
Distributed k-ary System: Algorithms for
Distributed Hash Tables

ALI GHODSI

A Dissertation submitted to

the Royal Institute of Technology (KTH)

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

October 2006

The Royal Institute of Technology (KTH)

School of Information and Communication Technology

Department of Electronic, Computer, and Software Systems

Stockholm, Sweden

TRITA-ICT/ECS AVH 06:09

ISSN 1653-6363

ISRN KTH/ICT/ECS AVH-06/09–SE

and

SICS Dissertation Series 45

ISSN 1101-1335

ISRN SICS-D–45–SE

c© Ali Ghodsi, 2006

Abstract

T
his dissertation presents algorithms for data structures called distributed

hash tables (DHT) or structured overlay networks, which are used to build

scalable self-managing distributed systems. The provided algorithms

guarantee lookup consistency in the presence of dynamism: they guarantee con-

sistent lookup results in the presence of nodes joining and leaving. Similarly, the

algorithms guarantee that routing never fails while nodes join and leave. Previ-

ous algorithms for lookup consistency either suffer from starvation, do not work

in the presence of failures, or lack proof of correctness.

Several group communication algorithms for structured overlay networks

are presented. We provide an overlay broadcast algorithm, which unlike previ-

ous algorithms avoids redundant messages, reaching all nodes in O(log n) time,

while using O(n) messages, where n is the number of nodes in the system. The

broadcast algorithm is used to build overlay multicast.

We introduce bulk operation, which enables a node to efficiently make multi-

ple lookups or send a message to all nodes in a specified set of identifiers. The

algorithm ensures that all specified nodes are reached in O(log n) time, sending

maximum O(log n) messages per node, regardless of the input size of the bulk

operation. Moreover, the algorithm avoids sending redundant messages. Previ-

ous approaches required multiple lookups, which consume more messages and

can render the initiator a bottleneck. Our algorithms are used in DHT-based

storage systems, where nodes can do thousands of lookups to fetch large files.

We use the bulk operation algorithm to construct a pseudo-reliable broadcast

algorithm. Bulk operations can also be used to implement efficient range queries.

Finally, we describe a novel way to place replicas in a DHT, called symmetric

replication, that enables parallel recursive lookups. Parallel lookups are known

to reduce latencies. However, costly iterative lookups have previously been used

to do parallel lookups. Moreover, joins or leaves only require exchanging O(1)

messages, while other schemes require at least log(f) messages for a replication

degree of f .

The algorithms have been implemented in a middleware called the Dis-

tributed k-ary System (DKS), which is briefly described.

Key words: distributed hash tables, structured overlay networks, distributed

algorithms, distributed systems, group communication, replication

iii

To Neda, Anooshé, Javad, and Nahid

Acknowledgments

I
truly feel privileged to have worked under the supervision of my advisor,

Professor Seif Haridi. He has an impressive breadth and depth in computer

science, which he gladly shares with his students. He also meticulously

studied the research problems, and helped with every bit of the research. I am

also immensely grateful to Professor Luc Onana Alima, who during my first

two years as a doctoral student worked with me side by side and introduced

me to the area of distributed computing and distributed hash tables. He also

taught me how to write a research paper by carefully walking me through my

first one. Together, Seif and Luc deserve most of the credit for the work on the

DKS system, which this dissertation is based on.

During the year 2006, I had the pleasure to work with Professor Roland Yap

from the National University of Singapore. I would like to thank him for all the

discussions and detailed readings of this dissertation.

I would also like to thank Professor Bernardo Huberman at HP Labs Palo

Alto, who let me work on this dissertation while staying with his group during

the summer of 2006.

During my doctoral studies, I am happy to have worked with Sameh El-

Ansary, who contributed to many of the algorithms and papers on DKS. I would

also like to thank Joe Armstrong, Per Brand, Frej Drejhammar, Erik Klintskog,

Janusz Launberg, and Babak Sadighi for the many fruitful and enlightening dis-

cussions in the stimulating environment provided by SICS.

I would like to show my gratitude to those who read and commented on

drafts of this dissertation: Professor Rassul Ayani, Sverker Janson, Johan Mon-

telius, Vicki Carleson, and Professor Vladimir Vlassov. In particular, I thank

Cosmin Arad who took time to give detailed comments on the whole disser-

tation. I also thank Professor Christian Schulte for making me realize, in the

eleventh hour, that my first chapter needed to be rewritten. I acknowledge the

help and support given to me by the director of graduate studies, Professor

Robert Rönngren and the Prefekt, Thomas Sjöland.

Finally, I take this opportunity to show my deepest gratitude to my family.

I am eternally grateful to my beloved Neda Kerimi, for always showing endless

love and patience during good times and bad times. I also would like to express

my profound gratitude to my dear sister Anooshé, and my parents, Javad and

Nahid, for their continuous support and encouragement.

vii

Contents

List of Figures xiii

List of Algorithms xv

1 Introduction 1

1.1 What is a Distributed Hash Table? 1

1.2 Efficiency of DHTs . 6

1.2.1 Number of Hops and Routing Table Size 6

1.2.2 Routing Latency . 8

1.3 Properties of DHTs . 10

1.4 Security and Trust . 11

1.5 Functionality of DHTs . 12

1.6 Applications on top of DHTs 14

1.6.1 Storage Systems . 14

1.6.2 Host Discovery and Mobility 15

1.6.3 Web Caching and Web Servers 16

1.6.4 Other uses of DHTs 16

1.7 Contributions . 17

1.7.1 Lookup Consistency 17

1.7.2 Group Communication 18

1.7.3 Bulk Operations . 19

1.7.4 Replication . 19

1.7.5 Philosophy . 20

1.8 Organization . 21

2 Preliminaries 23

2.1 System Model . 23

2.1.1 Failures . 24

2.2 Algorithm Descriptions . 24

2.2.1 Event-driven Notation 25

2.2.2 Control-oriented Notation 26

2.2.3 Algorithm Complexity 28

ix

x

2.3 A Typical DHT . 29

2.3.1 Formal Definitions . 30

2.3.2 Interval Notation . 31

2.3.3 Distributed Hash Tables 31

2.3.4 Handling Dynamism 32

3 Atomic Ring Maintenance 37

3.1 Problems Due to Dynamism 38

3.2 Concurrency Control . 40

3.2.1 Safety . 41

3.2.2 Liveness . 46

3.3 Lookup Consistency . 54

3.3.1 Lookup Consistency in the Presence of Joins 55

3.3.2 Lookup Consistency in the Presence of Leaves 57

3.3.3 Data Management in Distributed Hash Tables 59

3.3.4 Lookups With Joins and Leaves 60

3.4 Optimized Atomic Ring Maintenance 63

3.4.1 The Join Algorithm . 64

3.4.2 The Leave Algorithm 68

3.5 Dealing With Failures . 69

3.5.1 Periodic Stabilization and Successor-lists 75

3.5.2 Modified Periodic Stabilization 79

3.6 Related Work . 81

4 Routing and Maintenance 83

4.1 Additional Pointers as in Chord 83

4.2 Lookup Strategies . 85

4.2.1 Recursive Lookup . 86

4.2.2 Iterative Lookup . 89

4.2.3 Transitive Lookup . 91

4.3 Greedy Lookup Algorithm 93

4.3.1 Routing with Atomic Ring Maintenance 95

4.4 Improved Lookups with the k-ary Principle 96

4.4.1 Monotonically Increasing Pointers 99

4.5 Topology Maintenance . 101

4.5.1 Efficient Maintenance in the Presence of Failures . . 101

4.5.2 Atomic Maintenance with Additional Pointers 103

xi

5 Group Communication 111

5.1 Related Work . 112

5.2 Model of a DHT . 113

5.3 Desirable Properties . 115

5.4 Broadcast Algorithms . 116

5.4.1 Simple Broadcast . 117

5.4.2 Simple Broadcast with Feedback 120

5.5 Bulk Operations . 123

5.5.1 Bulk Operations Algorithm 124

5.5.2 Bulk Operations with Feedbacks 125

5.5.3 Bulk Owner Operations 127

5.6 Fault-tolerance . 128

5.6.1 Pseudo Reliable Broadcast 131

5.7 Efficient Overlay Multicast . 133

5.7.1 Basic Design . 134

5.7.2 Group Management 134

5.7.3 IP Multicast Integration 135

6 Replication 139

6.1 Other Replica Placement Schemes 139

6.1.1 Multiple Hash Functions 139

6.1.2 Successor Lists and Leaf Sets 140

6.2 The Symmetric Replication Scheme 143

6.2.1 Benefits . 143

6.2.2 Replica Placement . 143

6.2.3 Algorithms . 145

6.3 Exploiting Symmetric Replication 150

7 Implementation 151

7.1 DHT as an Abstract Data Type 151

7.1.1 A Simple DHT Abstraction 151

7.1.2 One Overlay With Many DHTs 152

7.2 Communication Layer . 154

7.2.1 Virtual Nodes . 154

7.2.2 Modularity . 155

8 Conclusion 157

8.1 Future Work . 160

xii

Bibliography 169

Index 191

List of Figures

1.1 Example of a distributed hash table 3

1.2 Overlay network and its underlay network 4

1.3 Sybil attack . 11

2.1 Example of node responsibility 29

2.2 Example of pointers when a node joins 34

3.1 Example of inconsistent stabilization 39

3.2 System state before a leave . 40

3.3 Consecutive leaves leading to sequential progress 52

3.4 Time-space diagram of pointer updates during joins 57

3.5 Time-space diagram of pointer updates during leaves 59

3.6 State transition diagram of node status 64

3.7 Time-space diagram of a join 68

3.8 Time-space diagram of a leave 72

4.1 Simple ring extension . 84

4.2 Recursive lookup illustrated 86

4.3 Iterative lookup illustrated . 89

4.4 Transitive lookup illustrated 91

4.5 k-ary routing table . 97

4.6 k-ary tree . 98

4.7 Virtual k-ary tree . 98

5.1 Graph example . 112

5.2 Loopy ring . 116

5.3 Example ring . 120

5.4 Example of simple broadcast 121

5.5 Example of bulk operations 127

5.6 Example of a multicast system 137

6.1 Example of successor-list replication 142

6.2 Symmetric replication illustrated 145

xiii

xiv LIST OF FIGURES

8.1 Lookup uncertainty due to a failure 166

List of Algorithms

1 Chord’s periodic stabilization protocol 35

2 Asymmetric locking with forwarding 49

3 Asymmetric locking with forwarding continued 50

4 Pointer updates during joins 56

5 Pointer updates during leaves 58

6 Lookup algorithm . 61

7 Optimized atomic join algorithm 66

8 Optimized atomic join algorithm continued 67

9 Optimized atomic leave algorithm 70

10 Optimized atomic leave algorithm continued 71

11 Periodic stabilization with failures 77

12 Recursive lookup algorithm 87

13 Iterative lookup algorithm . 90

14 Transitive lookup algorithm 92

15 Greedy lookup . 94

16 Routing table initialization . 102

17 Simple accounting algorithm 106

18 Fault-free accounting algorithm 110

19 Simple broadcast algorithm 118

20 Simple broadcast with feedback algorithm 122

21 Bulk operation algorithm . 125

22 Bulk operation with feedback algorithm 126

23 Extension to bulk operation 128

24 Bulk owner operation algorithm 129

25 Symmetric replication for joins and leaves 147

26 Lookup and item insertion for symmetric replication 148

27 Failure handling in symmetric replication 149

xv

1 Introduction

M
any organizations and companies are facing the challenge of

simultaneously providing an IT service to millions of users. A

few search engines are enabling millions of users to search the

Web for information. Every time a user types the name of an Internet

host, the computer uses the global domain name system (DNS) to find

the Internet address of that host. New versions of popular software is

sometimes downloaded by millions of users from a single Web site.

The provision of services, such as the ones mentioned above, has many

challenges. In particular, the system which provides such large-scale ser-

vices needs to have several essential properties. First, the design needs

to be scalable, not relying on single points of failure and bottlenecks. Sec-

ond, a large-scale system needs to be self-managing, as new servers are

constantly being added and removed from the system. Third, the system

needs to be fault-tolerant, as the larger the system, the higher the proba-

bility that a failure occurs in some component.

The topic of this dissertation is a data structure called distributed hash

table (DHT), which encompasses many of the above mentioned proper-

ties. This chapter first gives a broad overview of DHTs and their uses.

The aim is to motivate the topic, and hence focus on what the essential

properties and applications are, rather than how they can be achieved or

built. Thereafter, the contributions of this dissertation are detailed and

put in the context of related work. Finally, the organization of the disser-

tation is presented.

1.1 What is a Distributed Hash Table?

A distributed hash table is, as its name suggests, a hash table which is

distributed among a set of cooperating computers, which we refer to as

1

2 1.1. WHAT IS A DISTRIBUTED HASH TABLE?

nodes. Just like a hash table, it contains key/value pairs, which we refer

to as items. The main service provided by a DHT is the lookup operation,

which returns the value associated with any given key. In the typical

usage scenario, a client has a key for which it wishes to find the associated

value. Thereby, the client provides the key to any one of the nodes, which

then performs the lookup operation and returns the value associated with

the provided key. Similarly, a DHT also has operations for managing

items, such as inserting and deleting items.

The representation of the key/value pairs can be arbitrary. For ex-

ample, the key can be a string or an object. Similarly, the value can be

a string, a number, or some binary representation of an arbitrary object.

The actual representation will depend on the particular application.

An important property of DHTs is that they can efficiently handle

large amounts of data items. Furthermore, the number of cooperating

nodes might be very large, ranging from a few nodes to many thousands

or millions in theory1. Because of limited storage/memory capacity and

the cost of inserting and updating items, it is infeasible for each node to

locally store every item. Therefore, each node is responsible for part of the

items, which it stores locally.

As we mentioned, every node should be able to lookup the value asso-

ciated with any key. Since all items are not stored at every node, requests

are routed whenever a node receives a request that it is not responsible

for. For this purpose, each node has a routing table that contains pointers

to other nodes, known as the node’s neighbors. Hence, a query is routed

through the neighbors such that it eventually reaches the node respon-

sible for the provided key. Figure 1.1 illustrates a DHT which maps file

names to the URLs representing the current location of the files.

Overlay Networks A DHT is said to construct an overlay network, be-

cause its nodes are connected to each other over an existing network,

such as the Internet, which the overlay uses to provide its own routing

functionality. The existing network is then referred to as the underlay net-

work. If the underlay network is the Internet, the overlay routes requests

between the nodes of the DHT, and each such reroute passes through

the routers and switches which form the underlay. Overlay networks are

1Even though DHTs have never been deployed on such large scale, their properties

scale with the system size (see Section 1.3).

CHAPTER 1. INTRODUCTION 3

� �
���

� � � � 	
� � � � � � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � ! � " � � � � � #
� � $ � � % & % � ' () * +, + -
. / � �� / � 0 1 . 2 3 / 1 . 0 � �4 0 / � � � 5 � 1 4 0 � 1 � � 0 � �

Figure 1.1: Example of a DHT mapping filenames to the URLs, which

represent the current location of the files. The items of the DHT are dis-

tributed to the nodes a, b, c, d, and e, and the nodes keep routing pointers

to each other. If an application makes a lookup request to node d to find

out the current location of the file abc.txt, d will route the request to

node a, which will route the request to node e, which can answer the re-

quest since it knows the URL associated with key abc.txt. Note that not

every node needs to store items, e.g. node b.

also used in other contexts as well, such as for building virtual private

networks (VPN). The term structured overlay network is therefore used

to distinguish overlay networks created by DHTs from other overlay net-

works. Figure 1.2 illustrates an overlay network and its corresponding

underlay network.

There have recently been attempts to build overlays that use an under-

lay that provides much less services than the Internet. ROFL [21] replaces

the underlying routing services of the Internet with that of a DHT, while

VRR [20] takes a similar approach for wireless networks.

History of DHTs The first DHTs appeared in 2001, and build on one of

two ideas published in 1997:

• Consistent Hashing, which is a hashing scheme for caching web pages

at multiple nodes, such that the number of cache items needed to be

reshuffled is minimized when nodes are added or removed [85, 73].

4 1.1. WHAT IS A DISTRIBUTED HASH TABLE?

6 7
89

6 7
89

:
:

; < 6 9< = 9 > ? : @ A < B ; C 9 >
D ; 6 9 > ? : @ ? B ; E; < 6 9 F > < D C 9 > B ; C G 9D ; 6 9 > ? : @ ; 9 C H < > E

< = 9 > ? : @ ; 9 C H < > ED ; 6 9 > ? : @ ; 9 C H < > EI J
Figure 1.2: An overlay network and the underlay network on top of which

the overlay network is built. Messages between the nodes in the overlay

network logically follow the ring topology of the overlay network, but

physically pass through the links and routers that form the underlay net-

work.

• PRR2 or Plaxton Mesh, which is a scheme that enables efficient rout-

ing to the node responsible for a given object, while requiring a

small routing table [113].

Of the initial DHTs, Chord [136] builds on consistent hashing, but

replaces global information at each node with a small routing table and

provides an efficient routing algorithm. Chord has influenced the design

of many other DHTs, such as Koorde [72], EpiChord [83], Chord# [127],

and the Distributed k-ary System (DKS) [5], which this dissertation builds

on.

Similarly, PRR is the basis of the initial DHTs Tapestry [143] and Pastry

[123]. These systems extend the PRR scheme such that it works while

nodes are joining, leaving, and failing.

Content-Addressable Networks (CAN) [116] and P-Grid [2] do not di-

rectly build on any of these ideas, though the latter has some resemblance

to the PRR scheme.

2PRR is derived from the names of the authors – Plaxton, Rajaraman, Richa — who

proposed the scheme [113].

CHAPTER 1. INTRODUCTION 5

Distinguishing Features of DHTs So far, the description of a DHT is

similar to the domain name system, which allows clients to query any

DNS server for the IP address associated with a given host name. DHTs

can be used to provide such a service. There are several such propos-

als [140, 14], and it has been evaluated experimentally. The initial ex-

periments showed poor performance [32], while recent attempts using

aggressive replication, yield better performance results than traditional

DNS [114]. Nevertheless, DHTs have properties which distinguish them

from the ordinary DNS system.

The property that distinguishes a DHT from DNS, is that the organi-

zation of its data is self-managing. DNS’ internal structure is to a large

extent configured manually. DNS forms a tree hierarchy, which is di-

vided into zones. The servers in each zone are responsible for a region of

the name space. For example, the servers in a particular zone might be

responsible for all domain names ending with .com. The servers respon-

sible for those names either locally store the mapping to IP addresses, or

split the zone further into different zones and delegate the zones to other

servers. For example, the .com zone might contain servers which are re-

sponsible for locally storing mappings for names ending with abcd.com,

and delegating any other queries to another zone. The whole structure of

this tree is constructed manually.

DHTs, in contrast to DNS, dynamically decide which node is respon-

sible for which items. If the nodes currently responsible for certain items

are removed from the system, the DHT self-manages by giving other

nodes the responsibility over those items. Thus, nodes can continuously

join and leave the system. The DHT will ensure that the routing tables are

updated, and items are redistributed, such that the basic operations still

work. This joining or leaving of nodes is referred to as churn or network

dynamism.

As a side note, it is sometimes argued that a distinguishing feature

of DHTs is that they are completely decentralized, while DNS and other

systems form a hierarchy, in which some nodes have a more central role

than others. However, even though many of the early DHTs are com-

pletely decentralized — such as Chord [136], CAN [116], Pastry [123],

P-Grid [2], and Tapestry [143] — others are not. Hence, it is more correct

to say DHTs are never centralized. In fact, some of the early systems —

such as Pastry [123], P-Grid [2], and Tapestry [143] — have an internal de-

sign which is flexible. In practice, a minority of the nodes tend to appear

6 1.2. EFFICIENCY OF DHTS

more frequently in routing tables, and hence those nodes will be routed

through more often than others. In few of the systems, such as Viceroy

[98] and Koorde [72], the design inherently leads to some nodes receiv-

ing more queries than others. In summary, the distinguishing feature of

DHTs is not complete decentralization, even though they are, to a varying

degree, decentralized.

Another key feature of DHTs is that they are fault-tolerant. This im-

plies that lookups should be possible even if some nodes fail. This is

typically achieved by replicating items. Hence failures can be tolerated to

a certain degree as long as there are some replicas of the items on some

alive nodes. Again, as opposed to other systems, such as DNS, fault-

tolerance and the accompanying replication are self-managed by the sys-

tem. This means that the system will automatically ensure that whenever

a node fails, some other node actively starts replicating the items of the

failed node to restore the replication degree [25, 51].

1.2 Efficiency of DHTs

The efficiency of DHTs has been studied from different perspectives. We

mention a few here.

1.2.1 Number of Hops and Routing Table Size

A central research topic since the inception of DHTs has been how to

decrease the number of re-routes, often referred to as hops, that any given

query would take before reaching the responsible node. The reason for

this is twofold. First, the latency of transmitting messages is high relative

to making local computations. Consequently, removing a hop generally

reduces the time it takes to make a lookup. Second, the more hops, the

higher the probability that some of the nodes fail during the lookup.

Much research has also been conducted on reducing the size of the

routing tables. The main motivation for this has been that the entries in

the routing table need to be maintained as nodes join and leave the sys-

tem. This is referred to as topology maintenance. Often, this is done by

eagerly probing the nodes in the routing table at regular time intervals

to ensure that the routing information is up-to-date [136]. However, lazy

approaches to topology maintenance also exist, whereby nodes are added

CHAPTER 1. INTRODUCTION 7

or removed from the routing table whenever new or failed nodes are dis-

covered [3]. Generally, the bigger the routing table, the more bandwidth

is needed to maintain it. Indeed, much theoretical work has been done

to find the amount of topology maintenance needed to sustain a working

system [97, 77].

There is a trade-off between the maximum number of hops and the

size of the routing tables [142]. In general, the larger the routing table,

the fewer the number of hops, and vice versa.

Several DHTs [136, 116, 123, 2, 143, 65, 127] guarantee to find an item

in hops less than, or equal to, the logarithm of the number of nodes.

For example, a system containing 1024 nodes would require maximum

log2(1024) = 10 hops to reach the destination. At the same time, each

node would need to store a routing table of size which is logarithmic to

the number of nodes.

In many systems [123, 143, 65], the base of the logarithm can be con-

figured as a system parameter. The higher the base, the bigger the routing

table and the fewer the hops, and vice versa. In all the PRR-based sys-

tems, the routing table size will be k·L, where k is the base minus one, and

L is the logarithm of the system size with base k. For example, if the base

is set to 2, the maximum number of hops in a 4096 node system would be

log2(4096) = 12, while its routing table size would be 1· log2(4096) = 12.

Increasing the base to 16, the maximum number of hops in a 4096 node

system would be log16(4096) = 3, while the routing table size would

be 15· log16(4096) = 45. Chord has k fixed to 2, while DKS provides a

generalization of Chord to achieve any k.

As a side note, we mention two interesting cases as it comes to con-

figuring the base. One is to set the base to the square root of the system

size. Then every query can be resolved in maximum two hops. This can

be seen by the following equation, when n is set to the number of nodes

in the system:

log√
n(n) = log√

n((
√

n)2) = 2

The above setting of square root routing tables and two hop lookup is

the fixed setting in systems such as Kelips [59] and Tulip [4]. The extreme

is to set the base to n, in which case every query can be resolved in one

hop, since logn(n) = 1.

So far, we have mentioned systems in which the routing table size

8 1.2. EFFICIENCY OF DHTS

grows as the number of nodes increases. Nevertheless, systems such as

CAN [116] have a constant size routing table. The maximum number of

hops will then be in the order of square root of the number of nodes.

Some systems [99, 16, 53, 86] build on the small worlds model devel-

oped by Kleinberg [75]. This model is influenced by the experiment done

by Milgram [102], which demonstrated that any two persons in the USA

are likely to be linked by a chain of less than six acquaintances. They

guarantee that any destination is asymptotically reached in log(n)2 hops

on average with constant size routing tables. An advantage of the small

world DHTs is that they provide flexibility in choosing neighbors.

An question is how much it is possible to decrease the maximum num-

ber of hops for a given routing table size. A well known result from graph

theory known as the Moore bound [103] gives the optimal number of

maximum hops an n node system can guarantee if each node has log(n)

routing pointers. It states that with n nodes, where each node has log(n)

routing entries, the maximum number of hops provided by any system

cannot be asymptotically less than
log(n)

log(log(n))
. Some systems, such as Ko-

orde [72] and Distance Halving [108], can indeed guarantee a maximum

of
log(n)

log(log(n))
hops with log(n) routing pointers [92]. While the design

of these systems is intricate, a simpler approach has been suggested for

achieving the same bounds. If each node in addition knows its neigh-

bors’ routing tables, optimal number of hops can be achieved in many

existing DHTs [100, 109]. Note that topology maintenance is avoided for

the additional routing tables.

1.2.2 Routing Latency

The number of hops does not solely determine the time it takes to reach

the destination, network latencies and relative node speeds also matter. A

simple illustrative scenario is a two hop system which routes a message

from Europe to Japan and back, just to find that the destination node

is present on the same local area network as the source. For another

example, consider routing from node d to node e on the ring overlay

depicted by Figure 1.2. It takes two hops on the overlay to pass through

the path d − a − e. But on the underlay it is traveling five hops through

the path d − f − g − e − a − e.

A metric called stretch is often used to emphasize the latency overhead

CHAPTER 1. INTRODUCTION 9

of DHTs. The stretch of a route is the the time it takes for the DHT to

route through that route, divided by the time it takes for the source and

the destination to directly communicate. To be more precise, if a lookup

in the DHT traverses the hosts x1, x2, · · · , xn, and d(xi, xj) denotes the

time it takes to send a message from xi to xj, then the stretch of that route

is
d(x1,x2)+···+d(xn−1,xn)

d(x1,xn)
. The stretch of the whole system is the maximum

stretch for any route. In essence, we are comparing the time it takes for

the DHT to route a message through different nodes, with the time it

would have taken if the source and the destination had communicated

directly without the involvement of a DHT. Notice that in practice, the

source and the destination are not aware of each other, since each node

only knows a fraction of the other nodes. In fact, in related work called

Resilient Overlay Networks [11], it was shown that it might happen that

the source and the destination nodes cannot directly communicate with

each other on the Internet. But the route that the overlay takes makes

communication possible between the two hosts.

Some DHTs, such as the ones based on PRR, are structured such that

there is some flexibility in choosing among the nodes in the routing table

[123, 143, 2]. Hence, each node tries to have nodes in its routing table to

which it has low latency. This is often referred to as proximity neighbor

selection (PNS). Other systems do not have this flexibility, but instead aim

at increasing the size of the routing tables to have many nodes to choose

from when routing. This technique is referred to as proximity route selec-

tion (PRS). Experiments have shown that PNS gives a lower stretch than

PRS [58].

As the number of nodes increases, it becomes non-trivial for each node

to find the nodes to which it the has the lowest latency. The reason for

this is that the node needs to empirically probe many nodes before it

finds the closest ones. Work on network embedding shows how this can

be done efficiently [128]. For example, in Vivaldi [31], each node collects

latency information from a few other hosts and thereafter every node

receives a coordinate position in a logical coordinate space. For example,

in a simple 3-dimensional space, every node would receive a synthetic

(x,y,z) coordinate. These coordinates are picked such that the Euclidean

distance between two nodes’ synthetic coordinates estimates the network

latency between the two nodes. The advantage of this is that a node does

not need to directly communicate with another node to know its latency

10 1.3. PROPERTIES OF DHTS

to it, but can estimate the latency from the synthetic coordinates of the

node, which it can get from other nodes or from a service.

Closely related to latencies are two properties called content locality

and path locality. Content locality means that data that is inserted by

nodes within an organization, confined to a local area network, should

be stored physically within that organization. Path locality means that

queries for items which are available within an organization should not

be routed to nodes outside the organization. These two properties are

useful for several reasons. First, latencies are lowered, as latencies are

typically low within a LAN. The percentage of requests that can be satis-

fied locally depends on user behavior. But studies indicate that over 80%

of requests in popular peer-to-peer applications can be found on the LAN

[57]. Second, network partitions and problems of connectivity do not af-

fect queries to data available on the LAN. Third, the locality properties

can be advantageous from a security or judicial point of view. SkipNet

[65] was the first DHT to have these two properties.

1.3 Properties of DHTs

We briefly summarize the essential properties that most DHTs possess3

DHTs are scalable because:

• Routing is scalable. The typical number of hops required to find an

item is less or equal than log(n) and each node stores log(n) routing

entries, for n nodes.

• Items are dispersed evenly. Each node stores on average d
n items,

where d is the number of items in the DHT, and n is the number of

nodes.

• The system scales with dynamism. Each join/leave of a node re-

quires redistributing on average d
n items, where d is the number of

items in the DHT, and n is the number of nodes.

DHTs self-manage items and routing information when:

• Nodes join. Routing information is updated to reflect new nodes,

and items are redistributed.

3The numbers are asymptotic and the Big-Oh function should be applied to them.

CHAPTER 1. INTRODUCTION 11

K L
MN
ML

O
O

P Q K NQ R N S T O U V Q W P X N SY P K N S T O U T W P ZP Q K N W P X [N Y P K N S T O UQ R N S T O U P N X \ Q S ZY P K N S T O U P N X \ Q S Z
Figure 1.3: A Sybil attack. Node c gains majority by imposing as nodes c,

d, and e in the overlay network.

• Nodes leave. Routing information is updated to reflect departure of

nodes, and items are redistributed before a node leaves.

• Nodes fail. Failures are detected and routing information is repaired

to reflect that. Items are automatically replicated to recover from

failures.

In addition to the above, some systems self-manage the load on the

nodes, while others self-manage to recover from various security threats.

1.4 Security and Trust

Security needs to be considered for every distributed system, and DHTs

are no exception. One particular type of attack which has been studied

is the Sybil attack [39]. The attack is that an adversarial host joins the

DHT with multiple identities (see Figure 1.3). Hence, any mechanism

which relies on asking several replicas to detect tampered results or detect

malicious behavior becomes ineffective. A protection against this is to use

some means to establish the true identity of nodes.

One way to establish the identity of the nodes of the DHT is to use

public key cryptography. Every node in the DHT is verified to have a

valid certificate issued by a trusted certificate authority4. Hence, the

4It is also possible to use other certificate mechanisms, such as SPKI/SDSI [43], which

are based on local knowledge.

12 1.5. FUNCTIONALITY OF DHTS

nodes in the DHT can be assumed to be trustworthy. This assumption

makes sense for certain systems, such as the Grid [47, 119] or a file sys-

tem running inside an organization. It is, however, infeasible if the system

is open to any user, such as an Internet telephony system like Skype.

Establishing node identities using certificates is not sufficient to ensure

security. Even trusted nodes can behave maliciously or be compromised

by adversaries. Hence, security has to be considered at all levels and the

protocols of the system need to be designed such that it is difficult to

abuse the system.

Other security issues considered for DHTs include various routing at-

tacks. For example, a node can route to the wrong node, or misinform

nodes which are performing topology maintenance. Most of the tech-

niques to prevent these types of attacks involve verifying invariants of

the system properties [130], such as ensuring that routing always makes

progress toward the destination. Malicious nodes can also deny the exis-

tence of data. This can be prevented by comparing results from different

replicas, provided that the replicas are not subject to Sybil attacks. Finally,

there are DHT specific denial-of-service attacks, such as letting multiple

nodes join and leave the system so frequently that the system breaks

down [78].

Ultimately, it is impossible to stop nodes from behaving maliciously,

especially in a large-scale overlay that is open to any user and does not

employ public key cryptography. A key question is then to identify which

nodes are trustworthy and which nodes are likely to behave maliciously.

One solution to this is to use a node’s past behavior and history as an in-

dication of how it will behave in the future. Research on trust management

aims at doing this by collecting, processing, and disseminating feedback

about the past behavior of participating nodes. Despotivić [36] provides

a comprehensive survey of the work in this area.

1.5 Functionality of DHTs

So far we have assumed that the ordinary lookup operation is the main

use of DHTs. Nevertheless, many other uses are possible. We mention

two other operations: range queries and group communication.

CHAPTER 1. INTRODUCTION 13

Range Queries In some applications, it might be useful to ask the DHT

to find values associated to all keys in a numerical or an alphabetical

range. For example, in a grid computing environment, the keys in a DHT

can represent CPU power . Hence, an application might query a DHT

to search for all keys in the interval 2000 − 5000 MHz. Range queries

in DHTs were first proposed by Andrzejak and Xu [12]. Straightforward

approaches to implement range queries in most DHTs are proposed by

Triantafillou et al. [138] and Chawathe et al. [28]. Most such schemes can

lead to load imbalance, i.e. that some nodes have to store more items than

others. Mercury and SkipNet facilitate range queries without problems

of load imbalance [65, 16]. Our work on bulk operations (Chapter 5) can

be used in conjunction with most of these systems to make range queries

more efficient.

Group Communication The routing information which exists in DHTs

can be used for group communication. This is a dual use of DHTs,

whereby they are not really used to do lookups for items, but rather

just used to facilitate group communication among many hosts. For in-

stance, the routing tables in the DHT can be used to broadcast a message

from one node to every other node in the overlay network [42, 49, 118].

The advantage of this is that every node gets the message in few time

steps, while every node only needs to forward the message to a few other

nodes.

The motivation for doing group communication on top of structured

overlay networks is related to Internet’s rudimentary support for group

communication: IP multicast. Unfortunately, IP multicast is disabled in

many routers, and therefore IP multicast often does not work over wide

geographic areas. To rectify the situation, early overlay networks such

as Multicast Backbone (MBONE) [44] have been used since the inception

of IP multicast. The overlay nodes are placed in areas where there is no

support for IP multicast. Each node carries a routing table, pointing to

other such overlay nodes. These routing tables are then used to connect

areas which have no multicast connection between them. Since DHTs

have desirable self-managing properties, they have been used, in a simi-

lar manner, to enable global multicast. We present one such solution in

Chapter 5.

14 1.6. APPLICATIONS ON TOP OF DHTS

1.6 Applications on top of DHTs

We have now described what a DHT is and overviewed the main strands

of research on DHTs. In this section we turn to applications that use

DHTs. Our goal is not to give a complete survey of all applications, but

rather to convey the main ideas behind the use of DHTs.

1.6.1 Storage Systems

Among the first DHT applications are distributed storage systems. In

some systems such as PAST [124], each file to be archived is stored in

the DHT under a key which is the hash of the file name, and the value

is the contents of the file. The hash of the file name is simply a large

integer which is returned when applying a hash function, such as SHA-

1, to the filename. Since PAST associates keys with whole files, each

node has to store the complete file for each key it is responsible for. If

a node does not have enough space, a non-DHT mechanism is used to

divert responsibility to other nodes. Popular files are cached along the

overlay route to the node on which they are stored. PAST uses public key

cryptography together with smart cards to prevent Sybil attacks.

In other systems, such as CFS [33] and our system Keso [10], the con-

cept of content hashing is used. A content hash closely relates the key and

the value of an item. The key of any item is the hash value of its value.

The advantage of this is that once an item is retrieved from the DHT, it

can be verified if it has been changed or tampered with by asserting that

its key is equal to the hash of the value. Content hashing can be used in

conjunction with caching, in which case the self-certifying property of the

content-hash makes cache invalidation unnecessary.

CFS stores a whole directory structure in the DHT. Files in CFS are

split into smaller chunks, which are stored in the DHT using content hash-

ing. The keys of all the blocks belonging to a single file are stored together

as an item in the DHT using content hashing. This item is referred to as

an inode for the file. Hence, each file has an inode item in the DHT, whose

value is a set of keys. For each of those keys an item exists in the DHT,

whose values are the blocks of the file. Each directory is represented by a

directory block, whose key is a content hash, and its value is the set of keys

of all inodes and directory blocks in the directory. The root directory is

also a directory block, but its key is the public key of the node that owns

CHAPTER 1. INTRODUCTION 15

the directory structure. Hence, to find a file called /home/user/abc.txt,

the public key of the owner is used to find the root directory block, which

should contain the key to the directory block home. The directory block

for home contains the key to the directory block user, which contains the

key to the inode for the file abc.txt. The inode of abc.txt contains keys

to all chunks, which can be fetched in parallel to reassemble the file 5.

Caching eventually relieves all the lookups made to fetch popular files.

Not all storage systems store the files in the DHT. In fact, it has been

shown that beyond a certain threshold, it becomes infeasible to store large

amounts of data in a DHT as the number of joins and leaves becomes

high [18]. The reason for this is, intuitively, that it takes too long for a

node to fetch or transfer the items it is responsible for when it joins and

leaves. This has led several storage systems, such as PeerStore [81] and

our MyriadStore system [132], to use the DHT for only storing meta data

and location information about files.

In summary, DHTs have been used as a building block for many stor-

age systems. The main advantages have been their scalability and self-

management properties.

1.6.2 Host Discovery and Mobility

DHTs can be used for host discovery or to support mobility. For exam-

ple, a node might be assigned dynamic IP addresses, or acquire a new IP

address as the result of changing geographic location. To enable the node

to announce its new address to any potential future interested parties,

the node simply puts an item in the DHT, with the key being a logical

name representing the node, and the value being its current address in-

formation. Whenever the node changes IP address, it updates its address

information in the DHT. Other hosts that wish to communicate with it can

find out the node’s current address information by looking up its name

in a DHT. This is how mobility is achieved in the Internet Indirection

Infrastructure (i3) [133].

The above use of DHTs can be found in many projects and several

standardization efforts. For example, Host Identity Payload (HIP) [112]

aims at separating the names used when routing on the networking layer

5The bulk operations introduced in Chapter 5 can be used to do the parallel fetching

efficiently.

16 1.6. APPLICATIONS ON TOP OF DHTS

from the names used between end-hosts on the transport layer. Cur-

rently, IP addresses are used for both purposes. HIP proposes replacing

the end-host names with a different scheme. A node could then change

IP address, which is significant when routing, but keep the same end-

host name. To find an end-host’s current IP address, a scheme like i3 is

proposed to be used. Other similar approaches have been proposed to

decouple the two name spaces. For example, in P6P [144], end-hosts use

IPv6 addresses, while the core routers in the Internet use IPv4 addresses

for routing. Another project, P2PSIP [111], uses a DHT in a similar man-

ner to discover other user agents when initiating sessions for Internet

telephony.

1.6.3 Web Caching and Web Servers

Squirrel [69] uses a DHT to implement a decentralized Web proxy. In

its simplest form, workstations in an organization form the nodes of a

DHT. The Web browsers are configured to use a local program as a proxy

server. Whenever the user requests to view a web page, the proxy makes

a lookup for the hash of the URL. Initially, the cache will be empty, in

which case Squirrel will fetch the requested page from a remote Web

server and put it in the DHT, using the hash of the URL as a key, and the

contents of the requested page as a value. Hence, Web pages are cached

in the DHT. Instead of using a central Web proxy, as many organizations

do, a decentralized cache is used based on DHTs.

Another approach is taken by us in DKS Organized Hosting (DOH)

[71]. In DOH a group of Web servers form the nodes that make a DHT.

Web pages are stored in the DHT, similarly to Squirrel. Some care is

taken, however, to ensure that objects related to the same Web page end

up having the same key, such that the same node can serve all requests

related to the same Web page.

1.6.4 Other uses of DHTs

DHTs have been used in many other contexts, which we mention briefly.

Some relational database systems, such as PIER [67, 93], utilize DHTs

to provide scalability, in terms of the number of nodes, which surpasses

today’s distributed database systems at the cost of sacrificing data consis-

tency.

CHAPTER 1. INTRODUCTION 17

Many publish/subscribe systems use DHTs. For example, FeedTree

[126] is built on top of a DHT to disseminate news feeds (RSS) to clients in

a scalable manner. ePOST [106], is a cooperative and secure e-mail system

which is built on top of POST [104], which uses a DHT. UsenetDHT [129]

provides news-server functionality by storing the contents of the articles

in a DHT.

