
Project no. 034084
Project acronym: SELFMAN
Project title: Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components

European Sixth Framework Programme

Priority 2, Information Society Technologies

Deliverable reference number and title: D.2.1a
Report on basic computation model

Due date of deliverable: July 15, 2007
Actual submission date: July 15, 2007

Start date of project: June 1, 2006
Duration: 36 months
Organisation name of lead contractor
for this deliverable: UCL
Revision: 1
Dissemination level: PU

SELFMAN Deliverable D.2.1a(v1), July 15, 2007

CONTENTS

Contents

1 Executive summary 1

2 Contractors contributing to the Deliverable 3

3 Results 4
3.1 Overall structure of workpackage 2 4
3.2 Programming with feedback loops 4

3.2.1 Definition of a feedback loop 4
3.2.2 Interacting feedback loops 5
3.2.3 General architectural framework 5
3.2.4 Some design rules . 5
3.2.5 Interaction of feedback and distribution 6

3.3 The relaxed ring . 6
3.3.1 Lookup consistency . 7
3.3.2 Main invariant and join algorithm 7

4 Future Work 8
4.1 Design rules for correct behavior of feedback loops 8
4.2 Large-scale behavior of a self-managing system 8
4.3 Layered structure of a self-managing system 9

4.3.1 Security infrastructure . 9
4.3.2 Collective intelligence . 10
4.3.3 The “grey goo” problem in Second Life 10

5 Papers and publications 12

References 14

A Self Management and the Future of Software Design 15

B Implementing Self-Adaptability in Context-Aware Systems 33

C A Relaxed Ring for Self-Organising and Fault-Tolerant Peer-to-
Peer Networks 37

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

A self-managing system must adapt itself to many different kinds of environmental
changes, of which the most important are faults, attacks, performance hotspots,
configuration and software updates. All these changes interact, often in unexpected
ways. We would like to build a self-managing system that behaves in the appropriate
way. This is a design problem; we would like to build the system so that it is
self-managing by design. Trying to make a large system self-managing after the
fact is very difficult and prone to many unexpected errors. Our experience shows
that adding self management requires explicit design decisions and often needs new
algorithms. To make this kind of design tractable, we would like to know the rules
and techniques to make systems self-managing by design. By analogy with object-
oriented programming, we would like to find the rules we must follow so that the
system has the desired structure and behavior. We find that the main principle is
the pervasive use of feedback loops. Each part of the system must observe itself and
correct deviations from correct behavior. This way of designing systems covers all
forms of self management: fault tolerance, security, adaptability, reconfiguration,
and performance tuning. Systems consist of a set of interacting feedback loops.
We study how feedback loops interact and how we can obtain desired interactions
without unpleasant surprises.

This report studies how to build software systems with feedback loops. We
study several different kinds of systems, starting with biological systems and in-
cluding software systems, to understand the main principles of designing with feed-
back loops. The area of control theory also studies design with feedback loops. We
find that designing software systems with feedback is quite different from what is
done in control theory. There are three main differences: nonlinearity, scale, and
dynamicity. The first difference is that software systems are highly nonlinear: a
single bit error can cause a catastrophic change in behavior. The second difference
is the scale: a software system consists of a large number of interacting feedback
loops. The third difference is the dynamicity: software systems change frequently:
by adaptation, by reconfiguration (through software updates), and by human inter-
vention.

We start our study of how to design such systems by looking at existing sys-
tems that are built in this way. We look at biological systems, which are highly
dependent on feedback loops. We also look at software systems such as network
transport protocols and structured overlay networks which use feedback loops to
adapt themselves to their environments. We reconstruct the designs of these sys-
tems in terms of feedback loops. The structured overlay network is directly relevant
to the project: we will use it as a foundation for the next stage.

This report concludes with several design rules for building systems with feed-
back loops. A first rule is to design systems based on convergence principles: each
feedback loop should enforce a convergence principle. A second rule is to use the
system instead of bypassing it. That is, consider a feedback loop as an encapsu-
lated abstraction that provides a service, instead of a set of parts. A third rule is
to use management instead of stigmergy to interact with a feedback loop. That is,
control the loop directly instead of modifying the system that the loop observes. A
fourth rule is to use local instead of distributed feedback loops. At this stage of the

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 1

1 EXECUTIVE SUMMARY

project, these rules remain mostly intuitive; we expect to put them on more solid
theoretical grounding later in the project.

We have achieved some understanding of how to program with feedback loops.
To make our methodology more concrete we need to make the design rules more
precise. We also have to understand how the feedback loops fit within the large-
scale behavior of the system. At large scales, systems undergo phase shifts when
their behavior switches from one set of feedback loops to another. Finally, we need
to understand systems with multiple conflicting goals. This is common in large-
scale distributed systems with many participants. Different feedback loops become
“antagonistic” and there must be a mechanism to avoid this or to resolve conflicts.
We will investigate these issues in the next two years of the project.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 2

2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

The following contractors have contributed to this deliverable:

• UCL. UCL is the main author of the three papers in the appendix. UCL
explored the use of feedback loops in design, and in particular for structured
overlay networks.

• KTH. KTH organized and gave the mini-course on reliable distributed pro-
gramming. This course introduced the concurrent layered event-based archi-
tecture used for the definition of the self-managing algorithms in appendix C.
KTH also developed the DKS structured overlay network [3] and an extension
of DKS that handles network partitioning (see D1.1).

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 3

3 RESULTS

3 Results

We give a short overview of the main results of this deliverable with their motiva-
tions. For more details please see the three appendices to this report.

3.1 Overall structure of workpackage 2

This deliverable D2.1a is part of workpackage 2. The purpose of this workpackage
is to construct the programming framework for self-managing systems. At month
12, this workpackage has three deliverables:

• D2.1a: Basic computation model. This deliverable gives the first answers to
the question of how to program a self-managing system. During the first year,
we explored programming with feedback loops and how they interact with a
distributed system.

• D2.2a: Architectural framework specification. This deliverable specifies the
component architecture: an event-driven component model.

• D2.3a: Formal operational semantics. This deliverable gives a formal founda-
tion for the other two deliverables. In the first year, we have extended the Oz
kernel language, which is a process calculus with many programmer concepts,
with components and reflection. This work is based on the kell calculus. The
result is called the Oz/K calculus.

These three deliverables study three aspects of the problem. The first studies how to
program a self-managing system, the second studies the architecture of the system,
and the third studies the framework for formally describing the system.

3.2 Programming with feedback loops

The Description of Work gives a vision of systems programmed as a set of interacting
feedback loops. To make this vision concrete, we start by studying existing systems
based on feedback loops (appendix A) and how to design systems with feedback
loops (appendices A and B). The relaxed ring structure of appendix C (see also
deliverable D1.1) handles ring maintenance in the case of imperfect failure detection
(Internet-style failures). The paper reformulates the relaxed ring structure in terms
of interacting feedback loops.

3.2.1 Definition of a feedback loop

A feedback loop consists of three elements that together interact with a subsys-
tem: monitoring the relevant part of the subsystem’s state, calculating a reaction,
and implementing this reaction (see Fig. 1 in appendix A). We consider each of
these three elements to be a concurrent component instance, interacting with other
elements through asynchronous message passing. The three elements are usually
designed explicitly. The subsystem that is observed is usually much larger and less
well-known. It may contain parts of the external world and aggregated parts of the
rest of the designed system.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 4

3 RESULTS

3.2.2 Interacting feedback loops

A large system typically contains many feedback loops. These feedback loops are
organized in a graph structure. The two main ways in which feedback loops interact
are management and stigmergy:

• Management. This is when one feedback loop controls the other directly. The
outer loop uses the inner loop as a service. For example, the inner loop can
be a heating service using a thermostat. The outer loop can be a human that
sets the temperature of the thermostat according to a particular policy.

• Stigmergy. This is when two feedback loops observe the same subsystem. Each
loop observes and acts upon the subsystem and therefore indirectly affects the
other.

3.2.3 General architectural framework

We consider the overall design of a system to be a set of interacting feedback loops.
We organize such a system as a set of concurrent components that communicate
by means of asynchronous events [4]. The default behavior is that the components
are independent. System design experience in many areas suggests that this is the
correct default (see Section 5 in appendix A).

In a self-managing system, the system must be able to monitor and reconfigure
itslef. This implies that the system is built as a set of interacting components where
the components are first-class entities that can be manipulated (passed, installed,
removed) at run-time. This is called higher-order component programming.

The formal model for the general architectural framework sketched here is the
Oz/K process calculus, developed by INRIA and presented in deliverable ??. This
process calculus is quite rich. We expect to define and implement a subset of this
calculus in the next stages of the project.

3.2.4 Some design rules

When building software systems, it is not possible to define a formal model for the
whole system and “solve” this model to obtain the system’s properties. This method
is too inefficient: it does not lead to a good design without a lot of search. A more
direct method is to design the system to be self-managing from the start. To achieve
this, the design must be constrained by a set of design rules that will guarantee the
right self-managing properties. One of the objectives of the SELFMAN project is
to find such a design methodology, by analogy with the methodologies of object-
oriented design (e.g., such as explained in [7]). In this first exploratory phase of
the project, we have determined several rough design rules. They are used in the
papers of the appendix. We list the rules briefly:

• A first rule is to design systems based on convergence principles: each feedback
loop should enforce a convergence principle. This will guarantee stability
within the domain of application of the convergence principle. An example
is a the feedback loop that uses negative feedback based on a monotonicly-
changing system parameter.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 5

3 RESULTS

• A second rule is to use the system instead of bypassing it. That is, consider a
feedback loop as an encapsulated abstraction that provides a service, instead
of as a set of parts to be interacted with directly. A feedback loop provides a
level of robustness. It is a bad idea to bypass this. In addition, bypassing this
can lead to instability. For example, two feedback loops based on negative
feedback (and hence stable in isolation), when interacting through stigmergy
can result in an effective feedback loop using positive feedback (and hence
unstable).

• A third rule is to use management instead of stigmergy to interact with a
feedback loop. That is, control the loop directly instead of modifying the
system that the loop observes. This rule is related to the preceeding one.
Using stigmergy can make a system unstable even if the individual loops are
stable.

• A fourth rule is to use local instead of distributed feedback loops. Distributed
feedback loops are inherently unreliable: they will collapse if there are failures.
The correct way is to use local feedback loops and to model the distributed
system as the subsystem being observed. The local feedback loops therefore
interact through stigmergy. To avoid instability, there should be a global
convergence property for all local feedback loops.

At this stage of the project, these rules remain mostly intuitive; we expect to put
them on more solid theoretical grounding later in the project (see Section 4.1 in the
Future Work).

3.2.5 Interaction of feedback and distribution

Large systems are by nature distributed. In the SELFMAN project we are specifi-
cally looking at such systems, building on the results attained for structured overlay
networks. We therefore have to address the issue of how feedback and distribution
interact. This question has been addressed to some degree in the development of ro-
bust distributed algorithms. For example, in the area of self-stabilizing algorithms,
there is a convergence property: after a temporary perturbation, the system will
converge to a state that is part of a set of stable states.

3.3 The relaxed ring

Structured overlay networks maintain their efficient routing properties in the face
of network problems. The run-time maintenance of structured overlay networks
consists of two independent parts:

• Maintain ring connectivity. This part guarantees that a connected ring exists.
Efficiency is not a concern for this part.

• Maintain finger tables. This part adds “fingers” (routing table entries) to
improve the efficiency.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 6

3 RESULTS

The relaxed ring solves the ring connectivity problem in the case of realistic failure
models that occur on the Internet. For a more detailed explanation of the relaxed
ring, see appendix C or deliverable D1.1. The relaxed ring algorithm is formulated
as a set of interacting feedback loops that maintain several invariants. In this section
we summarize the main properties of the relaxed ring.

3.3.1 Lookup consistency

The relaxed ring guarantees the following lookup consistency property:

Lookup consistency implies that at any time there is only one responsible
node for a particular key k, or the responsible node is temporarily not
available.

This property relaxes the lookup consistency property of [3] by adding the possi-
bility that the responsible node is temporarily not available. This form of lookup
consistency can be correctly implemented in the case of a failure detector that can
have incorrect suspicions of failure (i.e., Internet-style failure detection). This is
not the case for the original definition of lookup consistency.

Figure 1: Example of a relaxed ring (perfect ring with bushy appendages)

3.3.2 Main invariant and join algorithm

The main invariant of the relaxed ring is that every peer node is in the same ring
as its successor. This implies that it is sufficient for a node to have a connection
with its successor to be considered inside the ring. Joining a relaxed ring is done
in two steps:

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 7

4 FUTURE WORK

• In the first step, a node sends a join message to its potential successor and
receives a join ok message as acknowledgement. At this point, the node is
part of the relaxed ring and can be routed to. However, the node is part of
one of the “bushes” sticking out of the inner, perfect ring (see example in
Fig. 1).

