
P. Van Roy, UCL, Louvain-la-Neuve

Self Management
and

the Future of Software Design
October 25, 2006

Peter Van Roy

Coordinator, SELFMAN project

Université catholique de Louvain

Louvain-la-Neuve, Belgium

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 2

Software and the Red Queen

 Software is fragile!
 A single bit error can cause a catastrophe

 Hardware has been reliable enough so that this has not
unduly hampered the quantity of software being written
 We are in a Red Queen situation: running as hard as we can to

stay in the same place

 New techniques (structured programming, OOP, the usual bunch
of modern methodologies – agile, extreme, etc.) have arguably
kept pace so far

 So what is the next challenge and the next technique that will
keep pace with it?

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 3

The next challenge (1)

 Software complexity is ramping up quickly due to:
 The sufficient bandwidth and reliability of the Internet to support

distributed applications

 The increased connection of small devices to the Internet

 Many new applications are appearing: file-sharing (Napster,
Gnutella, Morpheus, Freenet, etc.), collaborative tools
(Skype, various Messengers), MMORPGs (World of
Warcraft, Dungeons & Dragons, etc.), research testbeds
(SETI@home, PlanetLab, etc.)

 A mix of client/server and peer-to-peer architectures

 These applications are still rather conservative: they do not take
advantage of the new complexity space

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 4

The next challenge (2)

 The main problem that comes from the increase in complexity
is that software errors cannot be eliminated [Armstrong 2003]
 We have to cope with them

 In addition, programming large-scale distributed systems
introduces other problems
 Scale: large numbers of independent nodes
 Partial failure: part of the system fails
 Security: multiple security domains
 Resource management: resources are localized
 Performance: harnessing multiple nodes or spreading load
 Global behavior: emergent behavior of the system as a whole

 Global behavior is particularly relevant
 Example: the power grid [Fairley 2005]

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 5

The next solution

 Now that we have set the stage, what solution do we propose?

 We go back fifty years, to the first work on cybernetics and general
system theory
 Designing systems that regulate themselves (self-managing systems)

[Wiener 1948, Ashby 1956, von Bertalanffy 1969]

 A system is a set of components (called subsystems) that are
connected together to form a coherent whole
 Can we predict the system’s behavior from its subsystems?

 Can we design a system with desired behavior?

 No general theory has emerged (yet) from this work
 We do not intend to develop such a theory

 Our aim is narrower: to build self-managing software systems
 Such systems have a chance of coping with the new complexity

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 6

Recent work

 IBM’s Autonomic Computing initiative (2001)
 Reduce management costs by removing humans from

system management loops

 The role of humans is then to manage policy and not to
manage the mechanisms that implement it

 Structured overlay networks ([Stoica et al 2001], …)
 Inspired by popular peer-to-peer applications

 Provide low-level self management of routing, storage, and
smart lookup in large-scale distributed systems

 Is there a bigger role for self management?

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 7

Types of systems

 This diagram is from
[Weinberg 1977] An
Introduction to General
Systems Thinking

 The discipline of
computing is pushing the
boundaries of the two
shaded areas inwards

 Software development
methodologies are the
vanguards of system
theory

computing

computing

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 8

Designing self-managing
software systems

 From system theory, we take the fundamental principles
 Programming with feedback loops
 Focus on global (emergent) properties
 Architectural framework

 We will use these principles as a basis for practical software
development
 This talk will give a few ideas on how to do this; our work in this

area is just starting
 All comments welcome!

