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Goals

• To make programming distributed systems an 
easy and painless job

• To enable the implementation of distributed 
systems in a way that reflects their nature

– Concurrent activities

– Reactive behavior

– Complex interaction
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Context

• Distributed protocols are inherently reactive
– Broadcast

– Gossip

– Consensus

– Distributed shared memory

– Group membership 

– Overlay networks

• Distributed protocols should be reusable and  
compositional
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Contribution

• A model for specifying and implementing 
distributed protocols as components that are…

– Concurrent

– Compositional

– Event driven

– Dynamically reconfigurable

– Software fault-tolerant

– Multi-core scalable

Cosmin Arad, ZIB Berlin, May 22nd 2008 4



Contribution

• An implementation of Kompics in Java

• A set of reusable component libraries for 
distributed applications:

– Overlay networks

– Reliable group communication

– Gossip based systems
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Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook
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Model overview

• The Kompics model is a concurrent extension 
of any sequential strongly typed programming 
language having the notion of types and 
subtypes

• We have a first implementation in Java

• We introduce the model entities using object 
oriented programming terminology
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Concepts and artifacts

• Component

• Event

• Channel

• Event Handler

• Factory

• Component Type

• Component Membrane
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Components…

• … are active objects

• … interact with each other by triggering 
asynchronous events

• … react to events by executing event specific 
procedures to handle the received events

• … are decoupled (through channels)

• … publish events into channels

• … subscribe to channels
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Events…

• … are passive immutable objects

• … are typed and event types can form type 
hierarchies

• … are triggered by components and published 
into channels
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Channels…

• … are interaction links between components

• … carry events from publishers to subscribers

• … are associated with a set of event types

• Components subscribe to a channel for a 
certain event type

• Components can only publish into a channel 
events of a type that is associated with the 
channel
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An event handler…

• … is a component method that handles events

• … is executed as a reaction to an event

• … takes as argument an event of a certain type

• … can be guarded by a boolean guard

• … can trigger events
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Component type CT

• Components interact with its environment 
through input and output channels

• CT represents the signature of a component

• CT specifies the set of input event types of any 
component that implements it

• CT specify the set of output event types that 
are triggered by any component that 
implements it
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A Component Membrane…

• … is the collection of channels through which 
a component instance a interacts with its 
environment

• … maps every pair of (event type, in/out) in a’s 
signature (component type) to an actual 
channel x

• a is either subscribed to x (in), or a publishes 
events into x (out)
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Example

E1 

A B

{E1}

E1

Node

E1 

E1 

{E1}

Event handler that triggers events of type E1

Component output channel parameter

Event handler that handles events of type E1

Component input channel parameter

Channel carrying events of type E1
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Factories…

• … are artifacts that take a component 
specification (class) and create components 
(instances)

• … create and initialize component instances

• … allow the creation of multiple component 
instances from the same component 
specification

• There is one factory for each component spec
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Composite components…

• … are components

• … encapsulate components and local channels 
in addition to state variables and event 
handlers

• … interact with their environment through 
input and output channels 

• … interact with subcomponents through the 
local channels
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Best Effort Broadcast (BEB) component

Pp2pD(m)

BebD(m)

PP2P

BEB

BebB(m)

Pp2pS(m)

{Pp2pS}

{Pp2pD}

{BebD}

{BebB}

Pp2pS(end)

Pp2pD(eliver)

BebB(roadcast)

BebD(eliver)
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Component abstract syntax example
component CompName {

declare
state variables

create(channel param1 … paramn) do {…}
init(any param1 … paramm) do { … }
onEvent EventType1 e do {

…
trigger new EventType2(e)
… 

}
onEvent EventType3 e do { … }

… /* private methods */
}
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BEB Component example
component BEB {

declare  ps /* the process group */ 
…
create(channel in, channel out) do {

subscribe(in, BebB)
Channel pp2pIn = new Channel({Pp2pS})
Channel pp2pOut = new Channel({Pp2pD})
Factory pp2pFactory = new Factory(PP2P) 
Component pp2p = pp2pFactory.create(pp2pIn, pp2pOut)

}
onEvent BebB b do {

for all processes p in ps do 
trigger new Pp2pS(b.message)

}
….