• In the second step, the bushy extensions are collapsed node by node to form
a perfect circular ring.

Both steps can be performed concurrently, and will in general be executing concur-
rently on a real system where nodes are continually joining and leaving. Because
joining is separated into two independent steps, locking is not needed. This is an
improvement over the join algorithm of [3], which requires cooperation between
three nodes, two of which that need to be locked. The relaxed ring algorithm works
in the case of an eventually perfect failure detector: a detector that may give false
suspicions of failure (i.e., which correspond to temporary network problems on the
Internet).

4 Future Work

In the first year of the project, we have mainly concentrated on looking at how
systems are designed with feedback loops. In the next two years, we will continue
this work in three complementary areas:

• Design rules for correct behavior of feedback loops.

• The large-scale structure of a system’s behavior space.

• The layered security structure of a system.

4.1 Design rules for correct behavior of feedback loops

How can we be sure that a set of interacting feedback loops will work correctly? This
is a nontrivial problem because the system is discrete and highly nonlinear. We have
the following approach to solve this problem for practical system design. We are
starting work to formalize feedback loops in terms of a process calculus (inspired by
the Oz/K calculus of deliverable D2.3 and a version of an asynchronous probabilistic
π calculus). We will then translate the formalization into recurrence equations that
describe the behavior of the feedback loops. Certain forms of recurrence equations
will guarantee convergent behavior. Reasoning backwards to the original system,
this will give us design rules that if followed will guarantee convergent behavior.
Ultimately, we will no longer need to formalize the system, but simply to follow
the design rules. This work is being done by James Ortiz, a new Ph.D. student at
UCL.

4.2 Large-scale behavior of a self-managing system

The large-scale structure of a system’s behavior space consists of a set of domains,
such that simple feedback behavior holds within each domain. When the feedback

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 8

4 FUTURE WORK

behavior is no longer possible, then the system changes from one domain to another.
This happens, e.g., when the system is stressed strongly or when it has unstable
behavior. The hotel lobby example of appendix A illustrates the case of unstable
behavior. Another example is when a node fails in a structured overlay network:
the feedback loops of the node collapse. Nevertheless, the rest of the system should
continue to work.

4.3 Layered structure of a self-managing system

General self-managing systems are organized as sets of concurrent entities (“agents”)
that communicate through asynchronous message passing. An entity can be seen
as an instance of a concurrent component or as an active object. Systems can be
organized in layers, depending on how the agents are organized. We propose the
following layered structure in decreasing order of adaptability and freedom:

• Open-ended market (a system where any agents can join). Arbitrary agent
behavior is tolerated.

• Market (a system where each agent optimizes a local utility function). One
designer per agent, the system is adaptable.

• Feedback loop architecture. One designer per system, the system is adaptable.

• Multiagent system with no particular structure. One designer per system, the
system is not adaptable in general.

For more information on the general ideas underlying this structure, see [8]. The ar-
chitecture described in appendix A covers the third element in this ranking, namely
the feedback loop architecture. It holds when there is a single designer for the
multiple agents.

4.3.1 Security infrastructure

Open-ended market systems are the top-most layer of this classification. They are
secure because they tolerate arbitrary agent behavior. In order to make this work,
the system provides a simple ’market infrastructure’. The basic idea is that the
system enforces a conservation law using cryptographic protocols. For example,
there can be a “currency” that is conserved. Services talk to each other and trade
currency for results. The overall motor of the system is the external entities (like
humans) connecting to it who want results. Basically, they ask for results in ex-
change for currency, and the propagation of currency inside the system drives its
execution. Agents can be cooperative or malicious. The malicious agents will waste
currency, but they will not endure because this will be detected (since they do not
provide results!). This works on similar principles as Axelrod’s Iterated Prisoner’s
Dilemma [1]. Good agents will flourish. It is similar to human markets but sim-
plified. Secure systems built in this way are not “hacks” but are fundamentally
correct and robust against malicious interference.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 9

4 FUTURE WORK

4.3.2 Collective intelligence

Collective Intelligence (COIN) is a design technique for multi-agent systems that
allows to build systems that achieve a global goal with selfish agents that each are
interesting only in maximizing a local utility function. The paper [10] explains the
basics of COIN with a classic example, the El Farol bar problem. In this problem,
agents are people who would like to take an evening off at a bar. If there are
too few people at the bar, then the evening is a failure, and also if the bar is too
crowded. Each agent remembers what happened the week before, and chooses one
day to go in the next week. How can we maximize the global utility when each
agent is thinking selfishly (and certainly not cooperating with the others!)? A naive
algorithm that uses a utility based on how many people attended last time gives
very bad results (a ”Tragedy of the Commons”).

It turns out that a good utility function is the “Wonderful Life” utility (so called
through the Frank Capra movie). The value of the utility for agent w is the global
utility minus the global utility where agent w is “disabled” (as if it did not exist).
To make this computable locally, we use a simple reinforcement learning algorithm.
Each agent has weights for each day of the week, and each week it changes one of
the weights according to its experience in the bar that week. This is the “reward”.
The utility is simply the sum of rewards over all the weeks. Picking a day for the
next week is done according to a distribution that selects a day randomly according
to the weights (technically, the algorithm implements a Boltzmann distribution and
each weight is a Boltzmann energy).

The COIN techniques look like a good starting point for designing a security
architecture for SELFMAN. The idea is that the SELFMAN infrastructure enforces
local utility functions designed with COIN techniques. For example, the “reward”
can be a “currency” designed to obey a conservation law and designed according to
the Wonderful Life utility. This means that selfish agents (which will be the most
numerous agents) will by design help the system achieve its global goals.

In SELFMAN we organized a mini-course on COIN which was held at partner
ZIB on Feb. 15-16, 2007. It was taught by Mohamed El-Beltagy of Optomatica
[2]. This course covered COIN and related work in the areas of game theory, agoric
systems, and the theory of collectives.

4.3.3 The “grey goo” problem in Second Life

The “grey goo” problem in Second Life is related to this security layer. The
MMORPG 1 application Second Life [6] allows people to trade objects and ser-
vices in a virtual world. They have recently been having problems with ”grey goo”:
self-replicating objects that use up resources (CPU, memory, and network). There
was a discussion on the e-lang mailing list in Jan. 2007 about this problem and
how to solve it. One way to solve it is to use a conservation law: pay for resources.
Then the grey goo cannot replicate. This is the solution we could do in Selfman
(the “agoric solution”). It seems that the Second Life developers implemented an-
other solution: dynamic rate-limiting of object creation along with monitoring and
alerting tools that let the sysops identify and kill off the goo that manages to exploit

1Massive Multiplayer Online Role-Playing Game

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 10

4 FUTURE WORK

the system.
The Second Life experience is relevant for the SELFMAN project. Their expe-

rience is a useful datapoint. They are setting up a real economy, in some sense,
and they have problems with pyramid schemes and other scams. For more in-
formation on the practical side of issues, see the Second Life Anti-Griefing Guild
(community.livejournal.com/slagg/). “Griefers” in Second Life are like Byzan-
tine nodes. Griefers are so-called because they create grief. They do their best to
interrupt proceedings in virtual worlds often for no other reason than because it is
possible.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 11

5 PAPERS AND PUBLICATIONS

5 Papers and publications

Three papers were published this year for this deliverable:

• Self Management and the Future of Software Design, Third International
Workshop on Formal Aspects of Component Software (FACS ’06), Springer
ENTCS 182, Sept. 2006.

Abstract: Most software is fragile: even the slightest error, such as changing
a single bit, can make it crash. As software complexity has increased, devel-
opment techniques have kept pace to manage this fragility. But today there
is a new challenge. Complexity is increasing rapidly as a result of two factors:
the increasing use of distributed systems as a result of the sufficient reliability
and bandwidth of the Internet, and the increasing scale of these systems as
a result of the addition of many new computers to the Internet (e.g., mobile
phones and other devices). To manage this new complexity, we propose an
approach based on self- managing systems: systems that can maintain useful
functionality despite changes in their environment. The paper motivates this
approach and gives some ideas on how to build general self-managing software
systems. An important part of the approach is to build systems as hierarchies
of interacting feedback loops. We give examples of these systems and we de-
duce some of their design rules. The SELFMAN project is elaborating these
ideas into a programming methodology and an implementation.

• Implementing Self-Adaptability in Context-Aware Systems, Workshop on Mul-
tiparadigm Programming with Object-Oriented Languages, part of ECOOP
2007, July 31, 2007. The appendix contains an extended abstract. The full
paper will be part of the MPOOL workshop and will be available in time for
the project review.

Abstract: Context-awareness is the property that defines the ability of a
computing system to dynamically adapt to its context of use [5]. Systems
that feature this property should be able to monitor their context, to reason
about the changes in this context and to perform a corresponding adapta-
tion. Programming these three activities can become cumbersome as they
are tangled and scattered all over in the system programs. We propose to
model context-aware systems using feedback loops [9]. A feedback loop is an
element of system theory that has been previously proposed for modelling
self-managing systems. A context-aware system modelled as a feedback loop
ensures that the activities of monitoring, reasoning and adapting to the con-
text are modularised in independent components. In this work, we take ad-
vantage of such modularisation to explore different programming paradigms
for each component of the loop.

• A Relaxed Ring for Self-Organising and Fault-Tolerant Peer-to-Peer Networks,
XXVI International Conference of the Chilean Computer Science Society
(SCCC 2007), Nov. 2007. An early version of this paper was presented
at the CoreGRID workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, FORTH, Her-
aklion, Greece, June 2007. This paper explains the relaxed ring work (see

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 12

5 PAPERS AND PUBLICATIONS

also deliverable D1.1) in the context of a feedback loop architecture. We in-
tend to submit this paper to a major conference after adding simulation and
experimentation results.

Abstract: There is no doubt about the increase in popularity of decentralised
systems over the classical client-server architecture in distributed applications.
These systems are developed mainly as peer-to-peer networks where it is pos-
sible to observe many strategies to organise the peers. The most popular one
for structured networks is the ring topology. Despite many advantages offered
by this topology, the maintenance of the ring is very costly, being difficult to
guarantee lookup consistency and fault tolerance at all time. By increasing
self-management in the system we are able to deal with these issues. We model
ring maintenance as a self-organising and self-healing system using feedback
loops. As a result, we introduce a novel relaxed-ring topology that is able
to provide fault-tolerance with realistic assumptions concerning failure detec-
tion. Limitations related to failure handling are clearly identified, providing
strong guarantees to develop applications on top of the relaxed-ring architec-
ture. Besides permanent failures, the paper analyses temporary failures and
broken links, which are often ignored.

These papers are included as appendices to this deliverable.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 13

REFERENCES

References

[1] Robert Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[2] Mohamed El-Beltagy. An introduction to COllective INtelligence (COIN),
2007. See www.natural-computation.com/selfman.

[3] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables.
PhD dissertation, KTH — Royal Institute of Technology, Stockholm, Sweden,
December 2006.

[4] Rachid Guerraoui and Louis Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag, Berlin, Germany, 2006.

[5] IST Advisory Group. Ambient intelligence: from vision to reality, September
2003.

[6] Linden Research, Inc. Second Life, 2007. See
http://en.wikipedia.org/wiki/Second Life.

[7] Bertrand Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall PTR, 1997.

[8] Mark S. Miller and K. Eric Drexler. The agoric papers. In The Ecology of
Computation, 1988.

[9] Peter Van Roy. Self management and the future of software design. In Formal
Aspects of Component Software (FACS ’06), September 2006.

[10] David Wolpert, Kevin R. Wheeler, and Kagan Tumer. General principles of
learning-based multi-agent systems. In Agents, pages 77–83, 1999.

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 14

A SELF MANAGEMENT AND THE FUTURE OF SOFTWARE DESIGN

A Self Management and the Future of Software

Design

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 15

FACS 2006

Self Management

and the Future of Software Design

Peter Van Roy1 ,2

Department of Computing Science and Engineering
Université catholique de Louvain

Louvain-la-Neuve, Belgium

Abstract

Most software is fragile: even the slightest error, such as changing a single bit, can make it crash. As
software complexity has increased, development techniques have kept pace to manage this fragility. But
today there is a new challenge. Complexity is increasing rapidly as a result of two factors: the increasing
use of distributed systems as a result of the sufficient reliability and bandwidth of the Internet, and the
increasing scale of these systems as a result of the addition of many new computers to the Internet (e.g.,
mobile phones and other devices). To manage this new complexity, we propose an approach based on self-
managing systems: systems that can maintain useful functionality despite changes in their environment.
The paper motivates this approach and gives some ideas on how to build general self-managing software
systems. An important part of the approach is to build systems as hierarchies of interacting feedback loops.
We give examples of these systems and we deduce some of their design rules. The SELFMAN project is
elaborating these ideas into a programming methodology and an implementation.