A number of peer-to-peer applications make use of DHTs. Many file

sharing applications, such as BitTorrent [30], Azureus, eMule, and eDon-

key use the Kademlia DHT [101]. Some systems, such as AP3 [105] and

Achord [66], use the DHT as a basic service to provide anonymous mes-

saging or censorship-resistant publishing.

1.7 Contributions

The author is one of the main designers and implementors of a DHT

called Distributed k-ary System (DKS) and several applications built on top

of DKS. He has co-authored the following publications that are related

to this research [1, 6, 7, 8, 49, 50, 51, 71, 131, 132]. Rather than describ-

ing the full DKS system, we focus on the following contributions: lookup

consistency, group communication, bulk operations, and replication.

1.7.1 Lookup Consistency

Most DHTs construct a ring by assigning an identifier to each node and

make nodes point to each other to form a sorted linked list, with its head

and tail pointing to each other [136, 72, 65, 123, 143, 98, 16, 83, 61, 122].

We provide algorithms to maintain a ring structure which guarantees

atomic or consistent lookup results in the presence of joins and leaves, re-

gardless of where the lookup is initiated. Put differently, it is guaranteed

that lookup results will be the same as if no joins or leaves took place.

Second, no routing failures can occur as nodes are joining and leaving.

Third, there is no bound on the number of nodes that may simultaneously

join or leave the system. Fourth, the provided algorithms do not depend

on any particular replication method, and hence give a degree of freedom

to the type of replication used in the system. The correctness of all the

provided algorithms is proven. Furthermore, we show how ring mainte-

nance can be augmented to handle arbitrary additional routing pointers.

18 1.7. CONTRIBUTIONS

Consequently, lookup consistency is extended to rings with additional

pointers, and it is guaranteed that no routing failures occur as nodes are

joining and leaving. We show how the algorithms are extended to recover

from node failures. Failures only temporarily affect lookup consistency.

All algorithms in the dissertation take advantage of lookup consistency.

Related Work

Li, Misra, and Plaxton [89, 88, 87] independently discovered a similar ap-

proach to ours. The advantage of their work is that they use assertional

reasoning to prove the safety of their algorithms, and hence have proofs

that are easier to verify. Consequently, their focus has mostly been on the

theoretical aspects of this problem. Hence, they assume a fault-free envi-

ronment. They do not use their algorithms to provide lookup consistency.

Furthermore, they cannot guarantee liveness, as their algorithms are not

starvation-free.

In a position paper, Lynch, Malkhi, and Ratajczak [95] proposed for

the first time to provide atomic access to data in a DHT. They provide

an algorithm in the appendix of the paper for achieving this, but give no

proof of its correctness. In the end of their paper they indicate that work

is in progress toward providing a full algorithm, which can also deal with

failures. One of the co-authors, however, has informed us that they have

not continued this work. Our work can be seen as a continuation of theirs.

Moreover, as Li et al. point out, Lynch et al.’s algorithm does not work for

both joins and leaves, and a message may be sent to a process that has

already left the network [89].

1.7.2 Group Communication

We provide algorithms for efficiently broadcasting a message to all nodes

in a ring-based overlay network in O(log n) time steps using n overlay

messages, where n is the number of nodes in the system. We show how

the algorithms can be used to do overlay multicast.

Related Work

Previous work done on broadcasting in overlay networks [42] does not

work in the presence of dynamism, unlike the algorithms we provide.

CHAPTER 1. INTRODUCTION 19

Our overlay multicast has several advantages compared to other struc-

tured overlay multicast solutions. First, only nodes involved in a multi-

cast group receive and forward messages sent to that group, which is not

the case in some other systems [24, 74]. Second, the multicast algorithms

ensure that no redundant messages are ever sent, which is not the case

with many other approaches [118, 76]. Finally, the system integrates with

the IP multicast provided by the Internet.

1.7.3 Bulk Operations

We introduce a new DHT operation called bulk operation. It enables a

node to efficiently make multiple lookups or send a message to all nodes

in a range of identifiers. The algorithm will reach all specified nodes

in O(log n) time steps and it will send maximum n messages, and maxi-

mum O(log n) messages per node, regardless of the input size of the bulk

operation. Furthermore, no redundant messages are sent.

We are not aware of any related work, but our bulk operation has been

used in several contexts. It is used in DHT-based storage systems [132],

where a node might need thousands of lookups to fetch a large file. We

use the bulk operation algorithm to construct a pseudo-reliable broadcast

algorithm which repeatedly uses the bulk operation to cover remaining

intervals after failures. Finally, the algorithms are used to do replication

in Chapter 6 and by some of the topology maintenance algorithms [50].

1.7.4 Replication

We describe a novel way to place replicas in a DHT called symmetric repli-

cation, which makes it possible to do parallel recursive lookups. Parallel

lookups have been shown to reduce latencies [120]. Previously, however,

costly iterative lookups have been used to do parallel lookups [120, 101].

Moreover, joins or leaves only require exchanging O(1) message, while

other schemes require at least log(f) messages for a replication degree f .

Failures are handled as a special case, which requires a more complicated

operation, using more messages.

20 1.7. CONTRIBUTIONS

Related Work

Closest to our symmetric replication is the use of multiple hash functions.

Nevertheless, this scheme has one disadvantage. It requires the inverse of

the hash functions to be known in order to maintain the replication factor

(see Chapter 6). Even if the inverse of the hash functions were available,

each single item that the failed node maintained would be dispersed all

over the system when using different hash functions, making it necessary

to fetch each item from a different node. This is infeasible as the number

of items is generally much larger than the number of nodes.

Later, others have rediscovered variations of symmetric replication [84,

64].

1.7.5 Philosophy

Much of the research on DHTs has been done under the wide umbrella

of peer-to-peer computing. The following quote from the seminal paper on

Chord [134, pg 2] motivates this:

In particular, [Chord] can help avoid single points of failure or

control that systems like Napster possess [110], and the lack of

scalability that systems like Gnutella display because of their

widespread use of broadcasts [54].

A similar quote can be found in the original paper on CAN [117, pg

1].

We believe that one of the main motivational scenarios for DHTs has

been a peer-to-peer application that is used by hundreds of thousands

of simultaneous desktop users, each being part of the DHT. The vision

has been to have an efficient and decentralized replacement for common

file-sharing applications. This implicitly carries many assumptions, such

as untrusted nodes, high churn, and varying latencies. Most importantly,

desktop users can anytime turn their computers off, and hence there is

a high frequency of failures. For that reason, failures and leaves can be

considered as the same phenomena.

In contrast, our philosophy has been that DHTs are useful data struc-

tures, whose applicability is not confined to peer-to-peer applications.

They might well be used in a system consisting of a few hundred, or

thousand nodes. The nodes in the DHT might be formed by dedicated

CHAPTER 1. INTRODUCTION 21

servers within one or several organizations, such as in the Grid [47, 119].

Hence, while the system should be fault-tolerant, failures might not be

the common case. Similarly, the nodes in the DHT can be equipped

with digital certificates, which allow for authentication and authoriza-

tion. Consequently, the nodes can in general be trusted, provided the

right credentials.

Given our philosophy, we have tried to investigate what can be done

on DHTs in less harsh environments. Each of the contributions has a di-

rect connection to this philosophy. The lookup consistency algorithms dif-

ferentiate between leaves and failures, and are able to give strong guaran-

tees while joins and leaves are happening, while failures introduce some

uncertainty. The group communication algorithms are suitable for sta-

ble environments where their efficiency is advantageous. Their use can,

however, be questioned in environments with high failure rates, as the

algorithms might never terminate. Our symmetric replication simplifies

the handling of joins and leaves by only requiring O(1) messages to trans-

fer replicas. Failures are handled as a special case, which involve a more

complicated operation, which requires more messages.

1.8 Organization

The chapters of this dissertation are organized as follows:

• Chapter 2 presents our model of a distributed system. It also presents

the event-driven and control-oriented notation that is used through-

out the dissertation to describe algorithms. Finally, the chapter

presents the Chord system, which the rest of the dissertation as-

sumes as background knowledge.

• Chapter 3 provides algorithms for constructing and maintaining a

ring in the presence of joins, leaves, and failures. The algorithms

guarantee atomic or consistent lookups.

• Chapter 4 shows how the ring can be extended with (k − 1) log(n)

additional pointers to provide logk(n) hop lookups, in an n node

system. It provides different routing algorithms and provides effi-

cient mechanisms to maintain the topology up-to-date in the pres-

ence of joins, leaves, and failures. Finally, it shows how the addi-

tional routing pointers can be maintained to guarantee that there

22 1.8. ORGANIZATION

are no routing failures when nodes are joining and leaving, while

providing lookup consistency.

• Chapter 5 provides algorithms for broadcasting a message to all

nodes in a ring-based overlay network. Moreover, it shows how the

broadcast algorithm can be used to do overlay multicast. Chapter 5

also introduces a new DHT operation called bulk operation, which

enables a node to efficiently make multiple lookups or send a mes-

sage to all nodes in a range of identifiers.

• Chapter 6 describes symmetric replication, which is a novel way to

place replicas in a DHT. This scheme makes it possible to do recur-

sive parallel lookups to decrease latencies and improve load balanc-

ing. Another advantage of symmetric replication is that a join or

a leave requires the joining or leaving node to exchange data with

only one other node prior to joining or leaving.

• Chapter 7 briefly describes the implementation of a middleware

called Distributed k-ary System (DKS), that implements the algorithms

presented in this dissertation.

• Chapter 8 provides a conclusion and points to future research di-

rections for DHTs.

2 Preliminaries

T
his chapter briefly describes our model of a distributed system.

Thereafter, we informally introduce the pseudocode conventions

used to describe algorithms. Finally, we describe Chord, which

provides a DHT.

2.1 System Model

In this section, we present our model of a distributed system. The system

consists of nodes, which communicate by message passing, i.e. the nodes

communicate with each other by sending messages.

We make the following three assumptions about distributed systems,

unless stated otherwise:

• Asynchronous system. This means that there is no known upper

bound on the amount on the time it takes to send a message1 or

to do a local computation on a node.

• Reliable communication channels2. A channel is reliable if every mes-

sage sent through it is delivered exactly once, provided that the

destination node has not crashed. Moreover, we assume that a node

can never receive a message that has never been sent by some node.

Hence, there can be no loss, duplication, garbling, or creation of

messages.

• FIFO communication channels. This means that messages sent on a

channel between two nodes are received in the same order that they

were sent.
1This assumption is sometimes known as asynchronous network.
2Reliable communication channels are sometimes referred to as perfect communica-

tion channels [56, pg 38ff].

23

24 2.2. ALGORITHM DESCRIPTIONS

The last two properties are already satisfied by the connection-oriented

TCP/IP protocol used in the Internet, and can be implemented over un-

reliable networks by marking packets with unique sequence numbers,

using timeouts, packet re-sending, and storage of sequence numbers to

filter duplicate messages. For more information on their implementation

see Guerraoui and Rondrigues [56, Chapter 2].

2.1.1 Failures

If nothing else is said, we generally assume that there are no failures. We

do, however, always consider nodes joining and leaving. Furthermore, all

our algorithms are augmented to handle failures. When failures are intro-

duced, we assume that processes can crash at any time, in which case they

stop communicating. We will use unreliable failure detectors to detect when

a node has failed [26]. The algorithms we present have been designed

to work on the Internet. Therefore, we only consider failure detectors

which are suitable for the Internet. We assume that every failure detector

is strongly complete, which means that it eventually will detect if a node

has crashed. This assumption is justifiable, as it can be implemented by

using a timer to detect if some expected message has not arrived within

some time bound. Thus, a failure is eventually always detected. A failure

detector might, however, be inaccurate, which means that it might give

false-negatives, suspecting that a correct, albeit slow, node has crashed.

If timers are used to implement failure detectors, then inaccuracy stems

from timers that expire before the receipt of the corresponding message.

Sometimes we need accuracy to ensure the termination of an algorithm.

In those cases, we strengthen our assumptions about the asynchrony in

the system. We then assume that the failure detector is eventually strongly

accurate, which means that after some unknown time period, the fail-

ure detector will not inaccurately suspect any node as failed. The class

of failure detectors referred to as eventually perfect are strongly complete

and eventually strongly accurate.

2.2 Algorithm Descriptions

Throughout this dissertation, we will use a node’s identifier to refer to

it, i.e. we will write “node i” instead of “a node with identifier i”. We

CHAPTER 2. PRELIMINARIES 25

use pseudocode which resembles the Pascal programming language. The

next two sub-sections introduce two different notations that are used in

this dissertation.

2.2.1 Event-driven Notation

Most of the message passing algorithms will be described using event-

driven notation. There is one event handler for each message. The mes-

sage handler describes the parameters of the message, and the actions

to be taken when a message is received. The actions include making lo-

cal computations, such as updating local variables, and possibly sending

messages to other nodes. The advantage of this model is that each node

can be modeled as a state-machine, which in each state transition receives

a message, updates its local state by doing local computations, and sends

zero or more messages to other nodes. Each such transition is sometimes

referred to as a step.

The following example shows a message handler for the message Mes-

sageName1, with parameter p1. The handler declares that if a Message-

Name1 message is received at node n from node m with a parameter p1, it

should do some local computation and then send a MessageName2 mes-

sage to p with parameter p2. Execution of event handlers is serialized, i.e.

a node can only executing at most one event handler at any given point

in time. Only one parameter is used in the example, but any number of

parameters can be specified by separating them with a comma.

1: event n.MessageName1(p1) from m

2: local computations

3: sendto p.MessageName2(p2)

4: local computations

5: end event

The event-driven notation assumes asynchronous communication3. That

means that the sending of a message is not synchronized with the re-

ceiver. As a side note, this is the reason why a single state-transition can

be used to model the receipt of a message, local computations, and the

sending of messages.

3Asynchronous communication should not be confused with asynchronous networks

26 2.2. ALGORITHM DESCRIPTIONS

2.2.2 Control-oriented Notation

In some cases, we find it convenient to describe the algorithms in control-

oriented notation. In this notation a node can do local computations and

then explicitly wait for a message of a particular type. This is called

a blocking receive. We differentiate blocks of code using control-oriented

notation with the keyword procedure. In the control-oriented notation, we

no longer assume that a node will be executing at most one procedure. A

procedure can also return a value, similarly to a function in an ordinary

programming language.

The following example declares that if a procedure n.ProcedureName

is executed at node n with a parameter p1, it should do some local com-

putation, send MessageName1 with parameter p2. Thereafter, the com-

putation blocks and waits for the receipt of a MessageName2 message

with parameter p3 from any node m. Note that it waits for the message

from any node, and once the message is received the variable q is set

to the sending node’s identity. Thereafter, the computation blocks wait-

ing for the receipt of a MessageName3 with some parameter p4 from the

specified node i. Local procedure calls do not need the identifier prefix, i.e.

proc() denotes making a call to the local procedure proc() at the current

node.

1: procedure n.ProcedureName(p1)

2: local computations

3: sendto p.MessageName1(p2)

4: receive MessageName2(p3) from m

5: receive MessageName3(p4) fromthis i

6: local computations

7: end procedure

Note that this notation is not as straight-forward to model with state-

machines, as the event-driven notation.

Synchronous Communication It is sometimes convenient to synchro-

nize the sending of a message with the receipt of the message. This can

be done by using synchronous communication. Note that we still assume

an asynchronous network, in which there are no known time bounds

on events. Given an asynchronous system, the only way to implement

CHAPTER 2. PRELIMINARIES 27

synchronous communication is by sending a message and waiting for an

acknowledgment from the receiver. Since an acknowledgment message

must be sent by the receiver for every received message, the receiver can

piggy-back parameters on the acknowledgment back to the sender. This

corresponds to remote-procedure calls (RPC), where a node can call a

procedure at another node and await the result of the execution of the

procedure.

Synchronous communication can be implemented using the control-

oriented notation we introduced. This can be achieved by always hav-

ing a blocking receive for an acknowledgment after each send, and cor-

respondingly sending an acknowledgment after each receive event. We

will use RPC prefix notation as a shorthand for this. Hence, an expression

i.Proc(p1) means executing the procedure Proc(p1) at node i and return-

ing its value back to the caller. This is implemented in control-oriented

notation by the following:

1: procedure n.EmulateRPC()

2: sendto i.ProcReq(p1)

3: receive ProcReply(result) fromthis i

4: return result

5: end procedure

6: event n.ProcReq(p1) from m

7: res = Proc(p1) ⊲ Call local procedure

8: sendto m.ProcReply(res)

9: end event

Similarly, we use RPC notation for reading a remote variable. Hence,

i.var denotes fetching the value of the variable var at node i. This can be

implemented using control-oriented notation by the following:

28 2.2. ALGORITHM DESCRIPTIONS

1: procedure n.EmulateRPCGet()

2: sendto i.VarReq()

3: receive VarReply(result) fromthis i

4: return result

5: end procedure

6: event n.VarReq() from m

7: sendto m.VarReply(var)

8: end event

Writing to a remote variable can be implemented in a similar manner.

2.2.3 Algorithm Complexity

The efficiency of our distributed algorithms will be measured in terms

of resource consumption and time consumption. We assume that local

computations consume negligible resources and take negligible time com-

pared to the overhead of message passing.

We use message complexity as a measure of resource consumption. The

message complexity of an algorithm is the total number of messages ex-

changed by the algorithm. Sometimes, the message complexity does not

convey the real communication overhead of an algorithm, as the size of

the messages is not taken into account. Hence, on a few occasions, we use

bit complexity to measure the total number of bits used in the messages by

some algorithm.

Time complexity will be used to measure the time consumption of an

algorithm. We assume that the transmission time takes at most one time

unit and all other operations take zero time units. The worst case time

complexity is often the same if we assume that the transmission of a

message takes exactly one time unit, but for some algorithms the worst

time complexity increases if we assume that the time it takes to send a

message takes at most one time unit.

Unless specified, we assume that our complexity measures denote the

worst-case complexity of a given algorithm.

CHAPTER 2. PRELIMINARIES 29

] ^ _ ` a b c
Figure 2.1: Node 9 is responsible for the identifiers between its predeces-

sor, 6, and itself, i.e. the identifiers {7, 8, 9}.

2.3 A Typical DHT

We briefly describe Chord [134]. The choice of Chord is motivated by it

being well known, making it attractive for pedagogical purposes. We first

briefly cover the Chord basics. Thereafter we show how Chord handles

network dynamism.

Every structured overlay network makes use of an identifier space. The

identifier space, denoted I , consists of the integers {0, 1, · · · , N − 1},

where N is some a priori fixed, large, and globally known integer. This

identifier space is perceived as a ring that wraps around at N − 1.

Every node in the system, has a unique identifier from the identifier

space. We refer to the set of all nodes present at any given time as P .

We currently ignore how a node gets its identifier, but one can imagine

that it can randomly pick an identifier from a very large identifier space

to ensure the uniqueness of the identifier with high probability. Each

node keeps a pointer4, succ, to its successor on the ring. The successor

of a node with identifier p is the first node found going in clockwise

direction on the ring starting at p. Every node also has a pointer, pred, to

its predecessor on the ring. The predecessor of a node with identifier q is

the first node met going in anti-clockwise direction on the ring starting

at q. The successor pointers form a ring, which resembles a “distributed

linked list” that is sorted by the identifiers of the nodes and its tail node

points to its head node. The predecessors also form such a distributed

4By pointer we mean that the node’s identifier and network address is stored such

that communication can be established with it.

30 2.3. A TYPICAL DHT

linked list. Hence, the succ and pred pointers form a distributed circular

doubly-linked list. From now on we refer to this distributed structure as

a ring or a doubly-linked ring.

Every identifier in the identifier space is under the responsibility of a

node in the following way. The whole identifier space is partitioned into

P intervals, where P is the current number of nodes in the system. Each

node, n, is responsible for one interval. In Chord, a node is responsible

for the interval consisting of all identifiers in the range starting from,

but excluding its predecessor’s identifier up to, and including its own

identifier (see Figure 2.1).

2.3.1 Formal Definitions

For preciseness, we include formal definitions of the above descriptions.

We will use the notation x⊕y for (x + y) modulo N for all x, y∈I ,

where N = |I|. Similarly, x⊖y is defined as (x − y) modulo N for all

x, y∈I . For example, if the size of the identifier space is 16, then 15⊕2 =

1, while 1⊖2 = 15.

Distances on the identifier space are measured in clockwise direction.

Hence, the distance d between any two identifiers x and y is defined as:

d(x, y) = y ⊖ x

The successor of an identifier is its closest node in clockwise direction.

Hence, the successor S of an identifier x for a set of nodes P is defined

as:

S(x) = x ⊕ min{d(x, y) | y ∈ P}
The successor of a node p is therefore defined by the function succ at

node p as:

succ = S(p ⊕ 1)

Similarly, the predecessor of a node p is defined as the node farthest

away in clockwise direction. Hence, the predecessor of p is defined by

the function pred at node p as:

pred = p ⊕ max{d(p, y) | y ∈ P}

A node p is the responsible for an identifier x if and only if:

S(x) = p

CHAPTER 2. PRELIMINARIES 31

2.3.2 Interval Notation

We now introduce some notation to make our discussions about the iden-

tifiers and intervals on the ring more precise. The whole identifier space

can be represented by an interval of the form [x, x) or (x, x] for an arbi-

trary x ∈ I , where the start of an interval is excluding the first identifier

if the left bracket is round, (, and it is including the first identifier if it is

square, [. Similarly, the end of an interval is including the last identifier

if the right bracket is square,], and excluding the last identifier if it is

round,). For any x ∈ I , we note that [x, x] = {x} and (x, x) = I\{x}.

Hence, a node n is responsible for (n.pred, n]. For example, if the size of

the identifier space is 16, then (2, 10] is the set of identifiers 3, 4, · · · , 9, 10.

The interval (10, 2] is equivalent to the identifiers 0, 1, 2, and 11, 12, 14, 15.

Interval Notation and Sets of Identifiers We now connect the interval

notation to a set representation. So far we have used the notation of the

sort (i, j] to represent intervals of the identifier space. Such an interval is

a compact representation of a set of identifiers. For example, in an iden-

tifier space of size 16, the interval (14, 3] represents the set of identifiers

{15, 0, 1, 2, 3}. It is therefore possible to apply the operations available

for sets on intervals, such as taking the union or intersection of two in-

tervals. For example, the interval [11, 15] represents the set of identifiers

{11, 12, 13, 14, 15}. Therefore, the union of the intervals, (14, 3] ∪ [11, 15],

is the set of identifiers {0, 1, 2, 3, 11, 12, 13, 14, 15}. Similarly, the intersec-

tion of the intervals, (14, 3]∩ [11, 15], is the set of identifiers {15}. It might,

of course, not be possible to represent such a set of identifiers as a single

interval.

In our algorithms, we make extensive use of the basic set operations

on intervals. The reason for this is that the semantics of the operations

are well defined. In a system implementation, these can be implemented

and optimized as fit.

2.3.3 Distributed Hash Tables

A DHT is like an ordinary hash table, except that the key/value pairs in

the hash table are distributed and stored among the nodes in the system

(see Chapter 1).

The DHT is implemented by deterministically assigning an identifier

32 2.3. A TYPICAL DHT

to every key/value pair in the DHT using a globally known hash func-

tion, H. Specifically, a key value pair 〈k, v〉 is mapped to the identifier

H(k). Each node locally stores the key/value pairs whose identifiers it is

responsible for.

Any node can lookup the value associated with any key by making a

lookup. More precisely, any node can perform a lookup to find out which

node is currently responsible for a key, and thereafter directly contact that

node to find out the value associated with the key. Similarly, a DHT

put, delete, or update operation can be implemented by making a lookup

for the particular key, and then asking the responsible node to perform

the desired operation. The lookup is done by traversing the successor

pointers until a node is reached whose successor is responsible for the

destination identifier.

For example, the DHT can contain the key/value pair 〈“age”,“old”〉,
which is assigned the identifier H(“age”) = 15. The node which is re-

sponsible for the identifier 15 stores this key/value pair locally. All that

is needed for a node to find the value associated with “age”, is to lookup

the node currently responsible for the destination identifier 15. The respon-

sible node is then contacted to find out that “old” is the value for the key

“age”.

2.3.4 Handling Dynamism

When a node joins, or leaves, the system needs to ensure that the ring

structure is intact, i.e. that each node is indeed pointing to its correct

successor and predecessor.

When a new node joins the system it proceeds in three steps. First,

it needs the address of an existing node in the system. Second, it needs

to find its successor on the ring. Third, it needs to incorporate itself into

the ring, by letting some nodes update their successor and predecessor

pointers. We briefly describe each of these three steps.

Finding the address of an existing node is often considered out of

the scope of most research papers. We briefly mention three approaches

here. One approach is to use a distributed cache server, such as the GWe-

bCache [60]. This is essentially a server that keeps a cache of some nodes

that are currently in the system. The server can randomly contact nodes

in its cache and query them for more nodes, such that the cache always

contains alive nodes. New nodes know the address of one or more dis-

CHAPTER 2. PRELIMINARIES 33

tributed cache servers, which they contact to get a reference to an existing

node. Jelasity et al. [70] describe how such a sampling service can efficiently

be implemented. Another approach is to keep a local cache file on each

client, which initially contains a predefined set of nodes. Each time a

node wants to join, it tries to find an alive node from its local cache file.

The local cache is updated with up-to-date information each time the ap-

plication is used. A third approach is to use IP multicast or broadcast on

the local area network to find a node which is already a member of the

DHT. In practice, a combination of these three methods is used.

Finding the successor of a new node, n, is trivially achieved by fol-

lowing successor pointers until a node is reached whose successor is re-

sponsible for the identifier n. This would require P − 1 messages in the

worst case as the whole ring would need to be traversed, where P is the

number of nodes in the system. In practice, a much more efficient search

is performed, as we show in Chapter 4.

To ensure that the new node, its predecessor, and its successor, all have

correct succ and pred pointers, Chord uses a periodic stabilization algorithm.

The algorithm shown in Algorithm 1 is run periodically at each node.

Initially, a new node sets its successor pointer to its actual successor on

the ring, and its predecessor pointer to itself. The periodic stabilization

algorithm will ensure that all nodes eventually correct their successor

and predecessor pointers correctly. An example of this is illustrated in

Figure 2.2, which shows how stabilization works when a new node joins

the system.

Leaves are handled using periodic stabilization in conjunction with a

successor-list. The successor-list at a node n is just a special routing table

with a list of n’s closest consecutive successors. The size of the list is

some constant. Whenever a node detects that its predecessor has failed, it

changes its pred pointer to point to itself. Whenever a node detects that its

successor has failed, it makes its succ pointer point to the next alive node

in its successor-list. Hence, if a node fails, its successor q will detect that

and sets q.pred = q. Furthermore, the failed node’s predecessor p will

detect the failure, and set p.succ = q. The next time p performs periodic

stabilization, q will be notified about p, and hence sets q.pred = p.

34 2.3. A TYPICAL DHT

d
e

f
d

e
f

d
e

f
d

e
f

g

g g

h i j i

k i l i

Figure 2.2: a) system with 3 nodes with correct successors and predeces-

sors. b) node 7 joins and sets its successor pointer correctly. c) node 7

runs periodic stabilization. d) node 6 runs periodic stabilization.

CHAPTER 2. PRELIMINARIES 35

Algorithm 1 Chord’s periodic stabilization protocol

1: procedure n.Stabilize()

2: p := succ.GetPredecessor()

3: if p ∈ (n, succ) then

4: succ := p

5: end if

6: succ.Notify(n)

7: end procedure

8: procedure n.GetPredecessor()

9: return pred

10: end procedure

11: procedure n.Notify(p)

12: if p ∈ (pred, n] then

13: pred := p

14: end if

15: end procedure

3 Atomic Ring

Maintenance

I
n this chapter we explain how the nodes that participate in the overlay

form a distributed ring, where each node points to its successor and

predecessor in the ring. This basic ring structure is the basis of many

structured overlay networks [134, 72, 65, 123, 143, 98, 16, 83, 61, 122],

and the rest of the dissertation shows how it can be used to build various

services, such as DHTs and group communication services. We show how

this ring should be maintained as nodes join and leave. In particular,

we guarantee that joins and leaves do not affect the consistency of the

results when traversing the successor and predecessor pointers to find the

responsible node for an identifier. Furthermore, the algorithms guarantee

that a lookup will never be directed to a node that has left the system.

Given our philosophy of DHTs (see Section 1.7.5), we differentiate be-

tween node failure and benign departure of nodes. In the former case, a

node crashes without synchronization. In the latter case, a node synchro-

nizes its departure with other nodes, prior to leaving. We will from now

on refer to the latter case as a node leaving.

Our goal is to ensure that joins and leaves do not affect the function-

ality provided by the rest of the system. For example, we want to ensure

that lookups to items in the hash table succeed while nodes are continu-

ously joining and leaving the system. This is non-trivial because the set

of nodes present in the system determines which node stores which data

item. Hence, any change to the set of present nodes requires movement

of data between the nodes. Since lookups can take place concurrently

with these changes, the problem becomes intricate.

We introduce atomic ring maintenance to ensure correctness of lookups

in the presence of joining and leaving nodes. In essence, we serialize

interfering joins and leaves, i.e. they are done sequentially, rather than

37

38 3.1. PROBLEMS DUE TO DYNAMISM

concurrently, to avoid inconsistencies. Before getting to the details of this,

we motivate the need for such algorithms by showing problems which

arise in existing systems that do not serialize joins and leaves.

3.1 Problems Due to Dynamism

We now turn to some of the problems that can occur when nodes join

and leave the Chord system.

Problems with Joins Imagine a Chord system which contains nodes

with identifiers 3 and 9. Initially 3’s successor pointer points at 9 and 9’s

predecessor pointer points at 3. A new node with identifier 7 joins the

system (see Figure 3.1a), sets its successor pointer to 9, and performs a

periodic stabilization, which results in node 9’s predecessor pointer point-

ing at 7 (Figure 3.1b). Meanwhile, another node 5 joins, sets its successor

pointer to node 9 (Figure 3.1c) and performs a periodic stabilization. The

pointers in this system are as follows (Figure 3.1d): 3’s successor is 9, 5’s

successor is 7, and 7’s successor is 9. At the same time, 9’s predecessor is

7, and 7’s predecessor is 5. If a lookup to identifier 6 arrives at node 3,

node 3 will (according to the description of a lookup) return the address

of node 9 as it believes that 9 is responsible for the interval {4, · · · , 9}.

At the same time, if a lookup for identifier 6 is initiated at node 5, it will

respond that the responsible node is 7.

The above scenario is problematic as a lookup can either return node

7 or node 9 as the responsible for identifier 6. Similarly, an update or

insertion to node 9 will not have effect as lookups will be directed to

node 7 as soon as node 3 stabilizes and points to node 5.

Problems with Leaves In Chord, nodes can leave unnoticed, without

synchronizing with any other nodes. The idea is that the periodic sta-

bilization will eventually correct the pointers. Before that happens, the

pointers might be in an inconsistent state. Consequently, a lookup might

lead to a node that has left the system. In such cases, the node referring to

the absent node needs to detect that the node is no longer in the system,

using timeouts, so that it can replace that node in its routing table. Only

thereafter the lookup can proceed to an alive node. Furthermore, the

overall number of leaves that can be tolerated by the system will depend

CHAPTER 3. ATOMIC RING MAINTENANCE 39

m n o
m n o
m p n o
m p n o

q r
s r
t r
u r

Figure 3.1: Example of inconsistent stabilization.

on the frequency of the stabilization and the size of the successor-list. For

if too many adjacent nodes leave between two stabilizations, there might

not exist another live node in the successor-list of the node that detects

the failure of its successor.

We proceed by a simple example to demonstrate the apparent diffi-

culties in synchronizing a leave to ensure that lookups are unaffected by

leaves. As in Figure 3.2, assume node 5 has 10 as its successor, and node

10 has 15 as its successor. If node 10 wants to leave the system, we have to

ensure that items stored on node 10 are made available to 15, and ensure

that the routing information in the system is updated such that lookups

for identifiers {6, · · · , 10} are forwarded to node 15. This requires that 10

stays in the system at least until 5 has updated its successor pointer and

until 10’s data is made available on 15.

To continue the example, node 15 might want to leave the system at

the same time as node 10. Due to the asynchrony in the system, it might

be that both 10 and 15 concurrently inform their respective predecessor

40 3.2. CONCURRENCY CONTROLv w x w v
Figure 3.2: Perfect system state before a leave operation.

about their departure and instruct their predecessors to point to their

successors. This might result in node 5 pointing to node 15 even though

both node 10 and 15 have left the system. Node 5 incorrectly points to 15,

and might incorrectly forward lookups to it, leading to a routing failure.

The apparent problems which occur due to joins and leaves can be

overcome by serializing joins and leaves.

3.2 Concurrency Control

As we mentioned earlier, the aim is to maintain a ring. In non-distributed

data structures, the approach often taken is to lock the whole data struc-

ture when adding and removing elements from it. Hence, the list is

guarded against becoming corrupt due to concurrent modifications. This

approach can naı̈vely be applied to our distributed ring. However, the

performance overhead of locking all the nodes becomes large as the size

of the ring grows.

Another approach to avoid inconsistencies due to concurrent modi-

fications of the ring is to acquire three locks, one for the predecessor,

one for the successor, and one for the joining/leaving node. After ac-

quiring the locks, the pointers of the respective nodes can be updated

to allow a node join or leave the ring. Since a join or leave of a node q

only requires changes to the pointers of node q, q’s predecessor, and q’s

successor, attempting to lock those three nodes against concurrent mod-

ifications would solve concurrency related problems. There is, however,

a simpler approach to protect the nodes from concurrent modifications,

which is superior to the solution we just described.

Instead of locking the joining/leaving node, as well as its predecessor

and successor, we now describe a simpler approach which is reducible to

the well known problem of the dining philosophers [37], which we explain

later.

Assume every node i hosts a lock Li, which can only be acquired by at

CHAPTER 3. ATOMIC RING MAINTENANCE 41

most one node. A lock Li can be acquired by any node, including i itself.

We differentiate between a node hosting a lock, and a node holding a

lock. The former indicates that the node is responsible for managing the

lock, and has nothing to do with whether the lock is free or not. The latter

indicates that the node has acquired the lock, which is no longer free.

In our join and leave algorithms, the joining or leaving node n will

first acquire its own lock Ln, and thereafter its successor’s lock (Ln.succ).

Only once it has acquired both locks, it can update its own pointers, its

predecessor’s succ pointer, and its successor’s pred pointer. Thereafter it

will release both locks. This reduces the number of locks to two, with one

of them being a local lock, which can be acquired without the overhead

of sending or receiving any messages.

To ensure that this scheme withstands concurrent access, we need to

show that this scheme will have the desired safety and liveness properties.

A safety property expresses that something will not happen, while a live-

ness property shows that something must happen [79]. In practice, safety

properties are used to show that the algorithm never exhibits bad behav-

ior by showing that some undesirable property never happens. Liveness

properties are used to show that something good will eventually happen

by showing that some desired property must always be true.

We motivate the types of proofs that we provide for the atomic ring

maintenance. If the ring was not concurrently modified and traversed,

we would be dealing with a data structure which would resemble local

linked lists, which can be fully locked and accessed atomically. Such local

data structures are commonplace in computing engineering, and a proof

of their correctness is not our concern. Instead, we focus on showing that

the concurrency related aspects of the algorithms are correct.

3.2.1 Safety

The safety property we want is that a joining or leaving node j will be able

to update its own pointers, as well as its predecessor’s and successor’s,

without risking the predecessor or successor leaving the system before

the join or leave has completed. Furthermore, the pointers to be updated

should not be altered as a consequence of other joins or leaves happening

before j has finished updating them.

In the following we will say that the pointers in the system are correct

if every node’s successor pointer correctly points to its successor, and

42 3.2. CONCURRENCY CONTROL

every node’s predecessor pointer correctly points to its predecessor in the

ring.

Next, we prove the safety property that when a joining/leaving node

j successfully acquires the necessary locks, it will have mutually exclu-

sive access to the pointers it wants to alter, and the nodes hosting those

pointers will remain in the system until j finishes its operation.

Theorem 3.2.1 (Non-interference). Assume a system, of at least two nodes,

with correct pointers. If a node j successfully acquires the locks Lj and Lj.succ,

then j’s successor q (j.succ) and predecessor p (j.pred if j is leaving, and j.succ.pred

if j is joining) cannot leave the system until the locks are released. Furthermore,

no other join or leave operation will affect the pointers p.succ, j.pred, j.succ, and

q.pred as long as j holds the locks.

Proof. We refer to j’s successor (j.succ) as q. We refer to j’s predecessor as p,

which is q.pred if j is about to join, and j.pred if j is about to leave. Assume

on the contrary that j’s predecessor p is leaving. That would imply that p has

acquired the locks Lp and Lp.succ, where p.succ is either j or q depending on

whether j is leaving or joining. Either way, it contradicts the fact that node j

holds Lj and Lq. Similarly, assume that q is leaving the system, then q must

have acquired the locks Lq and Lq.succ, contradicting that j holds the lock Lq. For

the remaining part of the proof, there are two ways in which the pointers p.succ

and q.pred can be altered. Either a node with j as successor tries to join, or a

node with q as successor tries to join. Both cases are impossible as the locks Lj

and Lq are held by the node j, and hence cannot be acquired by any other node.

Node j’s succ and pred pointers can be altered if j gets a new predecessor or a

new successor. Both cases are impossible as a new predecessor would have to

acquire Lj, and a new successor would have to acquire Lj.succ, both of which are

already held by j.

The above theorem assumes that the system size is at least two. If a

node is joining, the above theorem would even hold if the system size was

1. That would imply that the joining node j has acquired its own lock, Lj,

as well as the lock of the remaining node q in the system. The theorem

would be trivially true for that case as there are no other nodes that can

interfere with the join operation, and q would not be able to leave as Lq

would be held by node j while it is joining.

If the system size is 2 and j is leaving, j’s successor and predecessor are

the same node. The theorem will still hold, as j will acquire its own lock,

CHAPTER 3. ATOMIC RING MAINTENANCE 43

as well as its successors, and then complete its leave operation without

any interference from any other node.

In summary, two special cases remain. If the system size is 1 and the

single node wants to leave, it will not be able to acquire locks from itself

and its successor, which is itself. Hence, we will detect that situation and

let the node gracefully leave without any synchronization. We also need

a similar special case if the joining node is the only node in the system.

The Dining Philosophers We have shown that a node will have mutu-

ally exclusive access to the pointers it needs by acquiring only two locks.

By reducing the number of locks necessary by a joining/leaving node

to two, certain aspects of our problem become reducible to the famous

problem of the dining philosophers.

We briefly explain the original dining philosophers’ problem. Five

philosophers sit around a round table, on top of which a bowl of spaghetti

is situated. There is a form between any two neighboring philosophers,

making it a total of five forks. Philosophers spend their time thinking

and eating. To eat, a philosopher must be able to grab both her left and

right fork. It thereafter leaves both forks and thinks for a while before

repeating this pattern.

Our problem is similar to the problem just explained. The forks repre-

sent the locks. A joining or a leaving node represents a philosopher that

wants to eat. By reducing our problem to the dining philosophers’ prob-

lem, we can use many of the solutions previously provided to this prob-

lem. For example, the philosophers might end up in a deadlock, where

each has picked up its right fork, and is waiting for its left fork. But since

each fork is held by a different philosopher, we have a deadlock in which

none of the philosophers can proceed to acquire a second fork.

We now define more precisely what we mean by a deadlock, so that

we later can refine our algorithm to avoid deadlocks. Showing that an

algorithm is deadlock-free is a safety property. Informally, a deadlock

is associated with a “frozen” state where nothing whatsoever is being

computed. In our case, we say that an algorithm can deadlock if an

execution of the algorithm can reach a state in which one or more nodes

are attempting to join or leave by acquiring the relevant locks, but they

are each in standstill waiting for some lock that will never be released.

