THE ADVENTURES OF

SEI‘F“AN

Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D.2.1a
Report on basic computation model

Due date of deliverable: July 15, 2007
Actual submission date: July 15, 2007
Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor

for this deliverable: UCL
Revision: 1
Dissemination level: PU

SELFMAN Deliverable D.2.1a(v1), July 15, 2007

CONTENTS

Contents
1 Executive summary 1
2 Contractors contributing to the Deliverable 3
3 Results 4
3.1 Overall structure of workpackage 2 4
3.2 Programming with feedback loops 4
3.2.1 Definition of a feedback loop 4
3.2.2 Interacting feedback loops)
3.2.3 General architectural framework 5
3.24 Somedesignrules 5
3.2.5 Interaction of feedback and distribution. 6
3.3 Therelaxed ringo 6
3.3.1 Lookup consistency 7
3.3.2 Main invariant and join algorithm 7
4 Future Work 8
4.1 Design rules for correct behavior of feedback loops 8
4.2 Large-scale behavior of a self-managing system 8
4.3 Layered structure of a self-managing system 9
4.3.1 Security infrastructure 9
4.3.2 Collective intelligence 10
4.3.3 The “grey goo” problem in Second Life 10
5 Papers and publications 12
References 14
A Self Management and the Future of Software Design 15
B Implementing Self-Adaptability in Context-Aware Systems 33
C A Relaxed Ring for Self-Organising and Fault-Tolerant Peer-to-
Peer Networks 37

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

A self-managing system must adapt itself to many different kinds of environmental
changes, of which the most important are faults, attacks, performance hotspots,
configuration and software updates. All these changes interact, often in unexpected
ways. We would like to build a self-managing system that behaves in the appropriate
way. This is a design problem; we would like to build the system so that it is
self-managing by design. Trying to make a large system self-managing after the
fact is very difficult and prone to many unexpected errors. Our experience shows
that adding self management requires explicit design decisions and often needs new
algorithms. To make this kind of design tractable, we would like to know the rules
and techniques to make systems self-managing by design. By analogy with object-
oriented programming, we would like to find the rules we must follow so that the
system has the desired structure and behavior. We find that the main principle is
the pervasive use of feedback loops. Each part of the system must observe itself and
correct deviations from correct behavior. This way of designing systems covers all
forms of self management: fault tolerance, security, adaptability, reconfiguration,
and performance tuning. Systems consist of a set of interacting feedback loops.
We study how feedback loops interact and how we can obtain desired interactions
without unpleasant surprises.

This report studies how to build software systems with feedback loops. We
study several different kinds of systems, starting with biological systems and in-
cluding software systems, to understand the main principles of designing with feed-
back loops. The area of control theory also studies design with feedback loops. We
find that designing software systems with feedback is quite different from what is
done in control theory. There are three main differences: nonlinearity, scale, and
dynamicity. The first difference is that software systems are highly nonlinear: a
single bit error can cause a catastrophic change in behavior. The second difference
is the scale: a software system consists of a large number of interacting feedback
loops. The third difference is the dynamicity: software systems change frequently:
by adaptation, by reconfiguration (through software updates), and by human inter-
vention.

We start our study of how to design such systems by looking at existing sys-
tems that are built in this way. We look at biological systems, which are highly
dependent on feedback loops. We also look at software systems such as network
transport protocols and structured overlay networks which use feedback loops to
adapt themselves to their environments. We reconstruct the designs of these sys-
tems in terms of feedback loops. The structured overlay network is directly relevant
to the project: we will use it as a foundation for the next stage.

This report concludes with several design rules for building systems with feed-
back loops. A first rule is to design systems based on convergence principles: each
feedback loop should enforce a convergence principle. A second rule is to use the
system instead of bypassing it. That is, consider a feedback loop as an encapsu-
lated abstraction that provides a service, instead of a set of parts. A third rule is
to use management instead of stigmergy to interact with a feedback loop. That is,
control the loop directly instead of modifying the system that the loop observes. A
fourth rule is to use local instead of distributed feedback loops. At this stage of the

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 1

1 EXECUTIVE SUMMARY

project, these rules remain mostly intuitive; we expect to put them on more solid
theoretical grounding later in the project.

We have achieved some understanding of how to program with feedback loops.
To make our methodology more concrete we need to make the design rules more
precise. We also have to understand how the feedback loops fit within the large-
scale behavior of the system. At large scales, systems undergo phase shifts when
their behavior switches from one set of feedback loops to another. Finally, we need
to understand systems with multiple conflicting goals. This is common in large-
scale distributed systems with many participants. Different feedback loops become
“antagonistic” and there must be a mechanism to avoid this or to resolve conflicts.
We will investigate these issues in the next two years of the project.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 2

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

The following contractors have contributed to this deliverable:

e UCL. UCL is the main author of the three papers in the appendix. UCL
explored the use of feedback loops in design, and in particular for structured
overlay networks.

e KTH. KTH organized and gave the mini-course on reliable distributed pro-
gramming. This course introduced the concurrent layered event-based archi-
tecture used for the definition of the self-managing algorithms in appendix C.
KTH also developed the DKS structured overlay network [3] and an extension
of DKS that handles network partitioning (see D1.1).

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 3

3 RESULTS

3 Results

We give a short overview of the main results of this deliverable with their motiva-
tions. For more details please see the three appendices to this report.

3.1 Overall structure of workpackage 2

This deliverable D2.1a is part of workpackage 2. The purpose of this workpackage
is to construct the programming framework for self-managing systems. At month
12, this workpackage has three deliverables:

e D2.1a: Basic computation model. This deliverable gives the first answers to
the question of how to program a self-managing system. During the first year,
we explored programming with feedback loops and how they interact with a
distributed system.

e D2.2a: Architectural framework specification. This deliverable specifies the
component architecture: an event-driven component model.

e D2.3a: Formal operational semantics. This deliverable gives a formal founda-
tion for the other two deliverables. In the first year, we have extended the Oz
kernel language, which is a process calculus with many programmer concepts,
with components and reflection. This work is based on the kell calculus. The
result is called the Oz/K calculus.

These three deliverables study three aspects of the problem. The first studies how to
program a self-managing system, the second studies the architecture of the system,
and the third studies the framework for formally describing the system.

3.2 Programming with feedback loops

The Description of Work gives a vision of systems programmed as a set of interacting
feedback loops. To make this vision concrete, we start by studying existing systems
based on feedback loops (appendix A) and how to design systems with feedback
loops (appendices A and B). The relaxed ring structure of appendix C (see also
deliverable D1.1) handles ring maintenance in the case of imperfect failure detection
(Internet-style failures). The paper reformulates the relaxed ring structure in terms
of interacting feedback loops.

3.2.1 Definition of a feedback loop

A feedback loop consists of three elements that together interact with a subsys-
tem: monitoring the relevant part of the subsystem’s state, calculating a reaction,
and implementing this reaction (see Fig. 1 in appendix A). We consider each of
these three elements to be a concurrent component instance, interacting with other
elements through asynchronous message passing. The three elements are usually
designed explicitly. The subsystem that is observed is usually much larger and less
well-known. It may contain parts of the external world and aggregated parts of the
rest of the designed system.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 4

3 RESULTS

3.2.2 Interacting feedback loops

A large system typically contains many feedback loops. These feedback loops are
organized in a graph structure. The two main ways in which feedback loops interact
are management and stigmergy:

e Management. This is when one feedback loop controls the other directly. The
outer loop uses the inner loop as a service. For example, the inner loop can
be a heating service using a thermostat. The outer loop can be a human that
sets the temperature of the thermostat according to a particular policy.

e Stigmergy. This is when two feedback loops observe the same subsystem. Each
loop observes and acts upon the subsystem and therefore indirectly affects the
other.

3.2.3 General architectural framework

We consider the overall design of a system to be a set of interacting feedback loops.
We organize such a system as a set of concurrent components that communicate
by means of asynchronous events [4]. The default behavior is that the components
are independent. System design experience in many areas suggests that this is the
correct default (see Section 5 in appendix A).

In a self-managing system, the system must be able to monitor and reconfigure
itslef. This implies that the system is built as a set of interacting components where
the components are first-class entities that can be manipulated (passed, installed,
removed) at run-time. This is called higher-order component programming.

The formal model for the general architectural framework sketched here is the
Oz/K process calculus, developed by INRIA and presented in deliverable ?7. This
process calculus is quite rich. We expect to define and implement a subset of this
calculus in the next stages of the project.

3.2.4 Some design rules

When building software systems, it is not possible to define a formal model for the
whole system and “solve” this model to obtain the system’s properties. This method
is too inefficient: it does not lead to a good design without a lot of search. A more
direct method is to design the system to be self-managing from the start. To achieve
this, the design must be constrained by a set of design rules that will guarantee the
right self-managing properties. One of the objectives of the SELFMAN project is
to find such a design methodology, by analogy with the methodologies of object-
oriented design (e.g., such as explained in [7]). In this first exploratory phase of
the project, we have determined several rough design rules. They are used in the
papers of the appendix. We list the rules briefly:

e A first rule is to design systems based on convergence principles: each feedback
loop should enforce a convergence principle. This will guarantee stability
within the domain of application of the convergence principle. An example
is a the feedback loop that uses negative feedback based on a monotonicly-
changing system parameter.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 5

3 RESULTS

e A second rule is to use the system instead of bypassing it. That is, consider a
feedback loop as an encapsulated abstraction that provides a service, instead
of as a set of parts to be interacted with directly. A feedback loop provides a
level of robustness. It is a bad idea to bypass this. In addition, bypassing this
can lead to instability. For example, two feedback loops based on negative
feedback (and hence stable in isolation), when interacting through stigmergy
can result in an effective feedback loop using positive feedback (and hence
unstable).

e A third rule is to use management instead of stigmergy to interact with a
feedback loop. That is, control the loop directly instead of modifying the
system that the loop observes. This rule is related to the preceeding one.
Using stigmergy can make a system unstable even if the individual loops are
stable.

e A fourth rule is to use local instead of distributed feedback loops. Distributed
feedback loops are inherently unreliable: they will collapse if there are failures.
The correct way is to use local feedback loops and to model the distributed
system as the subsystem being observed. The local feedback loops therefore
interact through stigmergy. To avoid instability, there should be a global
convergence property for all local feedback loops.

At this stage of the project, these rules remain mostly intuitive; we expect to put
them on more solid theoretical grounding later in the project (see Section 4.1 in the
Future Work).

3.2.5 Interaction of feedback and distribution

Large systems are by nature distributed. In the SELFMAN project we are specifi-
cally looking at such systems, building on the results attained for structured overlay
networks. We therefore have to address the issue of how feedback and distribution
interact. This question has been addressed to some degree in the development of ro-
bust distributed algorithms. For example, in the area of self-stabilizing algorithms,
there is a convergence property: after a temporary perturbation, the system will
converge to a state that is part of a set of stable states.

3.3 The relaxed ring

Structured overlay networks maintain their efficient routing properties in the face
of network problems. The run-time maintenance of structured overlay networks
consists of two independent parts:

e Maintain ring connectivity. This part guarantees that a connected ring exists.
Efficiency is not a concern for this part.

e Maintain finger tables. This part adds “fingers” (routing table entries) to
improve the efficiency.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 6

3 RESULTS

The relaxed ring solves the ring connectivity problem in the case of realistic failure
models that occur on the Internet. For a more detailed explanation of the relaxed
ring, see appendix C or deliverable D1.1. The relaxed ring algorithm is formulated
as a set of interacting feedback loops that maintain several invariants. In this section
we summarize the main properties of the relaxed ring.

3.3.1 Lookup consistency

The relaxed ring guarantees the following lookup consistency property:

Lookup consistency implies that at any time there is only one responsible
node for a particular key k, or the responsible node is temporarily not
available.

This property relaxes the lookup consistency property of [3] by adding the possi-
bility that the responsible node is temporarily not available. This form of lookup
consistency can be correctly implemented in the case of a failure detector that can
have incorrect suspicions of failure (i.e., Internet-style failure detection). This is
not the case for the original definition of lookup consistency.

Figure 1: Example of a relaxed ring (perfect ring with bushy appendages)

3.3.2 Main invariant and join algorithm

The main invariant of the relaxed ring is that every peer node is in the same ring
as its successor. This implies that it is sufficient for a node to have a connection
with its successor to be considered inside the ring. Joining a relaxed ring is done
in two steps:

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 7

4 FUTURE WORK

e In the first step, a node sends a join message to its potential successor and
receives a join_ok message as acknowledgement. At this point, the node is
part of the relaxed ring and can be routed to. However, the node is part of
one of the “bushes” sticking out of the inner, perfect ring (see example in
Fig. 1).

e In the second step, the bushy extensions are collapsed node by node to form
a perfect circular ring.

