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Abstract Structured overlay networks form a major
class of peer-to-peer systems, which are touted for their
abilities to scale, tolerate failures, and self-manage. Any
long-lived Internet-scale distributed system is destined
to face network partitions. Although the problem of
network partitions and mergers is highly related to
fault-tolerance and self-management in large-scale sys-
tems, it has hardly been studied in the context of struc-
tured peer-to-peer systems. These systems have mainly
been studied under churn (frequent joins/failures),
which as a side effect solves the problem of network
partitions, as it is similar to massive node failures. Yet,
the crucial aspect of network mergers has been ignored.
In fact, it has been claimed that ring-based structured
overlay networks, which constitute the majority of the
structured overlays, are intrinsically ill-suited for merg-
ing rings. In this paper, we present an algorithm for
merging multiple similar ring-based overlays when the
underlying network merges. We examine the solution
in dynamic conditions, showing how our solution is
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resilient to churn during the merger, something widely
believed to be difficult or impossible. We evaluate the
algorithm for various scenarios and show that even
when falsely detecting a merger, the algorithm quickly
terminates and does not clutter the network with many
messages. The algorithm is flexible as the tradeoff be-
tween message complexity and time complexity can be
adjusted by a parameter.
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1 Introduction

Structured Overlay Networks (SONs)—such as Chord
[39], Pastry [34], and SkipNet [17]—are touted for
their ability to provide scalability, fault-tolerance,
and self-management, making them well-suited for
Internet-scale distributed applications. Such Internet-
scale systems will always come across network parti-
tions, especially if the system is long-lived. Although
the problem of network partitions and mergers is
highly related to fault-tolerance and self-management
in large-scale systems, it has, with few exceptions, been
ignored in the context of structured overlays. This is pe-
culiar, as the importance of the problem has long been
known in other problem domains, such as in distributed
databases [10] and distributed file systems [40].

Although network partitions are not very common,
they do occur. Internet failures, resulting in partitioned
networks can occur due to large area link failure, router
failure, physical damage to a link/router, router mis-
configuration and buggy software updates. Overloaded
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routers, network wide congestion due to denial of
service (DoS) attacks and routing loops [32] can also
have the same effect as a network partition. Similarly,
natural disasters can result in Internet failures. This was
observed when an earthquake in Taiwan in December
2006 exposed the issue that global traffic passes through
a small number of seismically active “choke points”
[30]. Several countries in the region connect to the
outside world through these choke points. A number of
similar events leading to Internet failures have occurred
[6]. On a smaller scale, the aforementioned causes can
disconnect an entire organization from the Internet
[31], thus partitioning the organization.

It is our firm belief that a crucial requirement for
practical SONs is that they should be able to deal
with network partitions and mergers. As we show in
Section 2, SONs can, by a coincidence, cope with
network partitions. Unfortunately, most SONs cannot
cope with network mergers.

In fact, it has been claimed that ring-based struc-
tured overlays, which constitute the absolute majority
of the SONs, are inherently a poor fit for dealing with
network mergers. Datta et al. [8] focus on the merg-
ing of multiple SONs after a network partition ceases
(network merger). They argue that ring-based SONs
“cannot function at all until the whole merge process
is complete”.

The contribution of this paper is an algorithm for
merging any number of similar structured overlays.
We will limit ourselves to unidirectional ring-based
overlays, since they constitute a majority of the SONs.
The presented algorithm allows the system designer to
adjust, through a fanout parameter, the tradeoff be-
tween bandwidth consumption (message and bit com-
plexity) and time it takes for the algorithm to complete
(time complexity). Through experimental evaluation,
we show typical fanout values for which our algorithm
completes quickly, while keeping the bandwidth con-
sumption at an acceptable level. We examine the solu-
tion in dynamic conditions, showing how our solution
is resilient to churn during the merger, something be-
lieved to be impossible [8]. We verify that the algorithm
works efficiently even if only a single node detects the
partition merger. We show that even with large rings
with thousands of nodes, our solution is lean as it avoids
positive-feedback cycles and, hence, avoids congesting
the network. Finally, we show that the algorithm can
recover from pathological scenarios, such as loopy rings
[25, 38], which might result from network partitions.

The merging of SONs gives rise to problems on
two different levels: routing level and data level. The
routing level is concerned with healing of the routing
information after a partition merger.

