
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Periodic Activity Report - Year Three

Due date of deliverable: July 15, 2009
Actual submission date: July 15, 2009

Start date of project: June 1, 2006
Duration: 36 months
Dissemination level: CO

CONTENTS

Contents

1 Executive summary 4

2 Project objectives and major achievements 5
2.1 Major achievements in the third year 5
2.2 Other results . 7

3 Workpackage progress of the period 8
3.1 Workpackage 1: Structured overlay network and basic mech-

anisms . 8
3.2 Workpackage 2: Service architecture and component model . . 9
3.3 Workpackage 3: Self-managing storage and transactions 9
3.4 Workpackage 4: Self-management services 10
3.5 Workpackage 5: Application requirements and evaluations . . 12
3.6 Workpackage 6: Management, dissemination, and exploitation 14

4 Consortium management 15
4.1 Amendments to the description of work 15

4.1.1 Amendment of Feb. 11, 2009: new demonstrator ap-
plication . 15

4.1.2 Amendment of Apr. 10, 2009: four month project ex-
tension . 15

4.2 Consortium update . 16
4.2.1 Peerialism . 16

4.3 Coordination activities . 17
4.4 Project meetings . 18
4.5 Partner visits . 18

5 Plan for using and disseminating the knowledge 19
5.1 Project workshops . 19

5.1.1 First workshop (Oct. 21, 2008) 19
5.1.2 Second workshop (Sep. 15, 2009) 20

5.2 Advertisements . 21
5.3 Collaboration . 24
5.4 Invited talks and similar activities 25

6 Papers and software 26
6.1 Software releases . 26
6.2 Journal papers . 27
6.3 Dissertations and licentiate theses 27
6.4 Book chapters . 28

SELFMAN Periodic Activity Report - Year Three, Page 2

CONTENTS

6.5 Conference papers . 29
6.6 Future conferences and workshops 29
6.7 Workshop papers, demonstrators, and posters 31

7 Four-page advertisement
(see Section 5.2) 33

8 Article on TheServerSide.com
(see Section 5.4) 38

SELFMAN Periodic Activity Report - Year Three, Page 3

1 EXECUTIVE SUMMARY

1 Executive summary

Managing large distributed applications is extremely difficult to do with con-
ventional technologies, and because of the continued growth and penetration
of the Internet, it will soon become impossible. The SELFMAN project
has built a solution: a scalable self-managing infrastructure that provides a
replicated transactional storage as well as other services needed for self man-
agement. We have built two implementations of this storage, Scalaris and
Beernet, together with their supporting technologies, the Kompics compo-
nent model, the SicSim discrete event simulator, the MyP2PWorld network
and concurrency emulator, and the Mozart Programming System. We have
built a distributed media streaming product, PeerTV, that is being success-
fully commercialized.

In the third year of the project, we have thoroughly studied and evalu-
ated the self-management mechanisms: self configuration, self tuning, self
healing, and self protection. We have developed four applications: one
commercial product, PeerTV, and three demonstrator applications, a Dis-
tributed Wikipedia, a distributed recommendation system (Sindaca), and
a distributed graphic editor for mobile devices (DeTransDraw). We have
evaluated the self-management mechanisms of these applications both qual-
itatively and quantitatively. We have studied self protection (security) for
structured overlay networks. We find that self protection needs an appropri-
ate network topology: Small-World Networks provide an advantageous topol-
ogy compared to exponential structured overlay networks. Finally, we have
built a complete self-configuration framework consisting of three libraries,
WorkflOz (dynamic distributed workflows), FructOz (dynamic deployment
and configuration) and LactOz (dynamic navigation and monitoring). From
this experience, we have distilled a set of Guidelines that give the first pre-
sentation of a detailed methodology for building self-managing systems.

SELFMAN Periodic Activity Report - Year Three, Page 4

2 PROJECT OBJECTIVES AND MAJOR ACHIEVEMENTS

2 Project objectives and major achievements

The overall objective of SELFMAN is to address directly the challenge of
building large distributed systems. The approach taken by SELFMAN is to
build and prove the effectiveness of an application infrastructure for scalable
self-managing applications based on extending a structured overlay network
with self-* services and a transaction protocol.

We briefly recapitulate the project’s first two years. In the first year,
we built two structured overlay networks (DKS and P2PS) and we explored
the programming model and component architecture needed for expressing
their self-management operations. We also defined a transaction protocol
and collected application scenarios. In the second year, we built our first
transactional storage, Scalaris, and built two applications, a Distributed Wiki
and a media streaming application (which would later become PeerTV). The
Distributed Wiki won first prize in the IEEE SCALE 2008 contest. We also
completed the design of the Kompics component model and made a first
implementation. It has become the standard model for SELFMAN.

In the third year, all of this work has matured. We have made a second
implementation of a transactional storage, called Beernet, on top of the re-
cently released Mozart 1.4.0 system, and we ported Beernet to the Android
operating system of the HTC Magic gPhone to support DeTransDraw, a col-
laborative drawing tool. We successfully released the PeerTV product and
we built a demonstrator of a recommendation system, Sindaca. We have
made detailed qualitative and quantitative evaluations of three demonstra-
tors, namely the Distributed Wiki, PeerTV, and DeTransDraw. We have
worked on the four main self-* services and how to combine them. We have
distilled this work into a first methodology for building self-managing appli-
cations.

2.1 Major achievements in the third year

In Year 3, we have achieved the following main results:

• Transactional store. We made a public release of the first open-source
version of Scalaris (transactional key-value store). The complete code
is available under the Apache License at scalaris.googlecode.com.

• Distributed media streaming. We made the PeerTV product for dis-
tributed media streaming. Peerialism is currently in the process of
being acquired by GGF for the PeerTV technology (see Section 4.2.1).

SELFMAN Periodic Activity Report - Year Three, Page 5

2 PROJECT OBJECTIVES AND MAJOR ACHIEVEMENTS

• Component model. We made a public release of the Kompics implemen-
tation at kompics.sics.se. A Peer-to-Peer component framework was
implemented together with tools for evaluating P2P systems. Real sys-
tem implementations (in Kompics) can now be executed both in repro-
ducible simulation and real-time emulation, locally, or in distributed de-
ployment. KTH(P2) validated the Kompics component framework by
using it to prepare and support lab assignments in two courses on dis-
tributed systems: Advanced Course in Distributed Systems (ID2203)
and Distributed Systems, Peer-to-Peer and Grids (ID2210).

• Qualitative and quantitative assessment methodologies. FT R&D(P4),
Peerialism(P6), ZIB(P5), and UCL(P1) completed the definition of a
generic, qualitative, and macroscopic methodology for assessing auto-
nomic computing systems. We applied this methodology to the three
Selfman application, namely PeerTV from Peerialism(P6), Scalaris from
ZIB(P5), and the gPhone application from UCL(P1). We also made
progress in the quantitative evaluation of autonomic features of com-
puting systems. We highlight some problems that remain to be solved
for doing a generic quantitative benchmark of local autonomic behav-
iors.

• Self-configuration services. We completed the development of a self-
configuration framework, including the completion of a third library
(WorkflOz) to complement the FructOz and LactOz libraries with the
definition of active and self-configurable workflows, and the formal spec-
ification of a deployment reference model which provides a language-
independent definition of basic functionality required for supporting
automated deployment and (re)configuration of component-based dis-
tributed systems. The FructOz and LactOz libraries are documented
as part of C. Taton’s Ph.D. thesis, which was successfully defended on
Nov. 2008.

• Self-healing services. We completed development of a self-healing frame-
work for distributed clusters. It builds on the Jade autonomous man-
agement framework to provide support for the automated recovery from
failures in a cluster system, including failures occurring in the manage-
ment subsystem itself. The work was the subject of the Ph.D. thesis
of S. Sicard, which was successfully defended in March 2009.

• Self-tuning mechanisms. We designed and evaluated in Scalaris a de-
centralized algorithm for load balancing on a structured overlay net-
work. The algorithm is fair: the load of individual nodes is close to

SELFMAN Periodic Activity Report - Year Three, Page 6

2 PROJECT OBJECTIVES AND MAJOR ACHIEVEMENTS

the average system load. The algorithm extends Karger’s algorithm (in
which nodes share load with randomly chosen nodes) with an operation
that allows nodes to change position in the overlay, so that the nodes
adapt dynamically to better fit the key distribution.

• Self-protection mechanisms. We investigated why Small World Net-
works (SWN) are a better alternative to structured overlay networks
(SON) for some security aspects. We showed that SWNs are less effi-
cient thant SONs but still have reasonable performance and can survive
node failures like SONs. We showed that real-world social networks
have properties similar to SWNs and have natural resilience to Sybil
attacks. We developed several defenses against the poisoning attack for
SWNs, which can seriously affect the node reorganization algorithm
used to get efficient routing. In addition to the work on SWNs, we
developed a credibility infrastructure for Wikipedia which is suitable
for the open and anonymous nature of Wikipedia.