Keywords: Software development, self management, general system theory, distributed system, feedback,
software component, complexity, concurrency, asynchronous, autonomic computing, overlay network

1 Introduction

Software is fragile and highly nonlinear: even a minor error can have catastrophic

effects. Major disasters have occurred due to minor errors such as omitted commas

in Fortran programs or changed bits because of alpha rays [11]. So far, this has not

unduly hampered the quantity of software being developed. As software complexity

has increased, software development techniques have kept pace. This situation is

analogous to the Red Queen’s behavior in Alice [10]: we are running as fast as we

can in order to stay in the same place. Software development is now facing a new

challenge: complexity is increasing quickly because of two reasons. First, the relia-

bility and bandwidth of the Internet infrastructure has reached a point where it is

1 This paper is intended to stimulate discussion; all comments are welcome! This work is funded by the
European Union in the SELFMAN project (contract 34084), EVERGROW project (contract 001935), and
CoreGRID network of excellence (contract 004265). We thank Luis Quesada, Boriss Mejias, Raphaël Collet,
Yves Jaradin, Kevin Glynn, and Seif Haridi for comments that helped improve this paper.
2 Email: pvr@info.ucl.ac.be

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Van Roy

feasible to build large distributed applications. Examples of such applications in-

clude a wide variety of file-sharing programs (Napster, Gnutella, Morpheus, Freenet,

Bit Torrent, etc.), collaborative tools (Skype and other messenger tools), Massive

Multiplayer Online Role Playing Games (MMORPGs) (World of Warcraft, Dun-

geons & Dragons, etc.) and research testbeds (SETI@home [25], PlanetLab [12],

etc.). Technologies for building such applications now exist, e.g., Web services and

Grid software. The second reason is the increase in the number of small devices

connected to the Internet. For example, mobile phones are now full-fledged com-

puting nodes with Internet connectivity, and protocols such as Zigbee, Bluetooth,

and Wifi facilitate network connectivity among small devices.

How can we address the problem of programming large-scale distributed sys-

tems? Such systems have new properties that greatly increase the complexity of

programming: scale (large numbers of independent nodes), partial failure (part of

the system fails), security (multiple security domains), resource management (re-

sources are localized), performance (harnessing multiple nodes or spreading load),

and global behavior (emergent behavior of the system as a whole). Each of these

properties has been studied in isolation. For example, the area of distributed algo-

rithms has solutions for handling partial failure in many cases. But the properties

have not been looked at together. The purpose of this paper is to give some ideas

how this can be done.

Global behavior is particularly relevant for large systems. They must be de-

signed carefully, otherwise the system will not behave well when stressed. Ideally,

it should converge rapidly to its desired behavior and stay there despite changes in

the system’s environment. But it may instead collapse, oscillate, or show chaotic

behavior. Such erratic behavior has been observed for power grids and has resulted

in large-scale power outages [15]. One reason for this is because the power grid’s

behavior was designed for a situation close to equilibrium; it was not studied far

from equilibrium.

2 Self-managing systems

To build large-scale distributed systems with good behavior, we need a framework

in which to think about them. What should such a framework look like? To reduce

the complexity of the system, it should be able to manage its own problems as much

as possible. This leads us to propose self-managing systems as a suitable framework.

A self-managing system is one that can maintain its functionality despite changes

in its environment, in a general sense.

Self-managing systems have recently been brought to the forefront because of

IBM’s Autonomic Computing initiative [19]. When computer systems become large

then the cost of managing them becomes prohibitive. The initiative aims to reduce

this cost by removing humans from the management loop. The role of humans

is then to manage the policy and not to maintain the mechanisms. This greatly

reduces the need for manual intervention.

Another area that is building self-managing systems is structured overlay net-

works [1]. This research is inspired by the popular protocols of peer-to-peer net-

works. Many of the applications mentioned in the introduction are based on these

2

Van Roy

peer-to-peer networks. Unlike peer-to-peer networks based on random neighbor

communication, structured overlay networks provide both guarantees (information

is guaranteed to be found if it exists) and efficiency (broadcast does not flood the

network as it does in, e.g., random neighbor networks such as the one used in

Gnutella). Structured overlay networks provide primitive self-managing behavior:

they reorganize themselves to maintain their functionality in reaction to environ-

mental changes such as failures and overloads. Structured overlay networks have

led to robust software that is being used in various areas, such as the construc-

tion of robust distributed communication networks and robust storage services that

continue to provide service despite high node turnover (node “churn”).

These two research areas, autonomic systems and structured overlay networks,

have attracted attention once again to self-managing systems. But self-managing

systems are actually a very old idea. The beginning of the area as a discipline can

be dated to the definition by Norbert Wiener of cybernetics in the 1940’s [29] and by

Ludwig von Bertalanffy of general system theory in the 1960’s [5]. The basic idea of

system theory is to study the concept of a system, its properties and design. There

are various ways to define the concept of a system [24]. For this paper, we define a

system recursively as a set of components (called subsystems) connected together

to form a coherent whole. The main problem is to understand the relationship

between the system and its subsystems: can we predict a system’s behavior and

can we design a system with a desired behavior.

System theory is still very much in its early stages. Recent research results

have not been systematized in a textbook and the ideas have not been applied

to computer science in a systematic way. W. Ross Ashby wrote an introductory

textbook in 1956 that is still worth reading today [4]. Gerald M. Weinberg wrote

an introduction in 1975 explaining how to use system theory to improve general

thinking processes [28]. In the area of computer systems, textbooks exist only for

specialized subfields such as distributed algorithms [21]. We consider that it is high

time to apply system theory to software construction. This paper gives examples of

realistic systems to motivate this goal and to explore how to build software according

to system theory.

3 Designing self-managing systems

How does one design a self-managing software system? We do not yet have a general

set of design techniques, but we can talk about several important aspects: feedback

loops, global properties, and a general architectural framework. It turns out that

designing with feedback loops is fundamental. Feedback loops are currently being

used for the autonomous management of computing clusters, for example they are

being used in J2EE clusters [6] and Grid systems [2]. But feedback loops are much

more generally applicable in system design. We give examples of systems built with

feedback loops to see what they can teach us for the general case. The paper by

Andrzejak et al [2] gives a broad introduction to the different disciplines that can

be useful when designing adaptive systems with feedback loops. The present paper

is narrower: it restricts itself to the architectural questions of how the loops are

organized and how they interact with each other and with distributed programming.

3

Van Roy

3.1 Feedback loops

The notion of a feedback loop is a basic element of system theory. A feedback loop

consists of three elements that together interact with a subsystem (see Figure 1):

an element that monitors the state of the subsystem, an element that calculates a

corrective action, and an element that applies the corrective action to the subsystem.

For the purposes of this paper, we consider these elements to be concurrent software

agents that communicate by asynchronous message passing. The complete system

can be described as a graph of interacting feedback loops. Feedback loops can

interact in two main ways. The simplest interaction is where both loops affect

interdependent system parameters, i.e., they interact through their environment.

This is called stigmergy. A second form of interaction is where a loop manages

another loop, i.e., the first loop continuously adapts the policy implemented by the

second loop. In both cases, the system’s global behavior depends on all the feedback

loops taken together.

Subsystem

Monitoring agentActuating agent

Calculate corrective action

Fig. 1. Basic structure of a feedback loop

Monitoring agents

Thermostat
(run aircond. if too warm)

(stoke fire if too cold)
Tribesman

Measure
temperature

near fire

Measure
temperature

in lobbyairconditioning
Run

fire
Stoke

Subsystem

Hotel lobby

Calculate corrective action

Fire

Hotel lobby

Tribesman

Thermostat

Actuating agents

Fig. 2. Wiener’s example of two feedback loops interacting through stigmergy

4

Van Roy

3.1.1 Two simple examples

The first example is taken from Wiener [29] and is shown in Figure 2. It consists

of two interacting feedback loops with counterintuitive global behavior: in an air-

conditioned hotel, a primitive tribesman attempts to warm himself by starting a

fire. This causes the airconditioning to work harder, so the result is that the harder

he stokes the fire, the lower the temperature becomes. In this example, the two

loops affect system parameters that depend on each other, namely the tempera-

ture in different parts of the lobby. Each block in the figure is a concurrent agent

continuously sending asynchronous messages to the other agents in the direction of

the arrows. Even though each loop taken in isolation uses negative feedback and

is stable, 3 the result of both loops is that the system becomes unstable, i.e., the

temperature will continue to decrease (until the system reaches a boundary, and

then its behavior will change again). We conclude that it is not enough to add a

negative feedback loop to an existing system to ensure stability! The result may

well be unstable because of the new loop’s interaction with the system.

(adjust thermostat)

Thermostat
(run aircond. if too warm)

airconditioning
Run

Hotel lobby

Tribesman

Measure
temperature

Measure
temperature

at thermostat at tribesman

Fig. 3. Wiener’s example modified to use management instead of stigmergy

The correct solution is given in Figure 3. Instead of starting a fire, the tribesman

simply adjusts the thermostat. This maintains the stability of the airconditioning

loop. This is an example of one loop managing another. This illustrates a design

rule: to modify a system’s behavior, the right way is to work with the system and

not to try to bypass it.

The second example is shown in Figure 4. This shows a generic single-user applica-

tion as a feedback loop structure. We give this example to illustrate that feedback

loops are generally useful in programming and not just for contrived examples such

as Figure 2. Feedback loops are omnipresent in software systems if one looks with

the right mindset. The three elements of the loop in Figure 4 all run on a single

computer, and the subsystem being managed is a human user. The monitoring and

actuating agents are the computer’s GUI interface. Remark that we consider the

3 In negative feedback, an increase in the monitored value of a system parameter causes a corrective action
that decreases the system parameter. In positive feedback, the corrective action increases the system
parameter.

5

Van Roy

GUI interface

Computer

Application

Human user

Display
and mouse
Keyboard

Actuating agent Monitoring agent

Fig. 4. A single-user application shown as a feedback loop

user and not the application to be the managed subsystem. This viewpoint is ad-

vantageous because it lets us extend the feedback loop structure in interesting ways.

We can put a second loop around the first to monitor the application’s behavior and

apply corrections if something goes wrong. When the user runs two applications

and passes information between them then we have two loops interacting through

stigmergy. The rest of this paper gives more substantial examples of systems shown

as feedback loop structures, including systems that were not originally conceived in

this way.

3.1.2 Using program properties

Designing systems with feedback has been extensively studied in electronics, typ-

ically with building blocks such as operational amplifiers and phase-locked loops.

These systems exploit the fact that there is a good (piecewise) linear approximation

of the building blocks’ behavior. This is a strong condition that can be exploited.

But linearity is probably too strong a condition to impose on computer systems,

which are highly nonlinear by default, e.g., changing a single bit can have major

effects. It may be possible to use a weaker property than linearity that can be satis-

fied by computer systems and that gives a satisfactory design theory. The approach

then is to choose first a property that facilitates reasoning about the program and

its global behavior, and then to build a program that satisfies the property. This

can greatly simplify program design. Note that one possible failure mode is that

the property itself no longer holds.

One example property is monotonicity or strict monotonicity. In a strict mono-

tonic system, when the input changes in one direction (e.g., increases, in a general

sense), the output will also change in the same direction. Using monotonicity as the

basic property is sufficient for designing systems with feedback. A negative feedback

amplifier can be built using strict monotonicity. Another property weaker than lin-

earity that may be useful is continuity, but continuity is in general not enough to

guarantee stability. We note that two further properties that may be useful in a

theory of feedback program design are determinism and confluence.

6

Van Roy

Render unconscious

reflex
Breathing Laryngospasm

(seal air tube) in blood
CO2

Measure

in blood
O2

Measure

Trigger breathing reflex
when CO2 increases to threshold

Increase or decrease breathing rate

Conscious control

when O2 falls to threshold
Trigger unconsciousness

(and reduce CO2 threshold to base level)

(maximum is breath−hold breakpoint)

of body and breathing

and change CO2 threshold

Trigger laryngospasm temporarily

in airways

Detect
obstruction

when sufficient obstruction in airways

breathing
Monitor

Other inputs

in human body
Breathing apparatus

Actuating agents Monitoring agents

Fig. 5. Feedback loop structure of the human respiratory system

3.2 System design with feedback loops: the human respiratory system

Let us give a detailed example of a practical design that uses feedback loops. Our

example is taken from a biological system, namely the human body. Biological

systems have to survive in natural environments, which can be particularly harsh.