The data level is concerned with the consistency of
the data items stored in the SONs. The solutions to
this problem might depend on the application and on
the semantics of the data operations, e.g. immutable
key/value pairs or monotonically increasing values. It
is also known that it is impossible to achieve strong
(atomic) data consistency, availability,1 and partition
tolerance in SONs [5, 14, 15].

We focus on the problem of dealing with partition
mergers at the routing level. Given a solution to the
problem at the routing level, it is generally known how
to achieve weaker types of data consistency, such as
eventual consistency [11, 40].

Outline Section 2 serves as a background by moti-
vating and defining our choice of ring-based SONs.
Section 3 introduces the main contributions of this
work, simple ring unification algorithm, as well as the
gossip-based ring unification algorithm. Since the latter
algorithm builds on the previous, we hope that this
has a didactic value. Thereafter, Section 4 evaluates
different aspects of the algorithms in various scenar-
ios. Section 5 presents related work. Finally, Section 6
concludes and presents an ambitious agenda for future
work.

2 Background

The rest of the paper focuses on ring-based structured
overlay networks. Next, we motivate this choice, and
thereafter briefly define ring-based SONs. Finally, we
show how Chord deals with network partitions and
failures.

Motivation for the unidirectional ring geometry We
confine ourselves to unidirectional ring-based SONs,
such as Chord [39], SkipNet [17], DKS [14], Koorde
[20], Mercury [4], Symphony [28], EpiChord [22], and
Accordion [23]. But we believe that our algorithms can
be adapted easily to other ring-based SONs, such as
Pastry [34]. For a more detailed account on direction-
ality and structure in SONs, please refer to Onana et al.
[3] and Aberer et al. [1].

The reason for confining ourselves to ring-based
SONs is twofold. First, ring-based SONs constitute a
majority of the SONs. Second, Gummadi et al. [16]
diligently compared the geometries of different SONs,

1By availability we mean that a get/put operation should eventu-
ally complete.
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and showed that the ring geometry is the one most
resilient to failures, while it is just as good as the other
geometries when it comes to proximity.

To simplify the presentation of our algorithms, we
use notation that indicates the use of the Chord [39]
SON. But the ideas are directly applicable to all unidi-
rectional ring-based SONs.

A model of a ring-based SON A SON makes use of
an identifier space, which for our purposes is defined
as a set of integers {0, 1, · · · ,N − 1}, where N is some
apriori fixed, large, and globally known integer. This
identifier space is perceived as a ring that wraps around
at N − 1.

Every node in the system, has a unique identifier
from the identifier space. Node identifiers are typically
assumed to be uniformly distributed on the identifier
space. Each node keeps a pointer, succ, to its successor
on the ring. The successor of a node with identifier p
is the first node found going in clockwise direction on
the ring starting at p. Similarly, every node also has a
pointer, pred, to its predecessor on the ring. The prede-
cessor of a node with identifier q is the first node met
going in anti-clockwise direction on the ring starting at
q. A successor-list is also maintained at every node r,
which consists of r’s c immediate successors, where c is
typically set to log2(n), where n is the network size.

Ring-based SONs also maintain additional routing
pointers on top of the ring to enhance routing. To be
concrete, assume that these are placed as in Chord.
Hence, each node p keeps a pointer to the successor
of the identifier p + 2i (mod N ) for 0 ≤ i < log2(N ).
Our results can easily be adapted to other schemes for
placing these additional pointers.

Dealing with partitions and failures in chord Chord
handles joins and leaves using a protocol called periodic
stabilization. Leaves are handled by having each node
periodically check whether pred is alive, and setting
pred := nil if it is found dead. Moreover, each node
periodically checks to see if succ is alive. If it is found to
be dead, it is replaced by the closest alive successor in
the successor-list.

Joins are also handled periodically. A joining node
makes a lookup to find its successor s on the ring,
and sets succ := s. Each node periodically asks for its
successor’s pred pointer, and updates succ if it finds
a closer successor. Thereafter, the node notifies its
current succ about its own existence, such that the
successor can update its pred pointer if it finds that the
notifying node is a closer predecessor than pred. Hence,
any joining node is eventually properly incorporated
into the ring.