• Methodology for building self-managing applications. Based on the ex-
perience in SELFMAN and aided by collaboration with GRID4ALL,
we completed a first methodology for building self-managing applica-
tions. The methodology covers all four primary self-* properties and
their interactions and lays the groundwork for future work in self man-
agement.

2.2 Other results

In addition to these major results, we have a series of other results that fit
into our overall goal of building self-managing applications.

• KTH(P2) finalized the work on handling network partitioning and
mergers for structured overlays.

• Peerialism(P6) developed a tool, NATcracker, to deal with Network
Address Translators and Firewalls.

• KTH(P2) and ZIB(P5) optimized the Scalaris system by reducing the
validation phase of the commit protocol from 6 to 4 communication
steps.

• INRIA(P3) worked on formalizing in Alloy its deployment model, which
is independent of the programming language.

SELFMAN Periodic Activity Report - Year Three, Page 7

3 WORKPACKAGE PROGRESS OF THE PERIOD

• INRIA(P3) started the development of a framework for deploying and
configuring applications in a large-scale WAN in the presence of churn.

• UCL(P1) built a transactional store, called Beernet, that extends the
Paxos-based transaction algorithm used in Scalaris with notifications
and early commit. Beernet is implemented using the Mozart Program-
ming System.

• UCL(P1) released version 1.4.0 of the Mozart Programming System,
which provides an advanced network-transparent distribution layer that
handles failures using fault streams. Mozart was used to build Beernet.

• UCL(P1) built a prototype of a decentralized collaborative drawing tool
on a gPhone by porting Mozart and Beernet to the Android operating
system.

3 Workpackage progress of the period

This section gives for each workpackage the objectives, the progress made
during the period, the (eventual) deviations and corrective actions, the de-
liverables, and the milestones. The progress is broken down per partner and
a brief explanation of each partner’s work is given.

3.1 Workpackage 1: Structured overlay network and
basic mechanisms

Workpackage 1 was finished at M24 and has achieved its objectives. Minor
work in the subject of this workpackage has been done to maintain the results
of this workpackage for the other workpackages (e.g., bug fixes and small
extensions to the structured overlay networks). This work is counted as part
of the other workpackages.

Objectives To design and implement a structured overlay network that
provides the basic self management abilities of node failure/removal/addi-
tion, and that provides the self-management primitives (detectors and actu-
ators) needed by the service architecture of WP2.

SELFMAN Periodic Activity Report - Year Three, Page 8

3 WORKPACKAGE PROGRESS OF THE PERIOD

3.2 Workpackage 2: Service architecture and compo-
nent model

Workpackage 2 was completed at M24, except for one line of ongoing work,
on the Kompics P2P framework, that will result in a M40 deliverable (see
second project amendment in Section 4.1).

Objectives To design and implement a distributed component architec-
ture with the basic primitives needed for self management. The component
architecture uses the structured overlay network of WP1 as its foundation.

Progress A fairly stable implementation of the SELFMAN architecture
and component framework were publicly released in the Kompics open source
project (kompics.sics.se).

We developed a novel type system for preventing the occurrence of certain
configuration errors in component-based communication systems. The work
has been applied to two communication frameworks (Dream, developed at
INRIA, and Click, developed at MIT). The type system should readily apply
to the checking of Kompics v2 configurations.

Deviations and corrective actions None.

Deliverables No deliverables at M36.

Milestones No milestones at M36.

3.3 Workpackage 3: Self-managing storage and trans-
actions

Objectives To design and build a self-managing storage service that pro-
vides data replication and the ability to perform transactions. This service
will be built on top of the structured overlay network of WP1 and using the
component model of WP2. This service is the foundation of the multi-tier
application of WP5.

Progress KTH(P2) and ZIB(P5) have worked on designing a component
architecture for the transactional DHT algorithms, using the Kompics com-
ponent model (D3.1c). A Kompics implementation of the transactional key-
value store is currently in progress (the implementation will be completed by
the review date after M40). UCL(P1) has extended the transaction algorithm

SELFMAN Periodic Activity Report - Year Three, Page 9

3 WORKPACKAGE PROGRESS OF THE PERIOD

with early commit and notifications. UCL(P1) and ZIB(P5) have worked on
visualization tools for the transaction algorithm. ZIB(P5) has completed an
open-source release of Scalaris.

Deviations and corrective actions None.

Deliverables

• D3.1c (M30): Final report on formal models for transactions over
structured overlay networks.

• D3.2b: Report on replicated storage service over a structured overlay
network.

• D3.3b: Report on simple database query layer for replicated storage
service.

Milestones No milestones at M36.

3.4 Workpackage 4: Self-management services

Objectives To design and implement the self-management services needed
by multi-tier applications. This includes service configuration, reconfigura-
tion, deployment, upgrading during execution, and so forth. We will formal-
ize the self-management services and investigate under what conditions their
behavior is convergent.

Progress The work concentrated on the four self-* services. We briefly
summarize the work for the four categories, self configuration, self healing,
self tuning, and self protection.

Basic mechanisms for self configuration (D4.1b) and self healing (D4.2b)
were implemented in the Kompics public release. The work on self healing of
overlay networks (in the face of network partitions) has been completed by
designing efficient algorithms for the merging of partitioned overlay networks.
An important component in managing peer-to-peer networks is to handle
NAT traversal. KTH(P2) together with Peerialism(P6) classified all types of
NATs and specified the major methods for the discovery of NAT properties
and their traversal. Peerialism(P6) developed a technique for NAT traversal
which is being used as part of their live-streaming platform PeerTV. We also
have a preliminary methodology for using different types of feedback loops
in self managing of distributed systems.

SELFMAN Periodic Activity Report - Year Three, Page 10

3 WORKPACKAGE PROGRESS OF THE PERIOD

We also worked on self-configurable workflows and complemented the
FructOz and LactOz libraries with a third library, WorkflOz, which allows
the construction of self-configurable workflows. This library can be used on
its own to organize an application as a set of distributed cooperating activi-
ties, and in conjunction with FructOz and LactOz to build component-based
applications with complex deployment and (re)configuration capabilities.

For self healing, we completed the development of a software framework
for cluster systems. This framework builds on the Jade management frame-
work to provide support for automatic recovery of failures in a cluster system,
including failures occurring in the management subsystem itself. The self-
healing framework has been successfully applied to legacy systems, such as
a J2EE application server cluster and an NFS file server cluster. The self-
healing framework is documented in D4.2b and is presented in detail in S.
Sicard’s Ph.D. thesis, defended in March 2009.

For self tuning (load balancing), we have developed two algorithms: using
workload and key distribution aware placement of nodes and using global
knowledge to reduce bandwidth consumption.

For self protection, we developed self-protection mechanisms that focus
on Small-World Networks, in the context of studying how to improve the net-
work topology for security. We developed some self-protection mechanisms
to help protect SWN mechanisms against some poisoning attacks. We also
extended the binary authentication protection mechanism in the second year
to extend to application-specific files which could be exploited by an attack.

In addition, we made the following progress:

• We formally specified in Alloy the deployment reference model infor-
mally sketched in Year 2. This provides a programming language-
independent specification of the basic functionality required to sup-
port dynamic deployment and code upgrade in a component-based dis-
tributed system. The reference model formalizes the relations between
executing components and software deployment units which must be
explicitly maintained to ensure cosistent distributed deployment and
code upgrade.

• We investigated the problem of deploying and configuring applications
in a large-scale WAN environment in presence of churn. In particu-
lar, we initiated the development of a framework and protocol for the
dynamic slicing of resources in an overlay network, which includes a
notion of node profile to take into account the resource requirements
of applications and the volatility of nodes. To set up an infrastructure
for dynamic slicing of resources in a real-world WAN environment, we

SELFMAN Periodic Activity Report - Year Three, Page 11

3 WORKPACKAGE PROGRESS OF THE PERIOD

have investigated the question of building a NAT-resilient gossip-based
peer-sampling service. Part of the self-deployment and configuration
framework is described in C. Taton’s Ph.D. thesis, defended in Nov.
2008. The formal specification of the deployment reference model and
the WorkflOz library are described in deliverable D4.1b.

Deviations and corrective actions Progress on self configuration in
large-scale WAN systems at INRIA was slower than expected. The problem
is more complicated than we originally thought. It now appears published
dynamic slicing protocols can not be readily exploited for our purposes and
that a combination of protocols are required, including a protocol for ac-
countability. No corrective action has been taken except acknowledging the
difficulty.