Hence our aim is to show the safety property that a deadlock can never

44 3.2. CONCURRENCY CONTROL

occur.

Coffman et al. identified four necessary conditions for a deadlock to

occur [29]:

1. Mutual Exclusion. The nodes claim exclusive control of the resources

they require.

2. Wait for. Tasks hold resources already allocated to them while wait-

ing for additional resources.

3. No preemption. Resources cannot be forcibly removed from the tasks

holding them until the resources are used to completion.

4. Cyclic Wait. A cyclic chain of tasks exists, such that each task holds

one or more resources that are being requested by the next task in

the chain.

Recall that if property X is a necessary condition for Y to happen,

then if Y happens then property X must be true. Hence, the four neces-

sary conditions for a deadlock imply that if a deadlock occurs, all four

conditions must be true. Therefore, if one can show that any of the con-

ditions never occurs for some algorithm, one has proved that a deadlock

will never occur.

The tasks are in our case the nodes, and the resources that they want to

access are the locks (or alternatively the pointers guarded by the locks).

If we can show that any of them will never be true, there cannot be a

deadlock. The mutual exclusion property is always true about the locks,

as is the wait-for condition, as a node which has acquired one lock will

be waiting to acquire the second. We can, however, design our algorithm

to ensure that the remaining conditions are never true.

Without careful consideration, the cyclic wait condition can occur if,

for instance, all nodes in the system want to leave. They would each ac-

quire their own lock, and then wait to acquire the lock of their successor,

which would never be released. If preemption is not possible, the system

would deadlock.

One known solution to the dining philosopher’s problem is to intro-

duce asymmetry. We propose such a solution to avoid cyclic wait, which

we call asymmetric locking. Let z be the node with the highest identifier. A

node k can locally determine if it has the highest identifier if k > k.succ. If

CHAPTER 3. ATOMIC RING MAINTENANCE 45

node z attempts to leave the system, it should first attempt to acquire its

successor’s lock Lz.succ, and thereafter its own lock Lz. In any other case,

where some node j wants to join or leave, it will first acquire its own lock

Lj, and then thereafter acquire its successor’s lock Lj.succ.

So far we have assumed that the pointers in the system are correct

and that a node indeed manages to acquire its own lock and current

successor’s. This need not be the case. If a node ever tries to acquire

a lock that is not free, the node will wait until it becomes free and then

acquires it. The node which is waiting for a lock Li will be notified by

node i when the lock is free. This requires that node i queues requests to

the lock it hosts in a lock queue, and notifies and removes one node in the

queue each time Li is released. Two additional operations are needed to

ensure that nodes can properly acquire their successor’s lock.

A leaving node’s lock queue should be transferred to its successor. We

first describe a naı̈ve algorithm to achieve this, and later refine it. When

a leaving node i has acquired all the relevant locks, it transfers its lock

queue to its successor j, which will enqueue the lock queue of i onto its

current lock queue. Hence, the elements in the lock queue of j maintain

the same position in the queue after i leaves, while an element at position

k in the lock queue of i gets position k + l, where l is the number of

elements in j’s lock queue before the merger of the lock queues. Hence,

if some node i is waiting for its successor’s lock Li.succ to become free, it

will be notified even if its successors leave the system.

A joining node might need to take over parts of its successor’s lock

queue. When a joining node i has acquired all the relevant locks, its

successor i.succ transfers its lock queue to i. Node i will then remove

from its lock queue every node that has i.succ as its successor. Similarly,

node i.succ will remove from its lock queue every node that has i as its

successor. More precisely, only nodes in the range (i.succ, i] from i.succ’s

lock queue are stored in i’s lock queue, while only nodes in the range

(i, i.succ] from i.succ’s lock queue are stored in i.succ’s lock queue. Hence,

if a node p is waiting for its successor’s lock Lp.succ and meanwhile gets a

new successor q, it will be notified by the new successor q when the lock

becomes free.

The above explained scheme will ensure that there will never be a

cyclic wait.

Theorem 3.2.2. The join and leave algorithms with asymmetric locking will

46 3.2. CONCURRENCY CONTROL

never deadlock.

Proof. We will show that the cyclic wait condition will never occur. Assume by

contradiction that such a cyclic wait exists. A joining node’s lock cannot be part

of the cycle. The reason for this is that if a lock is part of a cyclic wait, some node

must hold that lock and some other node must be waiting to acquire the same

lock. However, a joining node j will only be part of the system after it finishes

joining, and only thereafter some other node might attempt to acquire its lock Lj

and form a cyclic wait.

Since a leaving node will only attempt to acquire its own lock and its succes-

sor’s, the cycle must follow the successor pointers. Hence, a cycle implies that

there does not exist any node with a free lock.

Any cyclic wait consists of a cycle of at least two nodes, one of which is the

node z with the highest identifier. Node z’s lock is either held by z’s predecessor

y, or by z itself. If y holds Lz, node y must have already acquired Ly by the

sequence of asymmetric locking, which implies that y has all the locks it needs.

On the other hand, if Lz is held by node z, then z must have already acquired

Lz.succ by the sequence of asymmetric locking, in which case z has all the locks it

needs. In either case, one of the nodes has all the locks it needs to proceed, and

cannot be part of a cyclic wait, which contradicts that all nodes are part of the

cyclic wait.

3.2.2 Liveness

For liveness, there are several desirable properties. One desirable prop-

erty is that the algorithm is free of livelocks. Informally, a livelock is a

state in which none of the nodes can make progress toward their goal,

while still taking steps. We say that an algorithm can livelock if it is pos-

sible that in an execution of the algorithm none of the nodes that want

to join or leave can acquire the relevant locks. Freedom from livelock is

a stronger requirement than freedom from deadlock. For example, every

node in the system might attempt to leave by successfully acquiring its

first lock. Thereafter, every node unsuccessfully attempts to acquire its

successor’s lock. After noticing that the successor’s lock is not free, it

might release its own lock and restart the whole procedure. If the nodes

keep repeating this pattern forever, there is a livelock, but no deadlock.

We will not show that our algorithm is free of livelocks, as locks are

never released prematurely as in the above scenario. Hence, livelocks

CHAPTER 3. ATOMIC RING MAINTENANCE 47

never occur.

A liveness property that is desirable for our algorithm is that it is free

from starvation. Informally, starvation is when some node cannot make

any progress. An algorithm suffers from starvation if it is possible in

an execution of the algorithm that some node wants to join or leave, but

is never able to acquire the relevant locks. Freedom from starvation is

stronger than livelock-freedom, as some node might always be making

progress, and hence be livelock free, even though a single node is not

making any progress ever. In essence, livelock freedom ensures that some

node is always doing progress, while starvation freedom ensures that

every node makes progress.

There exist many solutions to the dining philosophers’ problem that

are starvation free. However, our problem is slightly different from the

problem of the dining philosophers, as nodes are joining and leaving.

Hence, the number of locks and philosophers is constantly changing. The

joining and leaving of nodes can make nodes starve, as we show next.

The problem with the current algorithm is that when nodes leave,

their lock queue is merged with their successor’s lock queue. If some

node is leaving, and its successor’s lock queue is non-empty, the nodes

in the lock queue of the leaving node will have a worse position after

the lock queue of the leaving node is merged with the successor’s lock

queue. It is therefore conceivable that under conditions of continuous

leaves and joins, some node j attempts to acquire a lock and ends up in

a lock queue, which gets merged over and over with the successor’s lock

queue, resulting in node j never acquiring the desired lock.

We will therefore slightly modify our algorithm to ensure starvation

freedom. We modify asymmetric locking to ensure that whenever a node

attempts to acquire its own lock to leave, no other requests can be en-

queued in its lock queue. This is realized by a forwarding mechanism as

follows. As soon as a leaving node i attempts to acquire its own lock Li,

it will ensure that all further requests to its lock Li are forwarded to its

successor i.succ. This forwarding of requests makes sense as a leaving

node i’s request to acquire Li indicates that i is about to leave, and re-

quests enqueued after such a request should anyway be handled by i’s

successor after i has left the system.

We have now arrived at the full algorithm for asymmetric locking, as

can be seen by Algorithms 2 and 3. Algorithm 2 mainly uses RPC nota-

tion, while the parts related to the forwarding mechanism (Algorithm 3)

48 3.2. CONCURRENCY CONTROL

use event notation. The reason for the use of event notation is that it

simplifies describing the forwarding mechanism.

The algorithm uses the variable LockQueue, which represents a FIFO

queue. The Enqueue(m) procedure enqueues a request by node m in the

lock queue. The Dequeue() procedure simply removes the first element

from the lock queue.

We now prove that asymmetric locking with the forwarding mecha-

nism is starvation free. For that we need to introduce some simple nota-

tion.

Recall that a leaving node has to acquire its own lock and its succes-

sor’s lock. Similarly, a joining node has to acquire its own lock and its

successor’s lock. Therefore, a lock queue can contain four types of re-

quests: a request by a leaving node i to acquire its own lock Li, a request

by a leaving node i to acquire the lock of its successor, a request by a

joining node i to acquire its own lock Li, and a request by a joining node

i to acquire the lock of its successor.

The lock queue and the four types of requests appearing in it are mod-

eled as follows. The lock queue of a node i is represented by a sequence

subscripted by the node identifier. The sequence 〈〉i represents an empty

lock queue at node i, which indicates that lock Li is free. The elements of

the sequence are one of the symbols {j, js, l, ls}. The left-most element

in the sequence is the first element in the lock queue, which represents

the request currently holding the lock. The right-most element is the last

element in the lock queue.

The symbols have the following meaning:

• The symbol j indicates a request by a joining node to acquire its

own lock.

• The symbol js indicates a request by a joining node to acquire its

successor’s lock.

• The symbol l indicates a request by a leaving node to acquire its

own lock.

• The symbol ls indicates a request by a leaving node to acquire its

successor’s lock.

For example, the sequence 〈js, js, ls, l〉5 represents the lock queue at

node 5. The first two items (js’s) in the lock queue represent requests by

CHAPTER 3. ATOMIC RING MAINTENANCE 49

Algorithm 2 Asymmetric locking with forwarding

1: procedure n.Join(succ) ⊲ Join the ring with succ as successor

2: Leaving :=false ⊲ Initialize variable

3: LockQueue.Enqueue(n) ⊲ Enqueue request to local lock

4: slock :=GetSuccLock()

5: pred := succ.pred

6: pred.succ := n

7: succ.pred := n

8: LockQueue := succ.LockQueue ⊲ Copy successor’s queue

9: LockQueue.Filter((pred, n]) ⊲ Keep requests in the range

10: succ.LockQueue.Filter((n, pred]) ⊲ Keep requests in the range

11: LockQueue.Dequeue() ⊲ Remove local request

12: ReleaseLock(slock)

13: end procedure

14: procedure n.Leave() ⊲ Leave the ring

15: if n > succ then ⊲ Asymmetric Locking

16: slock :=GetSuccLock()

17: Leaving := true ⊲ Enable forwarding

18: LockQueue.Enqueue(n) ⊲ Enqueue request to local lock

19: else

20: Leaving := true ⊲ Enable forwarding

21: LockQueue.Enqueue(n) ⊲ Enqueue request to local lock

22: slock :=GetSuccLock()

23: end if

24: pred.succ := succ

25: succ.pred := pred

26: LockQueue.Dequeue() ⊲ Remove local requst

27: ReleaseLock(slock)

28: end procedure

29: procedure n.GetSuccLock()

30: sendto succ.AcqLock(n)

31: receive LockGranted() from m

32: return m ⊲ Return identity of lock host

33: end procedure

34: procedure n.ReleaseLock(dest)

35: sendto dest.FreeLock()

36: end procedure

50 3.2. CONCURRENCY CONTROL

Algorithm 3 Asymmetric locking with forwarding continued

1: event n.AcqLock(src) from m

2: if leaving = true then

3: sendto succ.AcqLock(src)

4: else

5: LockQueue.Enqueue(src) ⊲ Enqueue src’s request last

6: end if

7: end event

8: event when New top element m in LockQueue at n

9: sendto m.LockGranted()

10: end event

11: event n.FreeLock() from m

12: LockQueue.Dequeue() ⊲ Remove top element

13: end event

some joining nodes to acquire their successor’s lock L5. The third item

in the lock queue (ls) is a request by the predecessor of 5, which wants

to acquire L5 in order to leave. The last item in the lock queue (l) is a

request by node 5 to acquire L5 to leave the system.

With the four symbols we can represent the lock queue at any given

node at any time. We shall prove that any element in the lock queue will

eventually reach the front of the lock queue, and hence every request to

acquire a lock will eventually be granted.

Lemma 3.2.3. If the symbol l occurs in a sequence, it must be the last element.

Proof. Assume the symbol l occurs in the sequence of node i. The symbol l

indicates that node i is attempting to leave, and has thus requested to acquire

its own lock Li. As shown by the AcqLock event in Algorithm 2 line 3, any

further requests to the lock queue of node i will be redirected to the successor

of node i, hence no other requests can be enqueued after enqueueing l in the

sequence representing the lock queue of node i. Furthermore, there can only be

one l in any sequence, as a node cannot request to leave while it already has a

pending leave request. Therefore l must be the last element of the sequence.

CHAPTER 3. ATOMIC RING MAINTENANCE 51

Theorem 3.2.4. Asymmetric locking with forwarding (Algorithm 2 and 3) is

starvation free.

Proof. Notice that a joining node can always trivially acquire its own lock,

since its lock queue is empty. So if the symbol j occurs in the sequence of node

i, it must be the only symbol in the sequence, since node i is not yet part of the

system and i is yet unknown to other nodes. Furthermore, notice that any symbol

in a sequence can only improve (move toward the top element) or maintain its

position in the queue. It remains to show that any symbol in a sequence will

always improve its position in the queue.

We will show that any symbol occurring in any lock queue will eventually

reach the top position in the queue. Assume some symbol s ∈ {js, l, ls} occurs

in the sequence of some node n. If s is the top element of the sequence we are

done; the s request currently holds the lock. Assume s is not the top element of the

sequence. According to Lemma 3.2.3 the l symbol can only be in the last position

of a sequence and hence the symbol l cannot occur on the left side of symbol s.

Hence, only symbols js and ls can occur on the left of symbol s in any sequence,

which implies that the symbol occurring in the top position is either js, or ls.

We inspect three cases separately.

Case 1; Assume n is the node with the highest identifier (n = z). Regardless

of whether the top element is js, or ls, it represents a request by some node m to

acquire the second and final lock. Hence, m has acquired both required locks and

will soon release both of them by calling Dequeue().

Case 2; Assume n is the successor of the node with the highest identifier

(n = z.succ). If the top element is js, the node making the request has acquired

both its locks and will eventually be dequeued from the sequence. If the top

element is a ls, it represents a request made by node z. That implies that z has

acquired its first lock, and z will request Lz, which by case 1 will eventually be

granted, after which z has both required locks implying that ls will eventually

be dequeued from the sequence.

Case 3; Assume n is any other node other than z and z.succ. This case is the

same as case 1.

All three cases show that the top element will repeatedly be dequeued, until

the top element becomes s, which completes the proof that any request to a lock

will eventually be granted.

52 3.2. CONCURRENCY CONTROL

Drawbacks with Asymmetric Locking There are some performance

drawbacks with the proposed asymmetric locking scheme. If neighboring

nodes on the ring all try to leave at the same time, it might in the worst

case happen that they can only make progress sequentially, one-by-one.

Assume a system consisting of 10 nodes with the identifiers 5, 6, · · · , 14.

As indicated by Figure 3.3, nodes 5, 6, 7, 8, 9, might all attempt to leave

the the same time. Each of the nodes i successfully acquires its own lock

Li. Thereafter, nodes 5 through 8 attempt to take the lock hosted by their

successor, but as the lock is currently held by the hosting node, their re-

quest is forwarded until it ends up in the lock queue of node 10. Only

node 9 will succeed in acquiring L10, and then successfully leave. There-

after, node 8, which is now placed on node 10’s lock queue, can acquire

L10 and then leave. This continues sequentially in this manner, until fi-

nally node 5 acquires L10 and leaves the system. The above situation can

be generalized to n neighboring nodes leaving, in which it will take time

linearly proportional to n before all of them are done leaving. In addition,

if any node wants to join, and its successor is one of the leaving nodes,

the joining node has to wait as well.

y z { | } ~ �
� � � � � � � � � � � �� � � � � � � � �

Figure 3.3: Consecutive leaves leading to sequential progress. Nodes 5

through 9 are attempting to leave, each has acquired its own lock, and

is waiting for its successor’s lock. Only node 9 can make progress by

acquiring L10, thereafter node 8 makes progress, etcetera.

To circumvent the above situation, we provide another solution which

is inspired by the third Coffman condition: preemption of nodes that

hold a lock. Since the join/leave algorithms only modify pointers after

they have acquired two locks, a node which manages to get one lock, but

fails to get a second lock, could release the first lock and retry.

CHAPTER 3. ATOMIC RING MAINTENANCE 53

Our randomized locking algorithm works as follows. Every joining/leav-

ing node j first attempts to acquire its own lock Lj, and thereafter its suc-

cessor’s lock, Lj.succ. If a node cannot acquire some lock because the lock

is not free, the node releases all the locks it holds and retries to acquire

the locks again after waiting a random time.

Aside from the performance reasons previously mentioned, this solu-

tion is simpler as it is stateless, and hence simplifies fault-tolerance. For

example, if some node fails, all the nodes in its lock queue will be waiting

indefinitely for it.

We first state a simple fact, and then show that the algorithm is star-

vation free.

Theorem 3.2.5. The randomized locking algorithm is free from deadlocks.

Proof. The third Coffman condition, preemption of locks, is never satisfied.

Therefore, the necessary conditions for a deadlock are never satisfied.

Hence, the randomized locking algorithm ensures that every held lock

is eventually released, either because a node has acquired both necessary

locks and will release both locks after updating the relevant pointers, or

because the node holding the lock was not able to acquire both necessary

locks and will therefore release any acquired locks to try again later.

Next, we show that the algorithm is free from starvation assuming

some finite bound on the total number of joins and leaves. The assump-

tion is justified because there can only be a finite number of nodes that

can contend for the lock at any given point in time.

Theorem 3.2.6. The randomized locking algorithm is free from starvation.

Proof. Assume the maximum number of nodes that can contend for a lock at

any given instant is k. Theorem 3.2.5 showed that the lock is always freed, in

which case all the nodes race to acquire it. One of them will always succeed. We

assume that all nodes contending for a lock have equal probability of succeeding.

This is motivated by the random wait in the algorithm.

The probability that a fixed node j is never able to fetch its first lock and starve

is:

Pr[j starves] = lim
n→∞

(

1 − 1

k1

) (

1 − 1

k2

)

· · ·
(

1 − 1

kn

)

Where ki is the number of contending nodes time i, hence ki ≤ k. Therefore,

54 3.3. LOOKUP CONSISTENCY

Pr[j starves] ≤ lim
n→∞

(

1 − 1

k

)n

= 0

The above argument shows that every node will eventually get its first lock.

The argument can be extended to the second lock as well, as a node that acquired

its first lock will contend for the second lock. Even if it is not able to get the

second lock, it will be able to eventually acquire its first lock, and again contend

for its second lock. Hence, a node keeps contending for its second lock, and will

eventually acquire it by the same argument as above.

3.3 Lookup Consistency

The previous section primarily dealt with concurrency control. It showed

how concurrent join and leaves could be coordinated to avoid two neigh-

boring nodes in the ring joining and/or leaving at the same time. So far,

we have not dealt with the traversal of these pointers, i.e. lookups. While

joins and leaves are happening, we would like to make lookups to find

the successor of certain identifier.

Correct lookups in the presence of dynamism is not only important

for applications using the overlay, it is crucial to make joins work prop-

erly. In the algorithms described in the previous section we assumed that

a joining node knows its successor. For this assumption to be valid, a

joining node needs to acquire a reference to its successor, which it does

by making a lookup.

Correctness of lookups will depend on the lookup algorithm, as well

as the join and the leave algorithms. So far, we have only explained

how a node successfully acquires locks to avoid conflicting updates to

pointers. We have to, however, ensure that potential lookups are correct

when the succ and pred pointers are being updated during join and leave

operations. Next, we show how a joining or leaving node should update

the relevant pointers when it has acquired the necessary locks. Since we

assume the relevant locks are acquired, the succ and pred pointers can

be updated without the interference of any other joins or leaves (see the

Non-interference Theorem (3.2.1)).

CHAPTER 3. ATOMIC RING MAINTENANCE 55

3.3.1 Lookup Consistency in the Presence of Joins

In Section 3.2 we showed how a node acquires the relevant locks. In this

section we describe how a joining node, which has acquired both relevant

locks, updates its own, as well as its successor’s and predecessor’s succ

and pred pointers. We refer to the joining node as q, its predecessor as p,

and its successor as r.

Algorithm 4 assumes that some joining node has acquired both rele-

vant locks, and therefore has a correct succ pointer. We also assume that

its pred pointer is set to nil. The time-space diagram shown by Figure 3.4

depicts the same algorithm fully. Time-space diagrams normally only

show one out of many possible executions. However, Algorithm 4 has

no alternative executions, or interleavings and therefore the time-space

diagram contains all information about the algorithm.

As seen by Figure 3.4, the joining node q sends an UpdatePred mes-

sage to its successor r. The successor r, upon receipt of UpdatePred,

sets a special boolean variable called JoinForward to true, updates its

pred pointer to point to the joining node q, and sends a JoinPoint mes-

sage to the joining node. The receipt of the UpdatePred message con-

stitutes a join point, which represents that responsibility of the identifiers

in the range (p, q] are instantaneously transferred from r to q. The rest

of the algorithm is straight forward, as the joining node updates both its

pointers, sends an UpdateSucc message to its predecessor p, which then

sends a StopForwarding message to its successor r and updates its suc-

cessor pointer to point to the newly joined node. Node r sets its special

JoinForward variable to false upon receipt of StopForwarding, and ter-

minates the algorithm by sending Finish to the joining node. The joining

node knows the pointers have been updated correctly when it receives

Finish, and can safely release any held locks.

Any node in the system might do a lookup while nodes are joining.

During a join, however, node p’s successor pointer might point to either

node r or node q. We would like it to point to r before the join point,

and to q after the join point. The former case is ensured automatically

assuming p’s successor pointer was correctly pointing to r before the join

operation. The latter case, however, is not necessarily satisfied. We how-

ever circumvent the problem by letting r forward requests coming from p

(r.oldpred) to node q while r’s variable JoinForward is true. The FIFO re-

quirement for channels ensures that messages from p pass through node

56 3.3. LOOKUP CONSISTENCY

Algorithm 4 Pointer updates during joins

1: event n.UpdateJoin() from n ⊲ Assuming succ is correct

2: sendto succ.UpdatePred()

3: end event

4: event n.UpdatePred() from m

5: JoinForward :=true ⊲ Forwarding Enabled

6: sendto m.JoinPoint(pred) ⊲ Join Point

7: oldpred := pred

8: pred := m

9: end event

10: event n.JoinPoint(p) from m

11: pred := p

12: succ := m

13: sendto pred.UpdateSucc()

14: end event

15: event n.UpdateSucc() from m

16: sendto succ.StopForwarding()

17: succ := m

18: end event

19: event n.StopForwarding() from m

20: JoinForward :=false ⊲ Forwarding Disabled

21: sendto pred.Finish()

22: end event

CHAPTER 3. ATOMIC RING MAINTENANCE 57

� � � � � � � � � � � � � � � �� � � � � � � � � � � �� � � � � �

� � � � � � � � � � � � � � � � � � �
¡ ¢ £ £ ¤ � � � � � � ¤ � �¡ ¢ £ £ ¤ � �¥ ¦ § ¨ © ª § ¨ © « ¬ ® ¯ ° ± ²

¥ ³ ° ´ « ¯ µ ¶ · · ¬ ¸ ¶ · · ± ¹ ²
º » ¼ ½ ¾ º » ¼ ½ ¿ ÀÁ Â Ã Ä Ã Ä Å Æ Ç È É Ê Ë

Ì Í Î Ï Ð Ñ Ï Ò Ó Ô Ò Õ Ö × Ø Ù
Ú Û Ü Ý Ü Þ ß à

Ì á Ð Õ Ô Î â ã Ò â Õ ä Ð Ò â Õ å æ Ù

Figure 3.4: Time-space diagram showing how a joining node should up-

date the relevant succ and pred pointers. Node q should have acquired

the relevant locks before initiating the algorithm, and it should release

the locks when the algorithm finishes.

q after the join point.

3.3.2 Lookup Consistency in the Presence of Leaves

In this section we describe how a leaving node, which has acquired both

relevant locks, updates its successor’s and predecessor’s pred and succ

pointers, respectively. We refer to the leaving node as q, its predecessor

as p, and its successor as r.

Algorithm 5 assumes that some leaving node has acquired both rele-

vant locks. The time-space diagram shown by Figure 3.5 depicts the same

algorithm fully.

58 3.3. LOOKUP CONSISTENCY

As seen by Figure 3.5, the leaving node q starts by setting its boolean

LeaveForward variable to true and sends a LeavePoint message to its suc-

cessor r. This constitutes a leave point, which represents that responsibility

of the identifiers in the range (p, q] are instantaneously transferred from

q to r. The rest of the algorithm is straightforward, as node r updates its

predecessor pointer to point to p and informs p to update its successor

pointer to point to r. Thereafter, node p sends a StopForwarding mes-

sage to q. Node q sets its special LeaveForward variable to false upon

receipt of StopForwarding.

The leaving node knows the pointers have been updated correctly

when it receives StopForwarding, and can safely release any held locks

and leave the system.

Algorithm 5 Pointer updates during leaves

1: event n.UpdateLeave() from n

2: LeaveForward := true ⊲ Forwarding Enabled

3: sendto succ.LeavePoint(pred)

4: end event

5: event n.LeavePoint(p) from m

6: pred := p

7: sendto pred.UpdateSucc()

8: end event

9: event n.UpdateSucc() from m

10: sendto succ.StopForwarding()

11: succ := m

12: end event

13: event n.StopForwarding() from m

14: LeaveForward :=false ⊲ Forwarding Disabled

15: end event

As with the join case, any node in the system might do a lookup while

nodes are leaving. During a leave, however, node p’s successor pointer

might point to either node r or node q. We would like it to point to q

before the leave point, and to r after the leave point. The former case

is ensured automatically assuming p’s successor pointer was correctly

CHAPTER 3. ATOMIC RING MAINTENANCE 59

ç è é ê ë ì ç
í î ï ï ë ì è

ð é ñ ò é ó ô è õ ñ è ê ì ö ÷ ø ù

ð é ñ ò é ó ô è õ ñ è ê ì ú û ü ý ù
þ ÿ � � � � � � � � � � 	 � � �
 � �

 � � � � � � � � � � � � � � � � � � � � �

! " # $ % & $ ' () ' * + , - .

! / 0) 1 0 2 $ + , # 3 % ' 0 * 4 % .

Figure 3.5: Time-space diagram showing how a leaving node should up-

date the succ and pred pointers. Node q should have acquired the relevant

locks before initiating the algorithm, and it should release the locks when

the algorithm finishes.

pointing to r before the leave operation. The latter case, however, is not

necessarily satisfied. We however circumvent the problem by letting q for-

ward requests coming from p to node r while q’s variable LeaveForward

is true. The FIFO requirement for channels ensures that messages from p

pass through node r after the leave point.

3.3.3 Data Management in Distributed Hash Tables

So far, we have only mentioned that identifier responsibility moves from

one node to another as nodes join and leave. As we previously men-

tioned, the concept of identifier responsibility can be used to build a dis-

tributed hash table (DHT) abstraction. In such a case, a node might be

locally storing data items, whose keys are in the range of the node’s iden-

tifier responsibility. As identifier responsibility changes, so do the items

that a node should be storing.

60 3.3. LOOKUP CONSISTENCY

We first present naı̈ve solution. As a node’s responsibility is changed

by the sending of a JoinPoint or LeavePoint, items in the changed

ranged can be piggy-backed with the message, ensuring that data items

are always present at the right place.

As the size of the data items grow, it might be infeasible to piggy-

back all necessary items in one message. Nevertheless, what is impor-

tant is that data responsibility is always consistently defined, which we

will show is the case with our algorithms. Another protocol could be

used, which lazily, or eagerly fetches items according to the data respon-

sibility. For example, as data responsibility shifts with the sending of a

LeavePoint message, the successor of the leaving node could buffer all

requests to the identifiers in the changed range, while the leaving node

transfers the items over to its successor. Whenever the successor of the

leaving node has received all items of the leaving node, it can begin to

process the buffered queries. A similar scheme can be used for joins.

3.3.4 Lookups With Joins and Leaves

The previous sections paved the way for the lookup algorithm, which we

now fully define.

Algorithm 6 shows a transitive lookup, which goes from node to node

until it arrives at the successor of the identifier, in which case it returns

directly to the source of the request. The algorithm is initiated by sending

a Lookup(id, src) message to any node, where id is the identifier whose

successor is to be found, and src is the source node to receive the response.

The algorithm first checks if the JoinForward variable is true, in which

case it ensures that messages from its predecessor’s predecessor (the

oldpred variable) are redirected to its predecessor. A similar check is

made if the variable LeaveForward is true, in which case the node knows

it is leaving, and hence forwards the message to its successor. Note that

JoinForward and LeaveForward cannot both be true, as that would in-

dicate that the current node is leaving while its predecessor is joining,

which contradicts the locking mechanism described in Section 3.2.

If both JoinForward and LeaveForward are false, the algorithm first

checks to see if pred is nil. This can happen if a joining node initiates

a lookup before reaching its join point, in which case it forwards the

query to its successor. Otherwise, if the destination identifier is in its own

responsibility, it responds with an answer. In any other case, it forwards

CHAPTER 3. ATOMIC RING MAINTENANCE 61

the message along the ring to its successor.

Algorithm 6 Lookup algorithm

1: event n.Lookup(id, src) from m

2: if JoinForward = true and m = oldpred then

3: sendto pred.Lookup(id, src) ⊲ Redirect Message

4: else if LeaveForward = true then

5: sendto succ.Lookup(id, src) ⊲ Redirect Message

6: else if pred 6= nil and id ∈ (pred, n] then

7: sendto src.LookupDone(n)

8: else

9: sendto succ.Lookup(id, src)

10: end if

11: end event

Proving Correctness of Lookup Consistency Our consistency require-

ment will be that at any given time, every identifier will be under the

responsibility of exactly one node.

More formally, we say that the configuration of the system at any given

discretized time, is the nodes in the system and their succ, pred pointers

as well as their variables JoinForward, LeaveForward, and oldpred.

We now construct a function, which given a configuration, mimics the

lookup operation of the system. For any given configuration of the system

δ, we define a function called lookupδ that takes two identifiers k and i,

where k is some arbitrary destination identifier and i is the identifier of a

node in δ, and returns the identifier of some node in δ. We do not provide

the function, but it looks almost identical to Algorithm 6, except that the

message passing is replaced with recursive calls.

Our consistency requirement can therefore be defined as:

if lookupδ(k, i) = p and lookupδ(k, j) = q, then p = q

The above requirement ensures that if the system state is frozen at any

given instant, lookups for any identifier will return the same responsible

node regardless of the node at which the lookup is initiated.

Theorem 3.3.1. The lookup algorithm satisfies the consistency requirement.

62 3.3. LOOKUP CONSISTENCY

Proof. We first proceed by induction on joins. The hypothesis is that the consis-

tency requirement is true for a configuration.

First, notice that the first node ever is handled as a special case, where the

joining node j sets j.succ = j and j.pred = j, making it responsible for all

lookups. Hence, the hypothesis is trivially true for the base case.

Assume the hypothesis is true for some configuration δ. Then we show that it

will be true for all configurations which result from the steps of the join algorithm.

Assume node q is joining, with predecessor p and successor r. Before q joins,

r.pred is pointing to p, making lookupδ(k, r) = r for all keys k in (p, r], and by

the hypothesis lookupδ(k, i) = r for all nodes i in δ.

In the first step of q’s join, q.succ is set to r and q.pred is set to nil. This

implies that lookups are unaffected, as any lookup from q will be forwarded to r,

and lookups do not terminate at q since q.pred is set to nil.

The second step is the join point when r receives UpdatePred, sets r.pred

to point to q, and enables join forwarding. From thereon, lookups for identifiers

(p, q] will return q regardless of where they are initiated. If initiated by r, they

are forwarded to q since join forwarding is on. If initiated by q, they will be

forwarded to r which redirects it to q, which by the FIFO assumption has set

q.pred to p, and hence will return itself as responsible. If they are initiated

anywhere else, they will by the induction hypothesis end up at node r, which

forwards them to node q, which returns itself as responsible. The next step, the

receipt of UpdateSucc by p, does not affect the results of lookups, but merely

incorporates q into the chain of successors. It remains to show that the step where

r turns of join forwarding does not affect lookups. By the FIFO assumption, the

receipt of StopForwarding ensures that q.succ = r, q.pred = p, p.succ = q,

r.pred = q, i.e. q is properly incorporated into the ring, therefore forwarding is

no longer necessary.

The existence of configurations where the hypothesis is true due to join has

been shown. We now show change our hypothesis to be that the consistency

requirement is true for δ or δ contains no nodes. Assume the hypothesis is true

for δ, we then show that if q (with predecessor p and successor r) leaves, it

hypothesis will be true for all intermediary configurations. If q is the last node,

then the hypothesis is trivially true. Otherwise, by the hypothesis, all lookups for

(p, q] terminate at q with q as responsible. In the first step, leave forwarding is

enabled by q. Hence, any lookups terminating in δ at node q, will be forwarded

to node r which will, by the FIFO assumption, have r.pred = p. Therefore, any

queries previously returning q as responsible will return r as responsible. Second

step makes r.pred = p, ensuring lookups to identifiers in (p, q] reaching r are

CHAPTER 3. ATOMIC RING MAINTENANCE 63

terminated with r as responsible. Note that the second step causally succeeds the

first step, ensuring that requests to q are forwarded to r. The third step ensures

that p.succ = r, r.pred = p, and leave forwarding is enabled, hence there are no

pointers to q in the configuration. Finally, q safely disables leave forwarding, as

no more lookups could arrive to q as of the third step.

This completes the proof that the consistency requirement is always satisfied.

3.4 Optimized Atomic Ring Maintenance

In this section we combine the randomized locking algorithm, and the

lookup consistency algorithm, with all required special cases for system

sizes less than three and describe the algorithms.

It is possible to combine the asymmetric or randomized locking scheme

with the pointer update algorithm (Algorithms 4 and 5) to arrive at a full

algorithm. The algorithm can, however, be optimized to consume less

messages. This can be realized by a close look at the asymmetric locking

algorithm (Algorithm 2). A joining or leaving node has to acquire its suc-

cessor’s lock, which requires two messages. Only thereafter it can update

the successor’s pred pointer, a step which also requires two messages.

This section optimizes these two steps such that a successful request to

acquire the successor’s lock will have the side effect that the successor

correctly updates its pred pointer.

General Algorithm Description The lock at each node is represented

by the variable lock, which takes two possible values {free,taken}, ini-

tially set to free. Similarly, each node uses two boolean variables called

JoinForward and LeaveForward, which are initially set to false.

Each node also keeps a variable called status, which is only used to

facilitate the understanding of the algorithm. The status variable changes

values according to the state machine shown in Figure 3.6. The state

called inside indicates that the node is not leaving nor joining, nor is its

predecessor leaving. The rest of the states are explained, below, in the

informal descriptions of the algorithms.

64 3.4. OPTIMIZED ATOMIC RING MAINTENANCE

inside

leavereq

appl. leave

predleavereq

<LeaveReq><RetryLeave>

leaving

<GrantLeave>

predleaving

<LeavePoint>

<LeaveDone>

joinreq <RetryJoin>

joining

<JoinPoint>

<JoinDone>

Figure 3.6: State transition diagram showing how a nodes status can

change for the optimized randomized algorithm. Events indicate received

messages, while the states indicate the status of the node.

3.4.1 The Join Algorithm

We now informally describe the join algorithm, which is given by Algo-

rithms 7 and 8. Throughout the example, we will assume that a node q is

joining between a node r and its predecessor p.

Initially, a joining node starts with lock set to taken and status set to

joinreq, indicating that it has acquired the local lock and it is waiting to

join. An exception is made if the node is the only node in the system, in

which case it initializes its pointers, sets its lock to free, and sets status to

the state inside. The next step for the joining node with id q is to send a

JoinReq message to the current successor of identifier q. This is trivially

done by following the successor pointers until a node r is found where q

CHAPTER 3. ATOMIC RING MAINTENANCE 65

is an identifier which is under the responsibility of r (q ∈ (r.pred, r]). We

are currently not really concerned with the efficiency or the algorithmic

details of finding q’s successor, but we shall return to this issue later in

Chapter 4.

The successor r of a joining node q will either grant q’s request or asks

q to retry joining later. The latter case occurs when r’s lock is taken, in

which case r sends q a RetryJoin message, which results in q waiting a

random amount of time before retrying. This scheme can be optimized

by letting the successor preempt the retry when its lock becomes free.

If node r grants q’s join request, r will immediately set its boolean

variable JoinForward to true and change the state of its lock to taken,

indicating that it is locked because its predecessor is joining. It will also

save its pred pointer in a temporary oldpred variable, and change its pred

pointer to point to the joining node q. Thereafter r will send q a Join-

Point message, which constitutes the join point, where the identifiers in

the range (r.oldpred, q] are instantaneously transferred to the new node

q. Node q updates its successor and predecessor variable whenever it

receives the JoinPoint from its successor, and updates its status vari-

able from joinreq to joining, indicating that the join point has occurred.

Hence, both the nodes involved in the move of the join point can deter-

mine from their variables if their join point has occurred.

Finally, after receiving the JoinPoint message, the new node q will

ask the predecessor to update its succ pointer. This is achieved by sending

a NewSucc message to the predecessor, which responds by updating its

succ variable to q and sends a NewSuccAck to its old successor r (p.succ),

which will free its lock and set its status to inside. Thereafter, r sends a

JoinDone message to the new node, which finally frees its lock.

As previously described, a node with JoinForward = true will redirect

messages received from oldpred to the new node (pred) to ensure that

lookups relevant to the new node always end up at the new node after the

join point. Hence, lookup consistency is always guaranteed (see lookup

consistency in Section 3.3.4).

A successful execution of a join operation is shown by the time-space

diagram shown in Figure 3.7.

66 3.4. OPTIMIZED ATOMIC RING MAINTENANCE

Algorithm 7 Optimized atomic join algorithm

1: event n.Join(e) from app

2: if e = nil then

3: lock := free

4: pred := n

5: succ := n

6: else

7: lock := taken

8: pred := nil

9: succ := nil

10: status := joinreq

11: sendto e.JoinReq(n)

12: end if

13: end event

14: event n.JoinReq(d) from m

15: if JoinForward and m = oldpred then

16: sendto pred.JoinReq(d) ⊲ Join Forwarding

17: else if LeaveForward then

18: sendto succ.JoinReq(d) ⊲ Leave Forwarding

19: else if pred 6= nil and d ∈ (n, pred] then

20: sendto succ.JoinReq(d)

21: else

22: if lock 6= free or pred = nil then

23: sendto m.RetryJoin()

24: else

25: JoinForward := true

26: lock := taken

27: sendto m.JoinPoint(pred)

28: oldpred := pred

29: pred := m

30: end if

31: end if

32: end event

CHAPTER 3. ATOMIC RING MAINTENANCE 67

Algorithm 8 Optimized atomic join algorithm continued

1: event n.JoinPoint(p) from m

2: status :=joining

3: pred := p

4: succ := m

5: sendto pred.NewSucc()

6: end event

7: event n.NewSucc() from m

8: sendto succ.NewSuccAck(m)

9: succ := m

10: end event

11: event n.NewSuccAck(q) from m

12: lock := free

13: JoinForward := false

14: sendto q.JoinDone()

15: end event

16: event n.JoinDone() from m

17: lock := free

18: status := inside

19: end event

68 3.4. OPTIMIZED ATOMIC RING MAINTENANCE

5 6 7 8 9 : 6 8 ; < ; 9 8 = 8 = 7 8 = > 6 ?@ A B C DE F G C H IJ A K I L A M N G M O DE F M P HA @ O Q M H O E Q M H OQ M H O DE R
@ A B C DE S M H HJ A K I L A M N G M O DE S G @ T H

5 < 7 U 8 ; < ; 9 8 ?