As we mentioned previously, a single node cannot
distinguish massive simultaneous node failures from a
network partition. As periodic stabilization can handle
massive failures [25], it also recovers from network
partitions, making each component of the partition
eventually form its own ring. We have simulated such
scenarios and confirmed these results. The problem that
remains unsolved, which is the focus of the rest of the
paper, is how several independent rings can efficiently
be merged.

3 Ring merging

For two or more rings to be merged, at least one node
needs to have knowledge about at least one node in an-
other ring. This is facilitated by the use of passive lists.
Whenever a node detects that another node has failed,
it puts the failed node, with its routing information2

in its passive list. Every node periodically pings nodes
in its passive list to detect if a failed node is alive again.
When this occurs, it starts a ring merging algorithm.
Hence, a network partition will result in many nodes
being placed in passive lists. When the underlying net-
work merges, this will be detected and rectified through
the execution of a ring merging algorithm.

A ring merging algorithm can also be invoked in
other ways than described above. For example, it could
occur that two SONs are created independently of each
other, but later their administrators decide to merge
them due to overlapping interests. It could also be that
a network partition has lasted so long, that all nodes in
the rings have been replaced, making the contents of
the passive lists useless. In cases such as these, a system
administrator can manually insert an alive node from
another ring into the passive list of any of the nodes.
The ring merger algorithm will take care of the rest.

The detection of an alive node in a passive list does
not necessarily indicate the merger of a partition. It
might be the case that a single node is incorrectly
detected as failed due to a premature timeout of a
failure detector. The ring merging algorithm should be
able to cope with this by trying to ensure that such false-
positives will terminate the algorithm quickly. It might
also be the case that a previously failed node rejoins
the network, or that a node with the same overlay and
network address as a previously failed node joins the
ring. Such cases are dealt with by associating with every

2By routing information we mean a node’s overlay identifier,
network address, and nonce value (explained shortly).
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node a globally unique random nonce, which is gener-
ated each time a node joins the network. Hence, if the
algorithm detects that a node in its passive list is again
alive, it can compare the node’s current nonce value
with that in the passive list to avoid a false-positive, as
that node is likely a different node that coincidentally
has the same overlay and network address.

3.1 Simple ring unification

In this section, we present the simple ring unification
algorithm (Algorithm 1). As we later show, the algo-
rithm will merge the rings in O(N) time for a network
size of N. Later, we show how the algorithm can be im-
proved to make it complete the merger in substantially
less time.

Algorithm 1 Simple Ring Unification Algorithm
1: every time units  and at
2: := .dequeue()
3: sendto : MLOOKUP ( )
4: sendto : MLOOKUP ( )
5: end event

6: receipt of MLOOKUP ( ) from at
7: if and then
8: if then
9: sendto : TRYMERGE ( )

10: else if then
11: sendto : TRYMERGE ( )
12: else
13: sendto closestprecedingnode( ) : MLOOKUP ( )
14: end if
15: end if
16: end event

17: receipt of TRYMERGE ( ) from at
18: sendto : MLOOKUP ( )
19: if then
20: :=
21: end if
22: sendto : MLOOKUP ( )
23: if then
24: :=
25: end if
26: end event

Algorithm 1 makes use of a queue called detqueue,
which will contain any alive nodes found in the passive
list. The queue is periodically checked by every node
p, and if it is non-empty, the first node q in the list is
picked to start a ring merger. Ideally, p and q will be on
two different rings. But even so, the distance between
p and q on the identifier space might be very large, as
the passive list can contain any previously failed node.
Hence, the event mlookup(id) is used to get closer
to id through a lookup. Once mlookup(id) gets near

its destination id, it triggers the event trymerge(a, b),
which tries to do the actual merging by updating pred
and succ pointers to a and b respectively.

The event mlookup(id) is similar to a Chord lookup,
which tries to do a greedy search towards the destina-
tion id. One difference is that it terminates the lookup
if it reaches the destination and locally finds that it
cannot merge the rings. More precisely, this happens if
mlookup(id) is executed at id itself, or at a node whose
successor is id. If an mlookup(id) executed at n finds
that id is between n and n’s successor, it terminates
the mlookup and starts merging the rings by calling
trymerge. Another difference between mlookup and
an ordinary Chord lookup is that an mlookup(id) ex-
ecuted at n also terminates and starts merging the rings
if it finds that id is between n’s predecessor and n.
Thus, the merge will proceed in both clockwise and
anti-clockwise direction.