Both steps can be performed concurrently, and will in general be executing concur-
rently on a real system where nodes are continually joining and leaving. Because
joining is separated into two independent steps, locking is not needed. This is an
improvement over the join algorithm of [3], which requires cooperation between
three nodes, two of which that need to be locked. The relaxed ring algorithm works
in the case of an eventually perfect failure detector: a detector that may give false
suspicions of failure (i.e., which correspond to temporary network problems on the
Internet).

4 Future Work

In the first year of the project, we have mainly concentrated on looking at how
systems are designed with feedback loops. In the next two years, we will continue
this work in three complementary areas:

e Design rules for correct behavior of feedback loops.
e The large-scale structure of a system’s behavior space.

e The layered security structure of a system.

4.1 Design rules for correct behavior of feedback loops

How can we be sure that a set of interacting feedback loops will work correctly? This
is a nontrivial problem because the system is discrete and highly nonlinear. We have
the following approach to solve this problem for practical system design. We are
starting work to formalize feedback loops in terms of a process calculus (inspired by
the Oz/K calculus of deliverable D2.3 and a version of an asynchronous probabilistic
7 calculus). We will then translate the formalization into recurrence equations that
describe the behavior of the feedback loops. Certain forms of recurrence equations
will guarantee convergent behavior. Reasoning backwards to the original system,
this will give us design rules that if followed will guarantee convergent behavior.
Ultimately, we will no longer need to formalize the system, but simply to follow
the design rules. This work is being done by James Ortiz, a new Ph.D. student at
UCL.

4.2 Large-scale behavior of a self-managing system

The large-scale structure of a system’s behavior space consists of a set of domains,
such that simple feedback behavior holds within each domain. When the feedback

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 8

4 FUTURE WORK

behavior is no longer possible, then the system changes from one domain to another.
This happens, e.g., when the system is stressed strongly or when it has unstable
behavior. The hotel lobby example of appendix A illustrates the case of unstable
behavior. Another example is when a node fails in a structured overlay network:
the feedback loops of the node collapse. Nevertheless, the rest of the system should
continue to work.

4.3 Layered structure of a self-managing system

General self-managing systems are organized as sets of concurrent entities (“agents”)
that communicate through asynchronous message passing. An entity can be seen
as an instance of a concurrent component or as an active object. Systems can be
organized in layers, depending on how the agents are organized. We propose the
following layered structure in decreasing order of adaptability and freedom:

e Open-ended market (a system where any agents can join). Arbitrary agent
behavior is tolerated.

e Market (a system where each agent optimizes a local utility function). One
designer per agent, the system is adaptable.

e Feedback loop architecture. One designer per system, the system is adaptable.

e Multiagent system with no particular structure. One designer per system, the
system is not adaptable in general.

For more information on the general ideas underlying this structure, see [8]. The ar-
chitecture described in appendix A covers the third element in this ranking, namely
the feedback loop architecture. It holds when there is a single designer for the
multiple agents.

4.3.1 Security infrastructure

Open-ended market systems are the top-most layer of this classification. They are
secure because they tolerate arbitrary agent behavior. In order to make this work,
the system provides a simple 'market infrastructure’. The basic idea is that the
system enforces a conservation law using cryptographic protocols. For example,
there can be a “currency” that is conserved. Services talk to each other and trade
currency for results. The overall motor of the system is the external entities (like
humans) connecting to it who want results. Basically, they ask for results in ex-
change for currency, and the propagation of currency inside the system drives its
execution. Agents can be cooperative or malicious. The malicious agents will waste
currency, but they will not endure because this will be detected (since they do not
provide results!). This works on similar principles as Axelrod’s Iterated Prisoner’s
Dilemma [1]. Good agents will flourish. It is similar to human markets but sim-
plified. Secure systems built in this way are not “hacks” but are fundamentally
correct and robust against malicious interference.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 9

4 FUTURE WORK

4.3.2 Collective intelligence

Collective Intelligence (COIN) is a design technique for multi-agent systems that
allows to build systems that achieve a global goal with selfish agents that each are
interesting only in maximizing a local utility function. The paper [10] explains the
basics of COIN with a classic example, the El Farol bar problem. In this problem,
agents are people who would like to take an evening off at a bar. If there are
too few people at the bar, then the evening is a failure, and also if the bar is too
crowded. Each agent remembers what happened the week before, and chooses one
day to go in the next week. How can we maximize the global utility when each
agent is thinking selfishly (and certainly not cooperating with the others!)? A naive
algorithm that uses a utility based on how many people attended last time gives
very bad results (a ”Tragedy of the Commons”).

It turns out that a good utility function is the “Wonderful Life” utility (so called
through the Frank Capra movie). The value of the utility for agent w is the global
utility minus the global utility where agent w is “disabled” (as if it did not exist).
To make this computable locally, we use a simple reinforcement learning algorithm.
Each agent has weights for each day of the week, and each week it changes one of
the weights according to its experience in the bar that week. This is the “reward”.
The utility is simply the sum of rewards over all the weeks. Picking a day for the
next week is done according to a distribution that selects a day randomly according
to the weights (technically, the algorithm implements a Boltzmann distribution and
each weight is a Boltzmann energy).

The COIN techniques look like a good starting point for designing a security
architecture for SELFMAN. The idea is that the SELFMAN infrastructure enforces
local utility functions designed with COIN techniques. For example, the “reward”
can be a “currency” designed to obey a conservation law and designed according to
the Wonderful Life utility. This means that selfish agents (which will be the most
numerous agents) will by design help the system achieve its global goals.

In SELFMAN we organized a mini-course on COIN which was held at partner
Z1B on Feb. 15-16, 2007. It was taught by Mohamed El-Beltagy of Optomatica
[2]. This course covered COIN and related work in the areas of game theory, agoric
systems, and the theory of collectives.

4.3.3 The “grey goo” problem in Second Life

The “grey goo” problem in Second Life is related to this security layer. The
MMORPG ! application Second Life [6] allows people to trade objects and ser-
vices in a virtual world. They have recently been having problems with ”grey goo”:
self-replicating objects that use up resources (CPU, memory, and network). There
was a discussion on the e-lang mailing list in Jan. 2007 about this problem and
how to solve it. One way to solve it is to use a conservation law: pay for resources.
Then the grey goo cannot replicate. This is the solution we could do in Selfman
(the “agoric solution”). It seems that the Second Life developers implemented an-
other solution: dynamic rate-limiting of object creation along with monitoring and
alerting tools that let the sysops identify and kill off the goo that manages to exploit

Massive Multiplayer Online Role-Playing Game

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 10

4 FUTURE WORK

the system.

The Second Life experience is relevant for the SELFMAN project. Their expe-
rience is a useful datapoint. They are setting up a real economy, in some sense,
and they have problems with pyramid schemes and other scams. For more in-
formation on the practical side of issues, see the Second Life Anti-Griefing Guild
(community.livejournal.com/slagg/). “Griefers” in Second Life are like Byzan-
tine nodes. Griefers are so-called because they create grief. They do their best to
interrupt proceedings in virtual worlds often for no other reason than because it is
possible.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 11

5 PAPERS AND PUBLICATIONS

5 Papers and publications

Three papers were published this year for this deliverable:

o Self Management and the Future of Software Design, Third International
Workshop on Formal Aspects of Component Software (FACS ’06), Springer
ENTCS 182, Sept. 2006.

Abstract: Most software is fragile: even the slightest error, such as changing
a single bit, can make it crash. As software complexity has increased, devel-
opment techniques have kept pace to manage this fragility. But today there
is a new challenge. Complexity is increasing rapidly as a result of two factors:
the increasing use of distributed systems as a result of the sufficient reliability
and bandwidth of the Internet, and the increasing scale of these systems as
a result of the addition of many new computers to the Internet (e.g., mobile
phones and other devices). To manage this new complexity, we propose an
approach based on self- managing systems: systems that can maintain useful
functionality despite changes in their environment. The paper motivates this
approach and gives some ideas on how to build general self-managing software
systems. An important part of the approach is to build systems as hierarchies
of interacting feedback loops. We give examples of these systems and we de-
duce some of their design rules. The SELFMAN project is elaborating these
ideas into a programming methodology and an implementation.

o Implementing Self-Adaptability in Context-Aware Systems, Workshop on Mul-
tiparadigm Programming with Object-Oriented Languages, part of ECOOP
2007, July 31, 2007. The appendix contains an extended abstract. The full
paper will be part of the MPOOL workshop and will be available in time for
the project review.

Abstract: Context-awareness is the property that defines the ability of a
computing system to dynamically adapt to its context of use [5]. Systems
that feature this property should be able to monitor their context, to reason
about the changes in this context and to perform a corresponding adapta-
tion. Programming these three activities can become cumbersome as they
are tangled and scattered all over in the system programs. We propose to
model context-aware systems using feedback loops [9]. A feedback loop is an
element of system theory that has been previously proposed for modelling
self-managing systems. A context-aware system modelled as a feedback loop
ensures that the activities of monitoring, reasoning and adapting to the con-
text are modularised in independent components. In this work, we take ad-
vantage of such modularisation to explore different programming paradigms
for each component of the loop.

e A Relazed Ring for Self-Organising and Fault-Tolerant Peer-to-Peer Networks,
XXVI International Conference of the Chilean Computer Science Society
(SCCC 2007), Nov. 2007. An early version of this paper was presented
at the CoreGRID workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, FORTH, Her-
aklion, Greece, June 2007. This paper explains the relaxed ring work (see

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 12

5 PAPERS AND PUBLICATIONS

also deliverable D1.1) in the context of a feedback loop architecture. We in-
tend to submit this paper to a major conference after adding simulation and
experimentation results.

Abstract: There is no doubt about the increase in popularity of decentralised
systems over the classical client-server architecture in distributed applications.
These systems are developed mainly as peer-to-peer networks where it is pos-
sible to observe many strategies to organise the peers. The most popular one
for structured networks is the ring topology. Despite many advantages offered
by this topology, the maintenance of the ring is very costly, being difficult to
guarantee lookup consistency and fault tolerance at all time. By increasing
self-management in the system we are able to deal with these issues. We model
ring maintenance as a self-organising and self-healing system using feedback
loops. As a result, we introduce a novel relaxed-ring topology that is able
to provide fault-tolerance with realistic assumptions concerning failure detec-
tion. Limitations related to failure handling are clearly identified, providing
strong guarantees to develop applications on top of the relaxed-ring architec-
ture. Besides permanent failures, the paper analyses temporary failures and
broken links, which are often ignored.

These papers are included as appendices to this deliverable.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 13

REFERENCES

References

Robert Axelrod. The Evolution of Cooperation. Basic Books, 1984.

Mohamed El-Beltagy. An introduction to COllective INtelligence (COIN),
2007. See www.natural-computation.com/selfman.

Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH — Royal Institute of Technology, Stockholm, Sweden,
December 2006.

Rachid Guerraoui and Louis Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag, Berlin, Germany, 2006.

IST Advisory Group. Ambient intelligence: from vision to reality, September
2003.

Linden Research, Inc. Second Life, 2007. See
http://en.wikipedia.org/wiki/Second Life.

Bertrand Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall PTR, 1997.

Mark S. Miller and K. Eric Drexler. The agoric papers. In The Ecology of
Computation, 1988.

Peter Van Roy. Self management and the future of software design. In Formal
Aspects of Component Software (FACS ’06), September 2006.

David Wolpert, Kevin R. Wheeler, and Kagan Tumer. General principles of
learning-based multi-agent systems. In Agents, pages 77-83, 1999.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 14

A SELF MANAGEMENT AND THE FUTURE OF SOFTWARE DESIGN

A Self Management and the Future of Software
Design

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 15

FACS 2006

Self Management
and the Future of Software Design

Peter Van Roy' 2

Department of Computing Science and Engineering
Université catholique de Louvain
Louvain-la- Neuve, Belgium

Abstract

Most software is fragile: even the slightest error, such as changing a single bit, can make it crash. As
software complexity has increased, development techniques have kept pace to manage this fragility. But
today there is a new challenge. Complexity is increasing rapidly as a result of two factors: the increasing
use of distributed systems as a result of the sufficient reliability and bandwidth of the Internet, and the
increasing scale of these systems as a result of the addition of many new computers to the Internet (e.g.,
mobile phones and other devices). To manage this new complexity, we propose an approach based on self-
managing systems: systems that can maintain useful functionality despite changes in their environment.
The paper motivates this approach and gives some ideas on how to build general self-managing software
systems. An important part of the approach is to build systems as hierarchies of interacting feedback loops.
We give examples of these systems and we deduce some of their design rules. The SELFMAN project is
elaborating these ideas into a programming methodology and an implementation.