}
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Event type hierarchy
event EventType1 {

declare attributes;
…
/* public selector methods */

}

event EventType2 extends EventType1 {
declare attributes;
…
/* public selector methods */

}
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Sharing
• Subcomponents can be shared by multiple 

composite components

• Sharing a component is done by sharing the 
channels in the component’s membrane

• To share a component a, a component 
membrane is created for a and registered under a 
name in a registry of shared components

• A composite component b that wants to use a, 
retrieves a’s membrane from the registry and 
subscribes to or publishes events into its channels
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PP2P and FLP2P share the Network component

Pp2pS

NetS

PP2P

Pp2pNetD

Pp2pD

Network

{NetS} {NetD}

{Pp2pD}
{Pp2pS}

Flp2pS

NetS

FLP2P

Flp2pNetD

Flp2pD

Network

{NetS} {NetD}

{Flp2pD}
{Flp2pS}

Flp2pNetD  NetD

Pp2pNetD  NetD

shared channel in shared component membrane

shared component
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Sharing patterns
• Sharing a component a among different types of  

components (static sharing)

– User components subscribe to subtypes of the event types 
published by a

– Events filtering done by subtyping

• Sharing a component a among different instances of 
the same component type (instance sharing)

– Events published by a have an attribute that identifies the 
target component

– Events filtering done by demultiplexing on the identifier
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Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook
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Publish-subscribe semantics

• A component can publish into a channel only 
events that have the same type or a subtype 
of one of the channel event types

• A component can subscribe to a channel for 
events of the same type or of a subtype of one 
of the channel event types
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Execution semantics
• The system contains n workers that execute 

event handlers on behalf of components

• Different component instances can execute 
event handlers in parallel 

• The event handlers of one component 
instance are guaranteed to be executed 
sequentially by the execution model

• The execution of a handler h1 of component c1

is not atomic w.r.t to any other handler exec
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Channel properties

• Channels are FIFO

– each component subscribed to a channel C, executes 
events published in C, in the same order in which they 
are published

• A channel serializes the concurrent publication of 
events into the channel

• Events triggered sequentially by one component 
instance will be published in the channel in the 
order in which they were triggered
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Subscription semantics

• Component a subscribes an event handler 
h for events of type T to channel x

– A subscription (a, T, h) is registered at x

–A FIFO work queue qx is created at a for x     
(if it is not already created by a previous sub)

• Multiple handlers in the same component 
can subscribe to the same channel

Cosmin Arad, ZIB Berlin, May 22nd 2008 29



Scheduling: component state

• A component a can be in one of three 
states:
– Busy: a worker is currently executing an event 

handler of a

– Ready: one or more of its queues qx are not 
empty and the component is not busy

– Idle: all its queues qx are empty and it is not 
busy
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Event triggering semantics

• Component a triggers event e of type T in 
channel x

• Let S be the subset of all subscriptions (b, T’, h) 
to x, where T’ is T or a super-type of T

• For each (b, T’, h) in S

– A work item (e, h) is enqueued at b in qx

– If b is idle then b becomes ready

• Free workers pick ready components (thus 
making them busy)
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Worker picks a ready component a

• It makes a busy

• a has at least one work queue qx that is not 
empty

• Dequeue one work item (e, h) from qx

• Execute a.h(e)

• If all a’s work queues are empty make a idle

• Otherwise make a ready

Cosmin Arad, ZIB Berlin, May 22nd 2008 32



Worker loop (Summary)
• Workers wait for components to become ready

• When a component a becomes ready, a worker w
picks it and executes one work item (e, h) enqueued 
in some qx at a

• The execution of handler h, may trigger new events ei

of type Ti, published in channels xi

• Components subscribed to xi for type Ti become 
ready if not busy

• Upon termination of h, worker w repeats the above 
steps 
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Multicore execution
• The number of workers can be proportional to 

the number of cores

• The semantics described guarantees 
serialization of handler in same component 
instance and FIFO execution of events in the 
same channel

• Locking is needed on channels and 
component queues qx (no component locking)

• Initial results shows good multicore scalability
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Fault isolation

• Every component gets an associated control 
channel when it is created

• Any error/exception that is not caught within 
an event handler triggers a fault event 
published into the control channel

• The control channel is available to the parent 
component

• This allow various fault supervision hierarchies  
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Dynamic reconfiguration

• Means that the software architecture can be 
changed at runtime

– Components at any level 

– Channels and associated event types

– Subscriptions to channels
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Primitives of reconfiguration

• Components
– Create components and factories

– Destroy … 

– Subscribe/Unsubscribe an event handler from a 
channel

• Channels
– Create

– Modify the set of associated event types

– Destroy
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Security

• Mechanism for Principle Of Least Authority

• References to components and channels embed 
revocable capabilities (caretaker pattern)

– Component capabilities

• (un)subscribe, share, reconfigure, trigger events, create 
channel, create factory, etc.