The event trymerge takes as parameters a candidate
predecessor, cpred, and a candidate successor csucc,
and attempts to update the current node’s pred and
succ pointers. It also makes two recursive calls to
mlookup, one towards cpred, and one towards csucc.
This recursive call attempts to continue the merging
in both directions. Figure 1 shows the working of the
algorithm.

1:mlookup(q)

2:mlookup(p)

3:trymerge

3a:csucc
3b:cpred

4:trymerge

4b:cpred
4a:csucc

P

q

clockwise progress

anti-
clo

ckwise
 p

ro
gre

ss

anti-c
lockwise

 progress

clockw
ise progress

Fig. 1 Filled circles belong to SON1 and empty circles belong
to SON2. The algorithm starts when p detects q, p makes an
mlookup to q and asks q to make an mlookup to p
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In summary, mlookup closes in on the target area
where a potential merger can happen, and trymerge
attempts to do local merging and advancing the merge
process in both directions by triggering new mlookups.

3.2 Gossip-based ring unification

The simple ring unification presented in the previ-
ous section has two disadvantages. First, it is slow, as
it takes O(N) time to complete the ring unification.
Second, it cannot recover from certain pathological sce-
narios. For example, assume two distinct rings in which
every node points to its successor and predecessor in
its own ring. Assume furthermore that the additional
pointers of every node point to nodes in the other ring.
In such a case, an mlookup will immediately leave the
initiating node’s ring, and hence may terminate. We do
not see how such a pathological scenario could occur
due to a partition, but the gossip-based ring unification
algorithm (Algorithm 2) rectifies both disadvantages of
the simple ring unification algorithm. Moreover, the
simple ring unification is less robust to churn, as we
discuss in the evaluation section.

Algorithm 2 Gossip-based Ring Unification Algorithm
1: every time units  and at
2: := .dequeue()
3: sendto : MLOOKUP ( )
4: sendto : MLOOKUP ( )
5: end event

6: receipt of MLOOKUP ( ) from at
7: if and then
8: if then
9: :=

10: := randomnodeinRT()
11: at r : .enqueue( )
12: end if
13: if then
14: sendto : TRYMERGE ( )
15: else if then
16: sendto : TRYMERGE ( )
17: else
18: sendto closestprecedingnode( ) : MLOOKUP ( )
19: end if
20: end if
21: end event

22: receipt of TRYMERGE ( ) from at
23: sendto : MLOOKUP ( )
24: if then
25: :=
26: end if
27: sendto : MLOOKUP ( )
28: if then
29: :=
30: end if
31: end event

Algorithm 2 is, as its name suggests, gossip-based.
The algorithm is essentially the same as the simple ring
unification algorithm, with a few additions. The intu-
ition is to have the initiator of the algorithm to imme-
diately start multiple instances of the simple algorithm
at random nodes, with uniform distribution. But since
the initiator’s pointers are not uniformly distributed,
the process of picking random nodes is incorporated
into mlookup. Thus, mlookup(id) is augmented so that
the current node randomly picks a node r in its current
routing table and starts a ring merger between id and r.
This change alone would, however, consume too much
resources.

Two mechanisms are employed to prevent the al-
gorithm from consuming too many messages, which
could give rise to positive feedback cycles that congest
the network. First, instead of immediately triggering
an mlookup at a random node, the event is placed
in the corresponding node’s detqueue, which is only
checked periodically. Second, a constant number of
random mlookups are created. This is regulated by
a fanout parameter called F. Thus, the fanout is de-
creased each time a random node is picked, and the
random process is only started if the fanout is larger
than 1. The detqueue, therefore, holds tuples, which
contain a node identifier and the current fanout pa-
rameter. Similarly, mlookup takes the current fanout
as a parameter. The rate for periodically checking the
detqueue can be adjusted to control the rate at which
the algorithm generates messages.

4 Evaluation

In this section, we evaluate the two algorithms from
various aspects and in different scenarios. There are
two measures of interest: message complexity, and time
complexity. We differentiate between the completion
and termination of the algorithm. By completion we
mean the time when the rings have merged. By termina-
tion we mean the time when the algorithm terminates
sending any more messages. Unless said otherwise,
message complexity is until termination, while time
complexity is until completion.