Keywords: Software development, self management, general system theory, distributed system, feedback,
software component, complexity, concurrency, asynchronous, autonomic computing, overlay network

1 Introduction

Software is fragile and highly nonlinear: even a minor error can have catastrophic
effects. Major disasters have occurred due to minor errors such as omitted commas
in Fortran programs or changed bits because of alpha rays [11]. So far, this has not
unduly hampered the quantity of software being developed. As software complexity
has increased, software development techniques have kept pace. This situation is
analogous to the Red Queen’s behavior in Alice [10]: we are running as fast as we
can in order to stay in the same place. Software development is now facing a new
challenge: complexity is increasing quickly because of two reasons. First, the relia-
bility and bandwidth of the Internet infrastructure has reached a point where it is

1 This paper is intended to stimulate discussion; all comments are welcome! This work is funded by the
European Union in the SELFMAN project (contract 34084), EVERGROW project (contract 001935), and
CoreGRID network of excellence (contract 004265). We thank Luis Quesada, Boriss Mejias, Raphaél Collet,
Yves Jaradin, Kevin Glynn, and Seif Haridi for comments that helped improve this paper.

2 Email: pvr@info.ucl.ac.be
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

VAN Roy

feasible to build large distributed applications. Examples of such applications in-
clude a wide variety of file-sharing programs (Napster, Gnutella, Morpheus, Freenet,
Bit Torrent, etc.), collaborative tools (Skype and other messenger tools), Massive
Multiplayer Online Role Playing Games (MMORPGs) (World of Warcraft, Dun-
geons & Dragons, etc.) and research testbeds (SETI@home [25], PlanetLab [12],
etc.). Technologies for building such applications now exist, e.g., Web services and
Grid software. The second reason is the increase in the number of small devices
connected to the Internet. For example, mobile phones are now full-fledged com-
puting nodes with Internet connectivity, and protocols such as Zigbee, Bluetooth,
and Wifi facilitate network connectivity among small devices.

How can we address the problem of programming large-scale distributed sys-
tems? Such systems have new properties that greatly increase the complexity of
programming: scale (large numbers of independent nodes), partial failure (part of
the system fails), security (multiple security domains), resource management (re-
sources are localized), performance (harnessing multiple nodes or spreading load),
and global behavior (emergent behavior of the system as a whole). Each of these
properties has been studied in isolation. For example, the area of distributed algo-
rithms has solutions for handling partial failure in many cases. But the properties
have not been looked at together. The purpose of this paper is to give some ideas
how this can be done.

Global behavior is particularly relevant for large systems. They must be de-
signed carefully, otherwise the system will not behave well when stressed. Ideally,
it should converge rapidly to its desired behavior and stay there despite changes in
the system’s environment. But it may instead collapse, oscillate, or show chaotic
behavior. Such erratic behavior has been observed for power grids and has resulted
in large-scale power outages [15]. One reason for this is because the power grid’s
behavior was designed for a situation close to equilibrium; it was not studied far
from equilibrium.

2 Self-managing systems

To build large-scale distributed systems with good behavior, we need a framework
in which to think about them. What should such a framework look like? To reduce
the complexity of the system, it should be able to manage its own problems as much
as possible. This leads us to propose self-managing systems as a suitable framework.
A self-managing system is one that can maintain its functionality despite changes
in its environment, in a general sense.

Self-managing systems have recently been brought to the forefront because of
IBM’s Autonomic Computing initiative [19]. When computer systems become large
then the cost of managing them becomes prohibitive. The initiative aims to reduce
this cost by removing humans from the management loop. The role of humans
is then to manage the policy and not to maintain the mechanisms. This greatly
reduces the need for manual intervention.

Another area that is building self-managing systems is structured overlay net-
works [1]. This research is inspired by the popular protocols of peer-to-peer net-
works. Many of the applications mentioned in the introduction are based on these

2

VAN Roy

peer-to-peer networks. Unlike peer-to-peer networks based on random neighbor
communication, structured overlay networks provide both guarantees (information
is guaranteed to be found if it exists) and efficiency (broadcast does not flood the
network as it does in, e.g., random neighbor networks such as the one used in
Gnutella). Structured overlay networks provide primitive self-managing behavior:
they reorganize themselves to maintain their functionality in reaction to environ-
mental changes such as failures and overloads. Structured overlay networks have
led to robust software that is being used in various areas, such as the construc-
tion of robust distributed communication networks and robust storage services that
continue to provide service despite high node turnover (node “churn”).

These two research areas, autonomic systems and structured overlay networks,
have attracted attention once again to self-managing systems. But self-managing
systems are actually a very old idea. The beginning of the area as a discipline can
be dated to the definition by Norbert Wiener of cybernetics in the 1940’s [29] and by
Ludwig von Bertalanffy of general system theory in the 1960’s [5]. The basic idea of
system theory is to study the concept of a system, its properties and design. There
are various ways to define the concept of a system [24]. For this paper, we define a
system recursively as a set of components (called subsystems) connected together
to form a coherent whole. The main problem is to understand the relationship
between the system and its subsystems: can we predict a system’s behavior and
can we design a system with a desired behavior.

System theory is still very much in its early stages. Recent research results
have not been systematized in a textbook and the ideas have not been applied
to computer science in a systematic way. W. Ross Ashby wrote an introductory
textbook in 1956 that is still worth reading today [4]. Gerald M. Weinberg wrote
an introduction in 1975 explaining how to use system theory to improve general
thinking processes [28]. In the area of computer systems, textbooks exist only for
specialized subfields such as distributed algorithms [21]. We consider that it is high
time to apply system theory to software construction. This paper gives examples of
realistic systems to motivate this goal and to explore how to build software according
to system theory.

3 Designing self-managing systems

How does one design a self-managing software system? We do not yet have a general
set of design techniques, but we can talk about several important aspects: feedback
loops, global properties, and a general architectural framework. It turns out that
designing with feedback loops is fundamental. Feedback loops are currently being
used for the autonomous management of computing clusters, for example they are
being used in J2EE clusters [6] and Grid systems [2]. But feedback loops are much
more generally applicable in system design. We give examples of systems built with
feedback loops to see what they can teach us for the general case. The paper by
Andrzejak et al [2] gives a broad introduction to the different disciplines that can
be useful when designing adaptive systems with feedback loops. The present paper
is narrower: it restricts itself to the architectural questions of how the loops are
organized and how they interact with each other and with distributed programming.

3

VAN Roy

3.1 Feedback loops

The notion of a feedback loop is a basic element of system theory. A feedback loop
consists of three elements that together interact with a subsystem (see Figure 1):
an element that monitors the state of the subsystem, an element that calculates a
corrective action, and an element that applies the corrective action to the subsystem.
For the purposes of this paper, we consider these elements to be concurrent software
agents that communicate by asynchronous message passing. The complete system
can be described as a graph of interacting feedback loops. Feedback loops can
interact in two main ways. The simplest interaction is where both loops affect
interdependent system parameters, i.e., they interact through their environment.
This is called stigmergy. A second form of interaction is where a loop manages
another loop, i.e., the first loop continuously adapts the policy implemented by the
second loop. In both cases, the system’s global behavior depends on all the feedback
loops taken together.

ﬁd Calculate corrective action «j

Actuating agent Monitoring agent
L» Subsystem /J

Fig. 1. Basic structure of a feedback loop

Thermostat
L]
%ri besman
Fi rw

Hotel lobby Calculate corrective action

Tribesman
(stokefireif too cold)

Thermostat
ﬁ (run aircond. if too warm) ﬁ
Stoke RUN Measure Measure
i . _ temperature temperature
fire airconditioning near fire in lobby
\k Hotel lobby ’_/J
Actuating agents Monitoring agents
Subsystem

Fig. 2. Wiener’s example of two feedback loops interacting through stigmergy

VAN Roy

3.1.1 Two simple examples

The first example is taken from Wiener [29] and is shown in Figure 2. It consists
of two interacting feedback loops with counterintuitive global behavior: in an air-
conditioned hotel, a primitive tribesman attempts to warm himself by starting a
fire. This causes the airconditioning to work harder, so the result is that the harder
he stokes the fire, the lower the temperature becomes. In this example, the two
loops affect system parameters that depend on each other, namely the tempera-
ture in different parts of the lobby. Each block in the figure is a concurrent agent
continuously sending asynchronous messages to the other agents in the direction of
the arrows. Even though each loop taken in isolation uses negative feedback and
is stable,? the result of both loops is that the system becomes unstable, i.e., the
temperature will continue to decrease (until the system reaches a boundary, and
then its behavior will change again). We conclude that it is not enough to add a
negative feedback loop to an existing system to ensure stability! The result may
well be unstable because of the new loop’s interaction with the system.

Tribesman
(adjust thermostat)

'

Thermostat
'f— (run aircond. if too warm) ﬁ
RuN Measure Measure
) o temperature temperature
airconditioning at thermostat at tribesman

L Hotel lobby

Fig. 3. Wiener’s example modified to use management instead of stigmergy

ﬁ

The correct solution is given in Figure 3. Instead of starting a fire, the tribesman
simply adjusts the thermostat. This maintains the stability of the airconditioning
loop. This is an example of one loop managing another. This illustrates a design
rule: to modify a system’s behavior, the right way is to work with the system and
not to try to bypass it.

The second example is shown in Figure 4. This shows a generic single-user applica-
tion as a feedback loop structure. We give this example to illustrate that feedback
loops are generally useful in programming and not just for contrived examples such
as Figure 2. Feedback loops are omnipresent in software systems if one looks with
the right mindset. The three elements of the loop in Figure 4 all run on a single
computer, and the subsystem being managed is a human user. The monitoring and
actuating agents are the computer’s GUI interface. Remark that we consider the

3 In negative feedback, an increase in the monitored value of a system parameter causes a corrective action
that decreases the system parameter. In positive feedback, the corrective action increases the system
parameter.

VAN Roy

r Application j

Actuating agent Monitoring agent

Human user

Fig. 4. A single-user application shown as a feedback loop

user and not the application to be the managed subsystem. This viewpoint is ad-
vantageous because it lets us extend the feedback loop structure in interesting ways.
We can put a second loop around the first to monitor the application’s behavior and
apply corrections if something goes wrong. When the user runs two applications
and passes information between them then we have two loops interacting through
stigmergy. The rest of this paper gives more substantial examples of systems shown
as feedback loop structures, including systems that were not originally conceived in
this way.

3.1.2 Using program properties

Designing systems with feedback has been extensively studied in electronics, typ-
ically with building blocks such as operational amplifiers and phase-locked loops.
These systems exploit the fact that there is a good (piecewise) linear approximation
of the building blocks’ behavior. This is a strong condition that can be exploited.
But linearity is probably too strong a condition to impose on computer systems,
which are highly nonlinear by default, e.g., changing a single bit can have major
effects. It may be possible to use a weaker property than linearity that can be satis-
fied by computer systems and that gives a satisfactory design theory. The approach
then is to choose first a property that facilitates reasoning about the program and
its global behavior, and then to build a program that satisfies the property. This
can greatly simplify program design. Note that one possible failure mode is that
the property itself no longer holds.

One example property is monotonicity or strict monotonicity. In a strict mono-
tonic system, when the input changes in one direction (e.g., increases, in a general
sense), the output will also change in the same direction. Using monotonicity as the
basic property is sufficient for designing systems with feedback. A negative feedback
amplifier can be built using strict monotonicity. Another property weaker than lin-
earity that may be useful is continuity, but continuity is in general not enough to
guarantee stability. We note that two further properties that may be useful in a
theory of feedback program design are determinism and confluence.

VAN Roy

Trigger unconsciousness
when O2 falls to threshold

Render unconscious
(and reduce CO2 threshold to base level)

Conscious control <—— Other inputs
of body and breathing

Increase or decrease breathing rate
and change CO2 threshold
(maximum is breath—hold breakpoint)

Trigger breathing reflex
when CO2 increases to threshold

Trigger laryngospasm temporarily
when sufficient obstruction in airways ‘\\

Breathing Laryngospasm obsDt?ltJi(t;iton Mgeé')sgre Monitor Megszure
reflex (seal air tube) in airways in blood breathing in blood

LL Breathing apparatus é

in human body
Actuating agents Monitoring agents

Fig. 5. Feedback loop structure of the human respiratory system

3.2 System design with feedback loops: the human respiratory system

Let us give a detailed example of a practical design that uses feedback loops. Our
example is taken from a biological system, namely the human body. Biological
systems have to survive in natural environments, which can be particularly harsh.
For that reason, we consider that studying biological systems is a useful way to get
insight in how to design software for a more complex system. Our example is the
human respiratory system. Figure 5 shows the different components of this system
and how they interact. We derived this figure from a precise medical description
of the system’s behavior [31]. The figure is slightly simplified when compared to
reality. We have left out interactions with the rest of the body. Nevertheless it is
complete enough to give many insights. There are four feedback loops: two inner
loops (breathing reflex and laryngospasm), a loop controlling the breathing reflex
(conscious control), and an outer loop controlling the conscious control (falling
unconscious). From the figure we can deduce what happens in many realistic cases.
For example, when choking on a liquid or a piece of food, the larynx constricts
and we temporarily cannot breath (this is called laryngospasm). We can hold our
breath consciously: this increases the CO2 threshold so that the breathing reflex is
delayed. If you hold your breath as long as possible, then eventually the breath-hold
threshold is reached and the breathing reflex happens anyway. A trained person
can hold his or her breath long enough so that the Os threshold is reached first and
they fall unconscious without breathing. When unconscious the normal breathing
reflex is reestablished.