Deliverables

• D4.1b: Second report on self-configuration support.

• D4.1c: Self-configuration support (software).

• D4.2b: Second report on self-healing support.

• D4.2c: Self-healing support (software).

• D4.3b: Second report on self-tuning support.

• D4.3c: Self-tuning support (software).

• D4.4b: Self-protection support (software).

Milestones

• M36: Finished self-* services on architectural framework.

3.5 Workpackage 5: Application requirements and eval-
uations

Objectives To build a two-tier application using the service architecture
of WP2 and the storage service of WP3, self-managed using the services of
WP4. To evaluate and compare standard and self-managing versions of the
application. To evaluate and compare the J2EE and Mozart implementations
of the application.

SELFMAN Periodic Activity Report - Year Three, Page 12

3 WORKPACKAGE PROGRESS OF THE PERIOD

Progress Led by FT R&D(P4), we defined the evaluation framework (method-
ology and process) and then we applied it to the SELFMAN applications.
This resulted in the deliverables relative to the qualitative (D5.4a) and quan-
titative (D5.4b) assessment of self-managing (autonomic) features.

We developed a self-protection infrastructure that gives enhanced security
for Wikipedia (explained in D5.6). One part is a credibility mechanism for
Wikipedia and WikiMedia which employs the infrastructure together with a
MediaWiki extension.

We worked on the MyP2PWorld simulation framework to improve the
network emulation layer by adding support for topologies, routing algorithms,
and NAT techniques.

We ported Mozart and Beernet to the Android operating system of the
HTC Magic gPhone. This port was not trivial because of the primitive C++
support in Android (Mozart is written in C++) and because we needed to
create a new graphics binding (Android does not support tcl/tk, Mozart’s
graphics subsystem). We then modified the TransDraw application to use
Beernet and to run on the ported Beernet.

Deviations and corrective actions The two applications developed are
a distributed Wikipedia-clone based on Scalaris (D5.2b) and a community-
driven recommendation system for Beernet (D5.3). Deliverable D5.3 was
developed solely by UCL(P1) with no contribution from INRIA(P3). IN-
RIA(P3) focused on WP4 in Year 3 and had reduced participation in WP5.
Deliverable D5.6 does not have any security evaluation for Peerialism(P6),
for three reasons: (1) No person-months were allocated for Peerialism(P6) for
this work, (2) Peerialism joined the project late and concentrated its efforts
on NATs, Kompics, MyP2PWorld, and the autonomic evaluations, and (3)
Peerialism has been preoccupied by the recent acquisition procedure initiated
by GGF (see Section 4.2.1).

Deliverables

• D5.2b: Demonstrator application for J2EE (software).

• D5.3: Demonstrator application for Mozart (software).

• D5.4a: Qualitative evaluation of self-management properties.

• D5.4b: Quantitative evaluation of self-management properties.

• D5.6: Evaluation of security mechanisms.

• D5.7: Guidelines for developing self-managing applications.

SELFMAN Periodic Activity Report - Year Three, Page 13

3 WORKPACKAGE PROGRESS OF THE PERIOD

• D5.8: Self-managing distributed theater application on mobile devices.

Milestones

• M36: Finished dynamic WWW server application (note: this concerns
the two demonstrator applications).

• M36: Understand effectiveness of self-* services for the application.

3.6 Workpackage 6: Management, dissemination, and
exploitation

Objectives To manage the project scientifically and administratively. To
maximize the scientific progress. To disseminate the results, including as
Open Source software. To collaborate with other projects.

Progress We organized the second project workshop (see Section 5.1.2)
that will be held in conjunction with SASO on Sep. 15, 2009. We made
several advertisements of the projects in different media (see Section 5.2). We
gave invited talks and published the project results as papers and software
(see Section 6). We made two project amendments (see Section 4.1): first, we
added a demonstrator application for mobile devices (gPhones) and second,
we made a project extension for four months.

Deviations and corrective actions The current workshop is the second,
not third, because no workshop was held in the first year. Deliverable D6.3
is given as part of this Periodic Activity Report (Sections 5 and 6).

Deliverables

• D6.1d: Third project workshop (actually the second).

• D6.3: Dissemination and use report.

• D6.5c: Final progress and assessment report with lessons learned.

Milestones

• M36: Understand general principles of self management.

• M36: Underswtand effectiveness of two platform implementation.

SELFMAN Periodic Activity Report - Year Three, Page 14

4 CONSORTIUM MANAGEMENT

4 Consortium management

There were no major problems in the project management during Year 3.
We give a summary of the project status, its management and follow-up
activities.

4.1 Amendments to the description of work

In this period we have made two amendments to the Description of Work:
the first to add a demonstrator application for mobile devices and the second
to extend the project for four months.

4.1.1 Amendment of Feb. 11, 2009: new demonstrator applica-
tion

This amendment adds a new demonstrator application, a distributed collab-
orative work application for mobile devices, using SELFMAN’s transactional
storage built on top of a structured overlay network. The budget and person-
months per partner are unchanged with this amendment. The application
will use Beernet, the Mozart implementation of the scalable storage service
of WP3. We will port Mozart to the Android operating system of the HTC
Magic mobile phone (gPhone). We will use up to 10 gPhones from the
UCL(P1) budget to develop and test the application. We will extend the
transactional protocol of Beernet to add notifications and early commit, two
properties which are needed for the mobile application.

• T5.8 (new task, UCL(P1) 3 person-months): This task will build an
application for mobile devices (specifically, gPhones and laptop com-
puters) that demonstrates the self-managing transactional storage of
WP3.

• D5.8 (new deliverable for M36): Self-managing distributed theatre ap-
plication on mobile devices.

4.1.2 Amendment of Apr. 10, 2009: four month project extension

This amendment extends the project for four months, to a total of 40 months.
The budget per partner is unchanged and the total person-months is in-
creased from 317 to 328 (an increase of 3.5%). The reason for this amend-
ment is based on the observation that the project is making good progress
and has a small budget surplus at month 36. We therefore decided to request
a project extension, to provide extended versions of some of the deliverables,

SELFMAN Periodic Activity Report - Year Three, Page 15

4 CONSORTIUM MANAGEMENT

to allow traveling to the project workshop in September, and to provide a
bridge to an eventual follow-up project. This amendment adds the following
deliverables due at month 40:

• D2.4: Simulation and emulation environment for Kompics P2P frame-
work (KTH(P2)). This deliverable is part of task T2.2 and extends
D2.1c.

• D3.4: Optimizations for self-managing global storage services (ZIB(P5)).
This deliverable is part of task T3.2 and extends D3.2b.

• D4.5: Third report on self-configuration support (INRIA(P3)). This
deliverable is part of task T4.1 and extends D4.1b.

• D5.9: Distributed mobile application on gPhone (UCL(P1)). This de-
liverable is part of task T5.8 and extends D5.8.

• D5.10: Design and analysis of Beernet, the Mozart structured overlay
network implementation (UCL). This deliverable is part of task T5.3
and consists of the Ph.D. dissertation of Boris Mejias.

• D5.11: Self-protection mechanisms which provide spam resistance (NUS(P7)).
This deliverable is part of task T5.6 and extends D5.6.

• D6.1d: Final project workshop. This deliverable consists of the final
workshop (second, because there was no workshop the first year) which
will be held in conjunction with SASO 2009 on Sep. 15, 2009. See
Section 5.1.2 for more information on this workshop.

Except for D5.10, these deliverables are extensions of month 36 deliverables.

4.2 Consortium update

The only relevant change in the consortium during Year 3 concerns Peerialism
(see next section).

4.2.1 Peerialism

Peerialism and The Pirate Bay are in process of acquisition by software com-
pany Global Gaming Factory X (GGF). The acquisition is intended to be
complete by Aug. 2009 if all conditions can be met. The following text is
from MarketWatch, Jun. 30, 2009 (www.marketwatch.com):

SELFMAN Periodic Activity Report - Year Three, Page 16

4 CONSORTIUM MANAGEMENT

Following the completion of the acquisitions, GGF intends to
launch new business models that allow compensation to the con-
tent providers and copyright owners. The responsibility for, and
operation of the site will be taken over by GGF in connection
with closing of the transaction, which is scheduled for August
2009.

GGF has entered into an agreement to acquire the shares in
Peerialism AB. Peerialism AB is a software technology company
with its origin in KTH Royal Institute of Technology and SICS,
Swedish Institute of Computer Science and which presently is
owned by the employees. The owners as well as the employees
will continue to work for the company. Peerialism develops solu-
tions for data distribution and distributed storage based on new
p2p-technology. The access to the technology is secured by the
acquisition. The consideration amounts to in aggregate MSEK
100.