For that reason, we consider that studying biological systems is a useful way to get

insight in how to design software for a more complex system. Our example is the

human respiratory system. Figure 5 shows the different components of this system

and how they interact. We derived this figure from a precise medical description

of the system’s behavior [31]. The figure is slightly simplified when compared to

reality. We have left out interactions with the rest of the body. Nevertheless it is

complete enough to give many insights. There are four feedback loops: two inner

loops (breathing reflex and laryngospasm), a loop controlling the breathing reflex

(conscious control), and an outer loop controlling the conscious control (falling

unconscious). From the figure we can deduce what happens in many realistic cases.

For example, when choking on a liquid or a piece of food, the larynx constricts

and we temporarily cannot breath (this is called laryngospasm). We can hold our

breath consciously: this increases the CO2 threshold so that the breathing reflex is

delayed. If you hold your breath as long as possible, then eventually the breath-hold

threshold is reached and the breathing reflex happens anyway. A trained person

can hold his or her breath long enough so that the O2 threshold is reached first and

they fall unconscious without breathing. When unconscious the normal breathing

reflex is reestablished.

We can infer some plausible design rules from this system. The innermost loops

(breathing reflex and laryngospasm) and the outermost loop (falling unconscious)

are based on negative feedback using a monotonic parameter. This gives them

stability. The middle loop (conscious control) is not stable: it is highly nonlinear

7

Van Roy

and may run both with negative or positive feedback. It is the most complex of

the four loops by far. We can justify why it is sandwiched in between two simpler

loops. On the one side, conscious control manages the breathing reflex, but it does

not have to understand the details of how this reflex is implemented. This is an

example of nested feedback loops that implement abstraction. On the other side,

the outermost loop overrides the conscious control so that it is less likely to bring

the body’s survival in danger. Conscious control seems to be the body’s all-purpose

general problem solver: it appears in many (but not all) of the body’s feedback loop

structures. This very power means that it needs a check.

Send

Inner loop (reliable transfer)

Outer loop (congestion control)

Calculate policy modification

Actuator
(send packet)

Monitor Monitor
throughput

Calculate bytes to send

(modify throughput)

(sliding window protocol)

destination and receives ack)
(network that sends packet to

Subsystem

(receive ack)

Send
stream acknowledgement

Fig. 6. An example programming pattern with two nested feedback loops

3.3 A new way of designing programs

The style of system design illustrated in the last section can be applied to program-

ming. Programming then consists of building hierarchies of interacting feedback

loops. Let us give a simplified example with two nested feedback loops that im-

plements a reliable byte stream transfer protocol with congestion control (this is

a variant of the TCP protocol). The protocol sends a byte stream from a source

to a destination node. Figure 6 shows the two feedback loops as they appear at

the source node. The inner loop does reliable transfer of a stream of packets: it

sends packets and monitors the acknowledgements of which packets have arrived

successfully. The inner loop manages a sliding window: the actuator sends packets

so that the sliding window can advance. The sliding window can be seen as a case of

negative feedback using monotonic control. The outer loop does congestion control:

it monitors the throughput of the system and acts by either changing the policy

of the inner loop or by changing the inner loop itself. If the buffered send stream

grows too big or the rate of acknowledgements decreases, then it modifies how the

inner loop works, for example by reducing the rate of send acknowledgements or the

8

Van Roy

rate of sending. If the transfer stops then the outer loop may terminate the inner

loop and abort the transfer.

This structure is a special case of a multi-agent system. Each block in Fig-

ure 6 is a single agent acting concurrently with the others and sending messages

asynchronously to the others. Each of the two feedback loops implements one task

according to a given policy. The policy of the inner loop is determined by the outer

loop. Because the system is distributed over two nodes, part of the design consists

in situating each agent on a node.

The example of Figure 6 has just two nested feedback loops. In a real system,

there will typically be more nested feedback loops. In particular, the outermost

loop determines the main interface between the system and its environment.

S

S

Send
packet

D

Send
ack

D S

S D

Manage send window

Manage receive window

Monitor
packets
received

Monitor
acks

received

D

S

Send
stream stream

Receive

D

SS to D transfer

D to S transfer

Unreliable network
D

Fig. 7. Inner loop of the reliable byte stream protocol showing distribution

3.4 Interaction between feedback loops and distribution

The protocol of Figure 6 runs on a distributed system consisting of two nodes.

Figure 6 only shows what happens at the source node. Figure 7 gives a more

complete depiction of the inner loop of Figure 6 that shows the execution on both

nodes. In Figure 7, each component is annotated with S or D depending on whether

it executes on the source or destination node. This protocol can be seen as two

feedback loops (the S loop and the D loop), each executing on one node (S or D),

interacting through stigmergy over the unreliable network. If one node fails, then

its loop disappears and the other loop sees a change in the behavior of the network.

Another way to see the protocol is as a single distributed feedback loop, with parts

executing on both source and destination nodes.

An interesting open question raised by this example is how to design distributed

feedback loops. This is nontrivial because of the interactions between the design

of the loop, its distribution, and the partial failures that it is intended to tolerate.

Designing these systems is still mostly an open research question. Structured overlay

networks are an interesting special case that is presented below. Other special cases

include parts of distributed algorithm theory such as self-stabilizing systems [32].

These systems are able to survive large classes of transient faults.

9

Van Roy

fingers

.
.

.
.

...

...

Calculate
reorganization

Finger table

Router

Update Failure
detector

Node 1

Node 0

Node n−1

Node 3

Node 2

finger table

......

......

......

.

Fig. 8. Feedback loop structure of a structured overlay network

3.5 Feedback loops in a structured overlay network

We complete our series of examples by outlining how a structured overlay network

can be formulated in terms of feedback loops. The most primitive functionality of a

structured overlay network is to self-organize a large number of computing nodes to

provide reliable and efficient routing despite nodes continuously joining and leaving

the network [1,17]. A node can leave in two ways, either by a deliberate action or

by failure of the node or its network connections. At all times, routing between

non-failed nodes must be correct and efficient.

Figure 8 shows the feedback loop structure of a structured overlay network with

n computing nodes numbered from 0 to n− 1. Node 0 is drawn in detail; the other

nodes are shown schematically. The routing organization of the structured overlay

network consists of two levels. The first level is a ring in which each node has

direct communication links (called fingers) to a fixed number f of successors. This

ensures correctness (each node can reach all the others by walking the ring) and fault

tolerance (failure of f −1 nodes does not affect reachability). The second level adds

additional links to improve efficiency. The routing algorithm uses a convergence

criterium to ensure that eventually the destination node is reached. Each routing

10

Van Roy

hop reduces the distance to the destination until the distance reaches zero. Many

well-known structured overlay networks, such as Chord and DKS, are organized in

this way.

The communication links provide failure detection. When a node detects the

failure of a link then it reorganizes its local finger table to provide correct rout-

ing. There is also a distributed algorithm to improve routing efficiency. Correct

operation of the structured overlay network is therefore based on three convergence

properties:

• Within each node, the finger table converges to a correct content.

• Globally, the finger tables converge together to improve routing efficiency.

• When routing, a message in transit converges to its destination node.

From the viewpoint of each node, the subsystem being managed consists of the

set of nodes it is linked to. When a node leaves or fails, it is eventually dropped

from each set containing it. When a new node joins, it is given an initial set

that depends on its position in the ring. Since these operations are common, this

means that the feedback structure is undergoing frequent changes. Ghodsi [17] gives

algorithms and an implementation of a structured overlay network, DKS, that has

the above structure. He proves that it does correct routing assuming that the failure

detectors are strongly complete, i.e., every node crash will eventually be detected

permanently [18]. The structure modifications done by DKS are designed to be

atomic and preserve the topology of the overlay network.

root supervisor

supervisor processes

program processes

Fig. 9. Supervisor tree architecture of an Erlang program

4 Related work

Several areas of computer science already use a feedback loop architecture. This

section gives two examples, namely the Erlang fault-tolerance architecture and the

subsumption architecture for implementing intelligent behavior, and discusses them

as instances of a feedback loop architecture.

11

Van Roy

4.1 The Erlang system

The Erlang system is designed to build distributed systems that survive software

and hardware faults [3]. It has been successfully used to build systems of extremely

high dependability, for example the AXD301 ATM switch which has a claimed

down time of only 30 milliseconds per year [30]. Erlang is designed according to the

hypothesis that software faults cannot be eliminated completely. Instead of trying

to eliminate them, Erlang allows programs to survive them. An Erlang program

is organized as a set of concurrent agents (called processes in Erlang terminology)

that communicate by asynchronous message passing.

When a problem occurs in a process, the Erlang philosophy is to let the process

fail and to let another process handle recovery. Erlang uses a concept called super-

visor tree to manage this. The program agents form the leaves of the supervisor tree

(see Figure 9). Each internal node in the supervisor tree corresponds to a feedback

loop in our architecture. The first internal level in the tree consists of supervisor

agents that observe pools of agents in the program’s execution. If a program agent

fails, then a supervisor agent will restart it in a consistent state, using a database

to get the consistent state. There are two kinds of supervisors, AND supervisors

that restart all processes in a pool if one fails and OR supervisors that restart just

the failed processes. The second internal level in the supervisor tree consists of a

root agent that handles failures of the supervisor agents. This root agent must be

completely reliable. This is possible because it is a very small program.

maneuver

environment

Robot in

Forward decision

Turn decision

Avoidance decision
Obstacle

Direction
Turn

Avoidance

Forward

disable

disable

sensor

detector

Fig. 10. Feedback loop structure of an obstacle-avoiding robot in the subsumption architecture

4.2 The subsumption architecture

The subsumption architecture of Rodney Brooks is a way to implement intelligent

systems by decomposing complex behaviors into layers of simple behaviors that

interact through their environment [7,8]. Knowledge is not represented directly

inside the system, but indirectly through the system’s state in its environment. The

subsumption architecture has been used to successfully implement systems that

12

Van Roy

interact with their environment in a life-like fashion. For example, an obstacle-

avoiding robot can be designed with three layers: a move forward layer, a turn

layer, and an obstacle-avoiding layer. Each layer is a feedback loop that observes

the world continuously. The layers are given priorities. If a layer can react, then

it disables the lower layers and performs its own actions. In the terminology of

Brooks, it suppresses inputs to the lower layers and inhibits outputs from the lower

layers. The default behavior is to move forward. If the direction is wrong, then

the turn layer disables the move forward layer to turn. If there is an obstacle, then

the obstacle-avoiding layer disables the other two layers and performs an obstacle

avoidance maneuver. Figure 10 shows this obstacle-avoiding robot as a feedback

architecture. This is a simple example that shows the basic principle. There exist

more refined versions of the architecture.

In the subsumption architecture, the feedback loops interact through stigmergy.

E.g., in a robot, all the loops detect the robot’s position and control the robot’s

movements. In the feedback loop architecture, feedback loops can also have a

policy/mechanism relationship, where each loop modifies the policy that is im-

plemented by the next innermost loop.

5 General architectural framework

Let us now take a step back from the above examples and summarize what a gen-

eral architectural framework can look like for building a self-managing system. The

system is organized as a set of concurrent components that communicate by means

of asynchronous events. The default behavior is that the components are indepen-

dent. Any synchronous or dependent behavior must be programmed explicitly. This

default gives good results in many cases: for fault-tolerant systems such as Erlang

[3], for network-transparent distributed programming systems such as Mozart [13],

and for secure distributed programming systems such as E [22]. It also matches

well with the complex systems approach taken in physics [14] and used, e.g., in

approaches such as belief propagation for solving inference problems [33].

Following the examples of Sections 3.2–3.4 and Section 4, the system consists of

a hierarchy of interacting feedback loops, where each feedback loop is implemented

by several agents and each agent is an instance of a component. Feedback loops

interact either through stigmergy or through management.

5.1 Higher-order component model

In a self-managing system, the system is able to monitor and reconfigure itself, that

is, install and update parts of itself while it is running. If the system is built as

a set of interacting components then it is possible for components to install other

components. Components are therefore first-class entities that can be passed as ar-

guments to other components. This is called higher-order component programming.

The Fractal component model is an example of such a component model [9]. This

model is already being used as a framework for building self-managing systems [6].

In a higher-order component model, it takes some care to determine what compo-

nent is to blame when a subsystem fails. This has been studied by Findler and

Blume [16].