The evaluations are done in a stochastic discrete
event simulator [37] in which we implemented Chord.
The simulator uses an exponential distribution for the
inter-arrival time between events (joins and failures).
To make the simulations scale, the simulator is not
packet-level. The time to send a message is an expo-
nentially distributed random variable. The values in
the graphs indicate averages of 20 runs with different
random seeds.
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We first evaluate the message and time complexity of
the algorithms in a typical scenario where after merger,
many nodes simultaneously detect alive nodes in their
passive lists. Next, we evaluate the performance of the
algorithm for a worst case scenario when only a single
node detects the existence of another ring. The worst
case scenario is similar to a case where an administrator
wants to merge two SONs and triggers the ring unifica-
tion algorithm on only a single node. Next, we assess
the algorithms for a loopy ring. Thereafter, we evaluate
the performance of the algorithms while node joins
and failures are taking place during the ring merging
process. Next, we compare our algorithm with a self-
stabilizing algorithm. Finally, we evaluate the message
complexity of the algorithms when a node falsely be-
lieves that it has detected another ring.

For the first experiment, the simulation scenario had
the following structure. Initially nodes join and fail.
After a certain number of nodes are part of the system,
we insert a partition event, upon which the simulator
divides the set of nodes into as many components as
requested by the partition event, dividing the nodes
randomly into the partitions but maintaining an ap-
proximate ratio specified. For our simulations, we cre-
ate two partitions. A partition event is implemented
using lottery scheduling [42] to define the size of each
partition. The simulator then drops all messages sent
from nodes in one partition to nodes in another par-
tition, thus simulating a network partition in the un-
derlying network and therefore triggering the failure
handling algorithms (see Sections 2 and 3). Further-
more, node join and fail events are triggered in each
partitioned component. Thereafter, a network merger
event simply allows messages to reach other network
components, triggering the detection of alive nodes in
the passive lists, and hence starting the ring unification
algorithms.

We simulated the simple ring unification algorithm
and the gossip-based ring unification algorithm for par-
titions creating two components, and for fanout values
from 1 to 7. For all the simulation graphs to follow,
a fanout of 1 represents the simple ring unification
algorithm. A time unit was equal to the time it takes
for a message to reach its destination node.

Figures 2 and 3 show the time and message complex-
ity for a typical scenario where after a merger, multiple
nodes detect the merger and thus start the ring-
unification algorithm. The number of nodes detecting
the merger depends on the scenario; in our simulations,
it was 10–15% of the total nodes. As can be seen in
Figs. 2 and 3, the simple ring unification algorithm
(F = 1) consumes minimum messages but takes max-
imum time when compared to different variations of
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the gossip-based ring unification algorithm. For higher
values of F, the time complexity decreases while the
message complexity increases. Increasing the fanout
after a threshold value (around 3–4 in this case) will not
considerably decrease the time complexity, but will just
generate many unnecessary messages.

To proper understand the performance of the pro-
posed algorithm, we generated scenarios where only
one node would start the merger of the two rings.
We randomly select, with uniform probability, the two
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nodes that are involved in the merger, i.e. the node p
that detects the merger and the node that p detects
from its passive list. Hence, the distance between them
on the ring varies. For our experiments, each of the
two rings had approximately half of the total number of
nodes in the system before the merger. We choose the
rate of checking detqueue to be every five time units
and the rate of periodic stabilization (PS) to be every
ten time units. The motivation for choosing a lower PS
rate is to study the performance of the ring unification
algorithm with minimum influence from PS.

We simulated ring unification for various network
sizes of powers of 2 to study its scalability. Figure 4
shows the time complexity for varying network sizes.
The x-axis is on a logarithmic scale, while the y-axis
is linear. The graph for the gossip-based algorithms
is linear, which suggests a O(log n) time complexity.
In contrast, the simple ring unification graph (F = 1)
is exponential, indicating that it does not scale well,
i.e. ω(log n) time complexity. In Fig. 5, we plot the
number of ring unification messages sent by each node
during the merger, i.e. the total number of messages
induced by the algorithm until termination divided by
the number of nodes. The linear graph on a log-log
plot indicates a polynomial messages complexity. As
expected, the number of messages per node grows
slower for simple ring unification compared to gossip-
based ring unification.