– Channel capabilities

• publish, (un)subscribe, change associated event types
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Resource control

• Computing resources can be reallocated to 
favor hot components

• Worker pools of various sizes can be created 

• Each component is member of one worker pool 
at any one time and it shares the workers in the 
pool with the other member components

• A component can be moved from one worker 
pool to another
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Threaded components
• Long running event handlers that execute 

RPCs need a blocking receive primitive

• A threaded component is a component that 
has an associated thread that executes its 
event handlers (does not use worker pool)
o Event e = receive()

o Event e = receive(EventType…, Channel…)

o Event e = receive(Channel…)

o Event e = receive(EventType, Channel…)

o Event e = receive(EventType, Guard, Channel…)
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Threaded components
• Threaded components look just like normal 

components to the environment

– They publish/subscribe for events

• When a threaded component a executes a 
receive, the associated thread first checks the 
queues qx of a, for an eligible event to return

• If no eligible event is found, it blocks

• Whenever a newly published eligible event is 
enqueued at a, the thread unblocks and 
returns it to the receive caller
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Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook
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Composite component example

• Reliable Broadcast

– Best Effort Broadcast

• Perfect Point-to-point Links
– Network

– Perfect Failure Detector

• Perfect Point-to-point Links
– Network

• Timer

• Static sharing of the PP2P component
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Perfect Point-to-point Links component (PP2P)

Pp2pS(Pp2pD)

NetS(Pp2pNetD(Pp2pD))

PP2P

Pp2pNetD(Pp2pD)

Pp2pD

NetS(end)

NetD(eliver)

Network

{NetS} {NetD}

Pp2pS(end)

Pp2pD(eliver)

{Pp2pD}
{Pp2pS(Pp2pD)}
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Pp2pNetD  NetD



Best Effort Broadcast component (BEB)

BebB(BebD)

Pp2pS(BebPp2pD(BebD))

BEB

BebPp2pD(BebD)

BebD

BebB(broadcast)

BebD(eliver)

PP2P

{Pp2pS} {Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

{BebD}
{BebB(BebD)}
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BebPp2pD  Pp2pD



Perfect Failure Detector component (PFD)

TimerE

Pp2pS(PfdPp2pD)

PfdC

TimerS

Timer

PFD

 PfdPp2pD

{PfdC}

{TimerS}

TimerS(et)

TimerE(xpired)

PfdC(rash)

PP2P

{TimerE}{Pp2pS}{Pp2pD}
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PfdPp2pD  Pp2pD

Pp2pS(end)

Pp2pD(eliver)



Reliable Broadcast component (RB)

RB

RbBebD(RbD)

RbD

BebB(RbBebD(RbD))

{RbD}

{PfdC}

{RbB(RbD)}

PFDBEB

PfdC

 BebB(RbBebD(RbD))

RbB(RbD),

BebB(RbBebD(RbD))

{BebB}{BebD}

RbB(broadcast)

RbD(eliver)
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RbBebD  BebD



Compositionality with many instances

• Consensus Service

– Consensus Port (#)

• Consensus Instance (#)
– Abortable Consensus

» Best Effort Broadcast

• Perfect Point-to-point Links

• Network

– Eventual Leader Detector

» Timer

» Best Effort Broadcast

• Perfect Point-to-point Links

• Network

• Instance sharing of PP2P and BEB
Cosmin Arad, ZIB Berlin, May 22nd 2008 48



Consensus Service component (CS)

BebDC

BebDC

BEB

CS

Pp2pDC

Pp2pDC

{BebB}

{CsPortReq(                )}
Pp2pDC  Pp2pD

BebDC  BebD

UcP(ropose)

UcD(ecide)

PP2P

CsPortReq

CsPortRes

{BebD}{Pp2pS}{Pp2pD}

CsPortReq(uest)