13

Van Roy

f

input port

feedback component

system component

output port

F

C

F

C

new system component f(F,C)

Fig. 11. A component combinator for programming with feedback loops

5.2 Programming with feedback loops

With the right abstractions, a programming language can make programming with

feedback loops simple. Each component is a concurrent entity with one input port

that accepts a stream of input events and one output port that returns a stream

of output events. Components ignore irrelevant events. Both control and content

events pass through the same ports. These properties make it easy to compose

components in a modular way. This programming model is similar to the model used

by Guerraoui and Rodrigues for defining distributed algorithms in a compositional

way [18].

Figure 11 shows a component combinator f that takes two components F and C

and returns a component f(F,C) that combines F and C in a feedback arrangement.

The combinator f satisfies properties such as f(F1, f(F2, C)) = f(F2, f(F1, C)). We

can define an operator || such that f(F1, f(F2, C)) = f(F1||F2, C). This operator

is a form of parallel composition that connects the input and output streams of

F1 and F2. There are variations of f depending on whether C is explicit (part of

the program) or implicit (part of an environment) and depending on whether the

feedback loop is managed or not. The semantics of the combinator f needs to take

into account two effects:

• The interleaving of the input and output streams. That is, C’s input is the merge

of f(F,C)’s input and F ’s output and f(F,C)’s output is also the input to F .

• Both C and F have a propagation delay, i.e., an output event does not appear

instantaneously when an input event is given.

5.3 Global properties

An important part of any general system theory concerns the global properties of

a system. Can they be determined for an existing system and can we design sys-

tems with desired global properties? The latter question is especially important for

large-scale computer systems, such as the Internet or distributed systems built on

top of the Internet. Some of the important points are the system’s stability, its be-

havior when stressed, and whether the system’s imminent collapse can be detected

before it happens. Answers to some of these questions exist for complex systems

in physics. Such systems consist of large numbers of very simple components, but

14

Van Roy

they can sometimes be a useful approximation to computer systems. For exam-

ple, Krishnamurthy et al [20] have done an analytic study of the Chord structured

overlay network using a master equation approach. Another example is the belief

propagation algorithm. This algorithm is defined in terms of message passing be-

tween large numbers of simple nodes [33]. It has been used to give solutions to the

SAT problem and other problems. Belief propagation is a general technique that

can determine global properties of a system in terms of local properties. It can be

used for monitoring global properties as part of a feedback loop.

6 Conclusions

This paper motivates that a good approach for building large-scale distributed sys-

tems is to consider them as general self-managing systems. We propose to build

self-managing software systems as sets of concurrent agents interacting by means

of asynchronous events and implemented using a component model with first-class

components and component instances. In this framework, self-managing systems

are built as hierarchies of interacting feedback loops. The first design rule is that

the whole system (except perhaps a small kernel) should be inside a feedback loop.

Feedback loops interact through two mechanisms, stigmergy (shared environment

parameters) or management (one loop controls another). The feedback loop struc-

ture is designed to provide a desired global behavior. This behavior should also

be predictable from the loop structure. We relate this proposal to two other ar-

chitectures, namely the Erlang fault-tolerance architecture and the subsumption

architecture for implementing intelligent behavior.

These ideas are being realized in SELFMAN, a project in the European 6th

Framework Programme that started in June 2006 [27]. We intend to elaborate

these ideas into a programming methodology together with an implementation. It

should be as easy to program with and reason about a feedback loop as it is for an

object or a component. We will design and formalize a component model that is

based on the Oz kernel language extended with elements from the Fractal model.

We will use this component model as the basis of a programming model along the

lines of Section 5 and implement this model in Mozart [26,9,13,23]. We will build a

feedback loop architecture on top of this implementation and use it to implement a

self-managing replicated transactional storage service.

References

[1] Aberer, K., L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi, The essence
of P2P: A reference architecture for overlay networks, 5th International Conference on Peer-to-Peer
Computing (P2P 05), IEEE Computer Society, 2005.

[2] Andrzejak, Artur, Alexander Reinefeld, Florian Schintke, and Thorsten Schütt, On Adaptability in Grid
Systems, Future Generation Grids, Springer LNCS, 2005.

[3] Armstrong, Joe, “Making reliable distributed systems in the presence of software errors,” Ph.D.
dissertation, Royal Institute of Technology (KTH), Kista, Sweden, November 2003.

[4] Ashby, W. Ross, “An Introduction to Cybernetics,” Chapman & Hall Ltd., London, 1956. Internet
(1999): http://pcp.vub.ac.be/books/IntroCyb.pdf.

[5] von Bertalanffy, Ludwig, “General System Theory: Foundations, Development, Applications,” George
Braziller, 1969.

15

Van Roy

[6] Bouchenak, S., F. Boyer, D. Hagimont, S. Krakowiak, N. de Palma, V. Quéma, and J.-B. Stefani,
Architecture-Based Autonomous Repair Management: Application to J2EE Clusters, 2nd International
Conference on Autonomic Computing (ICAC’05), 2005, pp. 369–370.

[7] Brooks, Rodney A., A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics
and Automation, RA-2, April 1986, pp. 14–23.

[8] Brooks, Rodney A., Intelligence without representation, Artificial Intelligence 47, 1991, pp. 139–159.

[9] Bruneton E., V. Quéma, T. Coupaye, M. Leclercq, and J.-B. Stefani, An Open Component Model and its
Support in Java, Proceedings 7th International Symposium on Component-Based Software Engineering
(CBSE 2004), Springer LNCS 3054, 2004.

[10] Carroll, Lewis, “Through the Looking-Glass and What Alice Found There,” 1872 (Dover Publications
reprint 1999).

[11] Ceruzzi, Paul E., “Beyond the Limits: Flight Enters the Computer Age,” MIT Press, Cambridge, MA,
1989.

[12] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, PlanetLab:
An Overlay Testbed for Broad-Coverage Services, ACM SIGCOMM Comp. Comm. Review, 33(3), 2003.

[13] Collet, Raphaël, and Peter Van Roy, Failure Handling in a Network-Transparent Distributed
Programming Language, in Recent Advances in Exception Handling Techniques, C. Dony et al (Eds.),
Springer LNCS 4119, 2006.

[14] EVERGROW: Ever-growing global scale-free networks, their provisioning, repair and unique functions,
Integrated Project, European 6th Framework Programme, 2004-7. Internet: http://www.evergrow.org.

[15] Fairley, Peter, The Unruly Power Grid, IEEE Spectrum Online, Oct. 2005.

[16] Findler, Robert Bruce, and Matthias Blume, Contracts as Pairs of Projections, FLOPS 2006, April
24-26, 2006.

[17] Ghodsi, Ali, “Algorithms for Large Scale Self Managing Overlay Networks,” Ph.D. dissertation, Royal
Institute of Technology (KTH), Kista, Sweden, 2006.

[18] Guerraoui, Rachid, and Luis Rodrigues, “Introduction to Reliable Distributed Programming,” Springer-
Verlag Berlin, 2006.

[19] IBM, Autonomic computing: IBM’s perspective on the state of information technology, 2001. Internet:
http://researchweb.watson.ibm.com/autonomic/.

[20] Krishnamurthy, S., S. El-Ansary, E. Aurell, and S. Haridi, A statistical theory of Chord under churn,
The 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), 2005.

[21] Lynch, Nancy, “Distributed Algorithms,” Morgan Kaufmann, San Francisco, CA, 1996.

[22] Miller, Mark, “Robust Composition: Towards a Unified Approach to Access Control and Concurrency
Control,” Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland, May 2006.

[23] Mozart Programming System, version 1.3.2, June 2006. Internet: http://www.mozart-oz.org.

[24] Principia Cybernetica Web. Entry “system,” August 2006. Internet:
http://pespmc1.vub.ac.be/ASC/SYSTEM.html.

[25] SETI@home, August 2006. Internet: http://setiathome.berkeley.edu/.

[26] Van Roy, Peter, and Seif Haridi, “Concepts, Techniques, and Models of Computer Programming,” MIT
Press, Cambridge, MA, 2004.

[27] Van Roy, Peter, Ali Ghodsi, Seif Haridi, Jean-Bernard Stefani, Thierry Coupaye, Alexander Reinefeld,
Ehrhard Winter, and Roland Yap, Self Management of Large-Scale Distributed Systems by Combining
Peer-to-Peer Networks and Components, CoreGRID Technical Report TR-0018, Dec. 14, 2005. Internet:
http://www.ist-selfman.org.

[28] Weinberg, Gerald M., “An Introduction to General Systems Thinking: Silver Anniversary Edition,”
Dorset House, 2001 (original edition 1975).

[29] Wiener, Norbert, “Cybernetics, or Control and Communication in the Animal and the Machine,” MIT
Press, Cambridge, MA, 1948.

[30] Wiger, Ulf, Four-fold increqse in productivity and quality industrial-strength functional programming
in telecom-class products, Proceedings of the 2001 Workshop on Formal Design of Safety Critical
Embedded Systems, 2001.

[31] Wikipedia, the free encyclopedia. Entry “drowning,” August 2006. Internet:
http://en.wikipedia.org/wiki/Drowning.

16

Van Roy

[32] Wikipedia, the free encyclopedia. Entry “self-stabilization,” August 2006. Internet:
http://en.wikipedia.org/wiki/Self-stabilization.

[33] Yedidia, J.S., W.T. Freeman, and Y. Weiss, Understanding Belief Propagation and Its Generalizations,
Exploring Artificial Intelligence in the New Millennium, Chap. 8, Jan. 2003. Also MERL Technical
Report TR-2001-22, Jan. 2002.

17

B IMPLEMENTING SELF-ADAPTABILITY IN CONTEXT-AWARE
SYSTEMS

B Implementing Self-Adaptability in Context-Aware

Systems

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 33

Implementing Self-Adaptability in
Context-Aware Systems ⋆

Boris Mej́ıas1 and Jorge Vallejos2

1 Universit́e catholique de Louvain, Louvain-la-Neuve, Belgium
boris.mejias@uclouvain.be

2 Vrije Universiteit Brussel, Brussels, Belgium
jvallejo@vub.ac.be

1 Introduction

Context-awareness is the property that defines the ability of a computing system to
dynamically adapt to its context of use [1]. Systems that feature this property should
be able to monitor their context, to reason about the changesin this context and to
perform a corresponding adaptation. Programming these three activities can become
cumbersome as they are tangled and scattered all over in the system programs.

We propose to model context-aware systems using feedback loops [2]. A feedback
loop is an element of system theory that has been previously proposed for modelling
self-managing systems. A context-aware system modelled asa feedback loop ensures
that the activities of monitoring, reasoning and adapting to the context are modularised
in independent components. In this work, we take advantage of such modularisation to
explore different programming paradigms for each component of the loop.

2 Feedback Loops for Self-Adaptable Context-Aware Systems

Modelling software systems using feedback loops implies for the developers to iden-
tify which kind of information needs to be monitored, dedicating particular agents for
this task. Once the monitored information is collected, another component is in charge
of deciding correcting actions, using an actuator agent to apply the corrections to the
system.

Consider the case of a computer-assisted system for managing the lights of a so
calledintelligent house. This system consists of a set of lights and sensors that detect the
presence of people in the house. The detection of a person is monitored by a specialised
component that decides whether to turn on or off the lights, or simply modify their
intensity. The loop is depicted at the left side of figure 1.

Since the use of mobile devices such as phones, PDAs, media players or GPSs are
becoming very common, we can expect that users will use her/his mobile device to com-
municate with the house. We also expect that these devices can adapt their behaviour
according to their context. The context can represent locality, CPU use, battery load,

⋆ This work has been partially funded by the European projects EVERGROWand SELFMAN,
and by the flemish project of Context-Driven Adaptation of Mobile Services (CoDAMoS).

2

Fig. 1. Feedback loops modelling an automated light system and a context aware mobile device.

or a particular situation such as being busy, in a meeting, etc. The context is constantly
monitored by acontext reasoner, which decides the behaviour of the device in order to
react to external events, or to trigger certain events to communicate with other devices.

These simple loops already provide self-adaptability to the house lights system and
to the user’s mobile device. The former adapts light’s intensity according to the detec-
tion of users, and the later adapts its behaviour depending on the context. Consider now
both models collaborating as a self-organising system. We first extend the house lights
system to also monitor context. Having a context reasoner, lights are able to adapt their
behaviour not only to users’ movement, but also to particular context dependent scenar-
ios. For instance, you do not want to turn on the lights and wake up the kids when they
are in the sleeping context. We also add other sensors in order to receive message from
users’ devices.