 We will emphasize how to program with feedback loops
 Slogan: no open-ended software

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 9

Feedback loops

 A feedback loop consists of three elements that interact with a
subsystem: a monitoring agent, a correcting agent, and an actuating
agent

 Feedback loops can interact in two ways:
 two loops that affect interdependent system parameters (stigmergy)
 one loop that directly controls another loop (management)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 10

Feedback loops are everywhere

 Feedback loops are literally everywhere, if you look
at a system with the right mindset

 A single-user application is a simple example

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 11

Feedback loops
are needed at all levels

 Application level
 User interaction
 Self-describing components/software
 "Autonomic Computing" techniques: removing

humans from the loop
 Service levels

 Loosely-coupled service infrastructure
 Search and discovery of resources
 Robust, self-organizing communication
 Data management and replication
 Redundancy-based fault tolerance

 Cluster level
 Tightly-coupled infrastructure
 Self-management services (e.g., demand

prediction)
 Scheduling services
 Node replication and replacement

 Process/OS level
 Node protection mechanisms (e.g., intrusion

detection)
 Software rejuvenation
 Fault detection and alerting

Process/OS

Cluster

Services

Application

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 12

Complexity of interacting
feedback loops

 Problems of global behavior
 Does it converge or diverge?

 Does it oscillate or behave
chaotically?

 Analysis not always easy
 Linear and monotonic loops are

easy; unfortunately software is
usually nonlinear

 What are the rules of good
feedback design?
 We need to understand how to

program with feedback loops

 Analogous to structured and
object-oriented programming

 Let us start by looking at some
real systems

Level 1

Level 2

Level 3

Level 4

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 13

Example of stigmergy (Wiener)

 This system is unstable!

 But each loop is stable in
isolation
 Combining stable loops

can result in instability

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 14

Correct solution

 Instead of stoking a fire, the tribesman simply adjusts
the thermostat. The resulting system is stable.

 This uses management instead of stigmergy
 Design rule: use the system, don’t try to bypass it

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 15

The human respiratory system

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 16

Discussion of respiratory system

 Four feedback loops: two inner loops (breathing reflex and
laryngospasm), a loop controlling the breathing reflex (conscious control),
and an outer loop controlling the conscious control (falling unconscious)
 This design is derived from a precise textual medical description [Wikipedia

2006: “Drowning”]

 Holding your breath can have two effects
 Breath-hold threshold is reached first and breathing reflex happens

 O2 threshold is reached first and you fall unconscious, which reestablishes the
normal breathing reflex

 Some plausible design rules inferred from this system
 Conscious control is sandwiched in between two simpler loops: the breathing

reflex provides abstraction (consciousness does not have to understand details
of breathing) and falling unconscious provides protection against instability

 Conscious control is a powerful problem solver but it needs to be held in check

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 17

Program design
with feedback loops

 The style of system design
illustrated by the
respiratory system can be
applied to programming

 Programming then
consists of building
hierarchies of interacting
feedback loops

 This example shows a
reliable byte stream
protocol with congestion
control (a variant of TCP)

 The congestion control
loop manages the reliable
transfer loop

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 18

Interaction between feedback
loops and distribution

 The previous slide only showed what happens at the source node
 We expand the inner loop to show execution on both nodes. This shows

two feedback loops (S loop and D loop), one running at the source and
one running at the destination. The loops interact through stigmergy.

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 19

Feedback loops and
distribution
 The interaction between feedback loops and distribution

is not well understood

 Distributed algorithmics has studied special cases of this
interaction
 Fault tolerance

 Self-stabilizing systems

 Structured overlay networks

 Feedback loops are useful for much more than fault
tolerance!
 Let us take a closer look at structured overlay networks

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 20

Structured overlay networks:
inspired by peer-to-peer

 Hybrid (client/server)
 Napster

 Unstructured overlay
 Gnutella, Kazaa,

Morpheus, Freenet, …
 Uses flooding

 Structured overlay
 Exponential network
 DHT (Distributed Hash

Table), e.g., Chord, DKS

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 21

Properties of
structured overlay networks

 Scalable
 Works for any number of nodes

 Self organizing
 Finger tables updated with node joins/leaves
 Finger tables updated with node failures

 Provides guarantees and efficiency (unlike flooding approach)
 If operated inside of failure model, then communication is guaranteed

with an upper bound on number of hops
 Broadcast can be done with a minimal number of messages

 Provides basic services
 Name-based communication (point-to-point and group)
 DHT (Distributed Hash Table): efficient storage and retrieval of