We can infer some plausible design rules from this system. The innermost loops
(breathing reflex and laryngospasm) and the outermost loop (falling unconscious)
are based on negative feedback using a monotonic parameter. This gives them
stability. The middle loop (conscious control) is not stable: it is highly nonlinear

7

VAN Roy

and may run both with negative or positive feedback. It is the most complex of
the four loops by far. We can justify why it is sandwiched in between two simpler
loops. On the one side, conscious control manages the breathing reflex, but it does
not have to understand the details of how this reflex is implemented. This is an
example of nested feedback loops that implement abstraction. On the other side,
the outermost loop overrides the conscious control so that it is less likely to bring
the body’s survival in danger. Conscious control seems to be the body’s all-purpose
general problem solver: it appears in many (but not all) of the body’s feedback loop
structures. This very power means that it needs a check.

Send Send
stream acknowledgement

Outer loop (congestion control)

Calculate policy modification

(modify throughput)
Inner loop (reliable transfer) l
Calculate bytes to send
ﬁ (sliding window protocol) ‘j
Actuator Monitor Monitor
(send packet) (receive ack) throughput
\ } /‘
| I
Subsystem J
(network that sends packet to
destination and receives ack)

Fig. 6. An example programming pattern with two nested feedback loops

3.8 A new way of designing programs

The style of system design illustrated in the last section can be applied to program-
ming. Programming then consists of building hierarchies of interacting feedback
loops. Let us give a simplified example with two nested feedback loops that im-
plements a reliable byte stream transfer protocol with congestion control (this is
a variant of the TCP protocol). The protocol sends a byte stream from a source
to a destination node. Figure 6 shows the two feedback loops as they appear at
the source node. The inner loop does reliable transfer of a stream of packets: it
sends packets and monitors the acknowledgements of which packets have arrived
successfully. The inner loop manages a sliding window: the actuator sends packets
so that the sliding window can advance. The sliding window can be seen as a case of
negative feedback using monotonic control. The outer loop does congestion control:
it monitors the throughput of the system and acts by either changing the policy
of the inner loop or by changing the inner loop itself. If the buffered send stream
grows too big or the rate of acknowledgements decreases, then it modifies how the
inner loop works, for example by reducing the rate of send acknowledgements or the

8

VAN Roy

rate of sending. If the transfer stops then the outer loop may terminate the inner
loop and abort the transfer.

This structure is a special case of a multi-agent system. FEach block in Fig-
ure 6 is a single agent acting concurrently with the others and sending messages
asynchronously to the others. Each of the two feedback loops implements one task
according to a given policy. The policy of the inner loop is determined by the outer
loop. Because the system is distributed over two nodes, part of the design consists
in situating each agent on a node.

The example of Figure 6 has just two nested feedback loops. In a real system,
there will typically be more nested feedback loops. In particular, the outermost
loop determines the main interface between the system and its environment.

Send Receive
stream stream
S ¢D
\
% Manage send window ‘«

ﬁ% Manage receive wi ndow‘«
D | s |

S v Dy : _
Monitor Monitor
Se'lld Ser;(d packets acks
packet & received received
| | Unreliable network 7 7

D to Stransfer D

Sto D transfer S

w&
Yy

Fig. 7. Inner loop of the reliable byte stream protocol showing distribution

3.4 Interaction between feedback loops and distribution

The protocol of Figure 6 runs on a distributed system consisting of two nodes.
Figure 6 only shows what happens at the source node. Figure 7 gives a more
complete depiction of the inner loop of Figure 6 that shows the execution on both
nodes. In Figure 7, each component is annotated with S or D depending on whether
it executes on the source or destination node. This protocol can be seen as two
feedback loops (the S loop and the D loop), each executing on one node (S or D),
interacting through stigmergy over the unreliable network. If one node fails, then
its loop disappears and the other loop sees a change in the behavior of the network.
Another way to see the protocol is as a single distributed feedback loop, with parts
executing on both source and destination nodes.

An interesting open question raised by this example is how to design distributed
feedback loops. This is nontrivial because of the interactions between the design
of the loop, its distribution, and the partial failures that it is intended to tolerate.
Designing these systems is still mostly an open research question. Structured overlay
networks are an interesting special case that is presented below. Other special cases
include parts of distributed algorithm theory such as self-stabilizing systems [32].
These systems are able to survive large classes of transient faults.

9

VAN Roy

Node 0
Calculate
r reorganization j
Update Failure
finger table detector

e |
/

fingers

Node n—1 Node 1

Fig. 8. Feedback loop structure of a structured overlay network

3.5 Feedback loops in a structured overlay network

We complete our series of examples by outlining how a structured overlay network
can be formulated in terms of feedback loops. The most primitive functionality of a
structured overlay network is to self-organize a large number of computing nodes to
provide reliable and efficient routing despite nodes continuously joining and leaving
the network [1,17]. A node can leave in two ways, either by a deliberate action or
by failure of the node or its network connections. At all times, routing between
non-failed nodes must be correct and efficient.

Figure 8 shows the feedback loop structure of a structured overlay network with
n computing nodes numbered from 0 to n — 1. Node 0 is drawn in detail; the other
nodes are shown schematically. The routing organization of the structured overlay
network consists of two levels. The first level is a ring in which each node has
direct communication links (called fingers) to a fixed number f of successors. This
ensures correctness (each node can reach all the others by walking the ring) and fault
tolerance (failure of f —1 nodes does not affect reachability). The second level adds
additional links to improve efficiency. The routing algorithm uses a convergence
criterium to ensure that eventually the destination node is reached. Each routing

10

VAN Roy

hop reduces the distance to the destination until the distance reaches zero. Many
well-known structured overlay networks, such as Chord and DKS, are organized in
this way.

The communication links provide failure detection. When a node detects the
failure of a link then it reorganizes its local finger table to provide correct rout-
ing. There is also a distributed algorithm to improve routing efficiency. Correct
operation of the structured overlay network is therefore based on three convergence
properties:

e Within each node, the finger table converges to a correct content.
¢ Globally, the finger tables converge together to improve routing efficiency.

* When routing, a message in transit converges to its destination node.

From the viewpoint of each node, the subsystem being managed consists of the
set of nodes it is linked to. When a node leaves or fails, it is eventually dropped
from each set containing it. When a new node joins, it is given an initial set
that depends on its position in the ring. Since these operations are common, this
means that the feedback structure is undergoing frequent changes. Ghodsi [17] gives
algorithms and an implementation of a structured overlay network, DKS, that has
the above structure. He proves that it does correct routing assuming that the failure
detectors are strongly complete, i.e., every node crash will eventually be detected
permanently [18]. The structure modifications done by DKS are designed to be
atomic and preserve the topology of the overlay network.

Q root supervisor

Q supervisor processes Q

e) Q |
Q Q@ megmpmcg O QQ

Fig. 9. Supervisor tree architecture of an Erlang program

4 Related work

Several areas of computer science already use a feedback loop architecture. This
section gives two examples, namely the Erlang fault-tolerance architecture and the
subsumption architecture for implementing intelligent behavior, and discusses them
as instances of a feedback loop architecture.

11

VAN Roy

4.1 The Erlang system

The Erlang system is designed to build distributed systems that survive software
and hardware faults [3]. It has been successfully used to build systems of extremely
high dependability, for example the AXD301 ATM switch which has a claimed
down time of only 30 milliseconds per year [30]. Erlang is designed according to the
hypothesis that software faults cannot be eliminated completely. Instead of trying
to eliminate them, Erlang allows programs to survive them. An Erlang program
is organized as a set of concurrent agents (called processes in Erlang terminology)
that communicate by asynchronous message passing.

When a problem occurs in a process, the Erlang philosophy is to let the process
fail and to let another process handle recovery. Erlang uses a concept called super-
visor tree to manage this. The program agents form the leaves of the supervisor tree
(see Figure 9). Each internal node in the supervisor tree corresponds to a feedback
loop in our architecture. The first internal level in the tree consists of supervisor
agents that observe pools of agents in the program’s execution. If a program agent
fails, then a supervisor agent will restart it in a consistent state, using a database
to get the consistent state. There are two kinds of supervisors, AND supervisors
that restart all processes in a pool if one fails and OR supervisors that restart just
the failed processes. The second internal level in the supervisor tree consists of a
root agent that handles failures of the supervisor agents. This root agent must be
completely reliable. This is possible because it is a very small program.

Obstacle . .. Avoidance
Avoidance decision
detector maneuver
disable
Direction Turn decision
sensor
disable

Forward decision

Robot in
environment

Fig. 10. Feedback loop structure of an obstacle-avoiding robot in the subsumption architecture

4.2 The subsumption architecture

The subsumption architecture of Rodney Brooks is a way to implement intelligent
systems by decomposing complex behaviors into layers of simple behaviors that
interact through their environment [7,8]. Knowledge is not represented directly
inside the system, but indirectly through the system’s state in its environment. The
subsumption architecture has been used to successfully implement systems that

12

VAN Roy

interact with their environment in a life-like fashion. For example, an obstacle-
avoiding robot can be designed with three layers: a move forward layer, a turn
layer, and an obstacle-avoiding layer. Each layer is a feedback loop that observes
the world continuously. The layers are given priorities. If a layer can react, then
it disables the lower layers and performs its own actions. In the terminology of
Brooks, it suppresses inputs to the lower layers and inhibits outputs from the lower
layers. The default behavior is to move forward. If the direction is wrong, then
the turn layer disables the move forward layer to turn. If there is an obstacle, then
the obstacle-avoiding layer disables the other two layers and performs an obstacle
avoidance maneuver. Figure 10 shows this obstacle-avoiding robot as a feedback
architecture. This is a simple example that shows the basic principle. There exist
more refined versions of the architecture.

In the subsumption architecture, the feedback loops interact through stigmergy.
E.g., in a robot, all the loops detect the robot’s position and control the robot’s
movements. In the feedback loop architecture, feedback loops can also have a
policy /mechanism relationship, where each loop modifies the policy that is im-
plemented by the next innermost loop.

5 General architectural framework

Let us now take a step back from the above examples and summarize what a gen-
eral architectural framework can look like for building a self-managing system. The
system is organized as a set of concurrent components that communicate by means
of asynchronous events. The default behavior is that the components are indepen-
dent. Any synchronous or dependent behavior must be programmed explicitly. This
default gives good results in many cases: for fault-tolerant systems such as Erlang
[3], for network-transparent distributed programming systems such as Mozart [13],
and for secure distributed programming systems such as E [22]. It also matches
well with the complex systems approach taken in physics [14] and used, e.g., in
approaches such as belief propagation for solving inference problems [33].

Following the examples of Sections 3.2-3.4 and Section 4, the system consists of
a hierarchy of interacting feedback loops, where each feedback loop is implemented
by several agents and each agent is an instance of a component. Feedback loops
interact either through stigmergy or through management.

5.1 Higher-order component model

In a self-managing system, the system is able to monitor and reconfigure itself, that
is, install and update parts of itself while it is running. If the system is built as
a set of interacting components then it is possible for components to install other
components. Components are therefore first-class entities that can be passed as ar-
guments to other components. This is called higher-order component programming.
The Fractal component model is an example of such a component model [9]. This
model is already being used as a framework for building self-managing systems [6].
In a higher-order component model, it takes some care to determine what compo-
nent is to blame when a subsystem fails. This has been studied by Findler and
Blume [16].

13

VAN Roy

- F S
F
feedback component f
input port c output port c
system component new system component f(F,C)

Fig. 11. A component combinator for programming with feedback loops

5.2 Programming with feedback loops

With the right abstractions, a programming language can make programming with
feedback loops simple. Each component is a concurrent entity with one input port
that accepts a stream of input events and one output port that returns a stream
of output events. Components ignore irrelevant events. Both control and content
events pass through the same ports. These properties make it easy to compose
components in a modular way. This programming model is similar to the model used
by Guerraoui and Rodrigues for defining distributed algorithms in a compositional
way [18].

Figure 11 shows a component combinator f that takes two components F' and C
and returns a component f(F,C') that combines F' and C' in a feedback arrangement.
The combinator f satisfies properties such as f(F, f(Fs, C)) = f(Fa, f(F1,C)). We
can define an operator || such that f(Fy, f(F2,C)) = f(F1||Fs,C). This operator
is a form of parallel composition that connects the input and output streams of
Fy and Fy. There are variations of f depending on whether C' is explicit (part of
the program) or implicit (part of an environment) and depending on whether the
feedback loop is managed or not. The semantics of the combinator f needs to take
into account two effects:

¢ The interleaving of the input and output streams. That is, C’s input is the merge
of f(F,C)’s input and F’s output and f(F,C)’s output is also the input to F.

e Both C and F have a propagation delay, i.e., an output event does not appear
instantaneously when an input event is given.