T P B B DE R

T F G F P T DE V A K I M H R@ A B C DE F G C H I
T F G F P T DE V A K I K I WQ M H O DE QT P B B DE M
T F G F P T DE K I T K O H@ A B C DE S M H H

X Y Z [\] Z [\ ^ _̀ a b c d ` eX f b g h i j j e
k l m n o p q r s t uv w x y x y z { p q r s |

} ~ � � � � � � � � � �
� � � � � � � � � �

} � � � � � � � �

Figure 3.7: Time-space diagram of the successful join of a node.

3.4.2 The Leave Algorithm

We now informally describe the leave algorithm, which is given by Algo-

rithms 9 and 10. Throughout the example, we will assume that a node q

is leaving with predecessor p and successor r.

The leaving node q can only initiate a leave request when its lock is

free. If it is not, it will wait and retry later. When its lock is free, it

initiates the leave operation. If the node is the last node in the system,

it will detect that, since its its pred and succ pointers will be pointing at

itself, in which case it can leave unnoticed. If it is not the last node, it

starts by sending a LeaveReq to its successor r.

The successor, node r, will only accept a leave request if its lock is free.

If it is not, it will send a RetryLeave message, which results in q freeing

its look and waiting a random amount of time before retrying again. If r

accepts the request, it sets its lock to taken and it changes its status from

CHAPTER 3. ATOMIC RING MAINTENANCE 69

inside to predleavereq and sends a GrantLeave message to the leaving

node q.

Upon receiving the GrantLeave message, the leaving node sets its

variable LeaveForward to true, changes its status to leaving, and trans-

fers responsibility of all identifiers in (q.pred, q] to its successor r. We will

call this the leave point. This is done by sending a LeavePoint message to

the successor r, which reacts by changing its status from predleavereq to

predleaving and setting its pred pointer to the leaving node’s predeces-

sor, p.

After the leave point, r asks its new predecessor to update its succ

pointer to point to r by sending a UpdateSucc message to p. Node p,

reacts by sending UpdateSuccAck to its current successor q, and there-

after updating its succ pointer to point to r. The leaving node q knows by

the receipt of UpdateSuccAck that its predecessor its no longer going to

forward any queries to it, and can therefore send a LeaveDone message

to its successor r and leave the system.

Finally, node r receives LeaveDone, frees its lock, and changes its

status to inside, to allow new join or leaves, either from itself, its prede-

cessor, or from new nodes.

As with joins, misdirected messages are redirected. In particular, any

messages received will be redirected to the successor of the leaving node

to ensure lookup consistency (see lookup consistency in Section 3.3.4).

A successful execution of a leave operation is shown by the time-space

diagram shown in Figure 3.8.

3.5 Dealing With Failures

Our purpose is to build a system which functions in an asynchronous

network, such as the Internet. It is therefore natural to aim at providing

lookup consistency in the presence of crash failures and network parti-

tions.

Unfortunately, we will show that it is impossible to implement a sys-

tem which provides lookup consistency in an asynchronous network with

network partitions. The result is related to what is known as Brewer’s Con-

jecture [19], which states that it is impossible for a web service to provide

the following three guarantees:

• Consistency

70 3.5. DEALING WITH FAILURES

Algorithm 9 Optimized atomic leave algorithm

1: event n.Leave() from app

2: if lock 6= free then ⊲ Application should try again later

3: else if succ = pred and succ = n then

⊲ Last node, can quit

4: else

5: status := leavereq

6: lock := true

7: sendto succ.LeaveReq()

8: end if

9: end event

10: event n.LeaveReq() from m

11: if lock = free then

12: lock := taken

13: sendto m.GrantLeave()

14: state :=predleavereq

15: else if lock 6= free then

16: sendto m.RetryLeave()

17: end if

18: end event

19: event n.RetryLeave() from m

20: status := inside

21: lock := free ⊲ Retry leaving later

22: end event

23: event n.GrantLeave() from m

24: LeaveForward := true

25: status := leaving

26: sendto m.LeavePoint(pred)

27: end event

CHAPTER 3. ATOMIC RING MAINTENANCE 71

Algorithm 10 Optimized atomic leave algorithm continued

1: event n.LeavePoint(q) from m

2: status :=predleaving

3: pred := q

4: sendto pred.UpdateSucc()

5: end event

6: event n.UpdateSucc() from m

7: sendto succ.UpdateSuccAck()

8: succ := m

9: end event

10: event n.UpdateSuccAck() from m

11: sendto succ.LeaveDone() ⊲ Leave the system

12: end event

13: event n.LeaveDone() from m

14: lock := free

15: status := inside

16: end event

72 3.5. DEALING WITH FAILURES

� � � � � � � � � � � � ¡ ¢£ ¤ ¥ ¤ ¦ £ §� ¨ � � © � � ¥ ª � � � «� � � � §� ¤ ¥ � � ¬ ® ¯ ° ® ± ® ² ± ³ ¯ ® ´ µ ¶ · ¸ ¹
£ ¤ ¥ ¤ ¦ £ §� ¨ � � © � � ¥ ª º ¬ »¨ � � © §� ¨
£ ¤ ¥ ¤ ¦ £ §� º ¬ £ º © �� � � � §� � � � �

 ´ · ³ ° ² ´ ² ¼ ° ¹

£ ¦ � � §� �

 ½ ® ² ± ³ ¼ · ² ¶ ¯ ¯ ¾ ¿ À ¶ ° Á ± ® ®¶Á Â ° ¼ ¿ ¿ Ã Ä ± ® Å Ã Æ Ç ² È ® ·Æ ¶ ° ¯ ´ ° ² · ¾ Å ® É Æ ¼ ¶ ² Ê ¹£ ¤ ¥ ¤ ¦ £ §� � � ¥ ª � � � «� � � � §� ¤ ¥ � � ¬
Ë � ¥ ª � Ì � � Í ¥ � © §� ¤ � ¦ �£ ¤ ¥ ¤ ¦ £ §� � � ¥ ª º ¬ »

 Î ® ´ ° ® ² ¾ ® Ï ¶ ° ² ¹

Ð Ñ Ò Ó Ô Õ Ö × Ó Ø × Ù
Ð Ú Û Ü Ó Õ × Ý Þ ß ß Ù

à á â ã ä à á â ã å æ ç è é ê ë ì í î ï ð ñ ò ó
ô õ ö ÷ ø ö ù ö ú û

ô üý þ ÷ ÿ ö � � � � � � � û ô õ ö ÷ ø ö � � � ö û

ô õ ö ÷ ø ö � � 	 � ÿ
 ý � ö þ � ý û

Figure 3.8: Time-space diagram of the successful leave of a node.

• Availability

• Partition-tolerance

The conjecture has been formalized and proven by Gilbert and Lynch

[52]. We will take consistency to be lookup consistency as we defined

in Section 3.3.4. We next describe the term availability and partition-

tolerance.

By availability, it is meant that every request received by a non-failed

node must eventually result in a response. This requirement is quite

weak, as it does not require a response within any time bounds, but

CHAPTER 3. ATOMIC RING MAINTENANCE 73

rather requires that a response comes back at some point in time. Hence,

it is a natural termination requirement for any distributed service.

Partition tolerance1, means that the nodes in the system can become

partitioned into different components, in which nodes in different com-

ponents cannot communicate.

We now give the impossibility result, which even allows for inconsis-

tent lookups while the network is partitioned. The proof makes certain

assumptions about lookups, because it is trivial to create a system which

guarantees lookup consistency by always returning 0 as the result of any

lookup. More precisely, we assume that a lookup returns the identity of

one of the nodes that is in the same partition as the initiator of the lookup,

and that the identity of all nodes is unique. The Chord lookup function,

which returns the successor of the identifier satisfies this requirement,

given that the responsible node is in the same network component as the

lookup initiator.

Theorem 3.5.1. It is impossible in the asynchronous network model to provide a

ring-based structured overlay network that guarantees the following properties:

• Lookup consistency in every network component

• Availability

• Partition tolerance

Proof. The proof proceeds by contradiction. Assume there exists a system which

guarantees availability, partition tolerance, and provides lookup consistency in

every network component.

Assume a configuration C of a correct ring consisting of the nodes 0, 1, 2, 3,

4, 5. Assume the network partitions the nodes into the following two components

A = {2, 3, 4} and B = {0, 1, 5}.

The system still needs to provide availability. Hence, a lookup for identifier x

in component A needs to return an identifier i ∈ A. Therefore, some operations

OA will take place on the nodes in A which adapt the pointers in A, such that

the lookup returns an identifier i ∈ A. Similarly, a lookup for identifier x in

component B needs to return an identifier i ∈ B. Therefore, some operations

OB will take place on the nodes in B which adapt the pointers in B, such that

1Gilbert and Lynch model a partition as a network which is allowed to lose arbitrarily

many messages sent from one node to another. Hence, a network partition means that

messages from the nodes in one component to another are dropped.

74 3.5. DEALING WITH FAILURES

the lookup returns an identifier i ∈ B. We refer to the resulting configuration

after all operations OA and OB as D. We now construct an execution starting

in C, in which no partition takes place, where all the operations OA take place

first, and thereafter all the operations OB take place. The asynchrony in the

network permits delaying all messages between the two components long after

the operations OA and OB are finished, making it appear as if there is a network

partition. This execution is indistinguishable from the one in which the network

partitioned. Hence, the system will end up in configuration D. Configuration D

gives inconsistent lookups, as lookups for x initiated by a node in A will result

in a different answer than lookups for x initiated by a node in B. More precisely,

lookupD(x, i) 6= lookupD(x, j) for i ∈ A and j ∈ B. Since there only exists one

network component, this contradicts the existence of a system which gives the

assumed guarantees.

Note that the impossibility result shows that lookup consistency is

not possible in an asynchronous network which partitions. But perhaps

lookup consistency is possible in an asynchronous network with failures,

but without partitions. We do not know the answer to this. But the

following observation makes us pessimistic.

We use failure detectors to detect and recover from failures. Neverthe-

less, any algorithm which attempts to detect failures in an asynchronous

network risks inaccurately suspecting the failure of a correct, albeit slow,

node [26]. The reason for this is that if this was not the case, the failure

detector could be used to solve the consensus problem in an asynchronous

network with failures, which is known to be impossible to solve [46].

Hence, our system may very well behave as follows. Assume a correct

ring consisting of the nodes 0, 1, 2, 3, 4, and 5. At some point, node

2 inaccurately suspects that its predecessor 1 has failed, and node 4 in-

accurately suspects that its successor 5 has failed. Similarly, node 1 in-

accurately suspects its successor 2 has failed, and node 5 inaccurately

suspects its predecessor 4 has failed. The system has partitioned into two

parts, one containing {0, 1, 5}, and one containing {2, 3, 4}. Hence, our

system will end up in the counter example used by the proof of the im-

possibility result. Note, that the mimicking of a network partition when

using inaccurate failure detectors can occur in other topologies than the

ring topology. Assume that such mimicking can be long lasting, and as-

sume that availability requires a response before the ostensible partition

recovers. Then a direct consequence of the theorem is that it is impossi-

CHAPTER 3. ATOMIC RING MAINTENANCE 75

ble to build a system which always guarantees lookup consistency and

availability with inaccurate failure detectors.

As consequence of this, our goal will be to not provide eventual lookup

consistency in the presence of failures. Thus, we cannot guarantee lookup

consistency when failures are detected, but as the network eventually

becomes quiescent, we provide lookup consistency.

3.5.1 Periodic Stabilization and Successor-lists

In this subsection we show how the atomic ring maintenance for joins and

leaves is modified to handle failures. This work relies on much work pre-

viously done by the authors of Chord. For a thorough reference, please

refer to the Chord technical report [135].

The goal of periodic stabilization is to ensure that the pointers always

eventually form a correct ring. However, the algorithms we have de-

scribed make use of locking to guarantee lookup consistency. The atomic

ring maintenance algorithms can therefore block if a node fails. Hence,

we propose small modifications to the algorithms. Our goal will be to

ensure that every lock in the system is eventually released. Periodic sta-

bilization will take care of the rest, by ensuring that a correct ring is

eventually formed. Hence, the system will eventually form a correct ring

and all locks will eventually be released.

Next, we shortly describe the Chord protocols for periodic stabiliza-

tion and the maintenance of successor-lists, and thereafter show our mod-

ifications.

Periodic stabilization, as we described in Section 2.3.4, has two pur-

poses: incorporate new nodes into the ring and remove failed nodes from

the ring. It, however, does that by relying on successor-lists, as we de-

scribed in Section 2.3.4. But the successor-lists themselves may be incor-

rect due to joins and leaves, making the actions of periodic stabilization

erroneous. For example, if a node p detects that its successor has crashed,

it replaces it with the first alive entry q in its successor-list. Since the

successor-list might be out of date, some node other than q might be the

true successor of q. Hence, stabilization is done periodically to ensure

that the ring is eventually correct.

The periodic stabilization protocol achieves its goals by striving to

ensure that p.succ.pred = p for any node p. This is done by two mecha-

nisms: the FixSucc mechanism and the FixPred mechanism.

76 3.5. DEALING WITH FAILURES

Informally, the FixSucc mechanism periodically moves the successor

pointer of a node to the closest alive node in clockwise direction. This

is partly achieved by the conditional of the Stabilize procedure in Algo-

rithm 1, which updates the succ pointer at p if it finds that the successor’s

pred pointer points to a closer node than p’s current succ pointer.

Informally, the FixPred mechanism periodically moves the predeces-

sor pointer of a node to the closest alive node in anti-clockwise direction.

This is partly achieved in the conditional of the Notify procedure in Al-

gorithm 1, which updates the pred pointer at q if it finds that a node

whose succ pointer is pointing at q is closer than q’s current pred pointer.

Algorithm 1 does not suffice to achieve a correct ring in presence of

leaves and failures, because the listed algorithms only ensure that a node

points to the closest node, not to the closest alive node as required. For ex-

ample, assume a system with correct pointers where node 10’s successor

is node 20, whose successor is node 30. If node 20 leaves the system or

fails, the Stabilize procedure at node 10 will fail to contact its successor

to change its succ pointer to 30. This is therefore remedied as follows. If

a node detects that its successor is no longer present, it replaces it with

the first alive entry, f , in its successor-list. Even if f is not the correct

successor of that node, the FixSucc mechanism will update succ such that

it eventually points to the closest successor.

The above amendment will not ensure that the pred pointer always

points to the closest alive predecessor. For example, assume a system with

correct pointers where node 10’s successor is node 20, whose successor

is node 30. Assume node 20 leaves the system or fails, and the FixSucc

mechanism correctly updates 10’s succ pointer to 30. Next time node 10

invokes the Notify procedure at node 30, the conditional will fail and

node 30’s pred pointer will continue to point at node 20. This is remedied

by setting the pred pointer to nil if it is detected that the predecessor is

no longer present. The conditional in the Notify procedure is changed

such that the pred pointer is always updated if it has value nil.

The successor-list at each node is maintained periodically as well. Ev-

ery node periodically makes sure that its successor-list gets updated by

copying its successor’s successor-list, prepending the successor in the be-

ginning of the successor-list, and truncating the list to a fixed size.

The above described FixSucc and FixPred mechanisms, as well as the

maintenance of the successor-lists, are listed by Algorithm 11.

In the Chord technical report [135], it is shown that periodic stabi-

CHAPTER 3. ATOMIC RING MAINTENANCE 77

Algorithm 11 Periodic stabilization with failures

1: procedure n.CheckPredecessor(p) ⊲ Locally called periodically

2: if IsAlive(pred) = false then

3: pred := nil

4: end if

5: end procedure

6: procedure n.Stabilize() ⊲ Locally called periodically

7: try

8: p := succ.GetPredecessor()

9: if p 6=nil and p ∈ (n, succ] then

10: succ := p

11: end if

12: slist := succ.GetSuccList()

13: succlist := succ + slist ⊲ Prepend succ to slist

14: succlist := trunc(succlist, k) ⊲ Right-truncate to fixed size k

15: succ.Notify(n)

16: end try catch(RemoteException)

17: succ := getFirstAliveNode(succlist) ⊲ Get closest alive node

18: end catch

19: end procedure

20: procedure n.GetPredecessor()

21: return pred

22: end procedure

23: procedure n.GetSuccList()

24: return succlist

25: end procedure

26: procedure n.Notify(p)

27: if pred = nil or p ∈ (pred, n] then

28: pred := p

29: end if

30: end procedure

78 3.5. DEALING WITH FAILURES

lization ensures that any interleaved sequence of joins and leaves will

eventually result in a ring where p.succ.pred = p. For self-sufficiency, we

include some of those theorems.

Theorem 3.5.2 (from [135]). If any sequence of join operations is executed

interleaved with stabilizations, then at some time after the last join the succ

pointers will form a cycle on all the nodes in the network.

The above theorem can be extended to pred pointers as well.

Corollary 3.5.3. If any sequence of join operations is executed interleaved with

stabilizations, then at some time after the last join the pred pointers will form a

cycle on all the nodes in the network.

Proof. By Theorem 3.5.2 the succ pointers will form a cycle on all the nodes in

the network. The Notify procedure just maintains the invariant that if a node

p correctly points at its successor q, then q’s pred pointer will point back at p.

Hence, the pred pointers will also form a cycle on all nodes in the network.

The size of the successor-list is usually set to be log2(n), where n is the

number of nodes in the system. Since, n is not globally known, it is either

estimated or sometimes set to be the maximum number of nodes that

could exist at any given time (n = 232 for every IP address). The reason

for this is that it is proven that even if nodes would fail with probability

0.5, every node would still have some alive node in its successor-list. This

result is proven, to varying degree of rigor, elsewhere [135, 72]. Hence,

with an adequate size of successor-lists, the system remains connected in

the presence of failures.

Theorem 3.5.4 (from [135]). If we use a successor-list of length r = O(log N)

in a network where every successor-list is correct, and then every node fails with

probability 1/2, then with high probability a lookup returns the closest living

successor to the query key.

We note that it is theoretically possible to construct a loopy ring, where

u.succ.pred = u for every node u, but where there exists a node v with

an identifier between u and u.succ (see Chapter 5). Periodic stabilization

cannot rectify such a ring. But since its not known how such a loopy ring

can occur, we ignore it in the rest of this chapter.

CHAPTER 3. ATOMIC RING MAINTENANCE 79

3.5.2 Modified Periodic Stabilization

Previous section showed that the periodic stabilization algorithm, with

the FixSucc and FixPred mechanisms, handles both joins and failures. But

the atomic ring maintenance already takes care of joins and leaves. There-

fore, a viable question is whether a simpler algorithm than periodic stabi-

lization, which only deals with failures, can be used in conjunction with

atomic ring maintenance. Nonetheless, any algorithm which attempts to

detect failures in an asynchronous network risks inaccurately suspecting

the failure of a correct, albeit slow, node. Hence, in addition to atomic

ring maintenance, the system needs to detect and recover from failures,

as well as incorporate nodes which have been inaccurately classified as

failed. Thus, we will use both the FixSucc and FixPred mechanisms of

periodic stabilization.

The atomic ring maintenance algorithms will block if a node fails

before the algorithm has terminated. The reason for this is that locks

acquired by failed nodes will never be released. We propose a simple

solution, which ensures that all locks eventually get released. Our first

assumption is that periodic stabilization is run whenever a node’s lock is

free. Similarly, a precondition for the n.Notify procedure is that node n’s

lock is free, otherwise it will not modify its pred pointer.

Before we describe how to deal with failures, we describe the philoso-

phy behind it. Rather than checking whether a predecessor or a successor

has failed, we use timers which when expired lead to the locks being re-

leased. In other words, locks are only leased for a certain amount of time.

The reason why we use leased locks is that it guarantees that the locks

are eventually released. There are several pitfalls in relying on detecting

the failure of a successor or predecessor, rather than using timeouts as

we propose. One reason is that a predecessor or successor might be alive,

even though it never sends the final message that releases the lock. The

reason for this could be a bug in the program. Moreover, it is not difficult

for an adversary to make a client which acquires a lock, which it never

releases.

Since we are using timeouts, it could always be that a timeout is pre-

mature, which results in several different join and leave operations getting

intertwined. For example, some node might preemptively release a lock it

is hosting because of a timeout. Thereafter, its lock might be acquired by

some other node. By that time, the node which in the first case acquired

80 3.5. DEALING WITH FAILURES

the lock might send, unaware of the preemptive release, some message

according to the algorithm, which affects the latter operation. Therefore

every node should always have as a precondition that the received mes-

sage is in accordance with its lock. For example, a NewSuccAck message

should always be ignored if the lock is free.

Furthermore, each joining and leaving node always attaches a random

number to their leave or join operation. We refer to this as the operation

number. This number is piggy-backed in all messages that have to do

with the join or leave operation. Whenever the lock hosted by a node

is acquired, the hosting node stores the operation number in a opnum

variable. Whenever a node receives a message while its lock is not free,

it ensures that opnum is equal to the operation number in the message,

otherwise the message is ignored.

The join algorithm is modified, such that the successor of a joining

node also piggy-backs its successor-list with the JoinPoint message, such

that the joining node can initiate its own successor-list.

Our goal is to ensure that a node whose lock is acquired, ensures that

its lock is eventually released. This is achieved by every node i starting

a timer as soon as the lock it is hosting, Li, is acquired. The timer is

turned off as soon as Li becomes free. If the timer expires, the node

simply changes the state of its lock to free, and sets JoinForward and

LeaveForward to false. If a joining node’s timer expires and succ = nil,

then it restarts the join procedure until it gets its successor pointer. If a

leaving node’s timer expires, it simply leaves the system unnoticed.

We believe that the above algorithm will ensure eventual lookup con-

sistency, which we motivate informally in the following. If no timeouts

occur, the system will be the one described without periodic stabilization,

and hence will provide lookup consistency. Hence, we turn to the case

were timeouts occur. Because of timeouts, every lock is eventually re-

leased and the JoinForward and LeaveForward variables are set to false.

This has two consequences. First, the node will start periodic stabiliza-

tion. Second, it will ignore any remnant messages from any interrupted

join or leave operation. If a timeout occurs, it either occurs at the succes-

sor of a joining or leaving node.

If a timeout occurs at the successor of a joining or leaving node, it will

set its lock to free, making it start periodic stabilization. If the predeces-

sor has indeed failed, periodic stabilization will recover from the crash

failure, and the relevant locks will eventually be released, in which case

CHAPTER 3. ATOMIC RING MAINTENANCE 81

we are back to a correct system state, with guarantees lookup consistency.

If the timeout is premature, and the predecessor is a leaving node, it will

eventually timeout and leave unnoticed, which makes this case identi-

cal to the one where the predecessor indeed has failed. If the timeout is

premature, and the predecessor is a joining node, periodic stabilization

will eventually correct the joining node’s succ pointer, provided that the

joining node has a successor-list, which we assume it has acquired at the

same time as it initially acquired its successor’s address. Thereafter, the

FixPred and FixSucc mechanisms will incorporate the new node into the

ring.

If a timeout occurs at a joining node there are two cases, depending

on if succ = nil. If the joining node has not set its succ pointer, which is

required for periodic stabilization, it will restart the join and eventually

get a correct successor. If succ 6= nil, all locks will eventually be released

and periodic stabilization will incorporate the new node into the ring,

since it has a succ pointer and a successor-list.

If a timeout occurs at a leaving node, it will leave, making it effectively

a failure. Eventually all locks will be released, and periodic stabilization

will rectify all pointers pointing at the absent node.

3.6 Related Work

Li, Misra, and Plaxton [89, 88, 87] independently discovered a similar ap-

proach as us. The advantage of their work is that they use assertional

reasoning to prove the safety of their algorithms, and hence have proofs

that are easier to verify. Consequently, their focus has mostly been on

the theoretical aspects of this problem. They assume a fault-free envi-

ronment, and do not use their algorithms to provide lookup consistency.

Furthermore, they cannot guarantee liveness, as their algorithm is not

starvation-free.

In the position paper by Lynch, Malkhi, and Ratajczak [95], it was

proposed for the first time to provide atomic access to data in a DHT.

They provide an algorithm in the appendix of the paper for achieving

this, but give no proof of its correctness. In the end of their paper they

indicate that work is in progress toward providing a full algorithm, which

can also deal with failures. One of the co-authors, however, has informed

us that they have not continued this work. Our work can be seen as a

82 3.6. RELATED WORK

continuation of theirs. Moreover, as Li et al. point out, Lynch et al.’s

algorithm does not work for both joins and leaves, and a message may be

sent to a process that has already left the network [89].

The problem of concurrently updating linked lists and other data

structures has been studied in the context of lock-free algorithms for shared-

memory multiprocessors [139, 63]. In this context a data structure resides

in the shared memory of a computer, but the individual processors strive

to correctly update the data structure concurrently without using locks,

while guaranteeing that some processor always makes progress in updat-

ing the structure. The context is, however, different, which has led us to

believe that these results are not directly applicable to our problems. First,

failures in such contexts imply that individual processors have failed,

while the memory storing the data structure is intact. This is not the case

in distributed systems, where the data structure is distributed over many

nodes, each holding part of the data structure in their local memory. Fur-

thermore, the mentioned research provides lock-free implementations of

singly-linked lists, while our data structure is a doubly-linked list. We

believe that this subtle difference significantly complicates the problem.

The dining philosophers’ problem has been widely studied as we pre-

viously mentioned. A widely adopted solution to the problem is to use

randomization as suggested by Lehmann and Rabin [82]. They propose

that each philosopher randomly choose whether to first pick right or left

fork. This solution can, however, lead to a deadlock when the system size

is small, which is the case at some point for every DHT. For example, if

there are two nodes in the system and both pick left fork first, there will

be a deadlock.

4 Routing and

Maintenance

I
n this chapter we show how the basic ring structure, presented in

the previous chapter, can be augmented with extra pointers to make

routing more efficient. We provide different lookup strategies and

give algorithms that work in concert with atomic ring maintenance. Fi-

nally, we provide algorithms that ensure that routing failures never occur

unless nodes crash.

The ring structure has poor performance in terms of worst case mes-

sage complexity and time complexity. The worst case time complexity

and message complexity are n for the ring structure, because in the worst

case all of the ring needs to be traversed, or if the search can go in both

clockwise and anti-clockwise direction, half of the nodes in the ring need

to be traversed. Our extension will make the worst case time and mes-

sage complexity logk(n), where k is a configurable constant, and n is the

number of nodes in the system. This will in turn require that nodes carry

additional routing tables of size (k − 1) logk(n). From now on we will

refer to k as the base of the system.

4.1 Additional Pointers as in Chord

We now describe a simple extension to the ring, which will give us time

and message complexity log2(n) for n nodes. This extension is taken

directly from the Chord system [136].

Each node maintains a pred pointer, a succ pointer, and a successor-

list. In fact, the succ pointer of node p is pointing to the first node met

going on the ring in clockwise direction starting at p ⊕ 1. Hence, the

succ pointer of p is pointing to the successor of the identifier p ⊕ 1. A

83

84 4.1. ADDITIONAL POINTERS AS IN CHORD

� � � � ��
���

� �� �� �� �
� � � �

Figure 4.1: Simple extension of the ring with log2(n) extra pointers. The

filled circles indicate a node. The figure shows node 15’s additional point-

ers.

simple extension is to let node p also point to the successor of p ⊕ 2, p ⊕
22, · · · , p ⊕ 2L−1, where L = log2(N), where N is the size of the identifier

space.

Figure 4.1 shows a system with an identifier space {0, 1, · · · , 24 − 1}
(L = 4) and nodes 0, 2, 10, 15. The figure shows node 15’s additional

pointers. Node 15 points to the successors of the identifiers 15 ⊕ 20 = 0,

15⊕ 21 = 1, 15⊕ 22 = 3, and 15⊕ 23 = 7. Note that several pointers might

have the same successor, e.g. node 10 is the successor of both identifier 3

and 7 in Figure 4.1.

A node therefore has a routing table of size log2(N), where N is the

size of the identifier space. However, since nodes are spread uniformly

across the ring, it can be shown that only log2(n) entries are unique,

where n is the number of nodes in the system. The number of unique

pointers is significant, as it denotes the number of routing neighbors that

need topology maintenance (discussed in Section 4.5).

CHAPTER 4. ROUTING AND MAINTENANCE 85

4.2 Lookup Strategies

Lookups on the ring can now make use of more pointers. Before describ-

ing the exact lookup algorithm, we describe three lookup strategies that

are applicable to every DHT:

• Recursive lookup

• Iterative lookup

• Transitive lookup

The first two lookup strategies are most common and can be traced

back to DNS [107] [34, pg 5] [121, pg 3]. We define what we mean by

each, and discuss their advantages and disadvantages.

We start by generalizing our description of a lookup, such that we can

give algorithms for each lookup strategy and for different DHT opera-

tions such as put and get. An initiating node1 starts a lookup to a partic-

ular destination identifier and some operation. The lookup algorithm will

then route to the node responsible for the destination identifier, where-

after the responsible node performs the operation and returns the result

of the operation back to the initiating node.

One particularly useful operation is to let the responsible node re-

turn its own contact information. In that case, the lookup simply returns

the responsible node for a given destination identifier. The initiator can

then implement basic DHT operations such as get, put, and delete, in

a two-step scheme. First, the initiator makes a lookup to find the node

responsible for a particular key. Thereafter, the initiator directly com-

municates with the responsible node to implement the desired operation.

This approach has, however, the disadvantage that between the two steps,

dynamism can affect the operation. For example, the responsible for the

key might change between the two steps, or the responsible node might

leave after the first step, making it necessary to restart the lookup. An-

other approach is to integrate the desired operation with the lookup. For

example, the lookup can be used to implement a DHT get operation,

where the responsible node returns the values associated with a key.

Every lookup algorithm can be defined in terms of two main abstrac-

tions: terminate(i) and next hop(i). The former is a boolean function

1We sometimes refer to the initiating node as the initiator.

86 4.2. LOOKUP STRATEGIES

�
� �

� � �
Figure 4.2: An illustration of recursive lookup. When a node receives a

request, it either has the answer and returns it, or it asks its next hop for

the answer and waits for a reply before responding to the requester.

that takes the destination identifier and returns true if the current node

has the result of the lookup and wants to terminate the lookup. Other-

wise the boolean function returns false. The next hop(i) function takes

the destination identifier and returns the next hop node in the routing

process. Most importantly, if terminate(i) is true, then next hop(i) re-

turns the address of the node responsible for i.

4.2.1 Recursive Lookup

When performing a recursive lookup, each node in the routing process

recursively asks the next hop node for the node responsible for the des-

tination identifier and returns whatever the next hop node returns. This

process is described by Algorithm 12 and illustrated by Figure 4.2.

The obvious disadvantage of this approach is that every node in the

path to the destination will be visited twice. Once as the query is being

forwarded, and once when the result is being passed back. Hence, the

probability of one of the nodes in the path leaving or failing increases,

compared to iterative or transitive lookup.

If recursive lookup is combined with other operations, it can have

performance drawbacks. For example, recursive lookup can be combined

CHAPTER 4. ROUTING AND MAINTENANCE 87

with a DHT get operation, such that it returns the value associated with

the identifier rather than returning the responsible node for the identifier.

In this case, the value of the get operation has to travel through every

node on the lookup path. In some applications, the values might be of

substantial size and will considerably increase the overall latency and

bandwidth consumption.

Algorithm 12 Recursive lookup algorithm

1: procedure n.lookup(i, op)

2: if terminate(i) then

3: p :=next hop(i)

4: res := p.op(i) ⊲ op could carry parameters

5: return res

6: else

7: m :=next hop(i)

8: return m.lookup(i, op)

9: end if

10: end procedure

There are, however, several advantages with recursive lookup com-

pared to the other lookup strategies. The advantages have to do with

the fact that nodes only communicate with the neighbors in their routing

tables. Hence, nodes can use connection-oriented communication, such

as TCP/IP, to maintain a connection with every routing neighbor. Hence,

the lookup will be passed through connections which have been estab-

lished in advance. This can reduce the latency of a lookup, as the cost

of connection establishment is avoided. The cost of connection establish-

ment includes detecting and rectifying the situation when a connection to

another node cannot be established due to outdated references, firewalls,

or NATs. Furthermore, sometimes a connection cannot be established to

another node due to non-transitivity in the network, whereby a node p

can establish a connection with q, and q can establish a connection with

r, but node p cannot directly establish a connection with node r [48].2

In contrast to iterative lookup, the perhaps most important advantage

of recursive lookup is that the system can employ proximity neighbor

2On the Internet, this phenomenon could be caused because one of the routers on

the route between p and r is malfunctioning.

88 4.2. LOOKUP STRATEGIES

selection (see Chapter 1), where each node chooses to establish connec-

tions to nodes that it has low latency to, or it keeps only such nodes in its

routing tables. Consequently, recursive lookup yields a low stretch value.

Reliable Recursive Lookup

It is more difficult to provide reliability for recursive lookups compared

to iterative lookups. The difficulty lies in how to detect and recover from

failures. A central question is whether every node on the lookup path

should do failure detection or if that should only be done by the initiator.

In the former case, every node on the lookup path does failure detec-

tion on its next hop node. If it detects a failure, it removes that node from

its routing table, and issues a new lookup, the result of which it returns

to the caller. This requires that nodes remember pending lookups, such

that they can reissue them.

It is important to not rely on timers which expire if the lookup re-

sponse does not come back on time. The reason for this is that it is

difficult to determine the right timeout value. Given a recursive lookup

that goes through the nodes x1, · · · , xn, the time it takes for xi to receive

a response is strictly higher than the time it takes for xi+1 to receive a

response. Hence, each node on the lookup path needs to set a higher

timeout value than its next hop node. Furthermore, a single node fail-

ure can cause a timeout on multiple nodes involved in the same lookup.

These problems can be avoided by using failure detectors that use timers

on heartbeat messages. Hence, no timing assumptions are made on the

time it takes to receive a lookup response.

The inaccuracy of failure detectors can result in a node erroneously

suspecting a failure and reissuing a lookup. It is therefore possible that

multiple lookups are issued, leading to multiple responses. Hence, the

initiator needs to filter redundant responses. The initiator does that by

associating a unique identifier with every lookup request, and putting it

in a pending set. The initiator removes the identifier of a lookup from its

pending set whenever it receives a response for it. The initiator simply

ignores any responses for identifiers that are not present in its pending

set. Hence, redundant messages are filtered.

The other approach to reliable recursive lookups is to only let the ini-

tiator use a timer, which expires if too much time has passed without

receiving a lookup response. If the timer expires, the initiator reissues

CHAPTER 4. ROUTING AND MAINTENANCE 89

�� � ! "
Figure 4.3: An illustration of iterative lookup. The initiator directly con-

tacts every node on the path of the query until it receives the answer.

the lookup. The initiator might receive redundant lookup responses due

to premature timeouts. Redundant lookup responses can be filtered using

the same method as described above. One disadvantage of this approach

is that it is difficult to estimate the expire time for the timer, as it depends

on many variables, such as the system size. Nevertheless, this approach

follows the end-to-end argument [125], which is how reliability is imple-

mented on the Internet.

4.2.2 Iterative Lookup

With iterative lookup, the initiator contacts the first hop in the lookup

path and receives back the address of the second hop node. Thereafter it

contacts the second hop node and asks it for the third hop node, and so

on, until it finds the node responsible for the destination identifier. This

process is described by Algorithm 13 and illustrated by Figure 4.3.

The advantages and disadvantages of iterative routing are comple-

mentary to those of recursive routing. In contrast to recursive rout-

ing, nodes not only communicate with nodes in their routing table, but

with many other nodes as well. There are several drawbacks to this, in-

cluding problems related to establishing a connection or non-transitivity.

Furthermore, proximity neighbor selection becomes pointless, because

node p might not have a low latency to node r even though node p has

low latency to q and q has low latency to r. It is, however, possible to

90 4.2. LOOKUP STRATEGIES

Algorithm 13 Iterative lookup algorithm

1: procedure n.lookup(i, op)

2: m := n

3: while not m.terminate(i) do

4: m := m.next hop(i)

5: end while

6: p := m.next hop(i)

7: return p.op(i)

8: end procedure

achieve some proximity awareness by using synthetic coordinates (see

Section 1.2.2), which enables node p to approximate its latency to any

node r.

One advantage of iterative routing is that the initiator can make paral-

lel lookups, using multiple paths to the node responsible for the destina-

tion identifier. This is done in Kademlia [101] and EpiChord [83]. Hence,

the initiator may be connected to several first hop nodes, and from them

receive a list of candidate second hop nodes, from which it chooses a sub-

set to communicate to, and so on. This way, the initiator can ensure that

there is only a constant number of nodes involved in any parallel lookup.

This approach has two advantages. First, only the nodes that first re-

spond are chosen, which improves the latency. Second, it is resilient to

individual node failures. Parallel lookups are generally not possible with

the two other lookup strategies. We show, however, how it can be done

in conjunction with replication (see Chapter 6).

Reliable Iterative Lookup

It is straightforward to implement reliable lookup with iterative routing.

Since the initiator is involved in every step of the lookup, it can use a fail-

ure detector in every step of the algorithm. If a node fails, the initiator can

reissue a lookup to another node. Note that the failure detector can use a

timer on the expected lookup response. Unlike the failure detector used

for recursive lookup, it is not necessary to use a heartbeat mechanism in

the implementation of the failure detector. Redundant messages, which

are generated due to the inaccuracy of failure detectors, can be avoided

using the same technique as we described for implementing reliable re-

CHAPTER 4. ROUTING AND MAINTENANCE 91

#
$

% &
'

Figure 4.4: An illustration of transitive lookup. Every node delegates the

responsibility of finding the responsible node to its next hop node. The

node that knows the answer directly responds back to the initiator.

cursive lookup (see Section 4.2.1).

4.2.3 Transitive Lookup

Transitive lookup is similar to recursive lookup, but rather than passing

back the result along the same path as the lookup, the result is directly

sent back from the node terminating the lookup to the initiating node.

This process is described by Algorithm 14, which partly contains event-

based communication. Figure 4.4 illustrates a transitive lookup.

Transitive lookup is a hybrid of recursive and iterative lookup. It

shares the advantage of recursive routing that nodes only communicate

with nodes they are pointing to. An exception is the last step, in which

the responsible node returns to the initiating node. This last step can

suffer from all the problems we mentioned with iterative lookup. For

example, NATs, firewalls, or non-transitivity in the network, can make

communication with the initiating node impossible.

Aside from potential problems with the last routing step, transitive

lookup benefits if proximity neighbor selection is used. Furthermore,

transitive lookup avoids the latency and potential failures which recur-

sive lookup suffers from when passing the result back along the lookup

path. If transitive lookup is combined with a DHT get operation, it will

92 4.2. LOOKUP STRATEGIES

Algorithm 14 Transitive lookup algorithm

1: procedure n.lookup(i, op)

2: sendto n.lookup aux(n, i, op)

3: receive lookup res(r) from q

4: return r

5: end procedure

6: event n.lookup aux(q, i, op) from m

7: if terminate(i) then

8: p := next hop(i)

9: sendto p.lookup fin(q, i, op)

10: else

11: p :=next hop(i)

12: sendto p.lookup aux(q, i, op)

13: end if

14: end event

15: event n.lookup fin(q, i, op) from m

16: r := op(i)

17: sendto q.lookup res(r)

18: end event

CHAPTER 4. ROUTING AND MAINTENANCE 93

avoid the overhead of passing the return value through every node on the

lookup path.