(key,value) pairs

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 22

Feedback loops in
a structured overlay network

 The primitive functionality of a SON
is to self-organize its nodes to
provide reliable and efficient routing,
despite nodes continuously joining,
leaving, and failing

 Study of SONs has blossomed
since the development of Chord in
2001 [Stoica et al 2001]

 SON operation is based on three
convergence properties:
 Within each node, the finger table

converges to a correct content
 Globally, the finger tables converge

together to improve routing efficiency
 When routing, a message in transit

converges to its destination node

 Proving correctness:
 Need atomic join/leave/fail

operations
 Need ability to work with strongly

complete failure detection
 First proved in [Ghodsi 2006]

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 23

Self organization

 Self-organizing the finger tables
 Correction-on-use (lazy approach)
 Periodic correction (eager approach)
 Guided by assumptions on traffic

 Cost
 Depends on structure
 A typical algorithm, DKS (distributed k-ary search),

achieves logarithmic cost for reconfiguration and for key
resolution (lookup)

 Example of lookup for Chord, the first well-known
structured overlay network

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 24

Lookup illustrated in Chord

Indicates presence of a node

Given a key, find the value
associated to the key
(here, the value is the IP address of the
node that stores the key)

Assume node 0 searches for the
value associated to key K with virtual
identifier 7

Interval node to be contacted
 [0,1) 0
 [1,2) 6
 [2,4) 6
 [4,8) 6
 [8,0) 12

0

8

412

2

610

14

1

3

5

79

11

13

15

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 25

Related work
in self-managing systems

 Erlang fault-tolerance architecture [Armstrong 2003]
 Erlang is designed explicitly to build applications that survive

software faults
 Hypothesis: Software faults are inevitable

 The Erlang system has been used to build highly available products:
AXD301 ATM switch, Bluetail Mail Robustifier, SSL accelerator

 Subsumption architecture [Brooks 1986]
 To build systems that show intelligent behavior by decomposing

complex behaviors into layers of simple behaviors
 Knowledge is represented indirectly through the environment
 Used successfully to program physical robots

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 26

Erlang

 Erlang is a language used to
develop highly reliable software
systems

 An Erlang program consists of a
set of running “processes”
(lightweight threads with
independent address spaces) that
send messages asynchronously

 Fault tolerance consists of three
levels:
 Primitive failure detection through

process linking: when one process
fails, another is notified

 Supervisor trees to structure the
program

 Stable storage to restart after
crashes (single or multiple disk)

P4

P3

P1

P2

process

message

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 27

Primitive failure detection

 Two processes can be linked: if
one fails then both are
terminated
 Failure is a permanent crash

failure, detected by the run-time
system

 “Let it fail” philosophy: if anything
goes wrong, just crash and let
another process correct the
problem

 If a linked process has its
supervisor bit set, then it is sent
a message instead of failing

 This primitive failure detection
can be seen as monitoring in a
feedback loop

Link

Link

supervisors=1

s=0 s=0

supervised processes

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 28

Supervisor trees

 The program consists of a
large number of processes

 Program processes are
organized in pools
 Each pool is observed by a

supervisor process linked to all
of them

 An AND supervisor stops and
restarts all its children if one
crashes

 An OR supervisor restarts just
the crashed child

 The supervisors themselves
are observed by a root
supervisor

 Each internal node in the
supervisor tree corresponds to
a feedback loop

program processes

supervisor
processes

root supervisor

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 29

Subsumption architecture

 The subsumption architecture is a way to
implement complex, “intelligent” behaviors by
decomposing them into simpler behaviors

 The system consists of layers where each layer
provides a simple ability

 Layers are given priorities: when a layer can act,
it disables the lower layers

 Layers interact through stigmergy

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 30

An obstacle-avoiding robot

 Each layer provides a competence
 Each layer can override the lower layers
 If a higher layer fails, some competence remains

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 31

General architectural
framework
 What can we deduce from these examples?