“Peerialism has developed a new data distribution technology
which now can be introduced on the best known file - sharing
site, The Pirate Bay. Since the technology is compatible with the
existing it will quickly allow for new values to be created for all
key stakeholders and facilitate new business opportunities,” says
Johan Ljungberg, CEO Peerialism.

“As a result of the acquisitions of The Pirate Bay and Peerialism,
GGF will have a strategic position in the international digital
distribution market. File sharing traffic is estimated to account
for more than half of today’s global Internet traffic. The Pirate
Bay has a global brand and holds a key position with over 20
million visitors and over one billion page views per month,” says
Hans Pandeya, [CEO GGF].

4.3 Coordination activities

• Alexander Reinefeld attended the Internet of Services Collaboration
meeting for FP6 and FP7 projects, Brussels, Sep. 22-23, 2008.

• Alexander Reinefeld and Seif Haridi attended The European Future
Technologies Conference (FET09), Prague, Apr. 21-23, 2009 (see
ec.europa.eu/fet09).

• Seif Haridi was a member of the Future Internet Services panel at The
Future of Internet Conference (FIA09), Prague, May 11-13, 2009.

SELFMAN Periodic Activity Report - Year Three, Page 17

4 CONSORTIUM MANAGEMENT

4.4 Project meetings

We organized the following project meetings during the second year of the
project.

• SELFMAN review, Louvain-la-Neuve and Brussels, Belgium (Oct. 2-3,
2008).

• Paris meeting (Dec. 3-4, 2008). Definition of qualitative and quantita-
tive evaluation methodology for autonomic behaviors and the evalua-
tion process for applying this methodology to the SELFMAN applica-
tions. Participants from FT R&D(P4) and Peerialism(P6).

• Berlin meeting (Dec. 15-16, 2008). Discussion of application level secu-
rity issues. Participants from KTH(P2) (representing Peerialism(P6)),
NUS(P7), ZIB(P5).

• Virtual meeting (conference call) (Feb. 26, 2009). This meeting was
organized by FT R&D(P4) for a presentation and discussion of the
self-management assessment methodology. Definition of a schedule:
Mar. 15 (listing of all local autonomic behaviors), Mar. 31 (qualitative
evaluation of each local autonomic behavior), Apr. 30 (quantitative
evaluation of each local autonomic behavior). Participants from Peeri-
alism(P6), ZIB(P5), UCL(P1), NUS(P7), FT R&D(P4).

• Stockholm meeting (April 28-29, 2009). This major meeting was di-
vided into two submeetings. First submeeting: discussion of deliver-
ables, technical talks, and brainstorming on successor project. Sec-
ond submeeting: discussion to correct problems of evaluating the auto-
nomic behaviors and definition of new planning (May 31 for quantita-
tive evaluation). Participants: KTH(P2), Peerialism(P6), INRIA(P3),
FT R&D(P4), UCL(P1), ZIB(P5), NUS(P7). KTH(P2) attendance:
Seif Haridi, Cosmin Arad, Tallat Shafaat, Fatemeh Rahimian, Amir
Payberah, Ali Ghodsi. INRIA(P3) attendance: Vivien Quema, Jean-
Bernard Stefani. FT R&D(P4) attendance: Xavier Etchevers. UCL(P1)
attendance: Peter Van Roy, Boris Mejias, Yves Jaradin, Jérémie Mel-
chior. Peerialism(P6) attendance: Roberto Roverso. NUS(P7) atten-
dance: Roland Yap.

4.5 Partner visits

• Mikael Högqvist (ZIB(P5)) made several visits to KTH(P2) and one
visit to UCL(P1).

SELFMAN Periodic Activity Report - Year Three, Page 18

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

• John Ardelius (SICS) was invited to UCL(P1) to work with Boris
Mej́ıas on analyzing the relaxed ring structure.

• Boris Mej́ıas made one visit to SICS to work with John Ardelius.

• Seif Haridi (KTH(P2)) made several visits to ZIB(P5) for cooperation
on Scalaris related research.

• Cosmin Arad (KTH(P2)) visited INRIA(P3) (June 25-27, 2008).

• Roland Yap (NUS(P7)) visited ZIB(P5) to work on security issues.

5 Plan for using and disseminating the knowl-

edge

In Year 3 we organized a project workshop, placed two new advertisements
(a two-page spread and a Web advertisement), collaborated with three Euro-
pean projects, and made many invited presentations on SELFMAN results.
Results are presented on the SELFMAN Wiki at www.ist-selfman.org (log
on with user selfman and password selfman).

5.1 Project workshops

5.1.1 First workshop (Oct. 21, 2008)

The first SELFMAN workshop, Decentralized Self Management for Grids,
P2P, and User Communities, was held in conjunction with SASO 2008 in
Venice, Italy, Oct. 20-24, 2008:

www.ist-selfman.org/wiki/index.php/SelfmanWorkshop

The workshop was co-sponsored by the SELFMAN and GRID4ALL projects.
The organizing committee of this workship consisted of Peter Van Roy, Marc
Shapiro, and Seif Haridi. The program committee consisted of Gustavo
Alonso, Seif Haridi, Bernardo Huberman, Adriana Iamnitchi, Mark S. Miller,
Pascal Molli, Luc Onana Alima, Nuno Preguiça, Alexander Reinefeld, Marc
Shapiro, Peter Van Roy, and Hakim Weatherspoon. We received 18 submis-
sions, each of which was reviewed by three program committee members,
and we accepted 15 papers. The electronic proceedings of this workshop, 104
pages long, was published by IEEE.

SELFMAN Periodic Activity Report - Year Three, Page 19

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

5.1.2 Second workshop (Sep. 15, 2009)

The second SELFMAN workshop, Architectures and Languages for Self-
Managing Distributed Systems, will be held in conjunction with SASO 2009
in San Francisco, CA, Sep. 14-18, 2009:

www.ist-selfman.org/wiki/index.php/SelfmanWorkshop2009

Important dates for the workshop are:

• Submission of position paper: July 10, 2009 (required for attendance)

• Notification of acceptance: August 5, 2009

• Final copy: August 19, 2009

• Workshop: September 15, 2009

The workshop is sponsored by the SELFMAN project. The organizing com-
mittee consists of Jean-Bernard Stefani, Seif Haridi, and Peter Van Roy. The
keynote speaker will be Terence Kelly, HP Labs, Palo Alto, CA. The program
committee consists of:

• Gordon Blair, Lancaster University, UK

• Pierre Cointe, École des Mines, Nantes, France

• Thierry Coupaye, Orange Labs, France

• Jean-Charles Fabre, Institut National Polytechnique, Toulouse, France

• Seif Haridi, SICS & KTH, Stockholm, Sweden

• Tom Holvoet, Katholieke Universiteit Leuven, Belgium

• Mark Jelasity, University of Szeged, Hungary

• Emre Kiciman, Microsoft Research, Redmond, WA, USA

• Mark S. Miller, Google Research, USA

• Alexander Reinefeld, Zuse Institute, Berlin, Germany

• Bradley Schmerl, Carnegie-Mellon University, Pittsburgh, PA, USA

• Jean-Bernard Stefani, INRIA, Grenoble, France

• Alexander Wolf, Imperial College, London, UK

SELFMAN Periodic Activity Report - Year Three, Page 20

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

• Peter Van Roy, Université catholique de Louvain, Belgium

The goal of the workshop is to bring together researchers and practitioners
interested in the construction of self-managing distributed systems. It will
place the emphasis on software engineering (especially, software architecture
and component-based software engineering) aspects of this construction, in-
cluding models, architectures, languages, control techniques, middleware and
tools that can be used to support the modular and principled building of self-
* distributed systems. Topics of interest for the workshop include (but are
not limited to):

• Component models and architectures for self management.

• Generative and reflective (including aspect-oriented) techniques for self
management.

• Languages for self-managing systems, including formal specification,
architecture description, programming, and domain specific languages.

• Control techniques for self-managing systems, including control-theoretic
and decision-theoretic techniques.

• Coordination and decentralized architectures of control.

• Analysis and verification techniques for self-managing systems.

• Middleware and tool support for self-managing distributed systems.

• Algorithms for distributed self management, including event detection,
distributed control, etc.

Application areas of interest to the workshop include (but are not limited
to): Web services, social networks, cloud computing, P2P systems and ap-
plications, pervasive computing.

5.2 Advertisements

In Year 3, four advertisements appeared for SELFMAN and its results:

• A four-page article, A Scalable, Transactional Data Store for Web 2.0
Services. This article is included at the end of this Activity Report. An
extended version of this article was published as a book chapter (see
Section 6.4) and is included in the appendix of the collected deliverables
for Year 3.