Reliable Transitive Lookup

Reliable transitive lookup can be implemented using the end-to-end ap-

proach described for reliable recursive lookup (see Section 4.2.1). It is

much more complicated to let every node in the lookup path use failure

detectors and reissue lookups. The difficulty is that a node does not know

when to stop reissuing lookups. In reliable recursive lookup, a node only

reissues a lookup if it has a pending request for which it has not yet re-

ceived a response. In the transitive lookup, only the initiator receives a

response. Hence, the other nodes in the lookup path do not know if they

should reissue a lookup after they detect a failure, or if the lookup has

terminated correctly.

4.3 Greedy Lookup Algorithm

We now describe how greedy routing is done to find the successor of an

identifier, and hence the responsible node. Whenever a node p receives a

lookup for destination identifier i, it checks whether its successor is respon-

sible for that identifier, in which case it terminates the lookup. Otherwise,

it tries to forward the request to the pointer in the range (p, i), which is

closest in clockwise direction to i. Put differently, it tries to forward the

request to the closest possible node without overshooting3 the destination

identifier. If there is no such closest node, that means that the succes-

sor of the current node will be the successor of the destination identifier

i. Hence, the last step in the lookup path uses the successor pointer

of a node. Algorithm 15 shows the corresponding implementation of

terminate(i) and next hop(i).

The routing table of a node p, together with its succ and pred pointers,

are represented by a monotonic function rt, which maps integers to node

identifiers. Therefore, rt(1) points to the successor of p, and rt(2) points

to the second closest node, in clockwise direction, in p’s routing table,

etcetera. Hence, if p has K pointers, rt(K) points to p’s predecessor, which

is the node farthest away from p in clockwise direction.

3We say that a node p overshoots an identifier i if p routes to j when d(p, i)≤d(p, j).

94 4.3. GREEDY LOOKUP ALGORITHM

Algorithm 15 Greedy lookup

1: procedure n.terminate(i)

2: return i ∈ (n, succ]

3: end procedure

1: procedure n.next hop(i)

2: if terminate(i) then

3: return succ

4: else

5: r := succ

6: for j := 1 to K do ⊲ Node has K pointers

7: if rt(j) ∈ (n, i) then

8: r := rt(j)

9: end if

10: end for

11: return r

12: end if

13: end procedure

CHAPTER 4. ROUTING AND MAINTENANCE 95

A few things can be noted about the above algorithm. An invariant

of this algorithm is that the lookup request will always reach the prede-

cessor of the destination identifier and then be sent to the successor of

the destination identifier. Consequently, if a lookup already starts at the

successor of the destination identifier, it will be routed back through the

predecessor of the initiator before terminating.

We shortly summarize the following work previously done on Chord

[135]. It has been proven that at each step in the routing process, the dis-

tance, in the identifier space, to the destination identifier will be halved.

Hence, the successor of an identifier will be found in maximum log2(N)

hops, where N is the size of the identifier space,. This, however, can be a

quite large number as the number of nodes, n, is often much smaller than

the size of the identifier space. By assuming that nodes are distributed

uniformly on the ring, it has been proven that, with high probability,

the worst case number of hops to reach the destination is 2 log2(n) hops,

where n is the number of nodes. In summary, lookups can be performed

in O(log n) time, where n is the number of nodes.

4.3.1 Routing with Atomic Ring Maintenance

In the previous chapter we described how atomic ring maintenance could

be used to ensure lookup consistency on the ring. In this chapter we have

provided a different routing algorithm which not only routes on the ring,

but also uses the additional pointers in the system. This routing algorithm

can be integrated with the atomic ring maintenance algorithms to ensure

lookup consistency.

The key to providing lookup consistency is in the invariant that lookups

always pass through the predecessor of the responsible node. Hence, the

last hop of any lookup uses the succ pointer of the penultimate node. If

atomic ring maintenance is implemented as described in Section 3.3, the

last hop can simply use the succ pointer as normal. The final node should

always ensure two things depending on its state. If its JoinForward flag is

enabled, it should forward the request to its predecessor. Otherwise, if its

LeaveForward flag is enabled, it should send the lookup to its successor.

This way, lookup consistency will be guaranteed as proved in Section 3.3.

96 4.4. IMPROVED LOOKUPS WITH THE K-ARY PRINCIPLE

4.4 Improved Lookups with the k-ary Principle

We next show how the pointers can be placed to achieve a time complex-

ity of logk(n), where n is the number of nodes and the base k is some

predefined constant. We refer to this as doing k-ary lookup or placing

pointers according to the k-ary principle. As we mentioned in Chapter 1,

this can be practical, as setting k = N
1
r guarantees a worst case lookup of

r hops, where r can be chosen to be any positive integer. This of course

comes at the cost of increased routing tables, which in turn requires main-

tenance as nodes join and leave. In some applications, however, this com-

promise is feasible.

To achieve k-ary lookup, we assume that the size of the identifier space

is a power of the desired base k, i.e. N = kL for some integer L. Each

node, in addition to storing succ and pred pointers, maintains a routing

table. The routing table consists of L = logk(N) levels. At each level l

(1 ≤ l ≤ L) a node p has a view of the identifier space defined as:

Vl =
[

p, p ⊕ kL−l+1
)

This means that for level one, the view consists of the whole identifier

space, because V1 =
[

p, p ⊕ kL
)

. At any other level (l > 1), the view

consists of one k:th of Vl−1 space. Put differently, the first level view of

node p consists of all identifiers. Level two’s view consists of a subset

of level one’s identifiers, specifically the one k:th of the identifiers closest

to node p. Level three consists of a subset of level two’s identifiers, in

particular the one k:th of the identifiers closest to node p.

At any level l (1 ≤ l ≤ L) the view is partitioned into k equally-sized

intervals denoted I l
i for 0 ≤ i ≤ k − 1. At a node p, I l

i is defined as:

I l
i =

[

p ⊕ ikL−l, p ⊕ (i + 1)kL−l
)

, 0 ≤ i < k, 1 ≤ l ≤ L

Each node p maintains a contact node for each interval in its routing

table. For simplicity, we will take the contact to be the successor of the

beginning of the interval. But more flexible choices are also valid, such

as any node in the interval as we describe in Section 4.5. Thus, for all

intervals j∈{1, 2, .., k − 1}, the successor for interval I l
j is chosen to be

the first node encountered, moving in clockwise direction, starting at the

beginning of the interval. This implies that for any level l (1 ≤ l ≤ L) the

CHAPTER 4. ROUTING AND MAINTENANCE 97

() * + , - . / 0() * + , - . / 1
() * + , - . / 2 () * + , - . / 3

4

5 6
7 8

7 8 9 69 :
; < = < ; >

? @ A B C D E F 9? @ A B C D E F 5
4 7 8 9 69 :

; < = < ; G 4 7; < = < ; H
? @ A B C D E F 4 ? @ A B C D E F 6

Figure 4.5: Figure of the routing table of node 0, for N = 64 and k =

4. The dotted arrows are the start of the intervals. The dark regions

represent the respective intervals. The left most figure shows the intervals

on level one. The center figure shows the intervals on level two. The

right-most figure shows the intervals on level three.

successor for interval I l
0 is always p itself. We will use S(I) to denote the

identifier of the successor node for interval I.

Figure 4.5 shows how an identifier space of size 43 = 64 is divided

when the base k = 4. Hence, the space consists of 3 levels (log4(64) = 3)

and each level is divided into 4 intervals (k = 4).

Illustrating Routing by Trees The above routing table is sufficient to

achieve logk(n) lookup hop counts, where n is the number of nodes and

k is the base of the system.

Another way to represent the routing tables at each node is by a k-

ary tree. Figure 4.6 shows the k-ary tree for node 10 when k = 3 and

the identifier space is {0, 1, · · · , 26}. For simplicity we assume a fully

populated system, i.e. where there is a node for every possible identifier.

98 4.4. IMPROVED LOOKUPS WITH THE K-ARY PRINCIPLE

I J I I I KI J L L M N I J L L L M OI P L L L M Q I R L L L M OI S L L L T I L L L UI JV W X W Y MV W X W Y NV W X W Y Z
Figure 4.6: Node 10’s k-ary tree when k = 3, and identifier space size is

33 = 27. The system is fully populated. Vertices show an interval as well

as the successor of the interval in bold.

[\ [[[] [^ [_ [` [a [b[\ c c d e [\ c c c d f [g[^ c c c d h [a c c c d f [i] \] []]] ^] _] `] a[i c c c e d [i c c c j \]] c c c e k] ` c c c j [] ^ _ ` a b g\ c c c e [c c c l i^ c c c h a c c c l[\
Figure 4.7: Virtual k-ary tree rooted at node 10, when k = 3, and identifier

space size is 33 = 27. The system is fully populated. The dotted rectangles

indicate k-ary trees at different nodes. Vertices show an interval as well

as the successor of the interval in bold.

Each vertex in the tree shows an interval as well as the successor of the

interval in bold typeface.

It can be useful to extend the k-ary tree at a node into a virtual k-ary tree

which shows how routing would proceed. Figure 4.7 shows the virtual

k-ary tree for the same setting as in Figure 4.6.

Routing on the virtual k-ary tree The virtual k-ary tree shows the path

of the lookup. Assume a lookup is initiated by node 10 for identifier 26 in

the fully populated system depicted by the virtual k-ary tree in Figure 4.7.

Node 10 uses its k-ary routing table and finds that node 19, which is the

successor of interval [19...0], is its closest neighbor preceding 26. Hence,

the request is routed to node 19. Node 19 would use its k-ary routing

CHAPTER 4. ROUTING AND MAINTENANCE 99

table, and find that its closest neighbor preceding 26 is 25, which is the

successor of interval [25..0]. Node 25 would finally forward the lookup to

node 26, which is the successor of interval [26].

A virtual k-ary tree similar to the one in Figure 4.7 can be made for ev-

ery system setting, including non-fully populated systems. Such a virtual

k-ary tree is constructed from the actual k-ary routing tables of each node.

Hence, if some node 10 has node 23 as successor for its interval [22, 25),

the sub-tree of vertex 23 would be node 23’s routing pointers with 23’s

view of the intervals. The virtual k-ary tree is merely a logical construc-

tion to help understanding how routing works, not a structure which is

represented and used for routing. For more details on this, please refer

to our previous work on the topic [7].

Using the virtual k-ary tree we can now prove that the worst case

lookup length is 2 logk(n) with high probability, where n is the number

of nodes and k the base of the system.

Theorem 4.4.1. Lookup takes at most 2 logk(n) hops with high probability

where n is the number of nodes and k is the base of the system.

Proof. Routing proceeds in the k-ary tree, moving down one level in each hop.

The k-ary tree consists of logk(N) levels where N is the size of the identifier

space.

After t hops, where t = 2 logk(n), the size of the current interval It
j , for some

j, will be

kL−t =
kL

kt
=

N

n2

Assuming uniform distribution of nodes on the ring, the expected number of

nodes in an interval of size N
n is 1, hence the interval N

n2 contains one node with

probability 1
n , which becomes negligible as n grows. Hence, with high probability

the destination is reached within at most 2 logk(n) hops.

Note that several of the routing hops can be local hops, as the succes-

sor of an interval I l
0 at a node p, for any l, is p itself.

4.4.1 Monotonically Increasing Pointers

It can sometimes be convenient to organize the pointers similarly to Chord.

In other words, rather than having two dimensions, one for levels and

100 4.4. IMPROVED LOOKUPS WITH THE K-ARY PRINCIPLE

one for intervals, pointers are indexed sequentially such that at any given

node, a pointer with a higher index always points farther away in the

identifier space than a pointer with a lower index.

Instead of having pointers in levels and intervals, a node can keep (k−
1) logk(N) pointers, for some fixed base k where the size of the identifier

space is N = kL for some positive integer L. Node p keeps a pointer

to a contact node for the start of every interval f (i), where 1 ≤ i ≤
(k − 1) logk(N) where:

f (i) = p ⊕ (1 + ((i − 1) mod (k − 1))) k⌊ i−1
k−1⌋

The above two schemes are equivalent to each other, except that in the

latter, intervals which would produce local hops have been removed.

Theorem 4.4.2. The start of the interval I l
i is equivalent to f ((L − l)(k − 1) +

i), for any level 1 ≤ l ≤ logk(N) and interval 1 ≤ i < k.

Proof. We abuse notation and let I l
i denote the start of the interval it repre-

sents. We use the fact that adding any multiple of a number k does not affect the

outcome when doing modulo k arithmetic.

f ((L− l)(k− 1)+ i) = p⊕ (1 + (((L − l)(k − 1) + i − 1) mod (k − 1))) k

⌊

(L−l)(k−1)+i−1
k−1

⌋

f ((L − l)(k − 1) + i) = p ⊕ (1 + ((i − 1) mod (k − 1))) k

⌊

(L−l)(k−1)+i−1
k−1

⌋

f ((L − l)(k − 1) + i) = p ⊕ ik

⌊

(L−l)(k−1)+i−1
k−1

⌋

f ((L − l)(k − 1) + i) = p ⊕ ik⌊L−l+ i−1
k−1⌋

f ((L − l)(k − 1) + i) = p ⊕ ikL−l

Chord’s pointers are simply a special case of the way pointers are

placed by the above scheme.

CHAPTER 4. ROUTING AND MAINTENANCE 101

Corollary 4.4.3. Chord’s intervals are equivalent to the intervals f (i) when

k = 2.

Proof. We use the fact that if k = 2 then any integer modulo k − 1 is zero.

f (i) = p ⊕ (1 + ((i − 1) mod (2 − 1))) 2⌊ i−1
2−1⌋

f (i) = p ⊕ (1)2⌊ i−1
2−1⌋

f (i) = p ⊕ 2i−1

Just as f (i) denotes the start of the interval, rt(i) denotes the contact

node for f (i).

For more information on k-ary search in distributed hash tables, please

refer to our previous work [7, 41, 5, 40].

4.5 Topology Maintenance

Up until now, we have not discussed the impact of dynamism on the sys-

tem. As nodes join, leave, and fail, routing information becomes stale

and needs to be updated. This section describes a method to efficiently

maintain the routing information in the presence of dynamism. Chapter 3

already showed how to maintain the ring. Hence, the focus of this sec-

tion is how to maintain the additional pointers described in this chapter.

Topology maintenance concerns joins, leaves, and failures. Even though

all three events are highly related, next section focuses on failures, while

the subsequent section deals with joins and leaves.

4.5.1 Efficient Maintenance in the Presence of Failures

Additional routing pointers are discovered through lookups. Similarly,

fault-tolerance of routing information is about detecting failed routing

neighbors and replacing them with other nodes by making lookups. An-

other method of dealing with failures is through replication, but that is

the topic of Chapter 6.

102 4.5. TOPOLOGY MAINTENANCE

Initialization A joining node, which has been incorporated into the ring

using atomic maintenance, still needs to populate the rest of its routing

table according to the k-ary principle. The k-ary principle does not require

that the successor of each interval is picked as a contact node, but rather

any node in each interval can be kept as the contact node for that interval.

Therefore, a joining node can initially populate its routing table by issuing

lookups to the start of each interval for every additional routing entry, or

it can use its successor’s routing table to approximate its own routing

Since the contact node does not need to be the successor of the start of

the interval, the lookup can be used with an operation that returns the

successor-list at the responsible node (see Algorithm 16). Thereafter, the

joining node can pick any of those nodes as its contact node for that

interval. In practice, it can probe a constant number of them and choose

the one that it finds most suitable, in terms of some metric such as latency.

Algorithm 16 Routing table initialization

1: procedure n.InitRoutingTable()

2: for i := 1 to (k − 1) logk(N) do

3: n.UpdateEntry(i)

4: end for

5: end procedure

6: procedure n.UpdateEntry(i)

7: S :=n.Lookup(f (i),GetSList()) ⊲ f (i) as in Section 4.4.1

8: rt(i) := s′ ⊲ s′ is the “best” node in S

9: end procedure

10: procedure n.GetSList()

11: return {n} ∪ succlist ⊲ Return own id and successor list

12: end procedure

Fault-detection and Recovery A node will use an unreliable failure de-

tector to detect if any of the additional routing pointers fail. This can be

implemented by having each node periodically send a heartbeat message

to each of its additional pointers rt(i) and waiting to receive an acknowl-

edgment. If the failure detector suspects that the node in routing entry

CHAPTER 4. ROUTING AND MAINTENANCE 103

i has failed, it triggers the UpdateEntry event, shown in Algorithm 16,

with parameter i.

The failure detector needs to be strongly complete, but we do not re-

quire it to be accurate (see Chapter 2). Since the failure detector has strong

completeness, every failure will eventually be detected and replaced with

another entry. However, the inaccuracy of the failure detector might trig-

ger updates to entries which point to non-failed nodes. This does not

affect the functionality of the system, but rather increases the amount of

bandwidth used for topology maintenance. Increased accuracy lowers

the excess bandwidth used for topology maintenance.

Other systems use periodic lookups to deal with failures. The reason

why we suggest using failure detectors is to avoid the lookup cost, which

often is O(log n). Hence, with our proposal, the cost of topology main-

tenance will be O(1) per routing entry when there are no failures, rather

than the typical O(log n), for an n node system.

A fundamental difference between our described topology mainte-

nance mechanism and the ones used by other systems is that our does

not always try to point to a contact node that is inside the interval for

which it is a contact. This can be disadvantageous in certain scenarios.

For example, assume the system consists of two nodes, one with identifier

0 and one with identifier 1, and the identifier space is [0, 1023]. Hence, all

of 1’s additional pointers point at 0, and vice versa. If another 1002 nodes

join, our topology maintenance mechanism will not update any of node

0’s or node 1’s additional pointers. Note that this is only a problem if the

contact node is outside the interval for which it is a contact. Therefore, we

suggest using a hybrid approach, where failure detectors are used, which

frequently send heartbeats, and less frequent periodic lookups are made

for a pointer whenever the contact node for that interval has an identifier

outside the interval.

4.5.2 Atomic Maintenance with Additional Pointers

We now describe how to integrate atomic ring maintenance with topol-

ogy maintenance for joins and leaves. A subtlety with structured overlay

networks is the potential of routing failures even in the absence of node

failures. By a routing failure we mean sending to, or expecting to receive

messages from, a neighbor that has left the system. We say a node q is a

neighbor of a node p if q is in the routing table of p. The reason for this

104 4.5. TOPOLOGY MAINTENANCE

is that nodes will continue to point to a node that left the system until

their failure detectors discover that the node no longer exists. This pro-

cess can take a substantial amount of time in an asynchronous network.

Meanwhile, some lookups might attempt to use some of those dangling

pointers for routing. Hence, even in the absence of node failures, routing

can fail. This is true for most structured overlay systems, such as Chord

[136], Pastry [123], and Bamboo [121].

Routing failures are defined in terms of neighbors. Some operations,

such as lookup, send messages to other nodes than their neighbors. For

example, the last message of a transitive lookup is sent from the respon-

sible node to the initiator, even though the initiator might not be the

responsible node’s neighbor. The same applies to the RPC responses of

recursive lookup. Nevertheless, it is possible to avoid transitive or re-

cursive lookup failures in absence of node failures. This can be ensured

by guaranteeing that a node does not leave the system until all blocking

receive statements have terminated. Hence, the initiator of a transitive

lookup does not leave the system until its blocking receive has terminated

(Line 3 in Algorithm 14). Similarly, a node involved in a recursive lookup

will not leave the system until its RPC call (Line 8 in Algorithm 12) has

terminated. Note that RPC is implemented using blocking receive (see

Chapter 2).

In this section we describe how to provide a system that does not

exhibit any routing failures in the absence of node failures. Thus, we

avoid the cost of fault-recovery when there are no failures. Achieving

this is facilitated by atomic ring maintenance, as described in Chapter 3.

When a node joins the system, two things need to happen. First, the

newly joined node needs to discover contact information for the nodes

to which it wants to maintain additional routing pointers. Second, other

nodes might need to modify their routing information, such that they

point to the newly joined node. Regardless of how these two operations

are done, we want nodes to know about the identity of other nodes point-

ing to them. Hence, if node p points to node q, node q should know that

p is pointing to it. Every node therefore maintains a backlist containing

a list of nodes pointing to it. The backlist enables a leaving node to no-

tify other nodes to remove their pointers to it. We refer to the messages

used to add and remove information from backlists and routing tables

as accounting messages, and refer to all other messages, such as lookup

messages, as ordinary messages.

CHAPTER 4. ROUTING AND MAINTENANCE 105

The problem is seemingly simple. An algorithm, however, needs to ac-

count for all possible interleavings when two nodes that are either point-

ing to each other or are in each other’s backlists, are leaving at the same

time.

A question is whether the correctness property should be to guaran-

tee no routing failures of ordinary messages in the absence of failures, or

to guarantee no routing failures (of both ordinary and accounting mes-

sages) in the absence of failures. We present one solution for each of the

correctness assumptions.

Simple Accounting Algorithm Assume that we want to guarantee no

routing failures of ordinary messages, but allow routing failures of ac-

counting messages when the system is free from node failures. Then the

following simple accounting algorithm solves the problem. Our assumption

of FIFO channels will be crucial for the correctness of the algorithm. Ev-

ery routing table is represented by the set RT and each backlist by the set

BL.

Whenever a node p is to add another node q to its routing table, the

event AddRT(q) is triggered, which sends a message to q asking q to add p

in its backlist, and node q responds with an acknowledgment. Only after

receiving the acknowledgment, node p incorporates q into its routing

table.

An algorithm similar to the one for adding nodes is used before leav-

ing by triggering the event AccountLeave. If node p is leaving and q

is in p’s backlist, p sends a message to q asking it to remove p from its

routing table. Node q then responds with an acknowledgment, whose

receipt enables node q to leave. A counter c is used, which is initially

set to zero, to keep track of the number of pending requests. After the

last acknowledgment is received and, thus, c = 0, node p can leave the

system.

Theorem 4.5.1. The simple accounting algorithm (Algorithm 17) will ensure

that there are no routing failures of ordinary messages in the absence of node

failures.

Proof. The algorithm enforces the invariant that whenever a node q is in the

routing table of p, node q will remain in the system. Node q will only appear

in p’s routing table after p gets the acknowledgment from q that q has put p

106 4.5. TOPOLOGY MAINTENANCE

Algorithm 17 Simple accounting algorithm

1: event n.AddRT(q) from app ⊲ Called when q is to be added to RT

2: sendto q.AddBL()

3: end event

4: event n.AddBL() from m

5: BL := BL ∪ {m} ⊲ BL is backlist set of n

6: sendto m.AckAddBL()

7: end event

8: event n.AckAddBL() from m

9: RT := RT ∪ {m} ⊲ RT is routing table set of n

10: end event

11: event n.AccountLeave() from app

12: for p ∈ BL do

13: sendto p.RemRTEntry()

14: c := c + 1 ⊲ c is initially 0

15: end for

16: end event

17: event n.RemRTEntry() from m

18: RT := RT − {m} ⊲ The entry can be replaced

19: sendto m.AckRemRTEntry()

20: end event

21: event n.AckRemRTEntry() from m

22: c := c − 1

23: if c = 0 then

24: ⊲ Leave the system

25: end if

26: end event

CHAPTER 4. ROUTING AND MAINTENANCE 107

in its backlist and, hence, that q is in the system. Similarly, if p has q in its

routing table, q will only leave after p acknowledges that q is no longer in its

routing table. The FIFO and reliability requirements enforce that every message

sent from p will be received by q. In particular, the FIFO requirement ensures

that the acknowledgment message for a leave from p to q “flushes” all outgoing

ordinary messages from p to q.

The algorithm is integrated with the atomic ring maintenance by per-

forming the leave part of the accounting algorithm after the leave point

is reached. The reason for this is that the atomic maintenance guarantees

that no lookups will end up at the leaving node after the leave point has

been reached. Thus, no new pointers will be created to the leaving node

thereafter.

If node failures are introduced, the above algorithm will block. To deal

with crash failures, we propose to use failure detectors when waiting

for the acknowledgment messages, and proceed if the failure detector

suspects that the sending node has failed. Then, the algorithm will always

terminate. Inaccurate suspicions, however, can result in routing failures.

A drawback of the above algorithm is that the accounting messages

are susceptible to routing failures even in the absence of node failures.

For example, assume p has q in its routing table and that q, consequently,

has p in its backlist. Moreover, assume q does not have p in its routing

table. Then if p leaves the system, q will still have p in its backlist. If

q later leaves, it will attempt to contact p, asking it to remove q from its

routing table. Hence, this will result in a routing failure since node p is

no longer in the system. Next, we strengthen the correctness assumption

to avoid such situations.

Fault-free Accounting Algorithm We now present an algorithm to en-

sure no routing failures for ordinary messages, as well as accounting

messages, in the absence of node failures. To achieve this, the algorithm

increases the number of messages by a constant factor compared to the

simple algorithm.

Algorithm 18 shows the fault-free accounting algorithm. Again we

assume reliable communication and FIFO channels. The algorithm is an

extension of the simple accounting algorithm. The algorithm can be aug-

mented to handle node failures similarly to the simple accounting algo-

rithm.

108 4.5. TOPOLOGY MAINTENANCE

Joining is identical to the simple accounting algorithm. Whenever a

node wishes to add a node to its routing table, it triggers the event Ad-

dRT with a parameter specifying the new node it wishes to add to its

routing table. The event AddRT(q) at node p asks node q to add p to its

backlist. After receiving the request, node q adds p to its backlist and

responds with an acknowledgment. Only after receiving the acknowl-

edgment, node p adds q to its routing table.

Leaving involves a few more operations than the simple accounting

algorithm. Whenever a node p wishes to leave the system, it triggers the

event AccountLeave, which iterates through every element in RT ∪ BL,

and sends the corresponding node q a RemEntry message. Moreover, if

q is in p’s RT, node p immediately removes it from there. The motivation

behind this is that node p is leaving anyway, and will therefore not need

to use that pointer. After q receives the request, it ensures that p does not

appear in both its routing table and its backlist. Thereafter, it responds

with an acknowledgment. A counter is used similarly as in the simple

accounting algorithm.

We now prove the following safety property about the algorithm.

Theorem 4.5.2. The fault-free accounting algorithm (Algorithm 18) is free from

routing failures of ordinary and accounting messages assuming absence of node

failures.

Proof. The fault-free accounting algorithm only extends the simple accounting

algorithm, hence we know from Theorem 4.5.1 that the fault-free accounting

algorithm is free from routing failures of ordinary messages. It remains to show

that it is free from failures of accounting messages. Assume by contradiction that

a routing failure occurs when p sends a message to q at time t. At time t, node p

either had q in BL ∪ RT or it is responding back with an acknowledgment to q.

We analyze each case separately.

Case 1: p has q in BL ∪ RT at time t. Our assumption of reliable commu-

nication implies that q was no longer present at time t. Node q can only have

left after it has received acknowledgments (AckRemEntry) from all nodes that

have q in their RT or BL. By the FIFO assumption, node p must have sent

AckRemEntry to q before time t. Hence, p must have removed q from both its

BL and RT before time t when the event RemEntry happened. This contradicts

the occurrence of a routing failure since p cannot have pointed at q at time t.

Case 2: p is responding with an AckRemEntry to q. This case leads to

a contradiction since p only sent AckRemEntry in response to a RemEntry

CHAPTER 4. ROUTING AND MAINTENANCE 109

implying that c > 1 at q. Hence, q cannot leave before the message from p

reaches q.

Algorithm 18 assumes uni-directional links, possibly with two uni-

directional links in opposite directions between the same two nodes. If

all links are bi-directional, the algorithm can be adapted by replacing the

occurrence of BL with RT everywhere in the algorithm.

110 4.5. TOPOLOGY MAINTENANCE

Algorithm 18 Fault-free accounting algorithm

1: event n.AddRT(q) from app ⊲ Called when q is to be added to RT

2: sendto q.AddBL()

3: end event

4: event n.AddBL() from m

5: BL := BL ∪ {m} ⊲ BL is backlist set of n

6: sendto m.AckAddBL()

7: end event

8: event n.AckAddBL() from m

9: RT := RT ∪ {m} ⊲ RT is routing table set of n

10: end event

11: event n.AccountLeave() from app

12: for p ∈ RT ∪ BL do

13: sendto p.RemEntry()

14: c := c + 1 ⊲ c is initially 0

15: RT := RT − {p} ⊲ No more messages to q

16: end for

17: end event

18: event n.RemEntry() from m

19: RT := RT − {m}
20: BL := BL − {m}
21: sendto m.AckRemEntry()

22: end event

23: event n.AckRemEntry() from m

24: c := c − 1

25: if c = 0 then

26: ⊲ Leave the system

27: end if

28: end event

5 Group

Communication

I
n this chapter, we show how the interconnectivity of the nodes in

a DHT can be used for group communication. In other words, we

provide algorithms which enable any node to send a message to all

nodes on the ring. We also provide algorithms that enable any node to

efficiently send a message to all nodes in a specified set of identifiers, e.g.

broadcast a message to all nodes with identifiers in the set {3, 4, 21, 22}.

Similarly, we provide algorithms that enable any node to efficiently send

a message to the nodes responsible for any of the identifiers in a specified

set of identifiers.

Motivation The lookup operation provided by DHTs is sometimes in-

sufficient for some applications, since it is limited to finding keys which

exactly match the provided query. The lookup operation does not provide

for complex queries containing wildcard expressions, such as “find all

items which have a key containing the keyword music”. Nor does the

lookup operation provide for queries containing regular expressions.

One solution to the above problems is to broadcast a query to all

nodes, or some of the nodes, which are part of the DHT. In fact, many

popular peer-to-peer applications — such as Skype, Kazaa, and Gnutella

— build a network where the nodes are interconnected randomly. Queries

are recursively flooded or broadcast to all neighbors. The lack of structure

in the random networks, however, leads to disadvantages. For example,

some nodes might receive the same message redundantly from different

neighbors. Furthermore, the freedom of letting nodes randomly inter-

connect might lead to the network partitioning into several components

which have no interconnection, even though all nodes are connected in

the underlay network. Group communication on top of DHTs does not

111

112 5.1. RELATED WORKm n
o

m nop q
r s r r s

Figure 5.1: i) shows a graph with a cycle ii) shows a graph without any

cycles.

suffer from these disadvantages [22, 42, 23]. On the contrary, when using

DHTs, it is possible to guarantee that the time complexity is logarithmic

to the number of nodes in the DHT, and that the message complexity is

equal to the number of nodes in the DHT.

Group communication can be used as a basic building block to pro-

vide overlay multicast. Our approach will be to create one DHT per mul-

ticast group, and whenever a node requests to multicast information to a

group, it broadcasts the information to all the nodes within the DHT that

represents the multicast group. We will also show how this scheme can

take advantage of IP multicast where it is available, and thus only use the

overlay to connect different IP multicast capable networks.

5.1 Related Work

The nodes in a DHT form a graph containing a set of vertices and a set of

edges between the vertices. Each node in the DHT represents a vertex in

the graph, and each pointer from a node a to another node b, represents

an edge between those vertices. General purpose algorithms for broad-

casting to all nodes in such a graph have existed for many decades in the

field of distributed algorithms [137, Chapter 4] [94, pg 496ff] [13, Chapter

2]. There is, however, a fundamental difference between those algorithms

and the ones we present in this chapter.

Graphs may contain cycles (see Figure 5.1). A cycle starts at a vertex

and visits other vertices by traversing edges, and ends in the start ver-

tex, without ever visiting any vertex more than once, except for the start

vertex, which is visited twice.

The possibility of cycles makes broadcasting in graphs complicated.

CHAPTER 5. GROUP COMMUNICATION 113

Generally, broadcast algorithms for graphs are constructed to avoid mes-

sages traveling in cycles indefinitely. These algorithms have two disad-

vantages. First, they bear an additional message complexity as some mes-

sages will be redundant. For example, if the graph consists of three nodes

{a, b, c}, with edges between (a, b), (b, c), and (c, a), only two messages

would suffice to broadcast from any node to all other nodes. General

broadcast algorithms for graphs would, however, use four messages to

cover those nodes, because each node would send the message to all

neighbors, except the one it got the message from. For example, if a ini-

tiated the broadcast, a would send to b and c, b would send to c, and c

would send to b. Second, such algorithms use extra state at each node to

avoid messages wandering in cycles indefinitely. In the previous exam-

ple, each node would keep track of the received messages. Thus, node b

would drop the message from node c, and node c would drop the mes-

sage from node b.

Even though DHTs contain cycles, the algorithms we present in this

chapter make use of the internal structure of DHTs to avoid the redundant

messages and the extra state associated with avoiding cycles.

5.2 Model of a DHT

Our goal is to construct general group communication algorithms which

can be used on as many DHTs as possible. Hence, we try to not de-

pend too much on structure induced by the routing pointers. Our aim

is to make our algorithms applicable to any ring-based DHTs. Never-

theless, ring-based DHTs significantly differ in how they place routing

pointers. For example, in many DHTs — such as Pastry [123], P-Grid [2],

and Tapestry [143] — routing pointers are placed according to prefixes of

the identifiers of the nodes. Other DHTs — such as Chord [134], DKS [5],

and SkipNet [65] — place pointers according to the relative distance of

nodes on the ring. We will disregard such differences and represent the

routing pointers uniformly.

Our assumption is that the system is ring-based, i.e. each node has

an identifier from an identifier space of a fixed size N, and each node

has a pointer to its predecessor and successor on the ring. Furthermore,

we represent the routing pointers of each node in monotonically increas-

ing distances, similarly as we did in (see Section 4.4.1). That is, all the

114 5.2. MODEL OF A DHT

pointers of a node n are represented by a function1, rt, where rt(1) points

to the successor of n, rt(2) points to the node in the routing table of n

which is the second closest to n going in clockwise direction starting at

n, etcetera. Hence, f sorts all the pointers of a node n according to their

distance to n, with rt(1) being the successor of the node, and rt(K) being

the predecessor of the node, given that the node n has K pointers. The

variable K varies from node to node and from time to time.

We avoid redundant pointers to simplify our algorithms. For example,

as seen by Figure 4.1, some pointers of a node might be pointing at the

same node, i.e. rt(3) = rt(4) = 10. Our algorithms will be simplified if all

the pointers are unique. Therefore, we represent the pointers by another

function u. The successor of a node is always represented by u(1), and

u(2) points to the second closest node etcetera, while guaranteeing that

u(i) 6= u(j) for any two distinct i and j. We assume that a node has M

unique pointers. Again, M might vary from node to node and from time

to time. For convenience, we sometimes use u(0) to denote the identifier

of the local node, i.e. u(0) is always a self pointer, but it is not counted by

M.

The above function u can be formally defined as follows. Let the set

R contain all the pointers of a node n, i.e. R = {rt(k) | 1 ≤ k ≤ K} ∪ {n}.

We define the local successor function at a node as:

s(i) = i ⊕ min({j ⊖ i | j ∈ R})

The function u at node n can now be defined for the domain [0, |R| − 1]

as :

u(i) =

{

n if i = 0

s(u(i − 1)⊕ 1) otherwise
(5.1)

We will initially assume that all pointers are correct and no failures

occur.

Our algorithms greatly benefit if they are used together with atomic

ring maintenance and the accounting algorithms presented in Chapter 4,

as they guarantee that all routing pointers are correct unless some node

has failed.

1Alternatively, the function can be perceived as a data structure, such as an array.

CHAPTER 5. GROUP COMMUNICATION 115

5.3 Desirable Properties

The group communication algorithms we present in this chapter share

the following correctness properties:

• Termination. Eventually the algorithm should terminate.

• Coverage. All the designated nodes that are reachable from the initia-

tion to the termination of the algorithm should receive the message.

• Non-redundancy. No node should ever receive a message more than

once.

The two first properties are liveness properties, while the last property

is a safety property. The last two properties bear some more discussion.

We discuss the terms designated and reachable, as it comes to the cover-

age property.

The particular group communication algorithm determines what con-

stitutes a designated node. For example, in a broadcast algorithm all

nodes are designated nodes. In some other algorithms, perhaps only a

subset of the nodes are considered, e.g. all nodes with identifiers in a

certain interval.

The nodes that can be visited by traversing the successor pointers,

starting at some initiator and stopping whenever the initiator is reached

or overshot (see Section 4.3), are regarded as nodes reachable from that

initiator. We assume that the pointers of any node, as defined by the func-

tion u, always point at some node which is reachable from the initiator.

The reason that the coverage property is technically involved is to

avoid idiosyncrasies that are theoretically possible in a ring-based DHT.

For example, one can construct a loopy ring, where the state of the succes-

sor and predecessor pointers seems correct from the perspective of any

two neighboring nodes, but the overall ring structure is inconsistent. Fig-

ure 5.2 shows a loopy ring, where pointers between the successor and a

predecessor of a node are symmetric, i.e. for every node u, u’s successor

has a predecessor pointer pointing at u. However, between any node and

its successor there is another node. Consequently, if the ring is traversed

starting at some initial node and stopping whenever the initial node is

reached or overshot, not all the nodes in the system have been visited. It

is not clear how such a loopy network could occur. There are algorithms

116 5.4. BROADCAST ALGORITHMS

tu v w x yz
{|}

| }| || {| z
| y | x

Figure 5.2: A loopy network where (u.succ).pred = u for every node u,

but for every node u there is a node v between u and u.succ.

for making such ring states consistent [91, 90], but it is not in the scope

of our group communication algorithms to deal with such scenarios.

By the last correctness property, non-redundancy, we mean that the

same message should never be transmitted more than once to the same

node. This is different from non-redundant delivery of messages, which

is adopted by others [76, pg 33f]. The latter is achieved by associating

a globally unique identifier with every invocation of the algorithm, and

filtering any message with previously seen identifiers. Thus, the applica-

tion is delivered the message at most once, even though the node might

receive the same message multiple times. This comes at the cost of trans-

mitting redundant messages, and maintaining state associated with every

invocation of the algorithm.

5.4 Broadcast Algorithms

In this section we provide algorithms for broadcasting to all nodes in the

DHT. Hence, every node is considered to be a designated node by the

algorithm.

A naı̈ve broadcast algorithm would start at the initiating node and

CHAPTER 5. GROUP COMMUNICATION 117

traverse the successor pointers, ensuring that all nodes receive the mes-

sage. The algorithm would terminate whenever the successor pointer of

a node points to the initiator or overshoots the initiator. In other words,

if p initiates the algorithm, a node q would only forward the request to

its successor if q.succ ∈ (q, p).

The naı̈ve algorithm is correct. The algorithm would eventually termi-

nate in the presence of churn as it is impossible to keep forwarding the

message to a successor infinitely without ever using a successor pointer

which points at, or overshoots, the initiator. If atomic ring maintenance

is used, the algorithm would cover all reachable nodes that remain in the

system until the algorithm terminates. No node would ever get the mes-

sage more than once, as the condition for forwarding ensures that nodes

that previously received the message are not forwarded to.

The algorithm would, however, incur a message complexity of O(n)

and a time complexity of O(n), where n is the number of nodes in the

system.

5.4.1 Simple Broadcast

The naı̈ve algorithm can be improved. Assume the identifier space is

{0, · · · , 1023}, and only nodes with odd identifiers exists, i.e. 1, 3, 5,

· · · , 1023. Assume node 1 is to broadcast a message, and it happens

to have node 511 in its routing table. A simple improvement of the naı̈ve

algorithm would be to let the initiator 1 delegate responsibility to node 511

to traverse the successor pointers in the range 512 to 0 on the ring, while 1

itself traverses the successor pointers in the range 2 to 510. Our message

complexity will still be n, but our time complexity will be halved to n
2 .

It is obvious that all nodes in the system would be covered, and that no

redundant messages would be sent. Our simple broadcast algorithm applies

the idea of delegation recursively for every pointer that points to a node

that has not previously been sent to.