5.8 Global properties

An important part of any general system theory concerns the global properties of
a system. Can they be determined for an existing system and can we design sys-
tems with desired global properties? The latter question is especially important for
large-scale computer systems, such as the Internet or distributed systems built on
top of the Internet. Some of the important points are the system’s stability, its be-
havior when stressed, and whether the system’s imminent collapse can be detected
before it happens. Answers to some of these questions exist for complex systems
in physics. Such systems consist of large numbers of very simple components, but

14

VAN Roy

they can sometimes be a useful approximation to computer systems. For exam-
ple, Krishnamurthy et al [20] have done an analytic study of the Chord structured
overlay network using a master equation approach. Another example is the belief
propagation algorithm. This algorithm is defined in terms of message passing be-
tween large numbers of simple nodes [33]. It has been used to give solutions to the
SAT problem and other problems. Belief propagation is a general technique that
can determine global properties of a system in terms of local properties. It can be
used for monitoring global properties as part of a feedback loop.

6 Conclusions

This paper motivates that a good approach for building large-scale distributed sys-
tems is to consider them as general self-managing systems. We propose to build
self-managing software systems as sets of concurrent agents interacting by means
of asynchronous events and implemented using a component model with first-class
components and component instances. In this framework, self-managing systems
are built as hierarchies of interacting feedback loops. The first design rule is that
the whole system (except perhaps a small kernel) should be inside a feedback loop.
Feedback loops interact through two mechanisms, stigmergy (shared environment
parameters) or management (one loop controls another). The feedback loop struc-
ture is designed to provide a desired global behavior. This behavior should also
be predictable from the loop structure. We relate this proposal to two other ar-
chitectures, namely the Erlang fault-tolerance architecture and the subsumption
architecture for implementing intelligent behavior.

These ideas are being realized in SELFMAN, a project in the European 6th
Framework Programme that started in June 2006 [27]. We intend to elaborate
these ideas into a programming methodology together with an implementation. It
should be as easy to program with and reason about a feedback loop as it is for an
object or a component. We will design and formalize a component model that is
based on the Oz kernel language extended with elements from the Fractal model.
We will use this component model as the basis of a programming model along the
lines of Section 5 and implement this model in Mozart [26,9,13,23]. We will build a
feedback loop architecture on top of this implementation and use it to implement a
self-managing replicated transactional storage service.

References

[1] Aberer, K., L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi, The essence
of P2P: A reference architecture for overlay networks, 5th International Conference on Peer-to-Peer
Computing (P2P 05), IEEE Computer Society, 2005.

[2] Andrzejak, Artur, Alexander Reinefeld, Florian Schintke, and Thorsten Schitt, On Adaptability in Grid
Systems, Future Generation Grids, Springer LNCS, 2005.

[3] Armstrong, Joe, “Making reliable distributed systems in the presence of software errors,” Ph.D.
dissertation, Royal Institute of Technology (KTH), Kista, Sweden, November 2003.

[4] Ashby, W. Ross, “An Introduction to Cybernetics,” Chapman & Hall Ltd., London, 1956. Internet
(1999): http://pcp.vub.ac.be/books/IntroCyb.pdf.

[5] von Bertalanfly, Ludwig, “General System Theory: Foundations, Development, Applications,” George
Braziller, 1969.

15

VAN Roy

[6] Bouchenak, S., F. Boyer, D. Hagimont, S. Krakowiak, N. de Palma, V. Quéma, and J.-B. Stefani,
Architecture- Based Autonomous Repair Management: Application to J2EE Clusters, 2nd International
Conference on Autonomic Computing (ICAC’05), 2005, pp. 369-370.

[7] Brooks, Rodney A., A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics
and Automation, RA-2, April 1986, pp. 14-23.

[8] Brooks, Rodney A., Intelligence without representation, Artificial Intelligence 47, 1991, pp. 139-159.

[9] Bruneton E., V. Quéma, T. Coupaye, M. Leclercq, and J.-B. Stefani, An Open Component Model and its
Support in Java, Proceedings 7th International Symposium on Component-Based Software Engineering
(CBSE 2004), Springer LNCS 3054, 2004.

[10] Carroll, Lewis, “Through the Looking-Glass and What Alice Found There,” 1872 (Dover Publications
reprint 1999).

[11] Ceruzzi, Paul E., “Beyond the Limits: Flight Enters the Computer Age,” MIT Press, Cambridge, MA,
1989.

[12] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, PlanetLab:
An Owverlay Testbed for Broad-Coverage Services, ACM SIGCOMM Comp. Comm. Review, 33(3), 2003.

[13] Collet, Raphaél, and Peter Van Roy, Fuailure Handling in a Network-Transparent Distributed
Programming Language, in Recent Advances in Exception Handling Techniques, C. Dony et al (Eds.),
Springer LNCS 4119, 2006.

[14] EVERGROW: Ever-growing global scale-free networks, their provisioning, repair and unique functions,
Integrated Project, European 6th Framework Programme, 2004-7. Internet: http://wuw.evergrow.org.

[15] Fairley, Peter, The Unruly Power Grid, IEEE Spectrum Online, Oct. 2005.

[16] Findler, Robert Bruce, and Matthias Blume, Contracts as Pairs of Projections, FLOPS 2006, April
24-26, 2006.

[17] Ghodsi, Ali, “Algorithms for Large Scale Self Managing Overlay Networks,” Ph.D. dissertation, Royal
Institute of Technology (KTH), Kista, Sweden, 2006.

[18] Guerraoui, Rachid, and Luis Rodrigues, “Introduction to Reliable Distributed Programming,” Springer-
Verlag Berlin, 2006.

[19] IBM, Autonomic computing: IBM’s perspective on the state of information technology, 2001. Internet:
http://researchweb.watson.ibm.com/autonomic/.

[20] Krishnamurthy, S., S. El-Ansary, E. Aurell, and S. Haridi, A statistical theory of Chord under churn,
The 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), 2005.

[21] Lynch, Nancy, “Distributed Algorithms,” Morgan Kaufmann, San Francisco, CA, 1996.

[22] Miller, Mark, “Robust Composition: Towards a Unified Approach to Access Control and Concurrency
Control,” Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland, May 2006.

[23] Mozart Programming System, version 1.3.2, June 2006. Internet: http://www.mozart-oz.org.

[24] Principia Cybernetica ‘Web. Entry “system,” August 2006. Internet:
http://pespmcl.vub.ac.be/ASC/SYSTEM.html.

[25] SETI@home, August 2006. Internet: http://setiathome.berkeley.edu/.

[26] Van Roy, Peter, and Seif Haridi, “Concepts, Techniques, and Models of Computer Programming,” MIT
Press, Cambridge, MA, 2004.

[27] Van Roy, Peter, Ali Ghodsi, Seif Haridi, Jean-Bernard Stefani, Thierry Coupaye, Alexander Reinefeld,
Ehrhard Winter, and Roland Yap, Self Management of Large-Scale Distributed Systems by Combining
Peer-to-Peer Networks and Components, CoreGRID Technical Report TR-0018, Dec. 14, 2005. Internet:
http://www.ist-selfman.org.

[28] Weinberg, Gerald M., “An Introduction to General Systems Thinking: Silver Anniversary Edition,”
Dorset House, 2001 (original edition 1975).

[29] Wiener, Norbert, “Cybernetics, or Control and Communication in the Animal and the Machine,” MIT
Press, Cambridge, MA, 1948.

[30] Wiger, Ulf, Four-fold incregse in productivity and quality industrial-strength functional programming
in telecom-class products, Proceedings of the 2001 Workshop on Formal Design of Safety Critical
Embedded Systems, 2001.

[31] Wikipedia, the free encyclopedia. Entry “drowning,” August 2006. Internet:
http://en.wikipedia.org/wiki/Drowning.

16

VAN Roy

[32] Wikipedia, the free encyclopedia. Entry “self-stabilization,” August 2006. Internet:
http://en.wikipedia.org/wiki/Self-stabilization.

[33] Yedidia, J.S., W.T. Freeman, and Y. Weiss, Understanding Belief Propagation and Its Generalizations,
Exploring Artificial Intelligence in the New Millennium, Chap. 8, Jan. 2003. Also MERL Technical
Report TR-2001-22, Jan. 2002.

17

B IMPLEMENTING SELF-ADAPTABILITY IN CONTEXT-AWARE
SYSTEMS

B Implementing Self-Adaptability in Context- Aware
Systems

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 33

| mplementing Self-Adaptability in
Context-Aware Systems *

Boris Mejias' and Jorge Vallejd's

! Universié catholique de Louvain, Louvain-la-Neuve, Belgium
boris. mej i as@icl ouvai n. be
2 Vrije Universiteit Brussel, Brussels, Belgium
jvallejo@ub. ac. be

1 Introduction

Context-awareness is the property that defines the ability computing system to
dynamically adapt to its context of use [1]. Systems thatufeathis property should
be able to monitor their context, to reason about the chaitgéss context and to
perform a corresponding adaptation. Programming these thctivities can become
cumbersome as they are tangled and scattered all over igstesprograms.

We propose to model context-aware systems using feedbapk [@]. A feedback
loop is an element of system theory that has been previousiyoged for modelling
self-managing systems. A context-aware system modelledfesdback loop ensures
that the activities of monitoring, reasoning and adaptmthe context are modularised
in independent components. In this work, we take advantagealh modularisation to
explore different programming paradigms for each compbagthe loop.

2 Feedback Loopsfor Self-Adaptable Context-Aware Systems

Modelling software systems using feedback loops impliestie developers to iden-
tify which kind of information needs to be monitored, dediieg particular agents for
this task. Once the monitored information is collected theocomponent is in charge
of deciding correcting actions, using an actuator agenpfyathe corrections to the
system.

Consider the case of a computer-assisted system for man#gnlights of a so
calledintelligent houseThis system consists of a set of lights and sensors thattdbte
presence of people in the house. The detection of a persoorigored by a specialised
component that decides whether to turn on or off the lightssimply modify their
intensity. The loop is depicted at the left side of figure 1.

Since the use of mobile devices such as phones, PDAs, megiarplor GPSs are
becoming very common, we can expect that users will useisentbile device to com-
municate with the house. We also expect that these deviceadzpt their behaviour
according to their context. The context can representilyc&@PU use, battery load,

* This work has been partially funded by the European projects EVERGRGWSELFMAN,
and by the flemish project of Context-Driven Adaptation of Mobile Ses/{@DAMOoS).

Calculate action Context reasoner

Modify Users Event/ Cont.ext
intensity detector Behaviour monitor

House lights and
movement sensors

User's device

Fig. 1. Feedback loops modelling an automated light system and a context awhile device.

or a particular situation such as being busy, in a meetimg,Téte context is constantly
monitored by acontext reasonerwhich decides the behaviour of the device in order to
react to external events, or to trigger certain events tonsonicate with other devices.

These simple loops already provide self-adaptability &éttbuse lights system and
to the user’'s mobile device. The former adapts light’s istigraccording to the detec-
tion of users, and the later adapts its behaviour dependinigeocontext. Consider now
both models collaborating as a self-organising system. iedktend the house lights
system to also monitor context. Having a context reasoiggtsl are able to adapt their
behaviour not only to users’ movement, but also to particcdatext dependent scenar-
ios. For instance, you do not want to turn on the lights andengkthe kids when they
are in the sleeping context. We also add other sensors im tordeceive message from
users’ devices.

Figure 2 depicts the interaction between both loops. Uskrisce monitors the
intensity of the lights while still monitors context. Beirig the context ofarriving
homemay triggers an event to turn on the lights. The contextiching a filmwith high
light intensitymay triggers the event of lowing the intensity of the lights.

Since the house lights system is enriched with a contexbresissome events trig-
gered from user’s device may not have always the same résulinstance, turning on
the lights when arriving home may not work as expected if kigsin the sleeping con-
text. Like this, two users can communicate through the $iglystems as stigmergy. We
can also observe that sensors and lights serve as stignarglyef communication of
user’s device, and the controller of the house, becausedbtitem monitor the system,
and trigger events to modify the intensity of lights.

3 Implementing Feedback L oops

We have started to implement a prototype of the system usiogai [3], a multi-
paradigm programming system implementing the Oz languég&\e have identified
several ways of communicating components of a loop, whichlm done using an
event-driven approach, or stream communication, whictacareve by pulling or push-
ing information (lazy or eager execution). To communicaitgrihuted components,
message passing seems to be the most appropriated paradigm.