SELFMAN Periodic Activity Report - Year Three, Page 21

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

Figure 1: Advertisement for PeerTV in Research Review

SELFMAN Periodic Activity Report - Year Three, Page 22

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

Figure 2: Advertisement for Scalaris in Research Review

SELFMAN Periodic Activity Report - Year Three, Page 23

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

• A two-page spread in Research Review magazine (Issue 7, Nov. 2008,
pages 26-27). The left page advertises the PeerTV product (see Figure
1) and the right page advertises the Scalaris library (see Figure 2). We
retained the copyright to this two-page spread and we have distributed
it to interested parties.

• A Web advertisement that appeared on the Web portal of PSCA Inter-
national Ltd. (www.publicservice.co.uk) for one year (Dec. 2008 -
Dec. 2009). To see the advertisement, click first the PUBLICATIONS
tab (on top) and then the European Union label (at the left). Then
the advertisement appears in the rightmost column as a clickable box.

• A three-page dissemination article, A Self-Managing Peer-to-Peer Net-
work, which appeared in the magazine eStrategies Projects, published
by British Publishers in June 2008. See the Year 2 Activity Report for
the full text.

5.3 Collaboration

• XtreemOS project (www.xtreemos.org). In this collaboration, a part of
the scalable Scalaris key/value store (namely the DHT and the transac-
tion framework) was used to implement a scalable metadata store and
a publish/subscribe system. As a result of this collaboration Mandriva
is now offering Scalaris RPMs.

• GRID4ALL project (www.grid4all.eu). In this collaboration (with
KTH and Orange Labs) we worked on automated deployment and
deployment on overlay networks. We worked with KTH on devel-
oping a framework for self-managing component-based applications.
The framework extends the Fractal component model by the com-
ponent group abstraction and one-to-any and one-to-all bindings be-
tween components and groups. The framework supports a network-
transparent view of system architecture simplifying designing applica-
tion self-managing code. We exploited ideas from the SELFMAN work
on self configuration to develop the deployment service included in this
framework. We also collaborated on an initial methodology for using
different patterns of feedback loops in system design. This led to the
notions of decomposition and orchestration in deliverable D5.7 (the
Guidelines).

• MANCOOSI project (www.mancoosi.org). MANCOOSI is working on
package management for open-source installations. We have an ongo-

SELFMAN Periodic Activity Report - Year Three, Page 24

5 PLAN FOR USING AND DISSEMINATING THE KNOWLEDGE

ing discussion on how to use the distributed technology of SELFMAN
for two purposes: coherent distributed installation with rollback and
distributed information sharing to improve the efficiency of package
installability solving, which is highly compute-intensive.

5.4 Invited talks and similar activities

• Joe Armstrong. The developer of Erlang, Joe Armstrong, posted an
article about Scalaris on his blog (Jun. 28, 2008). It is available here:

armstrongonsoftware.blogspot.com/2008/06/

itching-my-programming-nerve.html

• Peter Van Roy. The Challenges and Opportunities of Multiple Pro-
cessors: Why Multi-Core Processors are Easy and Internet is Hard,
position statement, panel discussion on Reinventing Audio and Music
Computation for Many-Core Processors, International Computer Mu-
sic Conference (ICMC 2008), Belfast, Ireland, Aug. 24-29, 2008.

• Thorsten Schütt and Alexander Reinefeld. Invited talk on Scalaris,
Google Zurich, Sep. 11, 2008.

• Jean-Bernard Stefani. Participant at the IST Coordination Meeting,
Brussels, Belgium, Sep. 22-23, 2008.

• Thorsten Schütt. Invited talk on Scalaris, Humboldt University, Oct.
10, 2008.

• Seif Haridi. Member of the panel session, Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008),
Venice, Italy, Oct. 20-24, 2008.

• Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. A Scal-
able, Transactional Data Store for Web 2.0 Services: Implementing
Wikipedia with Scalaris, article that appeared on TheServerSide.com,
Nov. 2008. This article is included at the end of this Activity Report.

• Thorsten Schütt. Invited talk on Scalaris, University Kaiserslautern,
Nov. 26, 2008.

• Boris Mej́ıas. Self-Managing Large-Scale Decentralized Systems, pre-
sentation at doctoral symposium, EuroDocInfo 09, University of Mons,
Mons, Belgium, Jan. 22-23, 2009.

SELFMAN Periodic Activity Report - Year Three, Page 25

6 PAPERS AND SOFTWARE

• Florian Schintke and Alexander Reinefeld. Implementing Fault Tol-
erant Services on Structured Overlay Networks: Parts 1 and 2 of the
Messy Details (two talks), Dagstuhl Workshop on Fault Tolerance in
High-Performance Computing and Grids, May 4, 2009.

• Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Network Size Estima-
tion in Structured Overlay Networks, Sixth Swedish National Computer
Networking Workshop (SNCNW ’09), Uppsala, Sweden, May 4-5, 2009.

• Alexander Reinefeld. Invited talk on Scalaris, European Media Labo-
ratory GmbH (EML), Heidelberg, May 9, 2009.

• Seif Haridi. Member of the panel on Future Internet Services, EU
Future of the Internet Conference, Prague, May 11-13, 2009.

• Alexander Reinefeld, Florian Schintke, Thorsten Schütt, and Seif Haridi.
A Scalable, Transactional Data Store for Future Internet Services, EU
Future of the Internet, Prague, May 11-13, 2009.

• Boris Mej́ıas. Self Management of Large-Scale Distributed Systems,
invited talk, Universiteit Antwerpen, Antwerpen, Belgium, May 18,
2009.

• Boris Mej́ıas. Self Management of Large-Scale Distributed Systems, pre-
sentation at Dept. of Computing Science and Engineering, Université
catholique de Louvain, Louvain-la-Neuve, Belgium, Apr. 21, 2009.

• Florian Schintke. Scalaris: Methods for a Globally Distributed Key-
Value Store, Data-Aware Distributed Computing Workshop (DADC
2009), Munich, Jun. 9-13, 2009.

6 Papers and software

This section lists the papers and other publications (including software) that
were funded in whole or part by SELFMAN.

6.1 Software releases

• SicSim discrete event simulator for simulating peer-to-peer overlays.
Public release by KTH(P2) as free software under the GNU GPL ver-
sion 2 on Dec. 2008. Available at www.sics.se/~amir/sicsim. (Note:
this simulator was first called SicsSim; some articles in the deliverables
still have this old name.)

SELFMAN Periodic Activity Report - Year Three, Page 26

6 PAPERS AND SOFTWARE

• Kompics Reactive Component Model for Distributed Computing. Pub-
lic release by KTH(P2) as free software under the GNU GPL version 2
on Feb. 4, 2009. Available at kompics.sics.se.

• Scalaris transactional key-value store. Public release by ZIB(P5) as
open-source software under the Apache License on May 20, 2009. Avail-
able at scalaris.googlecode.com.

• Mozart Programming System version 1.4.0. Public release by UCL(P1)
as open-source software (X11 style license) on July 3, 2008. Available
at www.mozart-oz.org.

Software still under development

• MyP2PWorld application-level network and concurrency emulator. To
be released by Peerialism(P6).

• Beernet transactional key-value store. To be released by UCL(P1) as
open-source software (X11 style license). Available at p2ps.info.ucl.ac.be.
This software was developed in Mozart 1.3.2 and subsequently re-
designed to take advantage of the possibilities of 1.4.0.

• WorkflOz/FructOz/LactOz configuration management libraries. To be
released by INRIA(P3) as free software (LGPL license). Available upon
request. This software was developed in Mozart 1.3.2.

6.2 Journal papers

• Boris Mej́ıas and Peter Van Roy. The Relaxed-Ring: A Fault-Tolerant
Topology for Structured Overlay Networks, Journal of Parallel Process-
ing Letters, Vol. 18(3):411–432, World Scientific, Sep. 2008.

• Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with Net-
work Partitions in Structured Overlay Networks, Journal of Peer-to-
Peer Networking and Applications (PPNA), Springer (to appear).

6.3 Dissertations and licentiate theses

• Christophe Taton. “Vers l’Auto-Optimisation dans les Systèmes Au-
tonomes” (Towards Self-Optimization in Autonomic Systems), Ph.D.
dissertation, Institut Polytechnique de Grenoble, Grenoble, France,
Dec. 2008. Jury: Roger Mohr, Christine Morin, Peter Van Roy,
Jacques Mossière, Sara Bouchenak, Marta Pariño-Mart́ınez.

SELFMAN Periodic Activity Report - Year Three, Page 27

6 PAPERS AND SOFTWARE

• Felix Hupfeld. “Causal Weak-Consistency Replication: A Systems Ap-
proach,” Ph. D. dissertation, Humboldt Universität zu Berlin, Ger-
many, Jan. 28, 2009. Reviewers: Alexander Reinefeld, Marc Shapiro,
Jens-Peter Redlich.