The simple broadcast algorithm, shown by Algorithm 19, works as fol-

lows. The initiating node partitions the identifier space into M parts, and

delegates to each routing neighbor the responsibility to cover all nodes

in its part. More concretely, the initiating node i delegates responsibility

to node u(M) to cover all nodes in the interval (u(M), i), node u(M − 1)

is delegated responsibility to cover (u(M − 1), u(M)), etcetera, down to

node u(1) (successor of i) to cover nodes in (u(1), u(2)). Each delega-

118 5.4. BROADCAST ALGORITHMS

tee further partitions the part to which it has been delegated into pieces

which it further delegates to other nodes. This is recursively repeated

until no node has any routing pointers left in the interval it has been

delegated, whereby the algorithm terminates.

Algorithm 19 Simple broadcast algorithm

1: event n.StartSimpleBcast(msg) from app

2: sendto n.SimpleBcast(msg, n) ⊲ Local message to itself

3: end event

1: event n.SimpleBcast(msg, limit) from m

2: Deliver(msg) ⊲ Deliver msg to application

3: for i := M downto 1 do ⊲ Node has M unique pointers

4: if u(i) ∈ (n, limit) then

5: sendto u(i).SimpleBcast(msg, limit)

6: limit := u(i)

7: end if

8: end for

9: end event

We can now prove that the algorithm is correct given a static network.

Theorem 5.4.1. The simple broadcast algorithm is correct.

Proof. Termination. The algorithm only forwards a message to a node u(i) if

u(i) is in the interval (n, limit). Hence, the beginning of the interval strictly

increases (modulo arithmetic) toward limit each time a message is forwarded.

Similarly, the end of the interval (limit), either stays the same or decreases toward

n. Hence, each time a node sends a message to some other node, it delegates to it a

strict subset of the interval that itself was responsible for. Since the intervals are

discrete and have a finite size, eventually there is either no node in the interval

or the interval is empty. Hence, eventually the algorithm terminates.

Non-redundancy. We have shown that each node delegates a subset of its

own interval to any node it forwards to. Hence, a tree is induced by the broadcast,

where the initiator is the root of the tree, and where a node is the immediate

parent of all the nodes it directly sends a message to. We show that every node

delegates non-overlapping intervals to all its children. This is is a consequence

of the fact that the pointers at any given node are unique and a node never

CHAPTER 5. GROUP COMMUNICATION 119

sends a message to itself, since 0 (and consequently u(0)) is not covered by the

index i in the for-loop. Hence, every node n is delegated responsibility to cover

an interval (n, limit), and n sends a message to any neighbor in that interval,

delegating each of them non-overlapping subsets of (n, limit). Furthermore, the

interval delegated to a node by a node n never contains the identifier of any of n’s

children.

By induction on the broadcast tree, the same node cannot occur more than

once in the subtree of any node. The statement is true for the base case, which is

any tree containing only one node. For the induction step, assume the hypothesis

is true for the subtrees, T1, · · · , Tn that are formed by an arbitrary node p’s

respective children. Then it is also true for the subtree formed at p, since the

intervals of each tree is non-overlapping and p does not occur in any of those

intervals. Hence, no node ever receives the same message twice.

Coverage. By induction on the broadcast tree, the subtree at a node p covers

all the nodes that have an identifier in that interval. It is true for the base case,

which is any tree containing only one node p. Since the interval given to p is of

the form (p, limit), no node in the system can have an identifier in that interval,

otherwise one of them would be p’s successor u(1), contradicting that p is the

only node. For the induction step, assume the hypothesis is true for the subtrees

of p’s respective children. Then all the intervals delegated to p’s children have

been covered, which only leaves the identifiers of p’s children to be covered for p

to ensure that its delegated interval is covered. But those identifiers are covered

since p directly sends a message to its children. Hence, p and its children will

cover all the nodes in the interval delegated to p. Since the initiator starts with

the whole identifier space as its delegated interval, all nodes will be covered.

The simple broadcast algorithm is in fact broadcasting over the vir-

tual k-ary tree (see Figure 4.7). Consequently, the time complexity of the

algorithm is logk(n), for n nodes, given that the pointers are selected ac-

cording to the k-ary principle described in Section 4.4. Furthermore, the

message complexity is n, since all nodes receive the message and no node

receives the message more than once. Most importantly, no single node

ever needs to send a message to more than M nodes, given that it has

pointers to M nodes.

Figure 5.3 shows the example of a ring and Figure 5.4 shows the how

a simple broadcast would disseminate over that ring if a broadcast was

initiated by node 1.

120 5.4. BROADCAST ALGORITHMS~ � ~ ~
~ �

� �� �� ~� �� �
� �

� � � �

Figure 5.3: The figure shows an identifier space {0, · · · , 63} and 12 nodes

with identifiers 1, 6, 11, 16, 23, 27, 31, 38, 43, 50, 55, and 59. Single arrowed

lines represent a routing pointer and each double arrowed line represents

a node’s predecessor pointer and the corresponding successor pointer.

5.4.2 Simple Broadcast with Feedback

The operation provided by the simple broadcast algorithm is useful for

some applications, such as overlay multicast or publish/subscribe sys-

tems. It is, however, not sufficient if the broadcasting node wishes to

receive a feedback or a response from the nodes it is broadcasting to.

This is especially the case if broadcasting is used to implement arbitrary

or complex queries. A naı̈ve solution would be to inform all nodes of

the identity of the initiator, and let them directly send their feedback to

the initiator. But this is not scalable as the initiator quickly becomes a

bottleneck as the number of nodes becomes large.

The Simple Broadcast with Feedback Algorithm (Algorithm 20) efficiently

collects responses from all nodes after broadcasting. It extends the simple

CHAPTER 5. GROUP COMMUNICATION 121�
…�� �
…� �� �

…� � � �
…� � � � …��

… � � � �
…� �� �

…� � � �
…� � � � …� � � � …� �� �

…� �
Figure 5.4: The figure shows how a simple broadcast initiated by node

1 would disseminate in the system depicted by Figure 5.3. Each box

represents the node receiving the broadcast message (in bold) and the

interval that it is delegated responsibility to cover.

broadcast algorithm by letting each node maintain a set, Ack, of all nodes

that it has sent the message to. Each node also has a variable par, pointing

to the parent, from which it received the broadcast message. Every node

waits to receive a response from each of the nodes in its Ack set before

it sends its own response together with the gathered responses to par.

Naturally, nodes that are delegated an interval in which they have no

neighbors, can immediately send their response to par as they do not

need to wait on a response from any node. As a side note, these will be

the nodes that are the leafs of the induced broadcast tree.

The feedback algorithm has twice the time and message complexity as

the simple broadcast algorithm. If the k-ary principle is used for the rout-

ing pointers, each node sends maximum (k − 1) logk(N) + 2 messages,

where (k − 1) logk(N) + 1 accounts for all the routing pointers plus the

predecessor pointer, and the response back to the parent accounts for

another message.

Exploiting Atomic Ring Maintenance The algorithms that collect feed-

back require that every node stays in the system until it receives a feed-

back from its children. It is possible to make each node that is involved

in the broadcast wait to receive feedback from all its children before it

leaves the system. This can be achieved by exploiting the locking scheme

described in Chapter 3. Before a node sends a message to a node p, it

ensures that it holds the lock Lp. Similarly, a node releases its own lock

right after sending the response back to its parent.

122 5.4. BROADCAST ALGORITHMS

Algorithm 20 Simple broadcast with feedback algorithm

1: event n.StartBcast(msg) from app

2: sendto n.Bcast(msg, n) ⊲ Local message to itself

3: end event

1: event n.Bcast(msg, limit) from m

2: FB := Deliver(msg) ⊲ Deliver msg and get set of feedback

3: par := n

4: Ack := ∅

5: for i := M downto 1 do ⊲ Node has M unique pointers

6: if u(i) ∈ (n, limit) then

7: sendto u(i).Bcast(msg, limit)

8: Ack := Ack ∪ {u(i)}
9: limit := u(i)

10: end if

11: end for

12: if Ack = ∅ then

13: sendto par.BcastResp(FB)

14: end if

15: end event

1: event n.BcastResp(F) from m

2: if m = n then

3: sendto app.BcastTerm(FB)

4: else

5: Ack := Ack − {m}
6: FB := FB ∪ F

7: if Ack = ∅ then

8: sendto par.BcastResp(FB)

9: end if

10: end if

11: end event

CHAPTER 5. GROUP COMMUNICATION 123

5.5 Bulk Operations

In this section we generalize the problem and provide two operations:

bulk operation and bulk owner operation. Bulk operation takes a set of iden-

tifiers I, referred to as the bulk set, and sends a message to all nodes that

have identifiers in the set I. Hence, the designated nodes are all nodes

with an identifier in the bulk set I. Bulk owner operation takes a set of

identifiers I and broadcasts to the nodes that are responsible for the iden-

tifiers in the set I. The notion of responsibility is the same as defined in

Chapter 2, where every node n is responsible for all identifiers between

its predecessor and itself, i.e. the identifiers (n.pred, n]. Hence, the desig-

nated nodes are those which are responsible for an identifier in the bulk

set I.

Naı̈ve Solution The simple broadcast algorithms presented in the pre-

vious section can easily be modified to only broadcast to parts of the ring.

The initiating node i can set limit to any identifier, and the simple broad-

cast algorithm will ensure that only nodes in the range [i, limit) get the

broadcast message.

It would be desirable if an initiating node i could broadcast to any

node in an arbitrary interval (k, m]. This could naı̈vely be achieved if the

initiating node first routes an ordinary lookup message to the successor

of k, which then broadcasts to everyone in (k, m]. There is, however, a

more efficient solution which we describe next.

Motivation A main motivation for bulk operation is that it can be used

to build a bulk lookup or bulk insert operation. In many applications, such

as file systems built on top of DHTs, it is desirable to lookup many keys in

parallel. We have encountered file systems built on top of DHTs, in which

thousands of simultaneous lookups were issued to fetch a large file [10,

132]. In such cases, there is a significant overhead induced by marshaling

and sending thousands of lookups. With the bulk owner operation, the

identifiers of all those keys would be described by the bulk set I, which

is then used to do parallel lookups. The advantage of the bulk operation

is that it guarantees that a node will send at most as many messages as

it has pointers, which is often O(log n) pointers in an n node system.

Furthermore, if the routing pointers are placed according to the k-ary

124 5.5. BULK OPERATIONS

principle (see Section 4.4), the worst case time complexity of the whole

operation is O(log n), in an n node system. Bulk operation improves

the bit complexity when compared to making parallel lookups for every

identifier. Hence, it does not trade bit complexity for message complexity.

The bulk operation algorithm has two extreme cases. If the whole

identifier space is used as I, it reduces to the simple broadcast described

in the previous section. If only one identifier is used as I, the algorithm

reduces to a simple lookup. We therefore think that the bulk operation

should be the basic operation provided in DHT APIs.

We have found many applications of the bulk operation. We use it

in Section 5.6.1 to provide a fault-tolerant broadcast, which uses the bulk

operation to retry to cover an interval which was delegated to a node that

has failed. We also use it in our symmetric replication scheme, which is

described in Chapter 6.

5.5.1 Bulk Operations Algorithm

The bulk operation algorithm is given by Algorithm 21. It is very sim-

ilar to the simple broadcast algorithm (Algorithm 19). The algorithm is

initiated by sending a Bulk message with two parameters. The first pa-

rameter I is a set of identifiers, while the second parameter msg is the

message to be sent to all nodes with identifiers in I.

One major difference between the bulk algorithm and the broadcast

algorithm is that in the broadcast algorithm, every node that received a

message also delivered it to the application, while in the bulk algorithm

some nodes might be acting as forwarders, which never deliver messages

to the application.

Another difference with the simple broadcast algorithm is that it only

sends a message to a node u(i) if u(i) has an identifier in I, or if there

are identifiers in I which are between u(i) and u(i + 1), in which case

u(i) is the closest preceding node which can forward the request closer

to any potential nodes in that range. This is implemented by creating a

set of identifiers J := [u(i), limit), and only sending a message to u(i) if

the intersection of I and J is non-empty. When sending a message to u(i),

only identifiers in the intersection of I and J are delegated to u(i).

Whenever an interval I ∩ J is delegated to some node u(i), that interval

is removed from I to ensure that no two nodes are delegated overlapping

intervals.

CHAPTER 5. GROUP COMMUNICATION 125

Algorithm 21 Bulk operation algorithm

1: event n.Bulk(I, msg) from m

2: if n ∈ I then

3: Deliver(msg) ⊲ Deliver msg to application

4: end if

5: limit := n

6: for i := M downto 1 do ⊲ Node has M unique pointers

7: J := [u(i), limit)

8: if I ∩ J 6= ∅ then

9: sendto u(i).Bulk(I ∩ J, msg)

10: I := I − J ⊲ Same as I := I − (I ∩ J)

11: limit := u(i)

12: end if

13: end for

14: end event

Figure 5.5 shows an example of how the bulk message disseminates

in the system depicted by Figure 5.3. Node 1 initiates the algorithm, and

wishes to broadcast to all nodes in the interval [40, 45]. Note that a bulk

message is sent to node 27 with the responsibility of covering the interval

[30, 30]. This might seem unnecessary as node 27 is only a forwarder that

does not deliver the message to the application layer, nor does it forward

the message to any other node. Nevertheless, node 23 which delegated

the interval [30, 30] to node 27, has to ensure that it covers all nodes in

the region [30, 37] and does not know whether a node with identifier 30

exists or not. Therefore it delegates that interval to node 27, which knows

that no such node exists.

5.5.2 Bulk Operations with Feedbacks

Algorithm 22 shows the algorithm for doing bulk operation with feed-

back from all the nodes with identifiers in a prescribed bulk set I.

In the simple broadcast with feedback, the nodes that are merely for-

warding the message will not provide any feedback to the initiator. Nev-

ertheless, feedback on its way back to the initiator might have to pass

through such forwarders, hence forwarding nodes should be placed in

the waiting Ack set.

126 5.5. BULK OPERATIONS

Algorithm 22 Bulk operation with feedback algorithm

1: event n.BulkFeed(I, msg) from m

2: if n ∈ I then

3: FB := Deliver(msg) ⊲ Deliver and get set of feedback

4: else

5: FB := ∅ ⊲ No feedback

6: end if

7: par := m

8: Ack := ∅

9: limit := n

10: for i := M downto 1 do ⊲ Node has M unique pointers

11: J := [u(i), limit)

12: if I ∩ J 6= ∅ then

13: sendto u(i).BulkFeed(I ∩ J, msg)

14: I := I − J ⊲ Same as I := I − (I ∩ J)

15: Ack := Ack ∪ {u(i)}
16: limit := u(i)

17: end if

18: end for

19: if Ack = ∅ then

20: sendto par.BulkResp(FB)

21: end if

22: end event

1: event n.BulkResp(F) from m

2: if m = n then

3: sendto app.BulkFeedTerm(FB)

4: else

5: Ack := Ack − {m}
6: FB := FB ∪ F

7: if Ack = ∅ then

8: sendto par.BulkResp(FB)

9: end if

10: end if

11: end event

CHAPTER 5. GROUP COMMUNICATION 127� � � �
…� ¡¢ � � � �

…
� £ ¡ � ¤ � � ¤

…� ¡� � � � �
…

� £ ¡¢ £ � � �
…

� � ¡ � � � � �
…� ¡

Figure 5.5: The figure shows how a bulk message would disseminate in

the system depicted by Figure 5.3. The bulk operation is initiated by

node 1, who wishes to send a message to all nodes in the interval [30, 45].

Each box represents the node receiving the broadcast message and in

parenthesis the interval that it is delegated responsibility to cover. Dotted

arrows indicate that the receiving node is merely a forwarder which will

not deliver the message to the application.

5.5.3 Bulk Owner Operations

We now extend the bulk operation to introduce the bulk owner opera-

tion, which is designed to reach all the nodes that are responsible for an

identifier in the bulk set I.

Algorithm 21 reaches every node that has an identifier in the bulk set

I. These nodes should also be reached by the bulk owner algorithm, since

every node is responsible for its own identifier. Sometimes, however, a

node n responsible for an identifier in the bulk set is not itself in the bulk

set, i.e. n /∈ I. We first show how Algorithm 21 can be naı̈vely changed to

accomplish this, and thereafter we optimize it.

The simplest way to ensure that all the designated nodes are reached

is to add the statements found in Algorithm 23 after the for loop in Al-

gorithm 21 . Hence, each node n first executes the statements in Algo-

rithm 21 and thereafter checks to see if there are any identifiers in the

bulk set I that are between itself and its successor, i.e. (n, u(1)], in which

case it sends a message to its successor u(1).

The naı̈ve extension has one major drawback, it might deliver the same

message to the same node multiple times. Algorithm 24 optimizes the

naı̈ve extension to avoid the sending of redundant messages.

We modify the algorithm to add another parameter R, which holds

a set of identifiers. A node sending a BulkOwn message sets R to the

128 5.6. FAULT-TOLERANCE

Algorithm 23 Extension to bulk operation

1: J := (n, u(1)]

2: if I ∩ J 6= ∅ then

3: sendto u(1).Bulk(I ∩ J, msg)

4: end if

set of identifiers which the destination node is potentially responsible for.

Initially, R is equal to the bulk set I. This set R is always checked when

receiving a BulkOwn message to determine if there are any identifiers in

R that the local node is responsible for.

The first modification to avoid redundant messages is to let every node

keep a boolean variable sendsucc which indicates whether the node sent

a message to its successor or not. If sendsucc is true after executing the

for loop, the node will not again send a message to its successor.

The last described modification to the algorithm does not ensure that

a node will not send a redundant message. Even if sendsucc is false, the

successor might have received the BulkOwn message from some parent

of the current node. The second modification is to include a parameter

next whenever sending a message to any node m, where next is the closest

successor of m which is known to have received the BulkOwn message.

Hence, a node will not send a message to its successor if next is its suc-

cessor, or if sendsucc is true. Initially, next is set to the identifier of the

initiator.

5.6 Fault-tolerance

So far we have assumed that failures do not occur. If the goal is to have

best effort delivery, then the broadcast and the bulk algorithms will be

providing best effort delivery in the presence of failures. However, this

is not the case with the algorithms which provide feedback. In those,

every node, prior to sending its feedback, waits to receive feedback from

all nodes to which it has sent a message. If any of those nodes fail, the

waiting node will block forever, making the whole algorithm deadlock.

A straightforward approach to ensure termination for all algorithms,

is to introduce timeouts. Hence, a node waiting for feedback, can time

out and send its response back to its parent. A premature timeout might

CHAPTER 5. GROUP COMMUNICATION 129

Algorithm 24 Bulk owner operation algorithm

1: event n.StartBulkOwn(I, msg) from m

2: sendto n.BulkOwn(I, I, n, msg) ⊲ Local message to itself

3: end event

1: event n.BulkOwn(I, R, next, msg) from m

2: MS := R ∩ (u(M), n] ⊲ u(M) is same as pred

3: if MS 6= ∅ then

4: Deliver(msg, MS) ⊲ App is responsible for ids in MS

5: end if

6: limit := n

7: lnext := next

8: sentsucc :=false

9: for i := M downto 1 do ⊲ Node has M unique pointers

10: J := (u(i), limit]

11: if I ∩ J 6= ∅ then

12: K := (u(i − 1), u(i)]

13: sendto u(i).BulkOwn(I ∩ J, I ∩ K, lnext, msg)

14: I := I − J ⊲ Same as I := I − (I ∩ J)

15: limit := u(i)

16: lnext := u(i)

17: if i = 1 then

18: sentsucc :=true

19: end if

20: end if

21: end for

22: J := (n, u(1)]

23: if I ∩ J 6= ∅ and sentsucc = false and next 6= u(1) then

24: sendto u(1).BulkOwn(∅, I ∩ J, limit, msg)

25: end if

26: end event

130 5.6. FAULT-TOLERANCE

result in some nodes sending their feedback to a parent which has timed

out. Such messages can simply be ignored by the node which timed out.

A best effort delivery might, however, be inadequate. For example, as-

sume the initiating node attempts to broadcast to all nodes in the system.

Also assume that it has M = log2(n), pointers placed as in Chord (or

according to the k-ary principle when k = 2). In such case, the broadcast

will partition the whole space into M intervals and delegate responsibil-

ity to each routing pointer u(i). The pointer u(M) will be pointing to the

predecessor of the initiator, and u(M − 1) will be delegated roughly half

of the identifier space. If u(M − 1) fails, then roughly half of the nodes

will not be reached by the broadcast. This is exacerbated as u(M − 1)

might not have failed, but just left the system, and the initiator is not yet

aware of it. Hence, even with reliable communication channels and no

failures, the algorithm might fail to cover significant number of nodes.

The latter can be avoided if atomic ring maintenance is used together

with the accounting algorithms presented in Chapter 4.

In the distributed algorithms field, reliable broadcast has been studied

extensively [62, 26, 27]. Reliable broadcast ensures two things. First, if the

initiator of a broadcast does not fail, all correct nodes eventually receive

the message. Second, all correct processes always receive the same set of

messages, regardless of any crash failure2.

The second requirement of reliable broadcast is quite strong. For ex-

ample, assume an initiating node starts to broadcast a message and then

fails before completing. If some nodes receive and deliver the message,

then all other correct nodes must also eventually receive that message

and deliver it. Such a strong requirement, however, is justified in many

scenarios. Reliable broadcast is used as a building block in middleware

for building reliable distributed systems, such as Isis [17] and Transis [9].

Reliable broadcast, with the additional constraint that all nodes should

deliver messages in the same order, has been shown to be equivalent to

the consensus problem [26], which is an important theoretical problem

with many implications in distributed computing [46].

Our goal is to make broadcast or bulk algorithms, which give stronger

guarantees than pure best-effort delivery, but weaker guarantees than re-

liable broadcast. The motivation for this is that reliable broadcast is quite

2It also ensures that a received message actually has been sent, such that messages

are not “invented” by the algorithm.

CHAPTER 5. GROUP COMMUNICATION 131

costly to achieve. The algorithm given by Chandra and Toueg [26] has a

message complexity of O(n2) for n nodes. Furthermore, in some appli-

cation scenarios, the initiating node is using broadcast to collect informa-

tion. If the initiating node fails, there is no interest in ensuring correct

delivery to all nodes.

5.6.1 Pseudo Reliable Broadcast

We will modify our simple broadcast algorithm and introduce pseudo reli-

able broadcast. The algorithms will depend on the initiating node not fail-

ing. Hence, it has the correctness properties listed in Section 5.3 with two

minor modifications. First, the coverage property assumes the initiator

does not fail. Second, the designated nodes are all the correct processes.

Informally, this means that a broadcast message will reach all processes

that remain in the system between the time the algorithm is initiated and

terminated, provided that the initiating node does not fail.

The pseudo reliable algorithms will use failure detectors that use time-

outs to detect when a node has failed. We assume that the failure detector

is strongly complete, which means that it will eventually detect if a node

has crashed. The failure detector might, however, not be accurate, which

means that it might give false-negatives, suspecting that a correct, albeit

slow, node has crashed. The only consequence of inaccuracy is increased

bandwidth consumption because of the redundant messages being sent.

We assume that whenever a failure detector suspects a failure, it will im-

mediately trigger the correction of the routing information, ensuring that

pointers to crashed nodes are eventually removed.

There can, however, be a complication in the implementation of the

failure detector. The time it takes for a broadcast to terminate depends on

the number of nodes in the system, which in turn determines the depth

of the broadcast tree. Therefore, using a timeout when waiting for an

acknowledgment from a child is problematic, as the parent does not know

the depth of its subtree, and can therefore not determine the time to wait

before triggering a timeout. We therefore assume the implementation of

the failure detector is independent of the size of the broadcast. This can

be achieved by having the failure detector periodically sending a message

to its children and awaiting an acknowledgment.

132 5.6. FAULT-TOLERANCE

Pseudo-Reliable Broadcast We first describe a simple way to provide

pseudo-reliability and thereafter suggest some improvements.

Every broadcast has a globally unique random identifier associated

with it, which is included in every message. Nodes keep track of pre-

viously seen identifiers and filter any message which has an identifier

previously seen. Hence, redundant messages are filtered.

The algorithm works like the broadcast algorithm with feedback. Hence,

the pseudo-reliable algorithm makes use of an Ack set, containing the

children of the node. In addition to keeping the identities of the children

in the Ack set, the algorithm keeps track of the interval delegated to each

child.

The algorithm is made resilient to failures by using the bulk operation

to resume after a failure. Whenever a node suspects that one of its chil-

dren has failed, it uses the Ack set to determine the interval delegated to

the failed node. Thereafter, the bulk algorithm is used to cover all nodes

in that interval. The bulk algorithm will retry to cover all nodes in that

interval. If the suspicion is incorrect, then the receiver will ignore the pre-

viously seen message. The algorithm terminates whenever the initiator’s

Ack set is empty. To ensure that the algorithm terminates, it is required

that no node inaccurately suspects it children for a long enough time pe-

riod, such that all Ack sets become empty. This requirement is ensured by

an eventually perfect failure detector. Note, however, that this failure de-

tector provides a stronger guarantee, as it ensures that, eventually, there

will be no inaccurate suspicions by any node.

Improving Pseudo-Reliable Broadcast The pseudo-reliable broadcast

algorithm can be improved to reduce bandwidth consumption. The basic

idea is to try to avoid the re-sending of redundant messages after failures.

We motivate this by an example. Assume all the children of a node q,

except one, are done covering their delegated intervals. Hence, the Ack

set of q contains a single child. If q fails, q’s parent p will detect that and

reassign the interval delegated to node q to a new node r. Hence, the new

node r will retry to cover all of q’s children, rather than the remaining one.

Even though p’s children will filter those redundant messages, r still has

to consume resources to send those messages.

To avoid redundant messages, nodes could periodically send an up-

date of their current Ack set to their parent. This information could be

CHAPTER 5. GROUP COMMUNICATION 133

piggybacked in the response to the heartbeat sent by the failure detec-

tor. Hence, nodes periodically report their current Ack set to their parent,

which upon receipt of the updated Ack set updates its child’s delegated

interval to the received Ack set. If the previous example was using the

suggested improvement, node q would send its updated Ack set, contain-

ing its last remaining child, to its parent p. When q later crashed, node

p would only delegate an interval containing the remaining child of p to

the new node r.

5.7 Efficient Overlay Multicast

In this section we briefly describe how the algorithms presented in this

chapter can be used to provide efficient overlay multicast. Overlay mul-

ticast can also be perceived as topic-based publish/subscribe [45]. In short,

a topic-based publish/subscribe system consists of two actors, subscribers

and publishers. A subscriber can subscribe to different topics of interest.

Publishers can publish information about an event and a notification of

the event will be sent to all subscribers of that particular topic.

The motivation for doing multicast in an overlay network is that the

Internet does not provide world-wide multicast capability. The reason for

this is that many of the routers that form the back-bone of the Internet

have multicast turned off, or do not support it. Several overlay networks

have been built, such as Multicast Backbone (MBONE) [44], but these

lack the self-managing properties that structured overlay networks pos-

sess. Hence, there are several attempts to provide multicast in structured

overlay networks [24, 74, 118].

Our approach has several advantages compared to other structured

overlay multicast solutions. First, only nodes involved in a multicast

group receive and forward messages sent to that group, which is not

the case in some other systems [24, 74]. Second, the multicast algorithms

ensure that no redundant messages are ever sent, which is not the case

with many other approaches [118, 76]. Finally, the system integrates with

the IP multicast provided by the Internet, such that the overlay is just

used to reach IP-multicast enabled islands, and thereafter IP multicast is

used to efficiently reach all nodes in such an island.

134 5.7. EFFICIENT OVERLAY MULTICAST

5.7.1 Basic Design

The basic idea is to store information about all multicast groups in a DHT,

which we refer to as TOPDHT. Every multicast group is represented by

an instance of an overlay network. To multicast a message to a particu-

lar group, the message is broadcast to all nodes in that overlay network,

using the pseudo-reliable broadcast algorithm described earlier. This ap-

proach is similar to [118], except our system avoids sending redundant

messages, and reaches all n nodes in a multicast group in O(log n) time

steps, instead of O(n
1
d). Chapter 7 describes how this can be implemented

efficiently such that as few connections as possible are kept between the

nodes in different groups. Figure 5.6 shows an example of a system with

two groups.

5.7.2 Group Management

Group information is stored in the TOPDHT using the group name as

a key and group information as a value. Group information consists of

contact information for a random subset of the members of the group

and additional meta-data about the group. The random subset is kept up

to date by the node responsible for the item containing the group. The

responsible node periodically contacts the first alive node that it knows

in its group information, and asks it for its routing table. It then updates

its random subset by keeping a constant number of those nodes, giving

preference to those just received. The responsible node deletes any group

information when it cannot find any live node in a group.

To avoid a responsible node receiving too many requests for a popular

group in the TOPDHT, group information is replicated as described in

Chapter 6. Furthermore, group information is cached along the lookup

path to further relieve nodes in the TOPDHT from hot-spots.

Joining and Leaving Multicast Groups To join a multicast group, a

member of the multicast group is obtained by making a lookup for the

groups name in the TOPDHT. After obtaining a random subset of the

group members, the first alive node in that subset is contacted to join that

group. The last node in a multicast group takes special action by deleting

the group information in the TOPDHT.

CHAPTER 5. GROUP COMMUNICATION 135

Group Creation An atomic create operation is provided by the nodes

in the TOPDHT to avoid conflict resolution when several nodes try to

create a group with the same name. Hence, to create a group, a request is

sent to the responsible node, which checks to see if such a group already

exists, in which case it reports back with a failure. Otherwise, it creates a

group having the creating node as the only node in its group information.

Hence, the first node that reaches the responsible node will be successful

in creating the desired group.

5.7.3 IP Multicast Integration

We provide a mechanism to integrate overlay multicast with IP multicast

to make efficient use of the network resources.

The integration of overlay and IP multicast is done by modifying the

node behavior when nodes join a multicast group and when they multi-

cast to a multicast group.

Joining a multicast groups works as follows. Every multicast group

is associated with a multicast address, which is stored in the TOPDHT

together with its group information. The joining node first queries the

TOPDHT to find out about existing members of the DHT and the multi-

cast address to be used for that group. Thereafter, a joining node attempts

to discover other nodes in the desired group to which it can directly IP

multicast. This is done by sending a discovery message to the group’s

multicast address. If another node receives this message, it responds with

its contact information. To avoid an explosion of concurrent responses,

similar techniques as used by the Internet Group Management Protocol

(IGMP) can be deployed [35]. After establishing contact with an existing

node, the joining node joins the desired multicast group using the same

identifier in the overlay as the existing node. Hence, in each multicast

group, nodes that can directly communicate with IP multicast have the

same identifier. Therefore, a routing table entry pointing to the successor

of some identifier, can have many candidate successors. We therefore ex-

tend the routing tables to contain up to a constant number of candidates

per routing entry.

Broadcasting to a multicast group goes in two steps. The first step is

to use the broadcast algorithm to reach one node for every IP multicast

island in the multicast group. This is done by using the previously de-

scribed broadcast algorithm with a minor modification. Since each rout-

136 5.7. EFFICIENT OVERLAY MULTICAST

ing pointer might contain more than one candidate, the algorithm has to

pick one candidate using some desirable metric. The second step of the

broadcast is to let every node that receives the broadcast message to IP

multicast the message.

The advantage of letting candidate nodes share the same identifier is

that no single node need to represent the whole multicast group. Hence,

no single node will be a single-point of failure, nor will there exist a single

bottleneck for that group.

CHAPTER 5. GROUP COMMUNICATION 137

¥ ¥

¥ ¦

§ ¨
¥ © ¥ ª

§ « ¬

® ¥¦ ¥ ¯

° ± ² ³ ´ °

µ ¶ · ¸ ¹ º µ ¶ · ¸ ¹ §
Figure 5.6: A TOPDHT containing information about two different mul-

ticast groups. The arrows represent information about random group

members in each group.

6 Replication

C
hapter 3 and Chapter 4 showed how to form and maintain a struc-

tured overlay network, while Chapter 5 showed how such a net-

work could be used for group communication. In this chapter

we focus on the DHT abstraction that can be provided by a structured

overlay network. The main advantages of DHTs compared to other ap-

proaches mainly lie in their ability to self-manage in the presence of node

joins, leaves, and failures. Much of this self-management has to do with

updating the routing information when nodes join, leave, and fail, as we

have shown in earlier chapters. This chapter shows how to self-manage

the data stored in the DHT by means of replication, as nodes join, leave,

and fail.

6.1 Other Replica Placement Schemes

Most existing DHTs either use multiple hash functions, successor-lists, or

leaf-sets for choosing replicas. We shortly describe them and their disad-

vantages, and thereafter present our proposed replication scheme called

symmetric replication.

6.1.1 Multiple Hash Functions

Some DHTs — such as CAN [117] and Tapestry [143] — propose using

several hash functions for determining the replica placement. In such

a scheme, f hash functions are used to achieve a replication degree of

f . Each key/value pair in the DHT gets f identifiers by applying the

respective functions to the key value.

139

140 6.1. OTHER REPLICA PLACEMENT SCHEMES

This scheme, however, has a disadvantage. It requires the inverses of

the hash functions to be known to maintain the replication factor. To see

why, assume a replication degree of two, and hence two different hash

functions, H1 and H2, known by all nodes. Assume a node with identifier

10 is storing any items with identifiers in the range [5, 10]. Hence, if an

item with key “course” gets the identifier H1(”course”) = 7, it should be

stored at the responsible node 10. Assume that 10 fails, and that node

12 becomes responsible for the range [5, 12]. Node 12 should then fetch

and store the item with key “course” from the other replica to ensure

a replication degree of 2. To do this, however, 12 needs to find out the

key “course” such that the node responsible for H2(“course”) can be con-

tacted. Hence, the inverse of the hash function H1 is required. Even if

the inverse of the hash functions were available, each single item that the

failed node maintained would be dispersed all over the system when us-

ing different hash functions, making it necessary to fetch each item from

a different node.

If the replication degree is not restored each time there is a failure,

items soon disappear from the system. Assume every node fails with

exponential distribution with intensity λ. Then every node fails after an

average of 1
λ

time units. Given replication degree f , after an expected
f
λ

time units all replicas of an item would be lost.

6.1.2 Successor Lists and Leaf Sets

Many systems use successor-list replication or leaf-set replication. These

two schemes do not suffer from the disadvantages of using multiple hash

functions. Successor-list replication [134] works by hashing the key of

each key/value pair in the DHT, such that it receives an identifier from

the identifier space. Each key/value pair is then stored at the f closest

successors of the identifier of the item (see Figure 6.1).

Leaf-set replication [123, 124] is similar to successor-list replication,

but rather than storing an item on its closest f successor’s, the item is

stored on its
⌊

f
2

⌋

closest successors and its
⌊

f
2

⌋

closest predecessors. The

reason for this difference is that routing always proceeds in clock-wise

direction in systems using successor-list replication, while systems using

leaf-set replication route in both clockwise and anti-clockwise direction.

These two schemes fulfill two purposes. One purpose is to replicate

CHAPTER 6. REPLICATION 141

items on the successor-list, such that an item stored at a node p is also

stored at p’s f immediate successors. The advantage of this is that if p

fails, lookups can be resolved by its successor, since p’s responsibility is

automatically shifted to its successor when p fails. The other purpose is

to store routing information about f successors, such that as soon as a

node p’s successor is detected as failed, p’s routing information can be

updated by replacing the failed node by the failed node’s successor. The

leaf-set scheme has the same two uses as the successor-list scheme.

Our conjecture is that two separate mechanisms should be used to

achieve the above two purposes. While having routing information about

the successors or leafs is useful for routing table correction, replication on

the same set has several disadvantages.

The first disadvantage is that both schemes need at least f messages

for every join and leave event to maintain a replication degree of size f .

The reason for this is that if a node leaves the system, its f successors

(or its
⌊

f
2

⌋

predecessors and successors in the leaf-set scheme) will by

definition belong to the successor-list (or leaf-set) of a node which they

previously were not in. Hence, they need to fetch or release items.

The above scenario can be illustrated by the system shown in Fig-

ure 6.1. The figure shows a system with the nodes 0, 2, 3, 5, 6, 8, and 10

as indicated by the dark circles. Assuming a replication degree of 3, the

figure shows that every data item is stored with its three closest succes-

sors. Put differently, every node stores the items it is responsible for and

replicates all data items stored on its two closest predecessors. Hence,

node 5 stores all items in the range [4, 5] and it replicates all items stored

on nodes 3 and 2. If node 5 leaves the system or fails, node 6 takes over

the responsibility for items in the range [4, 5]. Therefore, node 10, which

is replicating node 6, needs to be updated with items in the range [4, 5].

Furthermore, items stored by node 3 need to be stored on node 8 to re-

store the replication degree. Similarly, items stored on node 2 need to be

stored on node 6 to restore the replication degree. Therefore it is gener-

ally required to update f nodes whenever a node leaves or fails, to ensure

a replication degree of f .

Furthermore, the re-establishment of the replication degree needs to

be coordinated by some node that triggers a replication maintenance al-

gorithm at each of the successors (and predecessors in the leaf-set case).

142 6.1. OTHER REPLICA PLACEMENT SCHEMES

» ¼ ½ ¾¾ » ¼½ ¾¿ À
Á Â Ã Ä ¿

Å » ½ »Æ ÆÇ ÈÇ

Figure 6.1: A system populated with nodes 0, 2, 3, 5, 6, 8, and 10 as indi-

cated by the dark circles. Assuming a replication factor of 3, the figure

shows that every data item is stored with its three closest successors. Put

differently, every node stores the items it is responsible for and it repli-

cates all data items stored on its two closest predecessors, as indicated

by light circles. Hence, node 5 stores all items in the range [4, 5] and it

replicates all items stored on node 3 and node 2.

The coordinating node might however fail or leave the system, making it

necessary to use an algorithm that runs periodically. Many implementa-

tions, such as Bamboo [15], use an epidemic algorithm, where each node

sends a message to its neighbors whenever it detects a change, leading

to f 2 messages for each update or time interval in the case of a periodic

algorithm, given a replication degree of size f .

Moreover, any request to a specific replica, m, must first be routed to

a node in the successor-list, or the leaf set, before it can be forwarded

to m. The reason behind this is that the requesting node has no infor-

mation about the logical identifier of the replicas, while the nodes in the

successor-list, or the leaf-set, maintain such information. In the successor-

list scheme, the first replica routed to will always be the clockwise closest

replica in the successor-list, while in the leaf-set this can be any of the

replicas. In both systems, however, the first replica met is a bottleneck,

which can fail, decelerate the whole operation, or in the case of an adver-

sary, launch a malicious attack.

The leaf-set scheme is, however, better in this respect as it naturally

CHAPTER 6. REPLICATION 143

balances requests to different replicas. The reason for this is that it is

likely that a request to an item will reach one of its replicas in the last

hop before reaching the destination.

6.2 The Symmetric Replication Scheme

Symmetric replication is a general replica placement scheme that can be

implemented on top of any DHT. Before presenting symmetric replica-

tion, we discuss its benefits.

6.2.1 Benefits

Symmetric replication enables an application to make parallel lookups to

exactly k replicas of an item, where k ≤ f if the replication degree is f .

This has several advantages. A node can use parallel lookups to speed

up the lookup process by picking the first response that arrives. It can

be used to enhance security by ensuring that the majority of the results

match. It is particularly useful if used in conjunction with erasure codes

[141], as a random subset of size k of the f replicas can be fetched in

parallel to reconstruct the original data.

Another advantage of symmetric replication is that a join or a leave

only requires the joining or leaving node to exchange data with its suc-

cessor prior to joining or leaving. No other exchange of data items is

required to restore the replication degree. When compared to successor-

list or leaf-set replication, this reduces the message complexity of the

restoration from O(f) to O(1), for a replication degree of f . The bit com-

plexity does, however, not change, as the same amount of data needs to

be transmitted. But the coordination becomes much simpler and the time

complexity improves.