 A self-managing software system can be organized as a set of agents
(instances of concurrent components) that communicate through
asynchronous message passing
 Event-based and publish/subscribe communication are adequate mechanisms

 The system is a hierarchy of interacting feedback loops, where each loop is
implemented by several concurrent agents

 To allow the system to monitor and reconfigure itself, components must be
first-class entities that allow higher-order component programming (e.g., the
Fractal model [Bruneton et al 2004])

 Global properties of the system (total effect of all feedback loops) need to be
monitored, e.g., using diffusion algorithms or belief propagation
 There is a close relationship between global property monitoring and feedback

monitoring

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 32

Programming
with feedback loops

 We can build feedback loops with a component combinator f

 We need different combinators depending on whether C or F is an explicit or
implicit system (e.g., environment) and whether the loop is managed or not

 The semantics must take into account the input and output interleaving and the
feedback delay

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 33

Programming
with feedback loops in Mozart
 We have programmed this in Mozart using higher-order functions,

lightweight concurrency, and dataflow synchronization
 Mozart Programming System: an advanced multiparadigm platform

 Component interface: one input port (accepts input events) and
one output stream (produces ordered sequence of output events)

 Component behavior:
 State × Event → State × Event* × (R+,Event)*
 Given an input state and an input event, create an output state, new

output events, and new time-delayed input events
 Time delaying is important when interacting with the external world; it

is not needed internally to a program

 Component combinators can be written in a few lines of code
 All the examples we have shown can be programmed easily

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 34

Where do we go from here?

 There is a research agenda to be set up!
 Self management has a role to play in general software development,

not just in autonomic computing

 The overall architecture of a system must be designed using self-
management principles

 The SELFMAN project, an EU 6FP project that started in June 2006,
will make a first cut at using self management for general software
 We will combine a structured overlay network (which is already self

managing at a low level) with an advanced component model, to
achieve a self-management architecture

 We will build a self-managing three-tier application with a replicated
transactional store as proof of concept

 We will implement in ObjectWeb (industrial middleware) and Mozart
(advanced research system)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 35

Programming self-managing
systems in Mozart
 Mozart has advanced distribution support

 Network-transparent distribution with reflective failure detection
 Recent development of Mozart Distribution Subsystem (Ph.D. work of Raphaël

Collet and Erik Klintskog)
 Choice of distribution protocols for language entities
 Event-based interface to failure detection
 Kill operation
 Support for temporary failures (imperfect failure detection)

 The distribution support will be extended to support self management of
distributed systems

 Redesign of Mozart’s P2PS structured overlay network
 Using concurrent components with event-based communication (Boris Mejias)
 Support for programming with feedback loops

 Language support (Yves Jaradin, Jean-Bernard Stefani)

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 36

Conclusions

 Self management is useful for all software design, not just for tasks
done by a human manager
 Self management can overcome the fragility of software

 Self-managing software systems consist of hierarchies of interacting
feedback loops
 Programming with feedback loops becomes common and should be

supported by the language
 All parts of the system (except a small kernel) should be inside a

feedback loop (slogan: no open-ended code!)
 It should be feasible to design for a desired global behavior

 We are realizing these ideas in the SELFMAN project, which started
in June 2006
 We are combining ideas from structured overlay networks and advanced

component models
 See http://www.ist-selfman.org

September 2006 P. Van Roy, UCL, Louvain-la-Neuve 37

Month 12 deliverables
(on Wiki Community Portal)
 Structured overlay networks (Boris Mejias)

 D1.1: Low-level self-management primitives for SON (node failure / removal /
addition, state monitoring, configuration, versioning, updating)

 D1.3a (Roland Yap): First report on security for SON (threat model, security
mechanisms, monitoring system)

 Programming framework (Peter Van Roy)
 D2.1a: Basic computation model (components and architectural description

language)

 D2.2a: Architectural framework specification

 D2.3a: Formal operational semantics (components and reflection)

 Transaction model (Monika Moser)
D3.1a: First report on formal models for transactions over SON (resolve
tension distributed system ↔ application)

 User requirements (Thierry Coupaye)
D5.1: User requirements for application servers (from industrial experience)
Next meeting in Grenoble on Nov. 20 and 21