User's devices follow naturally the actor model [5], butidesthe actor we can intro-
duce other paradigms as well. For instance, the contextmeaspplies a set of rules to

Context reasoner

Modify
intensity

detector monitor

Users | | Context

House lights
and sensors

Modify
intensity
Event/
Behaviour

Light's
intensity
Context
monitor

Context reasoner

User's device

Fig. 2. Communicating two feedback loops.

the monitor information in order to determine the corresjgort rule. This component
fits better logic or declarative programming. To implemetdtive behaviour, we have
chosen a model representing roles [6], where split objédtare used as the general
architecture.

Since every component communicate with other by events asages, they are
quite independent, and the decision of the implementati@ach of them, do no affect
the implementation of the others. We still need to investigaore about the explicitness
of the components matching the design and the implementdtiecause sometimes
they appear clearly at the conceptual level, by they intedréo other components in
the implementation.

References

1. Group, Il.A.: Ambient intelligence: from vision to reality (2003)

2. Van Roy, P.: Self management and the future of software designFormal Aspects of
Component Software (FACS '06). (2006)

3. Consortium, M.: The mozart-oz programming systétp://www.mozart-0z.or(R007)

4. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models ofp@tan Programming. MIT
Press (2004)

5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor &dism for artificial intelli-
gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235-245

6. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., MostinckxC8stanza, P.: The context-
dependent role model. In Indulska, J., Raymond, K., eds.: 7t lilernational Conference
on Distributed Applications and Interoperable Systems (DAIS '07). Lreciotes in Com-
puter Science, Springer-Verlag (2007) 277-299

7. Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegationiwi®bjects. In:
Proceedings of the 11th Conference on Object-Oriented Programmsignss, Languages,
and Applications (OOPSLA96), San Jose, California, USA (1996)-127

C A RELAXED RING FOR SELF-ORGANISING AND FAULT-TOLERANT
PEER-TO-PEER NETWORKS

C A Relaxed Ring for Self-Organising and Fault-
Tolerant Peer-to-Peer Networks

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 37

A Relaxed-Ring for Self-Organising and
Fault-Tolerant Peer-to-Peer Networks

Boris Mejias and Peter Van Roy
Universié catholique de Louvain
Louvain-La-Neuve, Belgium
{bmdpvr}@info.ucl.ac.be

Abstract—There is no doubt about the increase in popularity of resources of the system are distributed among the peergwher
decentralised systems over the classical client-server architete each one is responsible for a set of them. Performing a lookup
in distributed applications. These systems are developed mainly o 5 yesource must result in a consistent answer, finding the

as peer-to-peer networks where it is possible to observe many . .
strategies to organise the peers. The most popular one for struc 9Nt responsible. To add or remove a peer from the network,

tured networks is the ring topology. Despite many advantages the peer only needs to synchronise with its direct neighgour
offered by this topology, the maintenance of the ring is very making the network self-organising. More details are e@xrpla
costly, being difficult to guarantee lookup consistency and fault- jn section II.

tolerance at all time. By increasing self-management in the system Despite the self-organising nature of the ring architetur

we are able to deal with these issues. We model ring maintenance.t int t | chall : der to
as a self-organising and self-healing system using feedback Ioops.I S maintenance presents several challenges in order pro

As a result, we introduce a novel relaxed-ring topology that is able Vide |00kUP Consistency at any time. Chord. iFseIf presents
to provide fault-tolerance with realistic assumptions concerning temporary inconsistency when several peers join the né&twor
failure detection. Limitations related to failure handling are concurrently. This problem occurs even in fault-free scesa

clearly identified, providing strong guarantees to develop applica- 14 fix these inconsistencies, a stabilisation protocol must

tions on top of the relaxed-ring architecture. Besides permanent b iodicallv. Th t t also deal with
failures, the paper analyses temporary failures and broken links, € run periodically. € sysiem must also deal with peers

which are often ignored. gently leaving the network, which can occur massively and
Index Terms—Decentralised systems, Peer-to-peer, Fault- concurrent to other joining events. The most challengisgés
tolerance, Self-management, Feedback-loops though, is failure handling, where peers just leave the ogtw

breaking the ring without following any protocol.

As we can see, ironically, the advantages of decentralised

Decentralised applications has rapidly increased thgir pcsystems with respect to the classical client-server achite,
ularity in the last years due to several factors and motivati have the drawback of higher complexity due to the lack of
The increase of Internet bandwidth with a sufficient religbi a single point of control and synchronisation. Increasielf s
is already an important element. The fact that home computenanagement of decentralised systems can help us to reduce
have augmented their computing power has decreased thettis new complexity. By self-management we mean the ability
pendency on big servers, because clients are powerful Bnoa§a system to maintain its functionality despite changeisin
to play the role of a server for several tasks. These fact@svironment. The system constantly monitor itself trigiygr
have allowed the introduction of peer-to-peer networkshSucorrective actions when the current state deviates from the
networks have reduced the problem of traffic congestion addsired one. In order to achieve self-management, the use of
single point of failures as in the client-server architeetu feedback loops in the design of the system appears as ahtraig
making decentralised applications popular. forward approach.

Building decentralised applications requires severatgua We use feedback loops to model the ring-maintenance of our
tees from the underlay peer-to-peer network. Fault-tolega peer-to-peer system, called P2PS [7], which also uses a ring
and consistent lookup of resources are crucial propettias ttopology. As a result of this new design, we introduce a novel
a peer-to-peer system must provide. Other wished propertielaxed-ring topology that simplifies the “join” algorithm
such as efficient routing, scalability and full reachapilitand greatly improves failure recovery. Having the abilify o
moved randomly connected peer-to-peer networks towarusndling failures, there is no need for a “leave” algorithm,
structured overlay networks. Many of these structured ndtecause this case is already covered by failure recovery.
works implements a Distribute Hash Table (DHT). Among The main contribution of this work is the design of a
many of them - Pastry [1], Tapestry [2], Kademlia [3], Hypeer-to-peer network as a self-managing system, intraduci
perCup [4], P-Grid [5] - we focus on Chord [6], because it ia relaxed-ring topology that is able to provide fault-talece
quite representative and it introduces a ring topology kst with realistic assumptions concerning failure detectidhe
influenced many other networks. use of feedback loops for modelling the system can be reused

In Chord, peers are organised in a ring, having a set wét only in other decentralised systems, but also in soéiwar
pointers to efficiently find any other peer in the network. Thedesign in general.

I. INTRODUCTION

Section 1l gives a more detailed introduction to peer-tc
peer networks using ring topology, describing some exgstir
solutions for ring maintenance. Section Il briefly introes
feedback loops for self-managing systems and how they c
be applied to software design. The result of applying feeklba
loops to the ring maintenance is given in section IV with
detailed description of theelaxed-ring After a deep analysis
of failure handling, the paper provides conclusions fors th
work.

Il. PEER-TO-PEERRINGS

Peer-to-peer networks appear as the evident framework
working with decentralised systems. Looking at the histol
of peer-to-peer systems, we find Napster [8] as the icon
the first generation. Napster uses a hybrid architecturb w
a centralised directory of the location of the resourceshef t
systems. A client-server strategy was needed in order to fi
other peers.

A second generation characterised by Gnutella [9] al

FreeNet [10] removed the servers from the topology becomiiy 1
the first real peer-to-peer network. Peers build an overlay _ o
network on top of the Internet, being able to route with its Fig. 1. Structured overlay network using ring topology

own topology. No structure is used for the network because

peers are connected randomly to other peers. Therefore, no . .))

strong guarantees can be provided with respect to reaitabif"® NOt atomic operations. We also raise the issue that these
time to find items or availability. Unfortunately, these dinf OPerations always need the synchronisation of three peers,
network have limited scalability and induce a huge amount $fhich is hard to guarantee with asynchronous communication
traffic [11]. Whlch IS |nhereqt to distributed programming.

Structured overlay networks - see introduction for refegsn _ EXisting solutions [14], [15] introduce locks in the algo-

- appear as the third generation of peer-to-peer systerﬂﬂ?ms_'n order to provide atomicity to thfalq and leave
claiming self-organisation of the network with fault-tdece ©Perations. Locks are also hard to manage in asynchronous
in addition to the guarantees that cannot be found in thensecgYStems, and that is why these solutions only work on fault-
generation. free systems, which is not realistic.

Figure 1 depicts a structured overlay network using ring A Petter solution is provided by DKS [13], simplifying the
topology and providing a Distributed Hash Table (DHT) Witﬂockmg mechar.usm and proving corr.ectness of the algosthm
election of fingers based on the Tango [12] algorithm. Thi§ absent of failures. Even when this approach offers strong
structure was first introduced by Chord [6]. Every peer iguargntees, we consider locks extremely restrlcfuve.foya d
identified with a hash key, and it is connected to a succesd&Mic network based on asynchronous communication. Every
and a predecessor respecting the order of the keys in cleekwlPOkup request involving the locked peers must be suspended
direction. The DHT is used for storing and finding items iff) Présence of join or leave in order to guarantee consigtenc
the network using basically two operationsit(key, value) Leaving peers are 'not allowed to leave th(_e network until
to store a value with a certain key, aget(key) to recover they are granted with the releyant Ioc.ks. Given that, peers
the value. Every peer is responsible for all keys betweéﬁaSh'”Q can be seen as peerSJu§t leaving thg network.vtnthou
its predecessor’s identifier and itself, excluding of ceutise €Specting the protocol of the locking mechanism breakiieg t
predecessor to avoid overlapping. When a lookup for a k@yarantees of the system.
is trigger from any part of the ring, consistency must be Another critical problem for performance is presented when
guaranteed, i.e., only one responsible for the key must Bdeer crashes while some joining or leaving peer is holdég i
found. lock. The situation is worse when the peer holding the releva

As we mentioned already, ring maintenance is costly and@cK is the one that crashes. Under this considerations,amne ¢
is not trivial to guarantee correctness. Chord’s algoritHor observer that locks in a distributed system can hardly ptese
ring maintenance handlirjgins andleavespresent well known an efficient fault-tolerant solution.
problems of temporary inconsistency, where more that one
peer appears to be the responsible for the same key. For this
reason, Chord needs to trigger periodic stabilisation oleor Taken from system theorjeedback loopsan be observed
to fix the inconsistencies. Existing analyses [13] conclud®t only in existing automated systems, but also in self-
that the problem comes from the fact that joins and leavasanaging systems in nature. Several examples of this can

I1l. FEEDBACK LOOPS

ﬁ Calculate corrective action (_ﬁ q r

Actuating agent Monitoring agent

L_) Subsystem _J

Fig. 2. Basic structure of a feedback loop (taken from [16])

p—>t
pe—q
s+t

Fig. 3. Branch created due to connection problems betweers pesnd ¢

be found in [16], where feedback loops are introduced as a
designing model for self-managing software. The loop iBsi IV. SELF-ORGANISING AND SELF-HEALING
out of three main concurrent components interacting with th RELAXED-RING

subsystem. There is at least one agent in charge of momtorin section Il described the problem of guaranteeing condisten
the subsystem, passing the monitored information to a @notf,okyp while multiple joins, leaves and failures occur in a
component in charge of deciding a corrective action if ndedeeer-to-peer network using ring architecture. As a sofuto

An actuating agent is used in order to perform this actiqfis problem we design a novel topology based on a relaxed-
in the subsystem. Figure 2 d.epicts the interaction of theggy This topology also allows as to provide failure reagve
three concurrent components in a feedback loop. These thigg imperfect failure detectors and handling brokensdink
components together with the subsystem forms the entjfgich are often ignored. The relaxed-ring topology is pdrt o
system. the new version of P2PS [17], implemented with Mozart-Oz

The goal of the feedback loop is to keep a global properptogramming system [18].
of the system stable. In the simplest cases, this propertypyring this section we will use the termmeer and node
is represented by the value of a parameter. This parameigfistinctly to refer to an independent process runninghwit
is constantly monitored. When a perturbation is detected,ita own address space, i.e., a network node. We also use the
corrective action is triggered. A negative feedback willkea term pointer as a network reference to a node. The tekap
the system reacts in the opposite direction to the pertiarat andidentifier represent keys from the DHT, and they are used
Positive feedback increases the perturbation. to identify peers.

Taking an air-conditioning as example, we can see theThe algorithms of the relaxed-ring are designed using
room where the system is installed as the subsystem. fAedback loops, and the description of their implementatio
thermometer constantiyonitors the temperatune the room s given using event-driven notation. As any overlay nekwor
giving this information to ahermostat The thermostat is the pyjt using ring topology, in our system every peer has a
component in charge of computing the correcting actiorhéf t syccessor, predecessor, and fingers to jump to other parts of
monitored temperature is higher than the wished temperatue ring in order to provide efficient routing. The ring proes
the thermostat will decide toun the air-conditioningto cool a DHT with key-distribution formed by integers from 0 16
it down. That action corresponds to the actuating agent. growing clockwise.