Figure 2 depicts the interaction between both loops. User’sdevice monitors the
intensity of the lights while still monitors context. Beingin the context ofarriving
homemay triggers an event to turn on the lights. The contextwatching a filmwith high
light intensitymay triggers the event of lowing the intensity of the lights.

Since the house lights system is enriched with a context reasoner, some events trig-
gered from user’s device may not have always the same result.For instance, turning on
the lights when arriving home may not work as expected if kidsare in the sleeping con-
text. Like this, two users can communicate through the lights systems as stigmergy. We
can also observe that sensors and lights serve as stigmergy for the communication of
user’s device, and the controller of the house, because bothof them monitor the system,
and trigger events to modify the intensity of lights.

3 Implementing Feedback Loops

We have started to implement a prototype of the system using Mozart [3], a multi-
paradigm programming system implementing the Oz language [4]. We have identified
several ways of communicating components of a loop, which can be done using an
event-driven approach, or stream communication, which canachieve by pulling or push-
ing information (lazy or eager execution). To communicate distributed components,
message passing seems to be the most appropriated paradigm.

User’s devices follow naturally the actor model [5], but inside the actor we can intro-
duce other paradigms as well. For instance, the context reasoner applies a set of rules to

3

Fig. 2. Communicating two feedback loops.

the monitor information in order to determine the correspondent rule. This component
fits better logic or declarative programming. To implement adaptive behaviour, we have
chosen a model representing roles [6], where split objects [7] are used as the general
architecture.

Since every component communicate with other by events or messages, they are
quite independent, and the decision of the implementation of each of them, do no affect
the implementation of the others. We still need to investigate more about the explicitness
of the components matching the design and the implementation, because sometimes
they appear clearly at the conceptual level, by they integrated to other components in
the implementation.

References

1. Group, I.A.: Ambient intelligence: from vision to reality (2003)
2. Van Roy, P.: Self management and the future of software design. In: Formal Aspects of

Component Software (FACS ’06). (2006)
3. Consortium, M.: The mozart-oz programming system.http://www.mozart-oz.org(2007)
4. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT

Press (2004)
5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelli-

gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235–245
6. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., Mostinckx, S., Costanza, P.: The context-

dependent role model. In Indulska, J., Raymond, K., eds.: 7th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS ’07). Lecture Notes in Com-
puter Science, Springer-Verlag (2007) 277–299

7. Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegation within Objects. In:
Proceedings of the 11th Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96), San Jose, California, USA (1996) 122–137

C A RELAXED RING FOR SELF-ORGANISING AND FAULT-TOLERANT
PEER-TO-PEER NETWORKS

C A Relaxed Ring for Self-Organising and Fault-

Tolerant Peer-to-Peer Networks

SELFMAN Deliverable D.2.1a(v1), July 15, 2007, Page 37

A Relaxed-Ring for Self-Organising and
Fault-Tolerant Peer-to-Peer Networks

Boris Mej́ıas and Peter Van Roy
Universit́e catholique de Louvain

Louvain-La-Neuve, Belgium
{bmc|pvr}@info.ucl.ac.be

Abstract—There is no doubt about the increase in popularity of
decentralised systems over the classical client-server architecture
in distributed applications. These systems are developed mainly
as peer-to-peer networks where it is possible to observe many
strategies to organise the peers. The most popular one for struc-
tured networks is the ring topology. Despite many advantages
offered by this topology, the maintenance of the ring is very
costly, being difficult to guarantee lookup consistency and fault-
tolerance at all time. By increasing self-management in the system
we are able to deal with these issues. We model ring maintenance
as a self-organising and self-healing system using feedback loops.
As a result, we introduce a novel relaxed-ring topology that is able
to provide fault-tolerance with realistic assumptions concerning
failure detection. Limitations related to failure handling are
clearly identified, providing strong guarantees to develop applica-
tions on top of the relaxed-ring architecture. Besides permanent
failures, the paper analyses temporary failures and broken links,
which are often ignored.

Index Terms—Decentralised systems, Peer-to-peer, Fault-
tolerance, Self-management, Feedback-loops

I. I NTRODUCTION

Decentralised applications has rapidly increased their pop-
ularity in the last years due to several factors and motivations.
The increase of Internet bandwidth with a sufficient reliability
is already an important element. The fact that home computers
have augmented their computing power has decreased the de-
pendency on big servers, because clients are powerful enough
to play the role of a server for several tasks. These factors
have allowed the introduction of peer-to-peer networks. Such
networks have reduced the problem of traffic congestion and
single point of failures as in the client-server architecture,
making decentralised applications popular.

Building decentralised applications requires several guaran-
tees from the underlay peer-to-peer network. Fault-tolerance
and consistent lookup of resources are crucial properties that
a peer-to-peer system must provide. Other wished properties
such as efficient routing, scalability and full reachability
moved randomly connected peer-to-peer networks towards
structured overlay networks. Many of these structured net-
works implements a Distribute Hash Table (DHT). Among
many of them - Pastry [1], Tapestry [2], Kademlia [3], Hy-
perCup [4], P-Grid [5] - we focus on Chord [6], because it is
quite representative and it introduces a ring topology thathas
influenced many other networks.

In Chord, peers are organised in a ring, having a set of
pointers to efficiently find any other peer in the network. The

resources of the system are distributed among the peers where
each one is responsible for a set of them. Performing a lookup
for a resource must result in a consistent answer, finding the
right responsible. To add or remove a peer from the network,
the peer only needs to synchronise with its direct neighbours,
making the network self-organising. More details are explain
in section II.

Despite the self-organising nature of the ring architecture,
its maintenance presents several challenges in order to pro-
vide lookup consistency at any time. Chord itself presents
temporary inconsistency when several peers join the network
concurrently. This problem occurs even in fault-free scenarios.
To fix these inconsistencies, a stabilisation protocol must
be run periodically. The system must also deal with peers
gently leaving the network, which can occur massively and
concurrent to other joining events. The most challenging issue
though, is failure handling, where peers just leave the network
breaking the ring without following any protocol.

As we can see, ironically, the advantages of decentralised
systems with respect to the classical client-server architecture,
have the drawback of higher complexity due to the lack of
a single point of control and synchronisation. Increasing self-
management of decentralised systems can help us to reduce
this new complexity. By self-management we mean the ability
of a system to maintain its functionality despite changes inits
environment. The system constantly monitor itself triggering
corrective actions when the current state deviates from the
desired one. In order to achieve self-management, the use of
feedback loops in the design of the system appears as a straight
forward approach.

We use feedback loops to model the ring-maintenance of our
peer-to-peer system, called P2PS [7], which also uses a ring
topology. As a result of this new design, we introduce a novel
relaxed-ring topology that simplifies the “join” algorithm
and greatly improves failure recovery. Having the ability of
handling failures, there is no need for a “leave” algorithm,
because this case is already covered by failure recovery.

The main contribution of this work is the design of a
peer-to-peer network as a self-managing system, introducing
a relaxed-ring topology that is able to provide fault-tolerance
with realistic assumptions concerning failure detection.The
use of feedback loops for modelling the system can be reused
not only in other decentralised systems, but also in software
design in general.

Section II gives a more detailed introduction to peer-to-
peer networks using ring topology, describing some existing
solutions for ring maintenance. Section III briefly introduces
feedback loops for self-managing systems and how they can
be applied to software design. The result of applying feedback
loops to the ring maintenance is given in section IV with a
detailed description of therelaxed-ring. After a deep analysis
of failure handling, the paper provides conclusions for this
work.

II. PEER-TO-PEER RINGS

Peer-to-peer networks appear as the evident framework for
working with decentralised systems. Looking at the history
of peer-to-peer systems, we find Napster [8] as the icon of
the first generation. Napster uses a hybrid architecture with
a centralised directory of the location of the resources of the
systems. A client-server strategy was needed in order to find
other peers.

A second generation characterised by Gnutella [9] and
FreeNet [10] removed the servers from the topology becoming
the first real peer-to-peer network. Peers build an overlay
network on top of the Internet, being able to route with its
own topology. No structure is used for the network because
peers are connected randomly to other peers. Therefore, no
strong guarantees can be provided with respect to reachability,
time to find items or availability. Unfortunately, these kind of
network have limited scalability and induce a huge amount of
traffic [11].

Structured overlay networks - see introduction for references
- appear as the third generation of peer-to-peer systems,
claiming self-organisation of the network with fault-tolerance
in addition to the guarantees that cannot be found in the second
generation.

Figure 1 depicts a structured overlay network using ring
topology and providing a Distributed Hash Table (DHT) with
election of fingers based on the Tango [12] algorithm. This
structure was first introduced by Chord [6]. Every peer is
identified with a hash key, and it is connected to a successor
and a predecessor respecting the order of the keys in clockwise
direction. The DHT is used for storing and finding items in
the network using basically two operations:put(key, value)
to store a value with a certain key, andget(key) to recover
the value. Every peer is responsible for all keys between
its predecessor’s identifier and itself, excluding of course the
predecessor to avoid overlapping. When a lookup for a key
is trigger from any part of the ring, consistency must be
guaranteed, i.e., only one responsible for the key must be
found.

As we mentioned already, ring maintenance is costly and it
is not trivial to guarantee correctness. Chord’s algorithms for
ring maintenance handlingjoinsandleavespresent well known
problems of temporary inconsistency, where more that one
peer appears to be the responsible for the same key. For this
reason, Chord needs to trigger periodic stabilisation in order
to fix the inconsistencies. Existing analyses [13] conclude
that the problem comes from the fact that joins and leaves

Fig. 1. Structured overlay network using ring topology

are not atomic operations. We also raise the issue that these
operations always need the synchronisation of three peers,
which is hard to guarantee with asynchronous communication,
which is inherent to distributed programming.

Existing solutions [14], [15] introduce locks in the algo-
rithms in order to provide atomicity to thejoin and leave
operations. Locks are also hard to manage in asynchronous
systems, and that is why these solutions only work on fault-
free systems, which is not realistic.

A better solution is provided by DKS [13], simplifying the
locking mechanism and proving correctness of the algorithms
in absent of failures. Even when this approach offers strong
guarantees, we consider locks extremely restrictive for a dy-
namic network based on asynchronous communication. Every
lookup request involving the locked peers must be suspended
in presence of join or leave in order to guarantee consistency.
Leaving peers are not allowed to leave the network until
they are granted with the relevant locks. Given that, peers
crashing can be seen as peers just leaving the network without
respecting the protocol of the locking mechanism breaking the
guarantees of the system.

Another critical problem for performance is presented when
a peer crashes while some joining or leaving peer is holding its
lock. The situation is worse when the peer holding the relevant
lock is the one that crashes. Under this considerations, we can
observer that locks in a distributed system can hardly present
an efficient fault-tolerant solution.

III. F EEDBACK LOOPS

Taken from system theory,feedback loopscan be observed
not only in existing automated systems, but also in self-
managing systems in nature. Several examples of this can

Fig. 2. Basic structure of a feedback loop (taken from [16])

be found in [16], where feedback loops are introduced as a
designing model for self-managing software. The loop consists
out of three main concurrent components interacting with the
subsystem. There is at least one agent in charge of monitoring
the subsystem, passing the monitored information to a another
component in charge of deciding a corrective action if needed.
An actuating agent is used in order to perform this action
in the subsystem. Figure 2 depicts the interaction of these
three concurrent components in a feedback loop. These three
components together with the subsystem forms the entire
system.

The goal of the feedback loop is to keep a global property
of the system stable. In the simplest cases, this property
is represented by the value of a parameter. This parameter
is constantly monitored. When a perturbation is detected, a
corrective action is triggered. A negative feedback will make
the system reacts in the opposite direction to the perturbation.
Positive feedback increases the perturbation.

Taking an air-conditioning as example, we can see the
room where the system is installed as the subsystem. A
thermometer constantlymonitors the temperaturein the room
giving this information to athermostat. The thermostat is the
component in charge of computing the correcting action. If the
monitored temperature is higher than the wished temperature,
the thermostat will decide torun the air-conditioningto cool
it down. That action corresponds to the actuating agent.

Since every component executes concurrently, the model
fits very well for modelling distributed systems. There are
many alternatives for implementing every component and
the way they interact. They can represent active objects,
actors, functions, etc. Depending on the chosen paradigm,
the communication between components can be done for
instance by message passing or event-based communication.
The communication may also be triggered by pushing or
pulling, resulting on eager or lazy execution.

Independent of the strategy used for communication, it is
important to consider asynchronous communication as the
default when distributed systems are being modelled.

As a rule for using feedback loops in the design of a system,
actuators and monitors appear as verbs, while the subsystem
and the computing component appear as substantives, as in the
air-conditioning example. The reason why it is not like thisin
Figure 2, is because that is a description of the model, and
not the model applied to a system.