Figure 6 illustrates the tradeoff between time and
message complexity. It shows that the goals of decreas-
ing time and message complexity are conflicting. Thus,
to decrease the number of messages, the time for com-

 20

 30

 40

 50

 60

 70

 80

 90

256 512 1024 2048 4096 8192 16384
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

T
im

e 
un

its

T
im

e 
un

its

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 4 Evaluation of time complexity when only one node starts
the merger. Only F 1 is plotted against the right y-axis

 1

 10

 100

 1000

 10000

256 512 1024 2048 4096 8192 16384

M
es

sa
ge

s/
no

de
 ti

ll 
te

rm
in

at
io

n 
(lo

g)

Network size (log2)

F 1
F 2
F 3
F 4
F 5
F 6
F 7

Fig. 5 Evaluation of message complexity per node when only
one node starts the merger

pletion will increase. Similarly, opting for convergence
in lesser time will generate more messages. A suitable
fanout value can be used to adapt the ring unification
algorithm according to the requirements and network
infrastructure available.

For the rest of the evaluations, we use a worst case
scenario where only a single node detects the merger.

Next, we evaluated the time and message complexity
for a network to converge to a strongly stable ring from
a loopy state of two cycles. As defined by Liben-Nowell
et al. [25], a Chord network is weakly stable if, for
all nodes u, (u.succ).pred = u and strongly stable if, in
addition, for each node u, there is no node v such that
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u < v < u.succ. A loopy network is one which is weakly
but not strongly stable. The scenario for the simulations
was to create a loop of two cycles from one-fifth of the
total number of nodes. Thereafter, we generated events
of node joins for the remaining four-fifth nodes at an
exponentially distributed inter-arrival rate. As in all
experiments, the identifiers of the joining nodes were
generated randomly with uniform probability. Thus,
the nodes joined at different points in the loop. We then
made one random node detect the loop by discovering
a random node from the other cycle, triggering the ring
unification algorithm. Figures 7 and 8 show the time and
message complexity for the loopy network to converge
to a strongly stable ring. The figures depict the effect of
fanout on time and message complexity.

We evaluated rings unification under churn, i.e.
nodes join and fail during the merger. Since we are using
a scenario where only one node detects the merger,
with low probability, the algorithm may fail to complete
and the merged overlay may not converge under churn,
especially for simple ring unification. The reason being
intuitive: for simple unification, the two mlookups gen-
erated by the node detecting the merger while traveling
through the network may fail as the node forwarding
the mlookup may fail under churn. With higher values
of F and in typical scenarios where multiple nodes
detect the merger, the algorithm becomes more robust
to churn as it creates multiple mlookups. The results
presented in Figs. 9 and 10 are only when the rings
successfully converge. For simulation, after a merge
event, we generate events of joins and fails until the
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unification algorithm terminates. With high churn, we
mean that the inter-arrival time between events of
joins and fails is less, thus representing highly dynamic
conditions. Choosing a high inter-arrival time between
events will create less joins and fails and thus churn will
be less. For the simulations presented here, we choose
inter-arrival time between events of joins and failures
to be 30 units for high churn and 45 units for low churn,
and an equal probability for a event to be a join or a fail.
Figures 9 and 10 show how different values of F affect
the convergence of the rings under different levels
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of churn, mainly showing the algorithm works under
churn without affecting message and time complexity
much.

Further, we simulated the algorithms under churn to
see how often they do not converge to a ring. We ran
experiments with 200 different seeds for sizes ranging
from 256 to 2048 nodes. We considered an execution
successful if 95% of the nodes had correct successor
pointers, as all successor pointers can not be correct
while nodes are joining and failing. Thereafter, the
remaining pointers are updated by Chord’s periodic
stabilization. For the 200 executions, we observed only
1 unsuccessful execution for network size 1024 and
2 unsuccessful executions for network size 2048. The
unsuccessful executions happened only for simple ring
unification, while executions with gossip based ring
unification were always successful. Even for the unsuc-
cessful executions, given enough time, PS updates the
successor pointers to correct values.

We compared our algorithm with a Self-Stabilizing
Ring Network (SSRN) [36] protocol. The results of our
simulations comparing time and message complexity
for various network sizes for the two algorithms have
been presented in Figs. 11 and 12, depicting that ring
unification consumes lesser time and messages com-
pared to SSRN. The main reason for the better per-
formance of our algorithm is that it has been designed
specifically for merging rings. On the other hand, SSRN
is a non-terminating algorithm that runs in the back-
ground like PS to find closer nodes. As evaluated
previously, simple ring unification (fanout = 1) does
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SSRN

not scale well for time complexity, which can be seen
in Fig. 11.