Since every component executes concurrently, the modeRange between keys, such @s q| follows the key distri-
fits very well for modelling distributed systems. There arpution clockwise, so it is possible that> ¢, and then the
many alternatives for implementing every component andnge goes from to ¢ passing through 0. Parenthes€sand
the way they interact. They can represent active objecty, excludes a key from the range and, and ‘J’ includes it.
actors, functions, etc. Depending on the chosen paradigmAs we previously mentioned, one of the problem we have
the communication between components can be done #served in existing ring maintenance algorithms is thednee
instance by message passing or event-based communicaighan agreement between three peers to perform a join/leave
The communication may also be triggered by pushing @gtion. We provide an algorithm where every step only needs
pulling, resulting on eager or lazy execution. the agreement of two peers, which is guaranteed by a point-to

Independent of the strategy used for communication, it ®int communication. In the specific case of a join, instefad o
important to consider asynchronous communication as thaving one step involving 3 peers, we have two steps involv-
default when distributed systems are being modelled. ing 2 peers. The lookup consistency is guaranteed between

As a rule for using feedback loops in the design of a systemwery step and therefore, the network can still answer Ipoku
actuators and monitors appear as verbs, while the subsystequests while simultaneous peers are joining the network.
and the computing component appear as substantives, as in&hother relevant difference with the mentioned relatedkyor
air-conditioning example. The reason why it is not like tims is that we do not rely on graceful leaving of peers, because
Figure 2, is because that is a description of the model, aadyway, we have to deal with leaves due to network and node
not the model applied to a system. failures.

join q Messages sent during the process of joining, and the update
q r .. of the predecessor and successor pointers are shown in figure
p «r 4. In the example, node wants to join the network having
as successor candidate. Peds a good candidate because it
m is the responsible for key. Nodeq send a join request to.
Whereas eventoin triggered by peeq is a perturbation, event
join_ok is a correcting action providing negative feedback. It
is negative because it is an action that goes in the opposite
direction of the perturbation. Aftejoin_ok is triggered, a
branch is created. Then, a second correcting action is deede
to entirely close the ring. This action is represented by the
eventnew_succ sent from peey to p.

Figure 5 describes the feedback loop that keeps the steuctur
of the relaxed-ring stable. The monitoring agents are imgga
of detecting perturbations in the network. Correcting attits
new_succ q can be seen as three different actions: update routing table

(successor and predecessor), trigger event (correctieg)on
and forward request (in case a peer wants to join in the wrong
34 r place). The routing table does not only include predecessor
and successor. It also includes fingers for efficient routind
resilient sets for failure recovery.

Every peer is independently monitoring the network, and the
correcting action performing the ring maintenance is rogni
concurrently in every peer. As events triggered by peers are
monitored by other peers, we observe that they use the rietwor
as a mean for communicating using stigmergy.

Fig. 4. Messages and pointers update during a join

Our first invariant is thatevery peer is in the same ring
as its successorTherefore, it is enough for a peer to have
connection with its successor to be considered inside fgyorithm 1 Join step 1 - addmg a new node
network. Secondly, the responsibility of a peer starts i
key of its predecessor plus 1, and it finishes with its own key
Therefore,a peer does not need to have connection with its,
predecessor, but it must know its kdihese are two crucial
properties that allow us to introduce the relaxation of ihe.r

1: upon event{ join | q) d
if succ = nilthen

send(try_later | self) to ¢
4: else

-) if betterPredecessor(then
When a peer cannot connect to its predecessor, it forms a oldp := pred
branch from thecore ring When there are no branches, and_. pred — q
every peer is connected bidirectionally with its successat 8: predli.st = {oldp} U {predlis§

predecessor, then we haveéerfect ring”.

Figure 3 shows a fraction of a relaxed ring where per i
the root of a branch, and where the connection between petﬂ;s
p and q is broken. We say thgt and ¢ belongs to thecore 12- else
ring, and thatg, » and s are part of a branch. 13: send (goto | succ) to g

Before starting the description of the algorithms that main, ,. end if
tain the relaxed-ring topology, we first define what we meafy. end if
by lookup consistency. 16: end event

Def. Lookup consistency implies that at any time there is
only one responsible for a particular key or the responsible -
is temporary not available.

send (join_ok | oldp, self, succlis} to ¢
else if (i < pred) then
send (goto | pred) to g

: upon event(join_ok | p, r, sl) do
18: succ :=r
19: succlist :={r} U sl

A. The join algorithm 20: if (pred =mnil) v (p € (pred, self)) then
Thinking about the peer-to-peer network as self-managirgy: pred ;= p
system, the network is the subsystem we want to monita?: send (new_succ | self, succ, succlist to p

because we want it to keep is functionality despite the cbang23: end if

that can occur. The structure of the ring is the global prigper24: end event

that needs to be kept stable. New peers joining, and current

peers leaving or failing represent perturbations to theg rin Algorithm 1 describes one implementation of the feedback
structure. Therefore, these events must be monitored. loop. Every event is handled by the computing component

Relaxed-Ring <—

Trigger Forward Update Detect join Detect Detect
event request routing table (new pred) new_succ join_ok
N network
»

Fig. 5. Join algorithm as a feedback loop

running in every peer. This component decides which cdor key k. In order to have this situatior and ¢ must
rection has to be performed. In eveptin, the messages have the same predecessfir sharing the same range of
goto and try_later represent the forwarding of the requestiesponsibility. This means thét e (j,p] andk € (4, ¢|. The
The request can be accepted when the joining peer igoan algorithm updates the predecessor pointer upon events
better Predecessor. This is the case wheq € (pred, self]. join and join_ok. In the eventjoin, the predecessor is set
As part of the joining process, there is an update of the a new joining peerj. This means that no other peer was
routing table. This update is done explicitly by assignihg t having j as predecessor because it is a new peer. Therefore,
corresponding pointepred and thepred_list. this update does not introduce any inconsistency. Uponteven
Operator send is a reliable point-to-point send. If thejoin_ok, the joining peer; initiates its responsibility having
receiver presents a failure before the message arrives, ghenember of the ring as predecessor, sayhe only other
sender is notified. peer that had as predecessor before is the successof, of
Triggering correcting events is represented by the meSyp, which is the peer that triggered thein_ok event. This
sagejoin_ok, which will be monitored by the joining peer. message is sent only aftehas updated its predecessor pointer
Handling eventjoin_ok also shows how the routing tablet0 j, and thus, modifying its responsibility frof, p] to (3, p],
is updated by assigning pointeticc and setsucc_list. A Which does not overlap witi's responsibility(i, j]. Therefore,
second correcting event is triggereduw_succ. The set named it is impossible that two peers has the same predecessor.
succ_list is used later for failure recovery. This set represents
the list of peers that follows after the current successhis T Algorithm 2 Join step 2 - Closing the ring
peers can be contacted in order to fix the ring when tha: upon event(new_succ | q, olds, sl) do

successor is suspected of having a failure. 2: if (succ = olds) then
Note that the algorithm is divided into two steps. Like this, 3: oldsucc := succ
we do not need the synchronisation of three peers performing succ :=q
an atomic operation. Instead, two correcting actions age tr 5: succlist :={q} U sl
gered in order to fix the perturbation. Algorithm 2 describess: send(join_ack | self) to oldsucc
the implementation of the second action where the ring ig: send (upd_succlist | self, succlist) to pred

closed again. This is achieved by updating poirsetc and 8: end if
setsucc_list, which are part of the routing table. A notification 9: end event
eventjoin_ack is triggered to improve the knowledge of the
system about its global state, but it is not strictly needed. 10: upon event(join_ack | op) do
It is important to signalise that the routing algorithm ofll: if (op € predlist) then
Chord or DKS [19] cannot be used in the relaxed-ring. Thi2: predlist := predlist\ {op}
algorithm would creates cycles due to the introduction of3: end if
branches in the ring topology. The routing algorithm of thé4: end event
relaxed-ring works as follows. A peémust choose the closest
peerj to the keyk from its routing table. The routing table
also consider predecessors for routing. The distancei@mctB. Resilient information
between two keys is given by(k, j) = (j — k)modN, where During the join algorithm we have mentiongdedlist and
N is the highest value of the key domain. succlist for resilient purposes. The basic failure recovery
Given the join and routing algorithms, the relaxed-ringnechanism is triggered by a peer when it detects the failure
guarantees consistent lookup at any time in presence abfits successor. When this happens, the peer will contact
multiple joining peers. To prove this guarantee, let us m&su the members of the successor list successively. The olgecti
the contrary. Then, there are two peersand g responsible of the prediist is to recover from failures when there is

Failure recovery

/’ mechanism

Trigger join Update Detect Detect Detect
(new pred) routing table p crashes p is alive join_ok
Peer-to-peer JJJ
network

Fig. 6. Failure recovery as a feedback loop

no predecessor that triggers the recovery mechanism. $hibécome stable, thgoin_ok event will be monitored. This
expected to happen only when the tail of a branch has crasheegative feedback loop can be observe in figure 6.

Section IV-C gives more details about the recovery algoeh Agorithm 4 describes an implementation of the feedback
Initially, we do not use extra fingers for recovery because I50p. If a failure is detected, therash event is triggered.

is not efficient. They may help to solve network partitionindrpe getected node is removed from the seisclist and

but we c_ielegate this_kind of recovery to upper layers of Pzpﬁredlist, and added to arashed set. If the detected peer

_ Algorithm 3 describes how the update of the successor ligt e syccessor, the recovery mechanism is triggered. The
is propagated while the list contains new information. The, .. pointer is set tonil to avoid other peers joining while
predecessor list is updated only during the join algorithd a o qyering from the failure. A successor candidate is taken
upon failure recoveries. from the successors list. The functigrtFirst returns the
peer with the first key found clockwise, and removes it from
the set. It returnsuil if the set is empty. Note that as every

Algorithm 3 Update of successor list

1: upon event(upd_succlist | s, sl) do crashed peer is immediately removed from the resilient, sets
2. newsl :={s} Usl\ getLast(sl) getFirst always returns a peer that appears to be alive at this
8 if (s == succ) A (succlist # newsl) then stage. The successor candidate is contacted usingdie

4 succlist := newslb] message, triggering the same algorithm as for joining. @bis

5 send (upd_succlist | self, succlist) to pred tion generates an interaction between the two feedbacks)oop
6 end if using the involved peers as stigmergy for communication. If
7: end event

the successor candidate also fails, a new candidate will be
chosen. This is verified with th&f condition.

C. Failure recovery

Instead of Qe3|gn|ng a costly protocol for peers Ieav'ng,“)ﬁgorithm Z Failure recovery
network, leaving peers are treated as network nodes having-&
failure. Like this, solving problem of failure recovery Willso L:-upon evgnt.(crash .| p) do
solve the issue of leaving the network. z succl'|st . SUCC|.ISt\ {p}

Observing the relaxed-ring as a self-managing system, we prediist := predlist\ {p}
identify that the crash of a peer also introduces pertushatto : f:hrased =(p} U crashed .
the structure of the ring. Therefore, crashes must be mmexito if (p = succ) v (p = succ_candidate) then
In order to provide a realistic solutioperfect failure detectors suce .= n||_ . .
cannot be assumed. Perfect failure detectors are strong?z sucgcap@date = getF|rst(such|.st)
complete and strongly accurate. Being complete means thét sgnd(join | self) to suce_candidate
every crashed node is detected. Being accurate means that'a ©'S€ if (» == pred) then
node being suspected of failure is effectively in failura. | 1% if (predlist # 0) then .
reality, broken links and nodes with slow network connattio*t p_red_candldate = getlast(predlist)
are very often, generating a considerable amount of faldé e_nd i
suspicions. Because of this, not only crashed events must ¥ end if
monitored, but also “I am alive” messages. When these twd end event
events are appear as perturbations, the network must update .
routing tables and trigger correcting events. 15: upon event(alive | p) do

In the relaxed-ring architecture we re-use flogn event as 16 crashed := crashed {p}
correcting agent for stabilising the relaxed-ring. If tretwork 17 €nd event

When the detected peeris the predecessor, no recovery join ‘\

mechanism is triggered becauge predecessor will contact —— join
the current peer. The algorithm decides a predecessor-candi . /’_jo_in ~.

date from thepredlist to recover from the case when the tail O -

of a branch is the crashed peer. We will not explore this case > <>

further in this paper because it does not violate our defimiti
of consistent lookup. To solve it, it is necessary to set up a
time-out to replace the faulty predecessor by the predecess
candidate.

Whgn a peer recovers from.a temporary faﬂurg, thee simultaneouslyr’s successor for recovery. if arrives first,
event is triggered. This can be implemented by using wascher

. 7 ...everything is in order with respect to the rangesp larrives

or using a fault stream attached to the distributed entltl?§ h .)
. . , r Il r nsible for the ran ,

[20]. To handle thealive event is enough to remove the st, there will be two responsible for the rang@s g, but

L ; . ne of themy, is not known ny other rin the network
peer from thecrashed set. This will terminate any pendmg0 e of themg, is not known by any other pee € hetwork,

A R ! and it fact, it does not have a successor, and then, it does not
recovery algorithm. The faulty peer will trigger by itsefiet belong to the ring. Then, no inconsistency is introducecdiy a
corresponding recovery events with the relevant peers. ' '

case of failure.