• Sylvain Sicard. “Vers l’Auto-Réparation dans les Systèmes Répartis”
(Towards Self-Healing in Distributed Systems), Ph. D. dissertation,
Université Joseph Fourier, Grenoble, France, Mar. 2009. Advisor:
Jean-Bernard Stefani.

• Tallat Mahmood Shafaat. “Dealing with Network Partitions and Merg-
ers in Structured Overlay Networks,” Licentiate Thesis, KTH School
of Information and Communication Technology, Stockholm, Sweden,
May 2009.

• Cosmin Arad. “Kompics: A Concurrent Component Model for Dis-
tributed Systems,” Licentiate Thesis, KTH School of Information and
Communication Technology, Stockholm, Sweden, 2009 (in prepara-
tion).

6.4 Book chapters

• F. Boyer, N. De Palma, O. Gruber, S. Sicard and J.B. Stefani. A
Self-Repair Architecture for Cluster Systems, chapter in Architecting
Dependable Systems 6, R. de Lemos, J.-C. Fabre, C. Gacek, F. Gad-
ducci, M.H. ter Beek (eds.), Springer, 2009.

• Alexander Reinefeld, Florian Schintke, Thorsten Schütt, and Seif Haridi.
A Scalable, Transactional Data Store for Future Internet Services, chap-
ter in Towards the Future Internet–A European Research Perspective,
G. Tselentis et al. (eds.), IOS Press, 2009.

• Peter Van Roy. Programming Paradigms for Dummies: What Every
Programmer Should Know, chapter in New Computational Paradigms
for Computer Music, G. Assayag and A. Gerzso (eds.), IRCAM/Dela-
tour France, May 2009.

• Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Managing Network Par-
titions in Structured P2P Networks, chapter in Handbook of Peer-to-
Peer Networking, X. Shen, H. Yu, J. Buford, M. Akon (eds.), Springer,
Dec. 2009 (to appear).

SELFMAN Periodic Activity Report - Year Three, Page 28

6 PAPERS AND SOFTWARE

• Yongzheng Wu, Sufatrio, Roland H.C. Yap, R. Ramnath, and Felix
Halim, Establishing Software Integrity Trust: A Survey and Lightweight
Authentication System for Windows, chapter in Trust Modeling and
Management in Digital Environments: from Social Concept to System
Development, Zheng Yan (ed.), IGI Global, Dec. 2009 (to appear).

6.5 Conference papers

• T. Shafaat, M. Moser, A. Ghodsi, T. Schütt, S. Haridi, and A. Reine-
feld. Key-Based Consistency and Availability in Structured Overlay
Networks, Third International ICST Conference on Scalable Informa-
tion Systems (Infoscale’08), Vico Equense, Italy, Jun. 4-6, 2008.

• Peter Van Roy. Overcoming Software Fragility with Interacting Feed-
back Loops and Reversible Phase Transitions, First International Con-
ference on Visions of Computer Science (BCS 08), London, UK, Sep.
22-24, 2008.

• Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Security Issues in
Small World Network Routing, Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice,
Italy, Oct. 20-24, 2008.

• Alfredo Cádiz, Boris Mej́ıas, Jorge Vallejos, Kim Mens, Peter Van Roy,
and Wolfgang de Meuter. PALTA: Peer-to-peer AdaptabLe Topology
for Ambient intelligence, XXVII IEEE International Conference of the
Chilean Computer Science Society (SCCC 2008), Punta Arenas, Chile,
Nov. 13-14, 2008.

6.6 Future conferences and workshops

Accepted submissions

• Michaël Lienhardt, Claudio Antares Mezzina, Alan Schmitt, and Jean-
Bernard Stefani. Typing Component-Based Communication Systems,
IFIP International Conference on Formal Techniques for Distributed
Systems, formed jointly from 11th Formal Methods for Open Object-
Based Distributed Systems and 29th Formal Techniques for Networked
and Distributed Systems (FMOODS/FORTE), Springer LNCS, Lis-
bon, Portugal, Jun. 9-12, 2009.

• Cosmin Arad, Jim Dowling, and Seif Haridi. Developing, Simulating,
and Deploying Peer-to-Peer Systems using the Kompics Component

SELFMAN Periodic Activity Report - Year Three, Page 29

6 PAPERS AND SOFTWARE

Model, Fourth International Conference on COMmunication System
software and middlewaRE (COMSWARE ’09), Dublin, Ireland, Jun.
16-19, 2009.

• Anne-Marie Kermarrec, Alessio Pace, Vivien Quéma, and Valerio Schi-
avoni. NAT-resilient Gossip Peer Sampling, 29th International Confer-
ence on Distributed Computing Systems (ICDCS), Montreal, Quebec,
Jun. 22-26, 2009.

• Boris Mej́ıas, Alfredi Cádiz, and Peter Van Roy. Beernet: RMI-Free
Peer-to-Peer Networks, First International Workshop on Distributed
Objects for the 21st Century, colocated with ECOOP 2009, Genova,
Italy, Jul. 7, 2009.

• Jérémie Melchior, Donatien Grolaux, Jean Vanderdonckt, and Peter
Van Roy. A Toolkit for Peer-to-Peer Distributed User Interfaces: Con-
cepts, Implementation, and Applications, ACM SIGCHI Symposium on
Engineering Interactive Computer Systems (EICS 2009), Pittsburgh,
PA, Jul. 14-17, 2009.

• Roberto Roverso, Sameh El-Ansary, and Seif Haridi. NATCracker:
NAT Combinations Matter, 18th International Conference on Com-
puter Communications and Networks (ICCCN 2009), San Francisco,
CA, Aug. 3-6, 2009.

• Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand, and Seif Haridi.
A Design Methodology for Self-Management in Distributed Environ-
ments, 2009 IEEE International Symposium on Scientific and Engi-
neering Computing (SEC-09), Vancouver, Canada, Aug. 29-31, 2009.

• T. Schütt, M. Hoffmann, F. Schintke, and A. Reinefeld. Gossip-based
Topology Inference for Efficient Overlay Mapping, short paper, Ninth
International Conference on Peer-to-Peer Computing (P2P 2009), Seat-
tle, WA, Sep. 8-11, 2009.

• Cosmin Arad, Jim Dowling, and Seif Haridi. Evaluating P2P Systems
in the Kompics Component Framework, invited talk and demonstra-
tor, Ninth International Conference on Peer-to-Peer Computing (P2P
2009), Seattle, WA, Sep. 8-11, 2009.

• Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Wiki Credibil-
ity Enhancement, Fifth International Symposium on Wikis and Open
Collaboration (WikiSym 2009), Orlando, FL, Oct. 25-27, 2009.

SELFMAN Periodic Activity Report - Year Three, Page 30

6 PAPERS AND SOFTWARE

Submissions in progress

• Xavier Etchevers and Thierry Coupaye. Benchmarking Autonomic Sys-
tems from a Technical and an Economical Perspective, Third Interna-
tional ICST Conference on Autonomic Computing and Communication
Systems (Autonomics 2009), Limassol, Cyprus, Sep. 9-11, 2009.

• Mikael Högqvist. Impact of Non-Uniform Key Distribution and Work-
load in Distributed Key/Value Stores, 5th International Workshop on
Networking Meets Databases (NetDB 2009), colocated with SOSP 2009,
Big Sky, MT, Oct. 14, 2009.

• Florian Schintke, Alexander Reinefeld, and Seif Haridi. Enhanced Paxos
Commit for Transactions on DHTs, 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2009),
Lyon, France, Nov. 3-6, 2009.

6.7 Workshop papers, demonstrators, and posters

• Paolo Costa, Guillaume Pierre, Alexander Reinefeld, Thorsten Schütt,
and Maarten van Steen. Sloppy Management of Structured P2P Ser-
vices, 3rd Workshop on Hot Topics in Autonomic Computing (HotAC),
Chicago, IL, Jun. 2, 2008.

• Tallat M. Shafaat, Thorsten Schütt, Monika Moser, Seif Haridi, Ali Gh-
odsi, and Alexander Reinefeld. Key-Based Consistency and Availabil-
ity in Structured Overlay Networks, poster at 17th International Sym-
posium on High-Performance Distributed Computing (HPDC 2008),
Boston, MA, Jun. 23-27, 2008.

• Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris:
Reliable Transactional P2P Key/Value Store - Web 2.0 Hosting with
Erlang and Java, 7th ACM SIGPLAN Erlang Workshop, Victoria, BC,
Canada, Sep. 2008.