Finally, we evaluate the scenario where a node may
falsely detects a merger. Figure 13 shows the message
complexity of the algorithm in case of a false detection.
As can be seen, for lower fanout values, the message
complexity is less. Even for higher fanouts, the number
of messages generated are acceptable, thus showing
that the algorithm is lean. We believe this to be impor-
tant as most SONs do not have perfect failure detectors,
and hence can give rise to inaccurate suspicions.
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Our simulations show that a fanout value of 3–4 is
good for a system with several thousand nodes, even
with respect to churn and false-positives.

5 Related work

Much work has been done to study the effects of churn
on a structured overlay network [27], showing how
overlays can cope with massive node joins and failures,
thus showing how overlays are resilient to partitions.
Datta et al. [8] have presented the challenges of merg-
ing two overlays, claiming that ring-based networks
cannot operate until the merger operation completes.
In contrast, we show how unification can work under
churn while the merger operation is not complete. In
a followup work, Datta et al. [9] show how to merge
two P-Grid [2] SONs. There work differs from ours as
P-Grid is a tree-based SON, while we focus on ring-
based SONs.

The problem of constructing a SON from a random
graph is, in some respects, similar to merging multi-
ple SONs after a network merger, as the nodes may
get randomly connected after a partition heals. Shaker
et al. [36] have presented a ring-based algorithm for
nodes in arbitrary state to converge into a directed ring
topology. Their approach is different from ours, in that
they provide a non-terminating algorithm which should
be used to replace all join, leave, and failure handling of
an existing SON. Replacing the topology maintenance
algorithms of a SON may not always be feasible, as
SONs may have intricate join and leave procedures to

guarantee lookup consistency [14, 24, 26]. In contrast,
our algorithm is a terminating algorithm that works as
a plug-in for an already existing SON.

Kunzmann et al. [21] have proposed methods to
improve the robustness of SONs. They propose to use
a bootstrapping server to detect a merger by making
the peer with the smallest identifier to send periodic
messages to the bootstrap server. As soon as the boot-
strap server receives messages from different peers, it
will detect the existence of multiple rings. Thereafter,
all the nodes have to be informed about the merger.
While their approach has the advantage of having min-
imum false detections, it depends on a central bootstrap
server. They lack a full algorithm and evaluation of
how the merger will happen. Evaluation of the merge
detection process and informing all peers about the
detection is also missing.

Montresor et al. [29] show how Chord [39] can be
created by a gossip-based protocol [18]. However, their
algorithm depends on an underlying membership ser-
vice like Cyclon [41], Scamp [13] or Newscast [19]. Thus
the underlying membership service has to first cope
with network mergers (a problem worth studying in
its own right), where after T-Chord can form a Chord
network. We believe one needs to investigate further
how these protocols can be combined, and their epochs
be synchronized, such that the topology provided by
T-Chord is fed back to the SON when it has converged.
Though the general performance of T-Chord has been
evaluated, it is not known how it performs in the pres-
ence of network mergers when combined with various
underlying membership services.

Fig. 14 A case where chord and the ring network protocol would
break a connected graph into two components. Lines represent
successor pointers while dashed lines represent a finger
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As we show below, it might happen that an initially
connected graph can be split into two separate compo-
nents by the Chord [39] and SSRN [36] protocols. This
scenario is a counter-proof of the claim that SSRN is
self-stabilizing. Consider a network which consists of
two perfect rings, yet the nodes have fingers pointing to
nodes in the other ring. This can easily happen in case of
unreliable failure detectors [7] or networks partitions.
Normally, the PS rate is higher than fixing fingers, thus
due to a temporary partition, it might happen that
nodes update their successor pointers, yet before they
fix their fingers, the partition heals. In such a scenario,
SSRN splits the connected graph into two separate
partitions, thus creating a partition of the overlay, while
the underlay remains connected. An example of such a
scenario is shown in Fig. 14, where the filled circles are
nodes that are part of one ring and the empty circles
are nodes that are part of the other ring. Each node
has one finger pointing to a node in the other ring. The
fix-finger algorithm in Chord updates the fingers by
making lookups. In this case, a lookup will always
return a node in the same ring as the one making
the lookup. Consequently, the finger pointing to the
other ring will be lost. Similarly, the pointer jumping
algorithm used by SSRN to update its fingers will also
drop the finger pointing to a node in the other ring. On
the contrary, the ring-unification algorithm proposed in
this paper will fix such a graph and converge it to a
single ring.