CsPortRes(ponse)
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{Pp2pS}

Consensus Port

{BebB}

…

{UcP}
{UcD}

port membrane

1 CM(CP)

… …

n CM(CP)

{CsPortRes}

{Pp2pS}

Consensus Port

{BebB}

{UcP}
{UcD}

{Pp2pDC} {BebDC}

{Pp2pDC} {BebDC}

new



Consensus Port component (CP)

BebDC

BebDC 

CP

Pp2pDC

Pp2pDC

{BebB}

{UcP}

UcP

UcP

{BebDC}{Pp2pS} {Pp2pDC}

UcP(ropose)

UcD(ecide)
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{Pp2pS}

Consensus Instance

{BebB}

…

id membrane

1 CM(CI)
… …

n CM(CI)

{UcD}

{Pp2pS}

Consensus Instance

{BebB}

{UcP} {UcD}{UcP} {UcD}

UcD

UcD

{Pp2pDC} {BebDC} {Pp2pDC} {BebDC}

new



Consensus Instance component (CI)

AcR

AcP

BebB

Abortable Consensus

CI

BebDC

UcD

{UcD}

{EldT} {AcP}

{UcP}

Eventual Leader

Detector

EldT

AcP

UcP

AcP

{AcR}
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{BebB} {BebDC}{Pp2pS} {Pp2pDC}

AcP(ropose)

AcR(eturn)

UcP(ropose)

UcD(ecide)

EldT(rustLeader)

new



Abortable Consensus component (AC)

BebDC

Pp2pS

AC

Pp2pDC

AcR

BebB

{AcR}

{BebB}

{AcP}

BebB(broadcast)

BebD(eliver)

C(onsensus)

AcP(ropose)

AcR(eturn)

AcP

BebB

{BebDC}{Pp2pS}{Pp2pDC}

Pp2pS(end)

Pp2pD(eliver)

C(onsensus)
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Eventual Leader Detector component (ELD)

TimerE

Pp2pS(EldPp2pD)

Timer

ELD

EldPp2pD

{EldT}

{TimerS}

TimerS(et)

TimerE(xpired)

EldT(rust)

PP2P

{TimerE}{Pp2pS}{Pp2pD}

Pp2pS(end)

Pp2pD(eliver)
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EldPp2pD  Pp2pD



Best Effort Broadcast component (BEB)

BebB(BebD)

Pp2pS(BebPp2pD(BebD))

BEB

BebPp2pD(BebD)

BebD

BebB(broadcast)

BebD(eliver)

PP2P

{Pp2pS} {Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

{BebD}
{BebB(BebD)}
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BebPp2pD  Pp2pD



Perfect Point-to-point Links component (PP2P)

Pp2pS(Pp2pD)

NetS(Pp2pNetD(Pp2pD))

PP2P

Pp2pNetD(Pp2pD)

Pp2pD

NetS(end)

NetD(eliver)

Network

{NetS} {NetD}

Pp2pS(end)

Pp2pD(eliver)

{Pp2pD}
{Pp2pS(Pp2pD)}
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Pp2pNetD  NetD



Observation 1

• We achieved decoupling of functional and non-
functional aspects of consensus

• The Consensus Instance component implements a 
single-instance Paxos consensus algorithm (functional)

• The Consensus Port component deals with creating and 
garbage collecting consensus instances (non-functional)

• The Consensus Service component creates different 
Consensus Ports for client components (non-functional)
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Observation 2

• We used an instance sharing pattern where 
demultiplexing is done in the high level 
components (CS and CP)

• This forces us to pass the channels of the 
shared component in the interface of the 
lower level components (CP, CI, and AC)

• The alternative is to provide channel 
subscription by event attribute and do the 
event demultiplexing in the channel
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Consensus Service component (CS)

CS

{CsPortReq(                )}
UcP(ropose)

UcD(ecide)

CsPortReq

CsPortRes

CsPortReq(uest)

CsPortRes(ponse)
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port membrane

1 CM(CP)

… …

n CM(CP)

{CsPortRes}

Consensus Port … Consensus Port

{UcP} {UcD}{UcP} {UcD}

old



Consensus Port component (CP)

CP

{UcP}

UcP(port)

UcP

UcP(ropose)

UcD(ecide)
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Consensus Instance …

id membrane

1 CM(CI)
… …

n CM(CI)