Fig. 3. Branch created due to connection problems between peers p andq

IV. SELF-ORGANISING AND SELF-HEALING

RELAXED-RING

Section II described the problem of guaranteeing consistent
lookup while multiple joins, leaves and failures occur in a
peer-to-peer network using ring architecture. As a solution to
this problem we design a novel topology based on a relaxed-
ring. This topology also allows as to provide failure recovery
using imperfect failure detectors and handling broken links
which are often ignored. The relaxed-ring topology is part of
the new version of P2PS [17], implemented with Mozart-Oz
programming system [18].

During this section we will use the termspeer and node
indistinctly to refer to an independent process running with
its own address space, i.e., a network node. We also use the
term pointer as a network reference to a node. The termskey
and identifier represent keys from the DHT, and they are used
to identify peers.

The algorithms of the relaxed-ring are designed using
feedback loops, and the description of their implementation
is given using event-driven notation. As any overlay network
built using ring topology, in our system every peer has a
successor, predecessor, and fingers to jump to other parts of
the ring in order to provide efficient routing. The ring provides
a DHT with key-distribution formed by integers from 0 toN
growing clockwise.

Range between keys, such as(p, q] follows the key distri-
bution clockwise, so it is possible thatp > q, and then the
range goes fromp to q passing through 0. Parentheses ‘(’ and
‘)’ excludes a key from the range and, ‘[’ and ‘]’ includes it.

As we previously mentioned, one of the problem we have
observed in existing ring maintenance algorithms is the need
for an agreement between three peers to perform a join/leave
action. We provide an algorithm where every step only needs
the agreement of two peers, which is guaranteed by a point-to-
point communication. In the specific case of a join, instead of
having one step involving 3 peers, we have two steps involv-
ing 2 peers. The lookup consistency is guaranteed between
every step and therefore, the network can still answer lookup
requests while simultaneous peers are joining the network.
Another relevant difference with the mentioned related work,
is that we do not rely on graceful leaving of peers, because
anyway, we have to deal with leaves due to network and node
failures.

Fig. 4. Messages and pointers update during a join

Our first invariant is thatevery peer is in the same ring
as its successor. Therefore, it is enough for a peer to have
connection with its successor to be considered inside the
network. Secondly, the responsibility of a peer starts withthe
key of its predecessor plus 1, and it finishes with its own key.
Therefore,a peer does not need to have connection with its
predecessor, but it must know its key. These are two crucial
properties that allow us to introduce the relaxation of the ring.
When a peer cannot connect to its predecessor, it forms a
branch from thecore ring. When there are no branches, and
every peer is connected bidirectionally with its successorand
predecessor, then we have a“perfect ring” .

Figure 3 shows a fraction of a relaxed ring where peert is
the root of a branch, and where the connection between peers
p and q is broken. We say thatp and t belongs to thecore
ring, and thatq, r ands are part of a branch.

Before starting the description of the algorithms that main-
tain the relaxed-ring topology, we first define what we mean
by lookup consistency.

Def. Lookup consistency implies that at any time there is
only one responsible for a particular keyk, or the responsible
is temporary not available.

A. The join algorithm

Thinking about the peer-to-peer network as self-managing
system, the network is the subsystem we want to monitor,
because we want it to keep is functionality despite the changes
that can occur. The structure of the ring is the global property
that needs to be kept stable. New peers joining, and current
peers leaving or failing represent perturbations to the ring
structure. Therefore, these events must be monitored.

Messages sent during the process of joining, and the update
of the predecessor and successor pointers are shown in figure
4. In the example, nodeq wants to join the network havingr
as successor candidate. Peerr is a good candidate because it
is the responsible for keyq. Nodeq send a join request tor.
Whereas eventjoin triggered by peerq is a perturbation, event
join ok is a correcting action providing negative feedback. It
is negative because it is an action that goes in the opposite
direction of the perturbation. Afterjoin ok is triggered, a
branch is created. Then, a second correcting action is needed
to entirely close the ring. This action is represented by the
eventnew succ sent from peerq to p.

Figure 5 describes the feedback loop that keeps the structure
of the relaxed-ring stable. The monitoring agents are in charge
of detecting perturbations in the network. Correcting actuators
can be seen as three different actions: update routing table
(successor and predecessor), trigger event (correcting ones)
and forward request (in case a peer wants to join in the wrong
place). The routing table does not only include predecessor
and successor. It also includes fingers for efficient routingand
resilient sets for failure recovery.

Every peer is independently monitoring the network, and the
correcting action performing the ring maintenance is running
concurrently in every peer. As events triggered by peers are
monitored by other peers, we observe that they use the network
as a mean for communicating using stigmergy.

Algorithm 1 Join step 1 - adding a new node

1: upon event 〈 join | q 〉 do
2: if succ = nil then
3: send 〈 try later | self 〉 to q

4: else
5: if betterPredecessor(q)then
6: oldp := pred
7: pred := q
8: predlist :={oldp} ∪ {predlist}
9: send 〈 join ok | oldp, self, succlist〉 to q

10: else if (i < pred) then
11: send 〈 goto | pred 〉 to q

12: else
13: send 〈 goto | succ〉 to q

14: end if
15: end if
16: end event

17: upon event 〈 join ok | p, r, sl 〉 do
18: succ := r
19: succlist :={r} ∪ sl
20: if (pred = nil) ∨ (p ∈ (pred, self)) then
21: pred := p
22: send 〈 new succ | self, succ, succlist〉 to p

23: end if
24: end event

Algorithm 1 describes one implementation of the feedback
loop. Every event is handled by the computing component

Fig. 5. Join algorithm as a feedback loop

running in every peer. This component decides which cor-
rection has to be performed. In eventjoin, the messages
goto and try later represent the forwarding of the request.
The request can be accepted when the joining peer is a
betterPredecessor. This is the case whenq ∈ (pred, self].
As part of the joining process, there is an update of the
routing table. This update is done explicitly by assigning the
corresponding pointerpred and thepred list.

Operator send is a reliable point-to-point send. If the
receiver presents a failure before the message arrives, the
sender is notified.

Triggering correcting events is represented by the mes-
sagejoin ok, which will be monitored by the joining peer.
Handling eventjoin ok also shows how the routing table
is updated by assigning pointersucc and setsucc list. A
second correcting event is triggered:new succ. The set named
succ list is used later for failure recovery. This set represents
the list of peers that follows after the current successor. This
peers can be contacted in order to fix the ring when the
successor is suspected of having a failure.

Note that the algorithm is divided into two steps. Like this,
we do not need the synchronisation of three peers performing
an atomic operation. Instead, two correcting actions are trig-
gered in order to fix the perturbation. Algorithm 2 describes
the implementation of the second action where the ring is
closed again. This is achieved by updating pointersucc and
setsucc list, which are part of the routing table. A notification
eventjoin ack is triggered to improve the knowledge of the
system about its global state, but it is not strictly needed.

It is important to signalise that the routing algorithm of
Chord or DKS [19] cannot be used in the relaxed-ring. The
algorithm would creates cycles due to the introduction of
branches in the ring topology. The routing algorithm of the
relaxed-ring works as follows. A peeri must choose the closest
peerj to the keyk from its routing table. The routing table
also consider predecessors for routing. The distance function
between two keys is given byd(k, j) = (j − k)modN , where
N is the highest value of the key domain.

Given the join and routing algorithms, the relaxed-ring
guarantees consistent lookup at any time in presence of
multiple joining peers. To prove this guarantee, let us assume
the contrary. Then, there are two peersp and q responsible

for key k. In order to have this situation,p and q must
have the same predecessorj, sharing the same range of
responsibility. This means thatk ∈ (j, p] and k ∈ (j, q]. The
join algorithm updates the predecessor pointer upon events
join and join ok. In the eventjoin, the predecessor is set
to a new joining peerj. This means that no other peer was
having j as predecessor because it is a new peer. Therefore,
this update does not introduce any inconsistency. Upon event
join ok, the joining peerj initiates its responsibility having
a member of the ring as predecessor, sayi. The only other
peer that hadi as predecessor before is the successor ofj,
sayp, which is the peer that triggered thejoin ok event. This
message is sent only afterp has updated its predecessor pointer
to j, and thus, modifying its responsibility from(i, p] to (j, p],
which does not overlap withj’s responsibility(i, j]. Therefore,
it is impossible that two peers has the same predecessor.

Algorithm 2 Join step 2 - Closing the ring

1: upon event 〈 new succ | q, olds, sl〉 do
2: if (succ = olds) then
3: oldsucc := succ
4: succ := q
5: succlist :={q} ∪ sl
6: send 〈 join ack | self 〉 to oldsucc

7: send 〈 upd succlist | self, succlist〉 to pred

8: end if
9: end event

10: upon event 〈 join ack | op 〉 do
11: if (op ∈ predlist) then
12: predlist := predlist\ {op}
13: end if
14: end event

B. Resilient information

During the join algorithm we have mentionedpredlist and
succlist for resilient purposes. The basic failure recovery
mechanism is triggered by a peer when it detects the failure
of its successor. When this happens, the peer will contact
the members of the successor list successively. The objective
of the predlist is to recover from failures when there is

Fig. 6. Failure recovery as a feedback loop

no predecessor that triggers the recovery mechanism. This is
expected to happen only when the tail of a branch has crashed.
Section IV-C gives more details about the recovery algorithms.
Initially, we do not use extra fingers for recovery because it
is not efficient. They may help to solve network partitioning,
but we delegate this kind of recovery to upper layers of P2PS.

Algorithm 3 describes how the update of the successor list
is propagated while the list contains new information. The
predecessor list is updated only during the join algorithm and
upon failure recoveries.

Algorithm 3 Update of successor list

1: upon event 〈 upd succlist | s, sl 〉 do
2: newsl :={s} ∪ sl \ getLast(sl)
3: if (s == succ) ∧ (succlist 6= newsl) then
4: succlist := newsl
5: send 〈 upd succlist | self, succlist〉 to pred

6: end if
7: end event

C. Failure recovery

Instead of designing a costly protocol for peers leaving the
network, leaving peers are treated as network nodes having a
failure. Like this, solving problem of failure recovery will also
solve the issue of leaving the network.

Observing the relaxed-ring as a self-managing system, we
identify that the crash of a peer also introduces perturbations to
the structure of the ring. Therefore, crashes must be monitored.
In order to provide a realistic solution,perfect failure detectors
cannot be assumed. Perfect failure detectors are strongly
complete and strongly accurate. Being complete means that
every crashed node is detected. Being accurate means that a
node being suspected of failure is effectively in failure. In
reality, broken links and nodes with slow network connection
are very often, generating a considerable amount of false
suspicions. Because of this, not only crashed events must be
monitored, but also “I am alive” messages. When these two
events are appear as perturbations, the network must update
routing tables and trigger correcting events.

In the relaxed-ring architecture we re-use thejoin event as
correcting agent for stabilising the relaxed-ring. If the network

become stable, thejoin ok event will be monitored. This
negative feedback loop can be observe in figure 6.

Algorithm 4 describes an implementation of the feedback
loop. If a failure is detected, thecrash event is triggered.
The detected node is removed from the setssucclist and
predlist, and added to acrashed set. If the detected peer
is the successor, the recovery mechanism is triggered. The
succ pointer is set tonil to avoid other peers joining while
recovering from the failure. A successor candidate is taken
from the successors list. The functiongetF irst returns the
peer with the first key found clockwise, and removes it from
the set. It returnsnil if the set is empty. Note that as every
crashed peer is immediately removed from the resilient sets,
getF irst always returns a peer that appears to be alive at this
stage. The successor candidate is contacted using thejoin

message, triggering the same algorithm as for joining. Thisac-
tion generates an interaction between the two feedback loops,
using the involved peers as stigmergy for communication. If
the successor candidate also fails, a new candidate will be
chosen. This is verified with theif condition.

Algorithm 4 Failure recovery

1: upon event 〈 crash | p 〉 do
2: succlist := succlist\ {p}
3: predlist := predlist\ {p}
4: chrased :={p} ∪ crashed
5: if (p = succ) ∨ (p = succ candidate) then
6: succ := nil
7: succ candidate := getFirst(succlist)
8: send 〈 join | self 〉 to succ candidate

9: else if (p == pred) then
10: if (predlist 6= ∅) then
11: pred candidate := getLast(predlist)
12: end if
13: end if
14: end event

15: upon event 〈 alive | p 〉 do
16: crashed := crashed\ {p}
17: end event

When the detected peerp is the predecessor, no recovery
mechanism is triggered becausep’s predecessor will contact
the current peer. The algorithm decides a predecessor candi-
date from thepredlist to recover from the case when the tail
of a branch is the crashed peer. We will not explore this case
further in this paper because it does not violate our definition
of consistent lookup. To solve it, it is necessary to set up a
time-out to replace the faulty predecessor by the predecessor
candidate.

