
ICS
TH

ZIB Berlin, May 22nd 2008

Reactive Component Model
for Distributed Computing

SELFMAN project

Collaborator: Roberto Roverso

Cosmin Arad and Seif Haridi
KTH SICS

Goals

• To make programming distributed systems an
easy and painless job

• To enable the implementation of distributed
systems in a way that reflects their nature

– Concurrent activities

– Reactive behavior

– Complex interaction

Cosmin Arad, ZIB Berlin, May 22nd 2008 2

Context

• Distributed protocols are inherently reactive
– Broadcast

– Gossip

– Consensus

– Distributed shared memory

– Group membership

– Overlay networks

• Distributed protocols should be reusable and
compositional

Cosmin Arad, ZIB Berlin, May 22nd 2008 3

Contribution

• A model for specifying and implementing
distributed protocols as components that are…

– Concurrent

– Compositional

– Event driven

– Dynamically reconfigurable

– Software fault-tolerant

– Multi-core scalable

Cosmin Arad, ZIB Berlin, May 22nd 2008 4

Contribution

• An implementation of Kompics in Java

• A set of reusable component libraries for
distributed applications:

– Overlay networks

– