. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: Supporting Scalable Multi-
Attribute Range Queries. In: Proceedings of the ACM SIGCOMM 2004 Symposium
on Communication, Architecture, and Protocols, OR, USA. ACM Press, New York
(2004)

2. Binzenhöfer, A., Staehle, D., Henjes, R.: On the fly estimation of the peer pop-
ulation in a chord-based p2p system. In: 19th International Teletraffic Congress
(ITC19), Beijing, China (September 2005)

3. Ghodsi, A.: Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden (De-
cember 2006)

4. Godfrey, P.B., Stoica, I.: Heterogeneity and Load Balance in Distributed Hash Ta-
bles. In: Proc. of the 24th Annual Joint Conf. of the IEEE Computer and Communi-
cations Societies (INFOCOM 2005), FL, USA. IEEE Comp. Society, Los Alamitos
(2005)

5. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pp. 5–18. ACM, New York (2002)

6. Horowitz, K., Malkhi, D.: Estimating network size from local information. Infor-
mation Processing Letters 88(5), 237–243 (2003)

7. Jelasity, M., Kowalczyk, W., van Steen, M.: Newscast Computing. Technical Report
IR–CS–006, Vrije Universiteit (November 2003)

8. Jelasity, M., Montresor, A., Babaoglu, Ö.: Gossip-based Aggregation in Large Dy-
namic Networks. ACM Trans. on Computer Systems (TOCS) 23(3) (August 2005)

9. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: 44th Symp. on Foundations of Computer Science, FOCS (2003)

10. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., Demers, A.J.: Decentralized
schemes for size estimation in large and dynamic groups. In: 4th IEEE International
Symp. on Network Computing and Applications (NCA 2005), pp. 41–48 (2005)

A Practical Approach to Network Size Estimation for Structured Overlays 83

11. Li, J., Stribling, J., Morris, R., Kaashoek, M.F.: Bandwidth-efficient management
of DHT routing tables. In: Proc. of the 2nd USENIX Symp. on Networked Systems
Design and Implementation (NSDI 2005), MA, USA, May 2005, USENIX (2005)

12. Liben-Nowell, D., Balakrishnan, H., Karger, D.R.: Analysis of the Evolution of
Peer-to-Peer Systems. In: Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing (PODC 2002), pp. 233–242. ACM Press, New
York (2002)

13. Mahajan, R., Castro, M., Rowstron, A.: Controlling the Cost of Reliability in
Peer-to-Peer Overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 21–32. Springer, Heidelberg (2003)

14. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation
of the butterfly. In: Proceedings of the 21st Annual ACM Symposium on Principles
of Distributed Computing (PODC 2002). ACM Press, New York (2002)

15. Massoulié, L., Merrer, E.L., Kermarrec, A., Ganesh, A.J.: Peer counting and sam-
pling in overlay networks: random walk methods. In: Proc. of the 25th Annual
ACM Symp. on Principles of Distributed Computing (PODC), pp. 123–132 (2006)

16. Maymounkov, P., Mazieres, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

17. Merrer, E.L., Kermarrec, A.-M., Massoulie, L.: Peer to peer size estimation in
large and dynamic networks: A comparative study. In: Proc. of the 15th IEEE
Symposium on High Performance Distributed Computing, pp. 7–17. IEEE, Los
Alamitos (2006)

18. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001.
LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

19. SicsSim (2008), http://dks.sics.se/iwsos08sizeest/
20. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proceedings
of the ACM SIGCOMM 2001 Symposium on Communication, Architecture, and
Protocols, San Deigo, CA, August 2001, pp. 149–160. ACM Press, New York (2001)

APPENDIX A. PUBLICATIONS

A.4 The Relaxed-Ring: a Fault-Tolerant Topol-

ogy for Structured Overlay Networks

SELFMAN Deliverable Year Three, Page 327

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

Parallel Processing Letters
c© World Scientific Publishing Company

THE RELAXED-RING: A FAULT-TOLERANT TOPOLOGY FOR
STRUCTURED OVERLAY NETWORKS

BORIS MEJÍAS AND PETER VAN ROY

Université catholique de Louvain, Belgium

firstname.lastname@uclouvain.be

Received May 2008

Revised July 2008
Communicated by P. Fragopoulou

ABSTRACT

Fault-tolerance and lookup consistency are considered crucial properties for building

applications on top of structured overlay networks. Many of these networks use the
ring topology for the organization or their peers. The network must handle multiple

joins, leaves and failures of peers while keeping the connection between every pair of

successor-predecessor correct. This property makes the maintenance of the ring very
costly and temporarily impossible to achieve, requiring periodic stabilization for fixing

the ring. We introduce the relaxed-ring topology that does not rely on a perfect successor-

predecessor relationship and it does not need any periodic maintenance. Leaves and
failures are considered as the same type of event providing a fault-tolerant and self-

organizing maintenance of the ring. Relaxed-ring’s limitations with respect to failure

handling are formally identified, providing strong guarantees to develop applications on
top of the architecture. Besides permanent failures, the paper analyses temporary failures

and false suspicions caused by broken links, which are often ignored.

Keywords: peer-to-peer, network topology, relaxed-ring, self-configuration, fault-
tolerance

1. Introduction

Building decentralized applications requires several guarantees from the underlaying
peer-to-peer network. Fault-tolerance and consistent lookup of resources are crucial
properties that a peer-to-peer system must provide. Structured overlay networks
using a Chord-like ring topology [15] are a popular choice when the application
needs efficient routing, lookup consistency and accessibility of resources. According
to [7], the ring topology is one of the most resilient to failures, and it is competitive
with any other structured overlay network with respect to reaching any other node
in a small amount of steps.

The ring topology offers many good properties as we just mentioned, but its
maintenance presents several challenges in order to provide lookup consistency at
any time. Chord itself presents temporary inconsistencies with peers massively join-

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

2 Parallel Processing Letters

ing the network, even in fault-free environments, as we will discuss in section 4. A
stabilization protocol must be run periodically to fix these inconsistencies increasing
the load of the network. One possible solution is presented by DKS [6], offering an
atomic join/leave algorithm based on a locking mechanism. Even when this approach
offers strong guarantees, we consider locks extremely restrictive for a dynamic net-
work based on asynchronous communication. Every lookup request involving the
critical range of keys must be suspended in presence of a join/leave event in order
to guarantee consistency. Leaving peers are not allowed to leave the network until
they are granted the relevant locks. Given that, crashing peers just leave the network
without respecting the protocol of the locking mechanism breaking the guarantees
of the system. Another critical problem for performance is presented when a peer
crashes while some joining or leaving peer is holding its lock.

The problem with the maintenance of the ring is that routing algorithms and cor-
rectly assigning responsibilities over keys, rely on the perfect relationship between
predecessor and successor. But, every join, leave or failure, brakes temporary this
relationship. In order to solve this problem, existing algorithms require the agree-
ment of three nodes to perform a join or leave operation. Managing three nodes
at the same time can create unexpected problems, mainly because transitivity of
communication cannot be assumed. If node a can talk to b, and b can talk to c, it
does not mean that a can talk to c. This problem is equivalent to false suspicions of
failure. Consider that a, b and c are talking to each other. Suddenly, the connection
between a and c is broken. Peer a informs b about this failure, but b sees that c

is alive, meaning that a falsely suspected of c. This is why algorithm based on the
synchronized agreement of three nodes are not fault-tolerant. A recent work [14]
conclude that lookup inconsistencies are mainly caused by false suspicions. Churn
does not introduce inconsistencies if periodic stabilization is triggered often enough,
but this very costly as it will be shown in Section 4.

The contribution of this work is an algorithm that only needs the agreement of
two nodes at each stage of the maintenance of the ring. By working with only two
nodes in every step we have arrived to the Relaxed-Ring topology, which allows a
ring to be partially open. This approach simplifies the joining algorithm dividing
it into two steps involving two peers each. Lookup consistency is guaranteed after
every step. The algorithm provides a failure recovery mechanism where only two
nodes interact in every step. Graceful leaves are consider a special case of failure,
and therefore, they are equivalent events. Because of this, there is no need for a
graceful leaving protocol. This is useful for end-users, because they can just shut
down their application letting the network to handle their departure. Fault-tolerance
is achieved at the level of permanent failures, temporary failures and false suspicions,
which results from broken links, which are often ignored.

The Relaxed-Ring adds robustness to the network in presence of churn and
failures. It simplifies the arrival and departure of peers by dividing these event into
smaller and correct steps. Due to the relaxed topology, the routing performance is
shortly degraded. On the other hand, there is no need for periodic maintenance of

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 3

the ring, because the Relaxed-Ring remains correct after every step, reducing the
cost of maintenance. Part of this contribution has been published in [11], where the
Relaxed-Ring was presented from the point of view of its design as a self-managing
system. This work is focused on the correctness of the algorithm through analytical
results, and an empirical validation with simulations.

The next section gives more details of the related work. Section 3 describes the
relaxed-ring architecture and its guarantees. We continue with further analysis of
the topology. Evaluation of the relaxed-ring is presented in section 4, ending with
conclusions and future work.

2. The problem and related work

Chord is the canonical structured overlay network using ring topology. Its algorithms
for ring maintenance handling joins and leaves have been already studied [6] showing
problems of temporary inconsistent lookups, where more that one node appears to
be the responsible for the same key. Peers need to trigger periodic stabilization
in order to fix inconsistencies. Existing analyses conclude that the problem comes
from the fact that joins and leaves are not atomic operations, and they always need
the synchronization of three peers, which is hard to guarantee with asynchronous
communication, which is inherent to distributed programming.

Existing solutions [8, 9] introduce locks in the algorithms in order to provide
atomicity of the join and leave operations, removing the need for a periodic stabi-
lization. Unfortunately, locks are also hard to manage in asynchronous systems, and
that is why these solutions only work on fault-free environments, which is not real-
istic. Another problem with these approaches is that they are not starvation-free,
and therefore, it is not possible to guarantee liveness. A better solution using locks
is provided by Ghodsi [6], using DKS [2] for its results. This approach is better be-
cause it gives a simpler design for a locking mechanism and proves that no deadlock
occurs. It also guarantees liveness by proving that the algorithm is starvation-free.
Unfortunately, the proofs are given in fault-free environments.

The DKS algorithm for ring maintenance goes already in the right direction
because it request the locks of only two peers instead of three (as in [8, 9]). It works
as follows. Every peer holds a lock that can be exclusively taken by any peer. The
lock grants access to update the pointers of the peer. A joining/leaving peer needs
to get its own lock and its successor’s lock. Let us consider peer q joining in between
p and r. Peer q first has to get its own lock and then the lock of r, its successor
candidate. This is sufficient for q to update its predecessor and successor, to update
r’s predecessor, and to update p’s successor pointer. Note that p cannot change its
pointers because that would require getting r’s lock, which is already taken by q.
The situation of q leaving is analogous, with the difference that p show acquires q’s
lock in order to perform any action. This mechanism guarantees that if the relevant
locks are acquired, the join/leave can be performed atomically.

One of the problem with the algorithm is that even when it only requires the

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

4 Parallel Processing Letters

lock of two peers, it still requires the atomic update of the pointers of three peers.
While this three changes are made, no lookup involving peers p, q or r is allowed. A
more complex problem is that the algorithm relies on peers gracefully leaving the
ring, which is neither efficient nor fault-tolerant. The algorithm becomes very slow
if a peer holding a relevant lock crashes. How can the other peers continue? The
same problem occurs if a locked peer stop responding. Another problems is that a
joining peer q that acquires its own lock and r’s lock, is not guaranteed to establish
communication with p in order to change its successor pointer.

We are not aware of other approaches solving the problem of atomic join/leave
with failure recovery, or other approaches targeting the elimination of periodic sta-
bilization.

3. The Relaxed-Ring

The relaxed-ring topology has evolved from the Peer-to-Peer System (P2PS) [5],
and it is implemented using the Mozart-Oz programming system [13]. As any over-
lay network built using ring topology, in our system every peer has a successor,
predecessor, and fingers to jump to other parts of the ring in order to provide effi-
cient routing. Ring’s key-distribution is formed by integers from 0 to N −1 growing
clockwise. For the description of the algorithms we will use event-driven notation.
When a peer receives a message, the message is triggered as an event in the ring
maintenance tier.

Range between keys, such as (p, q] follows the key distribution clockwise, so it
is possible that p > q, and then the range goes from p to q passing through 0.
Parentheses ‘(’ and ‘)’ excludes a key from the range and, ‘[’ and ‘]’ includes it.

As we previously mentioned, one of the problem we have observed in existing
ring maintenance algorithms is the need for an agreement between three peers to
perform a join/leave action. We provide an algorithm where every step only needs
the agreement of two peers, which is guaranteed with a point-to-point communi-
cation. In the specific case of a join, instead of having one step involving 3 peers,
we have two steps involving 2 peers. Lookup consistency is guaranteed after every
step, therefore, the network can still answer lookup requests while simultaneous
nodes are joining the network. Another relevant difference is that we do not rely
on graceful leaving of peers. We treat leaves and failures as the same event. This is
because failure handling already includes graceful leaves as a particular case.

Normally the overlay is a ring with predecessor and successor knowing each
other. If a new node joins in between these two peers, it introduces two changes.
The first one is to contact the successor. This step already allows the new peer
to be part of the network through its successor. The second step, contacting the
predecessor, will close the ring again. Following this reasoning, our first invariant
is that every peer is in the same ring as its successor. Therefore, it is enough for
a peer to have connection with its successor to be considered inside the network.
Secondly, the responsibility of a peer starts with the key of its predecessor, excluding

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 5

predecessor’s key, and it finishes with its own key. Therefore, a peer does not need
to have connection with its predecessor, but it must know its key. These are two
crucial properties that allow us to introduce the relaxation of the ring. When a peer
cannot connect to its predecessor, it forms a branch from the “perfect ring”. Figure
1 shows a fraction of a relaxed ring where peer t is the root of a branch, and where
the connection between peers q and p is broken.

Fig. 1. A branch on the relaxed-ring created because peer q cannot establish communication with

p. Peers p and s consider t as successor, but t only considers s as predecessor.

Having the relaxed-ring architecture, we introduce a new principle that modifies
the routing mechanism of Chord. The principle is that a peer p always forwards
the lookup request to the possible responsible, even if p is the predecessor of such
responsible. Considering the example in figure 1, p may think that t is the responsible
for keys in the interval (p, t], but in fact, there are three other nodes involved in
this range. In Chord, p would just reply t as the result of a lookup for key q. In the
Relaxed-Ring, the p forwards the message to t. When the message arrives to node t,
it is sent backwards to the branch, until it reaches the real responsible. Forwarding
the request to the responsible is a conclusion we have already presented in [11], and
it has been recently confirmed by Shafaat [14].

Introducing branches into the lookup mechanism modifies the guarantees about
proximity offered by Chord. Reaching the root of a branch takes O(logk(n)) hops
as in Chord, because the root of the branch belongs to the core-ring. Then, the
lookup will be delegated a maximum of b hops, where b corresponds to the size of
the branch. Then, lookup on the relaxed-ring topology corresponds to logk(n) + b.
We will see in section 4 that the average value b is smaller than 1 for large networks.

Before continuing with the description of the algorithms that maintain the
relaxed-ring topology, let us define what do we mean by lookup consistency.

Def. Lookup consistency implies that at any time there is only one responsible
for a particular key k, or the responsible is temporary not available.

Algorithm 1 describes the initial procedure of a node that wants to join the ring.
First, it gets its own identifier from a random key-generator. In the implementation,
identifiers also represent network references. For simplicity of the description of the
algorithms, we will just use the key as identifier and as connection reference. Initially,

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

6 Parallel Processing Letters

the node does not have a successor (succ), so it does not belong to any ring, and it
does not know its predecessor (pred), so obviously, it does not have responsibilities.
For resilient purposes, the node uses two sets: a successor list (succlist) and an
old-predecessor sets (predlist). Having an access point, that can be any peer of the
ring, the new peer triggers a lookup request for its own key in order to find its best
successor candidate. This is quite usual procedure for many Chord-alike systems.
When the responsible of the key contacts the new peer, the event reply lookup is
triggered in the new peer. This event will generate a joining message that will be
discussed in section 3.1.

Algorithm 1 Starting a peer and the lookup algorithm
1: procedure init(accesspoint) is
2: self := getRandomKey()
3: succ := nil
4: pred := nil
5: predlist := ∅
6: succlist := ∅
7: send 〈 lookup | self, self 〉 to accesspoint

8: end procedure

9: upon event 〈 lookup | src, key 〉 do
10: if (key ∈(pred, self]) then
11: send 〈 reply lookup | self 〉 to src

12: else
13: p := getBetterResponsible(key)
14: send 〈 lookup | src, key 〉 to p

15: end if
16: end event

17: upon event 〈 reply lookup | i 〉 do
18: send 〈 join | self 〉 to i

19: end event

The lookup event verifies if the current node is responsible for key. If it is not,
it picks the best responsible for the key from its routing table, and forwards the
request, passing the key and the original source src. Choosing the best responsible
of a key follows the same mechanism as Chord, with the extra consideration of
rooting to the branch when needed, as explained above. One way to decide that a
lookup must jump into the branch is by adding a flag to the message called last.
In the case of Figure 1, when p forwards the messages to t, it sets the flag to true.
Then, the function getBetterResponsible will decide to forward to the predecessor,
jumping in to the branch.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 7

3.1. The join algorithm

As we have previously mentioned, the relaxed-ring join algorithm is divided in two
steps involving two peers each, instead of one step involving three peers as in existing
solutions. The whole process is depicted in figure 2, where node q joins in between
peers p and r. Following algorithm 1, r replies the lookup to q, and q send the join

message to r triggering the joining process.
The first step is described in algorithm 2, and following the example, it involves

peer q and r. This step consists of two events, join and join ok. Since this event
may happen simultaneously with other joins or failures, r must verify that it has a
successor, respecting the invariant that every peer is in the same ring as its successor.
If it is not the case, q will be requested to retry later.

Fig. 2. The join algorithm.

If it is possible to perform the join, peer r verifies that peer q is better predecessor
than p. Function betterPredecessor checks if the key of the joining peer is in the
range of responsibility of the successor candidate. In the example, r verifies that
q ∈ (p, r]. If that is the case, p becomes the old predecessor and is added to the
predlist for resilient purposes. The pred pointer is set to the joining peer, and the
message join ok is send to it.

It is possible that the responsibility of r has change between the events
reply lookup and join. In that case, q will be redirected to the corresponding peer
with the goto message, eventually converging to the responsible of its key.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

8 Parallel Processing Letters

When the event join ok is triggered in the joining peer q, the succ pointer is
set to r and succlist is initialized. Then, q must set its pred pointer to p acquiring
its range of responsibility. At this point the joining peer has a valid successor and
a range of responsibility, and then, it is considered to be part of the ring, even if
p is not yet notified about the existence of q. This is different than all other ring
networks we have studied.

Note that before updating the predecessor pointer, peer q must verify that its
predecessor pointer is nil, or that it belongs to its range of responsibility. This
second condition is only used in case of failure recovery and it will be described in
section 3.3. In a regular join, pred pointer at this stage is always nil.

Once q set pred to p, it notifies p about its existence with message new succ,
triggering the second step of the algorithm.

The second step of the join algorithm basically involves peers p and q, closing
the ring as in a regular ring topology. The step is described in algorithm 3. The
idea is that when p is notified about the join of q, it updates its successor pointer
to q (after verifying that is a correct join), and it updates its successor list with the
new information. Functionally, this is enough for closing the ring. An extra event
has been added for completeness. Peer p acknowledges its old successor r, about
the join of q. When join ack is triggered at peer r, this one can remove p from the
resilient predlist.

If there is a communication problem between p and q, the event new succ will
never be triggered. In that case, the ring ends up having a branch, but it is still able
to resolve queries concerning any key in the range (p, r]. This is because q has a valid
successor and its responsibility is not shared with any other peer. It is important
to remark the fact that branches are only introduced in case of communication
problems. If q can talk to p and r, the algorithm provides a perfect ring.

No distinction is made concerning the special case of a ring consisting in only
one node. In such a case, succ and pred will point to self and the algorithm works
identically. The algorithm works with simultaneous joins, generating temporary or
permanent branches, but never introducing inconsistencies. Failures are discussed
in section 3.3. The following theorem states the guarantees of the relaxed ring
concerning the join algorithm.

Theorem 1. The relaxed-ring join algorithm guarantees consistent lookup at any
time in presence of multiple joining peers.

Proof.
Let us assume the contrary. There are two peers p and q responsible for key k. If p

and q have the same successor is not relevant, because both peers would forward the
lookup to the successor, and the successor can resolve the conflict. The problem is
when p and q have the same predecessor j, sharing the same range of responsibility.
This means that k ∈ (j, p] and k ∈ (j, q] introducing a inconsistency because of the
overlapping or ranges. Let us see now that the algorithm prevents two nodes from

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 9

Algorithm 2 Join step 1 - adding a new node
1: upon event 〈 join | i 〉 do
2: if succ == nil then
3: send 〈 try later | self 〉 to i

4: else
5: if betterPredecessor(i) then
6: oldp := pred
7: pred := i
8: predlist := {oldp} ∪ {predlist}
9: send 〈 join ok | oldp, self, succlist 〉 to i

10: else if (i < pred) then
11: send 〈 goto | pred 〉 to i

12: else
13: send 〈 goto | succ 〉 to i

14: end if
15: end if
16: end event

17: upon event 〈 join ok | p, s, sl 〉 do
18: succ := s
19: succlist := {s} ∪ sl \ getLast(sl)
20: if (pred == nil) ∨ (p ∈ (pred, self)) then
21: pred := p
22: send 〈 new succ | self, succ, succlist 〉 to pred

23: end if
24: end event

25: upon event 〈 goto | j 〉 do
26: send 〈 join | self 〉 to j

27: end event

having the same predecessor. The join algorithm updates the predecessor pointer
upon events join and join ok. In the event join, the predecessor is set to a new
joining peer j. This means that no other peer was having j as predecessor because
it is a new peer. Therefore, this update does not introduce any inconsistency. Upon
event join ok, the joining peer j initiates its responsibility having a member of the
ring as predecessor, say i. The only other peer that had i as predecessor before is the
successor of j, say p, which is the peer that triggered the join ok event. This message
is sent only after p has updated its predecessor pointer to j, and thus, modifying
its responsibility from (i, p] to (j, p], which does not overlap with j’s responsibility
(i, j]. Therefore, it is impossible that two peers has the same predecessor.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

10 Parallel Processing Letters

Algorithm 3 Join step 2 - Closing the ring
1: upon event 〈 new succ | s, olds, sl 〉 do
2: if (succ == olds) then
3: oldsucc := succ
4: succ := s
5: succlist := {s} ∪ sl \ getLast(sl)
6: send 〈 join ack | self 〉 to oldsucc

7: send 〈 upd succlist | self, succlist 〉 to pred

8: end if
9: end event

10: upon event 〈 join ack | op 〉 do
11: if (op ∈ predlist) then
12: predlist := predlist \ {op}
13: end if
14: end event

3.2. Reducing size of branches

Let us consider again figure 1. If nodes keeps on joining as predecessors of peer t,
the branch will increase its size, even if they could have a good connection with
peer p. An improvement on the join algorithm will be that node t sends a hint
message to node p avoid new joining peer. If p cannot talk to q, it does not mean
that it can not talk to r or s. If the p can contact the hinted node, it will add it
as its successor, making the branch shorter. This hint message will not modify the
predecessor pointers of r or s. Peer t uses its predlist list for sending hints.

3.3. Failure Recovery

In order to provide a robust system that can be used on the Internet, it is unrealistic
to assume a fault-free environment or perfect failure detectors, meaning complete
and accurate. We assume that every faulty peer will eventually be detected (strongly
complete), and that a broken link of communication does not implies that the other
peer has crashed (inaccurate). To terminate failure recovery algorithms we assume
that eventually any inaccuracy will disappear (eventually strongly accurate). This
kind of failure detectors are feasible to implement on the Internet.

When the point-to-point communication layer detects a failure of one of the
nodes, the crash event is triggered as it is described in algorithm 4. The detected
node is removed from the resilient sets succlist and predlist, and added to a crashed

set. If the detected peer is the successor, the recovery mechanism is triggered. The
succ pointer is set to nil to avoid other peers joining while recovering from the
failure, and the successor candidate is taken from the successors list. The variable

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 11

succ candidate should be initialized to nil in the init event of Algorithm 1, but it
was not included to avoid confusion at that part of the analysis of the algorithm.
The real value is initialized at line 7 of the crashed event. The function getF irst

returns the peer with the first key found clockwise, and removes it from the set. It
returns nil if the set is empty. Function getLast is analogous. Note that as every
crashed peer is immediately removed from the resilient sets, these two functions
always return a peer that appears to be alive at this stage. The successor candidate
is contacted using the join message, triggering the same algorithm as for joining.
If the successor candidate also fails, a new candidate will be chosen. This is verified
in the if condition.

If a peer p detects that its predecessor pred has crashed, it will not trigger the
recovery mechanism. It is pred’s predecessor who will contact p. In case that no peer
contacts p for recovery, p could guess a predecessor candidate from its predlist, at
the risk of breaking lookup consistency, but closing the ring again. We will not
explore this case further in this paper because it does not violate our definition of
consistent lookup. To solve it, it is necessary to set up a time-out to replace the
faulty predecessor by the predecessor candidate, but it would always take the risk
of a reacting to a false suspicion.

When a link recovers from a temporary failure, the alive event is triggered.
This can be implemented by using watchers or a fault stream per distributed entity
[4]. In this case, it is enough to remove the peer from the crashed set. This will
terminate any pending recovery algorithm. The faulty peer will trigger by itself the
corresponding recovery events with the relevant peers.

Algorithm 4 Failure recovery
1: upon event 〈 crash | p 〉 do
2: succlist := succlist \ {p}
3: predlist := predlist \ {p}
4: crashed := {p} ∪ crashed
5: if (p == succ) ∨ (p == succ candidate) then
6: succ := nil
7: succ candidate := getFirst(succlist)
8: send 〈 join | self 〉 to succ candidate

9: end if
10: end event

11: upon event 〈 alive | p 〉 do
12: crashed := crashed \ {p}
13: end event

Figure 3 shows the recovery mechanism triggered by a peer when it detects that
its successor has a failure. The figure depicts two equivalent situations. The above

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

12 Parallel Processing Letters

Fig. 3. Failures simple to handle: (a) In a branch, q and s detect that r has crashed. Only q

triggers failure recovery. (b) Pers p and r detects q has crashed. Peer p triggers the recovery

mechanism.

one corresponds to a regular crash of a node in a perfect ring. The situation below
shows that a crash in a branch is equivalent as long as there is a predecessor that
detects the failure.

Having now the knowledge of the crashed set, algorithm 5 gives complete defi-
nition of the function betterPredecessor used in algorithm 2. Since the join event
is used both for a regular join and for failure recovery, the function will decides if
a predecessor candidate is better than the current one if it belongs to its range of
responsibility, or if the current pred is detected as a faulty peer.

Algorithm 5 Verifying predecessor candidate
1: function betterPredecessor(i) is
2: if (i ∈ (pred, self)) then
3: return (true)
4: else
5: return (pred ∈ crashed)
6: end if
7: end function

Knowing the recovery mechanism of the relaxed-ring, let us come back to our
joining example and check what happens in cases of failures. If q crashes after the
event join, peer r still has p in its predlist for recovery. If q crashes after sending
new succ to p, p still has r in its succlist for recovery. If p crashes before event
new succ, p’s predecessor will contact r for recovery, and r will inform this peer
about q. If r crashes before new succ, peers p and q will contact simultaneously r’s
successor for recovery. If q arrives first, everything is in order with respect to the
ranges. If p arrives first, there will be two responsible for the ranges (p, q], but one
of them, q, is not known by any other peer in the network, and it fact, it does not
have a successor, and then, it does not belong to the ring. Then, no inconsistency
is introduced in any case of failure. In case of a network partition, these peers will
get divided in two or three groups depending on the partition. In such case, they
will continue with the recovery algorithm in their own rings. Global consistency is

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 13

impossible to achieve, but every ring will be consistent in itself.
Since failures are not detected by all peers at the same time, redirection during

recovery of failures may end up in a faulty node. The correct version of the goto

event is described in algorithm 6. If a peer is redirected to a faulty node, it must
insist with its successor candidate. Since failure detectors are strongly complete, the
algorithm will eventually converge to the correct peer.

Algorithm 6 Modified goto
1: upon event 〈 goto | p 〉 do
2: if (p /∈ crashed) then
3: send 〈 join | self 〉 to p

4: else
5: send 〈 join | self 〉 to succ candidate

6: end if
7: end event

Figure 4 shows two simultaneous crashes together with a new peer joining before
the peer used for recovery. If the recovery join message arrives first, the ring will
be fixed before the new peer joins, resulting in a regular join. If the new peer starts
the first step of joining before the recovery, it will introduce a temporary branch
because of its impossibility of contacting the faulty predecessor. When the recovery
join message arrive, the recovering peer will contact the new joining peer, fixing
the ring and removing the branch.

Fig. 4. Multiple failure recovery and simultaneous join. Peer p detects the crash of its successor
q. First successor candidate r has also crashed. Peer p contacts t at the same time peer s tries to

join the network. Both join messages are the same.

There are failures more difficult to handle than the ones we have already anal-
ysed. Figure 5 depicts a broken link and the crash of the tail of a branch. In the case
of the broken link (inaccuracy), the failure recovery mechanism is triggered, but the
successor of the suspected node will not accept the join message. The described
algorithm will eventually recover from this situation when the failure detector even-
tually provides accurate information.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

14 Parallel Processing Letters

Fig. 5. Failures difficult to handle: (a) failure of the tail of branch, nobody is responsible for
range (p, q] (b) broken link generating a false suspicion of p about q.

In the case of the crash of the node at the tail of a branch, there is no pre-
decessor to trigger the recovery mechanism. In this case, the successor could use
one of its nodes in the predecessor list to trigger recovery, but that could introduce
inconsistencies if the suspected node has not really failed. If the tail of the branch
has not really failed but it has a broken link with its successor, then, it becomes
temporary isolated and unreachable to the rest of the network. Having unreachable
nodes means that we are in presence of network partitioning. The following theorem
describes the guarantees of the relaxed-ring in case of temporary failures with no
network partitioning.

Theorem 2. Simultaneous failures of nodes never introduce inconsistent lookup
as long as there is no network partition.

Proof.
Every failure of a node is eventually detected by its successor, predecessor and

other peers in the ring having a connection with the faulty node. The successor
and other peers register the failure in the crashed set, and remove the faulty peer
from the resilient sets predlist and succlist, but they do not trigger any recovery
mechanism. Only the predecessor triggers failure recovery when the failure of its
successor is detected, contacting only one peer from the successor list at the time.
Then, there is only one possible candidate to replace each faulty peer, and then, it
is impossible to have two responsible for the same range of keys. If a simultaneous
join occurs (as in figure 4), there are two possible cases. If the recovery happens
first, the join will just be as regular join. If the join happens first, the successor
candidate will reject the recovery forwarding to the recovery to the new peer. This
means that only one successor candidate for recovery will be contact at the time,
preventing inconsistencies.

The problem with respect to network partition is inherent to any overlay net-
work, where a temporary uncertainty cannot be avoid, and some guarantees must be
sacrificed. A deeper analysis is provided by Ghodsi [6], and it is related to the proof
given in [3] about limitations of web services in presence of network partitioning.

Figure 6 depicts a network partition that can occur in the relaxed-ring topology.
The proof of theorem 2 is based on the fact that per every failure detected, there is

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 15

Fig. 6. The failure of the root of a branch triggers two recovery events

only one peer that triggers the recovery mechanism. In the case of the failure of the
root of a branch, peer r in the example, there are two recovery messages triggered
by peers p and q. If message from peer q arrives first to peer t, the algorithm handle
the situation without problems. If message from peer p arrives first, the branch will
be temporary isolated, behaving as a network partition introducing a temporary
inconsistency. This limitation of the relaxed-ring is well defined in the following
theorem.

Theorem 3.
Let r be the root of a branch, succ its successor, pred its predecessor, and

predlist the set of peers having r as successor. Let p be any peer in the set, so
that p ∈ predlist . Then, the crash of peer r may introduce temporary inconsistent
lookup if p contacts succ for recovery before pred. The inconsistency will involve the
range (p, pred], and it will be corrected as soon as pred contacts succ for recovery.

Proof. There are only two possible cases. First, pred contacts succ before p does
it. In that case, succ will consider pred as its predecessor. When p contacts succ,
it will redirect it to pred without introducing inconsistency. The second possible
case is that p contacts succ first. At this stage, the range of responsibility of succ

is (p, succ], and of pred is (p′, pred], where p′ ∈ [p, pred]. This implies that succ

and pred are responsible for the range (p′, pred], where in the worse case p′ = p. As
soon as pred contacts succ it will become the predecessor because pred > p, and
the inconsistency will disappear.

Theorem 3 clearly states the limitation of branches in the systems, helping de-
velopers to identify the scenarios needing special failure recovery mechanisms. Since
the problem is related to network partitioning, there seems to be no easy solution
for it. An advantage of the relaxed-ring topology is that the issue is well defined
and easy to detect, improving the guarantees provided by the system in order to
build fault-tolerant applications on top of it.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

16 Parallel Processing Letters

3.4. Resilient information

During the starting and join algorithms we have mentioned predlist and succlist for
resilient purposes. The basic failure recovery mechanism is triggered by a peer when
it detects the failure of its successor. When this happens, the peer will contact the
members of the successor list successively. The objective of the predlist is to recover
from failures when there is no predecessor that triggers the recovery mechanism.
This is expected to happen only when the tail of a branch has crashed.

Algorithm 7 describes how the update of the successor list is propagated while
the list contains new information. The predecessor list is updated only during the
join algorithm and upon failure recoveries.

Algorithm 7 Update of successor list
1: upon event 〈 upd succlist | s, sl 〉 do
2: newsl := {s} ∪ sl \ getLast(sl)
3: if (s == succ) ∧ (succlist 6= newsl) then
4: succlist := newsl
5: send 〈 upd succlist | self, succlist 〉 to pred

6: end if
7: end event

4. Evaluation

This section is dedicated to the evaluation of the relaxed-ring. We analyse four as-
pects: the amount of branches that can appear on a network, the size of branches,
the number of messages generated by the ring-maintenance protocol, and the ver-
ification of lookup consistency on unstable scenarios. The evaluation is done using
a simulator implemented in Mozart [13, 10], where every node run autonomously
on its own lightweight thread. Nodes communicate with each other by message
passing using ports. We consider that these properties make the simulator more re-
alistic. Every network is run several times using different seeds for random number
generation. Charts are built using the average values of these executions.

4.1. Branches and messages

Figure 7 shows the amount of branches that can appear on networks with 1000
to 10000 nodes. The coefficient c represents the connectivity level of the network,
where for instance c = 0.95 means that when a node contacts another one, there
is only a 95% of probability that they will establish connection. A value of c = 1.0
means 100% of connectivity. On that value, no branches are created, meaning that
the relaxed-ring behaves as a perfect ring on fault-free scenarios. The worse case
corresponds to c = 0.9. In that case, we can observe that the amount of branches

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 17

is less than 10% of the size of the network, as expected. Consider peers i and k,
where i is the current predecessor of k. If they cannot talk to each either, k will
form a branch. If another peer j joins in between i and k having good connection
with both peers, the branch disappears.

Fig. 7. Average amount of branches generated on networks with connectivity problems. Networks

where tested with peers having a connectivity factor c, representing the probability of establishing

a connection between peers, where c ∈ {0.9, 0.95, 1}.

On the contrary, if a node l joins the network between k and its successor, it
will increase the size of the branch, decreasing the routing performance. For that
reason, it is important to measure the average size of branches. If message hint,
explained in section 3.2, works well for peer l, then, the branch will remain on size
1. Having this in mind, let us analyse figure 8. The average size of branches appears
to be independent of the size of the network. The value is very similar for both
cases where the quality of the connectivity is poor. In none of the cases the average
is higher than 2 peers, which is a very reasonable value. If we want to analyse how
the size of branches degrades routing performance of the whole network, we have to
look at the average considering all nodes that belong to the core ring as providing
branches of size 0. This value is represented by the curves totalavg on the figure.
In both cases the value is smaller that 0.25. Experiments with 100% of connectivity
are not shown because there are no branches, so the average size is always 0.

How many messages are exchanged by peers in order to maintain the relaxed-ring
structure? How much is the contribution of the hint messages to the load in order
to keep branches short? These questions are answered in figure 9. We can observe
that the amount of messages increases linearly with the size of the network keeping
reasonable rates. The fault-free scenario has no hint messages as expected, but the

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

18 Parallel Processing Letters

Fig. 8. Average size of branches depending on the quality of connections: avg corresponds to
existing branches and totalavg represents how the whole network is affected.

Fig. 9. Number of messages generated by the relaxed-ring maintenance. Three curves labeled total

represent the total amount of messages exchanged between all peers depending on the connectivity
coefficient. Curves labeled hint represent the contribution of hint messages to the total amount.

total amount of messages is still pretty similar to the cases where connectivity is
poor. This is because there are less normal join messages in case of failures, but this
amount is compensated by the contribution of hint messages. We observe anyway
that the contribution of hint messages remains low.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 19

4.2. Comparison with Chord

We have also implemented Chord in our simulator. Experiments were only run
in fault-free scenarios with full connectivity between peers, and thus, in better
conditions than our experiments with the relaxed-ring. Even though, we observed
many lookup inconsistencies on high churn. To reduce inconsistency, we trigger
periodic stabilization on all nodes at different rates. The best results appeared after
triggering stabilization after the join of every 4 nodes. We call this value stabilization
rate. As seen in figure 10, the largest the network, the less inconsistencies are found.
An inconsistency is detected when two reachable nodes are signalized as responsible
for the same key. We can observe that stabilization rates of 5 converges pretty fast to
0 inconsistencies. Stabilization every 6 new joining peers only converge on networks
of 4000 nodes. On the contrary, rate values of 7 and 8 presents immediately a high
and non-decreasing amount of inconsistencies. Those networks would only converge
if churn is reduced to 0. These values are compared with the worse case of the
relaxed-ring (connectivity factor 0.9) where no inconsistencies where found.

We have observed that lookup consistency can be maintained in Chord at very
good levels if periodic stabilization is triggered often enough. The problem is that
periodic stabilization demands a lot of resources. Figure 11 depicts the load related
to every different stabilization rate. Logically, the worse case corresponds to most
frequently triggered stabilization. If we only consider networks until 3000 nodes,
it seems that the cost of periodic stabilization pays back for the level of lookup
consistency that it offers, but this cost seems too expensive with larger networks.

In any case, the comparison with the relaxed-ring is considerable. While the
relaxed-ring does not pass 5× 104 messages for a network of 10000 nodes, a stabi-
lization rate of 7 on a Chord network, starts already at 2 × 105 with the smallest
network of 1000 nodes. Figure 11 clearly depicts the difference on the amount of
messages sent. The point is that there are too many stabilization messages triggered
without modifying the network. On the contrary, every join on the relaxed-ring gen-
erate more messages, but they are only triggered when they are needed.

5. Future Work

Apart from the simulator used for the validation, we have tested the Relaxed-Ring
using a real implementation running distributed processes on small networks. We
are currently testing our implementation on PlanetLab [1] to address more aggres-
sive environments, and where we expect to report more about on failure recovery.
The basic layers of P2PS providing point-to-point communication and the relaxed-
ring maintenance are very stable. Our future work will be focused on the upper
layers in order to deal with network partitioning. Apart from failure recovery, we
are interested in building a service oriented architecture that will require a robust
naming service and reliable broadcast. We also plan to build a replicated transac-
tional distributed hash table based on a modified Paxos consensus algorithm [12].

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

20 Parallel Processing Letters

Fig. 10. Amount of peers with overlapping ranges of responsibilities, introducing lookup incon-
sistencies, on Chord networks under different stabilization rates for different network sizes. Com-

parison with the Relaxed-Ring (p2ps) with a bad connectivity. The stabilization rate represent

the amount of peers joining/leaving the network between every stabilization round. The value of
zero in the Y-axis has been raised in order to spot the curve of the Relaxed-Ring and Chord with

a very frequent stabilization rate equal to 5.

Fig. 11. Load of messages in Chord due to periodic stabilization, compared to the load of the

Relaxed-Ring maintenance with bad connectivity. Y-axis presented in logarithmic scale.

6. Conclusion

In this paper we have presented a novel Relaxed-Ring topology for fault-tolerant
and self-organizing peer-to-peer networks. The topology is derived from the simpli-

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

The Relaxed-Ring: a Fault-Tolerant Topology for Structured Overlay Networks 21

fication of the join algorithm requiring the synchronisation of only two peers at each
stage. As a result, the algorithm introduces branches to the ring. These branches
can only be observed in presence of connectivity problems between peers, and they
help the system to work in realistic scenarios. The topology adds some complexity
to the routing algorithm, but it does not degrade the complexity of its performance.
We consider this issue a small drawback in comparison to the gain in fault tolerance
and cost-efficiency in ring maintenance.

The topology makes feasible the integration of peers with very poor connectivity.
Having a connection to a successor is sufficient to be part of the network. Leaving
the network can be done instantaneously without having to follow a departure
protocol, because the failure-recovery mechanism will deal with the missing node.
The guarantees and limitations of the system are clearly identified and formally
stated providing helpful indications in order to build fault-tolerant applications on
top of this structured overlay network.

Acknowledgements

The authors would like to thank the distoz group at Université catholique de Lou-
vain and S. González for comments on this work. This research is mainly funded
by SELFMAN (contract number: 034084), with additional funding by CoreGRID
(contract number: 004265).

References

[1] PlanetLab. http://www.planet-lab.org, 2008.
[2] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. Dks (n, k, f): A

family of low communication, scalable and fault-tolerant infrastructures for p2p appli-
cations. In CCGRID ’03: Proceedings of the 3st International Symposium on Cluster
Computing and the Grid, page 344, Washington, DC, USA, 2003. IEEE Computer
Society.

[3] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC ’00: Pro-
ceedings of the nineteenth annual ACM symposium on Principles of distributed com-
puting, page 7, New York, NY, USA, 2000. ACM Press.

[4] Raphaël Collet and Peter Van Roy. Failure handling in a network-transparent dis-
tributed programming language. In Advanced Topics in Exception Handling Tech-
niques, pages 121–140, 2006.

[5] DistOz Group. P2PS: A peer-to-peer networking library for Mozart-Oz.
http://p2ps.info.ucl.ac.be, 2008.

[6] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD
dissertation, KTH — Royal Institute of Technology, Stockholm, Sweden, December
2006.

[7] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of dht
routing geometry on resilience and proximity, 2003.

[8] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and concurrent topology
maintenance. In DISC, pages 320–334, 2004.

[9] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concurrent maintenance of rings.
Distributed Computing, 19(2):126–148, 2006.

March 27, 2009 15:4 WSPC/INSTRUCTION FILE relaxed-ring

22 Parallel Processing Letters

[10] Boris Mej́ıas. CiNiSMO: Concurrent Network Simulator in Mozart-Oz, Université
catholique de Louvain, Belgium. http://p2ps.info.ucl.ac.be/cinismo, 2008.

[11] Boris Mej́ıas and Peter Van Roy. A relaxed-ring for self-organising and fault-tolerant
peer-to-peer networks. In XXVI International Conference of the Chilean Computer
Science Society. IEEE Computer Society, November 2007.

[12] Monika Moser and Seif Haridi. Atomic commitment in transactional dhts. In Pro-
ceedings of the CoreGRID Symposium, CoreGRID series. Springer, 2007.

[13] Mozart Community. The Mozart-Oz programming system. http://www.mozart-
oz.org, 2008.

[14] Tallat M. Shafaat, Monika Moser, Thorsten Schütt, Alexander Reinefeld, Ali Gh-
odsi, and Seif Haridi. Key-Based Consistency and Availability in Structured Overlay
Networks. In Proceedings of the 3rd International ICST Conference on Scalable In-
formation Systems (Infoscale’08). ACM, June 2008.

[15] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applications. In Proceed-
ings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

APPENDIX A. PUBLICATIONS

A.5 Visualizing Transactional Algorithms for

DHTs

SELFMAN Deliverable Year Three, Page 350

Visualizing Transactional Algorithms for DHTs

Boris Mejı́as
Université catholique de Louvain

boris.mejias@uclouvain.be

Mikael Högqvist
Zuse Institute Berlin

hoegqvist@zib.de

Peter Van Roy
Université catholique de Louvain

peter.vanroy@uclouvain.be

1. Introduction

Distributed Hash Tables (DHT) provide interesting prop-
erties for storing and retrieving data in decentralized sys-
tems. They are usually built on top of Structured Over-
lay Networks (SON) which has self-organizing and fault-
tolerant properties. A DHT offers a simple interface to store
and lookup elements associated with a key. The operations
are basically put(key, value) and get(key). Every peer is
responsible for a set of keys and if a peer fails, another peer
takes over its responsibility. But what happens with the data
of the crashed peer? Either the data must be re-inserted into
the system or it can be replicated and recovered on the new
responsible node. A replication mechanism must guarantee
that the recovered replicated value is the same as the last
value stored before the failure.

Data replication becomes more complex when the appli-
cation running on top of the peer-to-peer network requires
the update of several values stored on the DHT at the same
time. This is typically done as a transaction involving keys
belonging to different sets, and hence, involving different
peers. How are the different peers coordinated in order to
decide if the whole transaction must commit or abort? How
do the replicas of these peers get the last valid data?

The two-phase commit protocol (2PC) is one of the most
popular choices for implementing distributed transactions,
being used since the 1980s. Unfortunately, its use on peer-
to-peer networks is very inefficient because it relies on the
survival of the transaction manager, as explained further in
section 2. A three-phase commit protocol (3PC) has been
designed in order to overcome the limitation of 2PC. How-
ever, 3PC introduces an extra round-trip which results in
higher latency and increased message load. We advocate
the use of an algorithm based on Paxos consensus [4, 2].
This algorithm is especially adapted for the requirements of
a DHT and can survive a crash of the coordinator during a
transaction. Compared to 3PC, it reduces latency and over-
all message load by requiring less message round-trips.

Demonstrator

We implement two-phase commit and the Paxos

consensus-based algorithm on top of a Chord-like struc-
tured overlay network [5], extending the PEPINO network
inspector [3] for visualization. By introducing arbitrary fail-
ures, the demonstrator shows why two-phase commit does
not work on peer-to-peer networks. Then, the robustness of
Paxos consensus is tested by injecting failures on a certain
amount of transaction managers and participants, showing
the failure recovery mechanism of this protocol.

2. Two-phase commit

The pseudo-code below implements a swap operation
within a transaction. The objective is that the instructions
from the beginning of the transaction (BOT) until its end
(EOT) are executed atomically to avoid race conditions
with other concurrent operations. The values of item i and
item j are stored on different peers. The operators put and
get are replaced by read and write in order to differentiate
a regular DHT from a transactional DHT.

BOT
x = read (i t e m i) ;
y = read (i t e m j) ;
w r i t e (i t e m j , x) ;
w r i t e (i t e m i , y) ;

EOT

In order to guarantee atomic commit of a transaction on
a decentralized storage, two-phase commit uses a valida-
tion phase and a write phase, coordinated by a transaction
manager (TM). All peers responsible for the items involved
in the transaction, as well as their replicas, become transac-
tion participants (TP). Initially, the TM sends a request to
every TP to prepare the transaction. If the item is available,
the TP will lock it and acknowledge the prepare request.
Otherwise, it will reply abort. The write phase follows val-
idation once the replies are collected by the TM. If none
of the participants voted abort, then the decision will be
commit. When the participants receive the commit message
from the TM, they will make the update permanent and re-
lease the lock on the item. An abort message will discard
any update and release the item locks.

The problem with the 2PC protocol is that relies too
much on the survival of the transaction manager. If the TM
fails during the validation phase, it will block all the TPs
that acknowledged the prepare message. A very reliable
TM is required for this protocol, but it cannot be guaranteed
on peer-to-peer networks.

3. Paxos Consensus Algorithm

The 3PC protocol avoids the blocking problem of 2PC at
the cost of an extra message round-trip. This solution might
be acceptable for cluster-based applications but not for peer-
to-peer networks, where it is better to have less rounds with
more messages than adding extra rounds to the protocol.
This problem lead to the recent introduction of [4] based on
Paxos consensus [2].

The idea is to add replicated transaction managers (rTM)
that can take over the responsibility of the TM in case of
failure. The other advantage is that decisions can be made
considering a majority of the participants reaching consen-
sus, and therefore, not all participants needs to be alive or
reachable to commit the transaction. This means that as
long as the majority of participants survives, the algorithm
terminates even in presence of failures of the TM and TPs,
without blocking the involved items.

Figure 1. Network during a transaction with
replicated manager and participants.

Figure 1 depicts a network visualized by the demonstra-
tor. Different colours are assigned to TMs and TPs depend-
ing on the item they are responsible for. The labels in the
figure are not in the simulator, but where added here for clar-
ity. The TMs and TPs in the protocol are replicated using
symmetric replication as described in [1]. Figure 2 shows
the initial effect of introducing an arbitrary failure on the
transaction manager, breaking the connection of the ring.

The demonstrator continues with the recovery of the ring,
and the election of a new TM from the rTMs.

Figure 2. Failure of the transaction manager

4. Summary

The focus of this demonstrator is on the study of algo-
rithms for implementing transactions on peer-to-peer net-
works. Their visualization contributes to the analysis and
test of the protocols, verifying their tolerance to failures. In
particular, we show a DHT running two-phase commit and
the Paxos consensus algorithm.

5. Acknowledgements

The authors would like to thank Monika Moser and Seif
Haridi for their help on the understanding of the Paxos con-
sensus algorithm. This work is mainly funded by project
SELFMAN (contract number: 034084), with additional
funding by CoreGRID (contract number: 004265).

References

[1] A. Ghodsi. Distributed k-ary System: Algorithms for Dis-
tributed Hash Tables. PhD dissertation, KTH — Royal Insti-
tute of Technology, Stockholm, Sweden, Dec. 2006.

[2] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, 2006.

[3] D. Grolaux, B. Mejı́as, and P. Van Roy. PEPINO: PEer-to-
Peer network INspectOr. In The Seventh IEEE International
Conference on Peer-to-Peer Computing, 2007.

[4] M. Moser and S. Haridi. Atomic commitment in transactional
DHTs. In Proceedings of the CoreGRID Symposium, 2007.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. In Proceedings of the 2001 ACM SIG-
COMM Conference, pages 149–160, 2001.

APPENDIX A. PUBLICATIONS

A.6 Transactional DHT Algorithms

SELFMAN Deliverable Year Three, Page 353

Transactional DHT Algorithms

Monika Moser1, Seif Haridi2, Tallat M. Shafaat2, Thorsten Schütt1, Mikael
Högqvist1, Alexander Reinefeld1

1 Zuse Institute Berlin (ZIB), Germany
2 Royal Institute of Technology (KTH), Sweden

Abstract. We present a framework for transactional data access on
data stored in a DHT. It allows to atomically read and write items and
to run distributed transactions consisting of a sequence of read and write
operations on the items. Items are symmetrically replicated in order to
achieve durability of data stored in the SON. To provide availability of
items despite the unavailability of some replicas, operations on items are
quorum-based. They make progress as long as a majority of replicas can
be accessed. Our framework processes transactions optimistically with
an atomic commit protocol that is based on Paxos atomic commit. We
present algorithms for the whole framework with an event based notation.
Additionally we discuss the problem of lookup inconsistencies and its
implications on the one-copy serializability property of the transaction
processing in our framework.

Table of Contents

Transactional DHT Algorithms . 1
Monika Moser, Seif Haridi, Tallat M. Shafaat, Thorsten Schütt,
Mikael Högqvist, Alexander Reinefeld

1 Introduction . 3
2 Structured Overlay Network . 3

2.1 The Overlay Model . 4
2.2 Lookup Consistency and Responsibility . 5
2.3 Availability . 7

3 Transactions on a SON . 7
3.1 1-Copy Serializability . 7
3.2 Transaction Processing . 8

The Paxos Protocol . 9
Atomic Commit with Paxos . 10

3.3 Replication . 11
3.4 Serializability in Presence of Responsibility Inconsistency 11

4 Transaction Algorithms . 12
4.1 System Architecture . 12
4.2 Transaction ID and Transaction Item . 12
4.3 System Assumptions . 13
4.4 Identifiers, Modules and Operations . 13
4.5 Algorithms . 15
4.6 Read Phase . 15
4.7 Commit Phase . 20

Initialization . 20
Validation . 22
Consensus . 24

5 Transaction Algorithms: Failure Handling . 30
5.1 Failure of the Leader . 30
5.2 Failure of a TP . 32

6 Transactional Replica Maintenance . 33
6.1 Copy Operation . 34
6.2 Join and Leave . 34

7 Evaluation . 36
7.1 Analytical Evaluation of the Commit Protocol 36

Number of messages . 36
Upper Timebounds . 37

7.2 Experimental Evaluation . 38
8 Discussions . 40

1 Introduction

DHTs are fully decentralized and highly scalable systems that provide the ability
to store and lookup data. They use the lookup service of a Structured Overlay
Network for Internet-scale applications. The interface DHTs provide on their
data is mostly a simple put/get interface. Often data in DHTs is immutable
or consistency guarantees on data are weak. However many distributed systems
require stronger guarantees like they are given by atomic data operations. We
present a framework with transactional access to data stored in a DHT. It pro-
vides high availability of data and one-copy serializability for transactions on
that data. A transaction consists of a sequence of one or more read and/or write
operations that is executed atomically.

DHTs are dynamic systems where nodes are able to join the system or crash
at any time. In order to maintain durability and availability of data, items are
replicated. Each item consists of a fixed number of replicas. To tolerate the
unavailability of a subset of replicas our transaction mechanisms are majority-
based. This means that they are able to make progress if a majority of replicas
is accessible. Therefore replication factor has to be chosen in a way that the
availability of a majority of replicas is very high.

Read and write operations access at least a majority of replicas and choose the
one with the highest timestamp. The atomic commit protocol that is needed to
coordinate a distributed transaction also makes use of the majority idea. In order
to prevent a single transaction manager from blocking the whole protocol if it
fails, the framework uses a Paxos based non-blocking atomic commit protocol[7].
There, the single transaction manager is replaced by a set of nodes that all
together act as the transaction manager. The protocol makes progress if the
majority of these nodes does not fail until every participant in the transaction
receives the outcome of the transaction.

In this paper we present the algorithms for our transactional framework.
We use an event-based notation as it is well suited to present an asynchronous
message-passing system. The framework builds on various techniques known
from distributed database systems. The processing of transactions is done opti-
mistically with a non-blocking atomic commit protocol in the end. Concurrency
control is included in the atomic commit phase. The basic idea is to either ac-
quire all necessary locks at the same time or to abort the transaction, thus
avoiding distributed deadlock detection. Timestamps are used for each replica
to determine whether items read in the read phase of the transaction are still
valid in the commit phase. As the transaction processing is optimistic locks are
only held during the commit phase. We combine the non-blocking Paxos atomic
commit protocol with quorum techniques for access on replicated data.

2 Structured Overlay Network

In this section we introduce the model of the SON which underlies our frame-
work. Thereby we refer to self-stabilization mechanisms that are used in Chord

[13]. However our framework is not restricted to a DHT based on Chord but can
be applied to other key-based SONs.

2.1 The Overlay Model

A Model of a Ring-based SON. A DHT makes use of an identifier space, which
for our purposes is defined as a set of integers {0, 1, · · · ,N − 1}, where N is
some a priori fixed, large, and globally known integer. This identifier space is
perceived as a ring that wraps around at N − 1.

Every node in the system, has an unique identifier from the identifier space.
Each node keeps two pointers: succ, to its successor on the ring, and pred to its
predecessor. The successor of a node with identifier p is the first node found going
in a clockwise direction on the ring starting at p. The predecessor of a node with
identifier p is the first node met going anti-clockwise on the ring starting at p.
For each node p, a successor-list is also maintained consisting of p’s c immediate
successors, where c is typically set to log2(n), where n is the network size.

Ring-based DHTs also maintain additional routing pointers, called fingers,
on top of the ring to enhance routing [1]. For our analysis, we assume that
these pointers are placed as in Chord. Hence, each node p keeps a pointer to the
successor of the identifier p + 2i (mod N) for 0 ≤ i < log2(N). Our results are
independent of the chosen scheme for placing the fingers.

Dealing with Joins and Failures in Chord. A DHT system is a continuously
running system and there is no notion of crash recovery. Whenever a node fails
there is another node that becomes responsible for the items of the failed nodes.
The protocols are based on a crash-stop model of nodes. This implies that if a
node crashes and then reboot to re-join the network, it will be considered as a
new node.

Chord handles joins and failures using a protocol called periodic stabilization.
Figure 1 shows part of the protocol presented in [13]. Failures of predecessors
are handled by having each node periodically check whether its pred is alive,
and setting pred := nil if the predecessor is found dead. Moreover, each node
periodically checks to see if succ is alive. If it is found to be dead, it is replaced
by the closest alive successor in the successor-list.

Each node periodically asks for its successor’s pred pointer, and updates its
succ pointer if it gets a closer successor. Thereafter, the node notifies its current
succ about its own existence, such that the successor can update its pred pointer
if it finds that the notifying node is a closer predecessor than pred.

Joins are also handled by the ring stabilization protocol. Joining nodes lookup
their successor s on the ring, and sets succ := s. Periodic stabilization will
eventually fix its predecessor and successor. Hence, any joining node is eventually
properly incorporated into the ring.

Failure Detectors. DHTs provide a platform for Internet-scale systems, aimed
at working on an asynchronous network. Informally, a network is asynchronous
if there is no bound on message delay. Thus, no timing assumptions can be made

n.join(n′)
predecessor = nil;
sucessor = n′.findsuccessor(n);

n.stabilize()
x = successor.predecessor;
if (x ∈ (n, successor])
successor = x;
successor.notify(n);

// n’ thinks it might be our predecessor.
n.notify(n′)

if (predecessor is nil or n′ ∈ (predecessor, n])
predecessor = n′;

n.check predecessor()
if (predecessor has failed)

predecessor = nil;

Fig. 1: Part of the Chord protocol, presented in [13], which is related to successor and
predecessor pointers.

in such a system. Due to the absence of timing restrictions in an asynchronous
model, it is difficult to determine if a node has actually crashed or is very slow
to respond. This gives rise to inaccurate suspicion of node failure.

Failure detectors are modules used by a node to determine if its neighbors are
alive or dead. Since we are working in an asynchronous model, a failure detector
can only provide probabilistic results about the failure of a node. Thus, we have
failure detectors working probabilistically.

Failure detectors are defined based on two properties: completeness and ac-
curacy [3]. In a crash-stop model, completeness requires the failure detector to
eventually detect all crashed nodes. Accuracy relates to the mistake a failure de-
tector can make to decide if a node has crashed or not. A perfect failure detector
is accurate all the times, while the accuracy of an unreliable failure detector is
defined by its probability of working correctly.

2.2 Lookup Consistency and Responsibility

A consequence of imperfect failure detectors are inconsistent lookups and in-
consistent responsibilities. We explain these terms in the following. Lookup con-
sistency and responsibility consistency are important concepts when we reason
about data consistency in our transactional DHT. Basically responsibility con-
sistency is a requirement for guaranteeing data consistency.

In the following, we define lookup consistency and responsibility consistency,
and explain how they can be violated. We use the term configuration of a SON
to denote the set of all nodes and their pointers to neighboring nodes at a certain

point in time. A SON evolves by either changing a pointer, or adding/removing
a node.

Definition 1 A lookup for a key is consistent, if in a configuration lookups for
this key made from different nodes, return the same node.

Lookup consistency can be violated if some nodes’ successor pointers do not
reflect the current ring structure. Figure 2a illustrates a scenario, where lookups
for key k can return inconsistent results. It shows nodes with their successor and
predecessor pointers. This configuration may occur if node N1 falsely suspected
N2 as failed, while at the same time N2 falsely suspected N3 as failed. A lookup
for key k ending at N2 will return N4 as the responsible node for k, whereas a
lookup ending in N1 would return N3.

(a) (b)

Fig. 2: Lookup inconsistency and responsibility inconsistency. Nodes with successor
and predecessor pointers: (a) Example with wrong successor pointers. (b) Example
with wrong successor pointers and overlapping responsibilities.

Definition 2 A node n is said to be locally responsible for a certain key, if the
key is in the range between its predecessor and itself, noted as (n.pred, n]. We
call a node globally responsible for a key, if it is the only node in the system
that is locally responsible for it.

The responsibility of a node changes whenever its predecessor is changed. If
a node has an incorrect predecessor pointer, the range of keys it is responsible
for can overlap with another node’s key range. Thus there are several nodes
responsible for a part of the key range.

Definition 3 The responsibility for a key k is consistent if there is a node glob-
ally responsible for k.

A configuration where responsibility consistency for key k is violated is shown
in Figure 2b. Here, lookup consistency for k cannot be guaranteed and both
nodes, N3 and N4, are locally responsible for k. However, in Figure 2a, N3 is
globally responsible despite lookup inconsistency and N4 is not responsible. The
configuration depicted in Figure 2b can arise from the configuration shown in
Figure 2a with an additional wrong suspicion of node N4 about its predecessor
N3.

Lookup consistency and responsibility consistency cannot be guaranteed in
a SON. As we will show later responsibility consistency is an assumption of our

system in order to guarantee data consistency. However in [12] we show that
the probability for a violation of responsibility consistency is very low. E.g. with
a reasonable probability for a failure detector to make false positives with two
percent the probability to get consistent responsibility for a replica is more than
99.999%.

2.3 Availability

Another important property in our system is the availability of a key. In order
to make progress operations in our system have to be able to access a sufficient
number of replicas.

Definition 4 A key k is available if there exists a reachable node n such that n
is locally responsible for k.

Availability of a key in a SON is both affected by churn and inaccurate failure
detectors. Due to churn a key is unavailable when the node that is responsible
for it fails until a successor node takes over responsibility and is reachable in the
system. This is illustrated in Figure 3b where the key k is unavailable because
of the failure of node N2. A node n is said to be reachable for a node n′, if there
exists a path from n to n′. Also during a join process when a node is transferring
responsibility for a certain key range to the joining node, keys in that range are
unavailable until the joining node is reachable in the system. Figure 3c illustrates
a scenario where the joining node N2 already took over responsibility for key
k but is not yet reachable in the system as node N1 has not set its successor
pointer to N2. In the second case inaccurate failure detectors cause unavailability
when a node that falsely suspects its successor will remove the pointer to this
node. Thus, keys for which the suspected node is responsible will temporarily
become unavailable. In figure 3d node N1 suspects node N2, thus k becomes
unavailable.

3 Transactions on a SON

Usually DHTs provide a simple put/get interface to store and retrieve data.
Hardly they provide consistency guarantees on data and often they are restricted
to immutable data. Our framework is able to provide a transactional interface
on top of a SON. It provides read and write operations that are executed trans-
actionally as well as the ability to execute transactions that consist of a sequence
of different operations.

3.1 1-Copy Serializability

Our algorithms provide 1-copy serializability. In our system items are replicated
and there might exist replicas with different versions. However transactions pro-
duce a serializable history as if there was only one copy available to transactions.
A history H of transactions is serializable if all committed transactions in H is-
sue the same operations and receive the same responses as in some sequential
history S that consists of the transactions committed in H [8].

(a) (b)

(c) (d)

Fig. 3: Availability. Nodes with successor and predecessor pointers: (a) Example where
key k is available. (b) Example where k is unavailable due to the failure of N2. (c)
Example where k is unavailable during the joining process of N2. (d) Example where
k is unavailable because N1 suspected N2 to have failed.

3.2 Transaction Processing

Transactions in our system are executed optimistically. They are processed in
the following three phases:

– Read phase (R): Operations that are part of the transaction are executed
within a transaction managers local workspace that is private to the transac-
tion. Changes made by write operations are not visible to other transactions.

– Validation phase (V): Once a transaction should be committed, all in-
volved data managers that are responsible for the data that is part of the
transaction, check whether the operations are valid. Version numbers are
used to determine if another transaction has made changes after the trans-
action’s read phase.

– Write phase (W): If all data managers successfully validated the opera-
tions on their data, changes can be made permanent.

Atomic Commit. The validation phase and the write phase are executed within
an atomic commit protocol. An atomic commit protocol coordinates all processes
that are involved in a transaction. It ensures that all data managers decide
on the same outcome of the transaction. The decision is commit if all data
managers are able to validate the operations or abort if there exists at least
one data manager that cannot validate an operation. Figure 4 shows a basic
commit algorithm called the 2-Phase-Commit Protocol. There is one node called
the transaction manager (TM) that coordinates the protocol. Data managers
are called transaction participants (TP). The TM asks the TPs to validate by
sending a prepare request. The TPs either reply with prepared or abort. The TM
collects the votes and sends commit if all TPs voted to be prepared otherwise
it sends abort. When a TP receives commit it will make all changes permanent
if promised to do when sending the prepared message. If a TP receives abort
it won’t make any changes permanent. Our framework executes transactions

Fig. 4: State-charts for a 2-Phase-Commit Protocol with 2 Participants and 1 Trans-
action Manager

optimistically in the read phase. Thus the commit protocol will decide on abort
if other transactions were committed in between.

A 2-Phase-Commit protocol is blocking if the TM fails in the state collecting
and the TPs are not able to retrieve the outcome of the transaction. Therefore
we use a non-blocking atomic commit protocol that is based on Paxos [10] in
our framework. Gray introduced Paxos Atomic Commit in [7]. It uses replicated
transaction managers which all collect votes from the data managers. If the
leading transaction manager fails, these replicated transaction managers take
over and distribute the decision of the atomic commit protocol to all participants.
The Paxos Protocol and the Paxos Atomic Commit protocol are described later
in this section.

Concurrency Control. Once a data manger successfully validates an operation
on an item it has to ensure that no other transaction gets validated on the same
item with a conflicting operation until the atomic commit protocol decides on
the outcome. Therefore read and write locks are used during the commit phase
that prevent concurrent conflicting validations.

Locks are only held during the atomic commit phase. Instead of letting trans-
actions wait for a lock a TP will vote to abort in the atomic commit phase if
it cannot acquire the lock for an operation. In that case the transaction has
to be re-executed. This avoids distributed deadlock detection. We assume that
read and write operations are less frequent than in traditional database systems.
Thus the ratio of aborted transactions should be small.

The Paxos Protocol Paxos is an algorithm which guarantees uniform con-
sensus. Consensus is necessary when a set of nodes has to decide on a common
value. Uniform consensus satisfies the following properties: 1. Uniform agree-
ment, which means that no two nodes decide differently, regardless of whether
they fail after the decision was taken; 2. Validity describes the property that
the value which is decided can only be a value that has been proposed by some

node; 3. Integrity, meaning no node may decide twice and finally 4. Termination,
every node eventually decides some value [9]. Paxos assumes an eventual leader
election to guarantee termination. Eventual leader election can be built by using
inaccurate failure detectors.

Paxos defines different roles for the nodes. There are Proposers, which pro-
pose a value, and Acceptors, which either accept a proposal or reject it in a way
that guarantees uniform agreement. Paxos as described in [10] assumes that each
node may act as both proposer and acceptor. In our solution presented below
we use different nodes as proposers and acceptors.

The above mentioned properties of uniform agreement can be guaranteed by
Paxos whenever a majority of acceptors is alive. That means, it tolerates the
failure of F acceptors out of initially 2F + 1 acceptors.

Paxos basically consists of two phases called the read and write phase. In
the read phase a node makes a proposal and tries to get a promise that his
value will be accepted by a majority or it gets a value that it must adopt for
the write phase. In the write phase a node tries to impose the value resulting
from the read phase on a majority of nodes. Either the read or write phase may
fail. Proposals are ordered by proposal numbers. By using an eventual leader to
coordinate different proposals, the algorithm will eventually terminate.

Atomic Commit with Paxos Uniform consensus alone is not enough for
solving atomic commit. Atomic commit has additional requirements on the value
decided. If some node proposes abort or is perceived to have crashed by other
nodes before a decision was taken, then all nodes have to decide on abort. To
decide on commit, all nodes have to propose prepared.

In the Paxos Commit protocol [7] we have a set of acceptors, with a distin-
guished leader, and a set of proposers. The set of acceptors play the role of the
coordinator and the set of proposers are those who have to decide in the atomic
commit protocol.

Each proposer creates a separate instance of the Paxos algorithm with itself
as the only proposer to decide on either prepared or abort. All instances share
the same set of acceptors. It can be noted that the Paxos consensus can be
optimized, because there is only one proposer for each instance. If a proposer
fails, one of the acceptors, normally the leader, acts on behalf of that proposer
in the particular Paxos instance and proposes abort.

Acceptors store the decision of all proposers and send the acknowledgment for
the vote of a TP’s Paxos instance to the leader. Whenever the leader has collected
enough acknowledgments for each participant’s Paxos instance, it decides on
commit if all instances have decided on prepared or it decides on abort if there
is at least one Paxos instance of a participant that decides on abort. Thereafter
the final abort/commit is sent to the initial proposers. If the leader is suspected
by the eventual failure detector, another leader will take over and can extract
the decision from a majority of acceptors and complete the protocol.

The state-chart of a proposer is similar to the state-chart of a TP in the
original 2PC protocol, as shown in figure 4. Also the state-chart of an acceptor

is similar to that of the TM, referring to the same figure. But instead of sending
the decision commit to the participants, the acceptors send the outcome to the
leader.

3.3 Replication

To provide higher reliability items are replicated. Each item has a fixed number
of replicas. The replication scheme used here is key based. A key based replication
essentially means that an item, which is a key-value pair, is stored under r replica
keys. Thus, to store an item under key k, the value will be stored in the DHT
under keys Kr = {k1, k2, k3 . . . kr}. We say that the replication degree is r and
for key k, the set Kr to be the set of keys under which k is replicated. Each
replica can be accessed symmetrically as the function to determine the replica
keys is system-wide known [4].

As SONs usually are highly dynamic systems, operations on an item should
make progress despite the unavailability of a number of replicas. Reads and writes
thus require that a majority of replicas is accessible. A minority of replicas might
be temporarily unavailable without hindering progress. Operations in our SON
use majority-based algorithms. Majority-based algorithms are a special case of
quorum algorithms. Quorum algorithms were introduced by Gifford [6] in order
to maintain replicated data. Each replica is assigned a certain amount of votes.
Read operations have to collect rv votes and write operations have to collect wv
votes, where rv + wv exceeds the total number of votes assigned to all replicas
of an item. This ensures that read operations include at least one replica that
was included by the latest write operation. In majority-based algorithms each
replica is assigned exactly one vote and read and write operations have to include
a majority of m = b r

2c+ 1 votes. Thus they intersect in at least one replica.

3.4 Serializability in Presence of Responsibility Inconsistency

In order to ensure that rv + wv always exceeds the total number of votes as-
signed to all replicas, the number of replicas in the system has to be constant for
our majority-based algorithms. Each operation on an item has to ensure that
it includes at least a majority of replicas, while the majority is based on the
system’s replication factor r. An additional replica that is added to the system
would violate the above mentioned condition. However a responsibility incon-
sistency is equal to adding an additional replica. In that case two conflicting
operations might end up with working on two disjoint sets with a majority of
replicas, which we call majority set. This happens if two operations work on ma-
jority sets that both include distinct nodes that are involved in a responsibility
inconsistency for one replica, but have no other replica in common. In that case
it is not possible to detect a conflict between these operations, which can violate
serializability. As it is not possible to ensure responsibility consistency, it is not
possible to ensure serializability. However the existence of a responsibility incon-
sistency does not necessarily implicate disjoint majority sets for two conflicting
operations.

In [12] we calculated the probability for two operations in one configuration
to work on non-disjoint majority sets. If the probability for a failure detector to
make false positives is 2% and therefore the probability to have a consistent re-
sponsibility is 99.999%, the probability for non-disjoint majority sets is 99.9999%
if r = 3.

4 Transaction Algorithms

In this section we present the algorithms for the transactional DHT. We use an
event based notation similar to the one used in [9].

4.1 System Architecture

Nodes in the system can take different roles in a transaction. For each transac-
tion there exists the role of a leading Transaction Manager (TM), called Leader,
which is the node the client is connected to. Additionally, a number of repli-
cated Transaction Managers (rTM) are created according to the set of acceptors
in Paxos commit. Nodes that are responsible for a replica of an item that is
involved in the transaction have the role of a Transaction Participants (TP) in
the protocol. Each node of the SON can have any number of TMs and TPs that
are involved in different transactions. If there are multiple TPs on a node, they
must share the database that contains the items with information about read
and write locks. Each TP maintains a set of records for ongoing transactions,
that have not yet been committed. Each record has a transaction ID, the new
proposed value for the items the TP maintains and the new proposed version.

4.2 Transaction ID and Transaction Item

The leader of each transaction creates an unique transaction ID (TID). This ID is
part of the SON’s key space and can be treated like a item key. The leader creates
the TID in a way such that it has a replica key of TID in its own key space.
According to the replication scheme there are r−1 additional replica keys for the
TID. The set of rTMs is determined by the nodes that are responsible for these
associated replica keys. Thus the number of all TMs (Leader + rTMs) is equal to
the replication factor r. At the end of a transaction each TM will store a replica
of a so called transaction item with {TID,Decision} as the {key, value} pair.
We assume that a majority of rTMs does not change its responsibility such that
the replica of the TID would not be part of its key space any more. Therefore a
node that did not recieve the decision of the transaction can retrieve the decision
by doing a quorum read on an item with the TID as key. The transaction item is
maintained in the same way as normal items are. However it has to be garbage
collected after a certain time.

4.3 System Assumptions

We identify the assumptions related to liveness, no nodes are blocked, and safety,
no data is corrupted and 1-copy serializability is not violated. For liveness, it is
assumed that direct communication between nodes as well as the bulk procedure
is reliable. In addition, a majority of TMs must be alive and keep the TID within
their range of responsibility until all alive TPs receive the transaction decision.
This assumption is an extension of Paxos where all acceptors (TMs) must be
alive during the protocol. For safety, we assume that a majority of replicas for
an item are alive and that a majority of lookups targeting these replicase are
consistent. A violation of the safety requirements may lead to inconsistent state.
The probability of this happening is directly related to the replication factor.

4.4 Identifiers, Modules and Operations

Identifiers. Figure 5 lists all identifiers and variables used in the algorithms. The
first part contains general identifiers that are used at transaction managers and
transaction participants. The second part contains variables that are maintained
by a transaction manager. Additionally, we introduce structures for votes that
are received by transaction managers and for acknowledgments of votes. The last
part contains variables that store information kept by a transaction participant.

External Modules Used in the Algorithms. The following modules are used by
the algorithms

– EventuallyPerfectFailureDetector (♦P) [9]
– EventualLeaderDetector (Ω) [9]

A leader uses a failure detector on every replica of the involved items. If it
does not get a vote for a replica within a certain time threshold, it will start
a failure handling procedure. A failure detector raises the event suspect(tp)
when it suspects the transaction participant tp to have failed. A leader election
mechanism is used to guarantee progress of the atomic commit protocol. The set
of replicated transaction manager will elect a new leader if they suspect the leader
to have failed. The leader detector module raises the event trust(newleader)
to install a new leader.

Bulk Operation. The algorithms make use of a so called bulk operation [5]. This
operation sends events to all nodes that are responsible for a key in a specified
set of identifiers. E.g. a read operation on an item can be done with a bulk
operation on the set of replica keys for that item.

Identifiers
item record

item.key key
item.val value
item.ts timestamp/version number
item.op kind of operation: write or read

tm transaction manager
tp transaction participant
r replication degree of the system

Information maintained by a TM
tid ID of the transaction
TPs set of Transaction Participants
TMs set of replicated Transaction Managers
I set of items involved in the transaction
Votes Votes of the participants
AcksTMs Acknowledgments sent by the TMs to the Leader
outcome Overall outcome of the transaction
state Either collectingNodes/collectingVotes/locallyDecided/decided
Suspected set of nodes which are suspected to have failed
leader the address of the leader
client the address of the client issuing the transaction
vts timestamp of a vote
rvts timestamp of a vote acknowledged in a read phase
wvts timestamp of a vote acknowledged in a write phase
ItemsInTrans set of items that are currently involved in a transaction

Information contained in a vote
i.key key of the item the vote refers to
rkey the key of the replica
vote PREPARED/ABORT decision of a tp
vts timestamp of the proposal - number of the proposal

Votes[i.key][rkey] = (vote, rts, wvts)
vote PREPARED/ABORT decision of a tp
rvts timestamp of the vote that was accepted during the read phase
wvts timestamp of the vote that was accepted (write phase)

AcksTMs[i.key][rkey]: {(vote, vts)*}
vote PREPARED/ABORT decision of a tp
vts timestamp of the proposal that was accepted (write phase)

Information kept by a TP
tid ID of the transaction
TMs transaction managers
i the item
decision of tp the decision it made

Fig. 5: Identifiers used in the algorithms

4.5 Algorithms

In the following we present the algorithms for the transaction processing. We
first show the algorithm for the fault-free scenario. The algorithms for failure
handling are shown separately in Section 5. The whole transaction processing
algorithms refers to the execution of exactly one transaction. Thus we commit
information that identifies a particular transaction for better readability.

The algorithms can be structured into different phases. Figure 6 identifies two
main phases of a transaction. One is the Read Phase where the client determines
the operations that are part of the transaction. The second one is the Commit
phase which we further divide into Initialization, Validation and Consensus.

In the initialization phase the leader determines all nodes that act as repli-
cated transaction managers (TMs). It determines the nodes by a key based search
(lookup). After initialization these nodes communicate directly with each other
without using a key based search. In the validation phase all TPs are sent a
prepare request by a key based search. They are asked to validate the operations
on the items they are responsible for. After validation the consensus on the out-
come of the transaction is started, based on the validation results. The outcome
is sent to the TPs directly with out doing a lookup.

4.6 Read Phase

During the read phase the client determines the operations that are part of
the transaction. It can be any sequence of read and write operations. A client
is connected to a certain node in the system. This node becomes the initial
transaction manager which will act as the leader during the protocol. Figure 7
shows the particular communication steps in the read phase. The client instructs
the leader to start a transaction (Algorithm 1) and to do operations until the
client tells the leader to commit the transaction. The leader keeps track of the
operations and keeps updates on items private to its local workspace. For read
operations it will retrieve the value and version number of the item the client
wants to read, while for write operation it has to retrieve the version number only
(Algorithm 2). When the client signals the end of the transaction the leader will
start a commit phase. Instead of instructing the leader to commit the transaction
the client can also instruct it to abort the transaction before the commit phase.
E.g. if the client reads a value that does not meet a certain condition. In that
case the leader can simply throw away logged information on that transaction
as the TPs have not yet made changes to their state, such that they do not have
to be notified about this user triggered abort. Once a client tells the leader to
commit a transaction the client cannot abort it any more on its own behalf.

Algorithm 2 includes a function latest(Items) which extracts the item with
the highest version number from a set of items. It uses a DB(key, rkey) function
that reads a replica from the local database. The replica is identified by the key
of the item and a replica key or replica number. The function replicakeys(key)
return all keys of replicas for a certain key.

Fig. 6: The figure shows the different phases for a transaction together with the mes-
sages sent between the participating nodes

Fig. 7: The figure shows the messages which are part of the read phase. To start a
transaction a client issues a BeginTransaction and signals the end of a transaction by
a request to commit the transaction. In between it will add several read and write
operations.

Algorithm 1 Interface to the Transaction Manager: Client signals Begin and
End of a Transaction
1: upon event beginTransaction() from client at tm
2: client := client
3: I := ∅
4: readID:= writeID:= ⊥
5: tid := generateTID()
6: end event

7: upon event commitTransaction() from client at tm
8: trigger startCommit()
9: end event

10: upon event abortTransaction() from client at tm
11: delete information on transaction
12: end event

Algorithm 2 Processing of a Read Operation due to a Client’s Read Request
1: function latest(Items) returns item is
2: tmp item := item{key:= ⊥, val:=⊥, ts:=−1, op:=⊥}
3: foreach i in Items do
4: if i.ts >tmp item.ts then
5: tmp item := i
6: end if
7: end foreach
8: return tmp item

. A client requests a read operation at the Transaction Manager
9: upon event read(key) from client at tm

10: readID := createRID()
11: Reads := ∅
12: trigger bulk(replicakeys(key), {Read, key, readID})
13: end event

. At the Transaction Participant
14: upon event bulk(rkey,{Read, key, readID}) from tm at tp
15: i := DB(key, rkey)
16: sendto tm : readresponse(key, i.val, i.ts, readID)
17: end event

. At the Transaction Manager
18: upon event readresponse(key, val, ts, id) from tp at tm
19: if readID=id then
20: Reads := Reads ∪{(key, val, ts)}
21: end if
22: end event

23: upon |Reads| ≥ (br/2c+ 1) ∧ readID 6=⊥ do
24: (k, val, v):= latest(Reads)
25: I:= I ∪ item{key:= k, val:=val, ts:=v, op:=r}
26: sendto client : readReturn(value)
27: readID := ⊥
28: end event

Algorithm 3 Processing of a Write Operation due to a Client’s Write Request

. A client requests a write operation at the Transaction Manager
1: upon event write(key, value) from client at tm
2: writeID := createWID()
3: Writes := ∅
4: trigger bulk(ReplicaKeys(key), {Write, key, writeID})
5: end event

. At the Transaction Participant
6: upon event bulk(rkey,{Write, key, writeID}) from tm at tp
7: i := DB(key, rkey)
8: sendto tm : writeresponse(key, i.ts, writeID)
9: end event

. At the Transaction Manager
10: upon event writeresponse(key, ts, id) from tp at tm
11: if writeID=id then
12: Writes := Writes ∪{(key, ts)}
13: end if
14: end event

15: upon |Writes| ≥ (br/2c+ 1) ∧ writeID 6=⊥ do
16: (k, v):= latest(Writes)
17: I:= I ∪ item{key:= k, val:=value, ts:=v+1, op:=w}
18: sendto client : WriteReturn(success)
19: writeID := ⊥
20: end event

4.7 Commit Phase

Fig. 8: Before starting the commit protocol the Leader determines the nodes that act
as replicated TMs.

Initialization Figure 8 shows the course of events of the initialization phase.
Initially nodes that have to act as rTMs are determined by a key based search
based on the replica keys of the transaction ID. They have to be known before
the commit protocol is started in order to enable leader election among the TMs
and make the protocol fault-tolerant and non-blocking. In the next phase the
leader will tell the rTMs the addresses of all other rTMs. As long as a majority
of rTMs is reachable the protocol can decide on an outcome of the transaction.

Algorithm 4 contains the events and event handlers of the initialization phase.
A node that gets a request to initialize a rTM has to initialize its data structures
to collect the votes and the acknowledgments. For each item key and its replica
keys the vote is initialized with a rts (read timestamp) with a value 1. The
reason is that a TP will immediately start a write phase in its Paxos instance
as it can be sure to be the first one that votes in that particular instance [7]. A
TP’s proposal number thus is 1.

Once the leader has collected enough TMs it can start the next phase. The
leader always tries to collect all TMs. However if some of these nodes do not
respond it can start the next phase after a timeout if it has collected at least
a majority of TMs. A majority of TMs including the leader is necessary to
guarantee progress for Paxos atomic commit.

Algorithm 4 Initialize the involved processes
1: upon event startCommit() at leader

. client is the process issuing the transaction
2: trigger bulk(replicas(tid), {InitRTM, leader, tid, I, client})
3: end event

4: upon event bulk(rtid, {InitRTM, l, id, Items, cl}) from s at rtm
5: . A new transaction manager instance is created
6: leader := l
7: tid:= id
8: I := Items
9: client := cl

10: foreach i in I do
11: foreach rkey in replicaKeys(i.key) do
12: Votes [i.key][rkey] := (⊥, 1, 0)
13: AcksTMs [i.key][rkey] := ∅ . Necessary if it becomes a leader
14: end foreach
15: end foreach
16: sendto leader : registerRTM(rtm)
17: state:= collectingVotes
18: end event

19: upon event registerRTM() from rtm at tm
20: TMs := TMs ∪ rtm
21: end event

22: upon (|TMs| = r) do
23: trigger startValidation
24: end event

Fig. 9: The Leader sends a Prepare messages to the TPs which will start the validation
and tells the TMs about all rTMs.

Validation After the initialization phase the leader tells each rTM the addresses
of the other rTMs such that these are able to run a leader election mechanism
among them. Additionally the leader sends the prepare request to the TPs to-
gether with the addresses of the nodes that act as rTMs. The prepare request
is sent with a lookup operation on all replicas of the involved items. Figure 9
shows the course of events and Algorithm 5 the event handlers at the TMs.

The TPs check whether they can validate the operations sent by the prepare
request. Each TP therefore locally applies the concurrency control mechanism.
This is based on timestamps and locks. A node uses two dictionaries readLock
and writeLock that contain locks on items. While write locks are exclusive,
several read locks can be set at the same time. The locks are globally stored in a
node. The storeToLOG(Params) is a function that stores any information on a
transaction in a TP’s LOG. The getFromLOG() function accordingly gets the
information from the LOG. Algorithm 6 contains the procedure for validation.

For read operations a TP checks whether there is no lock for a concurrent
write and whether the timestamp of the read request is valid, i.e. larger than
or equal to the local item. If both checks are successful it will add a read lock
and return prepared. For write operations the TP first ensures that there are no
read or write locks set for concurrent conflicting operations. Then it compares
the timestamp of the proposed item and the local item. This timestamp must to
be equal to the currently stored timestamp + 1. If this is not the case, it means
that a write operation has changed the item since it was accessed during the read
phase. If both of the checks were successful the procedure will return prepared,
otherwise abort. After the validation procedure, the TP starts to propose in a
Paxos instance for this particular validation result.

Algorithm 5 Transaction Manager: Sending of a Prepare request
1: upon event startValidation at tm
2: sendtoall TMs : RTMs(TMs, I)
3: foreach i in I do
4: trigger bulk(replicas(i), {Prepare, leader, tid, i, rkey, TMs})
5: end foreach
6: state:= collectingVotes
7: end event

8: upon event RTMs(rtms, I) from tm at rtm
9: TMs:= rtms

10: (Ω).init(rtms)
11: foreach i in I do
12: �P.init({replica : (i.key, rkey) ∈ i})
13: end foreach
14: end event

Algorithm 6 Validation Procedure at a Transaction Participant/Concurrency
Control
1: upon event Prepare(item, rkey, tid, TMs) from tm at tp
2: ItemsInTrans:= ItemsInTrans ∪ (rkey, tid)
3: vote:= validate(item, rkey)
4: trigger propose(item.key, rkey, TMs, vote, 1)
5: end event

6: procedure validate(item rkey, tid) returns PREPARED/ABORT is
7: i:= DB(item.key, rkey)
8: result := ⊥
9: if item.op = read then

10: if writeLock[(i.key, rkey)] = ⊥ & (item.ts ≥i.ts) then
11: readLock[(i.key, rkey)] := readLock[(i.key, rkey)] + 1
12: storeToLOG(tid, item.key, item.ts,r, rkey,PREPARED)
13: result:= PREPARED
14: else
15: storeToLOG(tid, item.key, item.ts,r, rkey,ABORT)
16: result := ABORT
17: end if
18: else
19: if writeLock[(i.key, rkey)] = ⊥ & readLock[(i.key, rkey)] = ⊥ & (item.ts =

i.ts+1) then
20: writeLock[(key, rkey)] := 1
21: storeToLOG(tid, item.key, item.ts, item.val,w, rkey, PREPARED)
22: result:= PREPARED
23: else
24: store (tid, item.key, item.ts, item.val,w, rkey, ABORT)
25: result := ABORT
26: end if
27: end if
28: return result

Consensus This phase uses the Paxos atomic commit protocol [7]. At the end
of it each TP has to receive the same decision on the transaction to ensure the
uniform consensus properties. The decision will be commit if the decision for all
items is prepared, it will be abort if the decision for at least one item is abort.

A Paxos instance is started for each replica. The TP that is responsible for
the replica uses this Paxos instance to distribute its vote on the set of replicated
transaction managers that act as the acceptors. The replicated transaction man-
agers accept the vote of a TP if they did not get a read request with a higher
timestamp for the particular Paxos instance. Instead of sending the acknowledg-
ment to the TP they send it to the leader (Algorithm 8). The reason is that the
decision on the outcome of the atomic commit protocol is based on the decisions
for all items. Therefore, the leader collects all acknowledgments from where it
can derive the outcome of the atomic commit protocol. As soon as the outcome
is known the leader sends it to all involved nodes and notifies the client.

Fig. 10: After validation the TPs start a consensus to distribute their validation result.
The leader will collect the decision for each particular consensus instance and conclude
on the overall outcome of the transactions based on these instances.

As items in our DHT are replicated and operation on items require at least a
majority of replicas to be accessible, the decision for an item also has to be based
on a majority of replicas. Therefore the TM collects the votes of the TPs per
item. A decision for an item is prepared if a majority of TPs that are responsible
for a replica of that item vote to be prepared. The decision for an item is abort
if there cannot be a majority of TPs that are responsible for a replica that vote
to be prepared (Algorithm 9).

A TP that retrieves the decision for a transaction reads the information
about the item it voted for from its LOG (Algorithms 10 and 11). It has to reset
locks and write the item to the database if necessary. The learners are related
to replica maintenance, which is explained in Section 6.

A TM that retrieves the decision for a transaction stores the decision in a spe-
cial item, called transaction item, by calling storeTransactionItem(decision).
This item is replicated like all other items. The key for this transaction item can
be deduced from the transaction ID. All TMs are nodes that are responsible for
a replica key of the transaction item. If a node does not receive the decision by
the normal execution of the protocol it can retrieve the decision by reading the
transaction item like every normal item. We assume that a majority of replicated
transaction managers may not fail and may not change their responsibility of
the key range where the replica key of the TID is a member of until the outcome
of the transaction is stored in the DHT. This can be achieved by choosing a
proper replication factor.

Algorithm 7 Start Paxos Atomic Commit: Propose in a Paxos Instance
1: upon event propose(key, rkey, TMs, vote, ts) at p
2: if ts=1 then
3: sendtoall TMs : vote(key, rkey, vote, ts)
4: else
5: sendtoall TMs : readVote(key, rkey, ts) . See failure handling in 13
6: end if
7: end event

Algorithm 8 Paxos Atomic Commit - Write Phase
1: upon event vote(key, rkey, vote, vts) from n at tm . n is either a tp or a tm
2: if vts = 1 then
3: TPs[key]:= TPs[key] ∪ (p, rkey)
4: end if
5: (currVote, rvts, wvts) := Votes[key][rkey]
6: if vts ≥rvts and vts ≥ wvts then
7: Votes[x.key][rkey] := (vote, rvts, vts)
8: sendto Leader : voteAck(key, rkey, vote, vts)
9: end if

10: end event

11: upon event voteAck(key, rkey, vote, vts) from tm at leader
12: AcksTMs[key][rkey] := AcksTMs[key][rkey] ∪ {(vote, vts)}
13: end event

Algorithm 9 Paxos Atomic Commit - Making the Decision
. Ensure that a majority of TMs has stored the decision for a particular replica

1: function isPreparedReplica(i, rkey) returns boolean is
2: acks := AcksTMs[i.key][rkey]
3: return ∃vts : |{(PREPARED, vts)} ∈ acks| ≥ br/2c+ 1

4: function isAbortReplica(i, n) returns boolean is
5: acks := AcksTMs[i.key][rkey]
6: return ∃vts : |{(ABORT, vts)} ∈ acks| ≥ br/2c+ 1

. Check whether the votes for a majority of replicas for an item is PREPARED
7: function isPrepared(i) returns boolean is
8: return |{rkey : isPreparedReplica(i, rkey)}| ≥ br/2c+ 1

9: function isAbort(i) returns boolean is
10: return |{rkey : isAbortReplica(i, rkey)}| ≥ dr/2e

11: upon ∀i ∈ I: isPrepared(i) at leader do
12: sendtoall TPs : decision(COMMIT)
13: sendtoall TMs : decision(COMMIT)
14: state:= decided
15: sendto client : outcome(COMMIT)
16: end event

17: upon ∃i ∈ I: isAbort(i) at leader do
18: sendtoall TPs : decision(ABORT)
19: sendtoall TMs : decision(ABORT)
20: state:= decided
21: sendto client : outcome(ABORT)
22: end event

23: upon event decision(decision) from tm at tm
24: storeTransactionItem(decision)
25: state:= decided
26: end event

27: upon event decision(decision) from tm at tp
28: trigger decide(decision)
29: end event

Algorithm 10 Paxos Atomic Commit - Decide COMMIT at a TP
1: upon event decide(COMMIT) at tp
2: if not stored(COMMIT) then
3: item := getFromLOG(tid)
4: if Item = ⊥ then
5: sendafterdelay(time, decision(COMMIT)) to tp
6: else
7: (key, val, ts, op, rkey, vote, tid) = item
8: if op = r then
9: if vote = PREPARED then

10: readLock[(key, rkey)] := readLock[(key, rkey)] - 1
11: end if
12: else . op = w
13: if vote = PREPARED then
14: writeLock[(key, rkey)] := 0
15: DB(key, rkey) := (val, ts)
16: else
17: DB(key, rkey) := (val, ts)
18: end if
19: end if
20: learners := {l|(l, ltid) ∈ Learners[rkey] ∧ ltid == tid}
21: foreach l in learners do
22: remove(learners, Learners[rkey])
23: ltidrest := {tid|(lr, tid) ∈ Learners[rkey] ∧ lr == l}
24: if ltidrest = ∅ then
25: sendto l : copydataResponse({(key, val, ts)})
26: end if
27: end foreach
28: ItemsInTrans := ItemsInTrans \rkey
29: storeToLOG(COMMIT)
30: end if
31: end if
32: end event

Algorithm 11 Paxos Atomic Commit - Decide ABORT at a TP
1: upon event decide(ABORT) at tp
2: if not stored(ABORT) then
3: item := getFromLOG()
4: if item = ⊥ then
5: sendafterdelay(time, decision(tid, ABORT)) to tp
6: else
7: (key, val, ts, op, rkey, vote, tid) = item
8: if op = r then
9: if vote = PREPARED then

10: readLock[(key, rkey)] := readLock[(key, rkey)] - 1
11: end if
12: else . op = w
13: if vote = PREPARED then
14: writeLock[(key, rkey)]) := 0
15: end if
16: end if
17: learners := {l|(l, ltid) ∈ Learners[rkey] ∧ ltid == tid}
18: foreach l in learners do
19: remove(learners, Learners[rkey])
20: ltidrest := {tid|(lr, tid) ∈ Learners[rkey] ∧ lr == l}
21: if ltidrest = ∅ then
22: sendto l : copydataResponse({(key, val, ts)})
23: end if
24: end foreach
25: end if
26: storeToLOG(ABORT)
27: end if
28: end event

5 Transaction Algorithms: Failure Handling

This section covers failure handling of the atomic commit protocol during the
consensus phase. Critical failures are those that block the transaction partici-
pants leaving a replica in a locked state. These can occur after the leader has sent
the prepare request to the TPs. If the leader fails before that or if the leader
cannot contact enough TPs or rTMs the transaction will simply be aborted.
Failures have to be handled in a way that guarantees progress of the transaction
processing while guaranteeing the properties of uniform consensus and atomic
commit. In the following we distinguish between the failure of a TP and the
failure of a leader. The failure handling reflects the one described in the Paxos
atomic commit paper[7].

5.1 Failure of the Leader

When the leader fails the leader election mechanism will elect a new leader among
all TMs. This new leader has to retrieve enough acknowledgments from the TPs’
Paxos instances in order to be able to decide on the outcome of the transaction.
Therefore it starts with a read phase in each single Paxos instance of the TPs
(Algorithm13). In the write phase it will adopt the votes that have been proposed
so far or vote to abort if there hadn’t been a vote in the Paxos instance. As soon
as the new leader got enough acknowledgments it can distribute the outcome of
the commit phase. Figure 11 shows the course of events when a leader fails.

Algorithm 12 Replicated Transaction Manager: Trusting a New Leader
1: upon event trust(leader) at tm
2: Leader := leader
3: newts := nextVts()
4: if state 6= decided ∧Leader = self then
5: foreach i in I do
6: foreach rkey in replicas(i.key) do
7: trigger propose(i.key, rkey, TMs, ⊥, newts)
8: end foreach
9: end foreach

10: end if
11: end event

Fig. 11: If a Leader fails, another node will become the new leader and start a read
phase in each TP’s Paxos instance.

Algorithm 13 Paxos Atomic Commit - Read phase
1: upon event readVote(i.key, rkey, vts) from leader at tm
2: (currVote, rvts, wvts) := Votes[i.key][rkey]
3: if vts >rvts and vts >wvts then
4: Votes[i.key][rkey] := (currVote, vts, wvts)
5: sendto Leader : readVoteAck(i.key, rkey, vts, (currVote, wvts))
6: end if
7: end event

8: upon event readVoteAck(i.key, rkey, vts, (vote, wvts)) from tm at leader
9: ReadVotes[i.key][rkey][vts] := ReadVotes[i.key][rkey][vts] ∪ {(vote, wvts)}

10: end event

11: upon ∃i.key, rkey, vts : | ReadVotes[i.key][rkey][vts]| ≥ br/2c+ 1 at Leader do
12: vote := highest(ReadVotes[i.key][rkey][vts])
13: if vote = ⊥ then
14: vote := ABORT
15: end if
16: sendtoall TMs : vote(i.key, rkey, vote, vts)
17: end event

5.2 Failure of a TP

It must be noted that the protocol makes progress as long as foreach item a
majority of TPs that are responsible for a replica is alive. In that case it is not
necessary to start a failure handling for a TP. If there exists one item for which
a majority of TPs cannot be reached, a leader would have to start voting in as
many Paxos instances it needs to get a majority of votes for the item. However
this situation occurs only if the system is broken, as we assume that for each
item a majority of nodes being responsible for a replica is always available.

When the leader does not get a vote for a replica it suspects the corresponding
TP to have failed. It will start to propose in the Paxos instance for that replica.
As it does not know whether its suspicion is correct or the TP is alive and has
already started to vote, the leader starts with a read phase. It will learn from
the TMs whether there has been a vote made by the TP. If this is not the case
the leader is free in its decision and will start a write phase with the value abort.
Thus the leader decides to abort on behalf of the suspected TP.

Algorithm 14 Leader: Suspecting a TP during Consensus - Start a Read Phase
1: function nextVts() returns vts is
2: select the next vts depending on the nodes key
3: . TMr will come with a proposal numbered r+1
4: . Set of TMs: TM1, TM2, .., TMr

5:

6: upon event suspect((key, rkey)) at leader
7: foreach i in I do
8: trigger propose(key, rkey, TMs, nextVts())
9: end foreach

10: end event

6 Transactional Replica Maintenance

When a node joins the structured overlay network it will take over the responsi-
bility for a certain key range from an existing node in the system. Similarly, when
a node fails, its successor in the structured overlay network has to take over re-
sponsibility for the failed node’s key range. A node knows that its responsibility
has changed whenever it has to update its predecessor pointer.

The framework has to handle joins and failures of a node on the data level in
a way that maintains data consistency. Handling these events on the data level
is done after they are handled on the overlay level. E.g. a joining node n first
sets its successor and predecessor pointers and notifies the corresponding nodes
about itself. Thereafter the new node n has to retrieve the data it is responsible
for. Data retrieval mechanisms may not decrease the number of up-to-date copies
for an item and they may not violate serializability of transactions.

Whenever the predecessor of a node is changed the event is handled on the
data-level. There are two possible situations. Either the range the node is re-
sponsible for was increased or it was decreased. In the first case the node has
to fetch the data it has not stored yet, in the second case the node has to drop
data it is no longer responsible for.

A new copy of an item can be initialized by any transaction that writes that
item or it is initialized explicitly[2]. As the first possibility may potentially take
a long time and other copies of the item might fail during that time, it is better
to do an explicit initialization of the copy to decrease the probability of a system
failure. The system fails if an operation that is performed on a majority of nodes
holding a replica cannot return an up-to-date item. Explicit initializing of a new
copy can be done by a copy operation that reads the existing copies of the item
and stores the current value in the new copy. Additionally all transactions that
update the item must know of the new copy. Otherwise a non-serial history could
arise by the following three events:

– Transaction T1 updates x and y
– Node N1 joins and will become responsible for replicas x1 and y1

– Transaction T3 reads x and y

The non-serial sequential history of events and transaction phases that can
occur:

1. T1 - Initialization phase: Get addresses of involved nodes
2. T1 - Validation phase: Send prepare request with lookup
3. N1 joins the ring (updates its successor, predecessor and the others)
4. N1 copies x1 from an existing copy: Gets the old value
5. T1 - Consensus phase: Outcome is received by all TPs
6. N1 copies y1 from an existing copy: Gets the new value
7. x1 at N1 is out of date

In this situation the number of replicas that are out of date would be in-
creased. This happens if the initialization of an item does not take into account
ongoing transactions on the item. The copy operation to initialize a replica has
to be done either with a transaction or by adding the new node as learner to
ongoing transactions, as we will explain in the following. A node that has to ini-
tialize the replicas in its range has to know which items exist that have replicas
in that range and it has to copy the data for these replicas. If the initialization
would have been done by one transaction this transaction would fail if there is
even one single write operation on one of the items. Another possibility is that all
ongoing transactions have the new node as a so called learner for the outcome.
This concept is used in our framework and introduced in the following.

6.1 Copy Operation

The operation that initializes copies in a certain key range will be called copy
operation in the following. Within this operation a node asks the nodes that are
responsible for the corresponding remaining replicas of the items in its new range
to send their replicas to it. It has to read from at least a majority of replicas.
Once the nodes being responsible for the remaining replicas get a copy request,
they have to remember the new node as a learner for all ongoing transactions.
They send to the new node all replicas that are not involved in a transaction.
Items that are currently involved in the transaction are sent as soon as there is
no transaction run on them any more for which the new node is registered as
learner. This is a way to let all ongoing transactions know the new copy. The
new node will not be able to answer requests for items in its range until it has
retrieved the data for it.

6.2 Join and Leave

When a node joins or leaves the system the successor of the joining or leaving
node changes its predecessor. This means that the key range of the successor
node is changed. In the following we assume that the routing layer triggers an
event called NewPredecessor. Upon such an event a node checks whether the

range it is responsible for has increased or has decreased. In the first case it has
to copy data, in the second case it has to drop data. Similarly, a new node will
fetch data once it knows the range it is responsible for.

Algorithm 15 Data Level: New Predecessor Event from the Routing Level
. The NewPredecessor event is triggered on the routing level, after a new

predecessor is set due to join or periodic stabilization
1: upon event NewPredecessor(prevpred, newpred) at n
2: if newpred 6= nil then
3: if newpred ∈ (prevpred, n) then
4: trigger dropData(prevpred, newpred)
5: else
6: trigger fetchData(newpred, prevpred)
7: end if
8: else
9: oldpred=prevpred

10: end if
11: if prevpred = nil then
12: trigger dropData(n, newpred)
13: if oldpred ∈ (newpred, n) then
14: trigger fetchData(newpred, oldpred)
15: end if
16: end if
17: end event

Algorithm 16 shows the copy operation. A node that has to fetch data first
calculates all the other replica keys that correspond to its key range. It starts
a bulk operation with these replica keys to read the data it has to store. Each
node that gets a copydata request will send the values or add the requesting
node as a learner to the transactions on items that are in the requested range.

Algorithm 16 Data level: Drop and fetch data
. After setting successor and predecessor and notifying the others

1: upon event fetchData(start, end) at n
2: ReplicaKeys:= getCorrespondingReplicaKeys(start, end),
3: trigger bulk(ReplicaKeys, {copydata})
4: end event

. After a new predecessor is set on the overlay level
5: upon event DropData(start, end) at n
6: DB:= DB \ DB ([start, end])
7: end event

8: upon event bulk([x, y], {copydata})) from n′ at n
9: foreach (r.key, tid) in ItemsInTrans do

10: if r.key ∈ [x, y] then
11: Learners([r.key]) = Learners([r.key]) ∪ (n′, tid)
12: end if
13: end foreach
14: Items := DB([x, y])
15: Items := Items \ ItemsInTrans
16: sendto n′ : copydataResponse(Items)
17: end event

18: upon event copydataResponse(Replicas) from n at newnode
19: foreach i in Replicas do
20: myrkey := getOwnReplicaKey(i.key)
21: MyData[(myrkey, i.key)]:= MyData([(myrkey, i.key)]) ∪ (i.val, item.ts)
22: if | MyData [(myrkey, i.key)]| ≥ br/2c+ 1 then
23: if latest(MyData[(myrkey, i.key)]) > DB(i.key,myrkey) then
24: DB(i.key,myrkey):=(i.val, i.ts)
25: end if
26: end if
27: end foreach
28: end event

7 Evaluation

7.1 Analytical Evaluation of the Commit Protocol

Number of messages Figure 12 illustrates the different communication steps
that are necessary for a failure free execution of the protocol. Including the
initialization phase six steps are required to make a decision on the outcome of
the transaction. Note that in our algorithms the leader is at the same time a
transaction manager. The number of messages depends on the replication factor
r in the system and the number n of items involved in the transaction. This are
the number of messages sent in each step:

1. r Lookup message for TMs

Fig. 12: The figure shows the communication steps required for the whole atomic
commit protocol

2. r Registration messages from TMs
3. n * r + r Prepare request to TPs and information message to TMs
4. n * r * r Vote of TPs to all TMs
5. n * r * r Acknowledgment for each vote
6. n * r + r Decision sent to the TPs and TMs

Overall we need (1+r)2nr+4r messages. The r messages from the first step use
a bulk operation that is based on lookups. Similarly the n ∗ r prepare requests
in the third step also use lookups. Note that the number of messages can be
optimized. A TM can send all the acknowledgments for the votes it got within
one message instead of sending a separate message for each vote.

Upper Timebounds

1. O(logN) Lookup request to TMs
2. O(1) Direct communication: Latency of slowest TM
3. O(logN) Lookup request to TPs
4. O(1) Direct communication: Latency of slowest conncection from a TP to a

TM in a majority for an item

5. O(1) Direct communication: Latency of slowest TM to leader connection
6. O(1) Direct communication: Latency of slowest leader to TMs and TPs con-

nection

7.2 Experimental Evaluation

The transaction algorithm is implemented as part of Scalaris [11], a P2P-based
key/value store. We tested the performance of Scalaris and the transaction algo-
rithm on an Intel cluster up to 16 nodes. Each node has two Quad-Core E5420s
(8 cores in total) running at 2.5 GHz and 16 GB of main memory. The nodes are
connected via GigE and Infiniband; we used the GigE network for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

We tested two operations: a read and a modify operation. The read operation
reads a key-value pair. The modify operation reads a key-value pair, increments
the value and writes the result back to the distributed Scalaris store. To guaran-
tee consistency, the read-increment-write is executed within a transaction. The
read operation, in contrast, simply reads from a majority of the keys. The bench-
marks involved the following steps:

– Start watch.
– Start n Erlang client processes in each VM.
– Execute the read or modify operation i times in each client.
– Wait for all clients to finish.
– Stop watch.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Read

1 client
2 clients
5 clients

10 clients

Fig. 13: Read performance of the transaction algorithm. The read operation is exe-
cuted with increasing number of local threads and cluster sizes.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Modify

1 client
2 clients
5 clients

10 clients
50 clients

100 clients

Fig. 14: Write performance of the transaction algorithm. The write operation is exe-
cuted with increasing number of local threads and cluster sizes.

Figure 13 and 14 shows the results for various numbers of clients per VM
(see the colored graphs). In the read benchmarks depicted in Fig. 13, each thread
reads a key 2000 times while the modify benchmarks in Fig. 14 modify each key
100 time in each thread.

As can be seen, the system scales about linearly over a wide range of system
sizes. In the read benchmarks (Fig. 13), two clients per VM produce an optimal
load for the system, resulting in more than 20,000 read operations per second
on a 16 node (=128 core) cluster. Using only one client (red graph) does not
produce enough operations to saturate the system, while five clients (blue graph)
cause too much contention. Note that each read operation involves accessing a
majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 14) is of course lower, but
still scales nicely with increasing system sizes. Here, the best performance of
5,500 transactions per second is reached with fifty load generators per VM, each
of them generating approximately seven transactions per second. This results in
344 transactions per second on each server.

Note that each modify transaction requires Scalaris to execute the adapted
Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transaction
participants and transaction managers, plus the communication between them.
The performance graphs illustrate that a single client per VM does not produce
enough transaction load, while fifty clients are optimal to hide the communica-
tion latency between the transaction rounds. Increasing the concurrency fur-
ther to 100 clients does not improve the performance, because this causes too
much contention. Note that for the 100-clients-case, there are actually 16*100
clients issuing increment transactions. Overall, both graphs illustrate the linear
scalability of Scalaris.

8 Discussions

The algorithms do not include garbage collection issues. A transaction man-
ager has to keep the information for a transaction long enough to be sure that
each transaction participant knows the outcome. Transaction participants could
acknowledge that they got the decision of the atomic commit protocol.

References

1. L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured Peer-to-
Peer Overlay Networks. In Post-proceedings of Global Computing, Lecture Notes
in Computer Science (LNCS), pages 223–250. Springer Verlag, 2004.

2. Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency con-
trol and recovery in database systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

3. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43, 1996.

4. A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for Structured
Peer-to-Peer Systems . In Proceedings of the 3rd International VLDB Workshop
on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P’05),
volume 4125 of Lecture Notes in Computer Science (LNCS), pages 74–85. Springer-
Verlag, 2005.

5. Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD thesis, KTH — Royal Institute of Technology, Stockholm, Sweden, December
2006.

6. David K. Gifford. Weighted voting for replicated data. In SOSP ’79: Proceedings
of the seventh ACM symposium on Operating systems principles, pages 150–162,
New York, NY, USA, 1979. ACM Press.

7. Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans.
Database Syst., 31(1):133–160, 2006.

8. Rachid Guerraoui and Michal Kapalka. On the correctness of transactional mem-
ory. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and practice of parallel programming, pages 175–184, New York, NY, USA,
2008. ACM.

9. Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Distributed Pro-
gramming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

10. Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, 1998.

11. Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris: Reliable
transactional p2p key/value store. In ACM SIGPLAN Erlang Workshop, Septem-
ber 2008.

12. Tallat M. Shafaat, Monika Moser, Ali Ghodsi, Thorsten Schütt, and Alexander
Reinefeld. On consistency of data in structured overlay networks. In CoreGRID
Integration Workshop 2008, 2008.

13. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proceedings of
the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.

APPENDIX A. PUBLICATIONS

A.7 The Design of a Transactional Key-Value

Store Using the Kompics Component Model

SELFMAN Deliverable Year Three, Page 394

The Design of a Transactional Key-Value Store
Using the Kompics Component Model

Cosmin Arad and Seif Haridi

SICS Technical Report T2009:09, ISSN: 1100-3154, ISRN: SICS-T2009/09-SE
Revision 1: July 4, 2009

Abstract

We document the architectural design of a transactional key-value store, based on a distributed hash-table
(DHT). The DHT is built on top of the Chord# overlay network. Data items are replicated within the DHT using
a key-based replication scheme, namely symmetric replication. Replica agreement for committing transactions
is achieved using the Paxos Commit protocol. The system assumes a trusted deployment infrastructure, like a
data-center or a set of connected data-centers. We model the system entities as Kompics components.

1 Introduction

The transactional key-value store presented here [6] offers a strongly consistent and fault-tolerant storage ser-
vice for applications running in data-centers. The servers providing the storage are organized in a distributed
hash-table (DHT) running on top of the Chord# overlay network [7]. Clients access the storage service by using
a connector library. Data is replicated for fault-tolerance and availability. Transactions on stored data items are
committed atomically at all replicas storing the involved data items, using the Paxos Commit protocol [4]. Data
item availability depends on the presence of at least a majority of the replicas in the system. When a majority
of the nodes storing replicas for one data item are absent, availability is traded off for strong consistency.

The system assumes a partially-synchronous network environment [5]. Node failures and additions oc-
cur rarely relatively to the transaction rates and false failure suspicions are assumed to be rare [8]. These
assumptions are realistic for a data-center environment.

This document presents the design of the transactional key-value store using the Kompics component
model [1, 2]. Entities in the system are modeled as Kompics components. Components local to one system
node communicate by passing events, through well-defined ports. Ports specify the types of events communi-
cated by components. Components residing on different system nodes communicate by messages. Messages
are events that a network component on the source node marshals and sends to the network component on the
destination node which unmarshals and delivers them to other components residing on the destination node.

We present the component architecture of the system nodes, the components with the protocols they imple-
ment and the messages they exchange.

2 System architecture

The transactional key-value store is provided by a set of servers. The storage service is accessed by (trusted)
clients. We assume that each client can contact all servers. (This is needed in the read phase when the
client needs to contact a majority of servers.) Since the servers in a typical data-center need not be publicly
accessible, we further assume that both servers and client run inside the data-center. The storage service can
be made available to (untrusted) clients outside the data-center through proxies. A proxy is a machine which
runs inside the data-center and is publicly accessible from outside the data-center. The system architecture is
illustrated in Figure 1. The nodes marked with S represent servers. Servers are organized in a DHT based on

1

DHT
Chord#

S

C

UC

PSS

S

SS

S

SS

S

S

S

C

C

C

C

C

P

P

P

P

P

UC

UC

UC

UC

UC

trusted domain untrusted domain

Figure 1: The overall system architecture.

the Chord# structured overlay which maintains a logical ring structure between the servers. The nodes marked
with C represent trusted clients and the nodes marked with P represent proxies. Servers, trusted clients, and
proxies are machines running inside the trusted domain, i.e., a data-center or a set of connected data-centers.
Untrusted clients (marked UC) running outside the trusted domain access the storage service through proxies.

3 Component architecture

We now model the software architecture of the clients, the proxies, and the servers, as Kompics components.

3.1 Client

Clients are machines that execute data-center applications which use the transactional key-value store. We de-
pict the software architecture of a client process in Figure 2. The top-level component is ClientMain. ClientMain
contains an Application component. This can be any application that uses the transactional key-value store. (A
client can contain multiple applications that concurrently use the key-value store.) The transactional key-value
storage service is offered to the Application by the TdhtClient component through the TDHT port. To carry out a
transaction, the TdhtClient communicates with a number of servers over the network. Network communication
is provided by the MinaNetwork component [9] through the Network port. The JavaTimer component provides
timeouts through the Timer port.

ClientMain

JavaTimer

TdhtClient

MinaNetwork

Network
+
– Timer

+
–

Network
+
– Timer

+
–

Application

TDHT
+
–

TDHT
+
–

Message

Message+

ScheduleTimeout
CancelTimeout

SchedulePeriodicTimeout
CancelPeriodicTimeout

Timeout+

Network

Timer

BeginTransaction
ReadItem
WriteItem

CommitTransaction

TransactionCommitted
TransactionAborted

ReadReturn
WriteReturn+

TDHT

Figure 2: The client component architecture.

2

A typical transaction proceeds as follows: the Application triggers a BeginTransaction event, followed by a
number of ReadItem and WriteItem events. On receiving a ReadItem event, the TdhtClient performs a quorum
read operation, by contacting the servers which are responsible for storing the replicas of the read item. Upon
receiving a majority of responses or on timeout, the TdhtClient component sends a ReadReturn event to the
Application. Write operations proceed similarly. Read and write operations are recorded by the TdhtClient in
a transaction log. The Application attempts to commit a transaction by sending a CommitTransaction event.
Upon receiving it, the TdhtClient sends the transaction log to one of the servers that will attempt to commit
the transaction and inform the client of the result. If the transaction is committed successfully, the TdhtClient
sends a TransactionCommitted event to the Application. Otherwise, it sends a TransactionAborted event and the
Application can retry the transaction.

The Application can issue multiple transactions in parallel. The events pertaining to one transaction are
correlated by a transaction identifier randomly picked by the application and specified in every event. When
multiple applications use the TdhtClient and there is a transaction identifier clash, the latter transaction is
aborted. This should happen rarely.

The TdhtClient communicates with server nodes by sending messages over a network. The network com-
munication service is offered to the TdhtClient by the MinaNetwork component, through the Network port.
Message events sent by the TdhtClient on the Network port are received by the MinaNetwork which marshals
them and sends them to their destination, where another MinaNetwork component unmarshals them and deliv-
ers them on its Network port. The actual messages sent by the TdhtClient are subtypes of Message and their
type is used at the destination node to dispatch them to the right component.

The JavaTimer offers timeout services to the TdhtClient through the Timer port. The TdhtClient creates a
subtype of the Timeout event and embeds it into a ScheduleTimeout event which it sends out on the Timer port.
When it receives it, the JavaTimer schedules a timer task and when this expires, it sends back the embedded
Timeout event on the Timer port. The TdhtClient receives its specific Timeout event, on the Timer port, after an
amount of milliseconds previously specified in the ScheduleTimeout event. Every Timeout event automatically
gets a random unique identifier. The TdhtClient can save the identifier of a Timeout event that it previously
scheduled and use it to create and send a CancelTimeout event on the Timer port. This cancels the previously
scheduled timeout. Timeout events that occur periodically can also be scheduled with the JavaTimer.

A client initially has to know the address of at least one server. The client uses the server to find out the
addresses of the clients which store replicas of a data item for which the client needs to issue a majority read
operation. If data items are replicated r times, the clients needs to issue r Chord# lookups to find the addresses
of the r servers responsible for storing the replicas. Since the client in not part of the Chord# ring, the initial
server known by the client issues these lookup in the ring, on behalf of the client. From the results of these
lookups the client builds knowledge of other servers in the system, and over time, the client can probe these
servers and use servers with the lowest latency in its subsequent requests.

3.2 Proxy

The proxy architecture is similar to the client architecture. A proxy is a client whose application acts as a server
for untrusted clients. The interface that the proxy exposes to clients outside the data-center is intentionally
left unspecified. Different proxy Application components can be designed to offer different interfaces (using
different protocols) to the clients in the untrusted domain.

3.3 Server

We depict the software architecture of a server process in Figure 3. The top-level component is ServerMain.
The logic of the server is encapsulated in the TdhtServer component which is detailed in Figure 4. Server-
Main contains a MinaNetwork and a JavaTimer component to provide communication and timer services to the
TdhtServer.

ServerMain also contains a JettyWebServer component. This embeds a web server which allows inspecting
the state of the server using a web browser. Web requests coming from a web browser to the embedded web
server generate WebRequest events on the Web port. These requests are handled inside the TdhtServer by the
TdhtWebApplication component. This inspects the state of the various server components, prints it to an HTML

3

ServerMain

JavaTimer

TdhtServer

MinaNetwork

Network
+
– Timer

+
–

Network
+
– Timer

+
–

JettyWebServer

Web
+
–

Web
+
–

Message

Message+

ScheduleTimeout
CancelTimeout

SchedulePeriodicTimeout
CancelPeriodicTimeout

Timeout+

Network

Timer

WebRequest

WebResponse+

Web

Figure 3: The server component architecture.

page, and sends this page as a WebResponse event back to the JettyWebServer through the Web port. This
mechanism offers valuable insight into the state of the system and can be used for debugging or troubleshooting.

The main subcomponents of TdhtServer are TransactionManager (TM), TransactionParticipant (TP), and
Chord#. The Chord# component implements the Chord# protocols for maintaining the overlay structure and
carry out lookup operations. The Chord# component offers the lookup service through the StructuredOver-
layNetwork (SON) port. This service is used by the TM and TP components to find the addresses of other
servers responsible for various data items, and to be informed by the current responsibility of the local server.

To maintain the Chord# overlay structure when a close neighbor crashes, failure detection is performed on
the predecessor node and on the nodes in the successor list of the current node. The failure detection service is
provided by the FailureDetector component through the FD port. As a result of receiving a StartMonitoringPeer
event, the FailureDetector periodically probes the remote peer and when it ceases to receive responses, the
FailureDetector triggers a PeerFailureSuspicion event. The Chord# component reacts to the failure suspicion
by replacing the failed neighbor with another one.

BootstrapRequest
BootstrapCompleted

BootstrapResponse+

StartProbingPeer
StopProbingPeer

PeerFailureSuspicion+

Bootstrap

FailureDetector (FD)

TdhtServer

TdhtWebApplication
CSO

+
– CCS

+
–

Web
+
–

Network
+
– Timer

+
–

Web
+
–

BootstrapClient
Network

+
– Timer

+
–

Bootstrap
+
–

Chord#

Network
+
– Timer

+
–

SON
+
– CSS

+
–

TdhtMonitorClient
Network

+
– Timer

+
–FDS

+
– CCS

+
–

FD
+
–

FailureDetector
Network

+
– Timer

+
–

FD
+
– FDS

+
–

TransactionManager
SON

+
–

TransactionParticipant
Network

+
– Timer

+
– SON

+
–Network

+
– Timer

+
–

StatusRequest

StatusResponse+

FailureDetectorStatus (FDS)

GetNeighborsRequest

GetNeighborsResponse+

ChordSharpStatus (CSS)

CreateRing
JoinRing

LookupRequest
ResponsibilityRequest

JoinCompleted
LookupResponse

ResponsibilityResponse
NewResponsibility
NewSuccessorList+

StructuredOverlayNetwork (SON)

Figure 4: The TdhtServer component.

4

To join the Chord# overlay, a freshly started TdhtServer uses the Bootstrap service offered by the Boot-
strapClient component. When the TdhtServer is started, it issues a BootstrapRequest to the BootstrapClient.
This talks to a well-known bootstrap server or set of servers to get the addresses of some overlay nodes already
present in the system and returns these addresses to the TdhtServer in a BootstrapResponse. Using the inside
server addresses, the TdhtServer issues a JoinRing event on the SON port of the Chord# component. After
joining the overlay, Chord# triggers a JoinCompleted. When the TdhtServer received this event, it triggers a
BootstrapCompleted event on the Bootstrap port of the BootstrapClient, which can now register the address of
the local server with the bootstrap servers.

The TM and TP components implement a transactional key-value store on top of the Chord# overlay net-
work. The TM component handles the coordination of transactions processing and the TP component handles
the data availability maintenance in the face of server membership dynamism. We give the details of the TM
and TP components in the following sections.

The TdhtMonitorClient periodically inspects the state of the various subcomponents of TdhtServer and
pushes it to a monitoring server which aggregates the global view of the system, and makes it available for
web-based inspection. This mechanism aids in troubleshooting and gives an overview of the system.

3.4 Transaction manager

The TM component implements the role of a transaction manager [6]. When a client enters the commit phase for
a transaction, it contacts one server, which will act as the primary transaction manager for that transaction. The
primary transaction manager with the help of mr−1 replicated transaction managers decides the outcome of the
transaction. A TM component implements the behavior of both a primary and a replicated transaction manager,
depending on the current transaction. A TM will be the primary transaction manager in some transactions, and
it will be a replicated transaction manager for other transactions.

When a TM is chosen by a client to be the primary transaction manager for a transaction, the TM receives
from the client the transaction log for that transaction. The TM contacts all current replicated transaction
managers and all transaction participants listed in the transaction log. The participants validate the transaction
locally and send their votes (to commit or abort the transaction) to all managers for the current transaction.
One Paxos consensus instance is executed for every transaction participant. The transaction participant acts as
the sole proposer, the managers act as learners, and the primary transaction manager acts as the learner.

Let us consider an example where data items are replicated dr times, and a primary transaction manager
has mr− 1 replicated transaction managers. For a transaction that touches k distinct data items, there will be
k×dr transaction participants which will act as the sole proposers in k×dr Paxos instances. In each such Paxos
instance, the mr managers (including the primary) act as acceptors and the primary transaction manager acts as
learner.

3.4.1 Transaction manager replication

A background activity of the TM component is maintaining a set of replicated transaction managers. The first
mr nodes in the Chord# successor list of a transaction manager, will be used by the transaction manager as
replicated transaction managers (RTMs). Whenever the Chord# successor list changes, the Chord# component
triggers a NewSuccessorList event, which informs the TM about the new successor list. The TM uses the
new successors as RTMs in subsequent transactions. Since Chord# already performs failure detection on the
successor list, this scheme alleviates the need for the TM to perform failure detection on the RTMs.

3.5 Transaction participant

The TP component implements the role of a transaction participant [6]. There are two main activities carried
out by the TP component: data maintenance and transaction validation. The TP implements substantial parts
of the functionality of a DHT. The TP is constantly informed by the SON service offered by Chord# component
of its responsibility range on the Chord# ring. The TP stores the data item with keys falling in its responsibility
range. When its responsibility range shrinks due to a new predecessor having joined, the TP hands-over some
of its data items to the new predecessor. When its responsibility range expands, due to the failure of its current

5

predecessor, the TP retrieves the items previously stored by the failed predecessor, from the nodes storing their
replicas, to maintain their replication degree.

The TP component also participates in transaction validation and acts as a proposer in its own consensus
instance during Paxos Commit.

3.5.1 Data replication

Each data item stored in the key-value store is replicated for persistence and availability. Data items are
replicated symmetrically on the DHT ring [3]. A data item consists of a key and a value, where the key is a
string and the value is an opaque object. The key-space is the space of strings allowed by some alphabet used
as a system parameter. The Chord# ring identifiers are also strings from the same alphabet. For a replication
degree of dr, a key ’k’ is mapped to dr ring identifiers: r1, r2, ..., rdr , where ri is ’ik’. For example, with a
replication degree of 4, key “abc” is mapped onto ring identifiers “1abc”, “2abc”, “3abc”, and “4abc”. When
we describe the attributes of the messages, we denote the type of a ring identifier like “2abc” with ringKey
and the type of a data item key like “abc” with dataKey.

4 Messages

We now present the messages exchanged by the different components described in the previous section.

4.1 Messages exchanged between a TdhtClient and Chord#

During the read phase of a transaction, the client needs to do majority read operations for all items involved in
the transaction, i.e., read the value and the version of the data item from a majority of replicas. The client only
knows the Chord# ring identifiers of the replicas, but not the addresses of the servers responsible for storing
the replicas. The client finds the addresses of the replicas by issuing lookups on the Chord# ring. For this a
TdhtClient sends a RemoteLookupRequest message to the Chord# component of a known server. The Chord#

resolves the lookup and sends back a RemoteLookupResponse to the TdhtClient.

RemoteLookupRequest
long lookupId
ringKey key

RemoteLookupResponse
long lookupId
ringKey key
address responsible
ok|fail status

Table 1: Messages exchanged between TdhtClient and Chord#.

4.2 Messages exchanged between a TdhtClient and a TransactionParticipant

Once the client knows the addresses of the transaction participants storing the replicas of one data item to
be read in a transaction, the TdhtClient sends one ReadItem message to each participant. The TP replies to
a ReadItem message with a ReadResponse message containing the ring identifier, the value, and the version
number of the requested data item. For an item to be written during a transaction, the TdhtClient sends a
WriteItem message to the TP, which replies with a WriteResponse message.

ReadItem
long readId
ringKey key

ReadResponse
long readId
ringKey key
object value
long version

WriteItem
long writeId
ringKey key

WriteResponse
long writeId
ringKey key
long version

Table 2: Messages exchanged between TdhtClient and TP.

6

For a data replication degree of dr, the client sends out dr ReadItem or WriteItem messages, but only waits to
receive ddr/2e, i.e., a majority of ReadResponse or WriteResponse messages. Once it receives the responses,
the client records in the transaction log the following: (1) the operation performed, (2) the data item key, (3)
the highest version number among the received majority, (4) the value associated with that version number (for
reads), (5) the addresses of the servers responsible for the item replicas, and (6) the considered majority.

4.3 Messages exchanged between a TdhtClient and a TransactionManager

Once a client has completed the read phase of a transaction, and it has built a transaction log containing all
items that need to be read and written, and the addresses of all transaction participants that need to validate the
transaction, the client initiates the commit phase of the transaction by sending a BeginCommit message to a
known server that will act as a primary transaction manager for this transaction.

When a primary TM receives a BeginCommit message, it begins the commit phase for the transaction
specified in the transaction log received in the message. The first step is to create a transaction descriptor. The
transaction descriptor contains an ordered list of the addresses of the TMs acting as acceptors in the consensus
instances occurring during the commit phase. This list is built from the primary TM’s current list of replicated
TMs. The first TM on the list is the primary transaction manager and the learner in all those consensus instances.
Should the primary TM fail during the commit phase, the second TM on the list becomes the primary TM.

The primary TM executes the commit phase together with its replicated TMs and the TPs involved in the
transaction. When the commit phase is completed, the primary TM informs the client about the decision, by
sending it a CommitOutcome message.

Once the primary TM builds a transaction descriptor it sends it back to the TdhtClient in a TransactionDe-
scriptor message. If the client does not receive a CommitOutcome message within a predefined period of time,
it assumes that the primary TM has failed and sends a new BeginCommit message to the second TM listed in
the transaction descriptor. The secondary TM will now propose in all consensus instances in the transaction
descriptor and it will try to decide the transaction, as if it were the primary TM.

BeginCommit
bigint xactionId
xLog xactionLog

TransactionDescriptor
bigint xactionId
xDesc xactionDescriptor

CommitOutcome
bigint xactionId
committed|aborted outcome

Table 3: Messages exchanged between TdhtClient and TM.

4.4 Messages exchanged between TransactionManagers

Once the primary TM has started the commit phase and built the transaction descriptor it sends this descriptor
to all replicated TMs in an InitRTM message. As they collect Phase2A messages from the TPs, the replicated
TMs relay them as Phase2B messages to the primary TM who is the learner. As soon as the primary TM
receives a majority (w.r.t. mr) of Phase2B messages for one consensus instance, it can decide the outcome
of that instance. If the outcome of at least a majority (w.r.t. dr) of the consensus instances for every data
item involved in the transaction is commit, then the primary TM decides to commit the transaction and sends a
CommitDecision message to all other TMs and to all TPs.

InitRTM
bigint xactionId
xLog xactionLog
xDesc xactionDescriptor

Phase2B
bigint xactionId
bigint consensusId
prepared|abort acceptedVal

CommitDecision
bigint xactionId
committed|aborted outcome

Phase1A
bigint xactionId
bigint consensusId
int ballot

Phase1B
bigint xactionId
bigint consensusId
int acceptedBallot
prepared|abort acceptedVal

Phase2A
bigint xactionId
bigint consensusId
int ballot
prepared|abort proposedValue

Table 4: Messages exchanged between TMs.

7

When the primary TM fails and one of the replicated TMs takes over as primary TM, it has to decide whether
to commit or abort a transaction by proposing in phase 1 of all consensus instances of that transaction. It does
so by sending Phase1A messages to all TMs listed in the transaction descriptor. All alive TMs will reply with
Phase1B messages containing the highest ballot number they accepted in a phase 2 and the value they accepted
if any. Upon receiving a majority of Phase1B messages, the new primary TM will send Phase2A messages to
all TMs, using a ballot number higher than the highest accepted ballot number seen in the majority of received
Phase1B messages, and a proposed value of prepared if the accepted value received in the Phase1B message
with the highest accepted ballot number was prepared, or abort otherwise.

The primary TM will also go through the above phase 1 proposal, for any consensus instance for which it
times out on receiving a Phase2A message from the TP associated with that instance.

4.5 Messages exchanged between a TM and a TP

At the same time when the primary TM sends InitRTM messages to the secondary TMs, it also sends InitTP
messages to all the TPs listed in the transaction log. The InitTP message contains the transaction log which
is needed by the TP to validate the transaction locally, as well as the transaction descriptor, telling the TP the
addresses of all TMs participating in the transaction as acceptors.

Upon receiving the InitTP message, the TP tries to validate the transaction locally. This entails checking
that the local data items are not currently locked by another transaction (read items are not locked fro writing
and write items are not locked for either reading or writing) and that the version numbers are valid (same
version locally and in the log for read items and the version in the log is one greater than the local version
for write items). If the can TP validate the transaction successfully, it sends a Phase2A message with a ballot
number 0 and a prepared proposed value, to all TMs. If the transaction cannot be validated, the TP proposes
abort in the Phase2A message.

When the primary TM has reached a decision for the entire transaction it sends CommitDecision messages
to all other TMs and to all TPs. Upon receiving a CommitDecision message, the TP unlocks all items locked
after validation (for the current transaction). If the outcome of the transaction is committed, then the TP will
also update the local value and version number for all local data items written in the transaction, according to
the transaction log.

If the TP times out before receiving a CommitDecision message is behaves as described in failure scenario
2 in Section 6.

InitTP
bigint xactionId
xLog xactionLog
xDesc xactionDescriptor

Phase2A
bigint xactionId
bigint consensusId
int ballot (0)
prepared|abort proposedValue

CommitDecision
bigint xactionId
committed|aborted outcome

Table 5: Messages exchanged between TM and TP.

4.6 Messages exchanged between TransactionParticipants

The TP component is responsible for the management of data items. Data items need to be stored on the
nodes which are responsible for the keys of the items, according to the Chord# overlay. Therefore, whenever
the Chord# component signals the TP that the responsibility range of the current node shrunk, due to a new
predecessor joining the ring, the TP needs to move some data items to its new predecessor. The TP sends the
data items over to its new predecessor in one or more TransferItems messages. When the receiving TP has re-
ceived all TransferItems messages for the transfered range, it replies with a TrnasferComplete message. During
the transfer the source TP does not delete the items. It keeps all items until it receives the TransferComplete
event, but it marks them as unavailable. Items are available at the destination TP as soon as they arrive in a
TransferItems message. Items that are locked (by a transaction in progress) at the source TP are marked as such
in the TransferItems message, and they do not immediately become available at the destination TP. The source
TP transfers the locked items as soon as they become unlocked. If the destination TP times out on receiving
the locked items, it performs a majority read to get the latest version and value of the items from replicas other

8

TransferItems
ringKey rangeBegin
ringKey rangeEnd
int part
int partsTotal
item[] dataItems

TransferComplete
ringKey rangeBegin
ringKey rangeEnd

RecoverItems
ringKey rangeBegin
ringKey rangeEnd
address requester

ItemsRecovered
ringKey rangeBegin
ringKey rangeEnd
int part
int partsTotal
item[] dataItems
address[] successorList

Table 6: Messages exchanged between TPs.

than the source TP. The destination TP also performs a majority read for all the items that it is responsible for
but are not yet available (still in transit) and were requested by a client in a read or write operation.

Whenever the current predecessor of a TP fails, the TP becomes responsible for the items of its failed
predecessor and needs to recover them from their replicas. This situation is illustrated in Figure 5.

n

q

p

ab
c

m

s

q1

q2

q3 p3

p2

p1

Figure 5: Node n’s predecessor, p, failed, so node n becomes respon-
sible for all p’s items. Since node q was p’s predecessor, node n needs
to recover all items in the range (q, p] (marked red in the figure) from
their replicas. Here keys are replicated symmetrically and the replica-
tion degree is 4. The replicas of the items in the range (q, p] reside on
the blue ranges. Node n needs to ask all nodes responsible for items in
the blue ranges for their items. Node n issues lookups for keys q1, q2,
and q3 (the symmetric keys of the beginning of the range, q) and finds
the addresses of nodes a, m, and s. Node n asks node a for the items in
range (q1, p1], it asks node m for the items in range (q2, p2], and it asks
node s for the items in range (q3, p3]. Node a forwards n’s request to b,
who also forwards it to c. Nodes m and s react similarly to n’s request.

Node n sends a RecoverItems message to nodes a, m, and s. Node a forwards the same message to node
b, since b’s responsibility range, (a,b], overlaps with the requested range (q1, p1]. Node b also forwards
the RecoverItems message to node c, since c’s responsibility range, (b,c], overlaps with the requested range
(q1, p1]. Node a sends one or more ItemsRecovered messages to node n, containing the data items in the rage
(q1,a]. Similarly, nodes b and c send ItemsRecovered messages to node n containing their data items in ranges
(a,b] and (b, p1] respectively. In a similar fashion node n will receive the items in the ranges (q2, p2] and
(q3, p3]. Node n recovers the items in the range (q, p] using the received item replicas. For every recovered
item it uses the lastest version and value among the 3 replicas. Node n uses the successor lists received in
ItemsRecovered messages to make sure it has recovered items from all nodes being responsible for a range.

5 Garbage collection

Periodically TMs check whether they have data associated with transactions that have completed (either com-
mitted or aborted) and are now older than some predefined age (for example a couple of hours or a day). Such
transaction data is discarded. If a TM finds local transaction data for uncompleted transactions older than some
predefined age (for example one hour), the TM attempts to complete the transaction by acting as the primary
TM and proposing in all consensus instances of that transaction.

6 Failure scenarios

We try to cover all the possible failure cases that may occur during a transaction.

1. The client fails during read phase. This poses no problem. Since the commit phase was not yet initiated
there is no data associated with the transaction at any server and no TP has locked any data items. Since

9

the client is crashed, there is no interest in the transaction and everything looks as if the transaction never
happened.

2. The client fails during commit phase. If no server failure occurs the transaction commits successfully. If
the primary TM also fails, there is no client to retry the commit with the secondary TM. The TPs that
have locked data items and are waiting for CommitDecision messages from the primary TM, will time out.
At this time the locked TPs will start acting as the client and try to recover the transaction status. The
locked TPs will send BeginCommit messages to the secondary TM listed in the transaction descriptor. If
the locked TPs time out again they repeat the procedure with the next TM. The alternative is to have the
TMs execute a leader election algorithm among themselves.

3. A transaction manager fails during read phase. This is transparent if the client chooses a different TM for
the commit phase. If the client chooses the failed TM for the commit phase, we have the same scenario
as when the TM fails during the commit phase (see below).

4. A transaction participant fails during read phase. This poses no problem as long as a majority of the
replicas of a data item are present. If a majority is present, the client can complete its majority read
and move to the commit phase. If a majority of TPs are failed during the read phase, the majority read
operation will fail and the transaction is aborted by the client.

5. A transaction manager fails during commit phase. If this is the primary TM, then the client will retry to
commit the transaction using the secondary TM. If a replicated TM fails there is no problem as long as a
majority of TMs are alive during the commit phase.

6. A transaction participant fails during the commit phase. If the TP fails after sending its proposal in its
consensus instance, the transaction proceeds as if the TP never failed. If the TP fails before sending
its proposal, the primary TM will time out on this proposal and propose abort in the consensus instance
associated with the failed TP. The transaction can still commit as long as for every item, a majority of
the consensus instances associated with item replicas decide commit.

Summary of timeouts:

• the client times out on a CommitOutcome message.

• a TP times out on a Decision message from the primary TM.

• the primary TM times out on an Accept message from a TP.

• a replicated TM times out on an Accept message from a TP.

• a TP times out on a TransferItems message from another TP.

References

[1] Kompics: Reactive Component Model for Distributed Computing. http://kompics.sics.se, 2009.

[2] Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, simulating, and deploying peer-to-peer systems
using the Kompics component model. In COMmunication System softWAre and middlewaRE (COM-
SWARE), Dublin, Ireland, 2009.

[3] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD dissertation, KTH–
Royal Institute of Technology, Stockholm, Sweden, October 2006.

[4] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans. Database Syst., 31(1):133–
160, 2006.

[5] Rachid Guerraoui and Luı́s Rodrigues. Introduction to Reliable Distributed Programming. Springer, 2006.

[6] Monika Moser and Seif Haridi. Atomic commitment in transactional DHTs. In CoreGRID, pages 151–161,
2007.

[7] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Structured overlay without consistent hash-
ing: Empirical results. Cluster Computing and the Grid, IEEE International Symposium on, 2:8, 2006.

10

[8] Tallat M. Shafaat, Monika Moser, Thorsten Schütt, Alexander Reinefeld, Ali Ghodsi, and Seif Haridi.
Key-Based Consistency and Availability in Structured Overlay Networks. In Proceedings of the 3rd Inter-
national ICST Conference on Scalable Information Systems (Infoscale’08). ACM, June 2008.

[9] The Apache Software Foundation. Apache MINA project. http://mina.apache.org, 2008.

Changelog

Revision 2 completed in the future

• description of the various failure handling procedures.
• description of the various recovery procedures.

Revision 1 completed on 4-Jul-2009

• description of the overall system architecture and of the component architectures for the client, the
proxy, and the server;

• description of the DHT and of the data replication mechanisms;
• description of the TM replication components;
• description of the various objects: tables, data items, keys.

11

APPENDIX A. PUBLICATIONS

A.8 Scalaris: Users and Developers Guide

SELFMAN Deliverable Year Three, Page 406

Scalaris

Users and Developers Guide

Version 0.1

Florian Schintke, Thorsten Schütt

May 15, 2009

1 / 39

Copyright 2007-2008 Konrad-Zuse-Zentrum für Informationstechnik Berlin

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

2 / 39

Contents

I Users Guide 5

1 Introduction 7

2 Download and Installation 9
2.1 Requirements . 9
2.2 Download . 9

2.2.1 Development Branch . 9
2.2.2 Releases . 9

2.3 Configuration . 9
2.4 Build . 10

2.4.1 Linux . 10
2.4.2 Windows . 10
2.4.3 Java-API . 10

2.5 Running Scalaris . 11
2.5.1 Running on a local machine . 11
2.5.2 Running distributed . 11

2.6 Installation . 12
2.7 Logging . 12

3 Using the system 13
3.1 JSON API . 13

3.1.1 Deleting a key . 15
3.2 Java command line interface . 16
3.3 Java API . 16

4 Testing the system 17
4.1 Running the unit tests . 17

II Developers Guide 19

5 How a node joins the system 21
5.1 General Erlang server loop . 21
5.2 Starting additional local nodes after boot . 21

5.2.1 Supervisor-tree of a Scalaris node . 22
5.2.2 Starting the or-supervisor and general processes of a node 22
5.2.3 Starting the and-supervisor with a peer and its local database 24
5.2.4 Initializing a cs_node-process . 24
5.2.5 Actually joining the ring . 25
5.2.6 Beginning to serve requests . 27

6 Routing and routing tables in the Overlay 29

3 / 39

6.1 Simple routing table . 30
6.1.1 Data types . 31
6.1.2 A simple routingtable behaviour . 31

6.2 Chord routing table . 32
6.2.1 Data types . 32
6.2.2 The routingtable behaviour for Chord . 33

7 Directory Structure of the Source Code 35

8 Java API 37

4 / 39

Part I

Users Guide

5 / 39

1 Introduction

Scalaris is a scalable, transactional, distributed key-value store based on the peer-to-peer principle.
It can be used to build scalable Web 2.0 services. The concept of Scalaris is quite simple: Its
architecture consists of three layers.
It provides self-management and scalability by replicating services and data among peers. Without
system interruption it scales from a few PCs to thousands of servers. Servers can be added or
removed on the fly without any service downtime.

P2P Layer

Transaction Layer

… scalability

… availability

… strong consistency,

atomicity, isolation

Replication Layer

Web 2.0 Application
crash

recovery

model

layer implements …

Many Standard Internet Nodes for Data Storage
crash stop

model

Scalaris takes care of:

• Fail-over

• Data distribution

• Replication

• Strong consistency

• Transactions

The Scalaris project was initiated by Zuse Institute Berlin and onScale solutions and is partly
funded by the EU projects Selfman and XtreemOS. Additional information (papers, videos) can be
found at http://www.zib.de/CSR/Projects/scalaris and http://www.onscale.de/
scalaris.html.

7 / 39

2 Download and Installation

2.1 Requirements

For building and running Scalaris, some third-party modules are required which are not included
in the Scalaris sources:

• Erlang R12
• Erlang OTP (included in Erlang R12)
• GNU Make

Note, the Version 12 of Erlang is required. Scalaris will not work with older versions.
To build the Java API the following modules are required additionally:

• Java Development Kit 1.6
• Apache Ant

Before building the Java API, make sure that JAVA_HOME and ANT_HOME are set. JAVA_HOME has
to point to a JDK 1.6 installation, and ANT_HOME has to point to an Ant installation.

2.2 Download

The sources can be obtained from http://code.google.com/p/scalaris.

2.2.1 Development Branch

You find the latest development version in the svn repository:

Non-members may check out a read-only working copy anonymously over HTTP.
svn checkout http://scalaris.googlecode.com/svn/trunk/ scalaris-read-only

2.2.2 Releases

Releases can be found under the ’Download’ tab on the web-page.

2.3 Configuration

Scalaris reads two configuration files from the working directory: bin/scalaris.cfg (manda-
tory) and bin/scalaris.local.cfg (optional). The former defines default settings and is in-
cluded in the release. The latter can be created by the user to alter settings. A sample file is
bin/scalaris.local.cfg.example. A local configuration file is necessary to run Scalaris on
distributed nodes:

File scalaris.local.cfg:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Settings for distributed Erlang

9 / 39

% (see cs_send.erl to switch)

% {boot_host, {boot,’boot@foo.bar.com’}}.
% {log_host, {boot_logger, ’boot@foo.bar.com’}}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Settings for TCP mode.
% (see cs_send.erl to switch)

% Insert the appropriate IP-addresses for your setup
% as comma separated integers:
% IP Address, Port, and label of the boot server
{boot_host, {{127,0,0,1},14195,boot}}.

% IP Address, Port, and label of the log server
{log_host, {{127,0,0,1},14195,boot_logger}}.

boot_host defines the node where the boot server is running, which is contacted to join the system.

2.4 Build

2.4.1 Linux

Scalaris uses autoconf for configuring the build environment and GNU Make for building the code.

%> ./configure
%> make
%> make docs

For more details read README in the main Scalaris checkout directory.

2.4.2 Windows

We are currently not supporting Scalaris on Windows. However, we have two small bat files for
building and running a boot server. It seems to work but we make no guarantees.

• Install Erlang

• Install OpenSSL (for crypto module)

• Checkout scalaris code from SVN

• copy an appropriate EMakefile for from contrib/win32 to the trunk-directory

• Adapt the path to your Erlang installation in build.bat

• run build.bat

• Go to the bin sub-directory

• Adapt the path to your Erlang installation in boot.bat

• run boot.bat

2.4.3 Java-API

The following commands will build the Java API for Scalaris:

%> make java

10 / 39

This will build scalaris.jar, which is the library for accessing the overlay network. Optionally, the
documentation can be build:

%> cd java-api
%> ant doc

2.5 Running Scalaris

In Scalaris there are two kinds of processes:

• boot servers
• regular servers

In every Scalaris, at least one boot server is required. It will maintain a list of nodes taken part
in the system and allows other nodes to join the ring. For redundancy, it is also possible to have
several boot servers.

2.5.1 Running on a local machine

Open at least two shells. In the first, go into the bin directory:

%> cd bin
%> ./boot.sh

This will start the boot server. On success http://localhost:8000 should point to the man-
agement interface page of the boot server. The main page will show you the number of nodes
currently in the system. After a couple of seconds a first Scalaris should have started in the boot
server and the number should increase to one. The main page will also allow you to store and
retrieve key-value pairs.
In a second shell, you can now start a second Scalaris node. This will be a ‘regular server’. Go in
the bin directory:

%> cd bin
%> ./cs_local.sh

The second node will read the configuration file and use this information to contact the boot server
and will join the ring. The number of nodes on the web page should have increased to two by now.
Optionally, a third and fourth node can be started on the same machine. In a third shell:

%> cd bin
%> ./cs_local2.sh

In a fourth shell:

%> cd bin
%> ./cs_local3.sh

This will add 3 nodes to the network. The web pages at http://localhost:8000 should show
the additional nodes.

2.5.2 Running distributed

Scalaris can be installed on other machines in the same way as described in Sect. 2.6. In the default
configuration, nodes will look for the boot server on localhost on port 14195. You should create a
scalaris.local.cfg pointing to the node running the boot server.

11 / 39

% Insert the appropriate IP-addresses for your setup
% as comma separated integers:
% IP Address, Port, and label of the boot server
{boot_host, {{127,0,0,1},14195,boot}}.

If you are using the default configuration on the boot server it will listen on port 14195 and you
only have to change the IP address in the configuration file. Otherwise the other nodes will not
find the boot server. On the remote nodes, you only need to call ./cs_local.sh and they will
automatically contact the configured boot server.

2.6 Installation

For simple tests, you do not need to install Scalaris. You can run it directly from the source
directory. Note: make install will install scalaris into /usr/local. But is more convenient to
build RPMs and install those.

svn checkout http://scalaris.googlecode.com/svn/trunk/ scalaris-0.0.1
tar -cvjf scalaris-0.0.1.tar.bz2 scalaris-0.0.1 --exclude-vcs
cp scalaris-0.0.1.tar.bz2 /usr/src/packages/SOURCES/
rpmbuild -ba scalaris-0.0.1/contrib/scalaris.spec

Your source and binary rpm will be generated in /usr/src/packages/SRPMS and RPMS. We
also build rpms using checkouts from svn and provide them using the openSUSE BuildService
at http://download.opensuse.org/repositories/home:/tschuett/. RPM packages are available for

• Fedora 9, 10,

• Mandriva 2008, 2009,

• openSUSE 11.0, 11.1,

• SLE 10, 11,

• CentOS 5 and

• RHEL 5.

Inside those repositories you will also find an erlang rpm - you don’t need this if you already have
a recent enough erlang version!

2.7 Logging

Scalaris uses the log4erl library (see contrib/log4erl for logging status information and error
messages. The log level can be configured in bin/scalaris.cfg. The default value is error;
only errors and severe problems are logged.

%% @doc Loglevel: debug < info < warn < error < fatal < none
{log_level, error}.

In some cases, it might be necessary to get more complete logging information, e.g. for debugging.
In 5.2 on page 21, we are explaining the startup process of Scalarisnodes in more detail, here the
info level provides more detailed information.

%% @doc Loglevel: debug < info < warn < error < fatal < none
{log_level, info}.

12 / 39

3 Using the system

3.1 JSON API

Scalaris supports a JSON API for transactions. To minimize the necessary round trips between
a client and Scalaris, it uses request lists, which contain all requests that can be done in parallel.
The request list is then send over to a Scalaris node with a POST message. The result is an
opaque TransLog and a list containing the results of the requests. To add further requests to the
transaction, the TransLog and another list of requests may be send to Scalaris. This process may
be repeated as necessary. To finish the transaction, the request list can contain a ’commit’ request
as last element, which triggers the validation phase of the transaction processing.
The JSON-API can be accessed via the Scalaris-Web-Server running on port 8000 by default and
the page jsonrpc.yaws (For example at: http://localhost:8000/jsonrpc.yaws). The
following example illustrates the message flow:

Client Scalaris node
Make a transaction, that sets two keys:

{
”method”:” r e q l i s t ”,
” ve r s i on ”:”1.1”,
”params”:
[
[

{ ”wr i t e ”:{”keyA”:”valueA”} },
{ ”wr i t e ”:{”keyB”:”valueB”} },
{ ”commit”:”commit” }

]
],

” id ”:0
}

→

← Scalaris sends results back

{ ” r e s u l t ”:
{ ” r e s u l t s ”:

[
{ ”op”:”commit”,

” va lue ”:”ok”,
”key”:”ok” },

{ ”op”:”wr i t e ”,
” va lue ”:”valueB”,
”key”:”keyB” },

{ ”op”:”wr i t e ”,
” va lue ”:”valueA”,
”key”:”keyA” }

],
” t r an s l og ”:
[...]

},
” id ” : 0

}

13 / 39

In a second transaction: Read the two keys

{
”method”:” r e q l i s t ”,
” ve r s i on ”:”1.1”,
”params”:
[
[
{ ” read”:”keyA” },
{ ” read”:”keyB” }

]
]

” id ”:0
}

→

← Scalaris sends results back

{ ” r e s u l t ”:
{” r e s u l t s ”:
[
{ ”op”:” read”,

” va lue ”:”valueB”,
”key”:”keyB” },

{ ”op”:” read”,
” va lue ”:”valueA”,
”key”:”keyA” }

],
” t r an s l og ”:
[...] // this list is the translog

// for further operations!
// We name it TLOG here.

},
” id ” : 0

}

Calculate something with the read values
and make further requests, here a write and
the commit for the whole transaction. In-
clude also the latest translog we got from
Scalaris (named TLOG here).

{
”method”:” r e q l i s t ”,
” ve r s i on ”:”1.1”,
”params”:
[
TLOG, // translog from prev. result.
[
{ ”wr i t e ”:{”keyA”:”valueA2”} },
{ ”commit”:”commit” }

]
],

” id ” : 0
}

→

14 / 39

← Scalaris sends results back

{ ” r e s u l t ”:
{ ” r e s u l t s ”:

[{ ”op”:”commit”,
” va lue ”:”ok”,
”key”:”ok” },

{ ”op”:”wr i t e ”,
” va lue ”:”valueA2”,
”key”:”keyA” }

],
” t r an s l og ”:
[...]

},
” id ” : 0

}

A sample usage of the JSON API using Ruby can be found in contrib/jsonrpc.rb.
A single request list must not contain a key more than once!
The allowed requests are:

{ ” read”:”any key” }

{ ”wr i t e ”:{”any key”:”any va lue ”} }

{ ”commit”:”commit” }

The possible results are:

{ ”op”:” read”, ”key”:”any key”, ” va lue ”:”any va lue ” }
{ ”op”:” read”, ”key”:”any va lue ”, ” f a i l ”:” reason” } // ’not_found’ or ’timeout’

{ ”op”:”wr i t e ”, ”key”:”any key”, ” va lue ”:”any va lue ” }
{ ”op”:” read”, ”key”:”any key”, ” f a i l ”:” reason” }

{ ”op”:”commit”, ” va lue ”:”ok”, ”key”:”ok” }
{ ”op”:”commit”, ” va lue ”:” f a i l ”, ” f a i l ”:” reason” }

3.1.1 Deleting a key

Outside transactions keys can also be deleted, but it has to be done with care, as explained in
the following thread on the mailing list: http://groups.google.com/group/scalaris/
browse_thread/thread/ff1d9237e218799.

{
”method”:” de l e t e ”,
” ve r s i on ”:”1.1”,
”params”:
[
{ ”key”:”any key” }

],
” id ” : 0

}

Two sample results

{ ” r e s u l t ”:
{ ”ok”:2, // how many replicas were deleted successsfully

” r e s u l t s ”: [”ok”, ”ok”, ” l o c k s s e t ”, ”undef”]
}

}

15 / 39

{ ” r e s u l t ”:
{ ” f a i l u r e ”:” reason” }

}

3.2 Java command line interface

The jar file contains a small command line interface client. For convenience, we provide a wrapper
script called scalaris which setups the Java environment:

%> cd java-api
%> ./scalaris -help
usage: scalaris
-g,--getsubscribers <topic> get subscribers of a topic
-help print this message
-minibench run mini benchmark
-p,--publish <params> publish a new message for a topic: <topic>

<message>
-r,--read <key> read an item
-s,--subscribe <params> subscribe to a topic: <topic> <url>
-u,--unsubscribe <params> unsubscribe from a topic: <topic> <url>
-w,--write <params> write an item: <key> <value>

Read and write can be used to read resp. write from/to the overlay. getsubscribers, publish, and
subscribe are the PubSub functions.

%> ./scalaris -write foo bar
write(foo, bar)
%> ./scalaris -read foo
read(foo) == bar

The scalaris library requires that you are running a ‘regular server’ on the same node. Having a
boot server running on the same node is not sufficient.

3.3 Java API

The scalaris.jar provides the command line client as well as a library for Java programs to
access Scalaris. The library provides two classes:

• Scalaris provides a high-level API similar to the command line client.

• Transaction provides a low-level API to the transaction mechanism.

For details we refer the reader to the Javadoc:

%> cd java-api
%> ant doc
%> firefox doc/index.html

16 / 39

4 Testing the system

4.1 Running the unit tests

There are some unit tests in the test directory. You can call them by running make test in the
main directory. The results are stored in a local index.html file.
The tests are implemented with the common-test package from the Erlang system. For running
the tests we rely on run_test, which is part of the common-test package, but is not installed by
default. configure will check whether run_test is available. If it is not installed, it will show a
warning and a short description of how to install the missing file.
Note: for the unit tests, we are setting up and shutting down several overlay networks. During
the shut down phase, the runtime environment will print extensive error messages. These error
messages do not indicate that tests failed! Running the complete test suite takes about 5 minutes.
Only when the complete suite finished, it will present statistics on failed and successful tests.

17 / 39

Part II

Developers Guide

19 / 39

5 How a node joins the system

5.1 General Erlang server loop

Servers in Erlang often use the following structure to maintain a state while processing received
messages:

receive
Message ->
State1 = f(State),
loop(State1)

end.

The server runs an endless loop, that waits for a message, processes it and calls itself using tail-
recursion in each branch. The loop works on a State, which can be modified when a message is
handled.

5.2 Starting additional local nodes after boot

After booting a new Scalaris-System as described in Section 2.5.1 on page 11, ten additional local
nodes can be started by typing admin:add_nodes(10) in the Erlang-Shell that the boot process
opened 1.

scalaris/bin> ./boot.sh
[...]
=INFO REPORT==== 12-May-2009::16:24:18 ===
Yaws: Listening to 0.0.0.0:8000 for servers
- http://localhost:8000 under ../docroot
[info] [CC] this() == {{127,0,0,1},14195}
[info] [DNC <0.96.0>] starting DeadNodeCache
[info] [DNC <0.96.0>] starting Dead Node Cache
[info] [RM <0.97.0>] starting ring maintainer

[info] [RT <0.99.0>] starting routingtable
[info] [Node <0.101.0>] joining 315238232250031455306327244779560426902
[info] [Node <0.101.0>] join as first 315238232250031455306327244779560426902
[info] [FD <0.74.0>] starting pinger for {{127,0,0,1},14195,<0.101.0>}
[info] [Node <0.101.0>] joined
[info] [CY] Cyclon spawn: {{127,0,0,1},14195,<0.102.0>}
(boot@csr-pc9)1> admin:add_nodes(10)

In the following we will trace, what this function does to join additional nodes to the system.
The function admin:add_nodes(int) is defined as follows.

File admin.erl:

37 %%--
38 %% Function: add_nodes(int()) -> ok
39 %% Description: add new Scalaris nodes
40 %%--
41 % @doc add new Scalaris nodes on the local node
42 % @spec add_nodes(int()) -> ok
43
44 add_nodes(Count) ->

1Increase the log level to info to get the detailed startup logs. See Sect. 2.7 on page 12

21 / 39

45 add_nodes(Count, 0).
46
47 % @spec add_nodes(int(), int()) -> ok
48 add_nodes(Count, Delay) ->
49 add_nodes_loop(Count, Delay).
50
51 add_nodes_loop(0, _) ->
52 ok;
53 add_nodes_loop(Count, Delay) ->
54 supervisor:start_child(main_sup, {randoms:getRandomId(),
55 {cs_sup_or, start_link, []},
56 permanent,
57 brutal_kill,
58 worker,
59 []}),
60 timer:sleep(Delay),
61 add_nodes_loop(Count - 1, Delay).

It calls add_nodes_loop(Count, Delay) with a delay of 0. This function starts a new child
for the main supervisor main_sup. As defined by the parameters, to actually perform the start,
the function cs_sup_or:start_link is called by the Erlang supervisor mechanism. For more
details on the OTP supervisor mechanism see Chapter 18 of the Erlang book [1] or the online
documentation at http://www.erlang.org/doc/man/supervisor.html.

5.2.1 Supervisor-tree of a Scalaris node

When starting a new node in the system, the following supervisor tree is created:

One-for-one

supervision

Failure Detector

Configuration

KeyHolder

Statistics Collector

All-for-one

supervision
Chord# Node

Database

Routing Table

Load Balancer

Mod. Paxos

PaxosTransaction

Managers

5.2.2 Starting the or-supervisor and general processes of a node

Starting supervisors is a two step process: the supervisor mechanism first calls the init() func-
tion of the defined module (cs_sup_or:init() in this case) and then calls the start function
(start_link here.
So, lets have a look at cs_sup_or:init, the ’Scalaris or supervisor’.

File cs_sup_or.erl:

61 init([Options]) ->

22 / 39

62 InstanceId = string:concat(” cs node ”, randoms:getRandomId()),
63 boot_server:connect(),
64 KeyHolder =
65 {cs_keyholder,
66 {cs_keyholder, start_link, [InstanceId]},
67 permanent,
68 brutal_kill,
69 worker,
70 []},
71 RSE =
72 {rse_chord,
73 {rse_chord, start_link, [InstanceId]},
74 permanent,
75 brutal_kill,
76 worker,
77 []},
78 Supervisor_AND =
79 {cs_supervisor_and,
80 {cs_sup_and, start_link, [InstanceId, Options]},
81 permanent,
82 brutal_kill,
83 supervisor,
84 []},
85 RingMaintenance =
86 {?RM,
87 {?RM, start_link, [InstanceId]},
88 permanent,
89 brutal_kill,
90 worker,
91 []},
92 RoutingTable =
93 {routingtable,
94 {rt_loop, start_link, [InstanceId]},
95 permanent,
96 brutal_kill,
97 worker,
98 []},
99 DeadNodeCache =

100 {deadnodecache,
101 {dn_cache, start_link, [InstanceId]},
102 permanent,
103 brutal_kill,
104 worker,
105 []},
106 {ok, {{one_for_one, 10, 1},
107 [
108 KeyHolder,
109 DeadNodeCache,
110 RingMaintenance,
111 RoutingTable,
112 Supervisor_AND
113 %RSE
114]}}.

The return value of the init() function specifies the child processes of the supervisor and how
to start them. Here, we define a list of processes to be observed by a one_for_one supervi-
sor. The processes are: KeyHolder, DeadNodeCache, RingMaintenance, RoutingTable, and a
Supervisor_AND process.
The term {one_for_one, 10, 1} specifies that the supervisor should try 10 times to restart each
process before giving up. one_for_one supervision means, that if a single process stops, only that
process is restarted. The other processes run independently.
The cs_sup_or:init() is finished and the supervisor module, starts all the defined processes by
calling the functions that were defined in the list of the cs_sup_or:init().
For a join of a new node, we are only interested in the starting of the Supervisor_AND process
here. At that point in time, all other defined processes are already started and running.

23 / 39

5.2.3 Starting the and-supervisor with a peer and its local database

Again, the OTP will first call the init() function of the corresponding module:

File cs_sup_and.erl:

58 init([InstanceId, Options]) ->
59 Node =
60 {cs_node,
61 {cs_node, start_link, [InstanceId, Options]},
62 permanent,
63 brutal_kill,
64 worker,
65 []},
66 DB =
67 {?DB,
68 {?DB, start_link, [InstanceId]},
69 permanent,
70 brutal_kill,
71 worker,
72 []},
73 Cyclon =
74 {cyclon,
75 {cyclon.cyclon, start_link, [InstanceId]},
76 permanent,
77 brutal_kill,
78 worker,
79 []},
80 {ok, {{one_for_all, 10, 1},
81 [
82 DB,
83 Node,
84 Cyclon
85]}}.

It defines three processes, that have to be observed using an one_for_all-supervisor, which means,
that if one fails, all have to be restarted. Passed to the init function is the InstanceId, a random
number to make nodes unique. It was calculated a bit earlier in the code. Exercise: Try to find
where.
As you can see from the list, the DB is started before the Node. This is intended and important,
because cs_node uses the database, but not vice versa. The supervisor first completely initializes
the DB process and afterwards calls cs_node:start_link. We only go into details here, for the
latter.

File cs_node.erl:

378 %% @doc spawns a scalaris node, called by the scalaris supervisor process
379 %% @spec start_link(term()) -> {ok, pid()}
380 start_link(InstanceId) ->
381 start_link(InstanceId, []).
382
383 start_link(InstanceId, Options) ->
384 gen_component:start_link(?MODULE, [InstanceId, Options], [{register, InstanceId, cs_node}]).

cs_node implements the gen_component behaviour. This component was developed by us to
enable us to write code which is similar in syntax and semantics to the examples in [2]. Similar to
the supervisor behaviour, the component has to provide an init function, but here it is used to
initialize the state of the component. This function is described in the next section.
Note: ?MODULE is a predefined Erlang macro, which expands to the module name, the code belongs
to (here: cs_node).

5.2.4 Initializing a cs_node-process

24 / 39

File cs_node.erl:

356 %% @doc joins this node in the ring and calls the main loop
357 -spec(init/1 :: ([any()]) -> cs_state:state()).
358 init([_InstanceId, Options]) ->
359 case lists:member(first, Options) of
360 true ->
361 ok;
362 false ->
363 timer:sleep(crypto:rand_uniform(1, 100) * 100)
364 end,
365 Id = cs_keyholder:get_key(),
366 {First, State} = cs_join:join(Id),
367 if
368 not First ->
369 cs_replica_stabilization:recreate_replicas(cs_state:get_my_range(State));
370 true ->
371 ok
372 end,
373 log:log(info,”[Node ˜w] j o i n ed ”,[self()]),
374 State.

The gen_component behaviour registers the cs_node in the process dictionary. Formerly, the
process had to do this himself, but we moved this code into the behaviour. If the cs_node is the
first node, he will start immediately. Otherwise, the process sleeps for a random amount of time.
If you would start 1000 processes with admin:add_nodes(1000), the boot-server would receive
many join requests at the same time, which is not intended. It will also make the ring stabilization
process more complicated. Adding 100s of nodes within a short period of time induces more churn
into the system, than the ring maintenance can handle.
Then, the node retrieves its Id from the keyholder: Id = cs_keyholder:get_key(). In the first
call, a random identifier is returned, otherwise the latest set value. If the cs_node-process failed
and is restarted by its supervisor, this call to the keyholder ensures, that the node still keeps its Id,
assuming that the keyholder process is not failing. This is important for the load-balancing and
for consistent responsibility of nodes to ensure consistent lookup in the structured overlay. Note:
the name Key-holder actually is an id-holder.
If a node changes its position in the ring for load-balancing, the key-holder will be informed and
the cs_node finishes itself. This triggers a restart of the corresponding database process via the
and-supervisor. When the supervisor restarts both processes, they will retrieve the new position
in the ring from the key-holder and join the ring there.
The supervisor was configured to restart a node at most 10 times. Does that
mean, that a node can only change its position in the ring 10 times (caused
by load-balancing)?

5.2.5 Actually joining the ring

After retrieving its identifier, the node starts the join process (cs_join:join).

File cs_join.erl:

87 %% @doc join a ring and return initial state
88 %% the boolean indicates whether it was the first
89 %% node in the ring or not
90 %% @spec join(Id) -> {true|false, state:state()}
91 %% Id = term()
92 join(Id) ->
93 log:log(info,”[Node ˜w] j o i n i n g ˜p”,[self(), Id]),
94 Ringsize = boot_server:number_of_nodes(),
95 if
96 Ringsize == 0 ->
97 State = join_first(Id),
98 cs_reregister:reregister(),

25 / 39

99 {true, State};
100 true ->
101 case cs_lookup:reliable_get_node(erlang:get(instance_id),
102 Id, 60000) of
103 error ->
104 join(Id);
105 {ok, Succ} ->
106 State = join_ring(Id, Succ),
107 cs_reregister:reregister(),
108 {false, State}
109 end
110 end.

The boot-server is contacted to retrieve the known number of nodes in the ring. If the ring is
empty, join_first is called. Otherwise, join_ring is called.
If the ring is empty, the joining node is the only node in the ring and will be responsible for the
whole key space. join_first just creates a new state for a Scalaris node consisting of an empty
routing table, a successorlist containing itself, itself as its predecessor, a reference to itself, its
responsibility area from Id to Id (the full ring), and a load balancing schema.

File cs_join.erl:

50 %% @doc join an empty ring
51 join_first(Id) ->
52 log:log(info,”[Node ˜w] j o i n as f i r s t ˜w”,[self(), Id]),
53 Me = node:make(cs_send:this(), Id),
54 ?RM:initialize(Id, Me, Me, Me),
55 routingtable:initialize(Id, Me, Me),
56 cs_state:new(?RT:empty(Me), Me, Me, Me, {Id, Id}, cs_lb:new(), ?DB:new()).

The macro ?RT maps to the configured routing algorithm and ?RM to the configured ring mainte-
nance algorithm. It is defined in chordsharp.hrl. For further details on the routing see Chapter 6
on page 29.
The state is defined in

File cs_state.erl:

57 new(RT, Successor, Predecessor, Me, MyRange, LB, DB) ->
58 #state{
59 routingtable = RT,
60 successor = Successor,
61 predecessor = Predecessor,
62 me = Me,
63 my_range = MyRange,
64 lb=LB,
65 join_time=now(),
66 deadnodes = gb_sets:new(),
67 trans_log = #translog{
68 tid_tm_mapping = dict:new(),
69 decided = gb_trees:empty(),
70 undecided = gb_trees:empty()
71 },
72 db = DB
73 }.

If a node joins an existing ring, reliable_get_node is called for the own Id in cs_join:join().
This lookup delivers the node who is currently responsible for the new node’s identifier – the
successor for the joining node. If this lookup fails for some reason, it is tried again, by recursivly
calling the join().
What, if the Id is exactly the same as that of the existing node? This could
lead to lookup and responsibility inconsistency? Can this be triggered by
the load-balancing? This is a bug, that should be fixed!!!
Then, cs_join:join_ring is called:

26 / 39

File cs_join.erl:

61 join_ring(Id, Succ) ->
62 log:log(info,”[Node ˜w] j o i n r i n g ˜w”,[self(), Id]),
63 Me = node:make(cs_send:this(), Id),
64 UniqueId = node:uniqueId(Me),
65 cs_send:send(node:pidX(Succ), {join, cs_send:this(), Id, UniqueId}),
66 receive
67 {join_response, Pred, Data} ->
68 log:log(info,”[Node ˜w] got pred ˜w”,[self(), Pred]),
69 case node:is_null(Pred) of
70 true ->
71 DB = ?DB:add_data(?DB:new(), Data),
72 ?RM:initialize(Id, Me, Pred, Succ),
73 routingtable:initialize(Id, Pred, Succ),
74 cs_state:new(?RT:empty(Succ), Succ, Pred, Me, {Id, Id}, cs_lb:new(), DB);
75 false ->
76 cs_send:send(node:pidX(Pred), {update_succ, Me}),
77 DB = ?DB:add_data(?DB:new(), Data),
78 ?RM:initialize(Id, Me, Pred, Succ),
79 routingtable:initialize(Id, Pred, Succ),
80 cs_state:new(?RT:empty(Succ), Succ, Pred, Me, {node:id(Pred), Id},
81 cs_lb:new(), DB)
82 end
83 end.

First the node is initialized. Then it sends a join message to the successor including a reference
to itself and the chosen Id.
The message is received by the old node in cs_node.erl. There exists a {join, X} handler.

File cs_node.erl:

302 on({join, Source_PID, Id, UniqueId}, State) ->
303 cs_join:join_request(State, Source_PID, Id, UniqueId);

This triggers a call to join_request on the old node.

File cs_join.erl:

39 join_request(State, Source_PID, Id, UniqueId) ->
40 Pred = node:new(Source_PID, Id, UniqueId),
41 {DB, HisData} = ?DB:split_data(cs_state:get_db(State), cs_state:id(State), Id),
42 cs_send:send(Source_PID, {join_response, cs_state:pred(State), HisData}),
43 ?RM:update_pred(Pred),
44 cs_state:set_db(State, DB).

The cs_node notifies the ring maintenance, that he has a new predecessor. Then he removes the
key-value pairs from his database which are now in the responsibility of the joining node. Then it
sends a join_response to the new node with its former predecessor, the data, it has to host, and
its successorlist.
Back on the joining node: it waits for the join_response message in cs_join:join_ring().
The next steps after the message was received from the old node are to initialize the maintenance
components for the ring and routing table, the database and the state of the cs_node.

5.2.6 Beginning to serve requests

cs_join:join() was called from cs_node:start(), which now continues

File cs_node.erl:

356 %% @doc joins this node in the ring and calls the main loop
357 -spec(init/1 :: ([any()]) -> cs_state:state()).
358 init([_InstanceId, Options]) ->
359 case lists:member(first, Options) of
360 true ->

27 / 39

361 ok;
362 false ->
363 timer:sleep(crypto:rand_uniform(1, 100) * 100)
364 end,
365 Id = cs_keyholder:get_key(),
366 {First, State} = cs_join:join(Id),
367 if
368 not First ->
369 cs_replica_stabilization:recreate_replicas(cs_state:get_my_range(State));
370 true ->
371 ok
372 end,
373 log:log(info,”[Node ˜w] j o i n ed ”,[self()]),
374 State.

The cs_replica_stabilization:recreate_replicas() function is called, which is not yet
implemented. It would recreated necessary replicas that were lost due to load-balancing and node
failures.
Finally, the loop for request handling is started.

28 / 39

6 Routing and routing tables in the Overlay

Each node of the ring can perform searches in the overlay.
A search is done by a lookup in the overlay, but there are several other demands for communication
between peers, so Scalaris provides a general interface to route a message to another peer, that is
currently responsible for a given key.

File cs_lookup.erl:

[...]
unreliable_lookup(Key, Msg) ->

get_pid(cs_node) ! {lookup_aux, Key, Msg}.

unreliable_get_key(Key) ->
unreliable_lookup(Key, {get_key, cs_send:this(), Key}).

[...]

The message Msg could be a get which retrieves content from the responsible node or a get_node
message, which returns a pointer to the node.
All currently supported messages are listed in the file cs_node.erl.
The message routing is implemented in lookup.erl

File lookup.erl:

[...]
lookup_fin(Msg) ->

self() ! Msg.

lookup_aux(State, Key, Msg) ->
Terminate = util:is_between(cs_state:id(State), Key, cs_state:succ_id(State)),
P = ?RT:next_hop(State, Key),
?LOG(”[˜w | I | Node | ˜w] lookup aux ˜w ˜w ˜s˜n”,
[calendar:universal_time(), self(), Terminate, P, Key]),

if
Terminate ->

cs_send:send(P, {lookup_fin, Msg});
true ->

cs_send:send(P, {lookup_aux, Key, Msg})
end.

[...]

Each node is responsible for a certain key interval. The function util:is_between is used to
decide, whether the key is between the current node and its successor. If that is the case, final
step is done using lookup_fin(), which delivers the message to the local node. Otherwise, the
message is forwarded to the next nearest known peer (listed in the routing table) determined by
?RT:next_hop.
routingtable.erl is a generic interface for routing tables. It can be compared to interfaces in
Java. In Erlang interfaces can be defined using a so called ‘behaviour’. The files rt_simple and
rt_chord implement the behaviour ‘routingtable’.
The macro ?RT is used to select the current implementation of routing tables. It is defined in
chordsharp.hrl.

File chordsharp.hrl:

26 %%This file determines which kind of routingtable is used. Uncomment the
27 %%one that is desired.

29 / 39

28
29 %%Standard Chord routingtable
30 -define(RT, rt_chord).
31
32 %%Simple routingtable
33 %-define(RT, rt_simple).

The functions, that have to be implemented for a routing mechanism are defined in the following
file:

File routingtable.erl:

42 behaviour_info(callbacks) ->
43 [
44 % create a default routing table
45 {empty, 1},
46 % mapping: key space -> identifier space
47 {hash_key, 1}, {getRandomNodeId, 0},
48 % routing
49 {next_hop, 2},
50 % trigger for new stabilization round
51 {init_stabilize, 3},
52 % dead nodes filtering
53 {filterDeadNode, 2},
54 % statistics
55 {to_pid_list, 1}, {get_size, 1},
56 % for symmetric replication
57 {get_keys_for_replicas, 1},
58 % for debugging
59 {dump, 1},
60 % for bulkowner
61 {to_dict, 1}
62];

empty/1 gets a successor passed and generates an empty routing table. The data structure of the
routing table is undefined. It can be a list, a tree, a matrix . . .

hash_key/1 gets a key and maps it into the overlay’s identifier space.
getRandomNodeId/0 returns a random node id from the overlay’s identifier space. This is used

for example when a new node joins the system.
next_hop/2 gets a routing table and a key and returns the node, that should be contacted next

(is nearest to the id).
init_stabilize/3 is called periodically to rebuild the routing table. The parameters are the

identifier of the node, the successor and the old routing table state.
filterDeadNode/2 is called by the failuredetector and tells the routing table about dead nodes

to be eliminated from the routing table. This function cleans the routing table.
to_pid_list/1 get all PIDs of the routing table entries.
get_size/1 get the routing table’s size.
get_keys_for_replicas/1 Returns for a given Key the keys of its replicas. This used for

implementing symmetric replication.
dump/1 dump the state. Not mandatory, may just return ok.
to_dict/1 returns the routing tables entries in an array-like structure. This is used by bulk-

operations to create a broadcast tree.

6.1 Simple routing table

One implementation of a routing table is the rt_simple, which routes via the successor, which is
inefficient, as it needs a linear number of hops to reach its goal. A more robust implementation,
would use a successor list. This implementation is not very efficient on churn.

30 / 39

6.1.1 Data types

First, the data structure of the routing table is defined:

File rt_simple.erl:

39 % @type key(). Identifier.
40 -type(key()::pos_integer()).
41 % @type rt(). Routing Table.
42 -ifdef(types_are_builtin).
43 -type(rt()::{node:node_type(), gb_tree()}).
44 -else.
45 -type(rt()::{node:node_type(), gb_trees:gb_tree()}).
46 -endif.

A routing table is a pair of a node (the successor) and an (unused) gb_tree. Keys in the overlay
are identified by integers.

6.1.2 A simple routingtable behaviour

File rt_simple.erl:

50 %% @doc creates an empty routing table.
51 %% per default the empty routing should already include
52 %% the successor
53 -spec(empty/1 :: (node:node_type()) -> rt()).
54 empty(Succ) ->
55 {Succ, gb_trees:empty()}.

The empty routing table consists of the successor and an empty gb_tree.

File rt_simple.erl:

59 %% @doc hashes the key to the identifier space.
60 -spec(hash_key/1 :: (any()) -> key()).
61 hash_key(Key) ->
62 BitString = binary_to_list(crypto:md5(Key)),
63 % binary to integer
64 lists:foldl(fun(El, Total) -> (Total bsl 8) bor El end, 0, BitString).

Keys are hashed using MD5 and have a length of 128 bits.

File rt_simple.erl:

75 %% @doc returns the next hop to contact for a lookup
76 %% @spec next_hop(cs_state:state(), key()) -> pid()
77 next_hop(State, _Key) ->
78 cs_state:succ_pid(State).

Next hop is always the successor.

File rt_simple.erl:

82 %% @doc triggered by a new stabilization round
83 -spec(init_stabilize/3 :: (key(), node:node_type(), rt()) -> rt()).
84 init_stabilize(_Id, Succ, _RT) ->
85 % renew routing table
86 empty(Succ).

init_stabilize/3 resets its routing table with the current successor.

File rt_simple.erl:

90 %% @doc removes dead nodes from the routing table
91 -spec(filterDeadNode/2 :: (rt(), cs_send:mypid()) -> rt()).
92 filterDeadNode(RT, _DeadPid) ->
93 RT.

31 / 39

filterDeadNodes/2 does nothing, as only the successor is listed in the routing table and that is
reset periodically in init_stabilize/3.

File rt_simple.erl:

97 %% @doc returns the pids of the routing table entries .
98 -spec(to_pid_list/1 :: (rt()) -> [cs_send:mypid()]).
99 to_pid_list({Succ, _RoutingTable} = _RT) ->

100 [node:pidX(Succ)].

to_pid_list/1 returns the pids of the routing tables, as defined in node.erl.

File rt_simple.erl:

109 normalize(Key) ->
110 Key band 16#FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.
111
112 %% @doc returns the replicas of the given key
113 -spec(get_keys_for_replicas/1 :: (key() | string()) -> [key()]).
114 get_keys_for_replicas(Key) when is_integer(Key) ->
115 [Key,
116 normalize(Key + 16#40000000000000000000000000000000),
117 normalize(Key + 16#80000000000000000000000000000000),
118 normalize(Key + 16#C0000000000000000000000000000000)
119];
120 get_keys_for_replicas(Key) when is_list(Key) ->
121 get_keys_for_replicas(hash_key(Key)).

The get_keys_for_replicas/1 implements symmetric replication, here. The call to normalize
implements the modulo by throwing high bits away.

File rt_simple.erl:

126 %% @doc
127 -spec(dump/1 :: (rt()) -> ok).
128 dump(_State) ->
129 ok.

dump/1 is not implemented.

6.2 Chord routing table

The file rt_chord.erl implements Chord’s routing.

6.2.1 Data types

File rt_chord.erl:

40 -type(key()::pos_integer()).
41 -ifdef(types_are_builtin).
42 -type(rt()::gb_tree()).
43 -else.
44 -type(rt()::gb_trees:gb_tree()).
45 -endif.

The routing table is a gb_tree. Identifiers in the ring are integers. Note, that in Erlang integer
can be of arbitrary precision. For Chord, the identifiers are in [0, 2128), i.e. 128-bit strings.

32 / 39

6.2.2 The routingtable behaviour for Chord

File rt_chord.erl:

49 %% @doc creates an empty routing table.
50 -spec(empty/1 :: (node:node_type()) -> rt()).
51 empty(_Succ) ->
52 gb_trees:empty().

empty/1 returns an empty gb_tree.
hash_key(Key) and getRandomNodeId call their counterparts from rt_simple.erl

File rt_chord.erl:

67 %% @doc returns the next hop to contact for a lookup
68 -spec(next_hop/2 :: (cs_state:state(), key()) -> cs_send:mypid()).
69 next_hop(State, Id) ->
70 case util:is_between(cs_state:id(State), Id, cs_state:succ_id(State)) of
71 %succ is responsible for the key
72 true ->
73 cs_state:succ_pid(State);
74 % check routing table
75 false ->
76 RT = cs_state:rt(State),
77 next_hop(cs_state:id(State), RT, Id, 127, cs_state:succ_pid(State))
78 end.

next_hop traverses the routing table beginning with the longest finger (2127) by calling the helper
function next_hop/5.

File rt_chord.erl:

82 % @private
83 -spec(next_hop/5 :: (key(), rt(), key(), pos_integer(), cs_send:mypid()) -> cs_send:mypid()).
84 next_hop(_N, _RT, _Id, 0, Candidate) -> Candidate;
85 next_hop(N, RT, Id, Index, Candidate) ->
86 case gb_trees:lookup(Index, RT) of
87 {value, Entry} ->
88 case util:is_between_closed(N, node:id(Entry), Id) of
89 true ->
90 node:pidX(Entry);
91 false ->
92 next_hop(N, RT, Id, Index - 1, Candidate)
93 end;
94 none ->
95 next_hop(N, RT, Id, Index - 1, Candidate)
96 end.

If the entry exists, it is retrieved from the gb_tree. If the id of the routing table entry is between
ourselves and the searched id, the finger is chosen. If anything fails, Candidate (the successor) is
chosen.
Why could a routing table entry be null? filterDeadNodes changes entries to null.
BUG: Instead of directly returning Candidate one should further traverse the
routing table for shorter appropriate fingers. If doing so, a check whether
Index is zero, would become necessary.
If the finger is to long, recursively try the next shorter finger.

File rt_chord.erl:

100 %% @doc starts the stabilization routine
101 -spec(init_stabilize/3 :: (key(), node:node_type(), rt()) -> rt()).
102 init_stabilize(Id, Succ, RT) ->
103 % calculate the longest finger
104 Key = calculateKey(Id, 127),

33 / 39

105 % trigger a lookup for Key
106 cs_lookup:unreliable_lookup(Key, {rt_get_node, cs_send:this(), 127}),
107 cleanup(gb_trees:iterator(RT), RT, Succ).

The routing table stabilization is triggered with the index 127 and then runs asynchronously, as we
do not want to block the rt_loop to perform other request while recalculating the routing table.
We have to find the node responsible for the calculated finger and therefore perform a lookup for
the node with a rt_get_node message, including a reference to ourselves as the reply-to address
and the index to be set.
The lookup performs an overlay routing by passing the massage until the responsible node is
found. There, the message is delivered to the cs_node. At the destination the message is handled
in cs_node.erl:

File cs_node.erl:

193 on({rt_get_node, Source_PID, Cookie}, State) ->
194 cs_send:send(Source_PID, {rt_get_node_response, Cookie, cs_state:me(State)}),
195 State;

The remote node just sends the requested information back directly in a rt_get_node_response
message including a reference to itself. When receiving the routing table entry, we call stabilize/5.

File rt_chord.erl:

142 %% @doc updates one entry in the routing table
143 %% and triggers the next update
144 -spec(stabilize/5 :: (key(), node:node_type(), rt(), pos_integer(), node:node_type()) -> rt()).
145 stabilize(Id, Succ, RT, Index, Node) ->
146 case node:is_null(Node) of
147 true ->
148 RT;
149 false ->
150 case (node:id(Succ) == node:id(Node)) or (Id == node:id(Node)) or (Index == -1) of
151 true ->
152 % delete lower entries
153 prune_table(RT, Index);
154 false ->
155 NewRT = gb_trees:enter(Index, Node, RT),
156 Key = calculateKey(Id, Index - 1),
157 cs_lookup:unreliable_lookup(Key, {rt_get_node, cs_send:this(), Index - 1}),
158 NewRT
159 end
160 end.

stabilize/5 assigns the received routing table entry and triggers to fill the next shorter one using
the same mechanisms as described.
When the shortest finger is the successor, then filling the routing table is stopped, as no further
new entries would occur. It is not necessary, that Index reaches 1 to make that happen. If less
than 2128 nodes participate in the system, it may happen earlier.
filterDeadNode removes dead entries from the gb_tree.

File rt_chord.erl:

111 %% @doc remove all entries
112 -spec(filterDeadNode/2 :: (rt(), cs_send:mypid()) -> rt()).
113 filterDeadNode(RT, DeadPid) ->
114 DeadIndices = [Index|| {Index, Node} <- gb_trees:to_list(RT),
115 node:pidX(Node) == DeadPid],
116 lists:foldl(fun (Index, Tree) -> gb_trees:delete(Index, Tree) end,
117 RT, DeadIndices).

34 / 39

7 Directory Structure of the Source Code

The directory tree of Scalaris is structured as follows:

bin contains shell scripts needed to work with Scalaris (e.g. start the boot
services, start a node, . . .)

contrib necessary third party packages (yaws and log4erl)
doc generated erlang documentation

docroot root directory of the bootserver’s webserver
docroot_node root directory of the normal node’s webserver

ebin the compiled Erlang code (beam files)
java-api a java api to Scalaris

log log files
src contains the Scalaris source code
test unit tests for Scalaris

user-dev-guide contains the sources for this document

35 / 39

8 Java API

For the Java API documentation, we refer the reader to Javadoc resp. doxygen. The following
commands create the documentation:

%> cd java-api
%> ant doc
%> doxygen

The Javadoc can be found in java-api/doc/index.html. The doxygen files are in
doc-doxygen/html/index.html.
We provide two kinds of APIs:

• high-level access with de.zib.scalaris.Scalaris

• low-level access with de.zib.scalaris.Transaction

The former provides general functions for reading and writing single key-value pairs and an API
for the built-in PubSub-service. The latter allows the user to write custom transactions which can
modify an arbitrary number of key-value pairs within one transaction.

37 / 39

Bibliography

[1] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Program-
mers, ISBN: 978-1-9343560-0-5, July 2007

[2] Rachid Guerraoui and Luis Rodrigues. Introduction to Reliable Distributed Programming.
Springer-Verlag, 2006.

39 / 39

APPENDIX A. PUBLICATIONS

A.9 Scalaris: Reliable Transactional P2P Key/-

Value Store

SELFMAN Deliverable Year Three, Page 446

Scalaris: Reliable Transactional P2P Key/Value Store
Web 2.0 Hosting with Erlang and Java

Thorsten Schütt Florian Schintke Alexander Reinefeld
Zuse Institute Berlin and onScale solutions

schuett@zib.de, schintke@zib.de, reinefeld@zib.de

Abstract
We present Scalaris, an Erlang implementation of a distributed
key/value store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this implements
the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing, ar-
bitrary key-ranges can be assigned to nodes, thereby allowing a bet-
ter load-balancing than would be possible with traditional DHTs.
Consequently, Scalaris can be tuned for fast data access by taking,
e.g. the nodes’ geographic location or the regional popularity of
certain keys into account. This improves Scalaris’ lookup speed in
datacenter or cloud computing environments.

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to ac-
cess Scalaris.

Additionally, we present a generic design pattern to implement
a responsive server in Erlang that serializes update operations on
a common state, while concurrently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. Wiki-
pedia is a challenging application. It requires—besides thousands
of concurrent read requests per seconds—serialized, consistent
write operations. For Wikipedia’s category and backlink pages,
keys must be consistently changed within transactions. We dis-
cuss how these features are implemented in Scalaris and show its
performance.

Categories and Subject Descriptors C.2.4 [Distributed Sys-
tems]: Distributed databases; C.2.4 [Distributed Systems]: Dis-
tributed applications; D.2.11 [Software architectures]: Patterns;
E.1 [Data structures]: Distributed data structures

General Terms Algorithms, Design, Languages, Management,
Reliability

Keywords Wikipedia, Peer-to-Peer, transactions, key/value store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’08, September 27, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-065-4/08/09. . . $5.00

1. Introduction
Global e-commerce platforms require highly concurrent access to
distributed data. Millions of read operations must be served within
milliseconds even though there are concurrent write accesses. En-
terprises like Amazon, eBay, Myspace, YouTube, or Google solve
this problems by operating tens or hundreds of thousands of servers
in distributed datacenters. At this scale, components fail continu-
ously and it is difficult to maintain a consistent state while hiding
failures from the application.

Peer-to-peer protocols provide self-management among peers,
but they are mostly limited to write-once/read-many data sharing.
To extend them beyond the typical file sharing, the support of con-
sistent replication and fast transactions is an important yet missing
feature.

We present Scalaris, a scalable, distributed key/value store.
Scalaris is built on a structured overlay network and uses a dis-
tributed transaction protocol, both of them implemented in Erlang
with an application interface to Java. To prove our concept, we im-
plemented a simple Wikipedia clone on Scalaris which performs
several thousand transactions per second on just a few servers.

In this paper, we give details on the design and implementation
of Scalaris. We highlight Erlang specific topics and illustrate algo-
rithm details with code samples. Talks on Scalaris were given at
the IEEE International Scalable Computing Challenge 20081, the
Google Scalability Conference 2008 [15] and the Erlang eXchange
2008.

The paper is organized as follows. After a brief review of related
work we describe the overall system architecture and then discuss
implementation aspects in Section 4. In Section 5, we present a
generic design pattern of a responsive, stateful server, which is used
in Scalaris. We then present our example application, a distributed
Wikipedia clone in Section 6 and we end with a conclusion.

2. Related Work
Scalable, transactional data stores are of key interest to the com-
munity and hence there exists a wide variety of related work. Ama-
zon’s key/value store Dynamo [3] and its commercial counterpart
SimpleDB which is used in the S3 service, are similar to our work,
because they are also based on a scalable P2P substrate. But in con-
trast to Scalaris, they implement only eventual consistency rather
than strong consistency. Moreover, Dynamo does not support trans-
actions over multiple items.

The work of Baldoni et al. [2] focuses on algorithms for the
creation of dynamic quorums in P2P overlays—an issue that is of
particular relevance for the transaction layer in Scalaris. They show
that in P2P systems the quorum acquisition time and the message
latency are more important than the quorum size, which has been

1 Scalaris won the 1st price at SCALE 2008, www.ieeetcsc.org/scale2008

41

Application Layer

Transaction Layer implements ACID

crash
recovery
model Scalaris: Key/Value Store (= simple database) strong data consistency

P2P Layer
crash stop

model

Transaction Layer

implements
- scalability
- eventual consistency

improves availability
at the cost of consistency

implements ACID

Replication Layer

unreliable, distributed nodes

Figure 1. Scalaris system architecture.

traditionally used as a performance metric in distributed systems.
This is in line with our results showing that an increasing replica-
tion degree r only marginally affects the access time, because the
replicas residing in the d(r + 1)/2e fastest nodes take part in the
consensus process.

Masud et al. [10] also discuss database transactions on struc-
tured overlays, but with a focus on the consistent execution of trans-
actions in the presence of failing nodes. They argue that executing
transactions over the acquaintances of peers speeds up the transac-
tion time and success rate. Scalaris has a similar concept, but here
the peer ‘acquaintances’ are realized by the load balancer.

With Cassandra [8] and Megastore [4], Facebook and Google
recently presented two databases based on the P2P paradigm.
Megastore extends Bigtable with support of transactions and multi-
ple indices. Cassandra is more similar to Dynamo as it also provides
eventual consistency.

3. System Architecture
Scalaris is a distributed key/value store based on a structured P2P
overlay that supports consistent writes. The system comprises three
layers (Fig. 1):

• At the bottom, a structured overlay network with logarithmic
routing performance builds the basis for the key/value store. In
contrast to many other DHTs, our overlay stores the keys in lex-
icographical order, hence efficient range queries are possible.

• The middle layer implements replication and ACID proper-
ties (atomicity, concurrency, isolation, durability) for concur-
rent write operations. It uses a Paxos consensus protocol [9]
which is integrated into the overlay protocol to ensure low com-
munication overhead.

• The top layer hosts the application, a distributed key/value
store. This layer can be used as a scalable, fault-tolerant back-
end for online services for shopping, banking, data sharing, on-
line gaming, or social networks.

Fig. 1 illustrates the three layers. The following sections de-
scribe them in more detail.

3.1 P2P Overlay
At the bottom layer, the structured overlay protocol Chord# [13,
14] is used for storing and retrieving key/value pairs in nodes
(peers) that are arranged in a virtual ring. In each of the N nodes,
Chord# maintains a routing table with O(log N) entries (fingers).
In contrast to Chord [17], Chord# stores the keys in lexicograph-
ical order, thereby allowing range queries. To ensure logarithmic

Leader

replicated
Transaction
Managers

(TMs)

Items at
Transaction
Participants

(TPs)

1. Step

2. Step

3. Step

4. Step

5. Step

6. Step

After majority

After majority

Figure 2. Adapted Paxos used in Scalaris.

routing performance, the fingers in the routing table are computed
in such a way that successive fingers in the routing table cross an
exponentially increasing number of nodes in the ring.

Chord# uses the following algorithm for computing the fingers
in the routing table (the infix operator x . y retrieves y from the
routing table of a node x):

finger i =

successor : i = 0
finger i−1 . finger i−1 : i 6= 0

Thus, to calculate the ith finger, a node asks the remote node
listed in its (i − 1)th finger to which node his (i − 1)th finger
refers to. In general, the fingers in level i are set to the fingers’
neighbors in the next lower level i − 1. At the lowest level, the
fingers point to the direct successors. The resulting structure is
similar to a skiplist, but the fingers are computed deterministically
without any probabilistic component.

Compared to Chord, Chord# does the routing in the node space
rather than the key space. This finger placement has two advantages
over that of Chord: First, it works with any type of keys as long as
a total order over the keys is defined, and second, finger updates
are cheaper, because they require just one hop instead of a full
search (as in Chord). A proof of Chord#’s logarithmic routing
performance can be found in [13].

3.2 Replication and Transaction Layer
The scheme described so far provides scalable access to distributed
key/value pairs. To additionally tolerate node failures, we replicate
all key/value pairs over r nodes using symmetric replication [5].
Read and write operations are performed on a majority of the
replicas, thereby tolerating the unavailability of up to b(r − 1)/2c
nodes.

Each item is assigned a version number. Read operations select
the item with the highest version number from a majority of the
replicas. Thus a single read operation accesses d(r + 1)/2e nodes,
which is done in parallel.

Write operations are done with an adapted Paxos atomic commit
protocol [11]. In contrast to the 3-Phase-Commit protocol (3PC)
used in distributed database systems, the adapted Paxos is non-
blocking, because it employs a group of acceptors rather than a

42

replica group0

replica group1

replica group2

replica group3

replica group4

de

en

nl

se

de

en

nl

se
de

en

nl

se

de

en

nl

se

de
ennl

se

de:Main Page

Figure 3. Symmetric replication and multi-datacenter scenario. By
assigning the majority of the ‘de’-, ‘nl’-, and ‘se’-replicas to nodes
in Europe, latencies can be reduced.

single transaction manager. We select those nodes as acceptors
that are responsible for symmetric replication of the transaction
manager. The group of acceptors is determined by the transaction
manager just before the prepare request is sent to the transaction
participants (Fig. 2). This gives a pseudo static group of transaction
participants at validation time, which is contacted in parallel.

Write operations and transactions need three phases, including
the phase to determine the nodes that participate in the atomic
commit. For details see [11, 16].

In Scalaris, the adapted Paxos protocol serves two purposes:
First it ensures that all replicas of a single key are updated con-
sistently, and second it is used for implementing transactions over
multiple keys, thereby realizing the ACID properties (atomicity,
concurrency, isolation, durability).

3.3 Deployment in Global Datacenters
While we also tested Scalaris on globally distributed servers using
PlanetLab2, its deployment in globally distributed datacenters is
more relevant for international service providers. In such scenarios,
the latency between the peers is roughly the same and the peers are
in general more reliable.

When deploying Scalaris in multi-datacenter environments, a
single structured overlay will span over all datacenters. The lo-
cation of replicas will influence the access latency and thereby
the response time perceived by the user. As Chord# supports ex-
plicit load-balancing, it can—besides adapting to e.g. heteroge-
neous hardware and item popularity—place the replicas in specific
centers. A majority of replicas of German Wiki pages, for exam-
ple, should be placed in European datacenters to reduce the access
latency for German users.

Scalaris uses symmetric replication [5]. Here, a key ‘de:Main
Page’ is stored in five different locations in the ring (see Fig. 3).
The locations are determined by prefixing the key with ‘0’, ‘1’,
..., ‘5’. So the key of the third replica is ‘2de:Main Page’ and the
third replicas of all German articles will populate a consecutive
part of the ring. By influencing the load-balancing strategy we
can guarantee this segment to be always hosted in a particular
datacenter.

2 http://www.planet-lab.org

One-for-one

supervision

Failure Detector

Configuration

KeyHolder

Statistics Collector

All-for-one

supervision
Chord# Node

Database

Routing Table

Load Balancer

Mod. Paxos

PaxosTransaction

Managers

Figure 4. Supervisor tree of a Scalaris node. Each box represents
one process.

4. Erlang Implementation
The actor model [7] is a popular model for designing and imple-
menting parallel or distributed algorithms. It is often used in the lit-
erature [6] to describe and to reason about distributed algorithms.
Chord# and the transaction algorithms described above were also
developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send
messages, act upon messages and spawn new actors.

These primitives can be easily mapped to Erlang processes and
messages. The close relationship between the theoretical model
and the programming language allows a smooth transition from
the theoretical model to prototypes and eventually to a complete
system.

Our Erlang implementation of Scalaris comprises many compo-
nents. It has a total of 11,000 lines of code: 7,000 for the P2P layer
with replication and basic system infrastructure, 2,700 lines for the
transaction layer, and 1,300 lines for the Wikipedia infrastructure.

4.1 Components and Supervisor Tree
Scalaris is a distributed algorithm. Each peer runs a number of
processes as shown in Fig. 4:

Failure Detector supervises other peers and sends a crash mes-
sage when a node failure is detected.

Configuration provides access to the configuration file and main-
tains parameter changes made at runtime.

Key Holder stores the identifier of the node in the overlay.

Statistics Collector collects statistics and forwards them to central
statistic servers.

Chord# Node performs all important functions of the node. It
maintains, among other things, the successor list and the routing
table.

Database stores the key/value pairs of this node. The current
implementation uses an in-memory dictionary, but disk store
based on DETS or Mnesia could also be used.

The processes are organized in a supervisor tree as illustrated
in Fig. 4. The first four processes are supervised by a one-for-
one supervisor [1]: When a slave crashes, it is restarted by the
supervisor. The right-most processes (Chord# Node and Database)
are supervised by an all-for-one supervisor which restarts all slaves
when a single slave crashed. In Scalaris, when either of the Chord#

Node or the Database process fails, the other is explicitly killed and
both are restarted to ensure consistency.

43

4.2 Naming Processes
In Erlang, there are two ways of sending messages to processes: by
process id or by addressing the name registered as an atom. This
scheme provides a flat name space. We implemented a hierarchical
name space for processes.

As described in Sec. 4.1, each Chord# node comprises a group
of processes. Within this group, we address processes by name. For
example, the failure detector can be addressed as failure detector.

Running several Chord# nodes within one Erlang Virtual Ma-
chine (VM) would lead to name clashes. Hence, we implemented a
hierarchical process name space where each Chord# node forms
a ‘process group’. As a side-effect, we can traverse the naming
hierarchy to provide monitoring information grouped by Chord#

nodes.
For this naming scheme, every process stores its group id in

its own process dictionary. At startup time, processes announce
their name and process identifier to a dictionary inside the VM,
which is handled by a separate process in the VM. It can be queried
to find processes by name or by traversing the process hierarchy.
Additionally, most Chord# processes support the {’$gen cast’,
{debug info, Requestor}} message, which allows processes to
provide custom monitoring information to the web interface.

4.3 WAN Deployment
Erlang provides the ‘distributed mode’ for small and medium de-
ployments with limited security requirements. This makes it easy
to port the application from an Erlang VM to a cluster. In large de-
ployments, however, the network traffic caused by the management
tasks within the VM dominates the overall traffic.

In our code, we replaced the ‘!’ operator and the self() function
by cs send:send() resp. cs send:this(). At compile time we can
configure the cs send module to use the Erlang distributed mode or
our own transport layer using TCP/IP, which will be based on the
Erlang SSL library in the future.

This approach also allows us to separate the application logic
from the transport layer. Hence, NAT traversal schemes and firewall-
aware communication can be implemented without the need to
change Chord# code.

4.4 Transaction Interface
Transactions are executed in two phases, the read phase and the
commit phase. The read phase goes through all operations of the
transaction and keeps the result of each operation in the transac-
tion log. During this phase, the state of the system remains un-
changed. In the commit phase, the recorded effects are applied to
the database when the ACID properties are not violated.

Read phase. For the read phase, we use a lambda expression
which describes the individual operations to be performed in the
transaction (see Alg. 4.1). The mentioned transaction log is passed
through all calls to the transaction API and updated accordingly.
Passing a function to the transaction framework allows us to easily
re-execute a transaction after a failure due to concurrency.

Commit phase. The commit phase is started by calling do trans-
action (see last line in Alg. 4.1). The transaction is executed asyn-
chronously. The function spawns a new process and returns im-
mediately. The ProcessId which is passed will be notified of the
outcome of the transaction. The SuccessFun resp. FailureFun are
applied to the result of the transaction before the result is sent back.
For the Scalaris implementation, we use the two functions to in-
clude transaction numbers into the status messages when a process
has several outstanding transactions.

We use the Jinterface package to enable Java programs to per-
form transactions. The transaction log is managed by the Java pro-
gram. On a commit the complete log is passed to Erlang and the

Algorithm 4.1 Incrementing the key Increment inside a transaction

run test increment(State, Source PID)->
% the transaction
TFun = fun(TransLog) ->

Key = ”Increment”,
{Result, TransLog1} = transaction api:read(Key, TransLog),
{Result2, TransLog2} =

if Result == fail ->
Value = 1, % new key
transaction api:write(Key, Value, TransLog);

true ->
{value, Val} = Result, % existing key
Value = Val + 1,
transaction api:write(Key, Value, TransLog1)

end,
% error handling
if Result2 == ok ->

{{ok, Value}, TransLog2};
true -> {{fail, abort}, TransLog2}

end
end,
SuccessFun = fun(X) -> {success, X} end,
FailureFun =

fun(Reason)-> {failure, ”test increment failed”, Reason} end,

% trigger transaction
transaction:do transaction(State, TFun, SuccessFun,

FailureFun, Source PID).

Algorithm 4.2 Java Transactions

// new Transaction object
Transaction transaction = new Transaction();
// start new transaction
transaction.start();

//read account A
int accountA =

new Integer(transaction.read(”accountA”)).intValue();
//read account B
int accountB =

new Integer(transaction.read(”accountB”)).intValue();

//remove 100$ from accountA
transaction.write(”accountA”,

new Integer(accountA - 100).toString());
//add 100$ to account B
transaction.write(”accountB”,

new Integer(accountB + 100).toString());

transaction.commit();

do transaction function. Note that transaction descriptions in Java
are usually more compact because error handling is done using ex-
ceptions (see Alg. 4.2) while in Erlang, the error handling is done
in the actual code.

5. Responsive, Stateful Server in Erlang
In distributed server software, slow write operations often block
faster reads. Alg. 5.1 shows a generic server architecture (design
pattern) that manages reads and writes on a shared state separately.
This is done in such a way that read requests can be immediately
answered even though a concurrent write operation still blocks the
process. Two processes manage the shared state: a public asyn-

44

Algorithm 5.1 Responsive, stateful server

-module(account).
-export([start/0,syncloop/2,slowbalance/2]).

newAccount() -> 0.
start() -> spawn(fun() ->

Account = newAccount(),
SyncLoopPid = spawn(account, syncloop, [self(), Account]),
asyncloop(SyncLoopPid, Account)

end).

% all requests have to be send to the asyncloop
% read from State via spawns, if its a slow read
% forward writes to the syncloop
asyncloop(SyncLoopPid, State) ->

receive
{updatestate, StateNew} ->

% for better consistency make a join for all spawned
% slow reads here
% for better security, only allow the syncloop
% process to update the state
asyncloop(SyncLoopPid, StateNew);

{balance, Pid} ->
Pid ! State,
asyncloop(SyncLoopPid, State);

{slowbalance, Pid} ->
spawn(account, slowbalance, [State, Pid]),
asyncloop(SyncLoopPid, State);

% all other messages go to the synchronous loop
Message ->

SyncLoopPid ! Message,
asyncloop(SyncLoopPid, State)

end.

% internally use a syncloop to serialize all State changes
syncloop(AsyncLoopPid, State) ->

receive
{credit, Amount} ->

NewState = State + Amount,
AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);

{draw, Amount} ->
NewState = State - draw(Amount),

AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);
->
syncloop(AsyncLoopPid, State)

end.

% functions, that take some time to be executed
slowbalance(State, Pid) ->

receive
after 60000 ->

Pid ! State
end.

draw(Amount) ->
receive
% the bank still works with your money for 10 seconds
after 10000 ->

Amount
end.

chronous receive loop asyncloop that performs the reads and for-
wards the write requests to a private synchronous receive loop syn-
cloop. By this means, write requests are serialized and there is a
local atomic point in time when the state changes.

Slow reads may still deliver outdated state. This can be over-
come by waiting for all outstanding reads to be completed before
changing the state in the asyncloop (not depicted in the algorithm).

Example. Alg. 5.1 shows the processing of states for a bank ac-
count. The server provides two read requests (balance and slow-
balance) and two write requests (credit and draw) for managing an
account. Clients send all their requests to the asyncloop. The server
is started by calling account:start(). This spawns a process, which
first initializes the account with zero, spawns the syncloop with a
reference to itself, and finally executes the asyncloop.

On a balance or slowbalance request to the asyncloop, the ac-
count balance is returned to the requesting process from the current
state. In case of slowbalance the state is given to a spawned process,
which is then executed concurrently in the background. In practice,
this spawning should be used when some calculations or other time
consuming tasks must be executed on the state before the request
can be answered. This way, other requests can be performed by the
server concurrently. Here, the corresponding function slowbalance
just waits 60 seconds before delivering the result.

In addition, the asyncloop handles updatestate requests as
discussed below. All other messages are forwarded to the syncloop.

The syncloop handles the write requests credit and draw. All
other messages are ignored and dropped. The syncloop must not
spawn processes to calculate state changes, as all state manipulation
must be serial to ensure consistency. Here, the draw takes 10
seconds to be performed (the bank uses this time to work with your
money). This time has to be consumed synchronously. In practice
this could be a time consuming calculation which is necessary to
determine the new state. After having calculated the new state,
syncloop sends the state with an updatestate request to the async-
loop and works on the new state by itself.

When the asyncloop receives an updatestate message from the
syncloop it takes over the new state from the message. This is the
atomic point in time when the write request becomes active, as all
future requests will operate on this new state.

This leads to a relaxed consistency in the server that is sufficient
for updating the routing tables and successor lists. Here, relaxed
consistency does not harm, because these tables are subject to churn
and will be periodically updated with unreliable link information
anyway. If a stronger consistency model is needed, the transaction
mechanism of the Erlang Mnesia database package could be used.

6. Use Case: Wikipedia
To demonstrate Scalaris’ performance, we chose Wikipedia, the
‘free encyclopedia, that anyone can edit’, as a challenging test
application. In contrast to the public Wikipedia, which is operated
on three clusters in Tampa, Amsterdam, and Seoul, our Erlang
implementation can be deployed on worldwide distributed servers.
We ran it in two installations, one on PlanetLab and one on a local
cluster.

The public Wikipedia uses PHP to render the Wikitext to HTML
and stores the content and page history in MySQL databases. In-
stead of using a relational database, we map the Wikipedia content
to our Scalaris key/value store [12]. We use the following map-
pings, using prefixes in the keys to avoid name clashes:

key value

page content title list of Wikitext for
all versions

backlinks title list of titles

categories category name list of titles

45

Figure 6. Screenshot of the Bavarian Wikipedia on Scalaris. Images are not included in the dump.

HTTP Load Balancer

Client

Request for page A Page A

Replica of page AWebserver

Chord#,
replication,
and transactions
written in Erlang

HTTP

Figure 5. Wikipedia on Scalaris.

The page rendering of the Wikitext is done in Java in the web
servers (see Fig. 5) running jetty. Here, we modified the Wikitext
renderer of the plog4u project for our purposes.

Using this data layout, users may view pages by typing the
URL, they can navigate to other pages via hyperlinks, they can edit
pages and view the history of changes, and create new pages (see

the screenshot in Fig. 7). Since the Wikipedia dumps do not include
images, we render a proxy image at the corresponding positions
instead. Moreover, we do not maintain a full text index and there-
fore full text search is not supported by our implementation. This
could easily be performed by external crawling and search indexing
mechanisms.

When modifying a page, a transaction over all replicas of the
responsible keys is created and executed. The transaction includes
the page itself, all backlink pages for inserted and deleted links, and
all category pages for inserted and deleted categories.

Performance. Our Erlang implementation serves 2,500 transac-
tions per second with just 16 servers. This is better than the pub-
lic Wikipedia, which serves a total of 45,000 requests per second,
of which only 2,000 hit the backend of approx. 200 servers. For
the experiments, we used a HTTP load balancer (haproxy) to dis-
tribute the requests over all participating servers. The load gener-
ator (siege) requested randomly selected pages from the load bal-
ancer.

7. Conclusion
We presented Scalaris, a distributed key/value store based on the
Chord# structured overlay with symmetric data replication and a
transaction layer implementing ACID properties. With Wikipedia
as a demonstrator application we showed that Scalaris provides the
desired scalability and efficiency.

Our implementation greatly benefited from the use of Er-
lang/OTP. It provides a set of useful libraries and operating pro-
cedures for building reliable distributed applications. As a result,
the code is more concise than C or Java code.

Additionally, we presented an Erlang pattern that implements
responsive, stateful services by overlapping fast reads with concur-

46

rent synchronous (slower) write operations. This framework did not
only prove useful in our key/value store, but it can be used in many
other Erlang implementations.

We believe that Scalaris could be of great value for suppliers
of online services such as Amazon, eBay, Myspace, YouTube,
or Google. Today, global service providers face the challenge of
ensuring consistent data access for millions of customers in a 24/7
mode. In such environments, system crashes, software faults and
heavy load imbalances are the norm rather than exceptions. Here,
it is a challenging task to maintain a consistent view on data and
services while hiding failures from the application.

Our P2P approach with replication and ACID provides a de-
pendable and scalable alternative to standard database technology,
albeit with a reduced data model. Each additional peer contributes
additional main memory to the system, hence the combined mem-
ory capacity resembles that of current (large) SAN storage systems.
If this is not sufficient, Scalaris can be easily modified to write its
data onto disk. For backup purposes, our ACID implementation al-
lows to take consistent snapshots of all data items during runtime.

Apart from distributed transactional data management, Scalaris
can also be used for building scalable, hierarchical pub/sub ser-
vices, reliable resource selection in dynamic systems, or internet
chat services.

Acknowledgments
Many thanks to Joe Armstrong for commenting on our responsive
server code and to Nico Kruber for implementing the Java transac-
tion interface and adapting the Wiki renderer. This work was partly
funded by the EU project Selfman under grant IST-34084 and the
EU project XtreemOS under grant IST-33576.

References
[1] J. Armstrong. Programming Erlang: Software for a Concurrent World.

Pragmatic Programmers, ISBN: 978-1-9343560-0-5, July 2007

[2] R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patiño-
Martı́nez. Dynamic Quorums for DHT-based P2P Networks. NCA,
pp. 91–100, 2005.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store Proceedings of the 21st
ACM Symposium on Operating Systems Principles, Oct. 2007.

[4] JJ Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and
P. Zeyliger. Megastore: A Scalable Data System for User Facing
Applications. SIGMOD 2008, Jun. 2008.

[5] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems. 3rd Intl. Workshop on Databases,
Information Systems and P2P Computing, 2005.

[6] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag 2006.

[7] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. IJCAI, 1973.

[8] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network. SIGMOD 2008, Jun. 2008.

[9] L. Lamport. Fast Paxos. Distributed Computing 19(2):79–103, 2006.

[10] M. M. Masud and I. Kiringa. Maintaining consistency in a
failure-prone P2P database network during transaction processing.
Proceedings of the 2008 International Workshop on Data management
in peer-to-peer systems, pp. 27–34, 2008.

[11] M. Moser and S. Haridi. Atomic Commitment in Transactional DHTs.
1st CoreGRID Symposium, Aug. 2007.

[12] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for
Distributed Wikis on Structured Overlays. 18th IFIP/IEEE Distributed
Systems: Operations and Management (DSOM 2007), Oct. 2007.

[13] T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. GP2PC’06, May 2006.

[14] T. Schütt, F. Schintke, and A. Reinefeld. A Structured Overlay for
Multi-Dimensional Range Queries. Europar, Aug. 2007.

[15] T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with
Erlang. Google Scalability Conference, Jun. 2008.

[16] T.M. Shafaat, M. Moser, A. Ghodsi, S. Haridi, T. Schütt, and A.
Reinefeld. Key-Based Consistency and Availability in Structured
Overlay Networks. Third Intl. ICST Conference on Scalable
Information Systems, June 2008.

[17] I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet application.
ACM SIGCOMM 2001, Aug. 2001.

47

APPENDIX A. PUBLICATIONS

A.10 A Scalable, Transactional Data Store

for Future Internet Services

SELFMAN Deliverable Year Three, Page 454

A Scalable, Transactional Data Store
for Future Internet Services?

Alexander Reinefeld, Florian Schintke, Thorsten Schütt, Seif Haridi

{reinefeld,schintke,schuett}@zib.de
Zuse Institute Berlin and onScale solutions

and
haridi@kth.se

Royal Institute of Technology, Sweden

Abstract. Future Internet services require access to large volumes of
dynamically changing data records that are spread across different loca-
tions. With thousands or millions of distributed nodes storing the data,
node crashes or temporary network failures are normal rather than excep-
tions and it is therefore important to hide failures from the application.

We suggest to use peer-to-peer (P2P) protocols to provide self-manage-
ment among peers. However, today’s P2P protocols are mostly limited to
write-once/read-many data sharing. To extend them beyond the typical
file sharing, the support of consistent replication and fast transactions is
an important yet missing feature.

We present Scalaris, a scalable, distributed key-value store. Scalaris is
built on a structured overlay network and uses a distributed transaction
protocol. As a proof of concept, we implemented a simple Wikipedia
clone with Scalaris which outperforms the public Wikipedia with just a
few servers.

1 Introduction

Web 2.0, that is, the Internet as an information society platform supporting
business, recreation and knowledge exchange, initiated a business revolution.
Service providers offer Internet services for shopping (Amazon, eBay), online
banking, information (Google, Flickr, Wikipedia), social networking (MySpace,
Facebook), and recreation (Second Life, online games). In our information soci-
ety, Web 2.0 services are no longer just nice to have, but customers depend on
their continuous availability, regardless of time and space. A typical trend is illus-
trated by Wikipedia where users are also providers of information. This implies
that its underlying data store is updated continously from multiple sources.

? This work was partly funded by the EU projects SELFMAN under grant IST-34084
and the EU project XtreemOS under grant IST-33576.

How to cope with such strong
demands, especially in case
of interactive community ser-
vices that cannot be sim-
ply replicated? All users ac-
cess the same Wikipedia, meet
in the same Second Life en-
vironment and want to dis-
cuss with others via Twitter.
Even the shortest interrup-
tion, caused by system down-
time or network partitioning
may cause huge losses in rep-
utation and revenue. Web 2.0
services are not just an added
value, but they must be de-
pendable. Apart from 24/7
availability, providers face an-
other challenge: they must, for
a good user experience, be able
to respond within milliseconds
to incoming requests, regard-
less whether thousands or mil-
lions of concurrent requests
are currently being served. In-
deed, scalability is a key chal-
lenge. In addition to scalabil-

Availability is the proportion of time a sys-
tem is in a functioning condition. More
formally, availability is the ratio of the ex-
pected value of the uptime of a system to
the aggregate of the expected values of up
and down time. Availability is often spec-
ified in a logarithmic unit called “nines”
which corresponds roughly to a number
of nines following the decimal point. “Six
nines”, for example, denote an availability
of 0.999999, allowing a maximum down-
time of 31 seconds per year.

Scalability refers to the capability of a sys-
tem to increase the total throughput un-
der an increased load when resources are
added. A scalable database management
system is one that can be upgraded to
process more transactions by adding new
processors, devices and storage, and which
can be upgraded easily and transparently
without service interrupt.

Self Management refers to the ability of a
system to adjust to changing operating
conditions and requirements without hu-
man intervention at runtime. Self Manage-
ment includes self configuration, self heal-
ing and self tuning.

ity and availability any global service to be affordable, somehow requires the
system to be self managing (see sidebar).

Our Scalaris system, described below, provides a comprehensive solution for
self managing and scalable data management. Scalaris is a transactional key-
value store that runs over multiple data centers as well as on peer-to-peer nodes.
We expect Scalaris and similar systems to become an important core service of
future Cloud Computing environments.

As a common key aspect, all Web 2.0 services have to deal with concurrent
data updates. Typical examples are checking the availability of products and
their prices, purchasing items and putting them into virtual shopping carts,
and updating the state in multi-player online games. Clearly, many of these
data operations have to be atomic, consistent, isolated and durable (so-called
ACID properties). Traditional centralized database systems are ill-suited for this
task, sooner or later they become a bottleneck for business workflow. Rather, a
scalable, transactional data store like Scalaris is what is needed.

In this paper, we present the overall system architecture of Scalaris. We have
implemented the core data service of Wikipedia using Scalaris. Its scalability and
self-* capabilities were demonstrated in the IEEE Scalable Computing Challenge

P2P Layer

Transaction Layer

… scalability

… availability

… strong consistency,

atomicity, isolation

Replication Layer

Web 2.0 Application
crash

recovery

model

layer implements …

Many Standard Internet Nodes for Data Storage
crash stop

model

Fig. 1: Scalaris system architecture.

2008, where Scalaris won the 1st price (www.ieeetcsc.org/scale2008). Talks on
Scalaris were given at the the Google Scalability Conference 2008 [19] and the
Erlang eXchange 2008.

The paper is organized as follows. The following Section provides an overview
on Scalaris’ system architecture, Section 3 describes its self-management fea-
tures and Section 4 gives further details on the implementation. In Section 5 we
demonstrate how Scalaris can be used for implementing Web 2.0 services. As a
proof-of-concept, we have chosen a simple Wikipedia clone; performance results
are given in Section 6.

2 Scalaris

As part of the EU funded SELFMAN project we set out to build a distributed
key/value store capable of serving thousands or even millions of concurrent data
accesses per second. Providing strong data consistency in the face of node crashes
and hefty concurrent data updates was one of our major goals.

With Scalaris, we do not attempt to replace current database management
systems with their general, full-fledged SQL interfaces. Instead our target is to
support transactional Web 2.0 services like those needed for Internet shopping,
banking, or multi-player online games. Our system consists of three layers:

– At the bottom, an enhanced structured overlay network, with logarithmic
routing performance, provides the basis for storing and retrieving keys and
their corresponding values. In contrast to many other overlays, our imple-
mentation stores the keys in lexicographical order. Lexicographic ordering
instead of random hashing enables control of data placement which is nec-
essary for low latency access in multi-datacenter environments.

– The middle layer implements data replication. It enhances the availability of
data even under harsh conditions such as node crashes and physical network
failures.

– The top layer provides transactional support for strong data consistency in
the face of concurrent data operations. It uses an optimistic concurrency
control strategy and a fast non-blocking commit protocol with low commu-
nication overhead. This protocol has been optimally embedded in the overlay
network.

As illustrated in Fig. 1, these three layers together provide a scalable and
highly available distributed key/value store which serves as a core building block
for many Web 2.0 applications as well as other global services. The following
sections describe the layers in more detail.

2.1 P2P Overlay

At the bottom layer, we use the structured overlay protocol Chord# [17,18]
for storing and retrieving key-value pairs in nodes (peers) that are arranged
in a virtual ring. This ring defines a key space where all data items can be
stored according to the associated key. In our case we assume that any key is an
arbitrarily long string of characters, therefore the key space is infinite. Nodes are
placed at arbitrary places on the ring and are responsible for all data between
their predecessor and themselves. The placement policy ensures even distribution
of load over the nodes. In each of the N nodes, Chord# maintains a routing
table with O(log N) entries (fingers). In contrast to traditional Distributed Hash
Tables (DHTs) like Chord [21], Kademlia [12] and Pastry [15], Chord# stores
the keys in lexicographical order, thereby allowing range queries, and control
over the placement of data on the ring structure. To ensure logarithmic routing
performance, the fingers in the routing table are computed in such a way that
successive fingers in the routing table jump over an exponentially increasing
number of nodes in the ring. This finger placement will yield uniform in-/out-
degree of the overlay network and thus avoids hotspots.

Chord# uses the following algorithm for computing the fingers in the routing
table (the infix operator x . y retrieves y from the routing table of a node x):

finger i =
{

successor : i = 0
finger i−1 . finger i−1: i 6= 0

Thus, to calculate the ith finger, a node asks the remote node, listed in its
(i − 1)th finger, for the node at which its (i − 1)th finger refers to. In general,
at any node, the fingers at level i are set to the neighbor’s finger at the pre-
ceding level i − 1. At the lowest level, the fingers point to the direct successor.
The resulting structure is similar to a skiplist, but the fingers are computed
deterministically without any probabilistic component and each node has its in-
dividual exponentially spaced fingers. The fingers are maintained by a periodic
stabilization algorithm according to the above formula.

replicated
T i T i

Leader

Transaction
Managers
(rTM)

Transaction
Participants

(TPs)

1. Step

2 Step2. Step

3. Step

4. Step

5 S

after majority

5. Step

6. Step

after majority

Fig. 2: Adapted Paxos used in Scalaris.

Compared to Chord [21], Chord# does the routing in the node space rather
than in the key space. This finger placement has three advantages over that
of Chord: First, it naturally works with any type of keys as long as a total
order over the keys is defined, and second, finger maintenance is cheaper [17],
requiring just one hop instead of a full logarithmic search (as in Chord). To
support logarithmic routing performance in skewed key distributions while nodes
are arbitrarily placed in the key space—which we have to in our scenario—
the third and probably most important difference becomes our trump card: the
incoming routing links (fingers) will still be evenly distributed across all nodes.
This prevents nodes from becoming hot spots and ensures continuous progress
when routing.

2.2 Replication and Transaction Layer

The scheme described so far provides scalable access to distributed key/value
pairs. To additionally tolerate node failures, we replicate all key/value pairs
over r nodes using symmetric replication [5]. Basically each key is mapped by a
globally known function to a set of keys {k1, . . . , kr} and the item is replicated
according to those keys. Read and write operations are performed on a majority

of the replicas, thereby tolerating the unavailability of up to b(r − 1)/2c nodes.
This scheme is shown to provide key consistency for data lookups under realistic
networking conditions [20]. For repairing the replication degree of items, nodes
have to read the missing data from a majority of replicas. This is necessary to
guarantee strong data consistency.

The system supports transactional semantics. A client connected to the sys-
tem can issue a sequence of operations including reads and writes within a trans-
actional context, i.e. begin trans . . . end trans. This sequence of operations are
executed by a local transaction manager TM associated with the overlay node
to which the client is connected. The transaction will appear to be executed
atomically if successful, or not executed at all if the transaction aborts.

Transactions in Scalaris are executed optimistically. This implies that each
transaction is executed completely locally at the client in a read-phase. If the
read phase is successful the TM tries to commit the transaction permanently in
a commit phase, and permanently stores the modified data at the responsible
overlay nodes. Concurrency control is performed as part of this latter phase. A
transaction t will abort only if: (1) other transactions try to commit changes on
some overlapping data items simultaneously; or (2) other successful transactions
have already modified data that is accessed in transaction t.

Each item is assigned a version number. Read/write operation works on a ma-
jority of replicas to obtain the highest version number. A Read operation selects
the data value with highest version number, and a write operation increments
the highest version number of the item.

The commit phase employs an adapted version of Paxos atomic commit pro-
tocol [9], which is non-blocking. In contrast to the 3-Phase-Commit protocol
used in distributed database systems, the Paxos commit protocol still works in
the majority part of a network that became partitioned due to some network
failure. It employs a group of replicated transaction managers (rTM) rather than
a single transaction manager. Together they form a set of acceptors with the TM
acting as the leader.

The commit is basically divided into two phases, the validation phase and
the consensus phase. During the validation phase the replicated transaction man-
agers rTM are initialized, and the updated data items together with references
to the rTM are sent to the nodes responsible for the data items in a Prepare
message. These latter nodes are called transaction participants TPs.

Each TP proposes ‘prepared’ or ‘abort’ in a fast Paxos consensus round with
the acceptor set. As each acceptor collects votes from a majority of replicas for
each item, it will be able to decide on a commit/abort for the whole transaction.
For details see [13,20]. This scheme favors atomicity over availability. It always
requires a majority of nodes to be available for the read and commit phase.
This policy distinguishes Scalaris from other distributed key-value stores, like
e.g. Dynamo [3].

3 Self-Management

For many Web 2.0 services, the total cost-of-ownership is dominated by the
costs needed for personnel to maintain and optimize the service. Scalaris greatly
reduces the operation cost with its built-in self* properties:

– Self healing: Scalaris continuously monitors the hosts it is running on. When
it detects a node crash, it immediately repairs the overlay network and the
database. Management tasks such as adding or removing hosts require min-
imal human intervention.

– Self tuning: Scalaris monitors the nodes’ workload and autonomously moves
items to distribute the load evenly over the system in order to improve the
response time of the system. When deploying Scalaris over multiple data-
centers, these algorithms are used to place frequently accessed items nearby
the users.

These protection schemes do not only help in stress situations, but they
also monitor and pro-actively repair the system before any service interruption
might occur. With traditional database systems these operations require human
interference which is error prone and costly. When using Scalaris, fewer sys-
tem administrators can operate much larger installations compared to legacy
databases.

4 Implementation

Implementing distributed algorithms correctly is a difficult and tedious task,
especially when using imperative programming languages and multi-threading
with a shared state concurrency model. The resulting code is often lengthy and
error-prone, because large parts of the code deal with shared objects [22] and
with exception handing such as node or network failures.

For this reason, message passing as in the actor model [7] is becoming the
accepted paradigm for describing and reasoning about distributed algorithms [6].
Scalaris was also developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send messages, act
upon messages and spawn new actors.

These primitives are easily mapped to Erlang processes and messages [1].
The close relationship between the specification and the programming language
allows a smooth transition from the theoretical model to prototypes and even-
tually to a complete system.

Our Erlang implementation of Scalaris comprises eight major components
with a total of 11,000 lines of code: 7,000 for the P2P layer with replication
and basic system infrastructure, 2,700 lines for the transaction layer, and 1,300
lines for the Wikipedia infrastructure. Each Scalaris node is organized into the
following components:

– The Failure Detector supervises other peers and notifies subscribers of remote
node failures.

– The Configuration Store provides access to the current configuration and
allows modifications of various system parameters.

– The Key Holder stores the identifier of the node in the overlay.
– The Statistics Collector collects statistics and forwards them to central statis-

tic servers.
– The Chord# Node component is composed of subcomponents for overlay

maintenance and overlay routing. It maintains, among other things, the suc-
cessor list and the routing table. It provides the functionality of the struc-
tured overlay layer.

– The Database stores the key-value pairs of this node. The current imple-
mentation uses an in-memory dictionary, but disk store based on DETS or
Mnesia could also be used.

– The Transaction Manager runs the transaction protocols.
– The Replica Repair maintains the replication degree of items.

The processes are organized in an Erlang OTP supervisor tree. When any
of the slaves crashes, it is restarted by the Erlang supervisor. When either of
the Chord# Node or the Database component fails, the other is explicitly killed
and both are restarted to ensure consistency. This is equivalent to a new node
joining the system.

5 Deployment: Wikipedia on Scalaris

As a challenging benchmark for Scalaris, we implemented the core of Wikipedia,
the ”free encyclopedia, that anyone can edit”. Wikipedia runs on three sites.
The main one in Tampa is organized in three layers, the proxy server layer, the
web server layer, and the MySQL database layer. The proxy layer serves as a
cache for recent requests, and the web server layer runs the application logic and
issues requests to the database layer. Wikipedia handles about 50,000 requests
per second, from which 48,000 are cache hits in the proxy server layer and 2,000
are processed by the database layer. The proxy and the web server layers are
embarrassingly parallel and therefore trivial to scale. From a scalability point of
view, only the database layer is challenging.

Our implementation uses Scalaris to replace the database layer. This enables
us to run Wikipedia on geographically distributed sites and to scale to almost
any number of hosts, as shown in the evaluation section. Our Wikipedia imple-
mentation inherits all the favorable properties of Scalaris, such as scalability and
self management.

Instead of using a relational database, we map the Wikipedia content to our
Scalaris key/value store [14]. We use the following mappings, using prefixes in
the keys to avoid name clashes.

key value
page content title list of Wikitext for all versions
backlinks title list of titles
categories category name list of titles

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Read

1 client
2 clients
5 clients

10 clients

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

Tr
an

sa
ct

io
ns

/s

Nodes

Modify

1 client
2 clients
5 clients

10 clients
50 clients

100 clients

Fig. 3: Performance of Scalaris: (a) Read operation, (b) Modify operation for
different numbers of local threads and cluster sizes.

On a page update a transaction across all affected keys (content, backlinks,
and categories) and their replicas is triggered.

6 Evaluation

We tested the performance of Scalaris on an Intel cluster up to 16 nodes. Each
node has two Quad-Core E5420s (8 cores in total) running at 2.5 GHz and 16
GB of main memory. The nodes are connected via GigE and Infiniband; we used
the GigE network for our evaluation.

On each physical node we were running one multi-core Erlang virtual ma-
chine. Each virtual machine hosted 16 Scalaris nodes. We used a replication
degree of four, that is, there exist four copies of each key-value pair.

We tested two operations: a read and a modify operation. The read operation
reads a key-value pair. The modify operation reads a key-value pair, increments
the value and writes the result back to the distributed Scalaris store. To guaran-
tee consistency, the read-increment-write is executed within a transaction. The
read operation, in contrast, simply reads from a majority of the keys.

The benchmarks involved the following steps:
– Start watch.
– Start n Erlang client processes in each VM.
– Execute the read or modify operation i times in each client.
– Wait for all clients to finish.
– Stop watch.

Figure 3 shows the results for various numbers of clients per VM (see the
colored graphs). In the read benchmarks depicted in Fig. 3.a, each thread reads
a key 2000 times while the modify benchmarks in Fig. 3.b modify each key 100
time in each thread.

As can be seen, the system scales about linearly over a wide range of system
sizes. In the read benchmarks (Fig. 3.a), two clients per VM produce an optimal
load for the system, resulting in more than 20,000 read operations per second
on a 16 node (=128 core) cluster. Using only one client (red graph) does not
produce enough operations to saturate the system, while five clients (blue graph)
cause too much contention. Note that each read operation involves accessing a
majority (3 out of 4) replicas.

The performance of the modify operation (Fig. 3.b) is of course lower, but
still scales nicely with increasing system sizes. Here, the best performance of
5,500 transactions per second is reached with fifty load generators per VM, each
of them generating approximately seven transactions per second. This results in
344 transactions per second on each server.

Note that each modify transaction requires Scalaris to execute the adapted
Paxos algorithm, which involves finding a majority (i.e. 3 out of 4) of transaction
participants and transaction managers, plus the communication between them.
The performance graphs illustrate that a single client per VM does not produce
enough transaction load, while fifty clients are optimal to hide the communica-
tion latency between the transaction rounds. Increasing the concurrency further
to 100 clients does not improve the performance, because this causes too much
contention. Note that for the 100-clients-case, there are actually 16*100 clients
issuing increment transactions.

Overall, both graphs illustrate the linear scalability of Scalaris.

7 Summary

Scalaris provides a scalable and self managing transactional key-value store. We
have implemented Wikipedia using Scalaris. Its scalability and self* capabili-
ties were demonstrated in the IEEE Scalable Computing Challenge 2008, where
Scalaris won the 1st prize.

Compared to other data services, Scalaris has significantly lower operating
costs and is self-managing. Scalaris and similar systems will be an important
building block for Web 2.0 services and future Cloud Computing environments.

While Wikipedia served here as a first demonstrator to show the potential of
Scalaris, we envisage a large variety of commercial Web 2.0 applications ranging
from e-commerce and social networks to infrastructure services for maintaining
server farms. The Scalaris code is open source (scalaris.googlecode.com).

Acknowledgements

Many thanks to Nico Kruber, Monika Moser, and Stefan Plantikow who imple-
mented parts of Scalaris. Also thanks to Ali Ghodsi, Thallat Shafaat, and Joe
Armstrong for their support and many discussions.

References

1. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Programmers, ISBN: 978-1-9343560-0-5, July 2007

2. R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patiño-Mart́ınez.
Dynamic Quorums for DHT-based P2P Networks. NCA, pp. 91–100, 2005.

3. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-Value Store Proceedings of the 21st ACM Symposium on Operating Systems
Principles, Oct. 2007.

4. JJ Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and P. Zeyliger. Mega-
store: A Scalable Data System for User Facing Applications. SIGMOD 2008, Jun.
2008.

5. A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for Structured Peer-
to-Peer Systems. 3rd Intl. Workshop on Databases, Information Systems and P2P
Computing, 2005.

6. R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.
Springer-Verlag 2006.

7. C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR Formalism for
Artificial Intelligence. IJCAI, 1973.

8. A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured Storage
System on a P2P Network. SIGMOD 2008, Jun. 2008.

9. L. Lamport. The Part-Time Parliament ACM Transactions on Computer Systems
16(2): 133–169, 1998.

10. L. Lamport. Fast Paxos. Distributed Computing 19(2):79–103, 2006.

11. M. M. Masud and I. Kiringa. Maintaining consistency in a failure-prone P2P
database network during transaction processing. Proceedings of the 2008 Interna-
tional Workshop on Data management in peer-to-peer systems, pp. 27–34, 2008.

12. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the XOR metric. IPTPS 2002, Mar. 2002.

13. M. Moser and S. Haridi. Atomic Commitment in Transactional DHTs. 1st Core-
GRID Symposium, Aug. 2007.

14. S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for Distributed Wikis on
Structured Overlays. 18th IFIP/IEEE Distributed Systems: Operations and Man-
agement (DSOM 2007), Oct. 2007.

15. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. Middleware 2001, Nov. 2001.

16. Scalaris code: http://code.google.com/p/scalaris/.
17. T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without Consistent

Hashing: Empirical Results. GP2PC’06, May 2006.
18. T. Schütt, F. Schintke, and A. Reinefeld. A Structured Overlay for Multi-

Dimensional Range Queries. Europar, Aug. 2007.
19. T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with Erlang. Google

Scalability Conference, Jun. 2008.
20. T.M. Shafaat, M. Moser, A. Ghodsi, S. Haridi, T. Schütt, and A. Reinefeld. Key-

Based Consistency and Availability in Structured Overlay Networks. Third Intl.
ICST Conference on Scalable Information Systems, June 2008.

21. I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet application. ACM SIGCOMM
2001, Aug. 2001. Concepts, Techniques, and Models of Computer Programming

22. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, March 2004.

APPENDIX A. PUBLICATIONS

A.11 Scalaris Java Interface

SELFMAN Deliverable Year Three, Page 467

Scalaris Java Interface
0.2.0

CONTENTS 1

Contents

1 Namespace Index 1

1.1 Package List . 1

2 Class Index 2

2.1 Class List . 2

3 Namespace Documentation 2

3.1 Package de.zib.scalaris . 2

3.1.1 Detailed Description . 2

4 Class Documentation 4

4.1 de.zib.scalaris.ConnectionFactory Class Reference . 4

4.1.1 Detailed Description . 4

4.1.2 Constructor & Destructor Documentation . 5

4.1.3 Member Function Documentation . 5

4.2 de.zib.scalaris.DeleteResult Class Reference . 8

4.2.1 Detailed Description . 8

4.2.2 Constructor & Destructor Documentation . 9

4.2.3 Member Data Documentation . 9

4.3 de.zib.scalaris.Main Class Reference . 9

4.3.1 Detailed Description . 9

4.3.2 Member Function Documentation . 10

4.4 de.zib.scalaris.Scalaris Class Reference . 10

4.4.1 Detailed Description . 11

4.4.2 Constructor & Destructor Documentation . 14

4.4.3 Member Function Documentation . 14

4.5 de.zib.scalaris.Transaction Class Reference . 21

4.5.1 Detailed Description . 22

4.5.2 Constructor & Destructor Documentation . 23

4.5.3 Member Function Documentation . 23

1 Namespace Index

1.1 Package List

Here are the packages with brief descriptions (if available):

de.zib.scalaris 2

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

2 Class Index 2

2 Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

de.zib.scalaris.ConnectionFactory 4

de.zib.scalaris.DeleteResult 8

de.zib.scalaris.Main 9

de.zib.scalaris.Scalaris 10

de.zib.scalaris.Transaction 21

3 Namespace Documentation

3.1 Package de.zib.scalaris

Classes

• class Scalaris
• class Transaction
• class ConnectionFactory
• class DeleteResult
• class Main

3.1.1 Detailed Description

Copyright 2007-2008 Konrad-Zuse-Zentrum für Informationstechnik Berlin

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License. This package contains means to communicate with the erlang scalaris ring from Java.

The Scalaris class The de.zib.scalaris.Scalaris class provides methods for reading and writing val-
ues, publishing topics, subscribing to urls and getting a list of subscribers with both erlang objects
(com.ericsson.otp.erlang.OtpErlangObject) and Java java.lang.String objects.

Example:

try {
Scalaris sc = new Scalaris();
String value = sc.read("key");

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

3.1 Package de.zib.scalaris 3

} catch (ConnectionException e) {
System.err.println("read failed: " + e.getMessage());

} catch (TimeoutException e) {
System.err.println("read failed with timeout: " + e.getMessage());

} catch (UnknownException e) {
System.err.println("read failed with unknown: " + e.getMessage());

} catch (NotFoundException e) {
System.err.println("read failed with not found: " + e.getMessage());

}

See the de.zib.scalaris.Scalaris class documentation for more details.

The Transaction class The de.zib.scalaris.Transaction class provides means to realise a scalaris transac-
tion from Java. After starting a transaction, there are methods to read and write values with both erlang
objects (com.ericsson.otp.erlang.OtpErlangObject) and Java java.lang.String objects. The transaction can
then be committed, aborted or reset.

Example:

try {
Transaction transaction = new Transaction();
transaction.start();
String value = transaction.read("key");
transaction.write("key", "value");
transaction.commit();

} catch (ConnectionException e) {
System.err.println("read failed: " + e.getMessage());

} catch (TimeoutException e) {
System.err.println("read failed with timeout: " + e.getMessage());

} catch (UnknownException e) {
System.err.println("read failed with unknown: " + e.getMessage());

} catch (NotFoundException e) {
System.err.println("read failed with not found: " + e.getMessage());

} catch (TransactionNotFinishedException e) {
System.out.println("failed: " + e.getMessage());
return;

}

See the de.zib.scalaris.Transaction class documentation for more details.

Author:

Nico Kruber, kruber@zib.de

Version:

2.0

Since:

2.0

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4 Class Documentation 4

4 Class Documentation

4.1 de.zib.scalaris.ConnectionFactory Class Reference

Public Member Functions

• ConnectionFactory ()
• ConnectionFactory (Properties properties)
• void setProperties (Properties properties)
• OtpConnection createConnection (String clientName, boolean clientNameAppendUUID) throws

ConnectionException
• OtpConnection createConnection (String clientName) throws ConnectionException
• OtpConnection createConnection () throws ConnectionException
• String getNode ()
• void setNode (String node)
• String getCookie ()
• void setCookie (String cookie)
• String getClientName ()
• void setClientName (String clientName)
• boolean isClientNameAppendUUID ()
• void setClientNameAppendUUID (boolean clientNameAppendUUID)

Static Public Member Functions

• static ConnectionFactory getInstance ()

4.1.1 Detailed Description

Provides means to create connections to scalaris nodes.

This class uses a singleton-alike pattern providing a global (static) instance through its getInstance() method
but also allowing for object construction which might be useful when using multiple threads each creating
its own connections.

The location of the default configuration file used by ConnectionFactory() can be overridden by
specifying the scalaris.java.config system property - otherwise the class tries to load
scalaris.properties.

A user-defined Properties object can also be used by creating objects with ConnectionFactory(Properties)
or setting the new values with setProperties(Properties) but must provide the following values (default
values as shown)

• scalaris.node = "boot@localhost"

• scalaris.cookie = "chocolate chip cookie"

• scalaris.client.name = "java_client"

• scalaris.client.appendUUID = "true"

Author:

Nico Kruber, kruber@zib.de

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.1 de.zib.scalaris.ConnectionFactory Class Reference 5

Version:

2.1

Since:

2.0

4.1.2 Constructor & Destructor Documentation

4.1.2.1 de.zib.scalaris.ConnectionFactory.ConnectionFactory ()

Constructor, sets the parameters to use for connections according to values given in a
scalaris.properties file and falls back to default values if values don’t exist.

By default the config file is assumed to be in the same directory as the classes. Specify the
scalaris.java.config system property to set a different location.

Default values are:

• scalaris.node = "boot@localhost"

• scalaris.cookie = "chocolate chip cookie"

• scalaris.client.name = "java_client"

• scalaris.client.appendUUID = "true"

4.1.2.2 de.zib.scalaris.ConnectionFactory.ConnectionFactory (Properties properties)

Constructor, sets the parameters to use for connections according to values given in the given Properties
object and falls back to default values if values don’t exist.

The Properties object should provide the following values (default values as shown):

• scalaris.node = "boot@localhost"

• scalaris.cookie = "chocolate chip cookie"

• scalaris.client.name = "java_client"

• scalaris.client.appendUUID = "true"

Parameters:

properties

4.1.3 Member Function Documentation

4.1.3.1 OtpConnection de.zib.scalaris.ConnectionFactory.createConnection () throws Connec-
tionException

Creates a connection to a scalaris erlang node specified by the given parameters.

Returns:

the created connection

Exceptions:

ConnectionException if the connection fails

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.1 de.zib.scalaris.ConnectionFactory Class Reference 6

4.1.3.2 OtpConnection de.zib.scalaris.ConnectionFactory.createConnection (String clientName)
throws ConnectionException

Creates a connection to a scalaris erlang node specified by the given parameters. Uses the given client
name.

If clientNameAppendUUID is specified a pseudo UUID is appended to the given name. BEWARE that
scalaris nodes accept only one connection per client name!

Parameters:

clientName the name that identifies the java client

Returns:

the created connection

Exceptions:

ConnectionException if the connection fails

4.1.3.3 OtpConnection de.zib.scalaris.ConnectionFactory.createConnection (String clientName,
boolean clientNameAppendUUID) throws ConnectionException

Creates a connection to a scalaris erlang node specified by the given parameters. Uses the given client
name.

If clientNameAppendUUID is specified a pseudo UUID is appended to the given name. BEWARE
that scalaris nodes accept only one connection per client name!

Parameters:

clientName the name that identifies the java client
clientNameAppendUUID override the object’s setting for clientNameAppendUUID

Returns:

the created connection

Exceptions:

ConnectionException if the connection fails

4.1.3.4 String de.zib.scalaris.ConnectionFactory.getClientName ()

Returns the name of the (Java) client to use when establishing a connection with erlang.

Returns:

the clientName

4.1.3.5 String de.zib.scalaris.ConnectionFactory.getCookie ()

Returns the cookie name to use for connections.

Returns:

the cookie

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.1 de.zib.scalaris.ConnectionFactory Class Reference 7

4.1.3.6 static ConnectionFactory de.zib.scalaris.ConnectionFactory.getInstance () [static]

Returns the static instance of a connection factory.

Returns:

a connection factory

4.1.3.7 String de.zib.scalaris.ConnectionFactory.getNode ()

Returns the name of the node to connect to.

Returns:

the name of the node

4.1.3.8 boolean de.zib.scalaris.ConnectionFactory.isClientNameAppendUUID ()

Returns whether an UUID is appended to client names or not.

Returns:

true if an UUID is appended, false otherwise

4.1.3.9 void de.zib.scalaris.ConnectionFactory.setClientName (String clientName)

Sets the name of the (Java) client to use when establishing a connection with erlang.

Parameters:

clientName the clientName to set

4.1.3.10 void de.zib.scalaris.ConnectionFactory.setClientNameAppendUUID (boolean client-
NameAppendUUID)

Sets whether to append an UUID to client names or not.

Parameters:

clientNameAppendUUID true if an UUID is appended, false otherwise

4.1.3.11 void de.zib.scalaris.ConnectionFactory.setCookie (String cookie)

Sets the cookie name to use for connections.

Parameters:

cookie the cookie to set

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.2 de.zib.scalaris.DeleteResult Class Reference 8

4.1.3.12 void de.zib.scalaris.ConnectionFactory.setNode (String node)

Sets the name of the node to connect to.

Parameters:

node the node to set

4.1.3.13 void de.zib.scalaris.ConnectionFactory.setProperties (Properties properties)

Sets the object’s members used for creating connections to erlang to values provided by the given Properties
object.

The Properties object should provide the following values (default values as shown):

• scalaris.node = "boot@localhost"

• scalaris.cookie = "chocolate chip cookie"

• scalaris.client.name = "java_client"

• scalaris.client.appendUUID = "true"

NOTE: Existing connections are not changed!

Parameters:

properties the object to get the connection parameters from

The documentation for this class was generated from the following file:

• src/de/zib/scalaris/ConnectionFactory.java

4.2 de.zib.scalaris.DeleteResult Class Reference

Public Member Functions

• DeleteResult (OtpErlangList list) throws UnknownException

Public Attributes

• int ok = 0
• int locks_set = 0
• int undef = 0

4.2.1 Detailed Description

Stores the result of a delete operation.

Author:

Nico Kruber, kruber@zib.de

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.3 de.zib.scalaris.Main Class Reference 9

Version:

2.2

Since:

2.2

See also:

Scalaris.delete(String)

4.2.2 Constructor & Destructor Documentation

4.2.2.1 de.zib.scalaris.DeleteResult.DeleteResult (OtpErlangList list) throws UnknownException

Creates a delete state object by converting the result list returned from erlang.

Parameters:

list the list to convert

Exceptions:

UnknownException is thrown if an unknown reason was encountered

4.2.3 Member Data Documentation

4.2.3.1 int de.zib.scalaris.DeleteResult.locks_set = 0

Skipped replicas because locks were set.

4.2.3.2 int de.zib.scalaris.DeleteResult.ok = 0

Number of successfully deleted replicas.

4.2.3.3 int de.zib.scalaris.DeleteResult.undef = 0

Skipped replicas because they did not exist.

The documentation for this class was generated from the following file:

• src/de/zib/scalaris/DeleteResult.java

4.3 de.zib.scalaris.Main Class Reference

Static Public Member Functions

• static void main (String[] args)

4.3.1 Detailed Description

Class to test basic functionality of the package and to use scalaris from command line.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 10

Author:

Nico Kruber, kruber@zib.de

Version:

2.0

Since:

2.0

4.3.2 Member Function Documentation

4.3.2.1 static void de.zib.scalaris.Main.main (String[] args) [static]

Queries the command line options for an action to perform.

> java -jar scalaris.jar -help
usage: scalaris
-getsubscribers <topic> get subscribers of a topic
-help print this message
-publish <params> publish a new message for a topic: <topic> <message>
-read <key> read an item
-subscribe <params> subscribe to a topic: <topic> <url>
-unsubscribe <params> unsubscribe from a topic: <topic> <url>
-write <params> write an item: <key>

-minibench run mini benchmark

Parameters:

args command line arguments

The documentation for this class was generated from the following file:

• src/de/zib/scalaris/Main.java

4.4 de.zib.scalaris.Scalaris Class Reference

Public Member Functions

• Scalaris () throws ConnectionException
• Scalaris (OtpConnection conn) throws ConnectionException
• OtpErlangObject readObject (OtpErlangString key) throws ConnectionException, TimeoutExcep-

tion, UnknownException, NotFoundException
• String read (String key) throws ConnectionException, TimeoutException, UnknownException, Not-

FoundException
• void readCustom (String key, CustomOtpObject<?> value) throws ConnectionException, Timeou-

tException, UnknownException, NotFoundException
• void writeObject (OtpErlangString key, OtpErlangObject value) throws ConnectionException, Time-

outException, UnknownException

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 11

• void write (String key, String value) throws ConnectionException, TimeoutException, UnknownEx-
ception

• void writeCustom (String key, CustomOtpObject<?> value) throws ConnectionException, Timeou-
tException, UnknownException

• void publish (OtpErlangString topic, OtpErlangString content) throws ConnectionException
• void publish (String topic, String content) throws ConnectionException
• void subscribe (OtpErlangString topic, OtpErlangString url) throws ConnectionException, Timeou-

tException, UnknownException
• void subscribe (String topic, String url) throws ConnectionException, TimeoutException, Un-

knownException
• void unsubscribe (OtpErlangString topic, OtpErlangString url) throws ConnectionException, Time-

outException, NotFoundException, UnknownException
• void unsubscribe (String topic, String url) throws ConnectionException, TimeoutException, Not-

FoundException, UnknownException
• OtpErlangList getSubscribers (OtpErlangString topic) throws ConnectionException, UnknownEx-

ception
• ArrayList< String > getSubscribers (String topic) throws ConnectionException, UnknownExcep-

tion
• long delete (String key) throws ConnectionException, TimeoutException, UnknownException,

NodeNotFoundException
• long delete (String key, int timeout) throws ConnectionException, TimeoutException, UnknownEx-

ception, NodeNotFoundException
• DeleteResult getLastDeleteResult () throws UnknownException
• void closeConnection ()

4.4.1 Detailed Description

Provides methods to read and write key/value pairs to a scalaris ring.

Each operation is a single transaction. If you are looking for more transactions, use the Transaction class
instead.

Instances of this class can be generated using a given connection to a scalaris node using
Scalaris(OtpConnection) or without a connection (Scalaris()) in which case a new connection is created
using ConnectionFactory#createConnection().

There are two paradigms for reading and writing values:

• using Java Strings: read(String), write(String, String)

This is the safe way of accessing scalaris where type conversions are handled by the API and the
user doesn’t have to worry about anything else.

Be aware though that this is not the most efficient way of handling strings!

• using custom OtpErlangObjects: readObject(OtpErlangString), writeObject(OtpErlangString, Ot-
pErlangObject)

Here the user can specify custom behaviour and increase performance. Handling the stored types
correctly is at the user’s hand.

An example using erlang objects to improve performance for inserting strings is pro-
vided by de.zib.scalaris.examples.CustomOtpFastStringObject and can be tested by
de.zib.scalaris.examples.FastStringBenchmark.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 12

Reading values

String key;
OtpErlangString otpKey;

Scalaris sc = new Scalaris();
String value = sc.read(key); // read(String)
OtpErlangObject optValue = sc.readObject(otpKey); // readObject(OtpErlangString)

For the full example, see de.zib.scalaris.examples.ScalarisReadExample

Writing values

String key;
String value;
OtpErlangString otpKey;
OtpErlangString otpValue;

Scalaris sc = new Scalaris();
sc.write(key, value); // write(String, String)
sc.writeObject(otpKey, otpValue); // writeObject(OtpErlangString, OtpErlangObject)

For the full example, see de.zib.scalaris.examples.ScalarisWriteExample

Deleting values

String key;
int timeout;
DeleteResult result;

Scalaris sc = new Scalaris();
sc.delete(key); // delete(String)
sc.delete(key, timeout); // delete(String, int)
result = sc.getLastDeleteResult(); // getLastDeleteResult()

Publishing topics

String topic;
String content;
OtpErlangString otpTopic;
OtpErlangString otpContent;

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 13

Scalaris sc = new Scalaris();
sc.publish(topic, content); // publish(String, String)
sc.publish(otpTopic, otpContent); // publish(OtpErlangString, OtpErlangString)

For the full example, see de.zib.scalaris.examples.ScalarisPublishExample

Subscribing to topics

String topic;
String URL;
OtpErlangString otpTopic;
OtpErlangString otpURL;

Scalaris sc = new Scalaris();
sc.subscribe(topic, URL); // subscribe(String, String)
sc.subscribe(otpTopic, otpURL); // subscribe(OtpErlangString, OtpErlangString)

For the full example, see de.zib.scalaris.examples.ScalarisSubscribeExample

Unsubscribing from topics Unsubscribing from topics works like subscribing to topics with the excep-
tion of a NotFoundException being thrown if either the topic does not exist or the URL is not subscribed
to the topic.

String topic;
String URL;
OtpErlangString otpTopic;
OtpErlangString otpURL;

Scalaris sc = new Scalaris();
sc.unsubscribe(topic, URL); // unsubscribe(String, String)
sc.unsubscribe(otpTopic, otpURL); // unsubscribe(OtpErlangString, OtpErlangString)

Getting a list of subscribers to a topic

String topic;
OtpErlangString otpTopic;

Vector<String> subscribers;
OtpErlangList otpSubscribers;

// non-static:
Scalaris sc = new Scalaris();
subscribers = sc.getSubscribers(topic); // getSubscribers(String)
otpSubscribers = sc.singleGetSubscribers(otpTopic); // getSubscribers(OtpErlangString)

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 14

For the full example, see de.zib.scalaris.examples.ScalarisGetSubscribersExample

Author:

Nico Kruber, kruber@zib.de

Version:

2.2

Since:

2.0

4.4.2 Constructor & Destructor Documentation

4.4.2.1 de.zib.scalaris.Scalaris.Scalaris () throws ConnectionException

Constructor, uses the default connection returned by ConnectionFactory#createConnection().

Exceptions:

ConnectionException if the connection fails

4.4.2.2 de.zib.scalaris.Scalaris.Scalaris (OtpConnection conn) throws ConnectionException

Constructor, uses the given connection to an erlang node.

Parameters:

conn connection to use for the transaction

Exceptions:

ConnectionException if the connection fails

4.4.3 Member Function Documentation

4.4.3.1 void de.zib.scalaris.Scalaris.closeConnection ()

Closes the transaction’s connection to a scalaris node.

Note: Subsequent calls to the other methods will throw ConnectionExceptions!

4.4.3.2 long de.zib.scalaris.Scalaris.delete (String key, int timeout) throws ConnectionException,
TimeoutException, UnknownException, NodeNotFoundException

Tries to delete all replicas of the given key.

WARNING: This function can lead to inconsistent data (e.g. deleted items can re-appear). Also when
re-creating an item the version before the delete can re-appear.

Parameters:

key the key to delete

timeout the time (in milliseconds) to wait for results

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 15

Returns:

the number of successfully deleted replicas

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to delete the value

NodeNotFoundException if no scalaris node was found

UnknownException if any other error occurs

Since:

2.2

See also:

delete(String)

4.4.3.3 long de.zib.scalaris.Scalaris.delete (String key) throws ConnectionException, TimeoutEx-
ception, UnknownException, NodeNotFoundException

Tries to delete all replicas of the given key in 2000ms.

Parameters:

key the key to delete

Returns:

the number of successfully deleted replicas

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to delete the value

NodeNotFoundException if no scalaris node was found

UnknownException if any other error occurs

Since:

2.2

See also:

delete(String, int)

4.4.3.4 DeleteResult de.zib.scalaris.Scalaris.getLastDeleteResult () throws UnknownException

Returns the result of the last call to delete(String).

NOTE: This function traverses the result list returned by erlang and therefore takes some time to process.
It is advised to store the returned result object once generated.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 16

Returns:

the delete result

Exceptions:

UnknownException is thrown if an unknown reason was encountered

See also:

delete(String)

4.4.3.5 ArrayList<String> de.zib.scalaris.Scalaris.getSubscribers (String topic) throws Connec-
tionException, UnknownException

Gets a list of subscribers to a topic.

Parameters:

topic the topic to get the subscribers for

Returns:

the subscriber URLs

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

UnknownException is thrown if the return type of the erlang method does not match the expected one

4.4.3.6 OtpErlangList de.zib.scalaris.Scalaris.getSubscribers (OtpErlangString topic) throws Con-
nectionException, UnknownException

Gets a list of subscribers to a topic.

Parameters:

topic the topic to get the subscribers for

Returns:

the subscriber URLs

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

UnknownException is thrown if the return type of the erlang method does not match the expected one

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 17

4.4.3.7 void de.zib.scalaris.Scalaris.publish (String topic, String content) throws ConnectionExcep-
tion

Publishes an event under a given topic.

Parameters:

topic the topic to publish the content under
content the content to publish

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

4.4.3.8 void de.zib.scalaris.Scalaris.publish (OtpErlangString topic, OtpErlangString content)
throws ConnectionException

Publishes an event under a given topic.

Parameters:

topic the topic to publish the content under
content the content to publish

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

The specification of pubsub.pubsub_api:publish/2 states that the only returned value is ok, so
no further evaluation is necessary.

4.4.3.9 String de.zib.scalaris.Scalaris.read (String key) throws ConnectionException, TimeoutEx-
ception, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

Returns:

the (string) value stored under the given key

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value
NotFoundException if the requested key does not exist
UnknownException if any other error occurs

See also:

readObject(OtpErlangString)

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 18

4.4.3.10 void de.zib.scalaris.Scalaris.readCustom (String key, CustomOtpObject<?> value)
throws ConnectionException, TimeoutException, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

value container that stores the value returned by scalaris

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value

NotFoundException if the requested key does not exist

UnknownException if any other error occurs

See also:

readObject(OtpErlangString)

Since:

2.1

4.4.3.11 OtpErlangObject de.zib.scalaris.Scalaris.readObject (OtpErlangString key) throws Con-
nectionException, TimeoutException, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

Returns:

the value stored under the given key

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value

NotFoundException if the requested key does not exist

UnknownException if any other error occurs

4.4.3.12 void de.zib.scalaris.Scalaris.subscribe (String topic, String url) throws ConnectionExcep-
tion, TimeoutException, UnknownException

Subscribes a url to a topic.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 19

Parameters:

topic the topic to subscribe the url to

url the url of the subscriber (this is where the events are send to)

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

4.4.3.13 void de.zib.scalaris.Scalaris.subscribe (OtpErlangString topic, OtpErlangString url)
throws ConnectionException, TimeoutException, UnknownException

Subscribes a url to a topic.

Parameters:

topic the topic to subscribe the url to

url the url of the subscriber (this is where the events are send to)

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

4.4.3.14 void de.zib.scalaris.Scalaris.unsubscribe (String topic, String url) throws ConnectionEx-
ception, TimeoutException, NotFoundException, UnknownException

Unsubscribes a url from a topic.

Parameters:

topic the topic to unsubscribe the url from

url the url of the subscriber

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

NotFoundException if the topic does not exist or the given subscriber is not subscribed to the given
topic

UnknownException if any other error occurs

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.4 de.zib.scalaris.Scalaris Class Reference 20

4.4.3.15 void de.zib.scalaris.Scalaris.unsubscribe (OtpErlangString topic, OtpErlangString url)
throws ConnectionException, TimeoutException, NotFoundException, UnknownException

Unsubscribes a url from a topic.

Parameters:

topic the topic to unsubscribe the url from

url the url of the subscriber

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

NotFoundException if the topic does not exist or the given subscriber is not subscribed to the given
topic

UnknownException if any other error occurs

4.4.3.16 void de.zib.scalaris.Scalaris.write (String key, String value) throws ConnectionException,
TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

See also:

writeObject(OtpErlangString, OtpErlangObject)

4.4.3.17 void de.zib.scalaris.Scalaris.writeCustom (String key, CustomOtpObject<?> value)
throws ConnectionException, TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 21

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

See also:

writeObject(OtpErlangString, OtpErlangObject)

Since:

2.1

4.4.3.18 void de.zib.scalaris.Scalaris.writeObject (OtpErlangString key, OtpErlangObject value)
throws ConnectionException, TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

The documentation for this class was generated from the following file:

• src/de/zib/scalaris/Scalaris.java

4.5 de.zib.scalaris.Transaction Class Reference

Public Member Functions

• Transaction () throws ConnectionException
• Transaction (OtpConnection conn) throws ConnectionException
• void reset ()
• void start () throws ConnectionException, TransactionNotFinishedException, UnknownException
• void commit () throws UnknownException, ConnectionException
• void abort ()
• OtpErlangObject readObject (OtpErlangString key) throws ConnectionException, TimeoutExcep-

tion, UnknownException, NotFoundException
• String read (String key) throws ConnectionException, TimeoutException, UnknownException, Not-

FoundException
• void readCustom (String key, CustomOtpObject<?> value) throws ConnectionException, Timeou-

tException, UnknownException, NotFoundException
• void writeObject (OtpErlangString key, OtpErlangObject value) throws ConnectionException, Time-

outException, UnknownException
• void write (String key, String value) throws ConnectionException, TimeoutException, UnknownEx-

ception

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 22

• void writeCustom (String key, CustomOtpObject<?> value) throws ConnectionException, Timeou-
tException, UnknownException

• void revertLastOp ()
• void closeConnection ()

4.5.1 Detailed Description

Provides means to realise a transaction with the scalaris ring using Java.

Instances of this class can be generated using a given connection to a scalaris node using Transac-
tion(OtpConnection) or without a connection (Transaction()) in which case a new connection is created
using ConnectionFactory#createConnection().

There are two paradigms for reading and writing values:

• using Java Strings: read(String), write(String, String)

This is the safe way of accessing scalaris where type conversions are handled by the API and the
user doesn’t have to worry about anything else.

Be aware though that this is not the most efficient way of handling strings!

• using custom OtpErlangObjects: readObject(OtpErlangString), writeObject(OtpErlangString, Ot-
pErlangObject)

Here the user can specify custom behaviour and increase performance. Handling the stored types
correctly is at the user’s hand.

An example using erlang objects to improve performance for inserting strings is pro-
vided by de.zib.scalaris.examples.CustomOtpFastStringObject and can be tested by
de.zib.scalaris.examples.FastStringBenchmark.

Example:

OtpErlangString otpKey;
OtpErlangString otpValue;
OtpErlangObject otpResult;

String key;
String value;
String result;

Transaction t1 = new Transaction(); // Transaction()
t1.start(); // start()

t1.write(key, value); // write(String, String)
t1.writeObject(otpKey, otpValue); // writeObject(OtpErlangString, OtpErlangObject)

result = t1.read(key); //read(String)
otpResult = t1.readObject(otpKey); //readObject(OtpErlangString)

transaction.commit(); // commit()

For more examples, have a look at de.zib.scalaris.examples.TransactionReadExample,
de.zib.scalaris.examples.TransactionWriteExample and de.zib.scalaris.examples.TransactionReadWriteExample.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 23

Attention: If a read or write operation fails within a transaction all subsequent operations on that key
will fail as well. This behaviour may particularly be undesirable if a read operation just checks whether
a value already exists or not. To overcome this situation call revertLastOp() immediately after the failed
operation which restores the state as it was before that operation.

The de.zib.scalaris.examples.TransactionReadWriteExample example shows such a use case.

Author:

Nico Kruber, kruber@zib.de

Version:

2.2

Since:

2.0

4.5.2 Constructor & Destructor Documentation

4.5.2.1 de.zib.scalaris.Transaction.Transaction () throws ConnectionException

Constructor, uses the default connection returned by ConnectionFactory#createConnection().

Exceptions:

ConnectionException if the connection fails

4.5.2.2 de.zib.scalaris.Transaction.Transaction (OtpConnection conn) throws ConnectionExcep-
tion

Constructor, uses the given connection to an erlang node.

Parameters:

conn connection to use for the transaction

Exceptions:

ConnectionException if the connection fails

4.5.3 Member Function Documentation

4.5.3.1 void de.zib.scalaris.Transaction.abort ()

Cancels the current transaction.

For a transaction to be cancelled, only the transLog needs to be reset. Nothing else needs to be done since
the data was not modified until the transaction was committed.

See also:

commit()
reset()

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 24

4.5.3.2 void de.zib.scalaris.Transaction.closeConnection ()

Closes the transaction’s connection to a scalaris node.

Note: Subsequent calls to the other methods will throw ConnectionExceptions!

4.5.3.3 void de.zib.scalaris.Transaction.commit () throws UnknownException, ConnectionExcep-
tion

Commits the current transaction.

The transaction’s log is reset if the commit was successful, otherwise it still retains in the transaction which
must be successfully committed, aborted or reset in order to be restarted.

Exceptions:

UnknownException If the commit fails or the returned value from erlang is of an unknown
type/structure, this exception is thrown. Neither the transaction log nor the local operations
buffer is emptied, so that the commit can be tried again.

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

See also:

abort()
reset()

4.5.3.4 String de.zib.scalaris.Transaction.read (String key) throws ConnectionException, Timeou-
tException, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

Returns:

the (string) value stored under the given key

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value

NotFoundException if the requested key does not exist

UnknownException if any other error occurs

See also:

readObject(OtpErlangString)

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 25

4.5.3.5 void de.zib.scalaris.Transaction.readCustom (String key, CustomOtpObject<?> value)
throws ConnectionException, TimeoutException, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

value container that stores the value returned by scalaris

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value

NotFoundException if the requested key does not exist

UnknownException if any other error occurs

See also:

readObject(OtpErlangString)

Since:

2.1

4.5.3.6 OtpErlangObject de.zib.scalaris.Transaction.readObject (OtpErlangString key) throws
ConnectionException, TimeoutException, UnknownException, NotFoundException

Gets the value stored under the given key.

Parameters:

key the key to look up

Returns:

the value stored under the given key as a raw erlang type

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to fetch the value

NotFoundException if the requested key does not exist

UnknownException if any other error occurs

4.5.3.7 void de.zib.scalaris.Transaction.reset ()

Resets the transaction to its initial state.

This action is not reversible.

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 26

4.5.3.8 void de.zib.scalaris.Transaction.revertLastOp ()

Reverts the last (read, parallelRead or write) operation by restoring the last state.

If there was no operation or the last operation was already reverted, this method does nothing.

This method is especially useful if after an unsuccessful read a value with the same key should be written
which is not possible if the failed read is still in the transaction’s log.

NOTE: This method works only ONCE! Subsequent calls will do nothing.

4.5.3.9 void de.zib.scalaris.Transaction.start () throws ConnectionException, TransactionNotFin-
ishedException, UnknownException

Starts a new transaction by generating a new transaction log.

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TransactionNotFinishedException if an old transaction is not finished (via commit() or abort()) yet

UnknownException if the returned value from erlang does not have the expected type/structure

4.5.3.10 void de.zib.scalaris.Transaction.write (String key, String value) throws ConnectionExcep-
tion, TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

See also:

writeObject(OtpErlangString, OtpErlangObject)

4.5.3.11 void de.zib.scalaris.Transaction.writeCustom (String key, CustomOtpObject<?> value)
throws ConnectionException, TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

4.5 de.zib.scalaris.Transaction Class Reference 27

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

See also:

writeObject(OtpErlangString, OtpErlangObject)

Since:

2.1

4.5.3.12 void de.zib.scalaris.Transaction.writeObject (OtpErlangString key, OtpErlangObject
value) throws ConnectionException, TimeoutException, UnknownException

Stores the given key/value pair.

Parameters:

key the key to store the value for

value the value to store

Exceptions:

ConnectionException if the connection is not active or a communication error occurs or an exit signal
was received or the remote node sends a message containing an invalid cookie

TimeoutException if a timeout occurred while trying to write the value

UnknownException if any other error occurs

The documentation for this class was generated from the following file:

• src/de/zib/scalaris/Transaction.java

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

Index
abort

de::zib::scalaris::Transaction, 23

closeConnection
de::zib::scalaris::Scalaris, 13
de::zib::scalaris::Transaction, 23

commit
de::zib::scalaris::Transaction, 23

ConnectionFactory
de::zib::scalaris::ConnectionFactory, 4

createConnection
de::zib::scalaris::ConnectionFactory, 5

de.zib.scalaris, 1
de::zib::scalaris::ConnectionFactory, 3

ConnectionFactory, 4
createConnection, 5
getClientName, 5
getCookie, 6
getInstance, 6
getNode, 6
isClientNameAppendUUID, 6
setClientName, 6
setClientNameAppendUUID, 6
setCookie, 7
setNode, 7
setProperties, 7

de::zib::scalaris::DeleteResult, 7
DeleteResult, 8
locks_set, 8
ok, 8
undef, 8

de::zib::scalaris::Main, 9
main, 9

de::zib::scalaris::Scalaris, 9
closeConnection, 13
delete, 13, 14
getLastDeleteResult, 15
getSubscribers, 15
publish, 16
read, 16
readCustom, 17
readObject, 17
Scalaris, 13
subscribe, 18
unsubscribe, 18, 19
write, 19
writeCustom, 19
writeObject, 20

de::zib::scalaris::Transaction, 20
abort, 23

closeConnection, 23
commit, 23
read, 23
readCustom, 24
readObject, 24
reset, 24
revertLastOp, 25
start, 25
Transaction, 22
write, 25
writeCustom, 25
writeObject, 26

delete
de::zib::scalaris::Scalaris, 13, 14

DeleteResult
de::zib::scalaris::DeleteResult, 8

getClientName
de::zib::scalaris::ConnectionFactory, 5

getCookie
de::zib::scalaris::ConnectionFactory, 6

getInstance
de::zib::scalaris::ConnectionFactory, 6

getLastDeleteResult
de::zib::scalaris::Scalaris, 15

getNode
de::zib::scalaris::ConnectionFactory, 6

getSubscribers
de::zib::scalaris::Scalaris, 15

isClientNameAppendUUID
de::zib::scalaris::ConnectionFactory, 6

locks_set
de::zib::scalaris::DeleteResult, 8

main
de::zib::scalaris::Main, 9

ok
de::zib::scalaris::DeleteResult, 8

publish
de::zib::scalaris::Scalaris, 16

read
de::zib::scalaris::Scalaris, 16
de::zib::scalaris::Transaction, 23

readCustom
de::zib::scalaris::Scalaris, 17
de::zib::scalaris::Transaction, 24

readObject

INDEX 29

de::zib::scalaris::Scalaris, 17
de::zib::scalaris::Transaction, 24

reset
de::zib::scalaris::Transaction, 24

revertLastOp
de::zib::scalaris::Transaction, 25

Scalaris
de::zib::scalaris::Scalaris, 13

setClientName
de::zib::scalaris::ConnectionFactory, 6

setClientNameAppendUUID
de::zib::scalaris::ConnectionFactory, 6

setCookie
de::zib::scalaris::ConnectionFactory, 7

setNode
de::zib::scalaris::ConnectionFactory, 7

setProperties
de::zib::scalaris::ConnectionFactory, 7

start
de::zib::scalaris::Transaction, 25

subscribe
de::zib::scalaris::Scalaris, 18

Transaction
de::zib::scalaris::Transaction, 22

undef
de::zib::scalaris::DeleteResult, 8

unsubscribe
de::zib::scalaris::Scalaris, 18, 19

write
de::zib::scalaris::Scalaris, 19
de::zib::scalaris::Transaction, 25

writeCustom
de::zib::scalaris::Scalaris, 19
de::zib::scalaris::Transaction, 25

writeObject
de::zib::scalaris::Scalaris, 20
de::zib::scalaris::Transaction, 26

Generated on Tue Jun 9 12:41:12 2009 for Scalaris Java Interface by Doxygen

APPENDIX A. PUBLICATIONS

A.12 Developing, Simulating, and Deploying

Peer-to-Peer Systems using the Kom-

pics Component Model

SELFMAN Deliverable Year Three, Page 498

Developing, Simulating, and Deploying Peer-to-Peer
Systems using the Kompics Component Model∗

Cosmin Arad
Royal Institute of Technology

(KTH) Forum 120
SE-164 40, Kista, Sweden

icarad@kth.se

Jim Dowling
Swedish Institute of Computer

Science (SICS) Box 1263
SE-164 29, Kista, Sweden

jdowling@sics.se

Seif Haridi
Royal Institute of Technology
(KTH), Swedish Institute of
Computer Science (SICS)

seif@sics.se

ABSTRACT
Currently, the development of overlay network systems typically
produces two software artifacts: a simulator to model key protocols
and a production system for a WAN environment. However, this
methodology requires the maintenance of two implementations, as
well as adding both development overhead and the potential for er-
rors, through divergence in the different code bases. This paper de-
scribes how our message-passing component model, called Kom-
pics, is used to build overlay network systems using a P2P compo-
nent framework, where the same implementation can be simulated
or deployed in a production environment. Kompics enables two
different modes of simulation: deterministic simulation for repro-
ducible debugging, and emulation mode for stress-testing systems.
We used our P2P component framework to build and evaluate over-
lay systems, and we show how our model lowers the programming
barrier for simulating and deploying overlay network systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribu-ted Sys-
tems—distributed applications; D.1.3 [Programming techniques]:
Concurrent programming—distributed programming; D.2.11 [Software
Engineering]: Software Architectures—domain-specific architec-
tures; I.6 [Simulation and Modeling]: Types of Simulation—Dis-
crete event.

General Terms
Design, Experimentation

Keywords
component model, software architecture, event-based systems, peer-
to-peer, discrete-event simulation

∗This research has been partially funded by the European Com-
mission IST Project SELFMAN (contract 34084) and by a Marie
Curie Intra-European Fellowship within the 6th European Commu-
nity Framework Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COMSWARE’09, June 16-19, Dublin, Ireland
Copyright c⃝ 2009 ACM 978-1-60558-353-2/09/06 ...$10.00.

1. INTRODUCTION
The development of an overlay network system often starts with

the development of a simulation model to help verify a system’s ex-
pected behaviour, aid in its understanding, and allow for the quicker
iterative improvement of its protocols. Later, a production system
is built using the simulation model, and it is typically further de-
veloped in a test environment, such as PlanetLab [9] for WANs,
or Modelnet [22], for LANs. However, this process adds overhead
and introduces scope for development errors.

In this paper, we describe how our component model, Kompics,
is used to build P2P overlay systems that can be both simulated
and deployed in production with the same code base. Kompics
is a programming model for building distributed systems consist-
ing of message-passing components with no shared state, decou-
pled dependencies through publish-subscribe ports and channels,
and typed events for inter-component communication. We used
Kompics to build a P2P component framework that provides fun-
damental services such as network messaging, timers, bootstrap-
ping, failure detection, application monitoring and administration.
We show how Kompics enables the composition of overlay net-
work systems such as Chord [21] and Cyclon [23], and how the
same code for these systems can be run in both deployment and
simulation environments. This contrasts with existing P2P frame-
works that provide specialised APIs for particular classes of P2P
system, such as a key-based routing API for structured overlay net-
works (SON) [11, 3] or a peer sampling API for gossip-generated
overlay networks [15]. The framework provides fundamental net-
work and timer services as components, while Kompics enables
its systematic extension through component composition, giving
us the ability to selectively expose complexity to higher layers in
the framework.

The Kompics P2P component framework provides three differ-
ent modes of operation: reproducible simulation, stress-test emula-
tion, and production deployment. Simulation mode is used primar-
ily for debugging and studying properties of the system at large.
In this mode, network and time services are replaced by simulated
components and Kompics is used with a single-thread deterministic
scheduler, thus enabling execution runs to be reproducible. Emula-
tion mode is a novel feature, where the system is run in physical-
time, using network services, and multiple workers execute compo-
nents in parallel. Parallel execution, on multi-core machines, and
the use of the network enable us to scale up experiments, which
is useful for stress-testing systems. We can scale the number of
workers to match the number of cores on our hosts, as well as
distributing experiments over multiple hosts (in a LAN). Finally,
in production deployment mode, the same source code can be de-
ployed and run in a network environment using components, such
as Apache MINA [1], to provide network communication.

This paper is structured as follows. Section 2 introduces the
Kompics component model. Section 3 describes our P2P compo-
nent framework. In Section 4, we evaluate our P2P component
framework and the scalability of the Kompics emulator on multi-
core hardware. Section 5 covers related work in the areas of P2P
frameworks, component-based systems software, and simulators.
Finally, Section 6 concludes the paper.

2. KOMPICS COMPONENT MODEL
In Kompics, distributed protocols and services are encapsulated

into components that can be composed into hierarchical architec-
tures of composite components. Kompics components interact by
passing asynchronous data-carrying typed events. They are decou-
pled by ports that are connected using typed channels, together pro-
viding publish-subscribe communication semantics. The Kompics
model presented here has been implemented in Java [4, 2]. The
following are the main concepts of the Kompics component model:

Event: Events are passive objects that contain a set of immutable
attributes. The type of each attribute is a value type of the
underlying type system. Events are typed and they can form
type hierarchies.

Port: A port represents a bidirectional event interface of a compo-
nent and it specifies the types of events that flow into or out
of the component. A component provides a service through
a port and in implementing that service it may require ser-
vices provided by other components. A port type is defined
as a set of typed events and the direction in which each event
flows - into or out of a component. Every port has an event
queue that stores events sent to a component over that port
until they are handled by the component. Ports are connected
together using typed channels, where connection cardinality
may be one-to-one or one-to-many. As such, ports provide
publish-subscribe semantics for component interactions.

Event handler: An event handler is a procedure executed by a
component as a reaction to receiving a certain event. An
event handler accepts one event parameter of a specific event
type. An event handler comprises a sequence of statements in
the underlying programming language and Kompics specific
statements (e.g., triggering events).

Subscription: A subscription represents the binding of an event
handler to a port. A subscription specifies both the event
type and a reference to an event handler that will be executed
when events of that type (or subtypes of the specified type)
are received on that port. A component can subscribe event
handlers to more than one event type for a given port.

Channel: A channel is a bidirectional typed connection between
two ports, forwarding events between the two ports. A port
of a component may be unconnected or connected to many
components, using one channel per connection. Channels
only carry events of the same type as those specified in the
connected ports. Channels have first-in, first-out (FIFO) event
delivery semantics, that is, events triggered by a publisher
component are executed by all subscriber components in the
same order in which they are triggered. A channel can op-
tionally contain event attribute filters, which ensure that only
those events with specified attribute values are forwarded by
the channel. Together, type-based subscriptions and channel
attribute filters ensure that a component only receives those
events published on a particular port if the component has (1)

Figure 1: Kompics execution model.

subscribed for the event’s type (or the event is a subtype of
the subscription type) and, (2) the event has attribute values
that match all supplied attribute filters.

Component: Components are units of functionality in a Kompics
application. A component has local state variables, a set
of ports, and a set of event handlers. Components do not
share state. Components are active entities that interact with
each other by triggering (sending) and handling (receiving)
events. Components react to events by executing event han-
dlers, and they are decoupled by ports and channels. Compo-
nents can be composed into composite components that are
also themselves components, enabling the construction of a
component hierarchy. We say that a parent component is at
a higher level in the component hierarchy than its children
components.

2.1 Execution Model
Kompics components are reactive. They do not have execution

threads of their own. The default Kompics scheduler spawns a
number of worker threads that execute event handlers on behalf
of components. Typically, the number of workers is equal to the
number of processing cores or processors available on the machine.
Workers manage the execution of components by transitioning a
component to one of three states:

∙ busy: a worker is currently executing one of its event han-
dlers

∙ ready: one or more of its port event queues are not empty
and the component is not busy

∙ idle: all its port event queues are empty and it is not busy

Kompics’s execution model is illustrated in Figure 1. Each worker
maintains a private work queue of ready components, and each
component maintains an event queue for each of its ports. The algo-
rithm for how workers pick components from the work queue and
execute their events is described in pseudo-code in Figure 2. The
algorithm proceeds as follows. If a worker has no components in its
ready queue, it steals work from another worker. Details for this are
described in the next subsection. When work becomes available at
a worker, it picks the first ready component C from its work queue.
The worker then transitions C to the busy state. The component C
now selects a port with waiting event(s) in a round-robin fashion,

while (true) do
if isEmpty(workQ) then

steal work from another worker
end if
var comp := dequeue(workQ)
comp.state := busy
var port := selectPort ()
var event := port.eventQ.dequeue()
comp.executeHandler (port,event)
if comp.hasEvents() then

comp.state := ready
workQ.enqueue(comp)

else
comp.state := idle

end if
end while

Figure 2: Worker execution

and then takes the first event from the event queue for that port.
(Round-robin selection of ports with waiting events ensures fair-
ness in event execution for the different ports.) The event handler
in C for that event on that port is then executed. After the handler
execution terminates, if all the event queues for C are empty, the
worker transitions C to the idle state, otherwise C is transitioned to
the ready state, and it places C on the tail of the work queue. When
a component is in the idle state and an event is published on one of
its ports by a worker, the worker transitions it from the idle state to
the ready state and places it on its work queue; there is no scanning
of idle components for waiting events.

As each worker has a private queue with ready components, dif-
ferent workers can execute event handlers for different component
instances in parallel. This improves concurrency, since there is
no atomicity of event handlers with respect to handler execution
of other components. However, event handlers of one component
instance are still guaranteed to be executed sequentially and non-
preemptively by workers. This eliminates the need for program-
mers to synchronise access to local component state variables be-
tween different event handlers, which reduces programming com-
plexity.

Batched work stealing
Workers may run out of ready components to execute, in which
case they engage in work stealing [7]. Work stealing involves a
thief, a worker with no ready components, contacting the victim, the
worker with the highest number of ready components, and stealing
a batch of half of its ready components. Stolen components are
moved from the victim’s work queue to the thief’s work queue.
From our experiments, batching shows a considerable performance
improvement over stealing small numbers of ready components. To
improve concurrency, the work queue is a lock-free queue, mean-
ing that the victims and thieves can concurrently consume ready
components from the queue.

3. P2P COMPONENT FRAMEWORK
Kompics was used to implement a set of generic, reusable com-

ponents for building overlay network systems, called the Kompics
P2P component framework.

3.1 Basic components: Timer and Network
The fundamental services common to all P2P protocols are timer

services and network services.

Figure 3: Peer component.

Timer
The Timer component is used by other components to schedule
alarms and timeouts. To schedule a timeout event, a component
a triggers a ScheduleTimeout event on its TIMER port. Through a
channel connection the ScheduleTimeout event arrives at the TIMER
port of the Timer component. The ScheduleTimeout event contains
a timeout value and a Timeout event. A Timer component triggers
a Timeout event on the TIMER port, when a period of time equal
to the timeout value has passed. The Timeout event arrives at the
TIMER port of component a on the same channel as the Schedule-
Timeout event. To cancel a scheduled Timeout event, component a
will trigger a CancelTimeout event on its TIMER port. Each Time-
out event has a uniquely generated id. To cancel a particular Time-
out, its id needs to be included as an attribute in the CancelTimeout
event.

Network
Protocol components use a Network component to send messages
to remote peers. When a component a wants to send a message to
a remote peer, it first defines its message as a subtype of Message,
where the Message type includes a source and a destination Ad-
dress attribute. The component a triggers its Message on its NET
port. Through a channel connection the Message event arrives at
the NET port of the Network component. The Network component
marshalls the Message event and sends it to its destination, where
another Network component is responsible for receiving the event
and publishing it on its local NET port.

3.2 Peer component
Figure 3 outlines the architecture of a Peer component. The Peer

component is a container for the components representing the pro-
tocols executing at one peer. The Peer component has a NET port,
through which its children components send and receive messages
from the network, a TIMER port, through which the Peer’s chil-
dren components can schedule timeouts, and a WEB port, through
which web requests coming from a web server are handled by a
WebApplication within the peer.

The Peer component in Figure 3 contains two overlay network
components, Chord and Cyclon, and some P2P framework com-
ponents: a BootstrapClient, a FailureDetector, and a PeerMonitor-
Client. We describe the role of these components in the following
sections.

A Peer has both a NET port and a TIMER port that need to
be bound to concrete implementations. In simulation mode, these
ports are bound to loopback network and simulated timer compo-

nents, while in production mode, they are bound to network mes-
saging middleware and Java timer components. A Peer contains a
globally unique Address, a triplet of (IPaddress, port, id). id is
an abstract peer identifier that is generally specialized for a specific
overlay network, such as a key-based routing (KBR) addressing
scheme like Chord [21]. In a production system, the peer compo-
nent typically has an embedded Application, see Figure 6.

To elaborate on how the Network component is used in a P2P
system, we now describe how our implementation of the Cyclon
overlay network uses the network while constructing the random
overlay network topology. Firstly, Cyclon components send shuffle
messages to each other to update their set of random neighbours.
The Cyclon component is subscribed to the NET channel for both
ShuffleRequest and ShuffleReply types (both subtypes of Message).
A Network component is subscribed to the same NET channel for
Message types, see Figure 6. When the Cyclon component starts
a gossiping round, it sends a ShuffleRequest to its NET port, and
since ShuffleRequest is a subtype of Message, it is delivered over a
channel to the NET port on a Network component. A handler in the
Network component receives the event, as it is subscribed to receive
messages of type Message arriving on the NET port. The handler
sees that the event is destined for a remote peer, marshalls the Shuf-
fleRequest and sends it over the network using the IP and port from
the destination Address attribute of the Message event. The destina-
tion node receives the ShuffleRequest at its Network component and
publishes the ShuffleRequest on its NET port. Type-based subscrip-
tion ensures that the Cyclon component receives the ShuffleRequest
from the peer’s NET port. Similarly, a ShuffleReply is sent back to
the source peer.

3.3 Peer sub-components
In Figure 3, we can see the set of components that make up a Peer

component, including two overlay network components (Chord and
Cyclon), components providing services used by the overlay com-
ponents (FailureDetector and BootstrapClient), and components
that use an overlay network component (PeerMonitorClient and
WebApplication). The Chord component shown is simplified, hid-
ing its internal Ring and Router components. The key-based rout-
ing (KBR) port enables the replacement of the Chord component
with another KBR implementation. The Cyclon component imple-
ments a gossip-generated random overlay network. As with the
KBR channel, the peer-sampling channel (PS) port allow the re-
placement of Cyclon with any other implementation of a random
overlay network supporting the PS port. Cyclon uses a local Boot-
strapClient component that communicates with a well-known re-
mote Bootstrap server (not shown in Figure 3), to allow peers to
join an existing overlay network. Chord, by contrast, does not re-
quire a bootstrap service, as it can be bootstrapped using a reference
to any peer in the overlay. Chord uses a FailureDetector component
to receive a notification when one of its neighbour (predecessor or
successor) nodes is suspected to have crashed.

Peer monitoring and administration.
The framework also provides support for monitoring the state of the
P2P overlay using web browsers. To support this feature, a Peer-
MonitorClient component periodically requests the state of Peer
components. The PeerMonitorClient component provided in the
framework can be configured to monitor Chord or Cyclon. It is
reusable for overlays that handle KBR or PS events, and can also
be customized to collect application-specific data. The data col-
lected by the PeerMonitorClient component is sent to a PeerMon-
itorServer (shown in Figures 4 and 6), which aggregates a global
view of the overlay from the PeerMonitorClient component inside

Figure 4: Reproducible simulation.

every peer. The PeerMonitorServer can be accessed via a web in-
terface, allowing users to inspect the global state of the system in
real-time. The PeerMonitorServer’s web interface contains hyper-
links to the individual peers in the system. These hyperlinks point
to the peer’s WebApplication component, see Figure 3. Users can
send HTTP requests to the Peer’s WebApplication component to
inspect peers and administer them. For example, using the WebAp-
plication interface to a Chord component, a user can issue insert
or lookup operations for that peer, using a web browser. From the
PeerMonitorServer, the web interface can be used to inspect the
Chord ring, from which a user can click down to individual peers.
This whole infrastructure is reusable for any overlay network com-
ponent that implements the KBR port. The same applies for random
overlay components that provide the PS port.

3.4 Simulation mode
Programmers can switch between the different simulation, emu-

lation, or production modes by simply replacing the Main (or root)
component; this is typically done using a command-line switch
or configuration file update. In the simulation scenario of Figure
4, the SimulationMain component is responsible for creating and
starting a Simulation component, as well as the Peer, Jetty, Peer-
MonitorServer, and Bootstrap components. The Simulation com-
ponent’s Peer port is connected to all the Peer components using
one channel per Peer. The Simulation component provides an in-
terface to start, stop and fail individual Peer components.

Simulation mode is characterised in Kompics by the support for
only a single worker with a single work queue. A single worker
ensures the reproducibility of simulations, as multiple workers in-
troduce non-determinism, due to operating system control over the
scheduling of workers.

In simulation mode, a simulated Timer component implementa-
tion is required to alter simulation time. This simulated Timer com-
ponent typically slows down simulated time (compared to phys-
ical time) to allow the simulation of larger systems. Other ref-
erences in the application to physical time, such as through Sys-
tem.currentTimeMillis() need to be replaced to refer to simulation
time.

In simulation mode, each peer subscribes to receive messages
from the NetworkSimulation component (not shown in Figure 4)
over the NET port. Peer subscriptions are parameterized by the
peer’s Address, so that the channel connecting the peer and the
NetworkSimulation component uses attribute filtering to ensure that
only those events of type Message with the peer’s destination ad-
dress are delivered to the peer. We also model the network at the
message-passing level in the NetworkSimulation component, in-
stead of the more computationally expensive network packet and/or
physical level. We have implemented different models of message
loss and latency, including uniform delay distribution models and a
latency map based on the King data-set [13].

Figure 5: Distributed emulation in Kompics.

3.5 Emulation mode
Emulation mode contrasts with simulation mode in that produc-

tion Timer and Network components are used, instead of simu-
lated implementations of them. Emulation mode supports multi-
ple workers, each with their own work queue, enabling emulation
mode to scale as the number of available processing cores is in-
creased.

In both the emulation and deployment modes, there is currently
one supported implementation of the Network component based on
Apache MINA [1], see Figure 6. MINA is a network communica-
tion library that provides an event-driven asynchronous API over
transports such as TCP/IP and UDP/IP using the Java NIO pack-
age. MINA supports pluggable marshallers, including a built-in ob-
ject serializer, which is useful during prototyping, while message-
specific marshallers, for compact binary or text protocols, can be
written for production systems. The Network component embeds
MINA and automatically manages connections to other nodes.

Distributed emulation
When the amount of available memory becomes a bottleneck to
scaling the size of the emulated systems, the way to further scale
the simulation is to distribute it across a number of machines, build-
ing a distributed simulation. Given our message-passing architec-
ture, distributing the simulation over a cluster is straightforward.
In Figure 6 it can be seen how we split the simulation component
into a master and a set of slaves, distributed across the machines in
the cluster. The master drives the simulation by sending messages
to the slaves. Each slave drives the simulation on one machine,
managing the peers local to that machine. The master is hosted on
a separate machine. In the simulator’s component architecture we
replace the simulator component with the SlaveDriver component,
and we move the bootstrap and peer monitoring servers to other
hosts (to improve system scalability).

Analysis of physical-time emulation
In Kompics’s emulation mode, experiments are run in physical-
time, that is, in the special case where simulation time is equivalent
to physical system execution time. This allows us to have multiple
workers executing the experiment without the need to synchronize
the workers on the passage of simulation time. It also enables us
to run production code directly in simulation. However, the use of
physical-time means that events may not execute at the expected
simulation time due to delays. However, most distributed systems,

Figure 6: Deployment architecture.

and all P2P systems, are tolerant to messaging delays within some
application-specific bounds.

Lin et al. showed [18] that this approach is valid to the extent
that the delay of events in queues does not affect application invari-
ants. Application invariants are properties of the application that
must be maintained over all execution runs. Lin et al. showed [18]
that for P2P systems, application invariants can be specified as con-
ditions on the logic of timers. So, for example, an application-level
timeout event cannot be delayed for an amount of time longer than
its expiration time, otherwise it would timeout before it could be
handled, breaking the application invariant. In Kompics simula-
tions run on a single multi-core machine, events will encounter in-
creasing processing delays with increasing system load. Processing
delays happen if the system generates more events than it can pro-
cess over a period of time. In our evaluation of the Cyclon overlay,
we investigate the extent to how large the system can grow for dif-
ferent numbers of processing cores, while maintaining application
invariants in Cyclon. That is, we have to keep the highest event
processing delays considerably below the time for the minimum
timeout expiration in the Cyclon application.

A drawback of physical-time emulation is that we cannot take
advantage of the time-compression effect of time-stepped simula-
tors and simulation runs are not reproducible (although, production
distributed systems do not have reproducibility, either). However,
the benefit of physical-time is improved scalability, since it avoids
the cost of simulation controllers agreeing on the passage of simu-
lation time.

3.6 Production mode
In production mode, the same Network and Timer components

that were used in emulation mode can be used. In the production
scenario of Figure 6, we can see that the DeploymentMain com-
ponent is responsible for creating and starting a single Peer com-
ponent, parameterized by its Address and a NET port connected to
Apache Mina Network component implementation.

4. EVALUATION
In this paper we have argued that P2P systems built from Kom-

pics components can be executed both in a production and in a
simulation environment, and that by introducing a new emulation
mode, simulation experiments can be scaled to larger sizes with ad-
ditional processing cores while maintaining experimental integrity.
In this section we give a qualitative evaluation of the Kompics pro-

gramming methodology and a quantitative evaluation of the multi-
core scalability of our emulation approach.

4.1 Analysis of the P2P component framework
We have implemented the Kompics component model and the

P2P component framework in Java. Components and events are
specified as Java classes, while channels are generic objects that
do not need to be specialized. Firstly, switching from deployment
mode to simulation mode is minimally intrusive, requiring the re-
placement of the Main component of the system. This integrated
simulation and production code-base should reduce development
overhead and the potential for programmer errors.

Our component framework also enables the re-use of the P2P
components for different overlay systems. Chord and Cyclon use
the same implementations of Peer, Network, Timer, BootstrapClient,
and Simulation components, as well as the same BootstrapServer
and PeerMonitorServer. The main abstraction in helping reuse
components is the use of ports to decouple sender and receiver com-
ponents. Neither the sender nor the receiver of an event has a refer-
ence to the other component, only a reference to the port connecting
them. Ports, together with typed channels connecting them, make
components oblivious to the number and type of the components
they communicate with. Component decoupling enables the eas-
ier reuse of components, as components are not dependent on the
type of components they are connected to, the number of compo-
nents they are connected to, and components do not block waiting
on replies from other (potentially unreliable) components.

Another benefit of the framework when programming P2P sys-
tems, are the event filtering functions. Type-subscription filtering
and attribute filtering reduce the potential for programmer error by
freeing the programmer from having to explicitly write code that re-
jects events not that are destined for a component. Our filtering im-
plementation also improves system scalability by removing unnec-
essary testing if components have subscribed for particular events.
Without filtering support, the testing of N components connected
to a channel for subscriptions would require O (N) operations. In
Kompics, both type-based and attribute filtering are implemented
using a constant-time lookup on a hash table, enabling events to be
filtered in O (1) operations. This filtering implementation signifi-
cantly improves performance for large-scale P2P simulations, for
example, when delivering an event to a single peer on the shared
network channel with N subscribers, where N can be on the order
of thousands.

4.2 Scalability of emulation mode
We evaluated the scalability of our emulation mode for multi-

core hardware by performing an experiment that tests the scalabil-
ity of experiments to an increasing the number of available pro-
cessing cores. Our hardware setup was a Mac Pro machine with
2 quad-core 2.8GHz Intel Xeon E5462 CPUs, Windows XP 32bit,
and the Sun Java server VM version 1.6.0 update 7 with a heap
size of 1426 Mb and a parallel garbage collector. We executed this
experiment using 1, 2, 4, and 8 Kompics workers.

Our first experiment is to test the scalability of our implementa-
tion of Cyclon for an increasing number of processing cores. Our
expectations for the experiment are as follows. As the size of the
simulated P2P system is increased, more components are created in
our emulator. A larger number of components leads to an increased
flow of events passed between the components. With bounded pro-
cessing power and an increased number of events in the system, we
expect that each event will experience a larger delay due to event
queuing time before being processed. If this event queuing time ex-
ceeds a certain application-specific bound, timing-related invariants

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
10

5

10
6

10
7

10
8

10
9

10
10

Peers

E
ve

nt
 q

ue
ui

ng
 ti

m
e

(n
an

os
ec

on
ds

)

1 worker
2 workers
4 workers
8 workers

Figure 7: The 99th percentile of event queuing time as a func-
tion of simulated system size.

of the simulated system may be broken. Thus, to gain confidence
in the integrity of our simulation studies we must make sure that
event queuing time is bounded.

We implemented the Cyclon overlay from Kompics components
and used it to evaluate the multi-core scalability of the Kompics
emulator. In Cyclon, the essential timing-related invariant is that
every peer gossips with one other peer in one cycle. This invari-
ant may be broken if events are delayed for longer than the gos-
sip period, and the observed properties of the Cyclon overlay are
inaccurate. In this implementation for each peer we have 4 com-
ponents: Cyclon, BootstrapClient, PeerMonitor a JettyWebServer.
We bootstrapped the system with 2000 peers gossiping every 10
seconds and we measured the event queuing time for every event
in the system. We continued to join 2000 peers at a time until the
99th percentile of the event queuing time exceeded the 5 seconds
bound.

In Figure 7 we plot the 99th percentile of event queuing time for
all events in the system. Firstly, as expected, we can see that for
increasingly larger system sizes, the event queuing time increases.
We can also observe that even for 20 000 peers, for 99% of the
events in the system, the observed queuing delay is less than 5 sec-
onds, which constitutes half of the Cyclon cycle period, thus not
invalidating its application invariant. For the scalability of our em-
ulator, we can see that event queuing times are consistently lower
when a system with the same number of peers is executed using
an increased number of processing cores. So although the 99th
percentile of the event queuing time for 20 000 peers is 5 seconds
when using 1 processing core, it drops to under 1 second when us-
ing 8 cores.

4.3 Distributed emulation scalability
We have used the Cyclon implementation described in the previ-

ous section to investigate the extent to which the size of the emu-
lated system can be scaled by distributing the simulation over mul-
tiple machines. We executed the experiment on a set of 10 IBM
blades each having 2 hyper-threaded 3GHz Intel Xeon CPUs using
SMP Linux 2.6.24-19-server and the Sun Java server VM version
1.6.0 update 7, with a heap size of 2698 Mb and a parallel garbage
collector. We used 2 Kompics workers on each machine.

We bootstrapped the system with 1000 peers on each machine,

10K 20K 30K 40K 50K 60K 70K 80K 90K
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Peers

E
ve

nt
 q

ue
ui

ng
 ti

m
e

(n
an

os
ec

on
ds

)

99.9th percentile
99th percentile
95th percentile
90th percentile
Mean
Median

Figure 8: Event queuing time as a function of simulated system
size in distributed emulation mode.

gossiping every 10 seconds and we measured the queuing time of
all events in the system for a duration of 30 seconds. We continued
to join 1000 peers per machine, at a time, and measured the event
queuing time for 30 seconds at each step. We stopped at 9000 peers
per machine, i.e., a total of 90 000 peers.

We plot the measured event queuing times in Figure 8. The re-
sults show that we can simulate around 40 000 Cyclon peers while
99% of all events in the system are not delayed by more than 300
milliseconds. This compares with roughly 16 000 Cyclon peers
for a single host with two cores (albeit running on higher perfor-
mance hardware), from Figure 7. This demonstrates the potential
of distributed emulation in Kompics for increasing the scalability of
experiments by adding additional hosts with a LAN environment.

4.4 Analysis
The results here show that emulation mode for Kompics P2P ap-

plications enables experiments to scale in number of peers, while
maintaining bounded event queuing time. Experiments can be scaled
simply by adding more CPU cores to a host or by adding addi-
tional hosts to an experimental configuration. Experiment runs in-
troduce minor variations in the order of processing events, caused
by worker scheduling and hosts running in parallel without agree-
ment on the passage of physical time. In agreement with Lin et
al. [18], we argue that these minor variations are useful when test-
ing distributed systems, as they model types of event processing
delays that can be expected in production systems, such as those
caused by network faults and congestion. As such, our emulation
mode provides a useful stage in the development of P2P systems,
in that it enables the testing of larger-scale P2P systems in a more
challenging environment. This stage of testing for production sys-
tems could complement traditional stress-testing stages, by helping
to build sufficiently large experiments that are able to identify un-
expected behaviours that arise at large system sizes.

5. RELATED WORK
The Kompics P2P component framework is closely related to

work in the area of frameworks for building P2P and component-
based systems software, discrete event simulators, and message-
passing languages.

An overlay network is defined as a distributed algorithm that es-

tablishes logical neighbour connections between subsets of peers
from a set of global participants, where the peer connections are
overlayed atop the IP substrate [20]. Due to their high complexity
and dynamism, overlay network systems are generally not amenable
to study using analytic methods. Evaluation of overlay systems is
typically first done in simulation. In particular, large-scale over-
lay networks are simulated at the message level, rather than net-
work packet level. There are several popular P2P simulators in-
cluding P2PSim [17], Peersim [15] and Oversim [6], which ex-
tends a domain-independent discrete-event simulator called Om-
net++. More relevant to Kompics, however, are the frameworks
for building overlay network applications that support using the
same code in both simulation and production. The two most sig-
nificant of these are Mace [16, 20] and Wids [18]. In Mace and
Wids, programmers specify system logic using a high-level event-
based language that is subsequently compiled to C++ code, which,
in turn, uses APIs for framework-specific libraries. For execution
in a network environment, Wids and Mace require the programmer
to rebuild the system and link it to network libraries. Oversim code
cannot be directly executed in production environments.

There have been several component models designed for build-
ing reconfigurable systems software, such as OpenCom [10], K-
Components [12] and Fractal [8] for building middleware, and Live
objects [19] for composing distributed protocols. In contrast to
these systems with shared-state component models and request-
reply invocation semantics, the concurrency of Kompics compo-
nents is controlled by the Kompics execution model, thus simplify-
ing their programming.

Kompics’ message-passing model was inspired by Erlang [5].
Message-passing as a programming and concurrency model allows
the easy expression of distributed systems as state machines. In
contrast to existing event-based languages and frameworks, where
workers execute events from a single shared event queue, Kompics
supports private queues at workers.

In the area of simulation, discrete-event simulators (DES) have
been long used to simulate distributed systems. In existing DES
simulators, a single controller manages an event queue and exe-
cutes events. Parallel and distributed DES attempt to take advan-
tage of the availability of multiple processors, by having multiple
Logical Processors (LP) drive the simulation concurrently. How-
ever, the LPs need to reach agreement on the passage of simulation
time. There are two main approaches to this: using a pessimistic or
an optimistic policy. In the pessimistic approach, all LPs advance
the logical time in lock-step, and the only events that are sched-
uled to execute at the current simulated time step are those whose
scheduled time is below the minimum network delay [18]. In the
optimistic approach, known as time-warping [14], events whose
scheduled time is greater than the minimum network delay can be
executed, but a rollback may be required if an application invari-
ant is violated, that is if some property of the application is vio-
lated by delays in events, generally due to network or processing
delays. In this rollback case, the LPs restore the system state and
recall events for the scheduled execution time of the event. Both
of these approaches suffer from scalability problems for multi-core
hardware, with either excessive synchronization for the pessimistic
policy or excessive rollbacks for the optimistic policy [18]. The
Wids simulator [18] offers an alternative approach, called Slow
Message Relaxation, that exploits the fact that P2P systems gen-
erally tolerate message delays up to the level where timers do not
expire because messages were delayed too long. We exploit this
same property of P2P systems in our stress-test emulation mode.
In Wids, if an event arrives late (which would cause a rollback in
the optimistic approach), its timestamp is updated to the current

simulation time, and then the event is executed as if it were de-
layed in the network. As long as events do not arrive so late as
to cause application-specific timers to expire, the protocols should
work properly.

Existing DES are not designed for scalability on multi-core ar-
chitectures, in particular, due to contention on a single event queue.
While multiple cores can reduce overall simulation time by run-
ning simulations in parallel on different cores, the number of cores
available on commercial systems has already exceeded the typical
number of simulation replications required to establish reasonable
confidence interval lengths, that is, 10-12 replications. This means
that to better utilise multi-core hardware, DES should increase their
level of concurrency. Existing DES provide some concurrency, as
in Wids, by scheduling events that occur in the same logical time
step on different LPs. However, synchronization is still required be-
tween LPs on the passage of simulation time, for example, as pro-
vided by a master server in Wids. As such, existing DES contrast
with Kompics’s emulation mode. In Kompics’s emulation mode,
we remove the single event queue bottleneck and remove the need
for synchronization between workers on the passage of simulation
time. We trade-off complete reproduceability of simulation for in-
creased scalability of simulations.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how overlay systems implemented

with the Kompics P2P component framework have the ability to
run the same code in simulation, emulation, and production, en-
abling a more integrated iterative development methodology. We
presented Kompics and its component execution model, based on
shared-nothing workers with private work queues, and showed how
it was used to build a reproducible simulator for P2P systems, a
scalable emulator for P2P systems, and production P2P systems.

We evaluated our Kompics P2P framework using an implemen-
tation of the Cyclon overlay network. We showed how, for our
emulation mode, the size of the simulated system scales with an
increasing number of processing cores, while maintaining emula-
tion quality and without requiring source code modifications. We
also showed how our distributed simulator enables the simulation
of even larger scale systems.

We are currently building different types of P2P systems with
Kompics and investigating the use of Kompics in building different
types of scalable multi-core distributed systems.

7. REFERENCES

[1] Apache MINA project. In http://mina.apache.org. The Apache
Software Foundation, 2008.

[2] Kompics: Reactive Component Model for Distributed Computing. In
http://kompics.sics.se, 2009.

[3] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and
M. Hauswirth. The essence of P2P: A reference architecture for
overlay networks. In The 5th IEEE International Conference on
Peer-to-Peer Computing, pages 11–20, 2005.

[4] C. Arad and S. Haridi. Practical protocol composition, encapsulation
and sharing in Kompics. Workshop on Decentralized Self
Management for Grids, P2P, and User Communities, 2008.

[5] J. Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, July 2007.

[6] I. Baumgart, B. Heep, and S. Krause. OverSim: A flexible overlay
network simulation framework. In IEEE Global Internet Symposium,
2007, pages 79–84, 2007.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, 46(5):720–748, 1999.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The fractal component model and its support in Java: Experiences

with auto-adaptive and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, 2006.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay testbed for
broad-coverage services. SIGCOMM Comput. Commun. Rev.,
33(3):3–12, 2003.

[10] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan. A generic component model for
building systems software. ACM Trans. Comput. Syst., 26(1):1–42,
February 2008.

[11] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica.
Towards a common API for structured peer-to-peer overlays. In Proc.
of IPTPS’03 Workshop, pages 33–44, 2003.

[12] J. Dowling and V. Cahill. The k-component architecture meta-model
for self-adaptive software. In REFLECTION ’01: Proceedings of the
Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns, pages 81–88, London, UK,
2001. Springer-Verlag.

[13] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
latency between arbitrary internet end hosts. In SIGCOMM Internet
Measurement Workshop, 2002.

[14] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto.
Time warp operating system. SIGOPS Oper. Syst. Rev., 21(5):77–93,
1987.

[15] M. Jelasity, A. Montresor, and O. Babaoglu. A modular paradigm for
building self-organizing peer-to-peer applications. In Engineering
Self-Organising Systems, G. Di Marzo Serugendo, volume 2977,
pages 265–282, 2004.

[16] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat.
Mace: language support for building distributed systems. SIGPLAN
Not., 42(6):179–188, June 2007.

[17] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil. A
performance vs. cost framework for evaluating DHT design tradeoffs
under churn. INFOCOM 2005, 1:225–236, March 2005.

[18] S. Lin, A. Pan, R. Guo, and Z. Zhang. Simulating large-scale P2P
systems with the WiDS toolkit. In MASCOTS ’05: Proceedings of the
13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages
415–424, Washington, DC, USA, 2005. IEEE Computer Society.

[19] K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn. Programming
with live distributed objects. In ECOOP, pages 463–489, 2008.

[20] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat.
Macedon: methodology for automatically creating, evaluating, and
designing overlay networks. In NSDI’04: Proceedings of the 1st
conference on Symposium on Networked Systems Design and
Implementation, pages 267–280, Berkeley, CA, USA, 2004.
USENIX Association.

[21] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. IEEE Transactions on
Networking, 11, February 2003.

[22] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
and D. Becker. Scalability and accuracy in a large-scale network
emulator. SIGOPS Oper. Syst. Rev., 36(SI):271–284, 2002.

[23] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive
membership management for unstructured P2P overlays. Journal of
Network and Systems Management, 13(2):197–217, June 2005.

APPENDIX A. PUBLICATIONS

A.13 Practical Protocol Composition, Encap-

sulation and Sharing in Kompics

SELFMAN Deliverable Year Three, Page 507

Practical Protocol Composition, Encapsulation and Sharing in Kompics∗

Cosmin Arad†
†Royal Institute of Technology (KTH)
{icarad,haridi}@kth.se

Seif Haridi†,‡
‡Swedish Institute of Computer Science (SICS)

seif@sics.se

Abstract

At the core of any distributed system is a set of concur-
rent distributed algorithms that coordinate the functionality
of the distributed system. We present a software architec-
ture, Kompics that is component-based and compositional
which facilitates building distributed protocols. The under-
lying computation model subsumes that of event-based sys-
tems, SEDA (staged event-driven architecture) and thread-
based models. We illustrate various salient features of Kom-
pics such as ease of use, compositionality and configurabil-
ity through a series of well chosen distributed protocols.

1. Introduction

Programming distributed systems, applications and ser-
vices is difficult due to concurrency and partial failures,
which are fundamental characteristics of distributed sys-
tems, but also due to the complexity of the software archi-
tecture of any non-trivial distributed system. One way to
simplify the understanding and programming of complex
distributed protocols is to split them into their orthogonal
aspects and encapsulate each of these aspects in reusable
abstractions [6]. Combining multiple interdependent dis-
tributed protocols that are concurrently working together
gives rise to complex interactions.

We introduce Kompics, a novel software framework for
programming, configuring, and executing distributed proto-
cols as software components that interact asynchronously
by passing data-carrying events. Kompics components are
reactive, concurrent, and they can be composed into com-
plex architectures of composite components that are safely
reconfigurable at runtime and allow for sharing of common
subcomponents at various levels in the component hierar-
chy. Software faults occurring in components are isolated
and handled by supervisor components organized in flexi-
ble supervisor hierarchies [2].

∗This work was funded by the European Union in the SELFMAN
project (contract 34084). We would like to thank Roberto Roverso for
his contribution to the development of earlier versions of Kompics.

The component programming style encompasses both
the event-based and the thread-based styles to facilitate
programming most distributed protocols, and the execu-
tion model allows a flexible allocation of components to
threads which enables various resource allocation policies,
and readily takes advantage of multi-core hardware archi-
tectures.

The Kompics component model targets the development
of reliable and adaptable long-lived, dynamic, and self-
managing distributed systems. Such systems are com-
posed of many software modules which implement vari-
ous distributed protocols (e.g. failure detectors, reliable
group communication, agreement protocols, gossip proto-
cols, etc.) and interact in complex ways. Kompics aims to
facilitate the construction of complex distributed systems by
providing a computation model that accommodates their re-
active nature and makes their programming as easy as pos-
sible.

The rest of this paper is structured as follows: in the next
section we present the Kompics component model and some
example component architectures. In Section 3 we describe
the semantics of component interaction and execution in
Kompics. In Section 4 we give a qualitative evaluation of
the model. In Section 5 we survey related work. We discuss
future work and we conclude in Section 6.

2. Component model

In Kompics, distributed abstractions are encapsulated
into components that can be composed into hierarchical ar-
chitectures of composite components. Subcomponents can
be safely shared by multiple components at any level in
the component hierarchy. Kompics components interact by
passing asynchronous data-carrying events and they are de-
coupled by a flexible event publish-subscribe system.

Components A component is a unit of functionality and
management. Components are active entities that inter-
act with each other by triggering (sending) and handling
(receiving) events. Components react to events by ex-
ecuting event specific procedures to handle the received

events. Components are decoupled (by channels) which
makes them independent and reusable.

Every component contains some internal state and a set
of event-handling procedures. Composite components also
contain subcomponents and thus form a component hier-
archy. We sometimes call subcomponents children compo-
nents and the containing composite component parent com-
ponent. We say that the parent component is at a higher
level in the component hierarchy than its children compo-
nents.

Events Events are passive objects that contain a set of im-
mutable attributes. Events are typed and they can form type
hierarchies. Components subscribe for events to channels
and publish events into channels.

Channels Channels are interaction links between compo-
nents. They carry events from publisher components to sub-
scriber components. Every channel is parameterized with a
set of event types that can be subscribed for or published
into the channel. Channels exist in the context of the com-
posite components which create them. However, references
to channels can be passed between components through
events.

Event handlers An event handler is an event-specific pro-
cedure that a component executes as a reaction to a re-
ceived event. An event handler takes as argument one event
of a certain type. While being executed, event handlers
may trigger new events. Event handlers can be guarded by
boolean guards.

Event subscriptions Components subscribe their event
handlers to channels by registering event subscriptions at
the respective channels. Event subscriptions can be made
either by event type or by both event type and event at-
tributes, whereby a subscription contains a set of (attribute,
value) attribute filters. Events published into a channel are
delivered to all subscriber components which registered at
the channel subscriptions that match the published events.
Components can publish or subscribe for subtypes of the
event types carried by the channel.

Component types A component interacts with its envi-
ronment (other components) by triggering (output) and han-
dling (input) events. The component is subscribed for the
input events to input channels and publishes output events
into output channels. Kompics components are parameter-
ized by their input and output channels. The types of input
and output events of a component together with the input
and output channel parameters that carry them represent the

component’s type. Component types are useful for express-
ing a composite component’s dependencies on subcompo-
nents in terms of what they do and not on how they do it.

Component membranes A component membrane is the
runtime correspondent of the component’s type. The com-
ponent membrane is a set of references to the actual chan-
nels that the component is using as input and output chan-
nel parameters. The membrane maps every pair (event type,
in/out direction) to an actual channel reference.

Component sharing A component is shared between
multiple composite components essentially by sharing the
channels in its membrane. To share one of its subcompo-
nents, a composite component registers the subcomponent’s
membrane under a name, in a registry of shared compo-
nents. Other composite components can retrieve the mem-
brane (by name) from the registry and use its channels to
communicate with the subcomponent. This registry is hi-
erarchical in the following sense: (1) names registered at
some level in the component hierarchy (the level of the par-
ent component of the shared component) are not visible at
higher levels, and (2) names registered at a lower level in the
component hierarchy shadow the same names registered at
a higher level.

2.1. Examples

We illustrate some of the concepts in Kompics by exam-
ples from Guerraoui et al. [6]. Figure 1 shows an example
graphical representation of Kompics components. Here we
have two components: A and B. They communicate through
channel x which carries events of type E1. Component A
has an output channel formal parameter and component B
has an input channel formal parameter. Both A and B are
parameterized by channel x. A uses x for its output channel
formal parameter and B uses x for its input channel formal
parameter. Component B has an event handler that is sub-
scribed to B’s input channel and handles events of type E1.
Component A has an event handler that publishes events of
type E1 in A’s output channel. Both components A and B
and channel x exist in the context of a parent component,
Node.

E1

A B

{E1}

E1

Node x

Figure 1. Graphical representation of Kom-
pics components.

Figure 2 shows an example graphical representation of
a Kompics composite component, namely a Best-Effort
Broadcast (BEB) [6] component that contains a Perfect
Point-to-point Links (PP2P) [6] subcomponent. The BEB
component is parameterized by an input channel carry-
ing BebBroadcast events and an output channel carrying
BebDeliver events. The PP2P component is parameter-
ized by an input channel carrying Pp2pSend events and an
output channel carrying Pp2pDeliver events. The BEB
component contains two local channels that are used as
the actual channels that parameterize the PP2P subcompo-
nent and two event handlers that handle BebBroadcast and
Pp2pDeliver events respectively, and trigger Pp2pSend
and BebDeliver events respectively. The arrows indicate
event subscriptions and publications.

Pp2pD
BebD

PP2P
BEB

BebB
Pp2pS {Pp2pS}

{Pp2pD}

{BebD}

{BebB}

BebB(broadcast)

BebD(eliver)

Pp2pS(end)

Pp2pD(eliver)

Figure 2. Graphical representation of a Kom-
pics composite component.

Figure 3 shows an example of two composite compo-
nents sharing a common subcomponent. A Perfect Point-to-
point Links (PP2P) [6] component and a Fair-Loss Point-
to-point Links (FLP2P) [6] component share a Network
subcomponent. The shared component as well as the chan-
nels in its membrane are represented with double borders.
The Network component accepts NetSend events (in the
sender process) and triggers NetDeliver events (in the re-
ceiver process). The NetDeliver event that is to be deliv-
ered in the receiver process is encapsulated in a NetSend
event on the sender process.

NetSend events triggered by PP2P in the sender pro-
cess are to result in NetDeliver events handled only by
PP2P in the receiver process. Correspondingly, NetSend
events triggered by FLP2P in the sender process are to
result in NetDeliver events handled only by FLP2P in
the receiver process. Filtering NetDeliver events between
PP2P and FLP2P is done by event subtyping, i.e., PP2P
and FLP2P subscribe to the Network component’s output
channels for different subtypes of the NetDeliver event
type.

We refer to this pattern of sharing a subcomponent be-
tween parent components of different types, whereby the
filtering of events delivered to the parent components is
done by event subtyping, as static sharing. Another pat-
tern of sharing manifests when a subcomponent is shared

Pp2pS
NetS

PP2P

Pp2pNetD
Pp2pD

Network

{NetS} {NetD}

{Pp2pD}
{Pp2pS}

Flp2pS
NetS

FLP2P

Flp2pNetD
Flp2pD

Network

{NetS} {NetD}

{Flp2pD}
{Flp2pS}

Flp2pNetD NetD

Pp2pNetD NetD

channel in shared component membrane

shared component

Figure 3. Two different composite compo-
nents sharing a subcomponent.

among multiple parent components of the same type. In this
case, the filtering of events is done by event attributes. The
parent components subscribe for the output events of the
shared component by event attributes with distinguishing
values. We call this sharing pattern, instance sharing. An
example of instance sharing is illustrated in Figure 4. Here
we have multiple Virtual Node (VN) components running
on the same physical node and sharing a Network compo-
nent. Each VN component has subscribed for NetDeliver
events with a destination address attribute equal to its own
address. Consequently, each VN component receives only
the NetDeliver events that it is interested in.

VN1

Network

{NetS} {NetD}

VN2

Network

{NetS} {NetD}

VN
k

Network

{NetS} {NetD}

͙

Figure 4. Multiple similar composite compo-
nents sharing a subcomponent.

3. Component execution and interaction se-
mantics

Event handlers are executed on behalf of components by
worker threads from a worker pool. Components that have
received events are scheduled for execution to one of the
worker threads. Components that embed third-party soft-
ware or use blocking services may use extra threads. We
call these threaded components.

Concurrent component execution The event handlers of
the same component instance are guaranteed to be executed
sequentially, but different component instances can exe-
cute event handlers concurrently (or in parallel on multi-
core machines). In other words, the event handlers of the
same component instance are mutually exclusive, while the
event handlers of different component instances are not.
However, the execution of an event handler is not atomic
(in the all-or-nothing sense). That means that events trig-
gered by one event handler are visible to the corresponding
subscriber components (thus, executable) immediately after
they are triggered. This entails that the execution of an event
handler is not failure atomic, i.e., it can fail before comple-
tion with observable partial side effects (some of the events
that are supposed to be triggered by the handler are indeed
triggered while others are not). The motivation for this de-
sign decision is twofold: first, making events available for
execution as soon as they are triggered increases the poten-
tial parallelism in the system. Second, it provides a uniform
observable behavior for threaded and non-threaded compo-
nents.

Event subscription Components subscribe their event
handlers to input channels for a particular event type. When
component a subscribes to channel x an event handler h
for events of type T with attributes matching filters(T),
a subscription of the form (a, T , h, filters(T)) is regis-
tered at channel x. At the same time, a FIFO work queue,
qx, is created at a and is associated with channel x (if qx is
not already existing from a previous subscription of a to x).
Thus, a channel y has an associated work queue qy in every
component that has subscribed to y. A component can sub-
scribe multiple event handlers to the same channel and can
subscribe the same event handler to multiple channels.

Component scheduling A component a can be in exclu-
sively one of the following three scheduling states: BUSY,
READY, or IDLE. We say that a is BUSY if one of the
worker threads is being actively executing one of a’s event
handlers. We say that a is READY if it is not BUSY and at
least one of its work queues qx is not empty, so a is ready to
execute some event. We say that a is IDLE if it is not BUSY
and all its work queues qx are empty, so a has no event to
execute.

Event publication While executing event handlers, com-
ponents may publish events into output channels. As-
sume component a triggers event e of type T in channel
x. Let S be the subset of all subscriptions of the form
(b, T ′, h, filters(T ′)), to channel x, where T ′ is either T
or a super-type of T and e matches filters(T ′). For each
subscription (b, T ′, h, filters(T ′)) in S, a work item of the

form (e, h) is enqueued at b in work queue qx and if b was
IDLE then b becomes READY.

Channel FIFO guarantees The execution model guaran-
tees the following FIFO semantics for channels. Each com-
ponent a subscribed to a channel x, receives events pub-
lished in x, in the same order in which they are published.
Events triggered sequentially by one component instance
will be published in the channel in the order in which they
were triggered. A channel serializes the concurrent publi-
cation of events into the channel, i.e., events that are pub-
lished concurrently in the same channel by different com-
ponent instances. This means that all subscribers to channel
x for event type T observe the same order of publications
of events of type T in their local work queues qx.

Event handler execution Worker threads execute event
handlers on behalf of components. Worker threads atom-
ically pick READY components and make them BUSY.
When a worker picks READY component a, it immediately
makes a BUSY. An invariant of the execution model is that
at this point a has at least one work queue qx that is not
empty. After making a BUSY, the worker dequeues one
work item (e, h) from some work queue qx selected ac-
cording to some fairness criteria. Thereafter, the worker
proceeds to execute a’s event handler h by passing it as an
argument the event e. Upon completing the execution of h,
if all a’s work queues qx are empty, then the worker makes
a IDLE. Otherwise it makes a READY.

Worker threads loop Worker threads wait for compo-
nents to become READY. When a component a becomes
READY, a worker w picks it and executes one work item
(e, h), the head of some work queue qx of a. The execu-
tion of event handler h may trigger new events ei of types
Ti, published in channels xi. All components subscribed to
channels xi for event types Ti become READY if they were
not BUSY. Upon completing the execution of event handler
h, worker w picks another READY component, if one exists,
and it repeats the above steps. If no component is READY,
worker w starts waiting for a component to become READY
and it repeats the above steps.

4. Evaluation

We implemented Kompics in Java. The component
framework library, source code and documentation is pub-
licly available at http://kompics.sics.se. In this
section we present two case studies of event-based hierar-
chical component architectures that we implemented with
Kompics.

The example in Figure 5 shows composition, encapsu-
lation and sharing of protocols in Kompics. For example
the Abortable Consensus [6] component makes use of Best-
Effort Broadcast and Perfect Links and the Consensus In-
stance uses the Leader Detector. The example also shows
how different components can be used to separate the imple-
mentation of functional and non-functional aspects of an ab-
straction. The Consensus Instance implements a Paxos uni-
form consensus algorithm. The Consensus Port offers to an
application component a sequence of consensus instances
while garbage collecting the already decided instances. The
Consensus Service component allocates Consensus Ports to
different applications.

Example

Network

Lossy Point-to-point Links Perfect Point-to-point Links

Failure DetectorBest-Effort Br.

Consensus Service

Boot

Leader DetectorUnreliable Br.

Consensus Port

Application

Abortable Consensus

Consensus Instance

Reliable Broadcast

Group Membership

Virtual Synchrony

Distributed Shared Memory

Figure 5. Static membership distributed ab-
stractions system architecture.

In Figure 2 we showed a graphical representation of a
Best-Effort Broadcast (BEB)[6] component. In Figure 6
we give the pseudo-code, from Guerraoui et al. [6], and
our corresponding Java code for the BebBroadcast event
handler of the BEB component. One can observe that Kom-
pics component definitions naturally match the pseudo-code
specifications which become straight forward to implement.
The Java code corresponds to a static sharing implemen-
tation, which assumes that the BEB component shares
the PP2P component with other components and is itself
shared by multiple parent components. Thus, BEB has sub-
scribed for BebPp2pDeliver (a subtype of Pp2pDeliver)
events and both Pp2pSend and BebBroadcast events en-
capsulate Pp2pDeliver and BebDeliver events respec-
tively. The pseudo-code assumes no sharing of protocols,
hence the slight difference.

The example in Figure 7 shows a peer-to-peer system ar-
chitecture that supports multiple virtual peers in one node.
This is an example of hierarchical sharing where we want
to share the Perfect Network abstraction among the pro-
tocols of one virtual peer, but have different Perfect Net-
works in different virtual peers. On the other hand, the Net-

upon event bebBroadcast | m do
for all pi do trigger pp2pSend | pi, m; end for

end event
public void handleBebBroadcast(BebBroadcast event) {

for (Address destination : neighbours.getAll()) {

BebPp2pDeliver bebPp2pDeliver = new
BebPp2pDeliver(event.getBebDeliver());

Pp2pSend pp2pSend = new

Pp2pSend(bebPp2pDeliver, destination);

component.trigger(pp2pSend, pp2pSendChannel);

}

}

Figure 6. Pseudo-code and Java code for an
event handler of a BEB component.

work component is shared and used by all Perfect Network
abstractions in an instance sharing pattern. Every Peer
component contains subcomponents implementing various
protocols like failure detectors, structured and unstructured
overlays, gossip protocols, group communication, agree-
ment protocols, transactional storage, etc. The advantage of
this architecture is that it allows the execution of the same
protocol implementations both in a simulation scenario1 or
in a real deployment. We have executed up to 128 virtual
peers implementing the Chord [10] overlay in one address
space, where the Perfect Network and Lossy Network
components in each peer implemented network emulation
by delaying sent messages in the sender peers with laten-
cies extracted from the King [7] matrix, based on the source
and destination peer addresses. Exactly the same architec-
ture can be executed in multiple address spaces to scale the
network size. The Network component provides communi-
cation between the different address spaces.

Peer-to-Peer System Architecture
Boot P2P Application (Simulator)

TimerWeb Server (Jetty)Network (Apache MINA)

Lossy Network

Peer Cluster / Peer Set

Perfect Network Web Handler

Failure Detector Peer MonitorBootstrap Client

Cyclon

Aggregation / Slicing

T-Man / T-Chord

Gradient / Gnutella

Structured Overlay

Symmetric replication

Bulk Operations Peer Application

Transactional DHT

Fast Paxos

Group Multicast
Ring Router

Ļ identical peers Ļ

Figure 7. Kompics peer-to-peer system archi-
tecture.

1by replacing the Application component with a simulator for user ac-
tions and peer dynamism and replacing the Network component with a
network simulator.

5. Related work

We can position our work with respect to component
models, protocol composition frameworks and software ar-
chitectures.

The Fractal [5] component model allows the specifica-
tion of components that are reflective, hierarchical, and dy-
namically reconfigurable. However, the Fractal model is ag-
nostic with respect to the execution model of components.
Kompics is a reactive component model that has these desir-
able properties of Fractal but it enforces a particular execu-
tion and component interaction model, that facilitates pro-
gramming of distributed protocols.

Protocol composition frameworks like Appia [8], Cac-
tus [4] or Coyote [3] allow the building of protocol stacks by
composing smaller building blocks called protocol modules
that interact through events. However, these systems focus
on the flow of events though the protocol stack rather than
on the encapsulation and abstraction of low-level protocols.
As a result the degree of protocol composability offered by
these systems is limited2 which prevents the construction of
complex hierarchical architectures.

The most notable piece of related work on event-based
software architectures is SEDA (staged event-driven archi-
tecture) [11]. Here the focus is on performance, namely on
self-tuning resource management that adapts dynamically
to changes in load to provide graceful degradation in per-
formance, rather than on hierarchical architectures or dy-
namic reconfiguration. Kompics possesses these properties
due to the ability to allocate different worker pools for dif-
ferent groups of components. Additionally, Kompics offers
compositionality and encapsulation that are not present in
SEDA.

6. Concluding remarks and future work

We presented Kompics, a component model and frame-
work, that facilitates the construction of complex distributed
systems by structuring protocols as reactive components
and composing them in hierarchical architectures that are
reconfigurable at runtime. We have shown the advantages
of protocol composition with sharing in two real-world ex-
ample component architectures. We reported on our expe-
rience of using Kompics as a teaching tool which showed
that Kompics is very easy to use for prototyping and testing
distributed protocols.

Using Kompics we have developed a library of reusable
protocol components for building large-scale, decentral-
ized, dynamic distributed systems. We continue to add more
protocols to the library with the goal to provide a complete
middleware for peer-to-peer systems including: structured

2to a set of stacks in Appia and to a 2-level hierarchy in Cactus.

and unstructured overlay networks, agreement protocols,
scalable transactional storage, gossip protocols for aggrega-
tion, slicing, random peer sampling, topology maintenance,
information dissemination, etc. Further, we plan to extend
the Kompics model with distribution transparency, to work
on remote component deployment and distributed architec-
ture reconfiguration, followed by transactional reconfigura-
tion.

We propose Kompics as a tool for teaching and research
in distributed algorithms and as a framework for construct-
ing and executing real-world complex distributed systems.

References

[1] The Kompics component framework.
http://kompics.sics.se, 2008.

[2] J. Armstrong. Making reliable distributed systems in the
presence of software errors. PhD thesis, Swedish Institute
of Computer Science (SICS), 2003.

[3] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu.
Coyote: a system for constructing fine-grain configurable
communication services. ACM Transactions on Computer
Systems, 16(4):321–366, 1998.

[4] N. T. Bhatti and R. D. Schlichting. A system for construct-
ing configurable high-level protocols. In SIGCOMM, pages
138–150, 1995.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani. The fractal component model and its support
in java: Experiences with auto-adaptive and reconfigurable
systems. Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

[6] R. Guerraoui and L. Rodrigues. Introduction to Reliable
Distributed Programming. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[7] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: es-
timating latency between arbitrary internet end hosts. In
IMW ’02: Proceedings of the 2nd ACM SIGCOMM Work-
shop on Internet measurment, pages 5–18, New York, NY,
USA, 2002. ACM.

[8] A. Pinto. Appia: A flexible protocol kernel supporting mul-
tiple coordinated channels. In ICDCS ’01: Proceedings of
the The 21st International Conference on Distributed Com-
puting Systems, page 707, Washington, DC, USA, 2001.
IEEE Computer Society.

[9] O. Rütti, P. T. Wojciechowski, and A. Schiper. Service in-
terface: a new abstraction for implementing and composing
protocols. In SAC ’06: Proceedings of the 2006 ACM sym-
posium on Applied computing, pages 691–696, New York,
NY, USA, 2006. ACM.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In SIGCOMM ’01: Proceedings
of the 2001 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages
149–160, New York, NY, USA, 2001. ACM.

[11] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture
for well-conditioned, scalable internet services. SIGOPS
Oper. Syst. Rev., 35(5):230–243, 2001.

APPENDIX A. PUBLICATIONS

A.14 Kompics Programming Manual

SELFMAN Deliverable Year Three, Page 514

Kompics Programming Manual

For Kompics version 0.4.1

Jim Dowling
Cosmin Arad

iv

Table of Contents
1. Fundamental Concepts .. 1

Kompics: Components, Events, Ports and Channels .. 1
2. Installing Kompics .. 4

Install software required for Kompics .. 4
Download and Install Subversion and Maven2 .. 4

3. A Minimal Kompics Application ... 6
Ping (Example 1) ... 6

Ping Event .. 6
PingPort Port ... 6
Root Component ... 7
Host Component .. 7

Ping-Pong with 2 Ports (Example 2a) ... 8
Pong Event ... 8
PongPort ... 8
Root Component ... 9
Host Component .. 9

Ping-Pong with a Single Port (Example 3a) ... 10
PingPongPort ... 10
Root Component .. 10
Host Component .. 11

Ping-Pong with a HostPing and a HostPong component (Example 4) 12

v

List of Figures
1.1. Example port. ... 3
1.2. Example component. ... 3
3.1. Ping component inside a Root component. ... 6
3.2. Ping-Pong component with two Ports inside a Root component. 8
3.3. Ping-Pong component with one Port inside a Root component. 10
3.4. A PingComponent and a PongComponent with two Ports each, inside a parent Root
component. .. 12

vi

List of Tables
1.1. Kompics Programming Abstractions ... 2
2.1. Install Kompics ... 5

1

Chapter 1. Fundamental Concepts
This chapter is a brief informal introduction to Kompics. We begin with a discussion of the main
concepts in Kompics, then describe how to download and install Kompics, and finally cover the
build environment, based on Maven2.

Kompics: Components, Events, Ports and
Channels

A component is a reactive unit of computation that communicates with other components
asynchronously by passing data-carrying typed events. Events are passive immutable objects
that can be serialized and communicated over network links and between different address
spaces.

Components are loosely coupled in the sense that a component does not know the component
type, availability or identity of any components with which it communicates. Rather, components
are endowed with typed communication ports. A component sends events to and receives events
from a local port. Ports of the same type on two different components can be connected by a
bidirectional channel. This connection enables the two components to communicate.

As a reaction to received events, components execute event handlers, procedures specific to
the types of events being received. During execution, event handlers may trigger new events,
by sending them to one of the component's ports. An event handler is associated with events of
a certain type, received though a certain port, by means of a subscription.

Fundamental Concepts

2

Table 1.1. Kompics Programming Abstractions

Entity Description

Component A component is a reactive unit of computation
that communicates with other components
asynchronously by passing data-carrying typed
events over ports. Components contain
handlers to execute received events, and
components can be composed into composite
components.

Event An event is a passive immutable object that can
be serialized and communicated over network
links and between different address spaces.

Port A port represents a bidirectional event interface
of a component and it specifies the types of
events that flow into or out of the component.
The direction in which an event flows through a
port is defined as either positive or negative. A
negative event type flows towards the negative
side of the port, while a positive event type
flows towards teh positive side of the port. A
port is illustrated in Figure 1.1, “Example port.”.

By convention, the positive pole (+) of a port
is understood to be the provided direction for
events, while the negative pole (#) of a port
is understood to be the required direction for
events. When a component implements (or
provides) a port, the port is oriented with its +
pole to the outside of the component and its #
pole inside. Conversely, a (required) port that
is used by a component is oriented with its #
pole outside and its + pole inside. The types of
events flowing through the port from the # pole
to the + pole are tagged with + and the types
of events flowing from the + pole to the # pole
are tagged with #.

Event Handler An event handler is a procedure that a
component executes as a reaction to receiving
a certain event.

Subscription A subscription binds an event handler to a port
pole.

Channel A channel is a first-class bidirectional
connection between two ports of the same type.
A channel can connect two ports of the same
type and of different polarity.

In Figure 1.1, “Example port.”, we can see two Ports containing 2 events and 3 events,
respectively. For PortType1, e1 both goes "out" and comes "in". For PortType2, e2 goes
"out", while e2 and e3 come "in".

Fundamental Concepts

3

Figure 1.1. Example port.

A component with two ports (one outgoing, one incoming), two handlers and two subscriptions is
illustrated in Figure 1.2, “Example component.”. The ports in this component are from Figure 1.1,
“Example port.”. PortType1 is provided by the component and PortType2 is required by the
component. We can see how the subscriptions map events from Ports to handlers,
while handlers can trigger (or send) an event to a port (if the polarity of that port allows that
event to be sent in that direction).

So, we can see for PortType1, the event E1 can be both sent and received over this port.
For PortType2, we can see that a handler inside the component can send either E2 or E3 to
the port and handler inside the component can subscribe for E2 (but not E3). For handlers or
components outside this component (handlers would have to be in a parent component), they
can send and receive events of the opposite type. So, for PortType2, they could subscribe for
E2 or E3 events, and send E2 events to the component.

Figure 1.2. Example component.

INPUt (Implements Negative, Positive Uses)

An easy way to remember whether a PortType refers to the client-side or server-side is to
remember the idiom INPUt (Implements Negative, Positive Uses). INPUt reminds you that
a negative PortType is one that is provided or implemented by a component (server-side),
while a positive PortType is one that is used by a component (client-side).

Summary
We introduced a number of concepts for Kompics, and outlined the software requirements for
downloading and installing Kompics.

4

Chapter 2. Installing Kompics
This chapter describes the software requirements for Kompics version 0.4.1, and the steps
required to install Kompics. These instructions cover the operating systems Windows (XP/Vista),
Linux (all distros), Mac (OSX).

Install software required for Kompics
The minimal requirements for downloading and installing Kompics are Java (JDK 5.0 update 6
and above), subversion and maven2. However, we recommend building Kompics from an Eclipse
environment (Netbeans should also work fine, but isn't discussed here).

For tutorials on how to use subversion and maven, we refer you to:

• Subversion red book [http://svnbook.red-bean.com/]

• Maven2 book [http://books.sonatype.com/maven-book/reference/public-book.html]

Download and Install Subversion and Maven2
The requirements for installing Kompics are:maven2 and subversion. We present two ways of
installing subversion and maven: using the command-line and as eclipse plugins. The easiest
way to build Kompics is to use Eclipse plugins. We outline the steps required for installing
subversion and maven2 using either approach in the table below, see Table 2.1, “Install
Kompics”. Please refer to the subversion and maven2 books above for additional help.

Installing Kompics

5

Table 2.1. Install Kompics

Command-Line Eclipse

For Ubuntu:

$ sudo apt-get install subversion
$ sudo apt-get install maven2
$ svn checkout svn://small.sics.se\
/kompics/tags/kompics-manual-0.4.1
$ cd kompics-manual-0.4.1
$ mvn install

For Windows:

• Go to http://maven.apache.org/ and
download an install Maven2.

• Download and install a subversion
client, such as tortoise/svn [http://
tortoisesvn.tigris.org/], and then checkout the
Kompics code from our subversion server
using the address:

svn://small.sics.se/kompics/tags\
 /kompics-manual-0.4.1

. Once you have checked out the Kompics
code, you can build Kompics using maven2,
by running the following command from the
Kompics source code root folder:

c:\...\>mvn install

• If you prefer Netbeans, you can generate
a netbeans project using the following
plugin Netbeans plugin for Maven [http://
wiki.netbeans.org/MavenBestPractices].

You will need to install the following Eclipse
tools to build Kompics:

• Eclipse IDE (Ganymede version is
recommended). You now need to know
how to install plugins for Eclipse. For
the Ganymede version of Eclipse, you
click on Help->Software Updates->
Available Software . Then click the
"Add site" box to add an update site for a
plugin.

• subclipse - an Eclipse Plugin for
Subversion available at Eclipse update
site http://subclipse.tigris.org/
update_1.4.x. It is recommended that
you check at least the following boxes
for installation: "subclipse", "subclipse client
adapter" and the "javahl adapter".

• m2eclipse - an Eclipse Plugin for Maven2
available at Eclipse update site http://
m2eclipse.sonatype.org/update/. It
is recommended that you check at least
the following boxes for installation: "maven
embedder", "maven integration for eclipse",
"Maven SCM handler", and the "Maven SCM
handler for Subclipse".

In Eclipse, import the maven project from
the subversion repository: File->Import-
>Other->Checkout Mvn Projects from
SCM.

Then select 'svn' as SCM type, and enter
as SCM URL: svn://small.sics.se/
kompics/tags/kompics-manual-0.4.1/

You should now restart Eclipse, and you will be
able to import and build Kompics.

Summary
We specified the software requirements for Kompics and described how to download and build
Kompics.

6

Chapter 3. A Minimal Kompics
Application

This chapter shows you how to build a simple Kompics Ping-Pong application. The goal of this
chapter is to familiarize you with the basic steps required to build a minimal Kompics application.
We do not explain very many details of the source code here, as these details will be introduced
later chapters.

See Chapter 1, Fundamental Concepts for a basic introduction to Kompics.

Ping (Example 1)
In this first example, see Figure 3.1, “Ping component inside a Root component.”, a Root
component will send a ping message to a Host component. Root contains the public void
static main , where a component that sends a Ping event to the Host component. Host
has registered a handler, handlePing, with its PingPort PortType, so when the Ping event
arrives at PingPort it is forwarded to handlePing. Finally, handlePing prints a message
saying received the Ping event.

Note

It helps immensely to draw a diagram of your components and their ports along with the
ports' polarity. In particular, a diagram will aid you in understanding the polarity of the
port based on your context. For example, when you are a client of a Port you have a
reference to the Port the opposite polarity.

Also, you should keep in mind the INPUt (Implements Negative, Positive Uses)
(Implements Negative, Positive Uses).

Figure 3.1. Ping component inside a Root component.

Ping Event

 package se.sics.kompics.manual.example1;
 import se.sics.kompics.se.sics.kompics.Event;

 public class Ping extends Event {
 public Ping()
 {
 }
 }

PingPort Port

 package se.sics.kompics.manual.example1;

A Minimal Kompics Application

7

 import se.sics.kompics.se.sics.kompics.PortType;

 public class PingPort extends PortType {

 {
 negative(Ping.class);
 }
 }

Root Component
An alternative (and more common) way of starting this program is to write a startHandler for
Root. When a Root component is constructed, its startHandler is automatically called.

 package se.sics.kompics.manual.example1;
 import se.sics.kompics.se.sics.kompics.Component;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Kompics;
 import se.sics.kompics.se.sics.kompics.Start;

 public class Root extends ComponentDefinition {

 public static void main(String[] args)
 {
 Kompics.createAndStart(Root.class);
 }
 public Root() {
 subscribe(handleStart,control);
 }

 private Handler<Start> handleStart = new Handler<Start>() {
 public void handle(Start event) {
 Component hostComponent = create(Host.class);
 trigger(new Ping(), hostComponent.getPositive(PingPort.class));
 }
 };
 }

Host Component

 package se.sics.kompics.manual.example1;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Negative;

 public class Host extends ComponentDefinition {

 Negative<PingPort> pingN = negative(PingPort.class);

A Minimal Kompics Application

8

 public Host() {
 subscribe(handlePing, pingN);
 }

 private Handler<Ping> handlePing = new Handler<Ping>() {
 public void handle(Ping event) {
 System.out.println("Received ping..");
 }
 };
 }

Ping-Pong with 2 Ports (Example 2a)
In this example, a Root component will exchange ping and pong messages with a Host
component. The Root component sends a Ping event to the Host component. Host has
registered a handler, handlePing, with its PingPort PortType, so when the Ping event arrives
at PingPort it is forwarded to handlePing. handlePing sends a Pong event to its PongPort,
which is forwarded to handlePong in Root.

In the examples directory for this manual, you will find a reworking of this example (Example 2b),
where we reverse the event directions for the pong port in PongPortReversed.

Figure 3.2. Ping-Pong component with two Ports inside a Root component.

Pong Event

 package se.sics.kompics.manual.example2a;
 import se.sics.kompics.se.sics.kompics.Event;

 public class Pong extends Event {
 public Pong()
 {
 }
 }

PongPort

 package se.sics.kompics.manual.example2a;

 import se.sics.kompics.se.sics.kompics.PortType;

 public class PongPort extends PortType {

 {
 positive(Pong.class);
 }

A Minimal Kompics Application

9

 }

Root Component

 package se.sics.kompics.manual.example2a;

 import se.sics.kompics.manual.example1.Ping;
 import se.sics.kompics.manual.example1.PingPort;
 import se.sics.kompics.se.sics.kompics.Component;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Kompics;
 import se.sics.kompics.se.sics.kompics.Start;

 public class Root extends ComponentDefinition {

 public static void main(String[] args)
 {
 Kompics.createAndStart(Root.class);
 }
 public Root() {
 subscribe(handleStart,control);
 }

 private Handler<Start> handleStart = new Handler<Start>() {
 public void handle(Start event) {
 Component hostComponent = create(Host.class);
 subscribe(handlePong, hostComponent.getPositive(PongPort.class));
 trigger(new Ping(), hostComponent.getPositive(PingPort.class));
 }
 };

 private Handler<Pong> handlePong = new Handler<Pong>() {
 public void handle(Pong event) {
 System.out.println("Pong received.");
 }
 };
 }

Host Component

 package se.sics.kompics.manual.example2a;

 import se.sics.kompics.manual.example1.Ping;
 import se.sics.kompics.manual.example1.PingPort;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Negative;

A Minimal Kompics Application

10

 public class Host extends ComponentDefinition {

 Negative<PingPort> negPing = negative(PingPort.class);
 Negative<PongPort> negPong = negative(PongPort.class);

 public Host() {
 subscribe(handlePing, negPing);
 }

 private Handler<Ping> handlePing = new Handler<Ping>() {
 public void handle(Ping event) {
 System.out.println("Received ping, sending Pong..");
 trigger(new Pong(), negPong);
 }
 };
 }

Ping-Pong with a Single Port (Example 3a)
We now refactor the section called “Ping-Pong with 2 Ports (Example 2a)” so that Host only has
a single PingPong Port, instead of two ports. This example demonstrates the concept of "two-
way event interfaces" (where events flow in and come out of a component).

In the examples directory for this manual, you will find a reworking of this example (Example 3b),
where we reverse the event directions in a port called PingPongPortReversed.

Figure 3.3. Ping-Pong component with one Port inside a Root component.

PingPongPort

 package se.sics.kompics.manual.example3a;

 import se.sics.kompics.manual.example1.Ping;
 import se.sics.kompics.manual.example2a.Pong;
 import se.sics.kompics.se.sics.kompics.PortType;

 public class PingPongPort extends PortType {

 {
 negative(Ping.class);
 positive(Pong.class);
 }
 }

Root Component

 package se.sics.kompics.manual.example3a;

A Minimal Kompics Application

11

 import se.sics.kompics.manual.example1.Ping;
 import se.sics.kompics.manual.example2a.Pong;
 import se.sics.kompics.se.sics.kompics.Component;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Kompics;
 import se.sics.kompics.se.sics.kompics.Start;

 public class Root extends ComponentDefinition {

 private Component hostComponent;

 public static void main(String[] args)
 {
 Kompics.createAndStart(Root.class);
 }
 public Root() {
 hostComponent = create(Host.class);
 subscribe(handleStart,control);
 subscribe(handlePong, hostComponent.getPositive(PingPongPort.class));
 }

 private Handler<Start> handleStart = new Handler<Start>() {
 public void handle(Start event) {
 trigger(new Ping(), hostComponent.getPositive(PingPongPort.class)); }
 };

 private Handler<Pong> handlePong = new Handler<Pong>() {
 public void handle(Pong event) {
 System.out.println("Pong received.");
 }
 };
 }

Host Component

 package se.sics.kompics.manual.example3a;

 import se.sics.kompics.manual.example1.Ping;
 import se.sics.kompics.manual.example2a.Pong;
 import se.sics.kompics.se.sics.kompics.ComponentDefinition;
 import se.sics.kompics.se.sics.kompics.Handler;
 import se.sics.kompics.se.sics.kompics.Negative;

 public class Host extends ComponentDefinition {

 Negative<PingPongPort> negPingPong = negative(PingPongPort.class);

 public Host() {
 subscribe(handlePing, negPingPong);

A Minimal Kompics Application

12

 }

 private Handler<Ping> handlePing = new Handler<Ping>() {
 public void handle(Ping event) {
 System.out.println("Received ping, sending Pong..");
 trigger(new Pong(), negPingPong);
 }
 };
 }

Ping-Pong with a HostPing and a HostPong
component (Example 4)

The diagram in Figure 3.4, “A PingComponent and a PongComponent with two Ports each,
inside a parent Root component.” shows the same Ping-Pong example factored as two different
components, HostPing and HostPong. The application starts by Root sending a start event
to HostPong, which then sends a Ping event to HostPing, which then replies to HostPong
with a Pong event.

In the code fragment below, we connect the positive side of PingPort on pingHost to the
negative side of PingPort on pongHost, which returns a Channel object x1.

The code for this example can be found in the examples directory for this manual.

 Positive<PingPort> pingPosPort = pingHost.getPositive(PingPort.class);
 Negative<PingPort> pingNegPort = pongHost.getNegative(PingPort.class);
 Channel<PingPort> x1 = connect(pingNegPort, pingPosPort);

Figure 3.4. A PingComponent and a PongComponent with two Ports each,
inside a parent Root component.

APPENDIX A. PUBLICATIONS

A.15 A Design Methodology for Self-Management

in Distributed Environments

SELFMAN Deliverable Year Three, Page 531

A Design Methodology for Self-Management in
Distributed Environments

Ahmad Al-Shishtawy∗, Vladimir Vlassov∗, Per Brand†, and Seif Haridi∗†
∗Royal Institute of Technology, Stockholm, Sweden

{ahmadas, vladv, haridi}@kth.se
†Swedish Institute of Computer Science, Stockholm, Sweden

{perbrand, seif}@sics.se

Abstract—Autonomic computing is a paradigm that aims
at reducing administrative overhead by providing autonomic
managers to make applications self-managing. In order to better
deal with dynamic environments, for improved performance
and scalability, we advocate for distribution of management
functions among several cooperative managers that coordinate
their activities in order to achieve management objectives. We
present a methodology for designing the management part of
a distributed self-managing application in a distributed manner.
We define design steps, that includes partitioning of management
functions and orchestration of multiple autonomic managers. We
illustrate the proposed design methodology by applying it to
design and development of a distributed storage service as a
case study. The storage service prototype has been developed
using the distributing component management systemNiche.
Distribution of autonomic managers allows distributing the
management overhead and increased management performance
due to concurrency and better locality.

Keywords-autonomic computing; control loops; self-
management; distributed systems;

I. I NTRODUCTION

Autonomic computing [1] is an attractive paradigm
to tackle management overhead of complex applications
by making them self-managing. Self-management, namely
self-configuration, self-optimization, self-healing, and self-
protection (self-* thereafter), is achieved through autonomic
managers [2]. An autonomic manager continuously monitors
hardware and/or software resources and acts accordingly. Man-
aging applications in dynamic environments (like community
Grids and peer-to-peer applications) is specially challenging
due to high resource churn and lack of clear management
responsibility.

A distributed application requires multiple autonomic man-
agers rather than a single autonomic manager. Multiple man-
agers are needed for scalability, robustness, and performance
and also useful for reflecting separation of concerns. Engi-
neering of self-managing distributed applications executed in
a dynamic environment requires a methodology for building
robust cooperative autonomic managers. The methodology
should include methods for management decomposition, dis-
tribution, and orchestration. For example, management canbe

This research is supported by the FP6 projects SELFMAN (contract
IST-2006-034084) and Grid4All (contract IST-2006-034567) funded by the
European Commission.

decomposed into a number of managers each responsible for a
specific self-* property or alternatively application subsystems.
These managers are not independent but need to cooperate and
coordinate their actions in order to achieve overall manage-
ment objectives.

The major contributions of the paper are as follows. We
propose a methodology for designing the management part
of a distributed self-managing application in a distributed
manner, i.e. with multiple interactive autonomic managers.
Decentralization of management and distribution of autonomic
managers allows distributing the management overhead, in-
creasing management performance due to concurrency and/or
better locality. Decentralization does avoid a single point of
failure however it does not necessarily improve robustness. We
define design steps, that includes partitioning of management,
assignment of management tasks to autonomic managers, and
orchestration of multiple autonomic managers. We describea
set of patterns (paradigms) for manager interactions.

We illustrate the proposed design methodology including
paradigms of manager interactions by applying it to design and
development of a distributed storage service as a case study.
The storage service prototype has been developed using the
distributing component management systemNiche1 [3]–[5].

The remainder of this paper is organized as follows. Sec-
tion II describes Niche and relate it to the autonomic comput-
ing architecture. Section III presents the steps for designing
distributed self-managing applications. Section IV focuses on
orchestrating multiple autonomic managers. In Section V we
apply the proposed methodology to a distributed file storageas
a case study. Related work is discussed in Section VI followed
by conclusions and future work in Section VII.

II. T HE DISTRIBUTED COMPONENT MANAGEMENT

SYSTEM

The autonomic computing reference architecture proposed
by IBM [2] consists of the following five building blocks.

• Touchpoint: consists of a set of sensors and effectors
used by autonomic managers to interact with managed re-
sources (get status and perform operations). Touchpoints
are components in the system that implement a uniform

1In our previous work [3], [4] our distributing component management
systemNiche was called DCMS

management interface that hides the heterogeneity of
managed resources. A managed resource must be exposed
through touchpoints to be manageable.

• Autonomic Manager: is the key building block in the
architecture. Autonomic managers are used to implement
the self-management behaviour of the system. This is
achieved through a control loop that consists of four main
stages: monitor, analyze, plan, and execute. The control
loop interacts with the managed resource through the
exposed touchpoints.

• Knowledge Source: is used to share knowledge (e.g.
architecture information and policies) between autonomic
managers.

• Enterprise Service Bus:provides connectivity of com-
ponents in the system.

• Manager Interface: provides an interface for administra-
tors to interact with the system. This includes the ability
to monitor/change the status of the system and to control
autonomic managers through policies.

The use-case presented in this paper has been devel-
oped using the distributed component management system
Niche [3], [4]. Niche implements the autonomic computing
architecture described above. Niche includes a distributed
component programming model, APIs, and a run-time system
including deployment service. The main objective of Niche is
to enable and to achieve self-management of component-based
applications deployed on dynamic distributed environments
such as community Grids. A self-managing application in
Niche consists of functional and management parts. Functional
components communicate via bindings, whereas management
components communicate mostly via a publish/subscribe event
notification mechanism.

The Niche run-time environment is a network of distributed
containers hosting functional and management components.
Niche uses a structured overlay network (Niche [4]) as the
enterprise service bus. Niche is self-organising on its own
and provides overlay services used by Niche such as name-
based communication, distributed hash table (DHT) and a
publish/subscribe mechanism for event dissemination. These
services are used by Niche to provide higher level commu-
nication abstractions such as name-based bindings to support
component mobility; dynamic component groups; one-to-any
and one-to-all bindings, and event based communication.

For implementing the touchpoints, Niche leverages the in-
trospection and dynamic reconfiguration features of the Fractal
component model [6] in order to provide sensors and actuation
API abstractions. Sensors are special components that can be
attached to the application’s functional components. There are
also built-in sensors in Niche that sense changes in the envi-
ronment such as resource failures, joins, and leaves, as well as
modifications in application architecture such as creationof a
group. The actuation API is used to modify the application’s
functional and management architecture by adding, removing
and reconfiguring components, groups, bindings.

The Autonomic Manager (a control loop) in Niche is orga-
nized as a network ofManagement Elements(MEs) interacting

through events, monitoring via sensors and acting using the
actuation API. This enables the construction of distributed
control loops. MEs are subdivided into watchers, aggregators,
and managers. Watchers are used for monitoring via sensors
and can be programmed to find symptoms to be reported to
aggregators or directly to managers. Aggregators are used to
aggregate and analyse symptoms and to issue change requests
to managers. Managers do planning and execute change re-
quests.

Knowledge in Niche is shared between MEs using two
mechanisms: first, using the publish/subscribe mechanism pro-
vided by Niche; second, using the Niche DHT to store/retrieve
information such as component group members, name-to-
location mappings.

III. STEPS INDESIGNING DISTRIBUTED MANAGEMENT

A self-managing application can be decomposed into three
parts: the functional part, the touchpoints, and the management
part. The design process starts by specifying the functional and
management requirements for the functional and management
parts, respectively. In the case of Niche, the functional part of
the application is designed by defining interfaces, components,
component groups, and bindings. The management part is
designed based on management requirements, by defining
autonomic managers (management elements) and the required
touchpoints (sensors and effectors).

An Autonomic Manager is a control loop that senses and
affects the functional part of the application. For many ap-
plications and environments it is desirable to decompose the
autonomic manager into a number of cooperating autonomic
managers each performing a specific management function
or/and controlling a specific part of the application. Decom-
position of management can be motivated by different reasons
such as follows. It allows avoiding a single point of failure. It
may be required to distribute the management overhead among
participating resources. Self-managing a complex system may
require more than one autonomic manager to simplify design
by separation of concerns. Decomposition can also be used
to enhance the management performance by running different
management tasks concurrently and by placing the autonomic
managers closer to the resources they manage.

We define the following iterative steps to be performed
when designing and developing the management part of a self-
managing distributed application in a distributed manner.

Decomposition: The first step is to divide the
management into a number of management tasks.
Decomposition can be either functional (e.g. tasks
are defined based which self-* properties they im-
plement) or spacial (e.g. tasks are defined based
on the structure of the managed application). The
major design issue to be considered at this step is
granularity of tasks assuming that a task or a group of
related tasks can be performed by a single manager.
Assignment: The tasks are then assigned to auto-
nomic managers each of which becomes responsible
for one or more management tasks. Assignment can

be done based on self-* properties that a task belongs
to (according to the functional decomposition) or
based on which part of the application that task is
related to (according to the spatial decomposition).
Orchestration: Although autonomic managers can
be designed independently, multiple autonomic man-
agers, in the general case, are not independent since
they manage the same system and there exist depen-
dencies between management tasks. Therefore they
need to interact and coordinate their actions in order
to avoid conflicts and interference and to manage the
system properly.
Mapping: The set of autonomic managers are then
mapped to the resources, i.e. to nodes of the dis-
tributed environment. A major issue to be considered
at this step is optimized placement of managers and
possibly functional components on nodes in order to
improve management performance.

In this paper our major focus is on the orchestration of
autonomic managers as the most challenging and less studied
problem. The actions and objectives of the other stages are
more related to classical issues in distributed systems such as
partitioning and separation of concerns, and optimal placement
of modules in a distributed environment.

IV. ORCHESTRATINGAUTONOMIC MANAGERS

Autonomic managers can interact and coordinate their op-
eration in the following four ways:

A. Stigmergy

Stigmergy is a way of indirect communication and coor-
dination between agents [7]. Agents make changes in their
environment, and these changes are sensed by other agents and
cause them to do more actions. Stigmergy was first observed
in social insects like ants. In our case agents are autonomic
managers and the environment is the managed application.

The stigmergy effect is, in general, unavoidable when
you have more than one autonomic manager and can cause
undesired behaviour at runtime. Hidden stigmergy makes it
challenging to design a self-managing system with multiple
autonomic managers. However stigmergy can be part of the
design and used as a way of orchestrating autonomic managers
(Fig. 1).

B. Hierarchical Management

By hierarchical management we mean that some autonomic
managers can monitor and control other autonomic managers
(Fig. 2). The lower level autonomic managers are considered
as a managed resource for the higher level autonomic manager.
Communication between levels take place using touchpoints.
Higher level managers can sense and affect lower level man-
agers.

Autonomic managers at different levels often operate at
different time scales. Lower level autonomic managers are
used to manage changes in the system that need immediate
actions. Higher level autonomic managers are often slower

Fig. 1. The stigmergy effect.

Fig. 2. Hierarchical management.

and used to regulate and orchestrate the system by monitoring
global properties and tuning lower level autonomic managers
accordingly.

C. Direct Interaction

Autonomic managers may interact directly with one an-
other. Technically this is achieved by binding the appropriate
management elements (typically managers) in the autonomic
managers together (Fig. 3). Cross autonomic manager bindings
can be used to coordinate autonomic managers and avoid
undesired behaviors such as race conditions or oscillations.

D. Shared Management Elements

Another way for autonomic managers to communicate and
coordinate their actions is by sharing management elements
(Fig. 4). This can be used to share state (knowledge) and to
synchronise their actions.

V. CASE STUDY: A D ISTRIBUTED STORAGE SERVICE

In order to illustrate the design methodology, we have
developed a storage service called YASS (Yet Another Storage
Service) [3], using Niche. The case study illustrates how
to design a self-managing distributed system monitored and
controlled by multiple distributed autonomic managers.

Managed Resource

Touchpoint

Autonomic
Manager 1

Autonomic
Manager 2

ME ME ME ME

ME ME

Fig. 3. Direct interaction.

Fig. 4. Shared Management Elements.

A. YASS Specification

YASS is a storage service that allows users to store, read
and delete files on a set of distributed resources. The service
transparently replicates the stored files for robustness and
scalability.

Assuming that YASS is to be deployed and provided in a
dynamic distributed environment, the following management
functions are required in order to make the storage service
self-managing in the presence of dynamicity in resources
and load: the service should tolerate the resource churn
(joins/leaves/failures), optimize usage of resources, and re-
solve hot-spots. We define the following tasks based on the
functional decomposition of management according to self-*
properties (namely self-healing, self-configuration, andself-
optimization) to be achieved.

• Maintain the file replication degree by restoring the files
which were stored on a failed/leaving resource. This
function provides the self-healing property of the service
so that the service is available despite of the resource
churn;

• Maintain the total storage space and total free space to
meet QoS requirements by allocating additional resources
when needed. This function provides self-configuration of
the service;

• Increasing the availability of popular files. This and the
next two functions are related to the self-optimization of
the service.

• Release excess allocated storage when it is no longer
needed.

• Balance the stored files among the allocated resources.

B. YASS Functional Design

A YASS instance consists offront-end componentsand
storage componentsas shown in Fig. 5. The front-end com-
ponent provides a user interface that is used to interact with
the storage service. Storage components represent the storage
capacity available at the resource on which they are deployed.

The storage components are grouped together in a storage
group. A user issues commands (store, read, and delete) using
the front-end. A store request is sent to an arbitrary storage
component (using one-to-any binding between the front-end
and the storage group) which in turn will find somer different
storage components, wherer is the file’s replication degree,
with enough free space to store a file replica. These replicas
together will form a file group containing ther storage
components that will host the file. The front-end will then
use a one-to-all binding to the file group to transfer the file in
parallel to ther replicas in the group. A read request is sent
to any of ther storage components in the group using the
one-to-any binding between the front-end and the file group.
A delete request is sent to the file group in parallel using a
one-to-all binding between the front-end and the file group.

C. Enabling Management of YASS

Given that the functional part of YASS has been developed,
to manage it we need to provide touchpoints. Niche provides
basic touchpoints for manipulating the system’s architecture
and resources, such as sensors of resource failures and com-
ponent group creation; and effectors for deploying and binding
components.

Beside the basic touchpoint the following additional, YASS
specific, sensors and effectors are required.

• A load sensor to measure the current free space on a
storage component;

• An access frequency sensor to detect popular files;
• A replicate file effector to add one extra replica of a

specified file;
• A move file effector to move files for load balancing.

D. Self-Managing YASS

The following autonomic managers are needed to manage
YASS in a dynamic environment. All four orchestration tech-
niques in Section IV are demonstrated.

1) Replica Autonomic Manager:The replica autonomic
manager is responsible for maintaining the desired replica-
tion degree for each stored file in spite of resources failing
and leaving. This autonomic manager adds the self-healing
property to YASS. The replica autonomic manager consists of
two management elements, the File-Replica-Aggregator and
the File-Replica-Manager as shown in Fig. 6.

Front-end

Component

VO

Store Request
one-to-any binding

to the storage group

Delete File A

Request

one-to-all binding

to A’s file groupA

A

A

B

B

B

C

C

C

C

Free

Free

Free

Free

Front-end

Component

Ovals = Resources.

Rectangles = Storage and

Front-end Components.

A,B,C = Stored files.

The Storage Group

A File
 G

roup

Fig. 5. YASS Functional Part

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

File

Replica

Aggregator

File

Replica

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Failure

Leave

Replica Change

Find and Restore Replica

R
e

p
lic

a
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Fig. 6. Self-healing control loop.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Storage

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Component

Load

Watcher

Storage

Availability

Change

Allocate

& Deploy

S
to

ra
g

e
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Load Change

Load

Join

Failure

Leave

Fig. 7. Self-configuration control loop.

The File-Replica-Aggregator monitors a file group, contain-
ing the subset of storage components that host the file replicas,
by subscribing to resource fail or leave events caused by
any of the group members. These events are received when
a resource, on which a component member in the group is
deployed, is about to leave or has failed. The File-Replica-
Aggregator responds to these events by triggering a replica
change event to the File-Replica-Manager that will issue a
find and restore replica command.

2) Storage Autonomic Manager:The storage autonomic
manager is responsible for maintaining the total storage capac-
ity and the total free space in the storage group, in the presence

of dynamism, to meet QoS requirements. The dynamism
is due either to resources failing/leaving (affecting boththe
total and free storage space) or file creation/addition/deletion
(affecting the free storage space only). The storage autonomic
manager reconfigures YASS to restore the total free space
and/or the total storage capacity to meet the requirements.
The reconfiguration is done by allocating free resources and
deploying additional storage components on them. This auto-
nomic manager adds the self-configuration property to YASS.
The storage autonomic manager consists of Component-Load-
Watcher, Storage-Aggregator, and Storage-Manager as shown
in Fig. 7.

The Component-Load-Watcher monitors the storage group,
containing all storage components, for changes in the totalfree
space available by subscribing to the load sensors events. The
Component-Load-Watcher will trigger a load change event
when the load is changed by a predefined delta. The Storage-
Aggregator is subscribed to the Component-Load-Watcher
load change event and the resource fail, leave, and join events
(note that the File-Replica-Aggregator also subscribes tothe
resource failure and leave events). The Storage-Aggregator, by
analyzing these events, will be able to estimate the total storage
capacity and the total free space. The Storage-Aggregator
will trigger a storage availability change event when the total
and/or free storage space drops below a predefined thresholds.
The Storage-Manager responds to this event by trying to
allocate more resources and deploying storage components on
them.

3) Direct Interactions to Coordinate Autonomic Managers
: The two autonomic managers, replica autonomic manager
and storage autonomic manager, described above seem to be
independent. The first manager restores files and the other
manager restores storage. But as we will see in the following
example it is possible to have a race condition between the
two autonomic managers that will cause the replica autonomic
manager to fail. For example, when a resource fails the

storage autonomic manager may detect that more storage is
needed and start allocating resources and deploying storage
components. Meanwhile the replica autonomic manager will
be restoring the files that were on the failed resource. The
replica autonomic manager might fail to restore the files due
to space shortage if the storage autonomic manager is slower
and does not have time to finish. This may also prevent the
users, temporarily, from storing files.

If the replica autonomic manager would have waited for
the storage autonomic manager to finish, it would not fail to
recreate replicas. We used direct interaction to coordinate the
two autonomic managers by binding the File-Replica-Manager
to the Storage-Manager.

Before restoring files the File-Replica-Manager informs the
Storage-Manager about the amount of storage it needs to
restore files. The Storage-Manager checks available storage
and informs the File-Replica-Manager that it can proceed if
enough space is available or ask it to wait.

The direct coordination used here does not mean that one
manager controls the other. For example if there is only one
replica left of a file, the File-Replica-Manager may ignore the
request to wait from the Storage-Manager and proceed with
restoring the file anyway.

4) Optimising Allocated Storage :Systems should maintain
high resource utilization. The storage autonomic manager
allocates additional resources if needed to guarantee the ability
to store files. However, users might delete files later causing
the utilization of the storage space to drop. It is desirable
that YASS be able to self-optimize itself by releasing excess
resources to improve utilization.

It is possible to design an autonomic manager that will
detect low resource utilization, move file replicas stored on a
chosen lowly utilized resource, and finally release it. Since the
functionality required by this autonomic manager is partially
provided by the storage and replica autonomic managers we
will try to augment them instead of adding a new autonomic
manager, and use stigmergy to coordinate them.

It is easy to modify the storage autonomic manager to
detect low storage utilization. The replica manager knows
how to restore files. When the utilization of the storage
components drops, the storage autonomic manager will detect
it and will deallocate some resource. The deallocation of
resources will trigger, through stigmergy, another actionat the
replica autonomic manager. The replica autonomic manager
will receive the corresponding resource leave events and will
move the files from the leaving resource to other resources.

We believe that this is better than adding another autonomic
manager for following two reasons: first, it allows avoiding
duplication of functionality; and second, it allows avoiding os-
cillation between allocation and releasing resources by keeping
the decision about the proper amount of storage at one place.

5) Improving file availability: Popular files should have
more replicas in order to increase their availability. A higher
level availability autonomic manager can be used to achieve
this through regulating the replica autonomic manager. Theau-
tonomic manager consists of two management elements. The

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor Effector

Effector
Replica

Autonomic

Manager

File

Availability

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

File

Access

Watcher

Access Frequency

Frequency

Change

New Replication DegreeA
v
a

ila
b

ili
ty

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Fig. 8. Hierarchical management.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Load

Balancing

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Least/Most

Loaded

Move Files

Storage

Autonomic

Manager

L
o

a
d

 B
a

la
n

c
in

g

A
u

to
n

o
m

ic
 M

a
n

a
g

e
r

Timer

Fig. 9. Sharing of Management Elements.

File-Access-Watcher and File-Availability-Manager shown in
Fig. 8 illustrate hierarchical management.

The File-Access-Watcher monitors the file access frequency.
If the popularity of a file changes dramatically it issues a
frequency change event. The File-Availability-Manager may
decide to change the replication degree of that file. This
is achieved by changing the value of the replication degree
parameter in the File-Replica-Manager.

6) Balancing File Storage:A load balancing autonomic
manager can be used for self-optimization by trying to
lazily balance the stored files among storage components.
Since knowledge of current load is available at the Storage-
Aggregator, we design the load balancing autonomic manager
by sharing the Storage-Aggregator as shown in Fig. 9.

All autonomic managers we discussed so far are reactive.
They receive events and act upon them. Sometimes proactive
managers might be also required, such as the one we are
discussing. Proactive managers are implemented in Niche
using a timer abstraction.

The load balancing autonomic manager is triggered, by a
timer, everyx time units. The timer event will be received
by the shared Storage-Aggregator that will trigger an event
containing the most and least loaded storage components. This
event will be received by the Load-Balancing-Manager that
will move some files from the most to the least loaded storage
component.

VI. RELATED WORK

The vision of autonomic management as presented in [1]
has given rise to a number of proposed solutions to aspects of

the problem.
An attempt to analyze and understand how multiple in-

teracting loops can manage a single system has been done
in [8] by studying and analysing existing systems such as
biological and software systems. By this study the authors
try to understand the rules of a good control loop design. A
study how to compose multiple loops and ensure that they are
consistent and complementary is presented in [9]. The authors
presented an architecture that supports such compositions.

A reference architecture for autonomic computing is pre-
sented in [10]. The authors present patterns for applying
their proposed architecture to solve specific problems common
to self-managing applications. Behavioural Skeletons is a
technique presented in [11] that uses algorithmic skeletons
to encapsulate general control loop features that can laterbe
specialized to fit a specific application.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented the methodology of developing the
management part of a self-managing distributed application
in distributed dynamic environment. We advocate for multi-
ple managers rather than a single centralized manager that
can induce a single point of failure and a potential perfor-
mance bottleneck in a distributed environment. The proposed
methodology includes four major design steps: decomposition,
assignment, orchestration, and mapping (distribution). The
management part is constructed as a number of cooperative
autonomic managers each responsible either for a specific
management function (according to functional decomposition
of management) or for a part of the application (according to
a spatial decomposition). We have defined and described dif-
ferent paradigms (patterns) of manager interactions, including
indirect interaction by stigmergy, direct interaction, sharing
of management elements, and manager hierarchy. In order to
illustrate the design steps, we have developed and presented
in this paper a self-managing distributed storage service with
self-healing, self-configuration and self-optimizing properties
provided by corresponding autonomic managers, developed
using the distributed component management system Niche.
We have shown how the autonomic managers can coordinate
their actions, by the four described orchestration paradigms,
in order to achieve the overall management objectives.

Dealing with failure of autonomic managers (as opposed
to functional parts of the application) is out of the scope of
this paper. Clearly, by itself, decentralization of management,
might make the application more robust (as some aspects of
management continue working, while others stop), but also
more fragile due to increased risk of partial failure. In both
the centralized and decentralized case, techniques for fault
tolerance are needed to insure robustness. Many of these
techniques, while ensuring fault recovery do so with some
significant delay, in which case a decentralized management
architecture may prove advantageous as only some aspects of
management are disrupted at any one time.

Our future work includes refinement of the design method-
ology, further case studies with the focus on orchestrationof

autonomic managers, investigating robustness of managersby
transparent replication of management elements.

ACKNOWLEDGEMENTS

We would like to thank the Niche research team including
Konstantin Popov and Joel Höglund from SICS, and Nikos
Parlavantzas from INRIA.

REFERENCES

[1] P. Horn, “Autonomic computing: IBM’s perspective on thestate of
information technology,” Oct. 15 2001.

[2] IBM, “An architectural blueprint for autonomic comput-
ing, 4th edition,” http://www-03.ibm.com/autonomic/pdfs/
AC Blueprint White Paper4th.pdf, June 2006.

[3] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas, V. Vlassov, and
P. Brand, “Enabling self-management of component based distributed
applications,” in From Grids to Service and Pervasive Computing,
T. Priol and M. Vanneschi, Eds. Springer US, July 2008, pp. 163–
174.

[4] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas,
V. Vlassov, and A. Al-Shishtawy, “The role of overlay services in a
self-managing framework for dynamic virtual organizations,” in Making
Grids Work, M. Danelutto, P. Fragopoulou, and V. Getov, Eds. Springer
US, 2007, pp. 153–164.

[5] Niche homepage. [Online]. Available: http://niche.sics.se/
[6] E. Bruneton, T. Coupaye, and J.-B. Stefani, “The fractalcomponent

model,” France Telecom R&D and INRIA, Tech. Rep., Feb. 5 2004.
[7] E. Bonabeau, “Editor’s introduction: Stigmergy,”Artificial Life,

vol. 5, no. 2, pp. 95–96, 1999. [Online]. Available: http://www.
mitpressjournals.org/doi/abs/10.1162/106454699568692

[8] P. V. Roy, S. Haridi, A. Reinefeld, J.-B. Stefani, R. Yap,and T. Coupaye,
“Self management for large-scale distributed systems: An overview of
the selfman project,” inFMCO ’07: Software Technologies Concertation
on Formal Methods for Components and Objects, Amsterdam, The
Netherlands, Oct 2007.

[9] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste,
“An architecture for coordinating multiple self-management systems,”
in WICSA ’04, Washington, DC, USA, 2004, p. 243.

[10] J. W. Sweitzer and C. Draper,Autonomic Computing: Concepts, In-
frastructure, and Applications. CRC Press, 2006, ch. 5: Architecture
Overview for Autonomic Computing, pp. 71–98.

[11] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick,
P. Dazzi, D. Laforenza, and N. Tonellotto, “Behavioural skeletons
in gcm: Autonomic management of grid components,” inPDP’08,
Washington, DC, USA, 2008, pp. 54–63.

APPENDIX A. PUBLICATIONS

A.16 Using Global Information for Load Bal-

ancing in DHTs

SELFMAN Deliverable Year Three, Page 539

Using Global Information for Load Balancing in DHTs∗

Mikael Högqvist1, Seif Haridi2, Nico Kruber1, Alexander Reinefeld1, Thorsten Schütt1
1Zuse Institute Berlin

{hoegqvist, kruber, reinefeld, schuett}@zib.de
2Royal Institute of Technology (KTH)

seif@kth.se

Abstract

Distributed Hash Tables (DHT) with order-preserving
hash functions require load balancing to ensure an even
item-load over all nodes. While previous item-balancing
algorithms only improve the load imbalance, we argue that
due to the cost of moving items, the competing goal of min-
imizing the used network traffic must be addressed as well.

We aim to improve on existing algorithms by augmenting
them with approximations of global knowledge, which can
be distributed in a DHT with low cost using gossip mecha-
nisms. In this paper we present initial simulation-based re-
sults from a decentralized balancing scheme extended with
knowledge about the average node load. In addition, we
discuss future work including a centralized auction-based
algorithm that will be used as a benchmark.

1 Introduction

This work is motivated by research on self-managing dis-
tributed databases for use as a storage layer in large-scale
Internet services. We envision that load balancing in such a
system will not only consider node capacities, but can also
be based on geographic location and application policies.

As an example, Wikipedia provides encyclopedias in dif-
ferent languages. Figure 1 shows how the Wikipedia arti-
cles and their respective replicas can be stored on a Dis-
tributed Hash Table (DHT) [12]. In such an application it
is beneficial to host data nearby the users, i.e. in the geo-
graphic area where the language is used. We can use load
balancing algorithms to implement location and application
policies.

DHTs extend structured overlay networks (SON) with
primitives for storing (key, value)-pairs and for retrieving
the value associated with a key. Their functionality in-
clude support for both direct key lookups [13, 10] and range

∗This work was partly funded by the EU projects SELFMAN under
grant IST-34084 and XtreemOS under grant IST-33576.

replica group0

replica group1

replica group2

replica group3

replica group4

de

en

nl

se

de

en

nl

sede

en

nl
se

de

en

nl

se

de
ennl

se

de:Main Page

Figure 1. Geographic Load Balancing for
Wikipedia.

queries [11]. When a key is stored in a DHT with range
queries, its location is decided using an order-preserving
hash function. Depending on the distribution of the inserted
keys the nodes in the DHT can quickly become unbalanced,
which can lead to, for example, network congestion and un-
responsive nodes.

Load balancing algorithms in DHTs focus on three dif-
ferent problems. First, when each item is hashed uniformly
over the ID space, some nodes can have an O(logN) im-
balance in terms of stored items [9, 6]. Second, when using
order-preserving hash function [11], the items are mapped
to the ID space such that they keep their original distribu-
tion. Therefore, for the system to be balanced, i.e. nodes
storing an equal number of items, their node IDs must be
distributed according to the key distribution [8, 4]. Third,
independent of the item distribution, certain items can have
much higher request rates than others. This is typically
solved through caching, replication or by exploiting redun-
dant network routes [3].

A common solution to the first problem is to maintain a
set of virtual DHT nodes, or servers, at each physical ma-
chine. Virtual servers migrate between physical hosts to
balance the system load [6, 13]. However, virtual servers
have several issues such as increased churn when a physi-
cal host fails and increased state maintenance. In addition,
in order-preserving DHTs, a single virtual server can still
become overloaded when being responsible for a popular
key range. In this paper, we are investigating solutions to
the second problem, i.e. algorithms that are balancing the
item-load at each node.

Since the network connecting the DHT nodes is the
only shared resource, it is vital that DHT maintenance and
tuning-algorithms use the network efficiently. This is es-
pecially the case for load balancing algorithms since their
main operations trigger data movements. We aim to im-
prove current algorithms by introducing approximations of
global knowledge at each node, thereby helping them to
take informed decisions in order to reduce data transfers.
Examples of such information is the average node load
or the network topology, which has already proved useful
when balancing virtual servers [16]. Recent developments
in gossiping for unstructured P2P networks and DHTs has
shown that it is possible to obtain estimates of global prop-
erties with high confidence and low overhead [15, 14, 5].

In this paper, we argue for the benefits of introducing ap-
proximations of global knowledge to DHT load balancing
algorithms with the goal of reducing the network utilization
while maintaining a balanced system. To support this claim,
we extend a well-known decentralized load balancing algo-
rithm [8] to take the information about the average node
load into account. The modified algorithm shows direct im-
provements on the overall items moved during balancing.
We further argue for the use of centralized algorithms as a
comparative benchmark.

2 Background

In this section we give an overview of current approaches
for DHT load balancing with respect to virtual servers and
item-balancing algorithms. This paper does not cover tech-
niques for request balancing which is often solved through
caching and/or replication.

Virtual Servers is a technique where each physical host
maintains a set of virtual nodes. Load balancing is done by
moving virtual servers, without changing their item range,
from overloaded physical hosts to more lightly loaded hosts.
The assignment of virtual nodes to physical hosts is typ-
ically performed by one or more directory nodes. A di-
rectory node periodically receives load information from
random nodes in the system. When it has received load
data from a sufficient amount of nodes it executes the load

balancing algorithm [9, 6, 2]. An advantage of the virtual
server scheme is that it does not require any changes to the
DHT routing algorithm and allows for re-use of the join and
leave overlay primitives.

An immediate issue with virtual servers is the increase
of the routing table state maintained at each host. Godfrey
et al. [7] introduce a scheme where a physical host main-
tains a set of virtual servers which have overlapping links in
the routing table. With this placement restriction, a physi-
cal host only needs Θ(logN)-links while hosting Θ(logN)
virtual servers.

The above approaches use simple metrics for the cost of
the load balancing operations, like the number of transferred
items or bytes. A better cost metric could include the over-
all network utilization. In [16], Zhu et al. investigate how
to minimize network usage by introducing proximity-aware
load balancing algorithms for virtual servers. In [2], the as-
signment of virtual servers to physical hosts is modeled as
an optimization problem which allows for an arbitrary cost
function.

Another issue with virtual servers is that a physical host
failure causes the hosted virtual nodes to fail as well. This
increases the churn in the system and must be considered
when selecting global parameters such as the replication
factor.

Item-balancing Most of the research on load balancing
in DHTs has focused on virtual servers. However, these ap-
proaches assume that items are uniformly distributed over
the ID space using a hash function. In a DHT with an
order-preserving hash function, a single virtual server can
be overloaded if it is responsible for a popular key range.
For example, when storing a dictionary, keys with the prefix
“e” are more common than “w”, resulting in the nodes stor-
ing items with prefix “e” being responsible for more items.
The goal of item-balancing schemes is to adapt the location
of the nodes in the system to correspond to the item distri-
bution. This is performed using two operations, jump and
slide. Jump transfers a node to an arbitrary ID in the system,
while a slide operation only exchanges items with a node’s
direct neighbor.

Karger et al. [8] present a randomized item balancing
scheme where each node contacts another random node pe-
riodically. If the load of the nodes differs by more than a
factor 0 < ε < 1

4 , they share each others load by either
jumping or sliding. Karger provides a theoretical analysis
of the protocol, but does not evaluate the algorithms in an
experimental or real-world setting. In addition, Karger’s al-
gorithm does not aim to minimize network traffic.

Ganesan et al. [4] use a reactive approach which trig-
gers an algorithm when the node utilization super-cedes
a threshold value. A node executing the algorithm first
checks whether it should slide by comparing the load with

its neighbor’s load. If this is not possible, it finds the least
loaded node in the system and requests that it jumps to share
the overloaded node’s load. The least and most loaded node
is located through a lookup to a separate DHT which stores
all nodes sorted by their load.

We are basing our algorithms on the proactive approach
presented by Karger, but aim to minimize the network uti-
lization. This is achieved by making the algorithm aware of
approximations of global parameters. While Ganesan stores
the global knowledge in an additional DHT, we distribute
this information through gossiping. This is more light-
weight since it avoids the maintenance of another DHT and
combines the strength of both structured and unstructured
networks.

3 System model and problem definition

A DHT consist of N nodes, where each node has an ID
in the range [0, 1). This range wraps around at 1,0 and can
be seen as a ring. A node, ni has a successor-pointer to the
next node in clockwise direction, ni+1, and a predecessor-
pointer to the first counter-clockwise node, ni−1. The node
with the largest ID has the node with the lowest ID as suc-
cessor. Thus, the nodes and their pointers create a double
linked list where the first and last node are linked.

Figure 2. A node Ni with successor and pre-
decessor and their responsibilities.

Each node in the DHT stores a subset of items, I(ni),
where each item has a key in the range [0, 1) and a uni-
form weight of one. A node ni is responsible for a key iff
it falls within the node’s key range (ni−1, ni]. Each node
has a load l(ni) indicating the number of stored data items.
Figure 2 shows three nodes and their respective responsibil-
ities.

A node is balanced when it is neither underloaded nor
overloaded relative to any other node in the system times a
factor ε [8]. That is, when l(ni) < εl(nj), l(nj) is over-
loaded compared to ni and ni is underloaded compared to
nj . The goal of the load-balancing algorithm is to make all
nodes balanced. ε is a system-defined parameter with values
between 0 and 1

4 .
In order to change the load of nodes in the system, two

types of operations are used: jump and slide.

Jump allows a node to move to an arbitrary position in the
ID space. A jumping node ni first leaves its current

position and re-joins at its new location, IDk, with nj

as its successor. Data is moved two times. First, the
items in the range (ni−1, ni] are transferred to ni+1.
Second, when ni joins at IDk, all data in the range
(nj−1, IDk] is transferred from nj to ni.

Slide is a specialized form of jumping where ni moves to
an ID in the range (ni, nj), assuming that the over-
loaded node nj is ni+1. Since a node does not need
to leave and re-join the system, which results in extra
data transfer, sliding is always preferred over jumping.

We define a load-balanced configuration as a system
state where all nodes are balanced. The maximum load in
a configuration, Ci is denoted by lmax(Ci), while the min-
imum load is lmin(Ci), respectively. We use the standard
deviation of a configuration, σ(Ci), as a measure to indi-
cate its imbalance. A jump or slide changes a configuration
Ci to a new configuration Ci+1. For a jump or a slide op-
eration performed by any node the algorithm must meet the
following properties for the load to converge towards a bal-
anced configuration.

lmax(Ci) ≥ lmax(Ci+1) (1)

lmin(Ci) ≤ lmin(Ci+1) (2)

σ(Ci) > σ(Ci+1) (3)

Following these properties, an algorithm will reach a bal-
anced configuration after a finite number of iterations.

Problem definitions. The load balancing problem can be
summarized as follows: given a configuration C0 with a set
of nodes N and items I, where each item i ∈ I is assigned
to a responsible node, find a configuration Cb that only con-
tains balanced nodes using the operations jump and slide.
A solution to the load balancing problem is a sequence of
operations transforming C0 to Cb.

In addition to the load balancing problem, we search for
a solution that minimizes the data movement cost of the
transition from C0 to Cb. That is, given a set of solutions,
S, find a solution Si with minimal cost. The cost-function
is cost(op), where op is either a slide or jump operation.
The cost-function can be chosen arbitrarily, but is typically
based on the number of bytes moved or the network utiliza-
tion.

4 Decentralized Algorithms

Unlike a centralized algorithm, a decentralized algorithm
can only use the information locally available at each node.
We modify Karger’s randomized item-balancing algorithm
to work with different globally approximated parameters.
In this paper we use the system’s average load.

Global information is, by definition, not available in
peer-to-peer systems, unless aggregation algorithms are em-
ployed. However, by using gossiping techniques such as
Vicinity and Cyclon [15, 14] or DHT gossip [5] it is pos-
sible to get a good approximation locally at each node of a
parameter’s value with low network traffic overhead.

Karger’s Algorithm. In order to reach a load-balanced
configuration, we rely on the heuristics introduced for
Karger’s item balancing algorithm [8]. Expressed in our
notation, a load-balance operation is only performed be-
tween any pair of nodes ni, nj , iff l(ni) < εl(nj) or
l(nj) < εl(ni), 0 < ε < 1

4 . When these restrictions
are satisfied, the following cases are possible (assuming
l(ni) > l(nj)).

Case 1, i = j + 1 ni is the successor of nj . Slide nj to-
wards ni, letting nj take responsibility for l(ni)−l(nj)

2
of ni’s items.

Case 2, i 6= j + 1 If l(nj+1) > l(ni), set i = j + 1 and go
to case 1. That is, when the load of nj’s successor is
larger then the load of ni, slide nj towards the over-
loaded node nj+1. Otherwise, nj jumps to a position
in the range (ni−1, ni), taking half of l(ni).

Modified Karger. Karger’s randomized algorithm is
based on two decisions. (1) Which nodes should balance?
(2) Should they use jump or slide? The new location of a
node performing a jump or slide is calculated such that the
load is shared evenly by the two participating nodes. We
want to show that global information can be used to reduce
the number of transferred items, which indirectly impacts
the network usage. Therefore, we introduce a heuristics
based on the average load. Our modification is a restriction
on the position a node takes after an operation. Instead of as
in Karger, sharing the load evenly, we ensure that an under-
loaded node never takes more than the average load, Lavg.
This effectively limits the amount of unnecessary data item
transfers.

The described strategy has the biggest advantage when a
node is overloaded relative to another node and it’s load is
much larger than the average load. Figure 3 shows a sce-
nario where a node Ni+1 has a load much larger than the
average load, i.e. l(Ni+1) > 3Lavg . Let two nodes, A and
B, execute the load balancing algorithm in that order. In
Karger, assuming that A balances with Ni+1, it would first
take more than 1.5Lavg load. If B then chooses to balance
with node A, which is possible if A is still overloaded in re-
lation to B. Then the data in A’s range is transferred twice,
first from Ni+1 to A and then from A to B. With our mod-
ified version, since node A would take at most Lavg load
from Ni+1, the probability that B balances with A is lower

as well as the transferred data items if A decides to balance
with B.

BA

Join

Ni Ni+1

Join

Lavg Lavg

Figure 3. Two consecutive slots being filled
by joining nodes, taking at most Lavg load.

5 Evaluation

We simulated Karger’s algorithm and a version with
knowledge of the systems average load. The effect of know-
ing the average load can be seen in Figures 4 and 5.

Experiments. The experiments are performed in a dis-
crete time simulator where a single operation represents a
step in time. The system contains 100 nodes, and the items
are distributed such that the first 90 nodes have one item
and the remaining ten nodes have 10000, 20000, ..., 90000
items, respectively. We measure the number of moved items
as operation cost and the standard deviation is used to indi-
cate the load imbalance of the system.

Figure 4 shows the sum of moved items for the oper-
ations necessary to go from the initial configuration to a
load balanced configuration. Increasing ε values, between
0 < ε < 0.25 as suggested by Karger, shows a linear in-
crease in the balance cost. Interestingly, the comparison be-
tween Karger and the modified Karger shows that in many
cases the latter moves half as many items to reach a bal-
anced configuration.

In Figure 5 we set ε = 0.21 and study how each oper-
ation influences the load imbalance. The x-axis represents
the aggregated number of moved items for each round and
the y-axis is the standard deviation for the current configu-
ration. The simulation is continued until no further balance
operations can be performed. Our main conclusion from
this experiment is that the modified Karger decreases the
load imbalance of the system faster, even though it moves
less items than the basic Karger.

6 Outlook

In this section we discuss the implications of load bal-
ancing algorithms for other DHT services. We also outline

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.05 0.1 0.15 0.2 0.25

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 0.05 0.1 0.15 0.2 0.25

m
o
v
e
d
 i
te

m
s

epsilon

Karger
Karger +avg load

Figure 4. Number of moved items with epsilon between 0 and 0.25.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

moved items

Karger (e=0.21)
Karger +avg load (e=0.21)

Figure 5. Load imbalance as a function of the number of moved items.

our approach to a centralized algorithm which we plan to
used as a comparative benchmark for the decentralized al-
gorithms.

Additional Global Estimates. In the evaluation section,
we showed that using the average load can have an impact
on the load balancing performance. In addition to the aver-
age load, we are interested in evaluating the following pa-
rameters.

Standard Deviation In section 3 we used the standard de-
viation as an invariant for the progress of an algorithm.
If each node has knowledge of this value they could try
to minimize it for each balancing operation they per-
form.

Location Proximity-information allows a node which will
transfer load to select a target node which minimizes
the network utilization [16].

Over- and Underloaded nodes A list of the k most over-
loaded and most underloaded nodes. These lists can be
used for example in the Karger-algorithm to improve
the convergence rate.

Implications of Load Balancing on a DHT. As argued
throughout this paper, load balancing is an important part in
an efficient and self-tuning DHT. However, the load balanc-
ing algorithms must work seamlessly together with other
components in a DHT-based storage layer such as replica-
tion and transactions.

The jump and slide primitives are using the basic join
and leave operations from the overlay. Since these oper-
ations are triggered by the load balancing algorithms, the
balancing itself incurs extra churn in the system. Therefore,
it is important that, for example, the systems replication fac-
tor is chosen with this in mind. Tuning the load balancing
to work at a rate acceptable for the system is an important
trade-off that needs to be evaluated for a working system.

A Centralized Auction-based Algorithm. In a central-
ized algorithm the global state of the system is known. A
centralized algorithm can be used as a reference bench-
mark for decentralized algorithms. We aim to base our cen-
tralized algorithm on an auction algorithm [1] where over-
loaded and underloaded are matched to find an optimal as-
signment.

An auction algorithm finds an optimal one-to-one assign-
ment of persons to objects in polynomial time. The assign-
ment depends on the cost of the object and the benefit of the
person being assigned to the object. For the load balanc-
ing problem this is analogous to finding a lowest cost match
between underloaded and overloaded nodes.

More formally, each person i has a benefit aij of se-
lecting an object j with price pj . The net value for a
person i of choosing object j is aij − pj . The goal of
the auction is to find an assignment where every persons
find an object which maximizes the total net value. Thus,
an auction is finished when the equilibrium aij − pj =
maxj∈Objects(aij − pj) is reached.

Each iteration of the algorithm consists of a bidding
phase followed by an assignment phase. During the bidding
phase, each person finds an object resulting in maximum
net value after which it computes a bidding increment. The
value of the bidding increment is used after the assignment
phase to increase the price of the object. In the assignment
phase the persons with the highest bids are assigned to the
respective objects. When all people are assigned to an ob-
ject the algorithm terminates. This also means that the equi-
librium has been satisfied.

An advantage of the auction algorithm is that the bene-
fit function and the object price can be chosen arbitrarily.
This allows us to explore more complicated costs than e.g.
moved data items. Furthermore, the order of the load bal-
ancing operations slide and join are affecting the total price
of the load balancing process. Due to the apparent advan-
tages in computational complexity of the auction algorithm
approach, we are actively investigating an appropriate cost-
function which can include proximity information and the
order of operations.

7 Conclusion

We showed that it is possible to reduce the cost of load
balancing by introducing simple heuristics and knowledge
about basic global parameters. We plan to continue this
work by evaluating the effects of more properties such as
the network topology. In addition, a centralized algorithm
can give the optimal cost for balancing a given configura-
tion. This can be used as a reference to evaluating the per-
formance of the decentralized algorithms.

References

[1] D. P. Bertsekas. Network Optimization: Continuous and
Discrete Models (Optimization, Computation, and Control).
Athena Scientific, 1998.

[2] C. Chen and K.-C. Tsai. The server reassignment problem
for load balancing in structured p2p systems. IEEE Trans.
Parallel Distrib. Syst., 19(2):234–246, 2008.

[3] A. Datta, R. Schmidt, and K. Aberer. Query-load balancing
in structured overlays. In Seventh IEEE International Sym-
posium on Cluster Computing and the Grid (CCGRID’07),
2007.

[4] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online bal-
ancing of range-partitioned data with applications to peer-to-
peer systems. In VLDB, pages 444–455. Morgan Kaufmann,
2004.

[5] A. Ghodsi, S. Haridi, and H. Weatherspoon. Exploiting the
synergy between gossiping and structured overlays. Operat-
ing Systems Review, 41(5):61–66, 2007.

[6] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp,
and I. Stoica. Load balancing in dynamic structured p2p
systems. In INFOCOM, 2004.

[7] B. Godfrey and I. Stoica. Heterogeneity and load balance
in distributed hash tables. In INFOCOM, pages 596–606.
IEEE, 2005.

[8] D. R. Karger and M. Ruhl. Simple efficient load balanc-
ing algorithms for peer-to-peer systems. In IPTPS, volume
3279 of Lecture Notes in Computer Science, pages 131–140.
Springer, 2004.

[9] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
IPTPS, volume 2735 of Lecture Notes in Computer Science,
pages 68–79. Springer, 2003.

[10] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. In Middleware, volume 2218 of Lecture Notes
in Computer Science, pages 329–350. Springer, 2001.

[11] T. Schütt, F. Schintke, and A. Reinefeld. Structured overlay
without consistent hashing: Empirical results. In CCGRID.
IEEE Computer Society, 2006.

[12] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable
transactional P2P key/value store. In ACM SIGPLAN Erlang
Workshop, 2008.

[13] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages 149–
160, 2001.

[14] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: Inex-
pensive membership management for unstructured p2p over-
lays. J. Network Syst. Manage., 13(2), 2005.

[15] S. Voulgaris, M. van Steen, and K. Iwanicki. Proactive
gossip-based management of semantic overlay networks.
Concurrency and Computation: Practice and Experience,
19(17):2299–2311, 2007.

[16] Y. Zhu and Y. Hu. Efficient, proximity-aware load balancing
for dht-based p2p systems. IEEE Trans. Parallel Distrib.
Syst., 16(4):349–361, 2005.

APPENDIX A. PUBLICATIONS

A.17 Node Placement in a Distributed Key/Value-

store

SELFMAN Deliverable Year Three, Page 546

Workload and Key Distribution Aware Node
Placement in a Distributed Key/Value-store

Mikael Högqvist and Nico Kruber

Zuse Institute Berlin
hoegqvist@zib.de kruber@zib.de

Abstract. Distributed key/value stores are a basic building block for
large-scale Internet services. Support for range queries introduces new
challenges to load balancing since both the key and workload distribution
can be non-uniform.
We build on previous work based on the power of choice to present
algorithms suitable for active and passive load balancing that adapt to
both the key and workload distribution. The algorithms are evaluated
in a simulated environment, focusing on the impact of load balancing on
scalability under normal conditions and in an overloaded system.

1 Introduction

Distributed key/value stores [1–3] are used in applications which require high
throughput, low latency and have a simple data model. Examples of such appli-
cations are caching layers and indirection services. Federated key/value-stores,
where the nodes are user contributed, require minimal management overhead for
the participants. Furthermore, the system must able to deal with large numbers
of nodes which are often unreliable and have varying network bandwidth and
storage capacities. In addition, centralized key/value-stores such as Berkeley DB
and Tokyo Cabinet provide both exact-match and range queries. We argue that
to provide increased flexibility for applications, their distributed counterparts
should do as well.

Ring-based Structured Overlay Networks (SONs) provide algorithms for node
membership (join/leave/fail) and to find the node responsible for a key within
O(logN) steps, where N is the number of nodes. One of the main advantages of
SONs for large-scale services is that each node has to maintain state of a small
number of other nodes, typically O(logN). SONs also define the partitioning
strategy for stored keys since a node is responsible for a distinct range of keys
in the ring.

At first glance SONs may therefore seem to be a good fit for distributed
key/value stores. However, the tight coupling between the overlay and data layers
in combination with the dynamic nature of user-donated nodes make the design
of the data storage layer especially challenging in terms of reliability and load
balancing.

The goal of load balancing is to improve the fairness in terms of storage
as well as network and CPU-time usage between the nodes. Imbalance mainly

occurs due to: 1) non-uniform key distribution, 2) skewed access frequency of
keys and 3) node heterogeneity. First, by supporting range-queries, an order-
preserving hash function is used to map keys to the overlay’s identifier space.
With a non-uniform key distribution a node can become responsible for an unfair
amount of items. Second, keys are typically accessed with different popularity
which creates uneven workload on the nodes. The third issue, node capacity
differences, also impacts the imbalance. For example, a low capacity node gets
overloaded faster than a high capacity node.

Our main contribution is a load balancing algorithm which is aware of both
the key distribution and the item load, i.e. used storage and access-frequency.
The algorithm has two modes: active, which triggers a node already part of the
overlay to balance with other nodes and passive, which places a joining node at
a position that reduces the overall system imbalance. In both the passive and
active mode, a set of nodes are sampled and the algorithm balance using the
node with the highest load.

Section 2 contains the model, assumptions and definitions that are used for
the load balancing algorithm presented in Section 3. In Section 4, we evaluate the
system using a simulated environment. Results from the simulation show that
the algorithm improves the load imbalance within a factor 6-12 in a system with
1000 nodes. In addition, we also show that load balancing reduces the storage
capacity overhead necessary in an overloaded system from a factor 10 to 8.

2 System Model

A DHT consists of N nodes and an identifier space in the range [0, 1). This
range wraps around at 1.0 and can be seen as a ring. A node, ni, at position
i has an identifier nIDi in the ID space. Each node ni has a successor -pointer
to the next node in clockwise direction, ni+1, and a predecessor -pointer to the
first counter-clockwise node, ni−1. The last node, nN−1, has the first node, n0 as
successor. Thus, the nodes and their pointers create a double linked list where
the first and last node are linked. We define the distance between two identifiers
as d(x, y) = |y − x| mod 1.0.

Nodes can fail and join the system at any time. When a node joins, it takes
over the range from its own ID to the predecessor of its successor. Similarly,
when a node ni fails, its predecessor becomes predecessor of ni’s successor.

Storage When a key/value-pair or item is inserted in the system it is assigned an
ID using an order-preserving hash-function in the same range as the node IDs,
i.e. [0, 1). Each node in the system stores the subset of items that falls within its
responsibility range. That is, a node ni is responsible for a key iff it falls within
the node’s key range (nIDi−1, n

ID
i].

Each item is replicated with a replication factor f . The replicas are assigned
replica keys according to symmetric replication where the identifier of an item
replica is derived from the key and the replica factor using the formula r(k, i) =
k+ (i− 1) ∗ 1

f mod N , k is the item ID and i is the ith replica [4]. An advantage

of symmetric replication is that the replica keys are based on the item key which
makes it possible to perform the look-ups in parallel instead of requiring a look-
up to the responsible node first like in successor-list replication [5].

A replica maintenance protocol ensures that a node stores the items and the
respective replicas it is responsible for. The protocol consist of two phases; the
synchronization phase and the data transfer phase. In the synchronization phase,
a node determines which items should be stored at the node and if they are not
stored, which replicas need to be retrieved. The retrieval is performed during the
data transfer phase by issuing a read for each item using the transaction layer. If
an item is busy in a concurrent write operation it is ignored and retrieved during
the next round of maintenance. While it is rather expensive to get all items in a
range it is only performed when a node joins or when its responsibility changes.

Load and Capacity Each node has a workload and a storage capacity. The work-
load can be defined arbitrarily, but for a key/value-store this is typically the
request rate. Each stored item has a workload and a storage cost. The workload
of a single node is the sum of the workload of the stored items. Note that a node
cannot store more items than its storage capacity allows. The workload, on the
other hand, is limited by for example bandwidth, and a node can decide if a
request should be ignored or not. We model the probability of a request failure
as P (fail) = 1 − 1

µ , where µ is the current node utilization, i.e. the measured
workload divided by the workload capacity.

Imbalance We define the system imbalance of a load attribute (storage or work-
load) as the ratio between the highest loaded node and the system average. For
example, for the storage, the imbalance is calculated as Lmax

Lavg
, if Lmax is the

maximum number of items stored by a node and Lavg is the average number of
items per node.

3 Load Balancing algorithm

The only way to change the imbalance in our model is to change the responsibility
of the nodes. A node’s responsibility changes either when another node joins
between itself and its predecessor, or when the predecessor fails. Thus, we can
balance the system either actively by triggering a node to fail and re-join or
passively by placing a new node at an overloaded node when joining. We first
present the load balancing algorithm followed by the placement function taking
both key distribution and workload into account.

The passive and active balancing algorithms presented in Figure 1 use only
local knowledge and can be divided into three parts. 1) sample a set of k random
nodes to balance with, 2) decide the placement of a potential new predecessor
and 3) select one of the k-nodes that improves the imbalance the most. We
assume that there is a join function which is used to join the overlay given an
ID. passive is called before a node is joining and active is called periodically.
active is inspired by Karger’s [6] balancing algorithm, but we only consider the

1 def placement () :
2 balanced ID = ⊥
3 c u r r e n t d i s t = ∞
4 for x in (nID

i−1, n
ID
i] :

5 d i s t = f(x)
6 i f d i s t < c u r r e n t d i s t :
7 balanced ID = x+ d(x, next(x))/2
8 c u r r e n t d i s t = d i s t
9

10 return balanced ID
11
12 def sample () :
13 samples = [(n . load () , n)
14 for n in random nodes (k)]
15 return max(samples)
16
17 def passive () :
18 (n load , n) = sample ()
19 j o i n (n)
20
21 def active () :
22 (n load , n) = sample ()
23 i f n load > l o c a l l o a d ∗ ε :
24 l eave ()
25 j o i n (n . placement ())

Fig. 1. Passive and Active load balancing

case where the node has a factor ε less load than the remote node. The ε is used
to avoid oscillations by creating a relative load range where nodes do not trigger
a re-join. sample calls a function random_nodes that uses a random walk or
generates random IDs to find a set of k nodes. The node with the highest load
is returned.

Placement Function

The goal of the placement function is to find the ID in a node’s responsibility
range that splits the range in two equal halves considering both workload and
key distribution. When defining the cost for a single load attribute, it is optimal
to always divide the attribute in half [7]. We use this principle for each attribute
by calculating the ratio between the range to the left of the identifier x and
the remaining range up to the node’s ID. The optimal position is where this
ratio approaches 1. A ratio therefore increases slowly from 0 towards 1 until the
optimal value of x is reached, and after 1 the value approaches the total cost for
the attribute.

First, let lr(a, b) =
∑items∈(a,b]
i=0 l(itemi) be a function returning the load of

the items in the range (a, b]. l(itemi) is the load of a single item and is defined
arbitrarily depending on the load attribute. Second, let ni be the node at which
we want to find the best ID, then the ratio function is defined as follows

r(x) =
lr(nIDi−1, x)
lr(x, nIDi)

The workload ratio, rw(x), could for example be defined using l(itemi) =
weight(itemi)+(rateaccess(itemi)×weight(itemi)). The weight is the total bytes
of the item and the access rate is estimated with an exponentially weighted mov-
ing mean. For the key distribution ratio, rks(x), the load function is l(itemi) = 1.
This means that rks(x) = 1 for the median element in ni’s responsibility range.
An interesting aspect of the ratio definitions is that they can be weighted in
order to ignore fast changing or load attributes taking on extreme values.

In order to construct a placement function acknowledging different load at-
tributes, we calculate the product of their respective ratio function. The point
x where this product is closest to 1 is where all attributes are being balanced
equally. Note that when it equals 1, it means that the load attributes have their
optimal point at the same ID.

The placement function we use here considers both the key-space and work-
load distribution and is more formally described as

f(x) = |1− rw(x)× rks(x)|
where x is the ID and nj is the joining node. The ratio product value

is subtracted from 1 and the absolute value of this is used since we are in-
terested in the ratio product value “closest” to 1. Finally, when the smallest
value of f(x) is found, a node is placed at the ID between the item, itemi

preceding x and the subsequent item, itemi+1. That is, the resulting ID is
itemID

i + d(itemID
i , itemID

i+1)/2.

4 Evaluation

This section present simulation result of the passive and active algorithms. The
goal of this section is to 1) show the effects of different access-load and key
distributions, 2) show the scalability of the balancing strategies when increasing
the system size and 3) determine the impact of imbalance in a system close to
its capacity limits. Table 1 summarizes the parameters used for the different
experiments.

Effect of Workloads In this experiment, we quantify the effect that different
access-loads and key distributions have on the system imbalance. The results
from this experiment motivate the use of a multi-attribute placement function.
Specifically, we measure the imbalance of the nodespace (ns), keyspace (ks) and
the access workload (w).

Nodes Items Replicas k MTTF Storage Capacity Item Size

Effect of Workloads 256 8192 3 7 ∞ ∞ 1

Network costs 256 8192 3 7 1h ∞ 1-1MB

Size of k 256 8192 3 0-20 1h ∞ 1

System size 64-1024 210-218 3 7 1h ∞ 1

Churn 256 8192 3 7 1h-1d ∞ 1

Overload 256 8192 3 7 1h 128 ∗ 7-1024 ∗ 7 1

Table 1. Parameters of the different experiments

(a) Uniform key distribution (b) Dictionary key distribution

Fig. 2. The effect of different access workloads and key distributions.

The simulation is running an active balancing algorithm with ε = 0.15, no
churn and 7 nodes are sampled for each balance operation. The system has 256
nodes and 214 items. Four different placement functions are used: 1) nodespace
places a new node in the middle between the node and its predecessor, i.e.
ni+

d(ni−1,ni)
2 . 2) keyspace places the node according to the median item, f(x) =

|1− rks(x)|. 3) workload halves the load of the node, i.e f(x) = |1− rw(x)| and
4) combined uses the placement function defined in section 3.

Workload is generated using three scenarios; uniform (u), exponential (e) and
range (r). In the uniform and exponential cases, the items receive a load from
either a uniform or exponential distribution at simulation start-up. The range
workload is generated by assigning successive ranges of items with random loads
taken from an exponential distribution.

From the results shown in Figure 2, we can see that the imbalance when
using the different placement strategies are very dependent on the load type.
Figure 2(a) clearly shows that a uniform hash-function is efficient to balance
all three metrics under both uniform and exponential workload. In the latter
case, this is because the items are assigned the load independently. However, for
the range workload, the imbalances are showing much higher variation depend-
ing on the placement function. We conclude that in a system supporting range

queries, the placement function should consider several balancing attributes for
fair resource usage.

Fig. 3. Imbalance when increasing the number of sampled nodes.

Size of k In this experiment, we try to find a reasonable value of the number
of nodes to sample, k. A larger k implies more messages, but also reduces the
imbalance more. The results in figure 3 imply that the value of k is important
for smaller values of between 2-10. However, the balance improvement becomes
smaller and smaller for each increase of k, similar to the law of diminishing
returns. In the remaining experiments we use k = 7.

Network costs We define cost as the total amount of data transferred in the
system up to a given iteration. This cost is increased by the item size each time
an item is transferred. Since there is no application traffic in the simulation
environment, the cost is only coming from replica maintenance. That is, item
transfers are used to ensure that replicas are stored according to the current
node responsibilities. Active load balancing creates traffic when a node decides
to leave and re-join the system.

We measure the keyspace imbalance and the transfer cost at the end of the
simulation, which is run for 86400s (1 day). Each simulation has 8192 items with
7 replicas and the size of the items is increased from 210 to 220. The item size
has minor impact on the imbalance (Fig. 4(a)). Interestingly, the overhead when
using the hash-based balancing strategy as a reference, of active+passive (a+p
in the figure) and active is 5-15% (Fig. 4(b)). The passive strategy does not
show a significant difference. Noteworthy is also that in a system storing around
56 GB of total data (including replicas), over 1 TB is transferred. This can be
explained with the rather short node lifetime of 3600s.

Churn A node joining and leaving (churn) changes the range of responsibility
for a node in the system. Increasing the rate of churn influences the cost of

(a) Imbalance vs. Item size (b) Transferred bytes

Fig. 4. Imbalance and cost of balancing for increasing item size.

replica maintenance since item repairs are triggered more frequently. In this
experiment, we quantify the impact of churn on transferred item cost and the
storage imbalance.

In figure 5(a) the MTTF is varied from 1 to 24 hours. As expected the amount
of data transferred is decreasing when the MTTF is increasing. Also as noted
in the network costs experiment, the different schemes for load balancing have a
minor impact on the total amount of transferred data. The overall data transfer
costs are still significant compared to the amount of stored data (8192b * 7
replicas). With an MTTF of 1 day, the system still transfers more data than is

being stored. This is no surprise since for each node leaving the system,
∑

items

N

items are transferred on average. Similarly, when a node joins,
∑

items

2∗N items are
transferred on average. Figure 5(b) shows that churn has in principle no impact
on the imbalance for the different strategies. This is also the case for the passive
approach which only relies on churn to balance the system.

(a) Bytes transferred with increasing
MTTF

(b) Imbalance with varying MTTF

Fig. 5. Imbalance and network cost for varying levels of churn (MTTF).

(a) Increasing nodes and items (b) Capacity

Fig. 6. Imbalance of the system using different balancing strategies while increasing
the system size. The right figure shows the influence of load balancing in an overloaded
system.

System size The imbalance in a system with hash-based balancing was shown
theoretically to be bounded by O(logN), where N is the number of nodes in the
system [8]. However, this assumes that both the nodes and the keys are assigned
IDs from a hash-function. In this experiment, we try to determine the efficiency
of the placement function with an increasing number of nodes and items.

We measure the keyspace imbalance for an increasing number of nodes be-
tween 25 and 210. In addition, for each system size we run an experiments with
an increasing number of items from 210 to 219. Keys are generated from a dic-
tionary and nodes are balanced using the combined placement function. Each
node has a Mean Time to Failure (MTTF) of 1 hour drawn from an exponential
distribution and each item is replicated three times. Four different balancing
strategies are compared; 1) IDs generated by a uniform hash-function 2) active
without any passive placement, 3) passive without any active and 4) active and
passive together (a+p). For the last three, 7 nodes are sampled when selecting
which node to join at or wether to balance at all.

Figure 6(a) shows that the hash-based approach performs significantly worse
with an imbalance up to 6-12 times higher compared to the other balancing
strategies. Interestingly, the difference in load imbalance when varying the num-
ber of items is also growing with larger system sizes, being around a factor of 2
with 1024 nodes. All three of the balancing strategies show similar performance.
The imbalance grows slowly with increasing system size and the difference for
different number of items is small. Thus, we draw the conclusion that these
strategies are only minimally influenced by system size and number of items.
However, note that we need to perform further experiments varying other pa-
rameters such as k to validate these results.

Overload In a perfectly balanced system where at most one consecutive node
can fail, nodes can use at most up to 50% of their capacity to avoid becoming
overloaded when a predecessor fails. This type of overload leads to dropped write

requests when there is insufficient storage capacity and dropped read request
with insufficent bandwidth and processing capacity. Since a replica cannot be
recreated when a write is dropped, this influences the data reliability. The goal
of this experiment is to better understand the storage capacity overhead to avoid
dropped writes.

We start the experiment such that the sum of the item weights equals the
aggregated storage capacity of all nodes. Then by increasing the node’s storage
capacity we decrease their fill-ratio and thereby the probability of a dropped
write. The system is under churn and lost replicas are re-created using a replica
maintenance algorithm executed periodically at each node. The y-axis in Fig-
ure 6(b) shows the fraction of dropped write requests and the x-axis shows the
storage capacity ratio. We don’t add any data to the system which means that
a write request is dropped when a replica cannot be created at the responsible
node because of insufficient storage capacity. We measured the difference with
hash-based balancing vs. the active and active-passive with 7 random nodes and
the combined placement function.

Figure 6(b) shows that a system must have at least 10x the storage capacity
over the total storage load to avoid dropped write requests when using hash-
based balancing. Active and active-passive delays the effect of overload and a
system with at least 8x storage capacity exhibits a low fraction of dropped
requests.

5 Related Work

Karger et al. [6] and Ganesan et al. [9] both present active algorithms aiming at
reducing the imbalance of item load. Karger uses a randomized sampling-based
algorithm which balances when the relative load value between two nodes differs
by more than a factor ε. Ganesan’s algorithm triggers a balancing operation
when a node’s utilization exceeds (falls below) a certain threshold. In that case,
balancing is either done with one of its neighbors or the least (most) loaded node
found. Aspnes at al. [10] describe an active algorithm that categorizes nodes as
closed or open depending on a threshold and groups them in a way so that
each closed node has at least one open neighbor. They balance load when an
item is to be inserted into a closed node that cannot shed some of its load to
an open neighbor without making it closed as well. A rather different approach
has been proposed by Charpentier et al. [11] who use mobile agents to gather
an estimate of the system’s average load and to balance load among the nodes.
Those algorithms however do not explicitly define a placement function or use a
simple “split loads in half” approach which doesn’t take several load attributes
into account.

Byers et. al. [12] proposed to store an item at the k least loaded nodes out of
d possible. Similarly, Pitoura et al. [13] replicate an item to k of d possible identi-
fiers when a node storing an item becomes overloaded (in terms of requests). This
technique, called the “power of two choices” was picked up by Ledlie et. al [14]
who apply it to node IDs an use it to address workload skew, churn and het-

erogeneous nodes. With their algorithm, k-Choices, they introduce the concept
of passive and active balancing. However, their focus is on virtual server-based
systems without range-queries. Giakkoupis and Hadzilacos [15] employ this tech-
nique to create a passive load balancing algorithm including a weighted version
for heterogeneous nodes. There, joining nodes contact a logarithmic (in system
size) number of nodes and choose the best position to join at. Their focus on
the other hand is on balancing the address-space partition rather than arbitrary
loads. Manku [16] proposes a similar algorithm issuing one random probe and
contacting a logarithmic number of its neighbors. An analysis of such algorithms
using r random probes each followed by a local probe of size v is given by Ken-
thapadi and Manku [17]. However, only the nodespace partitioning is examined.

In Mercury [18] each node maintains an approximation of a function describ-
ing the load distribution through sampling. This works well for simple distribu-
tions, but as was shown in [19] it does not work for more complex cases such as
file-names. Instead, [19] introduces OSCAR where the long-range pointers are
placed by recursively halving the traversed peer population in each step. Both
OSCAR and Mercury balance the in/out-degree of nodes. While this implies that
the routing load in the overlay is balanced, it does not account for the placement
of nodes according to item characteristics.

6 Conclusions

With the goal of investigating load balancing algorithms for distributed key/value-
stores, we presented an active and a passive algorithm. The active algorithm is
triggered periodically, while the passive algorithm uses joining nodes to improve
system imbalance. We complement these algorithms with a placement function
that splits a node’s responsibility range according to the current key and work-
load distribution. Initial simulation results are promising showing that the sys-
tem works well under churn and scales with increasing system sizes. Ongoing
work include quantifying the cost of the algorithms and their implementation
within a prototype key/value-store.

Acknowledgments This work is partially funded by the European Commission
through the SELFMAN project with contract number 034084.

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP, ACM (2007) 205–220

2. Rhea, S.C., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S.,
Stoica, I., Yu, H.: Opendht: a public dht service and its uses. In Guérin, R.,
Govindan, R., Minshall, G., eds.: SIGCOMM, ACM (2005) 73–84

3. Reinefeld, A., Schintke, F., Schütt, T., Haridi, S.: Transactional data store for
future internet services. Towards the Future Internet - A European Research
Perspective (2009)

4. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-
peer systems. In: DBISP2P. (2005) 74–85

5. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM.
(2001) 149–160

6. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: IPTPS. Volume 3279 of Lecture Notes in Computer Science., Springer
(2004) 131–140

7. Wang, X., Loguinov, D.: Load-balancing performance of consistent hashing: asymp-
totic analysis of random node join. IEEE/ACM Trans. Netw. 15(4) (2007) 892–905

8. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: ACM Symposium on Theory of Computing. (May
1997) 654–663

9. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: VLDB, Morgan Kaufmann
(2004) 444–455

10. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-
queriable data structures. In: PODC. (2004) 115–124

11. Charpentier, M., Padiou, G., Quéinnec, P.: Cooperative mobile agents to gather
global information. In: NCA, IEEE Computer Society (2005) 271–274

12. Byers, J.W., Considine, J., Mitzenmacher, M.: Simple load balancing for dis-
tributed hash tables. In: IPTPS. Volume 2735 of Lecture Notes in Computer
Science., Springer (2003) 80–87

13. Pitoura, T., Ntarmos, N., Triantafillou, P.: Replication, load balancing and efficient
range query processing in dhts. In Ioannidis, Y.E., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C., eds.:
EDBT. Volume 3896 of Lecture Notes in Computer Science., Springer (2006) 131–
148

14. Ledlie, J., Seltzer, M.I.: Distributed, secure load balancing with skew, heterogeneity
and churn. In: INFOCOM, IEEE (2005) 1419–1430

15. Giakkoupis, G., Hadzilacos, V.: A scheme for load balancing in heterogenous
distributed hash tables. In Aguilera, M.K., Aspnes, J., eds.: PODC, ACM (2005)
302–311

16. Manku, G.S.: Balanced binary trees for id management and load balance in dis-
tributed hash tables. In: PODC. (2004) 197–205

17. Kenthapadi, K., Manku, G.S.: Decentralized algorithms using both local and ran-
dom probes for p2p load balancing. In Gibbons, P.B., Spirakis, P.G., eds.: SPAA,
ACM (2005) 135–144

18. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM, ACM (2004) 353–366

19. Girdzijauskas, S., Datta, A., Aberer, K.: Oscar: Small-world overlay for realistic
key distributions. In: DBISP2P. (2006) 247–258

APPENDIX A. PUBLICATIONS

A.18 Security issues in small world network

routing

SELFMAN Deliverable Year Three, Page 559

Security Issues in Small World Network Routing

Felix Halim, Yongzheng Wu, Roland H.C. Yap
School of Computing, National University of Singapore

Law Link, Singapore
{halim,wuyongzh,ryap}@comp.nus.edu.sg

Abstract

Small World Network (SWN) have been shown to be nav-
igable — a short route can be found using efficiently using
decentralized algorithms. This routing relies on nodes hav-
ing a position to guide the routing such as its coordinates.
Even in the absence of positional information such as node
coordinates, by using local self-reorganization, it is possi-
ble to reconstruct a proxy for the node coordinates which
still allows for efficient routing. This paper shows that in the
presence of malicious nodes, the self-reorganization mech-
anism breaks down. We investigate self-protection mecha-
nisms for such SWNs. Preliminary results using a simple
restart mechanism for self-tuning shows that much of the
effect of malicious nodes can be mitigated.

1. Introduction

Structured Overlay Networks such as Distributed Hash
Tables (DHT) provide a self organization network layer
which can be used for communication and storage. There
has been extensive work on DHTs such as Chord, Pastry,
CAN, Kademlia, DKS, etc [1]. However, DHTs have to
deal with the maintenance costs of dealing with dynamin-
ism (churn) and be attacked in a variety of ways. Perhaps
the worst problem is that in P2P settings, it is difficult to
defend against Sybil attacks [3].

Small World Networks (SWN) presents an interesting al-
ternative to self organizing networks. SWN are networks
characterized by “small world phenomena”. Perhaps, the
best example is the idea of “six degrees of separation”, that
any two persons can be linked through a chain of acquain-
tances whose path length is at most six. Two important
properties of SWN are navigability, being able to route or
find information, and low diameter (which accounts for the
six in six degrees). The success of social networking web-
sites such as Facebook, LinkedIn, MySpace, etc. are possi-
bly driven also by such small world properties.

One question is given a SWN, how to efficiently navi-

gate the graph, i.e. how to efficient route a message between
any two nodes in the graph. Kleinberg [2] proposes a SWN
model which is inspired by the Watts-Strogatz model [5].
Starting with a graph which is a lattice, e.g. a 2-D grid, add
for each node, a constant number of shortcut edges to other
edges with probability proportional to d(u, v)−r where d()
is the distance function giving the Manhattan distance be-
tween nodes in the lattice. Note that the distribution of
shortcut nodes follows a power law distribution. Kleinberg
shows that greedy routing, thus using only local operations,
is efficient with an expected route length of O(log2n) hops
where n is the number of nodes in the graph.

In a P2P setting, efficient decentralized routing algo-
rithms using only local information is attractive. How-
ever, the assumption in the Kleinberg model that nodes have
knowledge of their own location (e.g. lattice coordinates)
is rather strong. However nodes or peers may not know
their position information which can be thought of as global
rather than local information. This would suggest routing
difficulties even with a SWN and a low graph diameter.

Sandberg [4] proposed a way around this difficulty.
Nodes have a position but this may be incorrect, so a con-
tinuous self-tuning approach is used to correct the posi-
tion. Each node performs a fixed length random walk. The
nodes at both ends of the random walk can decide to switch
their positions to maximize the maximum likelihood that
the node positions follow the edge distribution in the Klein-
berg model. This can be achieved by minimizing the prod-
uct of edge distances. The self tuning employed is some-
what analogous to self stabilization in DHTs but it can be
thought of as reordering nodes around the graph.

In this paper, we show that routing and self-tuning strat-
egy used by Sandberg breaks down when there are mali-
cious nodes which can infect nodes with invalid positions.
We discuss some attacks by malicious nodes and investi-
gate self-protection strategies. We investigate a simple self-
healing strategy where nodes reset themselves with a cer-
tain probability. Preliminary results show that without self-
protection, a few malicious nodes will be able to infect the
whole network. Self-healing protection using decentralized

local reset of node position is able to reduces the percentage
of nodes infected. While this is not a complete solution, it
means that the effect of malicious nodes can be mitigated to
some extent.

2. Malicious Nodes and Self-Protection

The self-tuning in Sandberg assumes all nodes are good.
If there are malicious nodes in the network, they can attack
self-tuning by lying about their neighbors positions. This
results in a malicious node being able to disseminate false
position information which in turn affects the self-tuning
and routing algorithms. Malicious nodes can also collude
which makes it harder to detect such cheating.

After switching position with a good node, the malicious
node has the good node’s position and can reset it to a par-
ticular position X . After a while, there will be many good
nodes having position X . However, duplicate positions can
be detected once the nodes contact each other. One way
to recover from duplicate position is to reset to a random
position once duplicate is detected.

Another attack is to reset to a position close to X , so
that, after a while, many good nodes are concentrated near
X . This has two effects: firstly, nodes which are not near
X will have high load; secondly, routing success rate will
drop. Fig. 1 shows the success rate drops below 20%.

A decentralized self-protection strategy which doesn’t
need global information is for nodes to reset/restart their
position with a certain probability. For simplicity, we can
consider that the node restart decision occurs in rounds, a
round is the time unit when all nodes decided whether or not
they switch with another node. The restart probability can
be calculated from different measures observed locally on
each round (such as the density of the position distribution,
the successful routes percentage, the switch percentage).

A malicious node succeeds when it switches with a good
node. Thus it poisons a good node, infect good node with
a false position. Fig. 1 shows that without self-protection
(Without Restart), the entire network can be poisoned.

3 Experimental Results

We give some initial experiments to demonstrate the ef-
fect of malicious nodes and the effectiveness of the restart
strategy. Our initial experiments focus on malicious nodes
which attack by actively perform random walks to good
nodes to infect them. Fig. 1 shows experimental results
with 105 nodes in the SWN, the random walk length is 8
(same as [4]). The graphs show the percentage of success-
ful routing, infected nodes and node switching over time.
Without self-protection, all nodes will eventually become
infected (Without Restart % Infected) and number of suc-
cessful routes drop significantly (% Success Route). With

Figure 1. SWN with 0.1% malicious nodes and self-
healing protection strategy with reset probability 0.008.

the restart strategy, successful routing can be maintained
around 80% (without malicious nodes, convergence is rapid
and routing success is > 90% after ∼ 100 rounds), the in-
fection rate is contained to about 10%.

4. Discussion

We show that the self-tuning which allows a small world
network to function with decentralized routing fails when
there are malicious nodes. Thus, self-protection mech-
anisms are necessary. Our preliminary experiments us-
ing self-protection using a self-healing strategy with par-
tial restart shows that simple decentralized security mech-
anisms have promise. We observe that: i) without protec-
tion, all nodes will be eventually infected by even a sin-
gle malicious node; ii) a small number of malicious nodes
require a small restart probability, while more malicious
nodes require larger restart probability. For more informa-
tion and experimental results, see: http://www.comp.
nus.edu.sg/˜halim/drswn

References

[1] S. El-Ansary and S. Haridi. An overview of structured overlay
networks. In Handbook on Theoretical and Algorithmic As-
pects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks.
Auerbach, 2005.

[2] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. ACM Symp. on Theory of Computing, 2000.

[3] B. Levine, C. Shields, and N. Margolin. A survey of solu-
tions to the sybil attack. Technical Report 2006-052, U. of
Massachusetts Amherst, 2006.

[4] O. Sandberg. Distributed routing in small-world networks.
Workshop on Algorithm Engineering and Experiments, 2006.

[5] D. J. Watts and S. H. Strogatz. Collective dynamics of small-
world networks. Nature, pages 440–442, 1998.

APPENDIX A. PUBLICATIONS

A.19 Small world networks as (semi)-structured

overlay networks

SELFMAN Deliverable Year Three, Page 562

Small World Networks as (Semi)-Structured Overlay Networks

Felix Halim, Yongzheng Wu, Roland H.C. Yap
School of Computing

National University of Singapore
Law Link, Singapore

{halim,wuyongzh,ryap}@comp.nus.edu.sg

Abstract

Recent research has shown that Small World Network
(SWN) is navigable. In this position paper, we propose that
SWN, for example those which are social networks, have
nice properties which make them attractive as overlay net-
works. Such networks occupy a space between structured
and unstructured overlay networks. Our thesis is that SWN
may be attractive enough to be a replacement for tradi-
tional structured overlay networks which are usually based
on Chord-style Distributed Hash Tables. Preliminary ex-
periment results show that without node failure, the perfor-
mance of greedy routing in SWN works very well and with
additional links in SWN the robustness in routing can be
improved as well as the resilience against node/link failure.

1. Introduction

In the peer-to-peer (P2P) system, the overlay networks
are divided into two realms: unstructured and structured.
The unstructured overlay networks have the simplicity in
maintenance but very poor in routing (to find a node or
an item, flooding is required) and scalability issues. In the
next generation of P2P system, the structured overlay net-
works (SON), the scalability and the routing problems are
addressed. Each node only requires small amount of routing
table information O(log n) (depending on the overlay net-
work topology) to route to any node efficiently O(log n).
However, in order to keep the high performance, the con-
sequence is the cost of maintaining the network topology.
Another problem is that in a P2P setting, both structured
and unstructured overlay networks are vulnerable to Sybil
attacks.

There is another approach that has a potential to address
the above issues: the Small World Network (SWN). The
SWN resembles a SON but it has less structure.

Figure 1. SON, SWN, and Random Network

Figure 1 shows the structure of the graphs for a SON1,
a SWN, and a Random Network. All the graphs have the
same number of nodes and links. The leftmost graph is a
SON (in this case a Chord ring [18]) where the links are
very structured with distance in the form of 2i. The middle
graph is a SWN where the links are created according to
power-law distributions. The graph is more relaxed and less
structure. However, it has a high clustering coefficient, low
diameter [19], and has been shown to be navigable [6] (that
is, short-paths can be found between any two nodes in a
few steps O(log2 n)). The rightmost graph is a Random
Network where the links are randomly connected between
any two nodes. Although each of the three graphs has the
same number of nodes and edges, they look rather different
because of how they are structured.

There are a number of research papers which look at
SWN: [19] described characteristics of SWN as a net-
work with low diameter and high clustering coefficient,
[12] described a number of SWN models, [6] showed that
SWN are navigable, and many following works of SWN
[11, 7, 4, 15, 17, 21, 14, 13].

We are arguing whether a highly structured overlay
is needed. SWN is in-between SON and random net-
works thus making it as a semi-structured overlay network
(SSON). In this paper, we take the position that SWN as
SSON can be a potential replacement for SON.

1Since n is not a power of two, the longest edges do not cross the center.

1.1 Outline

Section 2 explains the issues with SON (the various
problems and attempts in the literature) Section 3 briefly
introduce the background of SWN and related works. Sec-
tion 4 shows some preliminary results which explain why
we think SWN as Semi-Structured Overlay Network is
promising. Finally, Section 5 concludes.

2. SON Issues

SON (also the unstructured one) suffers from the Sybil
attack [3]. A Sybil attack is an attack where an attacker can
present multiple identities, and uses them gain a dispropor-
tionately large influence in the system. Many SONs assume
an upper bound on the fraction of malicious nodes. For ex-
ample, the success rate of a 5-hop route is larger than 77%
if the fraction of malicious nodes is less than 5%. How-
ever, when under a Sybil attack, a single attacker can create
a large number of malicious nodes, and thus breaks the as-
sumption.

Levine et al. [8] surveyed 90 papers on Sybil attack and
categorized them into eleven categories. Approximately
half of the published papers either suggest certification as
a solution to the Sybil attack, following Douceur’s [3] ap-
proach, or simply state the problem without giving a solu-
tion. He concluded that there is no general solution to the
Sybil attack, but there are a variety of solutions that can
limit or prevent the attack in several individual application
domains.

Yu et al. [20] shows that under the assumption that a ma-
licious user has limited social connections, the Sybil attack
can be limited. Their protocol limits the number of Sybil
nodes to log n per attack edge. An attack edge is a social
connection from an attacker to an honest user. This means
Sybil attack is much less effective in social networks.

Study [10, 9, 16] shows that SON incurs communication
cost during churn (nodes join/leave) to maintain its struc-
ture. However, social network is more static comparing to
SON, because the frequency of people making friends is
smaller than the frequency of nodes joining/leaving. This
means social networks have less communication cost to
maintain its structure.

3. Background

In this section we briefly give an overview of SWN: the
motivation, some SWN models, the strengths and guaran-
tees, an example of SWN, and related work.

3.1 Small World Network

A Small World phenomenon first experimented by Stan-
ley Milgram showing that the chain of social acquaintances
required to connect one arbitrary person to another arbitrary
person anywhere in the world is generally short (this is the
origin of the phrase “six degrees of separation” and con-
cepts such as Erdos number).

The definition of a ”small-world” networks (SWN) was
first introduced by Watts and Strogatz [19]. The SWN is
created from a regular graph where each node is connected
with k-nearest neighbors. Then each links are rewired to
other nodes at random with probability p. As shown in
[19], with p ≈ 0.01, the resulting graph has small diam-
eter and high clustering coefficient. If p = 1 then all links
are rewired at random thus creating a random graph.

A random graph from routing stand point is like a com-
pletely unstructured network which has problems in navi-
gability (finding short paths between any two nodes). Cur-
rently, the best way to do routing in unstructured network
is by flooding which consumes a lot of network resources
and bandwidth as in Gnutella-based systems. Although im-
provements can be made out of the system, the solution can
be rather complex by using topology adaptation, active flow
control, one-hop replication, and biased random walks [1].

However, for a SWN there exists a simple decentralized
algorithm, shown by Jon Kleinberg [6], that can route be-
tween any two nodes in SWN with expected routing length
of O(log2 n), thus made SWN navigable.

In this position paper, we are interested in one example
of SWN, a Social Network. A Social Network has the abil-
ity to self-organize such that the resulting network forms a
small-world which has high clustering coefficient, low di-
ameter, and navigable [2]. Moreover, in a Social Network,
the identities of the nodes are verified by their neighbors
directly so the significance of Sybil attack is minimized.
For example, in a social networking site (such as Facebook,
Friendster, LinkedIn, etc...), we usually verify the identity
of the people who are requesting to be our friends, so it is
very hard to create many virtual identities in a Social Net-
work. In the remaining sections of the paper, the Social
Network is referred to as SWN or a Semi-Structured Over-
lay Network (SSON).

3.2 Related Work

Hui et al. [5] constructed a Small World Overlay Pro-
tocol to investigated the behavior of structured P2P net-
work under flash crowds, improved the object lookup per-
formance, and handled heavy object lookup by exploiting
the high clustering coefficient. This work is related with this
paper in terms of showing that SWN can also work under
flash crowds, while our work investigates SWN in terms of

node/link failure (churn), routing length performance, and
routing robustness.

4 Towards SWN as a SSON

SON is used in a dynamic environment where conditions
like with churn, node failures can happen. So, we would
like to test using the same environment in SSON. In this sec-
tion, we will test SSON behavior in dynamic environments.
Empirical tests show that good performance is feasible and
that provides evidence that SWN may be viable as SSON.

4.1 SWN Testbed and Simulator

As part of the SELFMAN project to investigate self
properties, we have built a simulator and testbed for exper-
imenting with SWNs.

The simulator interface is shown in Figure 2. The testbed
contains a number of generators for SWNs and also SONs.
It has a simulator which monitors routing performance (av-
erage routing hops), routing hops percentiles, success per-
centage (showing how many percent of the routing are suc-
cessful), node positions (visualized as a ring), and other
statistical distributions such as hop-counts, edge-distance,
edge-count, etc. The simulator allows us to easily build
new SWN algorithms and experiment with them. The SWN
testbed GUI has extensive use of visualization and anima-
tion which are useful for understanding performance of the
SWN. To handle large networks, we have a parallel version
of the simulator which runs on our cluster. We have run
networks up to 100000 nodes and depending on the type of
experiment, typically these take between 1 minute to under
an hour. Thus, our SWN testbed platform can handle real-
istic network sizes.

4.2 Simulator Settings

We experimented three SWN models: Kleinberg, Nor-
mal, and Sandberg. In Kleinberg model [6], the SWN are
constructed from regular graph (k-nearest neighbor) with
two long range contacts (shortcut links) where two nodes
u and v are connected with probability proportional to
d(u, v)−r where d() is the distance function between the
two nodes. Routing in this graph is possible using only local
decision which usually called a ”greedy routing”. The rout-
ing only needs the coordinates of their neighbors and the
target node in order to route. No other global information
or states are needed to do the routing. In Kleinberg model,
the routing between any two nodes are expected to complete
in O(log2 n). The graph of Normal model is constructed by
taking the Kleinberg model and add more shortcut links up
to log n links to mimic DHT (such as Chord). The graph of

Sandberg model further add the number of links to 6 log n.
All graphs are of one dimensional ring-like structure.

The three SWNs models are generated each with 100K
nodes with a number of links according to each model. The
graphs then are analyzed by running 10K routing tests. The
routing is the greedy routing which only uses local informa-
tion, that is by passing the message to the closest node to the
target node. In case if a cycle is detected, or a node failed,
or a link failed, the cost of 2 hops will be added to total hops
and the message will be bounced back to the previous node
and then it will be routed to the next closest neighbor and
so on. If the total hops reaches more than log2 n or no pre-
vious nodes can find any next neighbor then the routing is
considered as failed. The routing tests only consider nodes
that are not failed or leaved.

4.3 Preliminary Results

Preliminary results show that routing works rather well,
it appears better than expected given the fact that the theo-
retical results are only probabilistic.

Figure 3. Routing Length Distributions

When there are no failures involved, we observed 100%
success rate in the routing tests. Figure 3 shows the rout-
ing length distribution for Kleinberg, Normal, and Sandberg
models under no node failures. In the Kleinberg model, the
deviation in routing length is quite high (the routing tests
completed in between 1 to 84 hops). However, all of them
manages to complete below log2 100000 = 275 hops. In
the Normal model, the deviation is smaller (the routing tests
completed in between 1 to 31 hops). This shows that by
having more edges, the routing lengths get shorter. In the
Sandberg model, the deviation is very small (the routing
tests are completed in from 1 to 10 hops) which means it’s

Figure 2. SWN Simulator Interface

very consistent in routing. Most of the routing tests only
require 5 hops to complete.

Figure 4. Comparisons between 3 models

Figure 4 shows the comparison between the 3 SWN
models in terms of their resilience against node/link failure
(churn). Node failure is equivalent to as having all links to
the node failed where link failure is only a fraction of links
of a node failed. In Kleinberg model, it can be seen that link
failure is less damage than node failure. Since Kleinberg
only has 2 additional links, it’s very vulnerable to node/link
failure. The success percentage drops below 50% with only
15% of node failure or with 40% of link failure. In Normal
model, with log n shortcuts instead of 2 constant additional
shortcuts, the robustness increases. The success percentage
drops below 50% with 60% of node failure or with 70%

of link failure. In Sandberg model, with 6 log n shortcuts,
the success percentage drops below 50% with 88% of node
failure or with 78% of link failure. This is shows that by
having more edges, the resilience against node/link failure
increases but there is a strange behavior: the link failure
does more damage than node failure. This merits further
investigation.

In Chord, the routing is using 100% greediness that is
by routing to the neighbor which is the closest to the target
node. Hence the performance of Chord is expected be sim-
ilar to the SWN Normal model above with log n neighbors.
To measure the robustness of a routing, the greediness of
the routing algorithm is tuned. Less greedy means we can
have more routing alternative (by not picking the best one).
By having more alternative, the routing can withstand from
node failure. We defined a greedy routing with a greediness
probability G which means with probability G the closest
node (in the neighbors) to the destination will be picked to
route the message. If failed then the next closest node will
be picked with probability G, and so on. If the greediness
probability G is very low, then the neighbor will be selected
at random.

Figure 5 shows the effect of greediness in routing. In
Kleinberg model where the number of edges is very few,
greediness affects a lot on routing success percentage. As
the number of edges increases to log n in Normal model
the success percentage increases. With even more links
(6 log n) as in Sandberg model, the routing can achieve a
good success percentage even with very low greediness.

Figure 5. Greediness

5. Conclusion

In the experiments, the number of edges plays an impor-
tant role in the robustness of routing performance as well
as the resilience against node/link failure. In highly struc-
tured SON such as Chord the number links are the same
for all nodes thus are not flexible and needs a high mainte-
nance costs especially with larger links. In SWN the edges
are flexible (nodes are free to choose how many edges they
want) and the maintenance are cheap (they tend to self-
organize like Social Network, the nodes choose their friends
manually and not controlled by the system). In terms of
node identity, SWN can be thought as ”full” of identities
since the identities of the nodes that join into the network
are verified by their friends thus minimizing the impact of
Sybil attack. We argued that SON has many drawbacks that
can be covered by SWN strengths. Preliminary results sug-
gest that a SWN are quite efficient and thus able to function
as a SON replacement. By increasing the number of edges,
a SWN can also be made more robust but not have the draw-
backs of SON in maintaining a large routing table.

Acknowledgements

We acknowledge the support of project SELFMAN (con-
tract number: 034084)

References

[1] Y. Chawathe. Making gnutella-like p2p systems scalable.
2003.

[2] A. Clauset and C. Moore. How do networks become navi-
gable? Technical Report, 2003.

[3] J. R. Douceur. The sybil attack. 1st International Workshop
on Peer-to-Peer Systems, 2002.

[4] P. Fraigniaud. Small worlds as navigable augmented net-
works: Model, analysis, and validation. European Sympo-
sium on Algorithms, 2007.

[5] K. Y. K. Hui, J. C. S. Lui, and D. K. Y. Yau. Small
world overlay p2p networks. The Twelfth IEEE International
Workshop on Quality of Service, 2004.

[6] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. 32nd ACM Symposium on Theory of Comput-
ing, 2000.

[7] R. Kumar, D. Liben-Nowell, and A. Tomkins. Navigating
low-dimensional and hierarchical population networks. Eu-
ropean Symposium on Algorithms, 2006.

[8] B. Levine, C. Shields, and N. Margolin. A survey of solu-
tions to the sybil attack. Tech report 2006-052, University of
Massachusetts Amherst, 2006.

[9] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek.
Comparing the performance of distributed hash tables under
churn. 2004.

[10] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil.
A performance vs. cost framework for evaluating dht design
tradeoffs under churn. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM
2005), 2005.

[11] C. Martel and V. Nguyen. Analyzing kleinberg’s (and other)
smallworld. Principles of Distributed Computing, 2004.

[12] M. E. J. Newman. Models of the small world (a review). J.
Stat. Phys., 101, 2000.

[13] V. Nguyen and C. Martel. Analyzing and characterizing
small-world graphs. Symposium on Discrete Algorithms,
2005.

[14] V. K. Nguyen. Small-world graphs: Models, analysis and
applications in network designs. Dissertation of graduate
studies, 2006.

[15] A. Ohtsubo, S. Tagashira, and S. FUJITA. A content
addressable small-world network. International Multi-
Conference: parallel and distributed computing and net-
works, 2007.

[16] S. Rhea, D. Geels, T. Roscoe, , and J. Kubiatowicz. Han-
dling churn in a dht. Proceedings of the USENIX Annual
Technical Conference, June 2004., 2004.

[17] O. Sandberg. Distributed routing in small-world networks.
The Eighth Workshop on Algorithm Engineering and Exper-
iments, 2006.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. Special Interest Group on Data
Communications, 2001.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of small-
world networks. Nature: Macmillan Publishers Ltd, 1998.

[20] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit:
A near-optimal social network defense against sybil attacks.
Proceedings of the IEEE Symposium on Security and Pri-
vacy, 2008.

[21] J. Zeng and W.-J. Hsu. Optimal routing in a small-world net-
work. Sixth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, 2005.

APPENDIX A. PUBLICATIONS

A.20 Wiki credibility enhancement

This is a preliminary draft of the paper accepted at the WikiSym 2009 con-
ference.

SELFMAN Deliverable Year Three, Page 568

Wiki Credibility Enhancement

Felix Halim, Wu Yongzheng, Roland Yap
School of Computing

National University of Singapore
13 Computing Drive

Singapore
{halim,wuyongzh,ryap}@comp.nus.edu.sg

ABSTRACT
Wikipedia has been very successful as an open encyclopedia
which can be edited by anybody. However, the anonymous
nature of Wikipedia means that readers may have less trust
since there is no way of verifying the credibility of the au-
thors or contributors. We propose to transfer external infor-
mation from outside Wikipedia to Wikipedia pages. These
additional information is meant to enhance the credibility
of the content. For example, it could be the education level,
professional expertise or affiliation of the author. We do
this while maintaining anonymity. In this paper, we present
the design and architecture of such system together with a
prototype.

1. INTRODUCTION
Wikipedia is perhaps one of the most successful efforts to
create collaborative content. It is an encyclopedia covering
a wide range of knowledge to exploit the “wisdom of the
crowds” and to which anybody can contribute. Arguably,
the success of Wikipedia is due to its open and self-policing
nature. Anonymity is also a key feature – anybody can
create an online persona with an account, or alternatively,
the IP address is used.

One of the criticisms of Wikipedia is that the material is
written by “anonymous strangers of unknown qualifications”
[6]. Consider an entry on a technical subject, say a medi-
cal article, one might prefer an article written by a qualified
physician. In this paper, we propose to enhance the credi-
bility of the information contained in Wikipedia.

Consider the following scenario. The ACM maintains a com-
prehensive library of computer science publications with au-
thor information. If a contributor to a computer science
Wikipedia article has credentials such as published in x
ACM conferences and journals or affliation being MIT, this
adds additional information about the credibility of an au-
thor. We call such information, credibility information. In
Wikipedia, authors are identified by login id or IP address,

but as anybody can make one or more login ids, the login
information of an author does not by itself lend credibility.
Rather, we want to be able to make use of other informa-
tion from credible and trusted sources outside Wikipedia to
transfer credibility information into Wikipedia. In this ex-
ample, one could choose to retain anonymity while asserting
a statement like published papers in ACM Symposium on
Operating Systems Principles.

Unlike Wikipedia, Google Knol [2] attempts to add addi-
tional credibility information. In Knol, the credibility of the
articles is based on the name of the author which can be
certified by credential providers such as credit card compa-
nies or manually by phone. The verification mechanism is
proprietary to Knol. Furthermore, it means that the author
cannot be anonymous. Essentially, name verification tells
one that a certain individual with a particular name as cer-
tified by Google contributed the article. However, the name
by itself may not be very credible with the exception of well
known authors. However, ambiguity still exists since sev-
eral individuals could have the same name. For example, a
Wikipedia author with pseudonym Essjay [1] claimed to be
a (bogus) tenured professor who taught theology. Such an
incident could also take place in Knol since a valid real name
does not provide information about expertise or profession
(i.e. professor of theology).

In this paper, we propose a simple extension to Wikipedia
(and MediaWiki) which enhances the information in Wikipe-
dia to make it more credible using credibility information
from trusted third parties. Our extension maintains the
open and anonymous nature of Wikipedia. We transfer in-
formation from trusted third parties and associate that se-
curely with the text written by the author. We have imple-
mented a prototype which utilizes the MediaWiki tag exten-
sion together with OpenID [3] as either an authentication
or credibility provider although other credibility providers
could also be used. Some scenarios where we can enhance
Wiki:

• Verifying the author’s name: A credit card provider
such as Visa can certify that the author is a human
and optionally their actual name. This gives a knol-
like flavor to Wikipedia. It can also help to make it
more difficult for robots to edit Wikipedia.

• Verifying the anonymous membership an organization:
A provider like ACM can sign university or expertise
credentials for an author.

• Restricting anonymous voting system: A credibility
provider can be used to restrict the voting system in
Wikipedia to from certain voters without disclosing
the name of the voters.

• Other services: can enhance Wiki articles by giving in-
formation about the author while preserving the anonymity
of the author.

2. DESIGN GOALS
Before discussing the design of the credibility enhancement
for Wikipedia, we first give our design objectives:

• Credibility: The purpose of the credibility enhance-
ment is to enable Wikipedia to show some external
trusted information about the authors. Such infor-
mation could be the authors’ real names, professional
affiliation, proof of identity, etc., essentially anything
which can give additional credibility to the text in an
article. This information has to be reliable so that
authors cannot easily lie on the information they pro-
vide. We also want to avoid an author stealing other
author’s identity to publish/edit pages.

• Anonymity: We want to preserve the capability of
authors to be anonymous if they want to, i.e. we do
not want Knol [2] which requires that the real names
of users be verified. Furthermore, we want to ensure
that users’ private data is not stored in Wikipedia’s, so
that even if Wikipedia is compromised, users’ private
data will not be exposed.

There is trade off between credibility and anonymity.
Authors sometimes want to be anonymous, but that
means their statements/edits may be less credible. Less
credible edits may be more likely to be deleted by
Wikipedia administrators. We allow the author the
freedom of balancing the trade off and provide differ-
ent levels of credibility information.

• Ease of Use: The enhancement should not make
Wikipedia much harder to use, e.g. forcing authors
to download and run some software on their local ma-
chine is inconvenient and should be avoided.

We remark that the credibility information in our proposal
is independent of reputation. We preserve reputation [4]
on any edits, and, reputation can be linked to the author’s
credibility as well.

3. PROTOCOL DESIGN
The credibility extension involves four components includ-
ing the author which work together as shown in Fig. 1 C1-4.
C1 is the Wikipedia web server with our credibility exten-
sion installed. C2 is the credibility proxy (we suggest it be
run in a different host). The Wikipedia web server stores
a certificate of the proxy so that Wikipedia can verify the
proxy’s signature using its public key. Note that it is pos-
sible to have more than one proxy, but we use one for the
illustration purpose.

C3 is one or more credibility providers. The credibility
providers give credible information specified by the author

Wikipedia

extension
with credibility

C1

Credibility Proxy

C2

Author using

web browser
an ordinary

C4

OAuth Providers

OpenID Providers

Credibility Providers

......
C3

Step 1

Step 3
Step 2

Figure 1: Components and work flow of the credi-
bility extension.

to the credibility proxy. They communicate with the cred-
ibility proxy using the respective supported protocol. For
example, the OpenID protocol needs three-way communi-
cation among the author, OpenID server, and credibility
proxy. C4 is the Wikipedia author using an ordinary web
browser.

There are three main steps get a credible edit in a Wikipedia
page:

• Step 1: acquiring author information
In the case of OpenID or OAuth protocol, this step
involves three-way authentication. After this step, the
credibility proxy should have the author’s information.
This step can be performed multiple times to get in-
formation from multiple providers.

• Step 2: sign
The author selects the appropriate author information
to be passed to Wikipedia and enters the text to be
published in Wikipedia. The credibility proxy signs
the author’s information together with the text and
generates the signed text, see the screen shot in Fig. 2.

• Step 3: edit page
The author pastes the signed text to Wikipedia (shown
in Fig. 3). Note that the author does not have to login
to Wikipedia in order to use the credibility extension.
The signed text can be published elsewhere and some-
one else can enter the signed text. It can also be copied
between pages.

When the edited page is viewed, the credibility extension
verifies that the edit has been signed correctly using the
credibility proxy’s certificate. If the edit is verified, the au-
thor’s information will be displayed — this can be done in
various ways, e.g. as in Fig. 4. Our credibility extension is
compatible with caching which is important for Wikipedia
performance, the signed text does not have to be verified
every time it is viewed.

The trust relationships among the four components are:

• Wikipedia trusts the credibility proxy to sign the cor-
rect information. Wikipedia also trusts that the proxy’s
key is not compromised.

• The authors trust the credibility proxy to only release
information which they authorise. Note that the in-
formation can be filtered by the credibility providers

before it is given to the proxy, so the ideal case is that
the proxy only knows the information to be signed and
released. However, some information such as the user
ID in the OpenID server and user’s IP address are al-
ways known to the proxy.

• The credibility proxy does not have to trust the cred-
ibility providers because the providers’ name will be
shown together with the signed text. We leave the
Wikipedia readers to decide whether to trust the providers
or not but Wikipedia could choose to trust predefined
providers so as to be able to conveniently display them
in the Wikipedia article.

• The authors implicitly trust the credibility providers
which are chosen by them.

4. CREDIBLE WIKI PROTOTYPE
We describe a credible Wiki prototype to illustrate our ideas.
It consists of a credibility proxy and a MediaWiki extension.
Our prototype employs the OpenID 2.0 framework [5] to
communicate between the credibility proxy and third party
credibility providers to share information about the particu-
lar user. However, other open protocols could also be used.
The proxy anonymizes the user information selected by the
user and signs it along with the text. Wikipedia only needs a
lightweight extension to check the signature of the text sent
by the proxy. If the signature matches, it will be publish
along with the assigned credibility information. Otherwise
no special credibility will be given to the text.

4.1 The Credibility Providers
Credibility providers are the source of the additional infor-
mation for the authors to enhance their credibility of their
edits. Recently, http://www.myid.is provides a service to
certify a digital identity online which is similar to what Knol
uses for author name verification. One can imagine a variety
of credibility providers to provide a variety of information
which could include public and private organizations. The
information would be some property associated with the au-
thor such as professional association, real name verification,
geographic location or country, etc.

The credibility provider must have a protocol to share infor-
mation to the credibility proxy or any other consumer. We
observed that OpenID [3, 5] and OAuth are the two most
promising open protocol to be used widely for managing the
online identity and sharing information.

OpenID provides a decentralized open standard for user au-
thentication and access control. The user only needs to setup
one digital identity on an OpenID provider to gain access to
other systems. We take advantage of an OpenID provider
not for login but as a way of transferring information about
a digital identity, so we use an OpenID provider as a credi-
bility provider.

Our examples with our prototype use a free OpenID provider
(myopenid.com) as the credibility provider. Since there is no
particular trust associated with myopenid.com, the informa-
tion in the examples is only illustrative.

4.2 The Credibility Proxy

Figure 2: A Proxy for Wikipedia.

Fig. 2 shows our prototype. The service field is filled with
the URL of the credibility provider. The gray area is the user
information retrieved from the OpenID credibility provider.
The text area is the text that will be signed by the proxy to-
gether with selected user information. The example chooses
to include the provider and the full name to be signed with
the text. The result area is the ready to use Wiki text that
can be inserted anywhere in Wiki page.

We allow the author to select which information from cred-
ibility providers to be attached. This information should
be thought of as credibility attributes to be attached to the
edit. Wikipedia could have a policy to require certain at-
tributes from trusted credibility providers in order to achieve
a certain category of credibility. For example, to get a cred-
ibility of a “scientist”, the author have to include informa-
tion such as: institution, position, and perhaps information
about publications (as in the ACM example in Sec. 1).

4.3 Wikipedia Extensions
MediaWiki is the software behind Wikipedia. MediaWiki
can be extended using extensions such as tag extensions,
parser functions, special pages, or template extensions. We
implement our credible Wiki using a tag extension which we
call the verifier extension.

4.3.1 Wiki Verifier Extension
The text signed by the credibility proxy can be put inside
any page in Wikipedia (as well as outside Wikipedia since
verifying the signature can be easily done with the certificate
of the credibility provider). We created a verifier extension
tag to check the that the text and additional attributes in-
side the tag have been signed by the proxy.

There are three mandatory items and several optional at-
tributes within the verifier tag extension:

Figure 3: Verifier tag extension for Wiki.

Figure 4: The end result in Wikipedia page.

• proxy: the name or the public key of the proxy. Wikipedia
will be able to verify the signed text by having a list
of trusted proxies and their certificates.

• signature: the signature of the text inside the tag.
The signature should match with the digested text de-
crypted using the public key of the proxy.

• text: the text to add or edit.

• optional attributes: such as provider, full name, coun-
try, email, etc. can be included as the attribute of
the verifier tag. Wikipedia then can use the additional
information to display the text.

Fig. 3 shows an example of a verifier extension tag. The
content of the signature attribute contains the signed digest
of the information in the verify tag. If any of the text or
attribute values are changed, the verify tag will treat the
text content as regular text rather than as credible text.

Credible text in a Wikipedia page should be presented in a
way which can show its credibility properties. While there
are many ways of doing the presentation, Fig. 4 shows dis-
playing credible text by graying the background. The dis-
played paragraph with grayed background provides the ”con-
text” for the author when editing a paragraph in Wiki. The
idea of a context is to make it harder to abuse the credible
text (i.e. placing the text in different paragraph or articles
that have different context to get different meanings from
the same text).

The display of the text can be improved further with more
credibility information (other than 8 fields in Fig. 2). For
example, a badge-like display can be used to annotate the
text with particular properties to be associated with user
information matching a Wikipedia credibility category, e.g.
“computer scientist”.

4.3.2 Wiki Poll Extension
The MediaWiki poll extension can benefit from the credi-
bility extension. Currently, the poll extension stores the IP
address and Wikipedia user name pair as the poll account
to vote for the poll. If the user does not have a Wikipedia
account then only the IP address will be used to vote. The
poll doesn’t allow duplicate votes for each poll account.

Credibility allows the poll account to have additional infor-
mation about the account. Alternatively, we may want to
restrict the participant of the poll by only accepting users
from a particular country. This can be done by requiring
a “country” field from a trusted credibility provider (other
information could be hidden).

5. DISCUSSION
Wikipedia accumulates information through the efforts of
anonymous contributors and volunteers. While this is demo-
cratic, it has a weakness that the information may be per-
ceived as being less credible (regardless of whether or not it
is actually so). Normally, Wikipedia uses external citations
to add credibility to the information entered. However the
citation may either not be available or not easily accessible
(confidential). The text might also simply be just words of
wisdom from an expert author but it is hard to convince the
readers that the text they are reading has a certain quality
as it may lack sufficient citation.

Well known authors usually have credibility information out-
side Wikipedia. Our enhancement allows to transfer the rich
information about the author available from the third party
credential provider to Wikipedia. Our enhancement can be
seen as a complement to the citation mechanism. It is impor-
tant to note that, in the process of transferring the author
information, we can maintain the anonymity of the authors
which is consistent with the philosophy of Wikipedia and
serves to protect the authors.

Our credibility mechanism can be used to enhance any rep-
utation mechanism. It may be also used by administrators
to manage edits.

Acknowledgements
We acknowledge the support of project SELFMAN (contract
number: 034084)

6. REFERENCES
[1] “Essjay Controversy”, http:

//en.wikipedia.org/wiki/Essjay_controversy.

[2] “Knol”, http://knol.google.com/k.

[3] http://openid.net/.

[4] B.T. Adler, K. Chatterjee, L. de Alfaro, M. Faella, I.
Pye and V. Raman, “Assigning Trust to Wikipedia
Content”, WikiSym, 2008.

[5] D. Recordon and D. Reed, “OpenID 2.0: A Platform
for User-Centric Identity Management”, Digital
Identity Management, 2006.

[6] P. Denning, J, Horning, D. Parnas and L. Weinstein,
“Wikipedia Risks”, Comm. of the ACM, 48(12), 2005.

APPENDIX A. PUBLICATIONS

A.21 A Toolkit for Peer-to-Peer Distributed

User Interfaces: Concepts, Implemen-

tation, and Applications

SELFMAN Deliverable Year Three, Page 573

A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications

Jérémie Melchior1, Donatien Grolaux1,2, Jean Vanderdonckt1, Peter Van Roy2
Université catholique de Louvain, – B-1348 Louvain-la-Neuve (Belgium)

1Louvain School of Management, Place des Doyens, 1
2Dept. of Computing Science and Engineering, Place Sainte Barbe, 2

nediar@gmail.com, {jeremie.melchior, jean.vanderdonckt, peter.vanroy}@uclouvain.be

ABSTRACT
In this paper we present a software toolkit for deploying peer-to-
peer distributed graphical user interfaces across four dimensions:
multiple displays, multiple platforms, multiple operating systems,
and multiple users, either independently or concurrently. This
toolkit is based on the concept of multi-purpose proxy connected
to one or many rendering engines in order to render a graphical
user interface in part or whole for any user, any operating system
(Linux, Mac OS X and Windows XP or higher), any computing
platform (ranging from a pocket PC to a wall screen), and/or any
display (ranging from private to public displays). This toolkit is a
genuine peer-to-peer solution in that no computing platform is
used for a server or for a client: any user interface can be distrib-
uted across users, systems, and platforms independently of their
location, system constraints, and platform constraints. After defin-
ing the toolkit concepts, its implementation is described, moti-
vated, and exemplified on two non-form based user interfaces: a
distributed office automation and a distributed interactive game.

Categories and Subject Descriptors
C2.4 [Distributed systems]: Distributed applications. D1.3 [Con-
current Programming]: Distributed programming. D2.2 [Soft-
ware Engineering]: Design Tools and Techniques – Modules and
interfaces; user interfaces. D2.m [Software Engineering]: Mis-
cellaneous – Rapid Prototyping; reusable software. D4.7 [Or-
ganization and Design]: Distributed systems. H.1.2 [Information
Systems]: Models and Principles – User/Machine Systems. H5.2
[Information interfaces and presentation]: User Interfaces –
Prototyping; user-centered design; user interface management
systems (UIMS). I.6.5 [Model Development]: modeling method-
ologies.

General Terms
Design, Experimentation, Human Factors, Verification.

Keywords: Distributed User Interfaces, Multi-Device Envi-
ronments, Multi-platform user interfaces, Multi-user user inter-
faces, Peer-to-peer, User Interface Toolkit, Ubiquitous computing.
1. INTRODUCTION
The division of labor in corporate environments requires more and
more to allocate tasks to users in a flexible, dynamic, and oppor-
tunistic way. For instance, a task that can no longer be ensured by

a worker is delegated to another one or offered to single / multiple
resources in order to be achieved. Interactive tasks are frequently
reallocated or (re)distributed across workers in an organization
and the User Interfaces (UIs) should support these interactive
tasks. For instance, a particular worker may want to get some ad-
vice from a colleague for solving a problem. For this purpose, she
can share some part of the information by redistributing parts or
whole of her UI, here by duplicating the UI to another user using
another computing platform and located in another environment or
context of use.

Workers may distribute UIs for several reasons beyond this distri-
bution of task allocations: in order to follow task allocation, to ex-
change information with co-workers, to balance private and public
information [15], to partition the working space into different parts
[12] and several displays [22]. They all want to distribute their UI
in order to match requirements of dynamically distributed tasks
and to keep the same usability quality in the distributed UIs as
they had before the distribution. The UIs of these applications are
generally unable to accommodate such changes, thus forcing end
users to switch from one application to another or to rely on work-
flow management systems (if any) to reach their goals. In general,
the following situations may arise:

• Multi-monitor usage: a single user using a single computing
platform may want to distribute her UI across various moni-
tors connected to the same platform [12,14]. For instance, a
dual display if the graphic card allows it or an external moni-
tor via an external port.

• Multi-device usage: a single user may use several different de-
vices together, whether they are running the same operating
system or not [15]. For instance, a user may control a music
player running on a media center using a remote control run-
ning on a handheld device.

• Multi-platform usage: a single user may user heterogeneous
computing platforms, perhaps running different operating sys-
tems [21]. Note that a multi-device usage implies a multi-
platform usage (since there are different machines) but the re-
ciprocal does not hold: a user could use several computers
(hence, multi-platform) that are similar (hence, no multi-
device).

• Multi-display usage: we hereby define multi-display as a com-
bination of multi-monitor and multi-device usages [22]. A sin-
gle user may distribute a UI across multiple monitors and de-
vices simultaneously.

• Multi-user: it represents an extension of the previous usages to
multiple users concurrently [5]. In this case, one or many users
may want to distribute parts or whole of their UI across sev-
eral monitors, devices, platforms, or displays. For instance, in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’09, July 15–17, 2009, Pittsburgh, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07…$5.00

a control room setup, users may want to direct portions of a UI
to other displays of others users depending on the context of
use. When a multi-user interface is of concern, it is also typi-
cally used for supporting tasks that are allocated or de-
allocated from one user to another one, such as in task delega-
tion, task suspension and resuming.

A Distributed User Interface (DUI) consists of a UI having the
ability to distribute parts or whole of its components across multi-
ple monitors, devices, platforms, displays, and/ or users. Hence, a
DUI should support any of the aforementioned usages, the multi-
monitor being the minimal.

This paper presents a toolkit with the following properties. Given
n application processes and m display processes, the toolkit allows
the GUI of each application to be partitioned arbitrarily and dy-
namically over the m display processes. A single display process
can therefore combine parts of the GUI of each application, in one
or several windows with no restriction. No other dependency ex-
ists beyond those implied by the n+m processes, i.e., if an applica-
tion process crashes, its GUI disappears and if a display process
crashes, the GUI parts that it hosts 'return' to the application proc-
ess and can be migrated to another display process. Each applica-
tion has its own point of failure which means that if an application
process crashes, other applications still work.

During the past two decades, a lot of work has been dedicated to
addressing some of the aforementioned usages at a time, such as
multi-device or multi-platform only. With the advent of all these
usages, the time has come to enable designers and developers to
engineer their interactive applications in a way that they do not
need to take care about the functions required to support these us-
ages.

In other words, the user interface of such applications should be-
come completely agnostic, independent from any underlying tech-
nology that would allow these usages. Until now, many works ad-
dressed these usages explicitly, but in a way that forces designers
and developers to think and develop user interfaces in a way that
is constrained by distribution. For instance, the underlying soft-
ware architecture may influence the way the user interface is pro-
grammed if it should be migratory [3,26] or multi-user [5].

In this paper, we relax this important constraint by offering to de-
signers and developers a toolkit that would enable them to design
and develop user interfaces that support all the aforementioned us-
ages. For this purpose, the remainder of this paper is structured as
follows: Section 2 reports on some significant pieces of related
work in order to characterize a brief, yet accurate, state of the art
in the domain of distributed user interfaces. Section 3 summarizes
the benefits brought by the toolkit. Section 4 immediately shows
two case studies of interactive applications exhibiting user inter-
faces covering the above usages that are hard to develop other-
wise. It then introduces, describes, and motivates the software ar-
chitecture of the underlying toolkit that was used for those two
case studies and finished with some final examples. It also dis-
cusses some selected aspects and properties of this toolkit. Section
5 concludes the paper by presenting some future avenues of this
work.

2. RELATED WORK
In this section, we compare the advantages and disadvantages of
the major related work in order to identify the specific aspects of
our toolkit.

Probably the first DUI ever was developed as a system that dis-
tributed a UI over many workstations connected to the same net-
work and running the same operating system [3] thanks a to a
connector mechanism. In [4], a program is dynamically changing
between centralized, replicated and a hybrid collaboration archi-
tecture. There is a notion of masters using a replica of the program
and slaves using one of the replicas provided by a master in a cen-
tralized architecture. It allows mobile devices with lack of com-
puting power to avoid running the program when it can communi-
cate with a more powerful device.

In [13], a web page is split in partial pages which will be repli-
cated to all the users. The framework supports multi-device and
multi-user Web browsing where clients connect to a server which
delivers the page. A proxy split the pages in respect to the device
and user constraints. Each page is in a XML file with specific tags
to configure how the Web page will be split among the different
users and devices.

In Luyten & Coninx [17], it is shown how an interactive system
can be distributed among several peer devices. Their approach re-
lies on the fact that nowadays most computing resources are net-
work-enabled and publish their device profile like in UAProf or
CC/PP. It raises the opportunity for supporting collaborative tasks
with the same user interface with little or no extra effort from the
user interface designer.

In [2,24], a part or whole of a DUI can be migrated from one plat-
form to another at run-time. The underlying architecture is a cli-
ent-server architecture that maintains in a central position the in-
ternal state of the DUI.

In this paper, the toolkit that will be presented is significantly dif-
ferent from this previous work in that it provides a unique combi-
nation of the following features:

• Any DUI developed in the toolkit may benefit transparently
from facilities provided to support any of the aforementioned
usages.

• The DUI is not restricted to form-based applications as it is pos-
sible to distribute any graphical UI, such as from a game, a
spreadsheet, a graphic application. Such programs contain native
widgets.

• The DUI is not restricted to web applications. The only condi-
tion to distribute a UI is to have the platforms connected via a
LAN or a wireless connection, but the applications are not nec-
essarily web applications in markup languages. There is no such
language restriction like having a UI in HTML or another mar-
kup language.

• The toolkit relies on a genuine peer-to-peer architecture in the
sense that there is no client and no server: every platform can
send and receive any part of a DUI depending on its distribution
rights. No single platform maintains the DUI internal state.

• The granularity of distribution can range from the application
level to the widget level: an entire application can be distributed
across platforms for instance, but also the different components
of any widget. For instance, even a radio button, consisting of a
circle to be checked and a label can be split across platforms.
Even the label could be distributed, although it does not make
sense in this case.

3. SOLUTION BENEFITS
The toolkit does not rely on a client-server architecture which in
the WebSplitter[13] would allow each device to create a Web page

and to share it with others. There is no need for a server to store
the Web page and provide it to the proxy. Each peer may create a
user interface and share it through the network. The exchange of
data is values passed through a message passing mechanism; there
is no static representation of the application in files. The toolkit
combines the ability to distribute a part or whole of a user inter-
face among devices without needing to completely share the ap-
plication. It is possible to design a lot of various applications at a
finer granularity than in [3,4,13]. Here is how the dimensions are
possible in the toolkit:

• Multiple displays: the system may be a single device connected
to multiple displays or multiple devices. For a single device with
many displays, many rendering engines on the same device
might be used. For multiple devices, each device will create at
least one rendering engine.

• Multiple users: the user interface can be distributed in part of
whole for each user independently of the situation.

• Multiple operating systems: the toolkit is developed in the Mo-
zart environment which supports a lot of different operating sys-
tems.

• Multiple platforms: it is supported by combining the multiple
operating systems dimension and the distribution of parts of the
user interface. The smallest form factors which are not able to
render the whole user interface might just get what they need
and are able to display.

In sort, any computing platform, regardless its operating system
(i.e., Linux, MacOs or Windows), can trigger a distribution of a
user interface to other platforms provided that they are connected
together through any local or wireless network. Each computing
platform can be used by a single user or by multiple users. The
distribution of the UI is not governed by a single machine since
any portion of a UI can be, for instance, forwarded to another one,
and vice versa.

4. DISTRIBUTED USER INTERFACES

4.1 Case Studies
Two case studies have been chosen to evaluate the power of the
toolkit. The evaluation of a toolkit is never easy because there are
always a lot of different and complex applications and it is not
possible to test every single feature and his behaviors. The choice
of case studies is thus quite important and difficult.

The first case study is a distributed office suite. The goal is to
show that even a complex application with many toolbars and but-
tons, such as those found in office suites, can be distributed over
multiple devices and many users. The interface can be decom-
posed in a lot of components. Going further in the decomposition
of the interface, the work space can also be divided into a lot of
different migratable regions. Distributing components of any
commercially-available application belonging to an office suite
cannot be achieved today.

The second case study is a distributed Pictionary. This is a multi-
player game where each player has his own role. To prevent play-
ers from cheating, the toolkit provides some distinctions between
the users. Players trying to guess the word cannot see it and the
player who has to describe the word by drawings should see the
word and draw in an area. The drawing area then is seen by the
other players but none of them can edit it.

Pictionary is naturally distributed because it needs at least a
drawer, a player trying to guess the word the other is trying to
draw. This game is task-driven distributed, the choice of by whom
and where the task is realized depends on the task itself. A player
has to pick a word and then another have to guess that word.
These two tasks have to be realized by two different users, other-
wise the player will know the word she has to guess. These two
tasks should also happen at different places to prevent the players
seeing the chosen word. The game is distributed across players.

Contrarily to Pictionary, the distributed office suite is not naturally
distributed. Someone may write a text or draw a picture but no-
body is able to write in the text at the same time or to draw on the
same picture. One of the objectives of the first case study is to dis-
tribute an application that is not naturally distributed. Many users
will be able to draw on the same place, to write on the same text at
the same time and to work on the same spreadsheet. Another ob-
jective is to be able to distribute atomic elements of the user inter-
face. Buttons on the drawing toolbar shall be detachable and dis-
tributable. A paragraph or a line of the text shall also be distribut-
able without the need to distribute the whole text. A task like writ-
ing a text may be realized by more than one user, which is differ-
ent than usual office suites.

4.1.1 The Distributed Office Case Study
The office suite is a bundle of applications running separately in
order to write text, to draw something, to make a presentation, and
to do other typical office tasks.

Figure 1. A graphing and a spreadsheet application.

Figure 1 reproduces a screenshot of two typical office applica-
tions: a graphing that shows a histogram with 3 columns. The val-
ue of each column can be edited by height and a spreadsheet. Any
component of either application can be marked for export and ex-
ported to another display, device, platform or user. In particular, a
whole UI like the one of graphing application itself is entirely mi-
gratable from one platform to another. In the second case, every
cell is migratable from one platform to another. The value of a
cell, even if it is the result of a formula, will remain consistent
with the formula, no matter where the cell is displayed.

Figure 2. Example of migration realized from

the two applications.

The result of a possible migration of components exported from
both applications is illustrated in Figure 2. For each application,
parts or whole can be marked for export, exported to another plat-
form where it continues to run its own life, and re-imported back
from where it was initially exported. This migration allows a user
to enter some data in the spreadsheet while another user is looking
at the result. The other user may adapt the values of the graphing
thanks to the values of the cells he gets from the spreadsheet. The
work is concurrently achieved and many users are working to-
gether no matter where they are.

Applications with migratable abilities allow many users working
together on the same application and on the same document. The
sequential work is thus converted to a concurrent multi-task sys-
tem. A full video of a typical session demonstrating this case study
is provided attached on the PCS system for this submission.

4.1.2 The Pictionary Case Study
The Pictionary is a multi-player game with a board. Players are
separated into teams that will have to guess words. Teams are rep-
resented by their position on the board. They win the game when
they reach the last square of the board. In each team, a player has
to make his team guess a word by drawing some clues or the word
itself but without talking and without writing it. Here, the game is
a multi-user application with two teams. Both teams have to play
alternatively. The needs of this case study are some devices able to
do the tasks. The first task is the selection of a word on a computer
by a team, let’s call it Team 2. This computer may be a PDA, a
laptop or a desktop. The other team, let’s call it Team 1, has to
guess the word selected by Team 2. A member of Team 1, denoted
Player, has to draw something to help his teammates find the
word. This task has to be realized on a PDA to allow drawing like
on a paper sheet. In order to see what Player is drawing, another
device is set up to display the drawing. A computer with a big
screen or a video projector can be used to realize this task. An ex-
ample of architecture able to run the application is illustrated in
Figure 3.

Figure 3. Example of architecture for the Pictionary.

To start the game, the application must be run on the three de-
vices. Once the connection is established, Team 2 goes to a com-
puter to enter a word. Once entered, a countdown starts to prevent
Team 1 using too much time to find the word. The PDA is given
to Player and the word appears on the screen. He may now draw
whatever he wants. The video projector displays the drawing for
everyone. These different steps are reproduced in Figure 4. In this
case, the different screen shots are taken from the different devices
running the same operating system, but nothing would prevent this
application to run between devices running different operating
systems.

Figure 4. Screenshots of the Pictionary.

Indeed, the toolkit used for this purpose allows deploying DUI on
top of three operating system: Linux Ubuntu distribution, Mac OS
X and Windows XP/Vista any version.

The toolkit allows designing and developing the DUI of this appli-
cation and supports the multi-user aspects of the game. To prevent
cheating, some widgets are created and migrated to the PDA as
well as the toolbar which allows drawing. The application can also
be run on a single computer in multiple windows but we recom-
mend using at least three devices: one to enter the word, one for
the drawings and one to find the word.

Let us design this application with our toolkit, using the simple
multi-user aspects of the toolkit. Even if three different devices are
used in a distributed fashion, we must think of this application as a
single process application, with transparently distributed user in-
terfaces. The widgets used are:

• A text field for entering the text (Laptop)
• A label for displaying this text (PDA)
• A start button for accepting the text input and starting the

countdown (Laptop)
• A clock (PDA, Laptop, and PC)
• A free drawing area (PC and PDA)
• A toolbar for selecting the drawing tools (PDA)
• A “Win” button to click if the word is guessed on time (Lap-

top)

We end up with seven different components, some of them present
only on one device, others at different devices simultaneously. We
use the proxy-renderer relationship: the underlying principle is that
the proxy serves as the reference for the state of the widget while the
renderer follows the instructions of the proxy for updating its incar-
nation. This principle allows the existence of several renderers; each
of them following the same instructions. Basically they all act as
mirror views of the same proxy. Note that this is against the princi-
ple of not disrupting the stationary behavior as we introduce multi-
user capabilities. New complexity is introduced because of concur-
rency and coherency problems. The toolkit itself provides a very ba-
sic way of dealing with this complexity: each widget can be config-
ured so as to have at most one renderer at a time (the default), or to
let an arbitrary number of renderers be connected at the same time.
For the Pictionary application, we have the following functionalities:

• The application can be run from any device, including the PC,
the laptop, the PC or even another computer. For our demonstra-
tion, we use the laptop.

• The text field, Start and Win buttons are created and migrated to
the laptop

• The clock is created, configured to support multiple renderers
and displayed on all the devices

• The label and the toolbar are created and migrated to the PDA.
• The canvas is created, configured to support multiple-renderers

and displayed on the PDA and the PC.

When the start button is clicked, the content of the text entry is
placed into the label, and a countdown thread is created: each sec-
ond the clock is updated to reflect the remaining time. The toolbar
chooses the active drawing tool, while the clicks on the drawing area
issue commands to apply it at that place. And that’s it; we have a
functional simple multi-player game! Note that the three processes
find each other using the Discovery module of Mozart [6], which
uses a broadcasting message on a LAN to find providers. The Pic-
tionary is inspired by the HyperPalette [1], but in a distributed way
that can be tailored at run-time.

4.2 SOFTWARE TOOLKIT FOR
PEER-TO-PEER DUIS

4.2.1 Software architecture
Each application using the toolkit relies on a three-layer model as in
Figure 5. The Application layer describes the different services of-
fered, the toolkit for migration and adaptation and the distribution
layer for peer-to-peer network. At the top, the Application layer is
the part developed for the application itself. It differs between appli-
cations depending on their needs. They support migratable and
adaptable user interfaces. This part is independent from the toolkit
and the distribution layer. The application has a standard graphical
user interface. The middle layer is the toolkit supporting the differ-
ent features for migration and adaptation. It extends Tcl/Tk which is
a toolkit for graphical user interfaces supporting several platforms.
An extension Ext is added to this toolkit to provide the needed fea-
tures. The lowest layer is the base for the toolkit. Mozart [6] imple-
ments the Oz programming language [25]. It supports several para-
digms and distributed applications [20]. It relies on a distribution
layer which relies on TCP/IP protocol.

Figure 5. Software architecture of applications using the toolkit.

4.2.2 Granularity of migration & adaptation
A running application could have its UI migrated and/or adapted at
different levels of granularity:

1. Whole screen containing the UI of the application (which may
also contain the UI of other running applications).

2. Whole UI of the application, typically contained in a single
window.

3. Subset of widgets of the application:
a. Limited to a single widget.
b. Limited to widgets that respects some placement constraints

(for example respecting a rectangular shape).
c. Any arbitrary selection of widgets.

4. Arbitrary pixel area.
Not all these levels are interesting for our purpose. In level 1, we
lack information regarding the remaining of the screen which makes
virtually impossible to provide interesting adaptation. In level 4, the
arbitrary nature of the area also makes it virtually impossible to pro-
vide interesting adaptation. Level 2 is a particular case of level 3,
where the whole UI of the application is used instead of a particular
subset of it.

Consequently Ext/Tk provides migration and adaptation support
at the widget level [11]. We want a maximum of flexibility: any
widget can be migrated to any platform at any time. Two widgets
from the same running application can be migrated to the same plat-
form, or to two different ones. As the migration is independent for
each widget, covering 3a is enough to also cover 3b and 3c, by exe-
cuting several migrations at the same time.

4.2.3 Orthogonal migration & adaptation
To be useful, a graphical toolkit with migration and adaptation sup-
port must still offer a functionality equivalent to a graphical toolkit
with no such support. In other words the migration and adaptation
are new functionality on top of the pure graphical toolkit functional-
ity. We argue that this new functionality is important enough to be
isolated from the pure toolkit functionality. Ext/Tk is consequently
designed to provide the migration and adaptation functionality or-
thogonally to the pure graphical one

1. The migration functionality is provided as a capability of the
widget. This capability is a value which can be passed along
freely to another process, on another computer: the migration is
a distributed operation between different computers connected
over the Internet (local migrations on the same com-
puter/process are of course supported). Once a migration capa-
bility has been passed to another process, it can be used to trig-
ger the migration of the widget, like a PULL mechanism. To
achieve this, the capability serves two purposes: 1) it contains
the authority to migrate the widget, and 2) it is a reference to the
home site of the widget over the Internet, like a URL for a web
page. Because of 2), we often call the migration capability of the
widget the reference of the widget. It is the responsibility of the
application to pass the capabilities to interested parties: it has the
complete control on who receives them. However it does not
have the control on when these capabilities are used by the re-
mote peers, i.e. when the migration really occurs. Consequently
the application should be as impermeable to the migration proc-
ess as possible. The only observable effect is a temporary block-
ing of the threads interacting with the migrated UI. For this rea-
son we say that the migration is transparent to the application.
Note that the application can register its interest for migration
events if it wants to be notified of the process. Note also that the
application has a direct access to the capabilities of the widgets
it has created, and consequently can use them to migrate the
widget back into its original place.

Figure 6. Migration from one platform to another.

This example illustrates the computer X offering the migration
capability of a label widget, and the computer Y creating a win-
dow, getting the capability, and using it to migrate the label into
its local window. Note that the OfferCap and TakeCap func-
tions are not specified here and can be implemented in numer-
ous different ways. This example assumes that they are able to
get in touch with each other, and then exchange the piece of in-
formation given to OfferCap. A possible implementation is to
have a shared file between the processes. Another possible im-

plementation is to rely on emails: OfferCap sends an email
with the capability attached to it to a mail box that is then read
by TakeCap. Still another possible implementation is to use a
DHT (distributed hash table) based P2P (peer to peer) network,
and use a shared name between the two processes to place the
value into the network, and obtain it back. And many more im-
plementations are still possible.

2. The adaptation of the widgets consists in changing its represen-
tation (presentation and/or interaction) while keeping a useful
level of usability. In that sense, the simple reconfiguration of a
visual parameter of a widget like its background color is already
an adaptation of that widget. Ext/Tk pushes this view forward
by introducing a special adaptation parameter to every widget.
When this special configuration parameter is changed, it is the
whole way the widget is displayed that is changed. Once again,
this process is impermeable to the application; the only observ-
able effect is a temporary blocking of the threads interacting
with the adapted UI. For this reason we say that the adaptation is
transparent to the application. Because of this transparency, the
application is independent of the representation currently used
for a particular widget. For example the target device of a mi-
gration could provide its own representation of the widget,
adapting it on the fly to its own specifics. Figure 7 illustrates a
selector widget that supports different representations. Switch-
ing between these representations is achieved by calling the
setContext method. It is up to the application to define why
and when the widget should change the representation. The rep-
resentation is just changed at different points during the execu-
tion unknown to the application.

Figure 7. Migration from one platform to another.

4.2.4 Distributed structure of a widget
Desktop applications are often centralized applications running the
functional core and the UI inside a single process of a computer.
Some of them have a distributed functional core (voice over IP ap-
plications for example), but that is not what interest us in this work.
Once we let parts of the UI migrate from site to site, several devices
become involved in the running of the application, and we also shift
from a centralized environment into a distributed one. The way
Ext/Tk introduces distribution is motivated by two choices:

• Any widget of a running application can be migrated at any time
(transparent distribution). Consequently Ext/Tk widgets are dis-
tributed entities. At any time they may be situated at the applica-
tion's process, a remote process, or even nowhere if they are not
currently displayed. Later we will see that it is also possible to
have several renderers connected to a single proxy, replicating
the UI of the widget at several places simultaneously.

• As for the functional core of the application, Ext/Tk does not
dictate if it should be distributed or stationary, nor does it offer
any support for distribution.

Ext/Tk provides specific distribution support for all widgets, allow-
ing them to dynamically migrate from one site to another. But the
widgets are also used by the functional core of the application that
interacts with the UI, so part of them should behave in a stationary
way. The distribution scheme of widgets is composed of:

• A part that is stationary to the process that created the widget.
That part is returned to the functional core of the application so
that it can interact with the widget. This part is called the proxy
of the widget.

• A part that is distributed, and runs on the site actually displaying
the widget. That part is the one the user can interact with. This
part is called the renderer of the widget.

In fig. 8, three sites are running on three different computers. Site A
creates two widgets that are migrated into Site B. Site C creates one
widget that is also migrated into Site B. Each gray area covers a
widget in its distributed execution. The proxies stay at the site that
created them forever. However the renderers are running at the site
the widgets are migrated to. The proxies and the renderers are con-
nected together over the Internet, so as to be synchronized.

Site A

Site B

Site C
Proxy A1

Proxy A2
Proxy C1

Renderer A1

Renderer A2

Renderer C1

Figure 8. Distributed architecture example.

4.2.5 Runtime architecture
At runtime, each widget is split in two parts: the stationary part
that stays at the creator site (the proxy), and the migratable part
that is run at a remote site to actually display the widget (the ren-
derer). A notable exception is the top level window widget: the
migratable part stays at the creator site; it is created immediately
along with the proxy and cannot migrate away. The renderer part
of a widget needs a window to be displayed inside, so it can only
run at a site were a window proxy is running. Note that the content
of a window is a separate widget that can be migrated away. In
other words, top level windows provide the physical hook where
widgets can be displayed. Also Note that there is no dependency
on an external server for this architecture to work. Widget proxies
act as servers for their renderers. This is based on the distribution
layer of Mozart.

Process A

Process B

Process C

Widget Proxy
Widget Proxy

Widget Proxy
Widget Proxy

Window Proxy

Window Renderer

Widget Renderer
Widget Renderer

Widget Renderer

Process D
Window Proxy

Window Renderer
Widget Renderer

Figure 9. Overview of the runtime architecture.

4.2.6 Trajectory of a universal reference
The universal reference is a capability the creator of the widget
can give to a remote site. Typically, an intermediate discovery
service allows the sites to exchange these values. Fig. 10 is a typi-
cal scenario (dashed arrows are actual connections, plain arrows
are the trajectory of the universal reference):
1. Process A running on computer X creates a widget and asks

for its migration capability.
2. Process A stores this capability at the discovery service.
3. Process B running on computer Y asks the discovery service

for the capability of the widget it wants to display.
4. Process B receives the answer
5. Process B passes it to the proxy of a container widget, here a

window.
6. The proxy forwards the capability to its renderer.
7. And lastly the renderer opens a connection with the proxy cor-

responding to the capability. In section Migration protocol we
show how this connection is used for creating a new renderer
for this proxy.

Figure 11 displays a more complex scenario where the process B
migrates the widget inside a container that is currently displayed at
the process C. The migration capability follows the same route as
in Figure 10, except that the container proxy forwards the capabil-
ity to its renderer at process C and not locally anymore.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Window Proxy

get Ref

Ref

Window Renderer

Figure 10. Universal reference trajectory.

Process A

Widget ProxyRef

Discovery Service

Ref

Process B

Container Proxy

get Ref

Ref

Window Renderer

Window Proxy
Process C

Container Renderer

Figure 11. Complex trajectory.

4.2.7 Migration protocol
The migration protocol is a negotiation between the proxy of the
receiving container (PC), the proxy of the migrated widget (PM),
the renderer of the container (RC) and the renderer of the migrated
widget (RM). First, the migration capability of PM has to be given

to PC somehow . The migration starts at PC, by using the
importHere method of its manager using the reference given by
PM (the second PI parameter is further placement instructions for
example the row/column coordinates of a table container). This
method stores this new child; stored children are automatically
given to RC (either at the child's creation or at the RC creation).
RC connects to PM using the reference contained in the capability

, and in returns PM sends the class definition of the widget ren-
derer . RC creates an environment and then asks Ext/Tk to cre-
ate RM using the class definition just received. If RC fails to cre-
ate RM (due to PM not responding, or an error while creating
RM), RC tells PC to drop this particular child.

In order to create RM, Ext/Tk first creates its manager, connects
back to PM , gets the actual state of all stores , and then cre-
ates the RM object with the manager as parameter . The initiali-
zation of RM should create the actual widget, and update its state
according to the current content of the store (parameters &
event bindings). Once initialized, Ext/Tk automatically calls the
methods of RM according to the updates of the store . If the mi-
grated widget is itself a container, the information necessary to re-
store its content is in the store it receives from PM, and RM reacts
to it like RC after step . As a result its content is also migrated
along.

Negotiation phase. The step of the protocol above asks a class
definition for the renderer and is returned the one currently se-
lected by PM. Indeed there can be different renderers possible for
this widget, and the process running PM has selected one of them
in particular (using the setContext method). However we can
extend this protocol further by adding a negotiation phase where
RC uses the knowledge of its own available resources (key-
board/mouse presence, screen size...) to hint PM so that it is able
to override the current selection for the renderer with another one
that is more fit to the device.

The scheme would require:

• A model for describing the platform running the UI.
• Introspection capabilities for renderers determining their level

of compatibility with specific platforms.

RC PC PM
getRef

PM ref

importHere(Ref PI)

getClassDef

classDef
create env

connectManager

current state

create RM
RM

state update

apply current
state

Proxy of receiving Renderer of Proxy of migrated
widget

Renderer of
migrated widget

Figure 12. Migration protocol.

Another option is for RC to use its own renderer definition, ignor-
ing the one sent by PM. This may result in an incorrect renderer
that is unable to behave correctly with its proxy, however this
would open up the possibility of having a target device that adapts
the UIs it receives even if the process running those UIs do not
know how to adapt them.

Fault tolerance. Network failures can happen at any time, between
any of the sites:

• Between PC and PM. There is no direct connection between
these two sites: the capability of PM can be brought to PC by a
third site.

• Between PC and RC. If message cannot be sent be cause of
a network failure or because there is currently no RC, then the
migration cannot be executed. Nevertheless, the migration in-
struction is now part of the store of the widget. When a new
RC comes in, it will then proceed with the migration of PM.
As a result, there may be an arbitrary time between the appli-
cation command to migrate a widget, and when this command
is really executed. If message was sent, and there is a net-
work failure between PC and RC then RC eventually disap-
pears. This can happen while the migration protocol is still
running, or afterwards. In all cases, the disappearance of RC
will result in a disconnection with either PM or with RM. In
both situations the migration of RM is cancelled, and it is de-
stroyed if it exists.

• Between RC and PM. The only time this network connection
matters is between messages and . If there is a network
failure there, then the migration of PM is aborted. Also RC
removes PM from the migration store shared with PC, so that
PM is no more considered as a contained widget of PC.

• Between PM and RM. This is the same as between PC and
RC.

4.2.8 Final examples
With this toolkit, all the widgets automatically have a migration
capability. This capability is controlled by the universal reference
of the widget. This universal reference is a simple text string en-
coding the information needed to find the widget on the Internet.
As long as the widget exists, this reference implements the migra-
tion capability of the widget. Typically, passing a reference from
an application A to an application B is achieved by a discovery
service. This service can be implemented in many different ways:

− By human beings, dictating the reference over the phone.
− By email, sending the reference inside an email.
− By using an Internet server, where A registers the reference

and B gets it back. This server can be a Web server, an FTP
server, or the simple socket server provided by Ext/Tk itself.

− By broadcasting messages over a LAN, allowing B to find A
and get the reference. This can be implemented by the Discov-
ery module of Mozart.

− By registering to a peer to peer network and using its func-
tionality to get the reference. This can be implemented by the
P2PS module for Mozart.

Figure 13 graphically depicts an example where every DUI com-
ponent can be distributed: the clock, the buttons, the labels, the ca-
lendar, the agenda or even any entry of the calendar and the agen-
da. Figure 14 represents a case where the clock has been distrib-
uted.

Figure 13. DUI before distribution.

Figure 14. DUI after distribution.

Figures 15 to 17 present another example of distributing portions
of a graphical user interface, in this case, a vectorial drawing ap-
plication. This application is again non-form based and is consid-
ered hard to distribute due its tight synchronization between the
drawing operations and its effects. Figure 15 presents a screen shot
of this application before distribution.

Figure 15. Drawing Application DUI before distribution.

Figure 16. Drawing Application DUI after distribution with

another desktop platform.

Figure 17. Drawing Application DUI after distribution with

another mobile platform.

Figures 16, respectively 17, presents the results of DUI distribu-
tion after the toolbars and palettes have been migrated to another
desktop, respectively another mobile platform. In this case, the
various platforms were used by the same user, but we can also as-
sume that these platforms are used by different users provided that
they are connected together via the same network, local or wire-
less.

5. CONCLUSION
This paper presents a toolkit for peer-to-peer distribution of any
graphical UI that supports the following usages: multi-monitor,
devices, platform, display, and users. It also presents a detailed de-
scription of the software architecture developed for this toolkit.
Contrarily to model-based design of multiple UIs [7,8,9, 10], this
approach does not rely on any model per se, although each user in-
terface is stored in a distributed way through its properties.

ACKNOWLEDGEMENTS
This work is supported by the SELFMAN (Self Management for
Large-Scale Distributed Systems based on Structured Overlay

Networks and Components) European project of the 6th Frame-
work Programme (FP6-IST-2005-034084). We also acknowledge
the support of the UsiXML (User Interface extensible Markup
Language – http://www.usixml.org) project.

REFERENCES
[1] Ayatsuka, Y., Matsushita, N., and Rekimoto, J. 2000. Hyper-

Palette: a Hybrid Computing Environment for Small Com-
puting devices. In Proc. of CHI’2000. ACM Press, New
York, pp. 133-134.

[2] Bandelloni, R. and Paternò, F. Migratory user interfaces able
to adapt to various interaction platforms. Int. J. Human-
Computer Studies 60, 5-6 (2004), pp. 621-639.

[3] Bharat, K.A. and Cardelli, L. 1995. Migratory Applications
Distributed User Interfaces. In Proc. of UIST’95 (Pittsburgh,
Nov. 1995), ACM Press, New York, pp. 132-142.

[4] Chung, G. and Dewan, P. 2004. Towards Dynamic Collabo-
ration Architectures. In Proc. of the ACM Conf. on Computer
Supported Cooperative Work CSCW’2004, pp. 1-10.

[5] Dewan, P. and Choudhary, R. Coupling the User Interfaces of
a Multiuser Program. ACM Transactions on Computer-
Human Interaction 5, 1 (1998), pp. 34-62.

[6] Distributed Programming in Mozart - A Tutorial Introduc-
tion, chapter 3: Basic Operations and Examples, accessible at
http://www.mozart-oz.org/documentation/dstutorial/node3.
html#chapter.examples

[7] Eisenstein, J., Vanderdonckt, J., and Puerta, A. 2001. Model-
Based User-Interface Development Techniques for Mobile
Computing. In Proc. of IUI’01 (Santa Fe, January 14-17,
2001), ACM Press, New York, pp. 69-76.

[8] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Ken-
nedy, J., Gray, P.D., Cooper, R., Goble, C.A., and Pinheiro,
P. Teallach: a Model-based User Interface Development En-
vironment for Object Databases. Interacting with Computers
14, 1 (December 2001), pp. 31-68.

[9] Grolaux, D., Van Roy, P., and Vanderdonckt, J. 2004. Mi-
gratable User Interfaces: Beyond Migratory User Interfaces.
In Proc. of 1st IEEE-ACM Annual Int. Conf. on Mobile and
Ubiquitous Systems: Networking and Services MOBIQUI-
TOUS’04, pp. 422-430.

[10] Grolaux, D., Vanderdonckt, J., and Van Roy, P. 2005. Attach
me, Detach me, Assemble me like You Work. In Proc. of
INTERACT’05, pp. 198-212.

[11] Grolaux, D. 2007. Transparent Migration and Adaptation in
a Graphical User Interface Toolkit, Ph.D. dissertation, De-
partment of Computing Science and Engineering, Université
catholique de Louvain, 2007.

[12] Grudin, J. 2001. Partitioning digital worlds: focal and pe-
ripheral awareness in multiple monitor use. In Proc. of
CHI’01, ACM Press, New York, pp. 458-465.

[13] Han, R., Perret, V., and Naghsineh, M. 2000. WebSplitter: A
Unified XML Framework for Multi-Device Collaborative
Web Browsing. In Proc. of the ACM Conf. on Computer
Supported Cooperative Work, pp. 221-230.

[14] Hutchins, R., Meyers, B., Smith, G., Czerwinski, M., and
Robertson, G. 2004. Display Space Usage and Window Man-
agement Operation Comparisons between Single Monitor and
Multiple Monitor Users. In Proc. of AVI’04, ACM Press,
New York, pp. 32-39.

[15] Hutchings, H.M. and Pierce, J.S. 2006. Understanding the
Whethers, Hows, and Whys of Divisible Interfaces. In Proc.
of AVI’06, ACM Press, New York, pp. 274-277.

[16] Loeser, C., Mueller, W., Berger, F., and Eikerling, H.-J.
2003. Peer to peer networks for virtual home environments,
in Proc of HICSS-36, IEEE Computer Society Press.

[17] Luyten, K. and Coninx, K. 2005. Distributed User Interface
Elements to support Smart Interaction Spaces. In Proc. of the
7th IEEE Int. Symposium on Multimedia, IEEE Comp. Soci-
ety, Washington, DC, pp. 277-286.

[18] Luyten, K., Vandervelpen, Ch., and Coninx, K. 2002. Mi-
gratable User Interface Descriptions in Component-Based
Development, in Proc. of DSV-IS’2002, pp. 44-58.

[19] Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and Con-
inx, K. 2006. Designing distributed user interfaces for ambi-
ent intelligent environments using models and simulations.
Computers & Graphics 30, 5 (2006) 702-713.

[20] Mesaros, V., Carton, B., and Van Roy, P. 2004. P2PS: Peer-
to-Peer Development Platform for Mozart. In Proc. of Second
International Mozart/Oz Conference MOZ’04. LNCS, Vol.
3389, Springer, Berlin, pp. 125-136.

[21] Myers, B.A. Using Handhelds and PCs Together. Communi-
cations of the ACM 44, 11 (2001), pp. 34-41.

[22] Tan, D.S. and Czerwinski, M. 2003. Effects of Visual Separa-
tion and Physical Discontinuities when Distributing Informa-
tion across Multiple Displays. In Proc. of INTERACT’03, IOS
Press, pp. 252-260.

[23] Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg, Q.,
Silva, W., Rodrigues, D., and Taddeo, L. 2001. Multi-model
and Multi-level Development of User Interfaces, in “Multiple
User Interfaces - Cross-Platform Applications and Context-
Aware Interfaces”, John Wiley & Sons, pp. 193-216.

[24] Vandervelpen, Ch., Vanderhulst, G., Luyten, K., and Coninx,
K. 2005. Light-Weight Distributed Web Interfaces: Preparing
the Web for Heterogeneous Environments. In Proc. of ICWE
2005, pp. 197-202.

[25] Van Roy, P. and Haridi, S. 2004. Concepts, Techniques, and
Models of Computer Programming. MIT Press, Cambridge.

[26] Yanagida, T. and Nonaka, H. Architecture for Migratory
Adaptive User Interfaces. In Proc. of CIT’2008, pp. 450-455.

APPENDIX A. PUBLICATIONS

A.22 Decentralized Transactional Collabora-

tive Drawing

SELFMAN Deliverable Year Three, Page 584

Decentralized transactional collaborative drawing

Jérémie Melchior1, Boris Mejı́as2, Yves Jaradin2, Peter Van Roy2, Jean Vanderdonckt1
1Information Systems Unit

2Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium
{firstname.lastname}@uclouvain.be

Abstract

When multiple users collaboratively edit a vector image,
avoiding conflicts requires synchronizing exclusive access
to the objects of the image. This synchronization needs a
true concurrency control algorithm. One of the most com-
mon strategy to achieve this synchronization is to use a
centralized architecture where a single server becomes the
transactional manager. Unfortunately, a central point of
control is also a single point of failure. This paper pro-
poses a decentralized architecture based on a peer-to-peer
network providing decentralized transactional support with
replicated storage. As a consequence, there is a gain in
fault-tolerance and the transactional protocol eliminates
the problem of network delay improving usability and net-
work transparency. The same result can be applied to text
edition and other collaborative editing tasks.

1. Introduction

There are many software applications supporting collab-
orative work, such as drawing, text editing or software de-
velopment. Collaborative work can be done synchronously
or asynchronously. In the later case, the participants make
their modifications on their local copy without direct inter-
action with the other participants. Once the changes are
made, they are committed to the global state. In the for-
mer case, which is the focus of this paper, all participants
are concurrently working on a shared working space. Such
scenario requires continuous synchronization of the partici-
pants in order to avoid conflicts. One way of achieving such
synchronization is by letting the participants lock the part
of the shared space they want to modify, granting exclusive
access to that part. Since all participants can take any lock,
having a single point of control make sense, resulting in the
classical client-server architecture. Unfortunately, it is well
known that having a single point of control also means hav-
ing a single point of failure, because the whole application

relies on the stability of the server.
Transdraw [5] is a distributed collaborative vector-based

graphical editor with a shared drawing area. Each user runs
the application and joins a server to get access to the shared
area. When someone is drawing in this area, feedback is
sent to other users reflecting the action. In addition, Trans-
Draw uses a transactional protocol to allow users to make
optimistic changes on the drawing with immediate conflict
resolution. This feature eliminates the problem of perfor-
mance degradation caused by network latency and it is a
crucial property of TransDraw. The synchronization and
storage of the global state is done on a server which cen-
tralizes the control of the work flow. When users modify
an object on the drawing, they request exclusive access for
it, which may succeed or fail depending on the behaviour of
the other users. All this is reflected graphically in the shared
drawing space.

As we have mentioned, a problem of TransDraw, due to
its centralized architecture, is its dependency on the server.
If the server crashes the work is lost, and the application
will not run until the server is rebooted.

Peer-to-peer networks have the nice property of being
self-organized, fault-tolerant and fully decentralized. We
propose in this paper to redesign the transactional proto-
col of TransDraw to overcome the problem of the single
point of failure. In order to do that, we use Beernet [2],
a structured peer-to-peer overlay network providing a fault-
tolerant distributed transaction layer with replicated storage.
Every time a user attempts to modify a graphical object,
this modification will be done inside a transaction with a
different transaction manager, which is replicated to allow
the transaction to finish in case of failure of the manager.
Unfortunately, this fault-tolerance mechanism is not free.
Replication requires a higher usage of network resources in-
creasing latency of transactions, but the optimistic approach
for starting the modification of an object counteract the la-
tency. We consider this a small drawback because function-
ality of TransDraw is fully respected and there is an impor-
tant gain in fault-tolerance.

What follows is a more detailed description of Trans-
Draw and related works in sections 2 and 3. Beernet is de-
scribed in section 4. The core of the proposal is explained
in section 5, being followed by conclusions.

2. TransDraw

2.1 Description

Transdraw is a collaborative vector drawing tool created
by Donatien Grolaux using transactions[5]. The toolbar
provides, not only the traditional tools of vector editing (eg.
lines, ellipse, rectangles), but also a pair of tools supporting
collaboration. As soon as a user selects an object, a request
is sent to the server for the corresponding lock. However,
the user is permitted to edit the object optimistically before
the server can answer the request. The optimistic nature of
the operation is visually presented to the user by red selec-
tion handles. When the server grants the lock, the transac-
tion on the object is committed and the user can continue to
edit the object in exclusive mode, indicated by black selec-
tion handles until he deselect it at which time the lock will
be returned. If the lock was already held by another user,
the server has to refuse it to the user and the transaction is
aborted. The user see the modification he did optimistically
undo themselves and the object is deselected.

A user can also manage explicitly his locks by using the
“take lock” tool, for example to make a complex reorgani-
sation of the drawing, involving several individual objects.
He then has to release the locks manually using the flashing
“release-locks” button.

In order to prevent starvation which could happen as sim-
ply as by a user inadvertently selecting every object before
taking a rest, a lock stealing mechanism is provided. The
“steal lock” tool make a request to steal a lock to the server
which forwards it to the current owner of the lock. This
user then as a few seconds to accept or reject the stealing of
her locks. On timeout, the stealing is considered accepted.
Once accepted, the previous owner notifies the server to for-
ward the lock to the stealer.

2.2 Example scenario

Figure 1, presents the view of two users working on the
same drawing, each in his own window. Bob, on the right,
had the top ellipse selected long enough for the server to
grant him the lock has can be seen by the black selection
handles around it. Alice, on the left has just tried to select
this ellipse. After a, normally brief, period during which she
was able to do optimistic changes to this ellipse, her transac-
tion is aborted, and she is notified of it by the disappearance
of her selection and the red dot on the ellipse which will

Figure 1. Alice, on the left, see a locked and
non-editable ellipse while Bob has it is se-
lected and editable.

blink a few times to explain that Bob is a currently editing
this object.

The diagram in Figure 2 describes a possible continua-
tion of the scenario in which Alice steals the lock from Bob
to perform the update she wants. Alice ask to steal the lock
to the server. Since Bob currently has the lock, the server
ask Bob whether he allows his lock to be stolen or not. This
is shown to Bob as two blinking buttons at the bottom of his
edition window as we can see in Figure 3. If Bob allows his
lock to be stolen, either explicitly or by ignoring the request
long enough, he loose selection of the object and possession
of the lock and the server transfer them to Alice.

Of course, all of this assumes that the server does not
crash. . .

3. Related works

There are some applications that already support collab-
oration in different ways. We describe and comment some
of them briefly.

3.1 BOUML

Some researchers have released an application to pro-
vide an easy to use and free UML tool, named BOUML[8].
It allows drawing diagrams and generating code in multiple
languages. The tool has been developed as a multiuser ap-
plication in a sequential way. Each user of the application
must choose an identifier which allows working on some
diagrams. The work may be done in parallel but there is not
any feedback on other users work as there is no support for
concurrent work. There are many problems with the tool.
The lack of feedback prevents user to know what others are
doing and to see their changes. It is also impossible to know

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
� �

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

lock?

grant

Optimistic edit

Exclusive edit

Alice Server Bob

Figure 1

steal

grant

can steal?

accept

Figure 3

refuse

lock?

commit

commit

abort

Figure 2. Scenario of complex interaction

Figure 3. Bob is asked whether he allows his
lock to be stolen.

which files are currently being modified or that have been
modified and saved. There can be conflicts when saving the
project. When users are working collaboratively, the work
of a user will be saved but not all the modification of other
users. This leads to irreversible lost work without any warn-
ing. Another problem is the impossibility to lock part of the
work to prevent modification from another user.

3.2 Gobby

Gobby is a free text-editor that allows collaborative work
[1]. It supports multiuser parallel edition on multiple doc-
uments and a multiuser chat. A user has to start a session
and create the documents, he will host the server needed to
centralize the information. Other users must choose a name
and a color and connect to the server host. The collabora-
tion between all the users is simple thanks to the feedback
brought to users with colors. A list of users allows know-
ing the color of each editor. The application has the ability
to recognize patterns of many different text formats and en-
able syntax coloration. As the BOUML application, Gobby
does not support any lock of some part of the text and all
the users can edit what they want. This is not a major is-
sue since other users can observe the changes in real time
and the team work may rely on trusted users. Nevertheless
there is a problem when the server crashes. All the unsaved
modifications can be saved by another user but the whole
process of creating a server and joining the server must be
restarted.

3.3 Google Docs

Google Docs [3] is an online office suite that allows mul-
tiple users to modify the same file at the same time. On
particular feature, similar to TransDraw, can be seen on
spreadsheets. One a user is modifying a cell, this one is
coloured differently as in any single user spreadsheet appli-
cation. When other users connect to Google servers to edit
the same file, then, the cells they select will appear with a
different colour on the view of the other users, and with a
tag identifying the user. Instead of locking the cell, changes
are save incrementally using versioning. Google Docs uses
also a centralized architecture because everything is control
at Google side. But, there is a very important difference.
There is not only one server to rely on, but a set of servers
with replicated information, so if a server crashes, another
one takes over. Of course, these are only conjectures about
Google’s back-end.

4. Decentralized transactional DHT

Beernet [2] is a structured overlay network providing a
distributed hash table (DHT) with symmetric replication.

Figure 4. Paxos consensus protocol for dis-
tributed transactions.

Peers are self-organized using the relaxed-ring topology [6],
which is derived from Chord [10], with cost-efficent ring
maintenance and self-healing properties. Data replication
is guaranteed with a decentralized transactional protocol al-
lowing the modification of different items within a single
transaction. The transactional protocol implements a Paxos-
consensus algorithm [7, 4], with requires the agreement of
the majority of peers holding the replicas of the items. We
will focus on the transactional layer of Beernet because it
will be our mean to decentralize TransDraw.

Figure 4 describes how the Paxos-consensus protocol
works. The client, which is connected to a peer that is
part of the network, triggers a transaction in order to read-
/write some items from the global store. When the transac-
tion begins, the peer becomes the transaction manager (TM)
for that particular transaction. The whole transaction is di-
vided in two phases: read phase and commit phase. During
the read phase, the TM contact all transaction participants
(TPs) for all the items involved in the transaction. TPs are
chosen from the peers holding a replica of the items. The
modification to the data is done optimistically without re-
questing any lock yet. Once all the read/write operations
are done, and the client decides to commit the transaction,
the commit phase is started.

In order to commit the changes on the replicas, it is nec-
essary to get the lock of the majority of TPs for all items.
But, before requesting the locks, it is necessary to register a
set of replicated transaction managers (rTMs) that are able
to carry on the transaction in case that the TM crashes. The
idea is to avoid locking TPs forever. Once the rTMs are reg-
istered, the TM sends a prepare message to all participants.
This is equivalent to request the lock of the item. The TPs
answer back with a vote to all TMs (arrow to TM removed
for legibility). The vote is acknowledged by all rTMs to
the leader TM. Like that, the TM will be able to take a de-
cision if the majority of rTMs have enough information to

take exactly the same decision. If the TM crashes at this
point, another rTM can take over the transaction. The deci-
sion will be commit if the majority of TPs voted for commit.
It will be abort otherwise. Once the decision is received by
the TPs, locks are released.

The protocol provides atomic commit on all replicas with
fault tolerance on the transaction manager and the partici-
pants. As long as the majority of TMs and TPs survives the
process, the transaction will correctly finish. These are very
strong properties that will allows us to run TransDraw on a
decentralized system without depending on a server.

5. Decentralized TransDraw

Our conjecture about the way Google Docs is designed
in order to provide fault-tolerance is strongly based on
replication and the possibility of replacing a crashed server
with another machine. Not having Google’s infrastructure,
we can achieve replication and fault-tolerance by building
TransDraw on top of a peer-to-peer network, and by decen-
tralizing the synchronization of locks and data storage. Our
proposal is to build TransDraw on top of Beernet.

Peers are self-organized using the relaxed-ring topology
implemented by Beernet. Data is stored using the DHT
with symmetric replication. The transactional layer pro-
vides synchronized access to the shared state solving con-
flicts due to race conditions. But the Paxos-consensus pro-
tocol as described in section 4 is not sufficient to provide
exactly the same functionality of TransDraw as it was de-
scribed in section 2. The main difference lies on the mo-
ment where the locks are granted. As it is currently, locks
are granted too late for TransDraw, because it is not possible
to inform users about the intention of the others.

The first modification we have to do to the transactional
protocol is to allow eager locking request. One idea is to
request the locks when read/write operations are sent to the
transaction participants during the read-phase. If locks are
not granted, the transaction is immediately aborted. The
problem introduced by this modification is that if leader TM
crashes after requesting the locks, there is no rTM yet to
take over the transaction, and items would be locked for-
ever. Considering this, the registration of rTMs must also
be moved up to the read-phase. After this two modifica-
tions we realized that in fact it is better to avoid the read-
phase and start immediately with a extended commit phase
that first needs to gather the participants.

The second modification is an eager notification mecha-
nism. Currently, out transactional layer is meant for asyn-
chronous access to the share state. When a peer write a
new value for item, other users are not notified unless they
read the item. In the case of TransDraw, other users needs
to be notified not only of every modification on the value
of items, but also on the intention of other users when they

lock items. To achieve this, the leader must broadcast its
decision to the network once it get enough locks, and once
the final decision is taken.

Note that eager locking and the notification mechanism
are only needed on synchronous collaborative work. If the
collaborative application relies on asynchronous collabo-
ration it is enough with the Paxos protocol presented in
the previous section. Scalaris [9] is an implementation of
Wikipedia running on top a structured overlay network with
Paxos transactional protocol. This shows that we could al-
ready add fault-tolerance and decentralization to TransDraw
if the goal is work on asynchronous fashion. The suggested
modifications are meant for achieving real-time collabora-
tive work.

6. Conclusion and Future Work

We have seen that several synchronous collaborative ap-
plications are currently based on centralized synchroniza-
tion. This strategy is efficient but not fault-tolerant because
it strongly relies on the stability of the server. Some appli-
cations achieve fault-tolerant by replicating the state of the
server, but this requires a more sophisticated infrastructure
and it is still inherently centralized. Single point of control
is a single point of failure.

We propose to implement these kind of applications on
top of structured overlay networks with symmetric replica-
tion, and a transactional layer based on consensus. This
strategy provides synchronization and fault-tolerance by de-
centralizing the control of the work flow. We present our ap-
proach by taking the TransDraw application and the Beernet
peer-to-peer network.

Beernet as is, can help to decentralize asynchronous col-
laborative applications. In order to achieve the functional-
ity of TransDraw, which is synchronous, eager locking and
a notification mechanism needs to be added to the current
transactional protocol.

We still need to study in detail the new transactional pro-
tocol, implement it and compare the performance with the
centralized approach. We expect to have a small degrada-
tion in performance at the level of the transactional proto-
col due to replication cost, but with a huge gain in fault-
tolerance. There is no degradation in performance for the
user in case of no conflicts, because its changes are done
optimistically, eliminating the problem of network latency.

7. Acknowledgements

This work has been mainly funded by the Euro-
pean Commission FP6 IST Project SELFMAN (Contract
034084), with support of the UsiXML project.

References

[1] 0x539 dev group. The gobby collaborative editor.
http://gobby.0x539.de, 2009.

[2] Distoz group. Beernet - the relaxed peer-to-peer network.
http://beernet.info.ucl.ac.be, 2009.

[3] Google. Google docs. http://docs.google.com, 2009.
[4] J. Gray and L. Lamport. Consensus on transaction commit.

ACM Trans. Database Syst., 31(1):133–160, 2006.
[5] D. Grolaux. Editeur graphique réparti basé sur un modéle

transactionnel, 1998. Mémoire de Licence.
[6] B. Mejı́as and P. Van Roy. A relaxed-ring for self-organising

and fault-tolerant peer-to-peer networks. In XXVI Interna-
tional Conference of the Chilean Computer Science Society.
IEEE Computer Society, November 2007.

[7] M. Moser and S. Haridi. Atomic commitment in transac-
tional dhts. In Proceedings of the CoreGRID Symposium,
CoreGRID series. Springer, 2007.

[8] B. Pagès. The bouml tool box. http://bouml.sourceforge.net,
2009.

[9] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions
for distributed wikis on structured overlays. In A. Clemm,
L. Z. Granville, and R. Stadler, editors, DSOM, volume
4785 of Lecture Notes in Computer Science, pages 256–267.
Springer, 2007.

[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

APPENDIX A. PUBLICATIONS

A.23 Decentralized Transactional Collabora-

tive Drawing (demo)

SELFMAN Deliverable Year Three, Page 590

Decentralized Transactional Collaborative Drawing∗

Boris Mej́ıas, Jérémie Melchior, Yves Jaradin
Université catholique de Louvain, Belgium

firstname.lastname@uclouvain.be

1 Demonstrator

DeTransdraw is a decentralized collaborative vector-based graphical editor
with a shared drawing area. It provides synchronous collaboration between
users with graphical support for notifications about other users’ activities.
Conflict resolution is achieved with a decentralized transactional service
with storage replication, and self-management replication for fault-tolerance.
The transactional service also allows the application to prevent performance
degradation due to network latency, which is an important feature for syn-
chronous collaboration.

DeTransDraw is a redesign of TransDraw [1], a client-server application
providing similar features. Due to its centralized architecture, TransDraw
has a single point of failure and does not scale beyond the capacity of the
server. DeTransDraw is built on top of a peer-to-peer network, Beernet [4],
allowing users to join and leave the application at any time, without re-
laying on any central point of control. The decentralized architecture of
DeTransDraw makes it more scalable and fault-tolerant. Other collabora-
tive applications, either synchronous or asynchronous, can benefit from these
properties by reusing the transactional layer over an equivalent peer-to-peer
network.

The transactional service we use is based on an eager protocol that is an
adaptation of Paxos consensus algorithm [3]. The peer-to-peer network we
built uses the relaxed-ring topology [2].

During the demonstration we will built an ad-hoc peer-to-peer network
that will be interfaced by three clients running on three different computers.
The three clients will run the graphical interface of DeTransDraw, accessing
the shared drawing area. Apart from simple drawing actions, conflict reso-
lution will be tested by trying to modify the same graphical objects by more
that one client. Fault-tolerance will be tested by killing some of the peers
during the drawing actions. For the demonstrations we will need space and
power to set up three laptops and a router.

∗This research is funded by SELFMAN (contract number: 034084).

1

2 Innovations

• Replicated storage achieved by decentralized transaction over peer-
to-peer networks providing distributed hash table (DHT), providing
eager notifications to the participants of a collaborative application

• Prevention of performance degradation due to network latency. Users
work on the application almost as if it was a local application.

• Self-management of storage achieved with symmetric replication over
a structured overlay network.

• Self-healing of transactions participants. A transaction always termi-
nate if the majority of the peers is alive during the execution. Fault-
tolerance is guaranteed depending on the majority.

References

[1] Donatien Grolaux. Editeur graphique réparti basé sur un modéle trans-
actionnel, 1998. Mémoire de Licence.

[2] Boris Mej́ıas and Peter Van Roy. A relaxed-ring for self-organising and
fault-tolerant peer-to-peer networks. In XXVI International Confer-
ence of the Chilean Computer Science Society. IEEE Computer Society,
November 2007.

[3] Monika Moser and Seif Haridi. Atomic commitment in transactional
dhts. In Proceedings of the CoreGRID Symposium, CoreGRID series.
Springer, 2007.

[4] Programming Languages and Distributed Computing Re-
search Group, UCLouvain. Beernet: pbeer-to-pbeer network -
http://beernet.info.ucl.ac.be.

2

Bibliography

[1] RPM Package Manager (RPM) v4 Homepage.

[2] Kompics: Reactive Component Model for Distributed Computing.
http://kompics.sics.se, 2009.

[3] The p2psim simulator. http://pdos.csail.mit.edu/p2psim/, 2009.

[4] The peersim simulator. http://peersim.sourceforge.net/, 2009.

[5] Ahmad Al-Shishtawy, Joel Höglund, Konstantin Popov, Nikos Parla-
vantzas, Vladimir Vlassov, and Per Brand. Distributed control loop
patterns for managing distributed applications. In SASO SELFMAN
Workshop, October 2008.

[6] Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand, and Seif Haridi. A
design methodology for self-management in distributed environments.
GRID4ALL project.

[7] Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, simulating, and
deploying peer-to-peer systems using the Kompics component model.
In COMmunication System softWAre and middlewaRE (COMSWARE),
Dublin, Ireland, 2009.

[8] J. Armstrong. Making reliable distributed systems in the presence of
software errors. PhD thesis, Swedish Institute of Computer Science
(SICS), November 2003.

[9] Joe Armstrong, Mike Williams, Claes Wikström, and Robert Virding.
Concurrent Programming in Erlang. Prentice-Hall, 1996. Erlang system
available at www.erlang.org.

[10] W. B. Arthur. Complexity in economic theory: Inductive reasoning and
bounded rationality. The American Economic Review, 84(2):406–411,
May 1994.

593

BIBLIOGRAPHY

[11] D. P. Bertsekas. The auction algorithm: a distributed relaxation method
for the assignment problem. Ann. Oper. Res., 14(1-4):105–123, 1988.

[12] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In Proceedings of the ACM
SIGCOMM ’04 Symposium on Communication, Architecture, and Pro-
tocols, OR, USA, Mar. 2004. ACM Press.

[13] Aaron B. Brown, Joseph L. Hellerstein, Matt Hogstrom, Tony Lau, Sam
Lightstone, Peter Shum, and Mary Peterson Yost. Benchmarking auto-
nomic capabilities: Promises and pitfalls. In Proceedings of 1st Interna-
tional Conference on Autonomic Computing, pages 266–267, New York,
NY, USA, May 17-19 2004. ICAC, IEEE Computer Society.

[14] Aaron B. Brown and Charlie Redlin. Measuring the effectiveness of self-
healing autonomic systems. In Proceedings of 2nd International Confer-
ence on Autonomic Computing, pages 328–329, Seattle, WA, USA, June
13-16 2005. ICAC, IEEE Computer Society.

[15] Alexandre Bultot. A survey of systems with multiple interacting feed-
back loops and their application to programming. Technical report,
Université catholique de Louvain, 2009. In preparation.

[16] Christos G. Cassandras and Stéphane Lafortune. Introduction to Dis-
crete Event Systems, Second Edition. Springer, 2008.

[17] Huoping Chen and Salim Hariri. An evaluation scheme of adaptive con-
figuration techniques. In R. E. Kurt Stirewalt, Alexander Egyed, and
Bernd Fischer, editors, Proceedings of the 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 493–496,
Atlanta, Georgia, USA, November 5-9 2007. ASE, ACM Press, New-
York, NY.

[18] Raphaël Collet. The Limits of Network Transparency in a Distributed
Programming Language. PhD thesis, Dept. of Computing Science and
Engineering, Université catholique de Louvain, December 2007.

[19] Tom De Wolf and Tom Holvoet. Evaluation and comparison of decen-
tralised autonomic computing systems. CW Reports CW437, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium, March 2006.

[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s

SELFMAN Deliverable Year Three, Page 594

BIBLIOGRAPHY

highly available key-value store. In Thomas C. Bressoud and M. Frans
Kaashoek, editors, SOSP, pages 205–220. ACM, 2007.

[21] Jim Dowling and Cosmin Arad. Kompics Programming Manual. Swedish
Institute of Computer Science and Kungliga Tekniska Högskola, 2009.
Available at kompics.sics.se.

[22] A. Flissi, J. Dubus, N. Dolet, and P. Merle. Deploying on the Grid
with DeployWare. In 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2008). IEEE Computer Society, 2008.

[23] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communica-
tion across network address translators. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages
13–13, Berkeley, CA, USA, 2005. USENIX Association.

[24] Thomas Forse. Qualimtrie des systmes complexes - Mesure de la qualit
du logiciel. Paris, editions d’organisation edition, November 1989.

[25] The Apache Software Foundation. Apache http server, 2009. Available
at www.apache.org.

[26] E. Gat. Three-layer architectures. In Artificial Intelligence and Mobile
Robots. MIT/AAAI Press, 1997.

[27] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash
Tables. PhD dissertation, KTH — Royal Institute of Technology, Stock-
holm, Sweden, December 2006.

[28] P. B. Godfrey and I. Stoica. Heterogeneity and Load Balance in Dis-
tributed Hash Tables. In Proc. of the 24th Annual Joint Conf. of the
IEEE Computer and Communications Societies (INFOCOM’05), FL,
USA, March 2005. IEEE Comp. Society.

[29] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, Andrew A. Farrell,
A. Lain, P. Murray, and P. Toft. The smartfrog configuration manage-
ment framework. SIGOPS Oper. Syst. Rev., 43(1), 2009.

[30] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, 2006.

[31] The PHP Group. PHP: Hypertext Preprocessor, 2009. Available at
www.php.net.

SELFMAN Deliverable Year Three, Page 595

BIBLIOGRAPHY

[32] Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Dis-
tributed Programming. Springer-Verlag, 2006.

[33] Felix Halim, Rajiv Ramnath, Sufatrio, Yongzheng Wu, and Roland H. C.
Yap. A lightweight binary authentication system for windows. Joint
iTrust and PST Conferences on Privacy, Trust Management and Secu-
rity (IFIPTM 2008), 2008.

[34] Felix Halim, Yongzheng Wu, and Roland H. C. Yap. Security issues in
small world network routing. Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, 2008.

[35] Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Small world net-
works as (semi)-structured overlay networks. Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops,
2008.

[36] Felix Halim, Wu Yongzheng, and Roland H.C. Yap. Wiki credibility
enhancement. In Fifth International Symposium on Wikis and Open
Collaboration (WikiSym), to appear, 2009.

[37] Garrett Hardin. The tragedy of the commons. Science, 162(3859):133–
160, December 1968.

[38] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. Wiley-IEEE Press, August
2004.

[39] Mikael Högkvist, Seif Haridi, Nico Kruber, Alexander Reinefeld, and
Thorsten Schütt. Using global information for load balancing in DHTs.
In SASO SELFMAN Workshop, October 2008.

[40] Paul Horn. Autonomic computing: Ibm’s perspective on the state of
information technology, 2001.

[41] M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based Aggrega-
tion in Large Dynamic Networks. ACM Trans. on Computer Systems
(TOCS), 23(3), August 2005.

[42] David R. Karger and Matthias Ruhl. Simple efficient load balancing
algorithms for peer-to-peer systems. In Geoffrey M. Voelker and Scott
Shenker, editors, IPTPS, volume 3279 of Lecture Notes in Computer
Science, pages 131–140. Springer, 2004.

SELFMAN Deliverable Year Three, Page 596

BIBLIOGRAPHY

[43] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-
puting. IEEE Computer, 36(1):41–50, January 2003.

[44] Jeong-Rae Kim, Yeoin Yoon, and Kwang-Hyun Cho. Coupled feedback
loops form dynamic motifs of cellular networks. Biophysical Journal,
94:359–365, January 2008.

[45] Jon Kleinberg. The small-world phenomenon: An algorithmic perspec-
tive. 32nd ACM Symposium on Theory of Computing, 2000.

[46] Tetsuya Kobayashi, Luonan Chen, and Kazuyuki Aihara. Modeling
genetic switches with positive feedback loops. J. Theor. Biol., 221:379–
399, 2003.

[47] Jeff Kramer and Jeff Magee. Self-managed systems: An architectural
challenge. In Workshop on the Future of Software Engineering (FOSE
2007), pages 259–268, May 2007.

[48] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Analysis of the
Evolution of Peer-to-Peer Systems. In Proceedings of the 21st Annual
ACM Symposium on Principles of Distributed Computing (PODC’02),
pages 233–242, New York, NY, USA, 2002. ACM Press.

[49] Paul Lin, Alexander MacArthur, and John Leaney. Defining autonomic
computing: A software engineering perspective. In Proceedings of 16th
Australian Software Engineering Conference, pages 88–97, Brisbane,
Australia, March 31 - April 1 2005. ASWEC, IEEE Computer Society.

[50] Y. Liu and S. Smith. A Formal Framework for Component Deploy-
ment. In 20th ACM Int. Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2006.

[51] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic
emulation of the butterfly. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing (PODC’02), New
York, NY, USA, 2002. ACM Press.

[52] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR metric. In Proceedings of the First
Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture
Notes in Computer Science (LNCS), pages 53–65, London, UK, 2002.
Springer-Verlag.

SELFMAN Deliverable Year Three, Page 597

BIBLIOGRAPHY

[53] Julie A. McCann and Markus C. Huebscher. Evaluation issues in au-
tonomic computing. In Hai Jin, Yi Pan, and Nong Xiao, editors, Pro-
ceedings of Grid and Cooperative Computing - GCC 2004 Workshops:
GCC 2004 International Workshops, IGKG, SGT, GISS, AAC-GEVO,
and VVS, volume 3252 of Lecture Notes in Computer Science, pages
597–608, Wuhan, China, October 21-24 2004. GCC, Springer.

[54] Boris Mej́ıas. Beernet: The relaxed beer-to-beer network. Université
catholique de Louvain, 2009. Available at beernet.info.ucl.ac.be.

[55] Boris Mej́ıas, Alfredo Cádiz, and Peter Van Roy. Beernet: RMI-free
peer-to-peer networks. In First International Workshop on Distributed
Objects for the 21st Century, July 2009.

[56] Boris Mej́ıas and Donatien Grolaux. DeTransDraw: Decentralized trans-
actional collaborative drawing. Demonstrator, Internet of Services 2009
Collaboration Meeting, June 2009.

[57] Boris Mej́ıas and Peter Van Roy. A relaxed-ring for self-organising and
fault-tolerant peer-to-peer networks. In SCCC ’07: Proceedings of the
XXVI International Conference of the Chilean Society of Computer Sci-
ence, pages 13–22, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[58] Boris Mej́ıas and Peter Van Roy. The relaxed-ring: A fault-tolerant
topology for structured overlay networks. Parallel Processing Letters,
18(3):411–432, September 2008.

[59] E. Le Merrer, A.-M Kermarrec, and L. Massoulie. Peer to peer size
estimation in large and dynamic networks: A comparative study. In
Proc. of the 15th IEEE Symposium on High Performance Distributed
Computing, pages 7–17. IEEE, 2006.

[60] Drazen Milicic. Software quality models and philosophies, chapter 1,
page 100. Blekinge Institute of Technology, June 2005.

[61] Monika Moser and Seif Haridi. Atomic commitment in transactional
DHTs. In CoreGRID Symposium, August 2007.

[62] Mozart Consortium. Mozart programming system version 1.4.0, July
2008. Available at www.mozart-oz.org.

[63] The OSGi Alliance. OSGi Service Platform Release 4, Version 4.1 -
Core Specification, April 2007.

SELFMAN Deliverable Year Three, Page 598

BIBLIOGRAPHY

[64] Walamitien H. Oyenan and Scott A. DeLoach. Design and evaluation
of a multiagent autonomic information system. In IAT, pages 182–188,
Silicon Valley, CA, USA, November 2-5 2007. IAT’07, IEEE Computer
Society.

[65] Stefan Plantikow, Alexander Reinefeld, and Florian Schintke. Transac-
tions for distributed wikis on structured overlays. In Alexander Clemm,
Lisandro Zambenedetti Granville, and Rolf Stadler, editors, DSOM,
volume 4785 of Lecture Notes in Computer Science, pages 256–267.
Springer, 2007.

[66] Programming Languages and Distributed Computing Research Group,
UCLouvain. P2PS: A peer-to-peer networking library for Mozart-Oz -
http://p2ps.info.ucl.ac.be, 2008.

[67] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and
Scott Shenker. A scalable content-addressable network. In SIGCOMM,
pages 161–172, 2001.

[68] J. Rosenberg. Interactive connectivity establishment (ice): A protocol
for network address translator (nat) traversal for offer/answer protocols,
2007.

[69] J. Rosenberg, R. Mahy, and C. Huitema. Traversal using relay NAT
(TURN). Internet-Draft http://www.jdrosen.net/midcom turn.html,
September 2005.

[70] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems. In
Rachid Guerraoui, editor, Middleware, volume 2218 of Lecture Notes in
Computer Science, pages 329–350. Springer, 2001.

[71] Mazeiar Salehie and Ladan Tahvildari. Autonomic computing: emerging
trends and open problems. ACM SIGSOFT Software Engineering Notes,
30(4):1–7, 2005.

[72] Oskar Sandberg. Distributed routing in small-world networks.
The Eighth Workshop on Algorithm Engineering and Experiments
(ALENEX06), 2006.

[73] Thorsten Schütt. Scalaris: A scalable transactional data store for Web
2.0 services. Technical report, Zuse Institute Berlin, 2008. Available at
code.google.com/p/scalaris.

SELFMAN Deliverable Year Three, Page 599

BIBLIOGRAPHY

[74] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Structured
overlay without consistent hashing: Empirical results. In CCGRID,
page 8. IEEE Computer Society, 2006.

[75] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Range
queries on structured overlay networks. Computer Communications,
31(2):280–291, 2008.

[76] Peter M. Senge, Art Kleiner, Charlotte Roberts, Richard B. Ross, and
Bryan J. Smith. The Fifth Discipline Fieldbook: Strategies and Tools for
Building a Learning Organization. Nicholas Brealey Publishing, London,
1994.

[77] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with network
partitions in structured overlay networks. Journal of Peer-to-Peer Net-
working and Applications, 2008.

[78] A. Shaker and D. S. Reeves. Self-Stabilizing Structured Ring Topol-
ogy P2P Systems. In Proceedings of the 5th International Conference
on Peer-To-Peer Computing (P2P’05), pages 39–46. IEEE Computer
Society, August 2005.

[79] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2009.

[80] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against
eclipse attacks on overlay networks. In Proceedings of the 11th workshop
on ACM SIGOPS European workshop. ACM New York, NY, USA, 2004.

[81] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In SIGCOMM, pages 149–160, 2001.

[82] Peter Van Roy. Self management and the future of software design. In
Third International Workshop on Formal Aspects of Component Soft-
ware (FACS ’06), volume 182. Springer ENTCS, September 2006.

[83] Peter Van Roy. Overcoming software fragility with interacting feedback
loops and reversible phase transitions. In First International Conference
on Visions of Computer Science (BCS 08), September 2008.

[84] Peter Van Roy, Seif Haridi, Alexander Reinefeld, Jean-Bernard Stefani,
Roland Yap, and Thierry Coupaye. Self management for large-scale

SELFMAN Deliverable Year Three, Page 600

BIBLIOGRAPHY

distributed systems: An overview of the SELFMAN project. In FMCO
2007. Springer LNCS, October 2007.

[85] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon:
Inexpensive membership management for unstructured p2p overlays. J.
Network Syst. Manage., 13(2), 2005.

[86] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe. An Au-
tomated Formal Approach to Managing Dynamic Reconfiguration. In
21st IEEE International Conference on Automated Software Engineer-
ing (ASE’06). IEEE, 2006.

[87] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-
world networks. Nature: Macmillan Publishers Ltd, 1998.

[88] Norbert Wiener. Cybernetics, of Control and Communication in the
Animal and the Machine. MIT Press, 1948.

[89] Wikipedia, the free encyclopedia. Belief propagation. March 2008. See
en.wikipedia.org/wiki/Belief propagation.

[90] Jonathan Wildstrom, Peter Stone, and Emmett Witchel. Autonomous
return on investment analysis of additional processing resources. In
Proceedings of 4th International Conference on Autonomic Computing,
page 15, Jacksonville, Florida, USA, June 11-15 2007. ICAC, IEEE Com-
puter Society.

[91] David H. Wolpert, Kevin R. Wheeler, and Kagan Turner. Collective in-
telligence for control of distributed dynamical systems. Europhys. Lett.,
2000.

[92] Daniel Worden. Understand autonomic maturity levels, February 2004.

[93] Yongzheng Wu, Sufatrio, Roland H.C. Yap, Rajiv Ramnath, and Felix
Halim. Establishing software integrity trust: A survey and lightweight
authentication system for windows. In Zheng Yan, editor, Trust Model-
ing and Management in Digital Environments: from Social Concept to
System Development, chapter 3. IGI Global, 2009.

[94] Roland Yap, Felix Halim, and Wu Yongzheng. First report on security in
structured overlay networks. SELFMAN Deliverable D1.3a, November
2007. Available at www.ist-selfman.org.

[95] Y.Takeda. Symmetric nat traversal using stun, 2007.

SELFMAN Deliverable Year Three, Page 601

BIBLIOGRAPHY

[96] H. Yu, M. Kaminsky, P.B. Gibbons, and A. Flaxman. Sybilguard: De-
fending against sybil attacks via social networks. In Proceedings of the
ACM SIGCOMM 2006 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages 267–278.
ACM New York, NY, USA, 2006.

[97] Benjamin Zeiss, Diana Vega, Ina Schieferdecker, Helmut Neukirchen,
and Jens Grabowski. Applying the iso 9126 quality model to test spec-
ifications - exemplified for ttcn-3 test specifications. In Wolf-Gideon
Bleek, Jörg Raasch, and Heinz Züllighoven, editors, Procedings of Soft-
ware Engineering 2007, Fachtagung des GI-Fachbereichs Softwaretech-
nik, volume 105 of LNI, pages 231–244, Hamburg, March 27-30 2007.
SE, GI.

[98] Haitao Zhang, Huiqiang Whang, and Ruijuan Zheng. An autonomic
evaluation model of complex software. International Conference on In-
ternet Computing in Science and Engineering, 0:343–348, 2008.

SELFMAN Deliverable Year Three, Page 602