Some SONs employ the ring based identifier space,
which they mix with a prefix-based tree [33]. For exam-
ple in Pastry [34], a responsible node for an identifier
is the node with numerically closest identifier and the
lookups are forwarded to nodes sharing the longest pre-
fix with the identifier being looked up. Our algorithm
can be modified for use by such SONs by replacing the
closestpreceedingnode-procedure with the equivalent
for the employed SON. The trymerge-procedure does
not have to be changed since updating the predecessor
and successor is similar to recording nodes with identi-
fiers closest to a node.

The problem of network partitions and mergers has
been studied in other distributed systems, such as in
distributed databases [10] and distributed file systems
[40]. These studies focus on problems created by the
partition and merger on the data level, while our focus
is on the routing level. We believe that such ideas, if
combined with algorithms such as those we propose,
can be used for handling data updates on SONs. That
is, nevertheless, outside the scope of this paper.

The results of this paper extend on our previous
work [35] by also considering loopy networks, the

SSRN protocol [36], and including additional experi-
mental results.

6 Conclusion

We have argued that the problem of partitions and
mergers in structured peer-to-peer systems, when the
underlying network partitions and recovers, is of crucial
importance. We have presented a simple and a gossip-
based algorithm for merging similar ring-based struc-
tured overlay networks after the underlying network
merges.

Though we believe that the problem of dealing
with network mergers is crucial, we think that such
events happen more rarely. Hence, it might be justifi-
able in certain application scenarios that a slow paced
algorithm runs in the background, consuming little
resources, while ensuring that any potential problems
with partitions will eventually be rectified. In such sce-
narios, our simple ring unification is more suitable. If
on the other hand, one would prefer to speed up the
unification process by consuming more messages, our
gossip-based ring unification is more suitable. We have
shown how the algorithm can be tuned to achieve a
tradeoff between the number of messages consumed
and the time before the overlay converges. We have
evaluated our solution in realistic dynamic conditions,
and showed that with high fanout values, the algorithm
can converge quickly under churn. We have also shown
that our solution generates few messages even if a
node falsely starts the algorithm in an already con-
verged SON. Finally, we have shown that our algorithm
recovers from pathological scenarios, such as loopy
rings, which might result from network partitions.

We tried many variations of the algorithms before
reaching those that are reported in this paper. Initially,
we had an algorithm that was not gossip-based, i.e.
was not periodic and did not have any randomization.
Albeit the algorithm was quite fast, it heavily over-
consumed messages, making it infeasible for a large
scale network. For that reason, we added the fanout
parameter, and made it run periodically. Without ran-
domization, we could construct pathological scenarios,
in which that algorithm would not be able to merge the
rings.

Future work We believe that dealing with partitions
and mergers is a small part of a bigger, and more im-
portant, goal: making SONs that can recover from any
configuration. We believe that it is desirable to make
a self-stabilizing ring algorithm, which can be proved
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to recover from all possible states, including loopy
and partitioned while consuming minimum time and
messages.

We believe that it is interesting to investigate
whether gossip-based topology generators, such as
T-man [18] and T-chord [29], can be used to handle
network mergers. These services, however, make use
of an underlying membership service, such as Cyclon
[41], Scamp [13], or Newscast [19]. Hence, one has
to first investigate how well such membership services
recover from network partitions (we believe this to
be interesting in itself). Thereafter, one can explore
how such topology generators can be incorporated into
a SON.

Mathematical analysis of gossip-protocols is often
done through simple recurrence relations or by using
Markov chains, where the state of the chain can be the
number of infected nodes [12]. The algorithms we have
proposed mix deterministic DHT algorithms with that
of gossip protocols. Consequently, we believe that an
analysis of our algorithms will require modelling the
routing pointers of every node as part of the chain
state. We solicit such an analysis and believe it is an
interesting future direction for this research.
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