• Boris Mejias, Mikael Högqvist, and Peter Van Roy. Visualizing Trans-
actional Algorithms for DHTs, demonstrator at Eighth International
Conference on Peer-to-Peer Computing (P2P 2008), Aachen, Germany,
Sep. 8-11, 2008.

• Cosmin Arad and Seif Haridi. Practical Protocol Composition, En-
capsulation, and Sharing in Kompics, IEEE SASO Workshop on De-
centralized Self Management for Grid, P2P, and User Communities
(SELFMAN workshop), Venice, Italy, Oct. 21, 2008.

SELFMAN Periodic Activity Report - Year Three, Page 31

6 PAPERS AND SOFTWARE

• Mikael Högqvist, Seif Haridi, Nico Kruber, Alexander Reinefeld, and
Thorsten Schütt, Using Global Information for Load Balancing in DHTs,
IEEE SASO Workshop on Decentralized Self Management for Grid,
P2P, and User Communities (SELFMAN workshop), Venice, Italy, Oct.
21, 2008.

• Boris Mej́ıas, Alfredo Cádiz, Peter Van Roy, and Kim Mens. A Self-
Adaptable Network Topology for Ambient Intelligence, IEEE SASO Work-
shop on Decentralized Self Management for Grid, P2P, and User Com-
munities (SELFMAN workshop), Venice, Italy, Oct. 21, 2008.

• Gustavo Gutiérrez, Boris Mej́ıas, Peter Van Roy, Diana Velasco, and
Juan Torres. WSN and P2P: A Self-Managing Marriage, IEEE SASO
Workshop on Decentralized Self Management for Grid, P2P, and User
Communities (SELFMAN workshop), Venice, Italy, Oct. 21, 2008.

• Felix Halim, Yongzheng Wu, and Roland H.C. Yap. Small World Net-
works as (Semi)-Structured Overlay Networks, IEEE SASO Workshop
on Decentralized Self Management for Grid, P2P, and User Communi-
ties (SELFMAN workshop), Venice, Italy, Oct. 21, 2008.

• Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. A Practical Approach to
Network Size Estimation for Structured Overlays, Third International
Workshop on Self-Organizing Systems (IWSOS 2008), Vienna, Austria,
Dec. 10-12, 2008.

• Mikael Högqvist. Architecture and Self-Tuning of a DISC-system, poster
at TCPP PhD Symposium, IPDPS 2009, Rome, Italy, May 25-29, 2009.

• Boris Mej́ıas, Jérémie Melchior, and Yves Jaradin. DeTransDraw: De-
centralized Transactional Collaborative Drawing, demonstrator in In-
ternet of Service 2009, ICT Challenge 1.2, Collaboration Meeting for
FP6 & FP7 projects, Brussels, Belgium, Jun. 10-11, 2009.

SELFMAN Periodic Activity Report - Year Three, Page 32

7 FOUR-PAGE ADVERTISEMENT
(SEE SECTION 5.2)

7 Four-page advertisement

(see Section 5.2)

SELFMAN Periodic Activity Report - Year Three, Page 33

1

A SCALABLE, TRANSACTIONAL DATA STORE FOR WEB 2.0 SERVICES

IMPLEMENTING WIKIPEDIA WITH SCALARIS

Web 2.0 – the Internet as an information society platform supporting business, recreation and
knowledge exchange – initiated a business revolution. Service providers offer Internet services for
shopping (Amazon, eBay), online banking, information (Google, Flickr, Wikipedia), social
networking (MySpace, Facebook), and recreation (Second Life, online games). In our information
society, Web 2.0 services are no longer a thing
that is just nice to have, but customers today
depend on their continuous availability,
regardless of time and space.

How to cope with such strong demands,
especially in case of interactive community
services that cannot be simply replicated? All
users access the same Wikipedia, meet in the
same Second Life environment and want to
discuss with others via Twitter. Even the
shortest interruption, caused by system
downtime or network partitioning may cause
huge losses in reputation and revenue. Web
2.0 services are not just an added value, but
they must be dependable. Apart from 24/7
availability, providers face another challenge:
they must, for a good user experience, be able
to respond within milliseconds to incoming
requests, regardless whether thousands or
millions of concurrent requests are currently
being served. Indeed, scalability is a key
challenge. Any scalable service, to be
affordable, somehow requires the system to be
self managing (see sidebar).

Our Scalaris system, described below, provides
a comprehensive solution for self managing, scalable data management. In our opinion, Scalaris
and similar systems will be an important core service of future Cloud Computing environments.

Availability is the proportion of time a system
is in a functioning condition. More formally,
availability is a ratio of the expected value of
the uptime of a system to the aggregate of the
expected values of up and down time.
Availability is often specified in a logarithmic
unit called “nines”, which corresponds roughly
to a number of nines following the decimal
point. “Six nines”, for example, denote an
availability of 0.999999, allowing a maximum
downtime of 31 seconds per year.

Scalability refers to the capability of a system
to increase the total throughput under an
increased load when resources are added. A
scalable database management system is one
that can be upgraded to process more
transactions by adding new processors, devices
and storage, and which can be upgraded easily
and transparently without service interrupt.

Self Management refers to the ability of a
system to adjust to changing operating
conditions and requirements without human
intervention at runtime. Self Management
includes self configuration, self healing and self
tuning.

2

As a common key aspect, all Web 2.0 services have to deal with concurrent data updates. Typical
examples are checking the availability of products and their prices, purchasing items and putting
them into virtual shopping carts, and updating the state in multi‐player online games. Clearly,
many of these data operations have to be atomic, consistent, isolated and durable (so‐called ACID
properties). Traditional centralized database systems are ill‐suited for this task, sooner or later
they become a bottleneck for business workflow. Rather, a scalable, transactional data store like
Scalaris is what is needed.

SCALARIS KEY/VALUE STORE

As part of the EU funded SELFMAN1 project we set out to build a distributed key/value store
capable of serving thousands or even millions of concurrent data accesses per second. Providing
strong data consistency in the face of node crashes and hefty concurrent write accesses was one
of our major goals.

With our Scalaris system, we do not attempt to replace current database management systems
with their general, full‐fledged SQL interfaces. Instead our target is to support transactional Web
2.0 services like those needed for Internet shopping, banking, or multi‐player online games. Our
system consists of three layers:

• At the bottom, an enhanced structured overlay network, with logarithmic routing
performance, provides the basis for storing and retrieving keys and their corresponding
values. In contrast to many other overlays, our implementation stores the keys in
lexicographical order. Lexicographical ordering instead of random hashing enables control
of data placement which is necessary for low latency access in multi‐datacenter
environments.

• The middle layer implements data replication. It enhances the availability of data even
under harsh conditions such as node crashes and physical network failures.

1 SELFMAN is a specific targeted research project funded in the 6th framework programme of the EU under
contract no. 34084.

3

• The top layer provides transactional support for strong data consistency in the face of
concurrent data operations. It uses a fast consensus protocol with low communication
overhead that has been optimally embedded into the structured overlay.

Together, these three layers provide a distributed key/value store as a scalable and highly
available service which is an important building block for Web 2.0 applications.

WIKIPEDIA ON SCALARIS

As a challenging benchmark for Scalaris, we implemented the core of Wikipedia, the “free
encyclopedia, that anyone can edit”. Wikipedia runs on three sites. The main one in Tampa is
organized in three layers, the proxy server layer, the web server layer, and the MySQL database
layer. The proxy layer serves as a cache for recent requests, and the web server layer runs the
application logic and issues requests to the data base layer. Wikipedia handles about 50,000
requests per second, from which 48,000 are cache hits in the proxy server layer and 2,000 are
processed by the data base layer. The proxy and the web server layers are embarrassingly parallel
and therefore trivial to scale. From a scalability point of view, only the data base layer is
challenging.

Our implementation uses Scalaris to replace the data base layer. This enables us to run Wikipedia
on geographically distributed sites and to scale to almost any number of hosts. It inherits all the
favorable properties of Scalaris, such as scalability and self management.

The Wikipedia on Scalaris is fast. Using eight servers it executes 2,500 transactions per second. All
operations are performed within transactions to guarantee data consistency and replica
synchronization. Adding more computers improves the performance almost linearly. The public
Wikipedia, in contrast, employs ten servers to execute the 2,000 requests per second on the large
master/slave MySQL database in Tampa.

SELF‐MANAGEMENT

For many Web 2.0 services, the total cost‐of‐ownership is dominated by the costs needed for
personnel to maintain and optimize the service. Scalaris greatly reduces the operation cost with
its built‐in self* properties:

4

• Self healing: Scalaris continuously monitors the hosts it is running on. When it detects a
node crash, it immediately repairs the overlay network and the database. Management
tasks such as adding or removing hosts require minimal human intervention.