{UcD}

Consensus Instance

{UcP} {UcD}{UcP} {UcD}

UcD

UcD

(just for GC)

port

old



Consensus Instance component (CI)

AcR

AcP 

BebB

AC

CI

BebDC(id)

UcD

{UcD}

{EldT}{AcP}

{UcP}
BebD(eliver)

BebB(broadcast)

AcP(ropose)

AcR(eturn)

ELDBEB

EldT

AcP

UcP(id)

AcP

{AcR}{BebB}{BebD}

UcP(ropose)

UcD(ecide)
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id

old



Abortable Consensus component (AC)

BebDC(id)

Pp2pS

BEB

AC

Pp2pDC(id)

AcR

BebB

{AcR}

{BebB}

{AcP}

BebB(broadcast)

BebD(eliver)

AcP(ropose)

AcR(eturn)

PP2P

AcP

BebB

{BebD}{Pp2pS}{Pp2pD}

Pp2pS(end)

Pp2pD(eliver)
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id

old



Observation 3

• We showed demultiplexing of events from BEB and 
PP2P in the CS and CP

• We showed demultiplexing of events from BEB and 
PP2P in the channel by subscription by attribute 
(topic)

• A third alternative is demultiplexing events of BEB 
and PP2P directly in BEB and PP2P

– This is done in conjunction with the registration of user 
components to the shared components

– Each component registers its own channel(s) (example CS)
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Java implementation example

• We now show a Java implementation of the 
Reliable Broadcast (RB) component

• RB is a composite component containing a 
BEB and a PFD component

• In this example, the BEB and PFD components 
are not shared and completely encapsulated 
in the RB component

• BEB and PFD are created by RB’s creation 
routine
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Reliable Broadcast component (RB)

RB

RbBebD

RbD

BebB

{RbD}

{PfdC}

{RbB}

BebB(broadcast)

BebD(eliver)

PfdC(rash)

PFDBEB

PfdC

BebB

RbB

BebB

{BebB}{BebD}

RbB(broadcast)

RbD(eliver)

RbBebD(eliver)

RbBebD  BebD
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public class RbBroadcastComponent {

// reference to the ”core” of the component

private Component component;

// parameters and internal channels 

private Channel rbBroadcastChannel, rbDeliverChannel, pfdCrashChannel,

bebBroadcastChannel, bebDeliverChannel;

// state variables

private HashSet<Address> correct;

private HashMap<Address, Set<RbDeliverEvent>> from;

private HashSet<RbDeliverEvent> delivered;

private NeighbourLinks neighbourLinks;

// Java constructor

public RbBroadcastComponent(Component component) {

this.component = component;

this.correct = new HashSet<Address>();

this.from = new HashMap<Address, Set<RbDeliverEvent>>();

this.delivered = new HashSet<RbDeliverEvent>();

}
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@ComponentCreateMethod

public void create(Channel rbBroadcastChannel, Channel rbDeliverChannel)

throws ClassNotFoundException {

this.rbBroadcastChannel = rbBroadcastChannel;

this.rbDeliverChannel = rbDeliverChannel;

pfdCrashChannel = component.createChannel();

bebBroadcastChannel = component.createChannel();

bebDeliverChannel = component.createChannel();

pfdCrashChannel.addEventType(PfdCrashEvent.class);

bebBroadcastChannel.addEventType(BebBroadcastEvent.class);

bebDeliverChannel.addEventType(BebDeliverEvent.class);
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Factory pfdFactory = component.createFactory(

"se.sics.kompics.protocols.pfd.PerfectFailureDetectorComponent");

Factory bebFactory = component.createFactory(

"se.sics.kompics.protocols.beb.BestEffortBroadcastComponent");

Channel faultChannel = component.getFaultChannel();

Component pfdComponent = pfdFactory.createComponent(faultChannel,

pfdCrashChannel);

Component bebComponent = bebFactory.createComponent(faultChannel,

bebBroadcastChannel, bebDeliverChannel);

component.subscribe(this.rbBroadcastChannel,"handleRbBroadcastEvent");

component.subscribe(pfdCrashChannel, "handlePfdCrashEvent");

component.subscribe(bebDeliverChannel, "handleRbBebDeliverEvent");

}
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@ComponentInitializeMethod

public void init(NeighbourLinks neighbourLinks) {

this.neighbourLinks = neighbourLinks;

correct.addAll(this.neighbourLinks.getAllNodes());