Figure 7 shows the recovery mechanism triggered by a peer
when it detects that its successor has a failure. The figure
depicts two equivalent situations. The above one corredgpon
to a regular crash of a node in a perfect ring. The situation

Fig. 9. Simultaneous crashes together with a join event

Algorithm 5 Verifying predecessor candidate

1: function betterPredecessqi(is
2 if (¢ € (pred, self)) then

3 retumn - (true) bellow shows that a crash in a branch is equivalent as long as
4 else d hed there is a predecessor that detects the failure.

> dr(_afturn (pred & crashed) Figure 9 shows two simultaneous crashes together with a
6 ena it new peer concurrently joining the network. If the recovery
7: end function

join message arrives first, the ring will be fixed before the new
peer joins, resulting in a regular join. If the new peer start
Having now the knowledge of the-ashed set, algorithm 5 the first step of joining before the recovery, it will intrazkia
gives a complete definition of the functibatter Predecessor temporary branch because of its impossibility of contagtire
used in algorithm 1. Since thgin event is used both for a faulty predecessor. When the recoveigin message arrive,
regular join and for failure recovery, the function will dée the recovering peer will be forwarded to the new peer. The

if a predecessor candidate is better than the current orte itbntact of these two peers will finally fix the ring and remayin
belongs to its range of responsibility, or if the currentd is the branch.

detected as a faulty peer. There are failures more difficult to handle than the ones we
o have already analysed. Figure 10 depicts a broken link and
JO_'L the crash of the tail of a branch. In the case of the broken

- N link (inaccuracy), the failure recovery mechanism is teiged,

9‘4_{&_,‘“ but the successor of the suspected node will not accept the

join message. The described algorithm will eventually veco
from this situation when the failure detector reaches amur
This will happen when the link is recover from the failure,

— .
~ and thealive event is monitored.
join
4—»‘ —> — =—
. . >
/ H
Fig. 7. Failure recovery triggered in the ring and in a branch .i’: . 6

Knowing the recovery mechanism of the relaxed-ring, let
us come back to our joining example of figure 4 and check

2
what happens in cases of failuresgltrashes after the event W
join, peerr still hasp in its predlist for recovery. Ifq crashes
after sendingrew_succ to p, p still hasr in its succlist for 1—».‘- ‘%4_.
recovery. Ifp crashes before eventw_suce, p’s predecessor
will contact r for recovery, and- will inform this peer about
q. If r crashes beforeew_succ, peersp and ¢ will contact Fig. 10. Broken link and failure of the tail of branch

join

Relaxed-Ring
join mechanism

Failure recovery

mechanism
R

(r) Trigger Update (p) Trigger (p&r) Detect (p) Detect (r) Detect
join_ok (to p) routing table join (tor) g crashes join_ok (from r) join (from p)
L N\ :; Peer-to-peer __J@ J@J@
> network

Fig. 8. Peery andr detect failure ofq, fixing the ring with an interaction of feedback loops

In the case of the crash of the node at the tail of a branghwill trigger the correcting evengoin (2b). This first iteration
there is no predecessor to trigger the recovery mechanisrarresponds to a loop from the failure recovery mechanism.
In this case, the successor could use one of its nodes in T join event will be monitored by peer (3), starting an
predecessor list to trigger recovery, but that could inted iteration in the join maintenance loop. The correcting @cti
inconsistencies if the suspected node has not really falifed join_ok will be triggered (4a) together with the corresponding
the tail of the branch has not really failed but it has a brokarpdate of the routing table (4b). Once again the network
link with its successor, then, it becomes temporary isdlared is used as stigmergy, because the evgmitn_ok will be
unreachable to the rest of the network. Having unreachallenitored (5) by the failure recovery component in order to
nodes means that we are in presence of network partitionipgrform the correspondent update of the routing table (6).
which will be discussed in section IV-E. Since thejoin_ok event is also detected by the join loop,

With respect to failure handling, the relaxed-ring guaeast both loops will consider the network stable again.
that simultaneous failures of nodes never introduce insens Lo

. o E. Limitations
tent lookup as long as there is no network partition. To prove) N
this guarantee, we must consider that every failure of a peefigure 11 depicts a temporary network partition that can
is eventually detected by its successor, predecessor fied oPCCUr in the relaxed-ring topology. Previously, we havel-ana
peers in the ring having a connection with the faulty nodee TiYS€d cases where there is only one peer that triggers the
successor and other peers register the failure incthehed €COVEry mechamsm. In the case of the failure of the root
set, and remove the faulty peer from the resilient petsilist ©Of @ branch, peer in the example, there are two recovery
andsucclist, but they do not trigger any recovery mechanisnin€ssages triggered by pegrandg. If message from peey
Only the predecessor triggers failure recovery when tHertai armives first to peet, the algorithm hqndle_the situation W|th9ut
of its successor is detected, contacting only one peer fram Problems. If message from pegrrrives first, the branch will
successor list at the time. Then, there is only one possifg temporary isolated behaving as a network partition. This
candidate to replace each faulty peer, and then, it is iniipiess Situation introduces a temporary inconsistency. Thistitron

to have two responsible for the same range of keys. is not unique to the relaxed-ring topology. It is relatedhe t
proof given by Ghodsi in [13], where it is not possible to

D. Combining feedback loops provide at the same time consistency, availability anditpamt

The interaction between feedback loops is an interestitgerance in presence of network partitioning. The linat
issue to analyse because big systems are expected to beofiéhe particular case of the relaxed-ring is well definedhia t
signed as a combination of several loops. Feedback loops ni@ljowing theorem.
communicate directly or using some subsystem as stigmergyTheorem 4.1:Let r be the root of a branchucc its succes-
Let us consider a particular section of the ring having pgegs sor,pred its predecessor, and-edlist the set of peers having
andr connected through successor and predecessors poin@ssuccessor. Letbe any peer in the set, so tha€ predlist .
Figure 8 describes how the ring is perturbed and stabilisedThen, the crash of peemay introduce temporary inconsistent
the presence of a failure of peer Only relevant monitored lookup if p contactssucc for recovery beforepred. The
and actuating actions are included in the figure to avoidimconsistency will involve the range,(pred], and it will be
bigger and verbose diagram. corrected as soon ased contactssucc for recovery.

Initially, the crash of peeq is detected by peegsandr (1). Proof: There are only two possible cases. Firgted
Both peers will update their routing tables removipdrom contactssucc beforep does it. In that caseucc will consider
the set of valid peers (2a). But, sinpés ¢'s predecessor, only pred as its predecessor. Whercontactssucc, it will redirect

ACKNOWLEDGEMENT

This work is being funded and developed in the context of
projects EVERGROW (contract number:001935) and SELF-

b —

join

(1]

Fig. 11. The failure of the root of a branch triggers two rezgvevents

(2]

it to pred without introducing inconsistency. The second
possible case is thgb contactssucc first. At this stage,
the range of responsibility ofucc is (p, succ], and of pred
is (p/,pred], wherep’ € [p,pred]. This implies thatsucc
and pred are responsible for the rande@’, pred], where in
the worse cas@’ = p. As soon aspred contactssucc it [5]
will become the predecessor becaysed > p, and the
inconsistency will disappear. []

Theorem 4.1 clearly states the limitation of branches in the
system. This helps developers to identify the scenariogavhel6]
special failure recovery must be taken into account. Sihee t
problem is related to network partitioning, there seemstad
easy solution for it. An advantage of the relaxed-ring topyl
is that the issue is well defined and easy to detect, improving!
the guarantees provided by the system in order to build-fault
tolerant applications on top of it. 8]
(9]
[10]
[11]

Decentralised systems in the form of peer-to-peer networks
presents many advantages over the classical client-samker
tecture. Even though, the complexity of a decentralisetesys (1)
is higher, requiring the increase of self-management. is th
paper we show how feedback-loops, taken from existing self-
managing systems, can be applied in the design of a pegg;
to-peer network. The result is a novel relaxed-ring topglog
for fault-tolerant and self-organising networks. The epstis [14]
able to monitor and correct itself, keeping the ring streetu
stable despite the changes due to regular operations ofoduél5]
network and node failures.

The topology is derived from the simplification of tfn
algorithm requiring the synchronisation of only two peets &!7]
each stage. As a result, the algorithm introduces branache &

K]

(4

V. CONCLUSIONS

[16]

] Mozart

MAN (contract number: 034084).

REFERENCES

A. Rowstron and P. Druschel, “Pastry: Scalable, deedmed object
location, and routing for large-scale peer-to-peer systerhecture
Notes in Computer Scienceol. 2218, pp. 329-??, 2001. [Online].
Available: citeseer.ist.psu.edu/rowstronOl1pastry.html

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Josephd

J. D. Kubiatowicz, “Tapestry: A global-scale overlay fopia service
deployment,” IEEE Journal on Selected Areas in Communicatjons
2003, special Issue on Service Overlay Networks, to app@atine].
Available: citeseer.ist.psu.edu/article/zhaoO3tapdsml

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” 2002. [Onlinefaikable:
citeseer.ist.psu.edu/maymounkov02kademlia.html

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Hypgvc- hyper-
cubes, ontologies and efficient search on p2p networks 2 2f@nline].
Available: citeseer.ist.psu.edu/article/schlosseyp2hcup.html

K. Aberer, “P-Grid: A self-organizing access structufer P2P
information systems,’Sixth International Conference on Cooperative
Information Systems (CooplS 2001), Lecture Notes in Caenput

Science vol. 2172, pp. 179-194, 2001. [Online]. Available:
citeseer.ist.psu.edu/aberer01pgrid.html
I. Stoica, R. Morris, D. Karger, F. Kaashoek, and

H. Balakrishnan, “Chord: A scalable Peer-To-Peer lookupvise
for internet applications,” in Proceedings of the 2001 ACM
SIGCOMM Conference 2001, pp. 149-160. [Online]. Available:
citeseer.ist.psu.edu/stoica0lchord.html

V. Mesaros, B. Carton, and P. Van Roy, “P2PS: Peer-ta-gegeclopment
platform for mozart.” inMOZ, ser. Lecture Notes in Computer Science,
P. Van Roy, Ed., vol. 3389. Springer, 2004, pp. 125-136.

Napster, “Open source napster server,” 2002. [Onlin&}ailable:
http://opennap.sourceforge.net

Gnutella, “http://gnutella.com,” 2003.

FreeNet, “http://freenet.sourceforge.net,” 2003.

E. P. Markatos, “Tracing a large-scale peer to peeresgstan hour
in the life of gnutella,” in 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid2002. [Online]. Available:
citeseer.ist.psu.edu/article/markatos02tracing.html

B. Carton and V. Mesaros, “Improving the scalability ogarithmic-
degree dht-based peer-to-peer networksEuimo-Par, ser. Lecture Notes
in Computer Science, M. Danelutto, M. Vanneschi, and D. lexiaa,
Eds., vol. 3149. Springer, 2004, pp. 1060-1067.

A. Ghodsi, “Distributedk-ary System: Algorithms for distributed hash
tables,” PhD Dissertation, KTH — Royal Institute of Techogy,
Stockholm, Sweden, Dec. 2006.

X. Li, J. Misra, and C. G. Plaxton, “Active and concurteopology
maintenance.” irDISC, 2004, pp. 320-334.

——, “Concurrent maintenance of ringsDistributed Computing
vol. 19, no. 2, pp. 126-148, 2006.

P. Van Roy, “Self management and the future of softwaregdé'sin
Formal Aspects of Component Software (FACS, @®)ptember 2006.
DistOz Group, “P2PS: A peer-to-peer networking lilyrdor Mozart-
Oz,” http://gforge.info.ucl.ac.be/projects/p2/2007.

Community, “The Mozart-Oz programming system,”

the ring. These branches can only be observed in presence nttp:/www.mozart-0z.org, 2007.

of connectivity problems between peers, and help the systéi®i
to work in realistic scenarios. The ability to handle fadsr
removes the need for lgave algorithm, because it is just a
special case in the failure recovery mechanism.

Related work is discussed along the paper, butitis s cia[ﬁo]

g paper, pg

analysed in section Il. The guarantees and limitations ef th
relaxed-ring of P2PS are clearly identified and formallyexda
in section IV. These specifications provide helpful indicas
to developers in order to build fault-tolerant applicatioon
top of this structured overlay network.

L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, “Dks, (q f): A
family of low communication, scalable and fault-tolerant asfiructures
for p2p applications,” iCCGRID '03: Proceedings of the 3st Interna-
tional Symposium on Cluster Computing and the GridVashington,
DC, USA: IEEE Computer Society, 2003, p. 344.

R. Collet and P. V. Roy, “Failure handling in a networkisparent
distributed programming language.” ikdvanced Topics in Exception
Handling Techniques2006, pp. 121-140.