• Self tuning: Scalaris monitors the nodes’ workload and autonomously moves items to
distribute the load evenly over the system to improve the response time of the system.
When deploying Scalaris over multiple data‐centers, these algorithms are used to place
frequently accessed items nearby the users.

In traditional database systems these operations require human interference which is error prone
and costly. With Scalaris the same number of system administrators can operate much larger
installations than with legacy databases.

SUMMARY
Scalaris provides a scalable and self managing
transactional key‐value store. We have implemented
Wikipedia using Scalaris. Its scalability and self*
capabilities were demonstrated in the IEEE Scalable
Computing Challenge 2008, where Scalaris won the 1st
prize (see plaque).

Compared to other data services, Scalaris has
significantly lower operating costs. Scalaris and similar
systems will be an important building block for Web 2.0
services and future Cloud Computing environments.

ADDITIONAL INFORMATION

• For the EU project Selfman see http://www.ist‐selfman.org

• The Scalaris code is open source. It is available at http://code.google.com/p/scalaris/.
Additional information (papers, videos) can be found at http://www.zib.de and
http://www.onscale.de.

8 ARTICLE ON THESERVERSIDE.COM
(SEE SECTION 5.4)

8 Article on TheServerSide.com

(see Section 5.4)

SELFMAN Periodic Activity Report - Year Three, Page 38

 email ●●●●●●●●
643866 members! Sign up to stay informed.

Sponsored Links

A new blog from
an industry

insider weekly:
Check out the

Interop blog on
TheServerSide.

All-in-1 Guide:
Plan, develop,
implement an
effective SOA.

Get it today!

Resources

Enterprise Java
Research Library

Get Java white
papers, product

information, case
studies and webcasts

November 2008
Discuss this Article

Global online services such as Amazon, eBay, Myspace, YouTube, and Google serve millions of customers
through tens of thousands of servers located world-wide. On this immense scale, components fail continuously
and it is very difficult to maintain a consistent state while at the same time hiding failures from the application.

Peer-to-peer protocols achieve self-management by replicating services among peers, but these are mostly limited
to write-once/read-many data sharing. To extend them beyond typical file sharing, the support of fast
transactions on distributed hash tables (DHTs) is an important, and until now, elusive piece of functionality.

The Scalaris system, described below, provides a comprehensive solution for self managing, scalable data
management. Scalaris and similar systems may be an important core service of future cloud computing
environments.

As a common key aspect, all Web 2.0 services have to deal with concurrent data updates. Typical examples are
checking the availability of products and their prices, purchasing items and putting them into virtual shopping
carts, and updating the state in multi-player online games. Clearly, many of these data operations have to be
atomic, consistent, isolated and durable (ACID). Traditional centralized database systems are ill-suited for this
task, sooner or later they become a bottleneck for business workflow. Rather, a scalable, transactional data store
like Scalaris is what is needed.

Scalaris Key/Value Store
We set out to build a distributed key/value store capable of serving thousands or even millions of concurrent data
accesses per second. Providing strong data consistency in the face of node crashes and hefty concurrent write
accesses was one of our major goals.

With the Scalaris system, we do not attempt to replace current database management systems with their general,
full-fledged SQL interfaces. Instead our target is to support transactional Web 2.0 services like those needed for
Internet shopping, banking, or multi-player online games. Our system consists of three layers:

At the bottom, an enhanced structured overlay network, with logarithmic routing performance, provides
the basis for storing and retrieving keys and their corresponding values. In contrast to many other overlays,
our implementation stores the keys in lexicographical order. Lexicographical ordering instead of random
hashing enables control of data placement which is necessary for low latency access in multi-datacenter
environments.
The middle layer implements data replication. It enhances the availability of data even under harsh
conditions such as node crashes and physical network failures.
The top layer provides transactional support for strong data consistency in the face of concurrent data
operations. It uses a fast consensus protocol with low communication overhead that has been optimally
embedded into the structured overlay.

These three layers are all implemented in Erlang. Together, they provide a distributed key/value store as a
scalable and highly available service which is an important building block for Web 2.0 applications.

Why use Erlang?
Erlang is a functional programming language. It provides only write-once variables, and is therefore often cited as
the ideal programming language for implementing parallel algorithms. However, Erlang is more than simply a
great programming language – it also makes it very easy to convert parallel programs into distributed ones,
because the concurrency model is based on message passing instead of shared state. By distributing the individual
threads or processes over several nodes, a parallel program becomes a distributed one.

Erlang's message passing style fits the programming abstractions used in research on distributed systems. This
enabled us to directly translate our abstract algorithms for transactions and the P2P layer into Erlang code. The
whole transaction framework comprises only about 2,000 lines of code.

And Erlang's asynchronous message passing style is not the whole story either. Another powerful feature is its

Enterprise Java Community: A Scalable, Transactional Data Store for ... http://www.theserverside.com/tt/articles/article.tss?l=WikipediaWithS...

1 von 3 01.12.2008 14:51

standard library including OTP (Open Telecom Platform) which provides many useful abstractions for coping
with failures. One example is the supervisors which are used to monitor and restart processes in case of node
crashes.

Transaction API for Java and Erlang
The following Java code snippet illustrates the common bank account example where money is transferred from
account A to B. The money transfer is bracketed within a transaction, thereby ensuring atomicity and isolation
from other transactions.

The corresponding Erlang code is slightly more complex, because of the explicit handling of transaction states.
The Erlang example below performs the same money transfer as the Java code.

The Erlang transaction API is more powerful and it exposes all functionality, including the asynchronous
execution. Transactions are expressed as anonymous functions, i.e. pointers to functions like TFun. TFun is a
function, which, when executed, records all reads and writes in a transaction log.

The function do_transaction first calls TFun to gather the transaction log (read phase) and then tries to atomically
commit the recorded changes to the system (commit phase). If a concurrent write operation on one of the
involved items is detected, the transaction is aborted and the user defined FailureFun is executed. Otherwise the
given SuccessFun is called.

The Java API, in contrast, exposes only a subset of the functionality but is more convenient to use.

Demo Application
As a demonstrator application we implemented a subset of the Wikipedia functionality with Scalaris as the
database. The user-facing webservers are standard Java Servlet containers which implement the application logic
and render the WikiText to HTML.

The database backend implements a thin layer for mapping the Wikipedia SQL tables to our data model. The
Scalaris data model is essentially equivalent to a Map<String,String> with support for range queries. For
Wikipedia we had to split its relational scheme into key-value pairs.

Scalability

Enterprise Java Community: A Scalable, Transactional Data Store for ... http://www.theserverside.com/tt/articles/article.tss?l=WikipediaWithS...

2 von 3 01.12.2008 14:51

We tested the performance of Scalaris on an Intel cluster. Each node has two Quad-Core E5420s running at 2.5
GHz and 16GM of main memory. On each physical cluster node, we ran one Erlang virtual machine and 16
Scalaris nodes. The graphs show the performance of modify operations (top graph) and read operations (bottom
graph) with a replication degree of four. The read operation reads a majority of the replicas of one key-value pair
while the modify operation performs a read-modify-write cycle on a key-value pair in a transaction.

The graphs show the number of threads executing the benchmark per node and the number of cluster nodes used.
Note, that for the 100-thread-case, there are actually up to 16*100 threads issuing modify transactions
concurrently. The read as well as the modify scale almost linearly with the number of nodes. To achieve the best
performance, more concurrent data accesses are needed in the modify operation compared to the read operation.

Additional Information
The Scalaris code is open source. It is available at http://code.google.com/p/scalaris/ . Additional information
(papers, videos) can be found at http://www.onscale.de .

PRINTER FRIENDLY VERSION

Ads by Google

Free White Paper on CMDB
Read ASG's CMDB White Paper Now! From The Market Leading CMDB
www.asg.com/CMDB

SwiftMQ High Availability
Test the most advanced JMS HA messaging system today!
www.swiftmq.com

Need an Algorithm?
ScienceOps has answers. Rapid Custom Algorithm development
www.ScienceOps.com

Enterprise Architecture
Low cost, easy to use EA tool TOGAF, Zachman and other frameworks
www.enterprisingarchitecture.com/

Java
Vom IITT (GB) gekürt als „Bildungszentrum des Jahres 2008.“
www.firebrandtraining.de/SCJP

News | Blogs | Discussions | Tech talks | Patterns | Reviews | White Papers | Downloads | Articles | Media kit | About
All Content Copyright ©2007 TheServerSide Privacy Policy

Site Map

Enterprise Java Community: A Scalable, Transactional Data Store for ... http://www.theserverside.com/tt/articles/article.tss?l=WikipediaWithS...

3 von 3 01.12.2008 14:51