When a peer recovers from a temporary failure, thealive

event is triggered. This can be implemented by using watchers
or using a fault stream attached to the distributed entities
[20]. To handle thealive event is enough to remove the
peer from thecrashed set. This will terminate any pending
recovery algorithm. The faulty peer will trigger by itself the
corresponding recovery events with the relevant peers.

Algorithm 5 Verifying predecessor candidate
1: function betterPredecessor(q) is
2: if (q ∈ (pred, self)) then
3: return (true)
4: else
5: return (pred ∈ crashed)
6: end if
7: end function

Having now the knowledge of thecrashed set, algorithm 5
gives a complete definition of the functionbetterPredecessor

used in algorithm 1. Since thejoin event is used both for a
regular join and for failure recovery, the function will decide
if a predecessor candidate is better than the current one if it
belongs to its range of responsibility, or if the currentpred is
detected as a faulty peer.

Fig. 7. Failure recovery triggered in the ring and in a branch

Knowing the recovery mechanism of the relaxed-ring, let
us come back to our joining example of figure 4 and check
what happens in cases of failures. Ifq crashes after the event
join, peerr still hasp in its predlist for recovery. Ifq crashes
after sendingnew succ to p, p still has r in its succlist for
recovery. Ifp crashes before eventnew succ, p’s predecessor
will contact r for recovery, andr will inform this peer about
q. If r crashes beforenew succ, peersp and q will contact

Fig. 9. Simultaneous crashes together with a join event

simultaneouslyr’s successor for recovery. Ifq arrives first,
everything is in order with respect to the ranges. Ifp arrives
first, there will be two responsible for the ranges(p, q], but
one of them,q, is not known by any other peer in the network,
and it fact, it does not have a successor, and then, it does not
belong to the ring. Then, no inconsistency is introduced in any
case of failure.

Figure 7 shows the recovery mechanism triggered by a peer
when it detects that its successor has a failure. The figure
depicts two equivalent situations. The above one corresponds
to a regular crash of a node in a perfect ring. The situation
bellow shows that a crash in a branch is equivalent as long as
there is a predecessor that detects the failure.

Figure 9 shows two simultaneous crashes together with a
new peer concurrently joining the network. If the recovery
join message arrives first, the ring will be fixed before the new
peer joins, resulting in a regular join. If the new peer starts
the first step of joining before the recovery, it will introduce a
temporary branch because of its impossibility of contacting the
faulty predecessor. When the recoveryjoin message arrive,
the recovering peer will be forwarded to the new peer. The
contact of these two peers will finally fix the ring and removing
the branch.

There are failures more difficult to handle than the ones we
have already analysed. Figure 10 depicts a broken link and
the crash of the tail of a branch. In the case of the broken
link (inaccuracy), the failure recovery mechanism is triggered,
but the successor of the suspected node will not accept the
join message. The described algorithm will eventually recover
from this situation when the failure detector reaches accuracy.
This will happen when the link is recover from the failure,
and thealive event is monitored.

Fig. 10. Broken link and failure of the tail of branch

Fig. 8. Peersp andr detect failure ofq, fixing the ring with an interaction of feedback loops

In the case of the crash of the node at the tail of a branch,
there is no predecessor to trigger the recovery mechanism.
In this case, the successor could use one of its nodes in the
predecessor list to trigger recovery, but that could introduce
inconsistencies if the suspected node has not really failed. If
the tail of the branch has not really failed but it has a broken
link with its successor, then, it becomes temporary isolated and
unreachable to the rest of the network. Having unreachable
nodes means that we are in presence of network partitioning,
which will be discussed in section IV-E.

With respect to failure handling, the relaxed-ring guarantees
that simultaneous failures of nodes never introduce inconsis-
tent lookup as long as there is no network partition. To prove
this guarantee, we must consider that every failure of a peer
is eventually detected by its successor, predecessor and other
peers in the ring having a connection with the faulty node. The
successor and other peers register the failure in thecrashed

set, and remove the faulty peer from the resilient setspredlist

andsucclist, but they do not trigger any recovery mechanism.
Only the predecessor triggers failure recovery when the failure
of its successor is detected, contacting only one peer from the
successor list at the time. Then, there is only one possible
candidate to replace each faulty peer, and then, it is impossible
to have two responsible for the same range of keys.

D. Combining feedback loops

The interaction between feedback loops is an interesting
issue to analyse because big systems are expected to be de-
signed as a combination of several loops. Feedback loops may
communicate directly or using some subsystem as stigmergy.
Let us consider a particular section of the ring having peersp, q
andr connected through successor and predecessors pointers.
Figure 8 describes how the ring is perturbed and stabilised in
the presence of a failure of peerq. Only relevant monitored
and actuating actions are included in the figure to avoid a
bigger and verbose diagram.

Initially, the crash of peerq is detected by peersp andr (1).
Both peers will update their routing tables removingq from
the set of valid peers (2a). But, sincep is q’s predecessor, only

p will trigger the correcting eventjoin (2b). This first iteration
corresponds to a loop from the failure recovery mechanism.
The join event will be monitored by peerr (3), starting an
iteration in the join maintenance loop. The correcting action
join ok will be triggered (4a) together with the corresponding
update of the routing table (4b). Once again the network
is used as stigmergy, because the eventjoin ok will be
monitored (5) by the failure recovery component in order to
perform the correspondent update of the routing table (6).
Since thejoin ok event is also detected by the join loop,
both loops will consider the network stable again.

E. Limitations

Figure 11 depicts a temporary network partition that can
occur in the relaxed-ring topology. Previously, we have anal-
ysed cases where there is only one peer that triggers the
recovery mechanism. In the case of the failure of the root
of a branch, peerr in the example, there are two recovery
messages triggered by peersp andq. If message from peerq
arrives first to peert, the algorithm handle the situation without
problems. If message from peerp arrives first, the branch will
be temporary isolated behaving as a network partition. This
situation introduces a temporary inconsistency. This limitation
is not unique to the relaxed-ring topology. It is related to the
proof given by Ghodsi in [13], where it is not possible to
provide at the same time consistency, availability and partition-
tolerance in presence of network partitioning. The limitation
of the particular case of the relaxed-ring is well defined in the
following theorem.

Theorem 4.1:Let r be the root of a branch,succ its succes-
sor,pred its predecessor, andpredlist the set of peers havingr
as successor. Letp be any peer in the set, so thatp ∈ predlist .
Then, the crash of peerr may introduce temporary inconsistent
lookup if p contactssucc for recovery beforepred. The
inconsistency will involve the range (p, pred], and it will be
corrected as soon aspred contactssucc for recovery.

Proof: There are only two possible cases. First,pred

contactssucc beforep does it. In that case,succ will consider
pred as its predecessor. Whenp contactssucc, it will redirect

Fig. 11. The failure of the root of a branch triggers two recovery events

it to pred without introducing inconsistency. The second
possible case is thatp contactssucc first. At this stage,
the range of responsibility ofsucc is (p, succ], and of pred

is (p′, pred], where p′ ∈ [p, pred]. This implies thatsucc

and pred are responsible for the range(p′, pred], where in
the worse casep′ = p. As soon aspred contactssucc it
will become the predecessor becausepred > p, and the
inconsistency will disappear.

Theorem 4.1 clearly states the limitation of branches in the
system. This helps developers to identify the scenarios where
special failure recovery must be taken into account. Since the
problem is related to network partitioning, there seems to be no
easy solution for it. An advantage of the relaxed-ring topology
is that the issue is well defined and easy to detect, improving
the guarantees provided by the system in order to build fault-
tolerant applications on top of it.

V. CONCLUSIONS

Decentralised systems in the form of peer-to-peer networks
presents many advantages over the classical client-serverarchi-
tecture. Even though, the complexity of a decentralised system
is higher, requiring the increase of self-management. In this
paper we show how feedback-loops, taken from existing self-
managing systems, can be applied in the design of a peer-
to-peer network. The result is a novel relaxed-ring topology
for fault-tolerant and self-organising networks. The system is
able to monitor and correct itself, keeping the ring structure
stable despite the changes due to regular operations of due to
network and node failures.

The topology is derived from the simplification of thejoin
algorithm requiring the synchronisation of only two peers at
each stage. As a result, the algorithm introduces branches to
the ring. These branches can only be observed in presence
of connectivity problems between peers, and help the system
to work in realistic scenarios. The ability to handle failures
removes the need for aleavealgorithm, because it is just a
special case in the failure recovery mechanism.

Related work is discussed along the paper, but it is specially
analysed in section II. The guarantees and limitations of the
relaxed-ring of P2PS are clearly identified and formally stated
in section IV. These specifications provide helpful indications
to developers in order to build fault-tolerant applications on
top of this structured overlay network.

ACKNOWLEDGEMENT

This work is being funded and developed in the context of
projects EVERGROW (contract number:001935) and SELF-
MAN (contract number: 034084).

REFERENCES

[1] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture
Notes in Computer Science, vol. 2218, pp. 329–??, 2001. [Online].
Available: citeseer.ist.psu.edu/rowstron01pastry.html

[2] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A global-scale overlay for rapid service
deployment,” IEEE Journal on Selected Areas in Communications,
2003, special Issue on Service Overlay Networks, to appear.[Online].
Available: citeseer.ist.psu.edu/article/zhao03tapestry.html

[3] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” 2002. [Online]. Available:
citeseer.ist.psu.edu/maymounkov02kademlia.html

[4] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Hypercup – hyper-
cubes, ontologies and efficient search on p2p networks,” 2002. [Online].
Available: citeseer.ist.psu.edu/article/schlosser02hypercup.html

[5] K. Aberer, “P-Grid: A self-organizing access structurefor P2P
information systems,”Sixth International Conference on Cooperative
Information Systems (CoopIS 2001), Lecture Notes in Computer
Science, vol. 2172, pp. 179–194, 2001. [Online]. Available:
citeseer.ist.psu.edu/aberer01pgrid.html

[6] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable Peer-To-Peer lookup service
for internet applications,” in Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, pp. 149–160. [Online]. Available:
citeseer.ist.psu.edu/stoica01chord.html

[7] V. Mesaros, B. Carton, and P. Van Roy, “P2PS: Peer-to-peer development
platform for mozart.” inMOZ, ser. Lecture Notes in Computer Science,
P. Van Roy, Ed., vol. 3389. Springer, 2004, pp. 125–136.

[8] Napster, “Open source napster server,” 2002. [Online].Available:
http://opennap.sourceforge.net

[9] Gnutella, “http://gnutella.com,” 2003.
[10] FreeNet, “http://freenet.sourceforge.net,” 2003.
[11] E. P. Markatos, “Tracing a large-scale peer to peer system: an hour

in the life of gnutella,” in 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2002. [Online]. Available:
citeseer.ist.psu.edu/article/markatos02tracing.html

[12] B. Carton and V. Mesaros, “Improving the scalability of logarithmic-
degree dht-based peer-to-peer networks.” inEuro-Par, ser. Lecture Notes
in Computer Science, M. Danelutto, M. Vanneschi, and D. Laforenza,
Eds., vol. 3149. Springer, 2004, pp. 1060–1067.

[13] A. Ghodsi, “Distributedk-ary System: Algorithms for distributed hash
tables,” PhD Dissertation, KTH — Royal Institute of Technology,
Stockholm, Sweden, Dec. 2006.

[14] X. Li, J. Misra, and C. G. Plaxton, “Active and concurrent topology
maintenance.” inDISC, 2004, pp. 320–334.

[15] ——, “Concurrent maintenance of rings.”Distributed Computing,
vol. 19, no. 2, pp. 126–148, 2006.

[16] P. Van Roy, “Self management and the future of software design,” in
Formal Aspects of Component Software (FACS ’06), September 2006.

[17] DistOz Group, “P2PS: A peer-to-peer networking library for Mozart-
Oz,” http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[18] Mozart Community, “The Mozart-Oz programming system,”
http://www.mozart-oz.org, 2007.

[19] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, “Dks (n, k, f): A
family of low communication, scalable and fault-tolerant infrastructures
for p2p applications,” inCCGRID ’03: Proceedings of the 3st Interna-
tional Symposium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2003, p. 344.

[20] R. Collet and P. V. Roy, “Failure handling in a network-transparent
distributed programming language.” inAdvanced Topics in Exception
Handling Techniques, 2006, pp. 121–140.

