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The era of programming with single processors has 
ended. Decades of prophesies have at last come true: 
programming with multiple processors has now entered 
the mainstream.  Two forces have caused this transition 
to happen now.  First, the Internet, which is a network of 
many loosely coupled processors.  It had been gaining 
relevance for many years, but only recently has it 
achieved sufficient bandwidth and reliability to permit 
real distributed applications. The second force is the 
emergence of multi-core processors.  Each of these 
forces brings a challenge for developers, but the two 
challenges are completely different in nature. 
 
1. The challenge of multi-core processors 
A multi-core processor combines two or more 
processing elements (called cores) in a single package, 
on a single die or multiple dies.  The cores share the 
interconnect to the rest of the system and often share on-
chip cache memory.  The challenge of programming 
multi-core processors is real, but it is not a technical 
challenge.  It is a purely sociological challenge.  
Technically, we have known since the 1980s how to 
program multi-core processors (in the guise of shared-
memory multiprocessors) and how to write programs for 
them (in terms of parallel algorithms).  There is a 
simple, natural, and powerful approach for 
programming these machines: dataflow programming.  
Many languages and systems implement this approach 
(see, e.g., Wikipedia for a long list).  They are 
descendants of the venerable Id, Id Nouveau, SISAL, 
and other early dataflow languages. Google's well-
publicized MapReduce is one of the most popular new 
tools that takes advantage of dataflow ideas [1], but 
these ideas are not new.  In fact, they date from the 
1970s [2].  A good exposition is given in chapter 4 of 
[3].  The basic insight is that there exists a form of 
concurrent programming, deterministic concurrency, 
that has no race conditions, is as easy to program as 
sequential programs, and can exploit parallel processors 
as a bonus.  Deterministic concurrency is enjoying a 
renaissance thanks to clusters and multi-core processors. 
 
2. The challenge of loosely coupled 
systems 
A loosely coupled networked system consists of a set of 
processors and a network connecting them.  It is useful 
to generalize this to a set of agents, which includes 
humans as well as processors.  The challenge is how to 
get these independent networked agents (processors and 
humans) to collaborate and coordinate with each other 
in real time.  The first problem is that no one agent has 

global knowledge (there is no “God's-eye view” of the 
whole system inside the system).  The only way to know 
what another agent is doing is to ask (send a message 
and wait for an answer).  In the meantime, the agent 
might have changed what it is doing.  The second 
problem is partial failure: an agent might fail (leave the 
system or start behaving strangely).  The other agents 
should somehow find out about this and compensate, so 
that the system still works.  Both global knowledge and 
partial failure are low-level technical problems.  We can 
overcome them (to some degree) by using the right 
algorithms, such as clock synchronization, distributed 
snapshots, and fault tolerance. 

There was a real proliferation of work in distributed 
algorithms in the 1990s, leading to a deep understanding 
of how to solve the problems of lack of global 
knowledge and partial failure [4,5].  Here is a sample of 
what these algorithms can do.  We now understand how 
to make an all-or-none broadcast (all receive or none 
receive) that works even though there might be 
processor failures during the algorithm.  We understand 
how to make consensus (agreement among many 
parties) even though there may be communication 
problems or processor failures during the algorithm.  
We understand how to find agreement when there are 
malicious agents that do their best to sabotage the 
algorithm (Byzantine agreement, the best possible 
algorithm, can achieve agreement only when strictly less 
than 1/3 of agents are malicious).  There are dozens of 
variations on these algorithms, depending on different 
communication models, failure models, and algorithm 
requirements.  At this point, the reader might ask, with 
all these algorithms to choose from, how should I design 
my system?  In fact, there is a simple answer that is 
often right: build it as a decentralized system! 
 
2.1 Decentralized systems 

A good way to build a loosely coupled system is as a 
decentralized system.  That is, each computing node is 
by default independent of all the others.  Each 
computing node contains the whole application and 
works even if there is no communication whatsoever 
between nodes.  The system is then extended so that 
each node can use information from other nodes when it 
is available.  Two important parts of such a design are 
the split protocol and the merge protocol. Split defines 
what happens when a connected node no longer 
communicates with other nodes, and merge defines how 
two independent nodes become connected again.  The 
merge protocol is based on data coherence and may 
need input from the highest level of the system (e.g., 
human users) to resolve coherence issues.  Based on this 



  
 
idea, we are building a general application framework 
for decentralized systems in the SELFMAN project [6].  
The framework consists of a structured peer-to-peer 
storage layer with a transaction protocol built on top.  
The transaction protocol uses the Paxos algorithm, a 
distributed uniform consensus algorithm, to ensure it 
works well on the Internet. 

Another example of a good decentralized system design 
is the Mercurial version control system [7].  Mercurial is 
a tool for software development by a team.  Each team 
member has a local copy of the whole source code 
repository and can work in isolation. Different nodes 
can be merged at any time, which combines the work of 
different team members.  New nodes can be created at 
any time by cloning and given to new team members.  
In this way, Mercurial supports software development 
by a team whose membership can change rapidly and 
whose Internet connectivity is highly irregular. 
 
2.2 Conflicting goals 

Loosely coupled systems have problems at a higher 
level than the simple technical problems of global 
knowledge and partial failure. These are the high-level 
problems of conflicting goals and emergent behavior.  
The first appears in peer-to-peer file sharing: in that 
setting it is sometimes called the “freeloader problem”.  
To solve it, you need to build the system so that each 
agent's goals overlap with the overall system's goals.  
Designing a system in this way is not easy and almost 
always requires some adjustment during the system's 
deployment.  The BitTorrent family of protocols and 
tools is a good example from computing. BitTorrent 
allows people to download and share large files, 
increasing performance and reliability by using 
collaboration [8].  The incentive scheme in BitTorrent is 
tuned so that freeloaders are discouraged. 
 
2.3 Emergent behavior 

The second high-level problem, emergent behavior, is 
not really a problem.  It is an opportunity.  Emergent 
behavior is what happens when the system as a whole 
shows novel behavior that is not shared by any of its 
parts.  All complex systems show emergent behavior.  
For example, a single note from a Beethoven symphony 
impacts the listener as a nondescript sound, but brought 
together in the way Beethoven intended, the notes can 
impact the listener at a higher level (emotional and 
intellectual). Google (again) gives us a good example 
from computing: a Web page, when taken by itself, is 
hard to evaluate regarding its usefulness, correctness, 
and popularity.  But taken together, all Web pages do 
give useful information, which can be extracted with the 
PageRank algorithm [9].  The apparent intelligence of 
Google Search is an emergent property. 
 
3. Conclusions 
Computing with multiple processors has finally emerged 
into the mainstream.  In this position paper, I give a 
brief overview of the main challenges.  There are two 

forms of multiple processor computing: shared-memory 
(e.g., multi-core) processors and loosely coupled 
processors (e.g., Internet), each with its own challenges.  
For multi-core processors, the main challenges are 
sociological.  The technical problems were all solved 
long ago with the invention of dataflow programming.  
What remains is to educate programmers and to bring 
dataflow ideas into mainstream languages.  For loosely 
coupled processors, the challenges are those of 
distributed systems: lack of global knowledge, partial 
failure, conflicting goals, and emergent behavior.  These 
challenges pose technical problems, but they are also 
opportunities. I recommend that a loosely coupled 
system should always be designed to be decentralized 
by default, with collaboration between nodes added  
afterwards. 
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