}

@EventHandlerMethod

@MayTriggerEventTypes(BebBroadcastEvent.class)

public void handleRbBroadcastEvent(RbBroadcastEvent event) {

RbDeliverEvent rbDeliverEvent = event.getRbDeliverEvent();

RbBebDeliverEvent bebDeliverEvent = new RbBebDeliverEvent(

rbDeliverEvent);

BebBroadcastEvent bebBroadcastEvent = new BebBroadcastEvent(

bebDeliverEvent);

component.triggerEvent(bebBroadcastEvent, bebBroadcastChannel);

}
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@EventHandlerMethod

@MayTriggerEventTypes( { RbDeliverEvent.class, BebBroadcastEvent.class })

public void handleRbBebDeliverEvent(RbBebDeliverEvent event) {

RbDeliverEvent rbDeliverEvent = (RbDeliverEvent) event

.getRbDeliverEvent();

Address sourceNode = event.getSource();

if (!delivered.contains(rbDeliverEvent)) {

delivered.add(rbDeliverEvent);

component.triggerEvent(rbDeliverEvent, rbDeliverChannel);

saveMessage(sourceNode, rbDeliverEvent);

if (!correct.contains(sourceNode)) {

BebBroadcastEvent bebBroadcastEvent = new

BebBroadcastEvent(event);

component.triggerEvent(bebBroadcastEvent,bebBroadcastChannel);

}

}

}
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@EventHandlerMethod

@MayTriggerEventTypes(BebBroadcastEvent.class)

public void handlePfdCrashEvent(PfdCrashEvent event) {

Address crashedNode = event.getCrashedNodeAddress();

correct.remove(crashedNode);

if (from.containsKey(crashedNode)) {

for (RbDeliverEvent rbDeliverEvent : from.get(crashedNode)) {

RbBebDeliverEvent bebDeliverEvent = new

RbBebDeliverEvent(rbDeliverEvent);

BebBroadcastEvent bebBroadcastEvent = new

BebBroadcastEvent(bebDeliverEvent);

component.triggerEvent(bebBroadcastEvent, 

bebBroadcastChannel);

}

from.remove(crashedNode);

}

}
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@EventType

public final class BebBroadcastEvent implements Event {

private Address source;

private BebDeliverEvent bebDeliverEvent;

public BebBroadcastEvent(BebDeliverEvent bebDeliverEvent,

Address source){

this.source = source;

this.bebDeliverEvent = bebDeliverEvent;

}

public BebBroadcastEvent(BebDeliverEvent bebDeliverEvent) {

this(bebDeliverEvent, Address.getLocalAddress());

}

public final Address getSource() {

return source;

}

public final BebDeliverEvent getBebDeliverEvent() {

return bebDeliverEvent;

}

}
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@EventType

public abstract class BebDeliverEvent implements Event, Serializable {

private transient Address source;

public final Address getSource() {

return source;

}

public final void setSource(Address source) {

this.source = source;

}

}
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@EventType

public final class RbBebDeliverEvent extends BebDeliverEvent {

private static final long serialVersionUID = -7947782637977816609L;

RbDeliverEvent rbDeliverEvent;

public RbBebDeliverEvent(RbDeliverEvent rbDeliverEvent) {

super();

this.rbDeliverEvent = rbDeliverEvent;

}

public final RbDeliverEvent getRbDeliverEvent() {

return rbDeliverEvent;

}

}
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@EventType

public class PfdCrashEvent implements Event {

private Address address;

public PfdCrashEvent(Address address) {

this.address = address;

}

public Address getCrashedNodeAddress() {

return address;

}

}
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Demonstration scenario

• We run some protocols from “Introduction to 
Reliable Distributed Programming” by Rachid 
Guerraoui and Luís Rodrigues, 2006 

• We start n processes and some of them can die 
(we use fail-stop protocols)

• We have a topology describing the characteristics 
of the links between the processes
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Demonstration scenario
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Demonstration scenario

• Each process executed a sequence of 
operations
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Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook
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Outlook
• Wrap Kompics into a Fractal interface

• Dynamic reconfiguration: scenarios for real systems

• Deployment: binary dependencies management

• Extensive comparison with existing protocol 
frameworks
– Appia

– SEDA

• Translator from abstract syntax or visual representation  
to specific programming languages
– Java

– C++
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Questions?
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