Hence, symmetric replication shares the advantages of using multi-

ple hash functions, but does not suffer from its drawback with restoring

replication degrees.

6.2.2 Replica Placement

The main idea behind symmetric replication is that each identifier in the

system should be associated with f other identifiers. If identifier i is asso-

144 6.2. THE SYMMETRIC REPLICATION SCHEME

ciated with identifier j, then the node responsible for item i should store

both items i and j. Similarly, the node responsible for item j should store

both items i and j.

Formally, each identifier in the system is associated with a set of f

distinct identifiers such that the following always holds: if the identifier i

is associated with the set of identifiers r1, ..., r f , then the identifier rx, for

1 ≤ x ≤ f , is associated with the identifiers r1, ..., r f as well.

Put differently, the identifier space is partitioned into N
f equivalence

classes such that identifiers in an equivalence class are all associated with

each other. Any such partition will work, but for simplicity we use the

congruence classes modulo m, where N is the size of the identifier space

and m = N
f for f replicas.

We now explain how each identifier i is associated to f other iden-

tifiers to achieve replication degree f . Let F = {1, ..., f}, then iden-

tifier i is associated to the f different identifiers given by the function

r : I ×F → I defined as:

r(i, x) = i ⊕ (x − 1)
N

f

Figure 6.2 shows how identifiers are associated in an identifier space

of size N = 16 and a replication factor f = 2. Hence, identifiers form

equivalence classes modulo m = 8, i.e., identifier 1 and 9 are in the same

equivalence class since 1 ≡ 9(mod 8). The identifiers in the circles repre-

sent r(i, 1), while the identifiers outside the circles represent r(i, 2). Note

that the association of identifiers is independent from the nodes present

in the system.

Nodes replicate data as follows. In a system without any replication,

each item with identifier i is stored at the responsible node, which we

take to be the successor of item i, but other definitions of responsibility

will work as well1. Symmetric replication is achieved by having the re-

sponsible node of every identifier i storing every item with an identifier

associated with i. Hence, to find an item with identifier i, a request can

be made for any of the identifiers associated with i.

For example, if the identifier 0 is associated with the identifiers 0, 4,

8, and 12, any node responsible for any of the items 0, 4, 8, or 12 has to

1An item with identifier i can be stored at the closest predecessor of i, or at whichever

node is closest in the identifier space.

CHAPTER 6. REPLICATION 145

ÉÊ Ë Ì Í ÎÏÐÑÒ

Ñ ÒÑ ÑÑ ÐÍ Ì Ñ Í
ÏÎ Ñ Ï Ñ Î Ë É Ê Ñ Ò Ñ ÑÑ ÐÑ ÏÑ ÎÑ ÍÒÑÐ

Figure 6.2: The identifiers associated with each identifier in a system with

an identifier space of size N = 16 and a replication factor of f = 2. The

identifiers in the circles represent r(i, 1) while the identifiers outside the

circles represent r(i, 2).

store all of the items 0, 4, 8, and 12. Hence, to retrieve item 0, a query can

be sent to any of the nodes responsible for the items 0, 4, 8, and 12.

For the symmetry requirement to always be true, it is required that

the replication factor f divides the size of the identifier space N. We find

this reasonable as the size of the successor-list, as well as N, are constants

in most systems.

6.2.3 Algorithms

We now give a description of all algorithms. The algorithms will need

to be slightly modified to fit a system with a different definition of re-

sponsibility, but we assume that each item with identifier i is stored at

the successor of i.

Each node in the system has all its items stored in a two-dimensional

(f , N)-array denoted localHashTable. The first dimension of the array rep-

146 6.2. THE SYMMETRIC REPLICATION SCHEME

resents the f identifiers associated with the identifier in the second di-

mension of the array. Hence, localHashTable[i][j] represents items with

identifiers r(j, i). In reality, a different representation might be used, to

optimize the performance of the local operations.

Join and Leave Algorithms

Whenever a new node n joins the system, it triggers the event JoinRepli-

cation (see Algorithm 25) which immediately sends a RetrieveItems

message to its successor asking it about all items n should be storing.

The message includes information about the items n is interested in by

specifying a range (pred,n], where pred is its predecessor’s identifier and

n is its own identifier.

Once the successor receives the RetrieveItems message, it initializes

an empty two-dimensional (f , N)-array called items. Thereafter, each item

associated with an identifier in the specified interval is copied from local-

HashTable to items and sent back in a Replicate message to the newly

joined node. Upon receipt of the Replicate message, the newly joined

node copies items to its localHashTable. The new node is now ready to

receive lookup requests from other nodes in the system.

The leave algorithm (see Algorithm 25) works similarly to the join

algorithm. Whenever a node wants to leave the system it triggers the

event LeaveReplication, which uses the RetrieveItems event to copy

all items it is responsible for and send them in a Replicate message to

its successor. Notice that we do not delete items that are no longer a

node’s responsibility, though such an operation can be added to avoid a

long-running node exhausting its storage space.

Lookup and Item Insertion

Algorithm 26 shows the algorithms used to insert or lookup an item. The

algorithms make use of the lookup algorithms described in Chapter 4.

To insert an item, the inserting node simply makes parallel insertions

to every location where the replica should be stored. The bulk owner

operation (without feedback) can be used to insert an item to all replicas.

This has the advantage that both the bit and message complexity can im-

prove, as the same data does not need to travel through the same nodes.

Algorithm 26 does, however, not make use the bulk operation.

CHAPTER 6. REPLICATION 147

Algorithm 25 Symmetric replication for joins and leaves

1: event n.JoinReplication() from m

2: sendto succ.RetrieveItems(pred, n, n)

3: end event

4: event n.LeaveReplication() from m

5: sendto n.RetrieveItems(pred, n, succ)

6: end event

7: event n.RetrieveItems(start, end, p) from m

8: for r := 1 to f do

9: items[r] := ∅

10: i := start

11: while i 6= end do

12: i := i ⊕ 1

13: items[r][i] := localHashTable[r][i]

14: end while

15: end for

16: sendto p.Replicate(items, start, end)

17: end event

18: event n.Replicate(items, start, end) from m

19: for r := 1 to f do

20: i := start

21: while i 6= end do

22: i := i ⊕ 1

23: localHashTable[r][i] := items[r][i]

24: end while

25: end for

26: end event

148 6.2. THE SYMMETRIC REPLICATION SCHEME

Algorithm 26 Lookup and item insertion for symmetric replication

1: event n.InsertItem(key, value) from app

2: for r := 1 to f do

3: replicaKey := key ⊕ (r − 1) N
f

4: n.Lookup(replicaKey,AddItem(replicaKey, value, r))

5: end for

6: end event

7: procedure n.AddItem(key, value, r)

8: localHashTable[key][r] := value

9: end procedure

10: event n.LookupItem(key, r) from app

11: replicaKey := key ⊕ (r − 1) N
f

12: Lookup(replicaKey,GetItem(replicaKey, r))

13: end event

14: procedure n.GetItem(key, r)

15: return localHashTable[r][key]

16: end procedure

CHAPTER 6. REPLICATION 149

For the lookup algorithm, we only show an event that takes the two

parameters key and i (1 ≤ i ≤ f) and finds the responsible node for the

i:th replica of identifier key. On top of this abstraction, different types of

lookup services can be built, such as the ones mentioned in Section 6.3.

Handling Failures

Algorithm 27 shows how failures are handled. We assume that the nodes

in the network use a failure detector that eventually detects if the suc-

cessor of a node fails. Inaccuracy, i.e. the detector suspecting that the

successor has failed even though it has not, will result in the successor

of the suspected node replicating items redundantly. Hence, inaccuracy

merely results in inefficiency.

The event FailureReplication is triggered at the predecessor of the

failed node with parameters specifying the failed node’s identifier, the

failed node’s predecessor’s identifier, and an integer specifying which of

the f replicas to fetch. Should the restoration of the replicas fail, the

process can be repeated by retrying to fetch the replicas from another

responsible node.

The failure restoration makes use of the Bulk Owner algorithm (see

Chapter 5). Note that the replicas of items stored on the failed node

could be dispersed onto several nodes. On average, however, one node

will be responsible for the replicas of the items stored on the failed node,

as the nodes are uniformly distributed on the ring.

Algorithm 27 Failure handling in symmetric replication

1: event n.FailureReplication(f ailed, predFailed, r) from m

2: s := predFailed ⊕ (r − 1) N
f

3: e := f ailed ⊕ (r − 1) N
f

4: sendto n.StartBulkOwn((s, e], RetrieveItems(s, e, succ))

5: end event

150 6.3. EXPLOITING SYMMETRIC REPLICATION

6.3 Exploiting Symmetric Replication

In this section we discuss simple end-to-end techniques that exploit sym-

metric replication’s ability to do parallel requests to replicas to enhance

the security and performance of the system.

Distributed voting can be used to ensure that data items received are

not tampered with. This is done by sending requests to m replicas and

deciding which replica to accept based on a majority vote. The probability

that an item has been tampered with can be calculated and reported to the

requesting user or application. If the probability that an item is tampered

with is p, and m (2 ≤ m ≤ f) parallel requests are made out of which a

majority of g (0 ≤ g ≤ m) answers are identical, the probability of such

a configuration is given by the Bernoulli trials: (m
g)pg(1 − p)m−g. The

system can automatically increase the number of parallel requests m to

achieve a certain degree of certainty in the results.

The advantage of symmetric replication is not only restricted to en-

hancing the security of the system. Symmetric replication can be used to

send out multiple parallel requests and picking the first response that ar-

rives. The advantages of this are twofold. First, it enhances performance.

Second, it provides fault-tolerance in an end-to-end fashion since the fail-

ure of a node along the path of one request does not require repeating the

request as it is likely that another one of the parallel requests succeeds.

If such a scheme is not used, outgoing messages have to be buffered at a

node together with timers, and whenever a timeout occurs, the messages

need to be sent again with risk of ending up at the same failed node.

7 Implementation

T
his chapter briefly describes a middleware called Distributed k-ary

System, which implements many of the algorithms described in

this dissertation. The goal of the chapter is not to describe the ar-

chitecture of the middleware in detail, but to highlight those parts which

we believe are of public interest.

7.1 DHT as an Abstract Data Type

In this section we overview two abstractions that facilitate the usage of

DHTs in applications.

7.1.1 A Simple DHT Abstraction

The interface to use a distributed hash table need not be complicated.

To this end, we developed JDHT, which provides a DHT in the popular

programming language Java. The goal of JDHT is to provide an abstrac-

tion which has the same interface as an ordinary hash table1. Hence,

JDHT implements the java.util.Map interface and can therefore be used

similarly to any other Java map. Thus, JDHT can associate any Java

java.lang.Object to another java.lang.Object. It uses the first object’s

hash value (obtained with hashCode()) as a key in the DHT, and stores

it with the second object’s serialized representation. Hence, using JDHT

locally on one machine is identical to using an ordinary map.

JDHT provides a few additional methods to enable distribution. Ev-

ery JDHT instance provides a getReference() method, which returns a

stringified reference to that particular instance of JDHT. This stringified

1Also known as a map, a dictionary, or an associative array.

151

152 7.1. DHT AS AN ABSTRACT DATA TYPE

Listing 7.1: JDHT Example

JDHT myDHT1 = new JDHT () ; / / F i r s t node
myDHT1. pu t (” s e c r e t ” , ” He l l o World ! ”) ;
S t r i n g r e f = myDHT1. ge t R e f e r e n c e () ;

JDHT myDHT2 = new JDHT(r e f) ; / / Second node
S t r i n g h e l l o S t r i n g = (S t r i n g) myDHT2. ge t (” s e c r e t ”) ;
System . ou t . p r i n t l n (h e l l o S t r i n g) ;

reference can be supplied as a parameter when creating a new instance of

a JDHT, in which case the new instance will attempt to connect the new

JDHT node to the overlay network of JDHTs represented by the reference.

Listing 7.1 shows an example of two nodes forming a DHT.

7.1.2 One Overlay With Many DHTs

Most applications that use a DHT need to store more than one type of

information in the DHT. For example, MyriadStore [132], which is a dis-

tributed backup system, uses the DHT for the following purposes. A

mapping between user names and current address of nodes is stored in

the DHT, and used to enable location of users which have changed net-

work address or location. A mapping between identifiers and contents of

directories is used to store metadata about directories. Another mapping

between users and their preferences is used to save ordinary application

preferences, since a user might want to retain her preferences after her

computer has crashed.

Each data type that is stored in the DHT might have different require-

ments. For example, one might require that the DHT abstraction asso-

ciates each key to a set of values, such as the group-to-members associ-

ation given in Section 5.7. Another abstraction might need to associate

each key to a single value, such that any put operation overwrites any

old value associated with the provided key. This is the case with Myri-

adStore’s mapping of names to network addresses. Other requirements

might relate to whether the data in the DHT should be stored on stable

storage or which replication degree to use.

In DKS, the application programmer can create many different in-

stances of a DHT and assign them to the same overlay network. Hence,

CHAPTER 7. IMPLEMENTATION 153

Listing 7.2: Single Overlay with Multiple DHTs

DHT meta = new DHT(dks , ” se . k th . mstore . meta ” , 3)
DHT l oc = new SingletonDHT (dks , ” se . k th . mstore . l oc ” , 1)

meta . pu t (” bob ” , b i n d a t a) ;
l o c . pu t (” bob ” , i p a d d r e s s) ;

i p = l oc . ge t (” bob ”) ; / / doesn ’ t r e t u r n b i n d a t a

different data types with different requirements can co-exist in the same

overlay network. Thus, only one port and one node identifier is consumed

per application or machine.

Listing 7.2 shows an example in which two different DHTs are con-

nected to the same overlay network. The first DHT has replication degree

3 and maps each key to a set of values. The second DHT has replica-

tion degree 1 and maps a key to a single value. Each instance is given a

canonical name. We use a hierarchical name space to avoid name colli-

sions. Both DHTs are connected to the same node in the overlay network,

through the object called dks. A get operation on a DHT instance only

returns those items that have been put into that particular DHT.

The implementation of the mentioned feature is straightforward. Ev-

ery DHT instance stores with it its canonical name. Any put or get op-

eration carries with it the canonical name of the DHT from which it was

issued. Whenever a message arrives at a node, DKS de-multiplexes the

message to the right DHT instance using the canonical name as a desti-

nation identifier.

Application developers can extend the DHT abstraction by making

their own implementation that is tailored to their own needs. For ex-

ample, a DHT abstraction can be built that stores everything into an ex-

ternal database. As long as every application uses the canonical names

consistently, each DHT instance will behave as if it was connected to an

independent overlay network.

154 7.2. COMMUNICATION LAYER

7.2 Communication Layer

The communication layer provides simple event-based messaging. It con-

sists of the following modules:

• I/O handling module

• Failure detector module

• Multiplexer module

• Marshaling module

The I/O handlers are responsible for buffering, sending, and receiv-

ing messages. The failure detector sends heartbeats, awaits acknowledg-

ments, and calculates timeout values that adapt to the latency in the net-

work. The marshaler takes care of unflattening binary data into messages

and vice versa. The multiplexer provides an interface, which objects use

to dynamically register for events that they are interested in. Hence, the

multiplexer dispatches incoming events to the right object.

The rest of this section highlights a few of the properties of the com-

munication layer.

7.2.1 Virtual Nodes

It can be useful for a single machine to join an overlay with multiple iden-

tities. This has been suggested for load-balancing purposes, where nodes

with more resources can assume several identities to relief other nodes

[115, 55]. It has also been suggested as a mechanism to eliminate the

natural imbalance that results from the randomness of node identifiers,

which makes some nodes responsible for more identifiers than others.

Hence, it is avoided that some nodes get to store more items and receive

more routing requests than others. By making every node pick O(log n)

identifiers, for an n node network, the imbalance becomes negligible.

DKS facilitates the use of multiple identifiers by providing a single

communication manager, on top of which any number of virtual nodes

can be registered. Listing 7.3 gives an example of this, where two nodes

with identifiers ID1 and ID2 join the same overlay through the same

communication manager cm.

CHAPTER 7. IMPLEMENTATION 155

Listing 7.3: Multiple Nodes

ComManager cm =new ComManager (2 1 4 3) ; / / p o r t 2143

DKSNode node1 =new DKSNode (cm , ID1) / / f i r s t node
DKSNode node2 =new DKSNode (cm , ID2 , node1 . ge tRe f ())

There are several advantages to this design. First, only one IP/port ad-

dress is consumed per communication manager, regardless of the number

of virtual nodes. Second, every node will have its own routing table, but

at most one connection is open between any pair of machines. This is

particularly useful for some load-balancing schemes, where the routing

entries of the virtual nodes on one machine are mostly overlapping [55].

Finally, communication between virtual nodes on the same machine does

not have to go through the network. Instead, messages between two local

nodes p and q only requires that the multiplexer puts the message from p

into q’s incoming queue. Hence, the burden of marshaling/unmarshaling

and sending and receiving through the OS is completely avoided, mak-

ing local communication efficient. The same is true for messages from a

virtual node to itself, which simplifies the implementation of some algo-

rithms.

The efficiency of local communication greatly simplifies the construc-

tion of structured-overlay simulators. The simulator creates a single com-

munication manager, and connects all nodes to this single instance. The

simulator handles the scheduling of events, such as joins, leaves, and fail-

ures. But any join, leave, or failure, simply means registering or deleting

a virtual node to the multiplexer of the communication manager, or delet-

ing a virtual node object without unregistering it from the multiplexer. To

enable the simulation of asynchronous networks and latencies, the mul-

tiplexer can schedule when to deliver local messages into the incoming

queues of the virtual nodes.

7.2.2 Modularity

The communication layer of DKS is modular and can hence be extended

for various purposes. We explain two such modules that we have pro-

vided different implementations for.

156 7.2. COMMUNICATION LAYER

Marshaling Module The marshaling module, is responsible for flatten-

ing and unflattening messages sent between the nodes of the distributed

system. It provides an interface, where each data type is represented by

two methods: one for flattening and one for unflattening. This interface

can be used to implement any desirable transport format. Initially DKS

provided only an XML based wire format. While this format is great for

inter-operability with other systems, it consumes much resources to parse

the XML documents passed between the nodes. Therefore, we provide a

binary format, which is more compact.

I/O Module DKS provides two implementations of I/O handlers: block-

ing and non-blocking handlers. The blocking handlers essentially re-

quire two threads per connection, one thread listening for incoming traf-

fic, and one thread sending outgoing traffic. The non-blocking handlers

are straight-forward finite-state machine translations of the blocking han-

dlers. A thread pool is used together with two finite state machines per

connection. Consequently, the non-blocking version can use a constant

number of threads regardless of the number of open connections.

8 Conclusion

T
his dissertation has focused on four topics, each one being the re-

sult of the work done on the DKS middleware: lookup consistency,

group communication, bulk operations, and replication. As cus-

tom, we will review these results here. However, to avoid a monotone

description of the results, we will also try to describe the real motivations

that lead us to studying these problems.

Lookup Consistency Even though we earlier had worked on the prob-

lem of providing lookup consistency, we became seriously aware of the

problems during a joint project at SICS. DKS was being coupled with

a decentralized authorization server called Delegent, which was storing

digital certificates and access policies into the DHT provided by DKS.

Some developers noticed strange behavior, when nodes were joining and

leaving, some lookups would temporarily report inconsistent results, de-

pending on where they were issued. This motivated us to look into the

issue of lookup consistency, as nodes were joining and leaving the overlay

network.

Our solution to this problem was divided into two steps. First, we pro-

posed a locking mechanism, similar to the one used in the dining philoso-

phers’ problem [37], that would ensure that two neighboring nodes on a

DHT ring would never be joining and/or leaving concurrently. Second,

we introduced the notion of a join point and a leave point, which denoted

the atomic join, respective atomic leave, of a node. Provided the locking

scheme, we showed algorithms that would guarantee that all lookups re-

ported results that were consistent with the join and leave point of the sys-

tem. The first such solution was based on lock queues, which had some

efficiency problems. Therefore, we provided a second solution which was

157

158

probabilistic.

We showed how atomic ring maintenance could be augmented to han-

dle arbitrary additional routing pointers. Accounting algorithms were

presented that ensure that routing failures never occur as nodes join and

leave the system.

The atomic ring maintenance was also considered in the context of

node failures. We showed that it is impossible to provide lookup consis-

tency in an asynchronous network that can partition. Hence, we showed

that Brewer’s conjecture [52] applies to lookup consistency. Our lookup

consistency guarantees can therefore be violated during failures. In spite

of this, we showed how the algorithms could be made fault-tolerant, by

showing how they could be extended and coupled with periodic stabiliza-

tion. Hence, in absence of failures, the algorithms provide lookup con-

sistency. If failures occur, inconsistent lookup results may be returned. It

is left to periodic stabilization to correct the pointers, after which lookup

consistency can be guaranteed again.

The presented work advances the state of the art on lookup consis-

tency. Li, Misra, and Plaxton [89, 88, 87] independently discovered a

similar approach to ours. An advantage of their work is that they use

assertional reasoning to prove safety properties of their atomic ring main-

tenance algorithms. Their focus has, however, mostly been on the theo-

retical aspects of this problem. Hence, they assume a fault-free environ-

ment. They do not use their algorithms to provide lookup consistency.

Furthermore, they cannot guarantee liveness, as their algorithms are not

starvation-free. Lynch, Malkhi, and Ratajczak [95] proposed for the first

time to provide atomic access to data in a DHT. They provide an algo-

rithm in the appendix of the paper for achieving this, but give no proof

of its correctness. As Li et al. point out, Lynch et al.’s algorithm does not

work for both joins and leaves, and a message may be sent to a process

that has already left the network [89].

Group Communication Work on broadcast algorithms for structured

overlays started already with the publication of El-Ansary et al. [42]. The

provided algorithm, however, only worked for static networks with per-

fect routing information. The author joined, and helped with the develop-

ment of algorithms that could handle incorrect routing entries [49]. This

became more relevant when we started to using the broadcast algorithms

CHAPTER 8. CONCLUSION 159

to build overlay multicast systems [6].

The algorithms in our earlier publications [42, 49, 6, 50] are, however,

unnecessarily complex. The reason for that is that they assume that the

routing pointers are arranged according to the k-ary scheme. By rear-

ranging the pointers into monotonically increasing distances, and remov-

ing duplicate pointers, the algorithms turn into the simple form that is

presented in Chapter 5. All algorithms have in common that they guar-

antee that they reach all nodes within O(log n) time steps, using O(n)

messages, in a system with n nodes. Hence, the overlay multicast sys-

tem can reach all members of a multicast group in O(log m) time, using

O(m) messages, where m is the size of the multicast group. In contrast to

other schemes [24, 74], only nodes involved in a multicast group receive

and forward messages sent to that group. Furthermore, the multicast al-

gorithms ensure that no redundant messages are ever sent, which is not

the case in some systems [118]. The algorithms are used to provide an

overlay multicast system, which efficiently integrates with underlying IP

multicast.

Bulk Operations The author has been involved in the design of several

file-systems, which are built on-top of DKS [10, 71, 132]. While some of

these systems were being built, we faced the problem that the fetching of

a single file could sometimes require thousands of lookups to the DHT.

Though many of these lookups could be done in parallel, the requesting

node still needed to marshal and send thousands of requests. This prob-

lem led us to seek algorithms, that would allow us solve problems of this

sort.

The bulk operation algorithms, which were presented in Chapter 5, en-

able a node to efficiently make multiple lookups or send a message to

all nodes with identifiers in a specified set. The algorithm reaches all

specified nodes in O(log n) time steps and it sends maximum O(log n)

messages per node, where n is the size of the system, regardless of the

input size of the bulk operation. This solved our initial problem, where

a node needs thousands of simultaneous lookups. The algorithms also

proved to be useful when making range queries to all nodes in a certain

interval. The bulk operation algorithm also led us to construct a pseudo-

reliable broadcast algorithm which repeatedly uses the bulk operation to

reach parts of the identifier space that were delegated to failed nodes.

160 8.1. FUTURE WORK

The algorithms also proved useful when doing replication, as described

in Chapter 6, and when doing topology maintenance[50].

Replication DKS initially did replication on the successor-list, similarly

to many other systems [134, 123]. When implementing the algorithms,

however, we found the problem described in Section 6.1. The problem

is that every join and leave requires moving items between at least O(f)

nodes, where f is the replication degree. To solve it, we had to resort to

algorithms which required a message complexity of O(f 2). We found this

particularly troublesome, when the size of the items were large. This led

us to the symmetric replication scheme, described in Chapter 6, which

only requires O(1) messages for every join and leave.

The symmetric replication scheme has other advantages as well. It

makes it possible to do recursive parallel lookups, which have been shown

to be more resilient to latency variations in the network [120]. Previously,

however, iterative lookups have been used to achieve parallel lookups

[120, 101], which are known to be costly [120].

8.1 Future Work

We believe that much future work remains on the topics embarked in this

dissertation. This includes short-term, as well as long-term research. We

start with the short-term research.

Lookup Consistency We believe that it would be interesting to have a

formal correctness proof of eventual consistency when atomic ring main-

tenance is used together with periodic stabilization. We think that this

requires a better understanding of periodic stabilization. Periodic stabi-

lization is a non-terminating algorithm that is supposed to run forever.

We therefore think that it can be reworked as a self-stabilizing algorithm

[38], which always ensures closure and convergence. Hence, one would

prove that the algorithm always converges to a legitimate state, regard-

less of the starting state, and remains in a legitimate state. By a legitimate

state we mean a state in which lookup consistency is satisfied. Such a

self-stabilizing algorithm would then always recover from any illegiti-

mate state produced by failures.

CHAPTER 8. CONCLUSION 161

Group Communication The efficiency of the group communication al-

gorithms has been calculated assuming that pointers are placed accord-

ing to the k-ary principle. We believe that it would be interesting to ex-

perimentally evaluate the group communication algorithms using other

pointer placement schemes. In particular, it would be interesting to eval-

uate the efficiency of the group communication algorithms if pointers are

placed according to the PRR scheme (see Chapter 1). The coverage proof

given for the group communication algorithm considers a static network.

It would be interesting to see a proof of coverage in the dynamic case.

Strong Replication Consistency

We present some preliminary ideas for providing strong replication con-

sistency guarantees.

It is desirable that a system can give some guarantees on the consis-

tency of the replicated items. For example, assume that some node p up-

dates the value associated with key k to v1. Shortly, thereafter, some other

node q updates key k to v2. In an asynchronous network, it might be that

p’s update reaches some replicas of k before q’s request, while some other

replicas get q’s update before p’s update. Hence, a lookup to one of the

replicas might return either v1 or v2. Even if some node makes a lookup

to all replicas, it will not be able to know which of the two values is the

most recent one, given that no additional information is available. While

this might not matter in some applications, other applications might need

some consistency guarantees.

A DHT provides a distributed shared memory abstraction to applica-

tions, where nodes can put and get values to a common shared memory.

Hence, it makes sense to adopt the consistency models used in the con-

text of shared memory systems. In the shared memory model, each key is

referred to as a register. We assume that a put for a key/value pair 〈k, v〉
simply associates the key k with value v. In the shared memory model, a

put is called a write and a get is called a read.

We now make our discussion about consistency more precise. A node

reads or writes a value by issuing a request, and thereafter awaits a re-

sponse. In the case of a read response, the value read is returned. In the

case of a write response, the requesting node just receives an acknowl-

edgment. We further assume that each request and response is sent at

an instant in global time. We say that two operations are not overlapping

162 8.1. FUTURE WORK

if the response to one of the operations arrives before the request of the

other operation is made. A weak form of consistency, defined by Lamport

[80] is provided by a regular register. This consistency model ensures that

if there are no operations that overlap in time, any read operation will

return the last value written.

As stated earlier, our purpose is to build a system which functions in

an asynchronous network with crash failures, such as the Internet. Hence,

it is natural to aim at providing replication consistency in the presence of

crash failures and network partitions.

It is, however, impossible to implement a DHT which provides regular

register consistency in an asynchronous network with network partitions.

The result is known as Brewer’s Conjecture [19] and also relates to the

impossibility of lookup consistency, which we provided in Chapter 3.

The conjecture has been formalized and proven by Gilbert and Lynch

[52]. We briefly describe their result, which we have reformulated in

terms of shared memory registers. The conjecture assumes that the shared

memory provides availability and partition-tolerance (see Section 3.5 for

a definition) 1.

Theorem 8.1.1 (from [52]). It is impossible in the asynchronous network model

to implement a shared memory regular register that guarantees:

• Availability

• Partition tolerance

The proof by Gilbert and Lynch is by contradiction. The intuition

behind it is that if the network partitions into two components C1 and C2,

it still needs to provide availability. Hence, any write to a register k in C1

should eventually terminate. Assume that a non-overlapping read to k in

C2 is requested after the write in C1 terminated. Also this read should

eventually provide a result. Since the network is partitioned, the read in

C2 cannot return the value of the write in C1. But network asynchrony

(see Section 2.1) allows for an identical execution, in which there is no

network partitioning, where all messages between the components C1

and C2 are delayed until after all the mentioned operations are done.

1Gilbert and Lynch model a partition as a network which is allowed to lose arbitrarily

many messages sent from one node to another. Hence, a network partition means that

messages from the nodes in one component to another are dropped.

CHAPTER 8. CONCLUSION 163

This execution is identical to the one in which the network partitioned.

Hence, the results of the operations should be the same. But the read in

C2 does not overlap with the write in C1, yet the read does not return the

value of the last write to the register. Hence, regular register consistency

is violated.

Circumventing the Impossibility The most common way to circumvent

the above problem is to assume that the read and write algorithms can

communicate with a majority of the replicas. In a scenario where the

network partitions into two components, a majority can only be accessed

in one of the components. Hence, availability will be violated in one

of the components. Note that it might be impossible to get a majority in

any component if the network partitions into more than two components.

Such algorithms rely on the fact that any two operations to a majority of

the nodes overlap on at least one node. With this assumption regular reg-

ister consistency, and stronger consistency models, can be implemented.

Getting a majority in a DHT can, however, be problematic. The prob-

lem has to do with lookup inconsistency: more than one node might be-

lieve it is responsible for a given identifier. Hence, the algorithm assumes

there are f replicas, and gets a majority of
⌈

f +1
2

⌉

, but the number of repli-

cas has actually increased to more than f . Hence, there is no guarantee

that two majorities overlap.

The following example illustrates how the number of replicas can in-

crease due to the inaccuracy of the failure detectors. Assume the system

consists of the nodes 10, 30, 50, 60, and 70 and all pointers initially form

a correct ring. Assume that node 30 later suspects that its predecessor 10

has crashed, and 50 suspects that its successor 60 has crashed. Similarly,

node 10 suspects its successor 30 has crashed, and 60 suspects that its pre-

decessor 50 has crashed. Therefore, the system looks as if the network has

partitioned into two components {10, 60, 70} and {30, 50}. Nevertheless,

node 70, might have an additional pointer to node 30, as node 70 does not

suspect node 30 as crashed. If node 70 makes a lookup for the identifier

40, its request will be routed to 30, which forwards it to the responsible

node 50. On the other hand, a lookup by node 10 for the same identifier

40 will be forwarded to 60, which believes that it is responsible for the

identifier 40. Hence, instead of one replica of any item with identifier 4,

there are two replicas, one stored at 50 and one at 60.

164 8.1. FUTURE WORK

As demonstrated, getting a majority is problematic in a DHT. A pos-

sible way around this problem is to let nodes be conservative, and only

return values when they are certain that the lookup is consistent.

Uncertainty of Lookup Consistency

The modified periodic stabilization together with atomic ring mainte-

nance is a source of uncertainty: the initiator of a lookup does not know

if the result is consistent or if it is temporarily inconsistent because of

failures. We now indicate how some of this uncertainty can be eliminated

by conservatively using locally available information.

If a node q’s predecessor p crashes, q will detect that and set its pred

pointer to nil according to periodic stabilization. In periodic stabilization,

p’s predecessor will at some point detect that p has crashed, and change

its succ pointer to eventually point at q. Thereafter, q will receive a No-

tify, which makes it change pred to p’s predecessor. Instead of setting

pred to nil, another option would be to let q.pred continue pointing at p,

as node q will continue to be responsible for the identifiers (p, q], regard-

less if p has crashed or not. To facilitate failure handling, a special flag

called deadpred could be set to true whenever the predecessor is detected

as crashed.

If no failures ever occur and the failure detectors do not inaccurately

report a failure, all lookups will be consistent as guaranteed by atomic

ring maintenance. Any lookup for an identifier i is always forwarded

until it reaches a node p for which i ∈ (p.pred, p]. Hence, the first time

an inconsistency appears, it is one of the following two cases:

• Some identifiers are not the responsibility of any node. More for-

mally, there exists some identifier i such that for every node p, it

true that i /∈ (p.pred, p].

• Some identifiers are in the responsibility of more than one node.

More formally, there exists some identifier i such that there exist two

distinct nodes p and q for which i ∈ (p.pred, p] and i ∈ (q.pred, q].

Hence, the source of any inconsistency is due to some erroneous pred

pointer. Therefore, if atomic ring maintenance updates a pred pointer, the

node knows for certain that the result is correct due to a join point or a

leave point. As soon as periodic stabilization changes the pred pointer,

CHAPTER 8. CONCLUSION 165

the node can pessimistically assume that its lookup results might be in-

consistent. More precisely, as soon as the pred pointer is modified in

the Notify procedure of Algorithm 11 (Line 28), the node can store the

identifier range that is being added to its responsibility in an Unsure set.

Similarly, if a node’s responsibility shrinks with some range, that range

should be removed from Unsure. In summary, a node p is responsible for

the range (p.pred, p]. It is uncertain about the range (p.pred, p] ∩ Unsure,

and it is certain about the range (p.pred, p] − Unsure. Note that if a node

detects that its predecessor has failed, it continues to be responsible for

the interval between its failed predecessor and itself. It also knows that

it is uncertain if it receives a lookup which overshoots the crashed prede-

cessor.

We now motivate the use of the Unsure set by an example. Figure 8.1

shows a correct ring consisting of the nodes 1, 3, 5, and 7. If node 7 in-

accurately detects that node 5 has crashed, it will set deadpred to true. It

will, however, continue to correctly respond to any lookup for the range

[6, 7]. If it, however, receives a lookup for any identifier [4, 5] from some

other node, it knows that it is uncertain about those identifiers. Mean-

while, node 5 will correctly respond to lookups in the range [4, 5]. If node

7 eventually stops suspecting node 5 for a failure, its Notify procedure

will be invoked by node 5, which will make it set deadpred to false. Since,

node 7’s pred pointer is already pointing at node 5, its responsibility has

not been extended by the invocation of Notify, hence it does not add any

identifiers to its set Unsure. Should, instead, both node 3 and 7 detect

node 5 as dead, the situation will be different. In this case, node 3 will

Notify node 7, which will make pred point at 3. This implies that node 7’s

responsibility has been extended with the identifiers [4, 5], which it will

add to its Unsure set. Any lookup to the range [4, 5] received by node

7 will result in it reporting that it is uncertain whether it is reporting a

consistent result. If later node 5 is no longer suspected, it will eventually

Notify node 7, which will make node 7 remove [4, 5] from its set Unsure.

Removing Uncertainty

How does a node which is uncertain about certain identifiers ever become

certain. A node p which is uncertain about the range (q1, q2] becomes

certain if there exists no other correct node with identifier r in (q1, q2].

Unfortunately, determining this is difficult. For example, it might be that

166 8.1. FUTURE WORK

Ó
ÔÕ

Ö
Figure 8.1: Lookup uncertainty due to a failure. Nodes 1, 3, 5, and 7 form

a correct ring. If node 5 fails, node 7 continues to be responsible for the

range [6, 7]. After 7’s pred pointer is updated to 3, it will be responsible

for the range [4, 7], of which it is uncertain of the range [4, 5] and certain

of the range [6, 7].

there exists a single node with identifier r in (q1, q2], but due to the inac-

curacy in the failure detectors, only one node m in the whole system has

a long pointer directly to r. All other nodes have lost contact with r, and

are no longer pointing to it. Hence, p needs to collect information from

all nodes to find out that there exists some node r.

Another approach is to weaken the asynchronous model, and assume

that periodic stabilization will stabilize the ring within a known time

bound b. Hence, every node uses a local timer, which it resets each time

the Unsure set grows. If the timer’s value exceeds b, it knows that it can

set Unsure = ∅ and hence be certain about lookups. In the previous

example, the assumption implies that periodic stabilization will within b

time units stabilize the ring, such that p finds out about its predecessor

r. The bound b should be chosen such that it is highly unlikely that the

ring does not stabilize within b time units. With this assumption, a node

can always report if it is certain or uncertain. In rare cases where b is

exceeded, lookup consistency might be violated.

The usefulness of the Unsure set is that a node can always correctly

report to the application whether it is certain or uncertain about a lookup.

This can be particularly useful if replication is used, as an application can

CHAPTER 8. CONCLUSION 167

ignore the values of uncertain nodes.

Atomic Register Consistency

Next, we describe a stronger consistency model and hint how it can make

use of the information regarding uncertainty, which is provided by the

underlying lookup.

A stronger consistency model than regular registers is provided by

atomic registers [80]. This consistency model is also known as linearizability

[68]. Recall that every read or write starts with a request and ends with

a response. These requests and responses occur at some distinct point in

global time. An execution of this consistency model is always linearizable,

meaning that all operations behave as if each read and write operation

took place at some instant moment between the request and the response

of the operation.

There exists a straightforward implementation of atomic registers in a

message passing system [96]. The algorithm relies on using local times-

tamps for each value. A time stamp is simply a pair of values 〈t, pid〉,
where t is some integer and pid is the identifier of a node. Initially, every

node p starts with a time stamp 〈0, p〉 . A write 〈k, v〉 by a node p pro-

ceeds as follows. First, a read is done to a majority of the replicas of key

k. Each of the replicas return the time stamp associated with their value

of the identifier k. Node p picks the highest identifier 〈t′, pid〉, and writes

〈k, v〉 with time stamp 〈t′ + 1, p〉 to a majority of the nodes. A read by

a node p to an identifier k works similarly. Node p consults a majority,

and picks the value v with the highest time stamp t′. Thereafter, node p

writes the value v with the time stamp t′ to a majority of the nodes. This

last step is necessary to ensure linearizability.

Our conjecture is that if the above algorithm only uses values of nodes

which are certain, atomic register consistency is guaranteed. Since atomic

ring maintenance ensures that the transfer of responsibilities is atomic, an

ordinary join or leave will not need to communicate with a majority of

nodes. To ensure that this algorithm works when a majority of the nodes

are certain, the initiator of an operation needs to get a response from a

majority of the nodes. This can either be done by using a reliable lookup

(see Chapter 4) or by using a bulk operation similarly to the pseudo-

reliable broadcast (see Chapter 5). Each responsible node can directly

send its results back to the initiator using a reliable channel. Failures

168 8.1. FUTURE WORK

only make it difficult to get a majority, as the result of uncertain nodes

are discarded from the majority.

Bibliography

[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and

M. Hauswirth. The Essence of P2P: A Reference Architecture for

Overlay Networks. In Proceedings of the 5th International Conference

on Peer-To-Peer Computing (P2P’05), pages 11–20. IEEE Computer

Society, 2005.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a self-

organizing structured P2P system. SIGMOD Record, 32(3):29–33,

2003.

[3] K. Aberer, A. Datta, and M. Hauswirth. Route Maintenance Over-

heads in DHT Overlays. In 6th Workshop on Distributed Data and

Structures (WDAS’04), Lausanne, Switzerland, July 2004. Carleton-

Scientific.

[4] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron.

Practical Locality-Awareness for Large Scale Information Sharing.

In Proceedings of the 4th International Workshop on Peer-to-Peer Systems

(IPTPS’05), volume 3640 of Lecture Notes in Computer Science (LNCS),

pages 173–181, London, UK, 2005. Springer-Verlag.

[5] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f):

A Family of Low Communication, Scalable and Fault-Tolerant In-

frastructures for P2P Applications. In Proceedings of the 3rd Interna-

tional Workshop on Global and Peer-To-Peer Computing on Large Scale

Distributed Systems (CCGRID’03), pages 344–350, Tokyo, Japan, May

2003. IEEE Computer Society.

[6] L. O. Alima, A. Ghodsi, P. Brand, and S. Haridi. Multicast in

DKS(N, k, f) Overlay Networks. In The 7th International Conference

on Principles of Distributed Systems (OPODIS’03), volume 3144 of Lec-

ture Notes in Computer Science (LNCS), pages 83–95. Springer-Verlag,

2004.

169

170 BIBLIOGRAPHY

[7] L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured

Peer-to-Peer Overlay Networks. In Post-proceedings of Global Com-

puting, Lecture Notes in Computer Science (LNCS), pages 223–250.

Springer Verlag, 2004.

[8] L. O. Alima, S. Haridi, A. Ghodsi, S. El-Ansary, and P. Brand. Self-*

Properties in Distributed K-ary Structured Overlay Networks. In

Proceedings of SELF-STAR:International Workshop on Self-* Properties

in Complex Information Systems, Bertinoro, Italy, May 2004.

[9] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A commu-

nication subsystem for high availability. In Proceedings of 22nd In-

ternational Symposium on Fault Tolerant Computing (FTCS’92), pages

76–84, Boston, MA, USA, 1992. IEEE Computer Society.

[10] M. Amnefelt and J. Svenningsson. Keso - A Scalable, Reliable

and Secure Read/Write Peer-to-peer File System. Master’s thesis,

KTH/Royal Institute of Technology, Stockholm, Sweden, 2004.

[11] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient Overlay Networks. In Proceedings of the 18th ACM Sympo-

sium on Operating Systems Principles (SOSP’01), pages 131–145. ACM

Press, 2001.

[12] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queires for Grid

Information Services. In Proceedings of the 2nd International Con-

ference on Peer-To-Peer Computing (P2P’02), pages 33–40, Linkping,

Sweden, September 2002. IEEE Computer Society.

[13] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-

lations, and Advanced topics. Wiley series on parallel and distributed

computing. John Wiley & Sons, second edition, 2004.

[14] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker,

I. Stoica, and M. Walfish. A Layered Naming Architecture for the

Internet. In Proceedings of the ACM SIGCOMM 2004 Symposium on

Communication, Architecture, and Protocols, pages 343–352, Portland,

OR, USA, March 2004. ACM Press.

[15] Bamboo. http://bamboo-dht.org/, 2006.

BIBLIOGRAPHY 171

[16] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting

Scalable Multi-Attribute Range Queries. In Proceedings of the ACM

SIGCOMM 2004 Symposium on Communication, Architecture, and Pro-

tocols, pages 353–366, Portland, OR, USA, March 2004. ACM Press.

[17] K. P. Birman and T. A. Joseph. Reliable communication in the pres-

ence of failures. ACM Transactions on Computer Systems (TOCS),

5(1):47–76, 1987.

[18] C. Blake and R. Rodrigues. High availability, scalable storage, dy-

namic peer networks: Pick two. In Proceedings of the 9th Workshop

on Hot Topics in Operating Systems (HotOS’03), pages 1–6. USENIX,

2003.

[19] E. Brewer. Towards Robust Distributed Systems, invited talk at the

19th Annual ACM Symposium on Principles of Distributed Com-

puting (PODC’00), 2000.

[20] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Row-

stron. Virtual Ring Routing: Network Routing Inspired by DHTs.

In Proceedings of the ACM SIGCOMM 2006 Symposium on Commu-

nication, Architecture, and Protocols, pages 351–362, New York, NY,

USA, 2006. ACM Press.

[21] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Sto-

ica. ROFL: Routing on Flat Labels. In Proceedings of the ACM SIG-

COMM 2006 Symposium on Communication, Architecture, and Proto-

cols, pages 363–374, New York, NY, USA, 2006. ACM Press.

[22] M. Castro, M. Costa, and A. Rowstron. Should we build Gnutella on

a structured overlay? SIGCOMM Computing Communication Review,

34(1):131–136, 2004.

[23] M. Castro, M. Costa, and A. Rowstron. Debunking Some Myths

About Structured and Unstructured Overlays. In Proceedings of the

2nd USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

[24] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.

SCRIBE: A large-scale and decentralised application-level multi-

cast infrastructure. IEEE Journal on Selected Areas in Communica-

172 BIBLIOGRAPHY

tions (JSAC) (Special issue on Network Support for Multicast Communi-

cations), pages 1489–1499, 2002.

[25] J. Cates. Robust and Efficient Data Management for a Distributed

Hash Table. Master’s thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, May 2003.

[26] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2):225–267, 1996.

[27] J. Chang and N. F. Maxemchuk. Reliable Broadcast Protocols. ACM

Transactions on Computer Systems (TOCS), 2(3):251–273, 1984.

[28] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,

S. Shenker, and J. Hellerstein. A case study in building layered

DHT applications. In Proceedings of the ACM SIGCOMM 2005 Sym-

posium on Communication, Architecture, and Protocols, pages 97–108,

New York, NY, USA, 2005. ACM Press.

[29] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks.

ACM Computing Surveys, 3(2):67–78, 1971.

[30] B. Cohen. Incentives Build Robustness in BitTorrent. In First Work-

shop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June

2003.

[31] R. Cox, F. Dabek, M. F. Kaashoek, J. Li, and R. Morris. Practical, Dis-

tributed Network Coordinates. In Proceedings of the Second Workshop

on Hot Topics in Networks (HotNets-II), Cambridge, Massachusetts,

November 2003. ACM Press.

[32] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using a

Peer-to-Peer Lookup Service. In Proceedings of the First Interational

Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes in Com-

puter Science (LNCS), pages 155–165, London, UK, 2002. Springer-

Verlag.

[33] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica.

Wide-area cooperative storage with CFS. In Proceedings of the 18th

ACM Symposium on Operating Systems Principles (SOSP’01), pages

202–215, Chateau Lake Louise, Banff, Canada, October 2001. ACM

Press.

BIBLIOGRAPHY 173

[34] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.

Designing a DHT for low latency and high throughput. In Pro-

ceedings of the First USENIX Symposium on Networked Systems Design

and Implementation (NSDI’04), San Francisco, CA, USA, March 2004.

USENIX.

[35] S.E. Deering. Host extensions for IP multicasting. RFC 1054, May

1988. Obsoleted by RFC 1112.

[36] Z. Despotović. Building Trust-Aware P2P Systems: From Trust and

Reputation Management To Decentralized E-Commerce Applications.

PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lau-

sanne, Switzerland, 2005.

[37] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta

Informatica, 1:115–138, 1971.

[38] E. W. Dijkstra. Self Stabilization in spite of Distributed Control.

Communications of the ACM, 17(11):643–644, 1974.

[39] J. Douceur. The Sybil Attack. In Proceedings of the First Interational

Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes in Com-

puter Science (LNCS), pages 251–260, London, UK, 2002. Springer-

Verlag.

[40] S. El-Ansary. Designs and Analyses in Structured Peer-To-Peer Sys-

tems. PhD thesis, KTH/Royal Institute of Technology, Stockholm,

Sweden, 2005.

[41] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. A Framework

for Peer-To-Peer Lookup Services Based on k-ary Search. Technical

Report TR-2002-06, SICS, May 2002.

[42] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient Broad-

cast in Structured P2P Netwoks. In Proceedings of the 2nd Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of

Lecture Notes in Computer Science (LNCS), pages 304–314, Berkeley,

CA, USA, 2003. Springer-Verlag.

[43] C. M. Ellison. The nature of a useable PKI. Computer Networks,

31(9):823–830, 1999.

174 BIBLIOGRAPHY

[44] H. Eriksson. MBONE: the multicast backbone. Communications of

the ACM, 37(8):54–60, 1994.

[45] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many

faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131,

2003.

[46] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM,

32(2):374–382, 1985.

[47] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented

Systems. In Proceedings of IFIP International Conference on Network

and Parallel Computing (NPC), volume 3779 of Lecture Notes in Com-

puter Science (LNCS), pages 2–13, Heidelberg, Germany, November-

December 2005. Springer-Verlag.

[48] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-

Transitive Connectivity and DHTs. In Proceedings of the 2nd Workshop

on Real, Large, Distributed Systems (WORLDS’05), San Francisco, CA,

USA, December 2005. USENIX.

[49] A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. Self-

Correcting Broadcast in Distributed Hash Tables. In Proceedings of

the 15th International Conference, Parallel and Distributed Computing

and Systems, Marina del Rey, CA, USA, November 2003.

[50] A. Ghodsi, L. O. Alima, and S. Haridi. Low-Bandwidth Topology

Maintenance for Robustness in Structured Overlay Networks. In

Proceedings of the 38th Annual Hawaii International Conference on Sys-

tem Sciences (HICSS’04). IEEE Computer Society, 2004.

[51] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for

Structured Peer-to-Peer Systems . In Proceedings of the 3rd Interna-

tional VLDB Workshop on Databases, Information Systems and Peer-to-

Peer Computing (DBISP2P’05), volume 4125 of Lecture Notes in Com-

puter Science (LNCS). Springer-Verlag, 2005.

[52] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. ACM Special

BIBLIOGRAPHY 175

Interest Group on Algorithms and Computation Theory News, 33(2):51–

59, 2002.

[53] S. Girdzijauskas, A. Datta, and K. Aberer. Oscar: Small-world over-

lay for realistic key distributions. In Proceedings of the 4th Interna-

tional VLDB Workshop on Databases, Information Systems and Peer-to-

Peer Computing (DBISP2P’06). Springer-Verlag, 2006.

[54] Gnutella. http://www.gnutella.com, 2006.

[55] P. B. Godfrey and I. Stoica. Heterogeneity and Load Balance in

Distributed Hash Tables. In Proceedings of the 24th Annual Joint

Conference of the IEEE Computer and Communications Societies (IN-

FOCOM’05), pages 596–606, Miami, FL, USA, March 2005. IEEE

Computer Society.

[56] R. Guerraoui and L. Rondrigues. Introduction to Reliable Distributed

Programming. Springer-Verlag, Heidelberg, Germany, 2006.

[57] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahor-

jan. Measurement, Modeling, and Analysis of a Peer-to-Peer File-

Sharing Workload. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP’03), Bolton Landing, NY, USA,

October 2003. ACM Press.

[58] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica. The impact of DHT routing geometry on resilience

and proximity. In Proceedings of the ACM SIGCOMM 2003 Sympo-

sium on Communication, Architecture, and Protocols, pages 381–394,

New York, NY, USA, 2003. ACM Press.

[59] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Ke-

lips: Building an Efficient and Stable P2P DHT Through Increased

Memory and Background Overhead. In Proceedings of the 2nd Inter-

national Workshop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of

Lecture Notes in Computer Science (LNCS), pages 160–169, Berkeley,

CA, USA, 2003. Springer-Verlag.

[60] GWebCache.

http://rfc-gnutella.sourceforge.net/src/gwc-1 9 4.html, 2006.

176 BIBLIOGRAPHY

[61] R. van Renesse H. Johansen, A. Allavena. Fireflies: Scalable Support

for Intrusion-Tolerant Overlay Networks. In Willy Zwaenepoel, edi-

tor, Proceedings of Eurosys 2006. ACM European Chapter, April 2006.

[62] V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant

Broadcasts and Related Problems. Technical Report TR94-1425, Cor-

nell University, 1994.

[63] T. L. Harris. A Pragmatic Implementation of Non-blocking Linked-

Lists. In Proceedings of the 15th International Conference on Distributed

Computing (DISC’01), pages 300–314, London, UK, 2001. Springer-

Verlag.

[64] C. Harvesf and D. Blough. The Effect of Replica Placement on

Routing Robustness in Distributed Hash Tables. In Proceedings of

the 6th International Conference on Peer-to-Peer Computing (P2P’06),

pages 57–6, Washington, DC, USA, 2006. IEEE Computer Society.

[65] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.

Skipnet: A scalable overlay network with practical locality proper-

ties. In Proceedings of the 4th USENIX Symposium on Internet Tech-

nologies and Systems (USITS’03), Seattle, WA, USA, March 2003.

USENIX.

[66] S. Hazel and B. Wiley. Achord: A variant of the chord lookup ser-

vice for use in censorship resistant peer-to-peer publishing systems.

In Proceedings of the First Interational Workshop on Peer-to-Peer Systems

(IPTPS’02). Springer-Verlag, 2002.

[67] J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. In Proceedings of the 29th Interna-

tional Conference on Very Large Data Bases (VLDB’03), pages 321–332.

Morgan Kaufmann, September 2003.

[68] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condi-

tion for concurrent objects. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 12(3):463–492, 1990.

[69] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: a decentralized

peer-to-peer web cache. In Proceedings of the 21st Annual ACM Sym-

BIBLIOGRAPHY 177

posium on Principles of Distributed Computing (PODC’02), pages 213–

222, New York, NY, USA, 2002. ACM Press.

[70] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.

The peer sampling service: experimental evaluation of unstruc-

tured gossip-based implementations. In Proceedings of the 5th

ACM/IFIP/USENIX International Conference on Middleware (MID-

DLEWARE’04), volume 3231 of Lecture Notes in Computer Science

(LNCS), pages 79–98, New York, NY, USA, 2004. Springer-Verlag.

[71] J. Jernberg, V. Vlassov, A. Ghodsi, and S. Haridi. DOH: A Con-

tent Delivery Peer-to-Peer Network. In Proceedings of the 12th Eu-

ropean Conference on Parallel Computing (EUROPAR’06). Springer-

Verlag, 2006.

[72] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal

Distributed Hash Table. In Proceedings of the 2nd Interational Work-

shop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of Lecture Notes

in Computer Science (LNCS), pages 98–107, Berkeley, CA, USA, 2003.

Springer-Verlag.

[73] D. R. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and

R. Panigrahy. Consistent Hashing and Random Trees: Distributed

Caching Protocols for Relieving Hot Spots on the World Wide Web.

In Proceedings of the 29th ACM Symposium on Theory of Computing

(STOC’97), pages 654–663, New York, NY, USA, May 1997. ACM

Press.

[74] D. R. Karger and M. Ruhl. Diminished Chord: A Protocol for

Heterogeneous Subgroup Formation in Peer-to-Peer Networks. In

Proceedings of the 3rd Interational Workshop on Peer-to-Peer Systems

(IPTPS’04), volume 3279 of Lecture Notes in Computer Science (LNCS),

pages 288–297. Springer-Verlag, 2004.

[75] J. M. Kleinberg. The small-world phenomenon: an algorithm per-

spective. In Proceedings of the 32nd ACM Symposium on Theory of Com-

puting (STOC’00), pages 163–170, Portland, OR, USA, 2000. ACM

Press.

178 BIBLIOGRAPHY

[76] B. Koldehofe. Distributed Algorithms and Educational Simulation/Vi-

sualisation in Collaborative Environments. PhD thesis, Chalmers Uni-

versity of Technology, Gothenburg, Sweden, 2005.

[77] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi. A Sta-

tistical Theory of Chord under Churn. In Proceedings of the 4th In-

terational Workshop on Peer-to-Peer Systems (IPTPS’05), volume 3640

of Lecture Notes in Computer Science (LNCS), pages 93–103, London,

UK, 2005. Springer-Verlag.

[78] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-repairing Peer-to-

Peer System Resilient to Dynamic Adversarial Churn. In Proceedings

of the 4th International Workshop on Peer-to-Peer Systems (IPTPS’05),

volume 3640 of Lecture Notes in Computer Science (LNCS), pages 13–

23, London, UK, 2005. Springer-Verlag.

[79] L. Lamport. Proving the Correctness of Multiprocess Programs.

IEEE Transactions on Software Engineering (TSE), 3(2):125–143, 1977.

[80] L. Lamport. On interprocess communication, part I: Basic formal-

ism. Distributed Computing, 1(2):77–85, 1986.

[81] M. Landers, H. Zhang, and K-L. Tan. Peerstore: Better performance

by relaxing in peer-to-peer backup. In Proceedings of the 4th Inter-

national Conference on Peer-To-Peer Computing (P2P’04), pages 72–79.

IEEE Computer Society, 2004.

[82] D. Lehmann and M. Rabin. On the Advantages of Free Choice:

A Symmetric and Fully Distributed Solution to the Dining Philoso-

phers Problem. In Symposium on Principles of Programming Languages

(POPL’81), pages 133–138, 1981.

[83] B. Leong, B. Liskov, and E. Demaine. EpiChord: Parallelizing the

Chord Lookup Algorithm with Reactive Routing State Manage-

ment. In 12th International Conference on Networks (ICON’04), Sin-

gapore, November 2004. IEEE Computer Society.

[84] M. Leslie, J. Davies, and T. Huffman. Replication Strategies for Re-

liable Decentralised Storage. In Proceedings of the First International

Conference on Availability, Reliabilitym and Security (ARES’06), pages

740–747. IEEE Computer Society, 2006.

BIBLIOGRAPHY 179

[85] D. Lewin. Consistent Hashing and Random Trees: Algorithms for

Caching in Distributed Networks. Master’s thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, May 1998.

[86] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-

efficient management of DHT routing tables. In Proceedings of the

2nd USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI’05), Boston, MA, USA, May 2005. USENIX.

[87] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology

Maintenance. In Proceedings of the 18th International Conference on

Distributed Computing (DISC’04), pages 320–334, London, UK, 2004.

Springer-Verlag.

[88] X. Li, J. Misra, and C. G. Plaxton. Brief Announcement: Concurrent

Maintenance of Rings. In Proceedings of the 23rd Annual ACM Sym-

posium on Principles of Distributed Computing (PODC’04), page 376,

New York, NY, USA, 2004. ACM Press.

[89] X. Li, J. Misra, and C. G. Plaxton. Concurrent maintenance of rings.

Distributed Computing (to appear), 2006.

[90] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Analysis of the

Evolution of Peer-to-Peer Systems. In Proceedings of the 21st Annual

ACM Symposium on Principles of Distributed Computing (PODC’02),

pages 233–242, New York, NY, USA, 2002. ACM Press.

[91] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger. Observations

on the Dynamic Evolution of Peer-to-Peer Networks. In Proceedings

of the First International Workshop on Peer-to-Peer Systems (IPTPS’02),

volume 2429 of Lecture Notes in Computer Science (LNCS). Springer-

Verlag, 2002.

[92] D. Loguinov, J. Casas, and X. Wang. Graph-Theoretic Analysis of

Structured Peer-to-Peer Systems: Routing Distances and Fault Re-

silience. IEEE/ACM Transactions on Networking (TON), 13(5):1107–

1120, 2005.

[93] B. T. Loo, R. Huebsch, J. M. Hellerstein, S. Shenker, and I. Stoica.

Enhancing p2p file-sharing with an internet-scale query processor.

180 BIBLIOGRAPHY

In Proceedings of the 30th International Conference on Very Large Data

Bases (VLDB’04), August 2004.

[94] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,

1996.

[95] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic Data Access in

Distributed Hash Tables. In Proceedings of the First Interational Work-

shop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes in Computer

Science (LNCS), pages 295–305, London, UK, 2002. Springer-Verlag.

[96] N. A. Lynch and A. A. Shvartsman. Robust emulation of shared

memory using dynamic quorum-acknowledged broadcasts. In Pro-

ceedings of 27th International Symposium on Fault Tolerant Computing

(FTCS’97), pages 272–281, Washington, DC, USA, 1997. IEEE Com-

puter Society.

[97] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of

Reliability in Peer-to-Peer Overlays. In Proceedings of the 2nd Inter-

national Workshop on Peer-to-Peer Systems (IPTPS’03), volume 2735 of

Lecture Notes in Computer Science (LNCS), pages 21–32, Berkeley, CA,

USA, 2003. Springer-Verlag.

[98] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and

dynamic emulation of the butterfly. In Proceedings of the 21st Annual

ACM Symposium on Principles of Distributed Computing (PODC’02),

New York, NY, USA, 2002. ACM Press.

[99] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed

Hashing in a Small World. In Proceedings of the 4th USENIX Sym-

posium on Internet Technologies and Systems (USITS’03), Seattle, WA,

USA, March 2003. USENIX.

[100] G. S. Manku, M. Naor, and U. Wieder. Know thy neighbor’s

neighbor: The power of lookahead in randomized p2p networks.

In Proceedings of the 36th ACM Symposium on Theory of Computing

(STOC’04), pages 54–63, New York, NY, USA, 2004. ACM Press.

[101] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer In-

formation System Based on the XOR metric. In Proceedings of the

BIBLIOGRAPHY 181

First Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lec-

ture Notes in Computer Science (LNCS), pages 53–65, London, UK,

2002. Springer-Verlag.

[102] S. Milgram. The small world problem. Psychology Today, 2:60–67,

1967.

[103] M. Miller and J. Siran. Moore graphs and beyond: A survey of

the degree/diameter problem. Electronic Journal of Combinatorics,

(DS14):1–61, December 2005.

[104] A. E. Mislove. POST: A Decentralized Platform for Reliable Collab-

orative Applications. Master’s thesis, Rice University, Houston, TX,

USA, December 2004.

[105] A. E. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. Wal-

lach. AP3: A cooperative, decentralized service providing anony-

mous communication. In Proceedings of the 11th ACM SIGOPS Euro-

pean Workshop, Leuven, Belgium, September 2004. ACM Press.

[106] A. E. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. S. Wal-

lach, X. Bonnaire, P. Sens, J.-B. Busca, and L. B. Arantes. Post: A

secure, resilient, cooperative messaging system. In Proceedings of the

9th Workshop on Hot Topics in Operating Systems (HotOS’03), pages

61–66. USENIX, 2003.

[107] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034

(Standard), November 1987. Updated by RFCs 1101, 1183, 1348,

1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035.

[108] M. Naor and U. Wieder. Novel architectures for P2P applications:

the continuous-discrete approach. In Proceedings of the 15th An-

nual ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’03), pages 50–59. ACM Press, 2003.

[109] M. Naor and U. Wieder. Know thy neighbor’s neighbor: Better

routing for skip-graphs and small worlds. In Proceedings of the

3rd Interational Workshop on Peer-to-Peer Systems (IPTPS’04), volume

3279 of Lecture Notes in Computer Science (LNCS), pages 269–277.

Springer-Verlag, 2004.

182 BIBLIOGRAPHY

[110] Napster. http://www.napster.com, 2006.

[111] P2PSIP. http://www.p2psip.org, 2006.

[112] Host Identity Payload.

http://www.ietf.org/html.charters/hip-charter.html, 2006.

[113] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In Pro-

ceedings of the 9th Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA’97), pages 311–320, New York, NY,

USA, 1997. ACM Press.

[114] V. Ramasubramanian and E. Sirer. The Design and Implementation

of a Next Generation Name Service for the Internet. In Proceedings of

the ACM SIGCOMM 2004 Symposium on Communication, Architecture,

and Protocols, Portland, OR, USA, March 2004. ACM Press.

[115] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and Ion Sto-

ica. Load Balancing in Structured P2P Systems. In Proceedings of the

2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), vol-

ume 2735 of Lecture Notes in Computer Science (LNCS), pages 68–79,

Berkeley, CA, USA, 2003. Springer-Verlag.

[116] S. Ratnasamy. A Scalable Content-Addressable Network. PhD thesis,

University of California at Berkeley, Berkeley, CA, USA, 2002.

[117] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

Scalable Content-Addressable Network. In Proceedings of the ACM

SIGCOMM 2001 Symposium on Communication, Architecture, and Pro-

tocols, pages 161–172, San Diego, CA, U.S.A., August 2001. ACM

Press.

[118] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-

level Multicast using Content-Addressable Networks. In Third In-

ternational Workshop on Networked Group Communication (NGC’01),

volume 2233 of Lecture Notes in Computer Science (LNCS), pages 14–

29. Springer-Verlag, 2001.

[119] A. Reinefeld and F. Schintke. Concepts and Technologies for a

Worldwide Grid Infrastructure. In Proceedings of the 8th European

BIBLIOGRAPHY 183

Conference on Parallel Computing (EUROPAR’02), pages 62–72, Lon-

don, UK, 2002. Springer-Verlag.

[120] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the

Embarrassing Slowness of OpenDHT on PlanetLab. In Proceedings

of the 2nd Workshop on Real, Large, Distributed Systems (WORLDS’05),

San Francisco, CA, USA, December 2005. USENIX.

[121] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn

in a DHT. In Proceedings of the 2004 USENIX Annual Technical Con-

ference (USENIX’04), Boston, MA, USA, June 2004. USENIX.

[122] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,

S. Shenker, I. Stoica, and H. Yu. OpenDHT: a public DHT ser-

vice and its uses. In Proceedings of the ACM SIGCOMM 2005 Sym-

posium on Communication, Architecture, and Protocols, pages 73–84,

New York, NY, USA, 2005. ACM Press.

[123] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. In Pro-

ceedings of the 2nd ACM/IFIP International Conference on Middleware

(MIDDLEWARE’01), volume 2218 of Lecture Notes in Computer Sci-

ence (LNCS), pages 329–350, Heidelberg, Germany, November 2001.

Springer-Verlag.

[124] A. Rowstron and P. Druschel. Storage management and caching in

past, a large-scale, persistent peer-to-peer storage utility. In Pro-

ceedings of the 18th ACM Symposium on Operating Systems Princi-

ples (SOSP’01), Chateau Lake Louise, Banff, Canada, October 2001.

ACM Press.

[125] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments

in System Design. ACM Transactions on Computer Systems (TOCS),

2(4):277–288, November 1984.

[126] D. Sandler, A. Mislove, A. Post, and P. Druschel. FeedTree: Sharing

Web micronews with peer-to-peer event notification. In Proceedings

of the 4th Interational Workshop on Peer-to-Peer Systems (IPTPS’05),

volume 3640 of Lecture Notes in Computer Science (LNCS), pages 141–

151, London, UK, 2005. Springer-Verlag.

184 BIBLIOGRAPHY

[127] T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay with-

out Consistent Hashing: Empirical Results. In Proceedings of the 6th

International Workshop on Global and Peer-To-Peer Computing on Large

Scale Distributed Systems (CCGRID’06), page 8. IEEE Computer So-

ciety, 2006.

[128] Y. Shavitt and T. Tankel. Big-bang simulation for embedding net-

work distances in euclidean space. IEEE/ACM Transactions on Net-

working (TON), 12(6):993–1006, 2004.

[129] E. Sit, F. Dabek, and J. Robertson. UsenetDHT: A low overhead

usenet server. In Proceedings of the 3rd Interational Workshop on Peer-

to-Peer Systems (IPTPS’04), volume 3279 of Lecture Notes in Computer

Science (LNCS), pages 206–216. Springer-Verlag, 2004.

[130] E. Sit and R. Morris. Security Considerations for Peer-to-Peer Dis-

tributed Hash Tables. In Proceedings of the First Interational Workshop

on Peer-to-Peer Systems (IPTPS’02), Lecture Notes in Computer Sci-

ence (LNCS), pages 261–269, London, UK, 2002. Springer-Verlag.

[131] H.-E. Skogh, J. Haeggstrom, A. Ghodsi, and R. Ayani. Fast Freenet:

Improving Freenet Performance by Preferential Partition Routing

and File Mesh Propagation. In Proceedings of the 6th International

Workshop on Global and Peer-To-Peer Computing on Large Scale Dis-

tributed Systems (CCGRID’06), page 9. IEEE Computer Society, 2006.

[132] B. Stefansson, A. Thodis, A. Ghodsi, and S. Haridi. MyriadStore.

Technical Report TR-2006-09, Swedish Institute of Computer Sci-

ence (SICS), May 2006.

[133] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker, S. Surana, and

S. Zhuang. Internet Indirection Infrastructure. In Proceedings of the

First Interational Workshop on Peer-to-Peer Systems (IPTPS’02), Lec-

ture Notes in Computer Science (LNCS), pages 191–202, London,

UK, 2002. Springer-Verlag.

[134] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrish-

nan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet

Applications. In Proceedings of the ACM SIGCOMM 2001 Sympo-

sium on Communication, Architecture, and Protocols, pages 149–160,

San Deigo, CA, August 2001. ACM Press.

BIBLIOGRAPHY 185

[135] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications. Technical Report TR-819,

MIT, January 2002.

[136] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer

lookup protocol for internet applications. IEEE/ACM Transactions

on Networking (TON), 11(1):17–32, 2003.

[137] G. Tel. Introduction to Distributed Algorithms. Cambridge University

Press, second edition, 2000.

[138] P. Triantafillou, N. Ntarmos, and T. Pitoura. The RangeGuard:

Range Query Optimization in Peer-to-Peer Data Networks. In 3rd

Hellenic Data Management Symposium (HDMS’04), June 2004.

[139] J. D. Valois. Lock-free linked lists using compare-and-swap. In

Proceedings of the 14th Annual ACM Symposium on Principles of Dis-

tributed Computing (PODC’95), pages 214–222, New York, NY, USA,

1995. ACM Press.

[140] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the web

from DNS. In Proceedings of the First USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI’04), San Francisco,

CA, USA, March 2004. USENIX.

[141] H. Weatherspoon and J. Kubiatowicz. Erasure Coding vs. Replica-

tion: A Quantitative Comparison. In Proceedings of the First Inter-

ational Workshop on Peer-to-Peer Systems (IPTPS’02), Lecture Notes

in Computer Science (LNCS), pages 328–338, London, UK, 2002.

Springer-Verlag.

[142] J. Xu. The Fundamental Tradeoffs Between Routing Table Size

and Network Diameter in Peer-to-Peer Networks. In Proceed-

ings of the 22nd Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM’03), San Francisco, CA, USA,

March/April 2003. IEEE Computer Society.

[143] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and

J. D. Kubiatowicz. Tapestry: A Global-scale Overlay for Rapid Ser-

186 BIBLIOGRAPHY

vice Deployment. IEEE Journal on Selected Areas in Communications

(JSAC), 22(1):41–53, January 2004.

[144] L. Zhou and R. van Renesse. P6P: A Peer-to-Peer Approach to

Internet Infrastructure. In Proceedings of the 3rd Interational Workshop

on Peer-to-Peer Systems (IPTPS’04), volume 3279 of Lecture Notes in

Computer Science (LNCS), pages 75–86. Springer-Verlag, 2004.

187

Swedish Institute of Computer Science

SICS Dissertation Series

1. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PRO-

LOG, 1990.

2. Mats Carlsson, Design and Implementation of an OR-Parallel Prolog En-

gine, 1990.

3. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SAN-

DRA, 1990.

4. Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.

5. Hans A. Hansson, Time and Probability in Formal Design of Distributed

Systems, 1991.

6. Peter Sjödin, From LOTOS Specifications to Distributed Implementa-

tions, 1991.

7. Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.

8. Erik Hagersten, Toward Scalable Cache Only Memory Architectures,

1992.

9. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and Gen-

eral Logic, 1993.

10. Mats Björkman, Architectures for High Performance Communication,

1993.

11. Stephen Pink, Measurement, Implementation, and Optimization of Inter-

net Protocols, 1993.

12. Martin Aronsson, GCLA. The Design, Use, and Implementation of a

Program Development System, 1993.

13. Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-

Based Learning, 1994.

14. Sverker Jansson, AKL — A Multiparadigm Programming Language,

1994.

188

15. Fredrik Orava, On the Formal Analysis of Telecommunication Protocols,

1994.

16. Torbjörn Keisu, Tree Constraints, 1994.

17. Olof Hagsand, Computer and Communication Support for Interactive

Distributed Applications, 1995.

18. Björn Carlsson, Compiling and Executing Finite Domain Constraints,

1995.

19. Per Kreuger, Computational Issues in Calculi of Partial Inductive Defini-

tions, 1995.

20. Annika Waern, Recognising Human Plans: Issues for Plan Recognition

in Human-Computer Interaction, 1996.

21. Björn Gambäck, Processing Swedish Sentences: A Unification-Based Gram-

mar and Some Applications, 1997.

22. Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposi-

tion Methods, 1996.

23. Kristina Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.

24. Bengt Ahlgren, Improving Computer Communication Performance by

Reducing Memory Bandwidth Consumption, 1997.

25. Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Con-

straint Languages, 1997.

26. Jussi Karlgren, Stylistic experiments in information retrieval, 2000.

27. Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared

Memory Systems, 1999.

28. Kristian Simsarian, Toward Human Robot Collaboration, 2000.

29. Lars-Åke Fredlund, A Framework for Reasoning about Erlang Code,

2001.

30. Thiemo Voigt, Architectures for Service Differentiation in Overloaded

Internet Servers, 2002.

189

31. Fredrik Espinoza, Individual Service Provisioning, 2003.

32. Lars Rasmusson, Network capacity sharing with QoS as a financial deriva-

tive pricing problem: algorithms and network design, 2002.

33. Martin Svensson, Defining, Designing and Evaluating Social Naviga-

tion, 2003.

34. Joe Armstrong, Making reliable distributed systems in the presence of

software errors, 2003.

35. Emmanuel Frécon, DIVE on the Internet, 2004.

36. Rickard Cöster, Algorithms and Representations for Personalised Infor-

mation Access, 2005.

37. Per Brand, The Design Philosophy of Distributed Programming Systems:

the Mozart Experience, 2005.

38. Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Sys-

tems, 2005.

39. Erik Klintskog, Generic Distribution Support for Programming Systems,

2005.

40. Markus Bylund, A Design Rationale for Pervasive Computing User Ex-

perience, Contextual Change, and Technical Requirements, 2005.

41. Åsa Rudström, Co-Construction of Hybrid Spaces, 2005.

42. Babak Sadighi Firozabadi, Decentralised Privilege Management for Ac-

cess Control, 2005.

43. Marie Sjölinder, Age-related Cognitive Decline and Navigation in Elec-

tronic Environments, 2006.

44. Magnus Sahlgren, The Word-Space Model: Using Distributional Analy-

sis to Represent Syntagmatic and Paradigmatic Relations Between Words

in High-dimensional Vector Spaces, 2006.

45. Ali Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash

Tables, 2006.

Index

accounting messages, 104

ordinary messages, 104

association of identifiers, 143

asymmetric locking, 44, 47

asynchronous communication, 25

asynchronous network, 23

asynchronous system, 23

atomic register, 167

atomic ring maintenance, 37, 95, 104,

114, 121

backlist, 104

bit complexity, 28, 124, 143, 146

blocking receive, 26, 104

Brewer’s conjecture, 69, 162

broadcast, 111

bulk operation, 123

bulk operation with feedback, 125

bulk owner operation, 123

bulk set, 123

Chord, 4, 29

churn, 5

clockwise direction, 30

contact node, 96

content hashing, 14

control-oriented notation, 26

coverage, 115

cycle, 112

deadlock, 43

designated nodes, 115

destination identifier, 32, 85

DHT, 1, 31

Dining philosophers’ problem, 40

distance, 30

distributed hash table, see DHT

distributed shared memory (DSM),

see shared memory

dynamism, see churn

edge, 112

event-driven notation, 25

failure detector, 24

complete, 24

eventually perfect, 24, 132

eventually strongly accurate, 24

inaccurate, 24

unreliable, 24

failures, 24

Fault-free accounting algorithm, 107

FIFO channels, 23

fully populated system, 97

graph, 112

greedy routing, 93

group communication, 12

hops, 6

host of a lock, 40

identifier space, 29

initiating node, 85

initiator, see initiating node

IP multicast, 13

item, 2

iterative lookup, 85

191

192

JDHT, 151

join, 5

join point, 55, 65

k-ary tree, 97

leaf-set, 139

leave, 5, 37

leave point, 58, 69

linearizability, 167

livelocks, 46

liveness, 41

lock queue, 45

lookup, 2, 32

lookup consistency, 54, 95

loopy ring, 78

message complexity, 28, 146

message passing, 23

multicast, 133

neighbor, 2, 103

network embedding, 9

node, 2, 23

non-redundancy, 115

overlay multicast, 112

overlay network, 2

overshooting, 93

perfect channels, see reliable chan-

nels

periodic stabilization, 33, 75

predecessor, 29, 30

proximity neighbor selection, 9

proximity route selection, 9

PRR scheme, 3

pseudo-reliable broadcast, 131

randomized locking, 53

range queries, 12

reachable nodes, 115

recursive lookup, 85

register, 161

regular register, 162

reliable channels, 23

remote-procedure call (RPC), 27

responsibility, 2, 30, 32

ring, 17, 29, 30

interval notation, 30

routing failure, 40, 103

routing table, 2

safety, 41

self-management, 5

self-stabilization, 160

shared memory, 161

read, 161

write, 161

Simple accounting algorithm, 105

simple broadcast, 117

simple broadcast with feedback, 120

small worlds, 8

starvation, 47

state-machine, 25

step, 25

stretch, 8

structured overlay network, see over-

lay network

successor, 29, 30

successor-list, 33, 139

Sybil attack, 11

symmetric replication, 139, 143

synchronous communication, 26

synthetic coordinates, 9

time complexity, 28

topology maintenance, 6

193

transitive lookup, 85

underlay network, 2

vertex, 112

virtual k-ary tree, 98

virtual nodes, 154

	List of Figures
	List of Algorithms
	Introduction
	What is a Distributed Hash Table?
	Efficiency of DHTs
	Number of Hops and Routing Table Size
	Routing Latency

	Properties of DHTs
	Security and Trust
	Functionality of DHTs
	Applications on top of DHTs
	Storage Systems
	Host Discovery and Mobility
	Web Caching and Web Servers
	Other uses of DHTs

	Contributions
	Lookup Consistency
	Group Communication
	Bulk Operations
	Replication
	Philosophy

	Organization

	Preliminaries
	System Model
	Failures

	Algorithm Descriptions
	Event-driven Notation
	Control-oriented Notation
	Algorithm Complexity

	A Typical DHT
	Formal Definitions
	Interval Notation
	Distributed Hash Tables
	Handling Dynamism

	Atomic Ring Maintenance
	Problems Due to Dynamism
	Concurrency Control
	Safety
	Liveness

	Lookup Consistency
	Lookup Consistency in the Presence of Joins
	Lookup Consistency in the Presence of Leaves
	Data Management in Distributed Hash Tables
	Lookups With Joins and Leaves

	Optimized Atomic Ring Maintenance
	The Join Algorithm
	The Leave Algorithm

	Dealing With Failures
	Periodic Stabilization and Successor-lists
	Modified Periodic Stabilization

	Related Work

	Routing and Maintenance
	Additional Pointers as in Chord
	Lookup Strategies
	Recursive Lookup
	Iterative Lookup
	Transitive Lookup

	Greedy Lookup Algorithm
	Routing with Atomic Ring Maintenance

	Improved Lookups with the k-ary Principle
	Monotonically Increasing Pointers

	Topology Maintenance
	Efficient Maintenance in the Presence of Failures
	Atomic Maintenance with Additional Pointers

	Group Communication
	Related Work
	Model of a DHT
	Desirable Properties
	Broadcast Algorithms
	Simple Broadcast
	Simple Broadcast with Feedback

	Bulk Operations
	Bulk Operations Algorithm
	Bulk Operations with Feedbacks
	Bulk Owner Operations

	Fault-tolerance
	Pseudo Reliable Broadcast

	Efficient Overlay Multicast
	Basic Design
	Group Management
	IP Multicast Integration

	Replication
	Other Replica Placement Schemes
	Multiple Hash Functions
	Successor Lists and Leaf Sets

	The Symmetric Replication Scheme
	Benefits
	Replica Placement
	Algorithms

	Exploiting Symmetric Replication

	Implementation
	DHT as an Abstract Data Type
	A Simple DHT Abstraction
	One Overlay With Many DHTs

	Communication Layer
	Virtual Nodes
	Modularity

	Conclusion
	Future Work

	Bibliography
	Index

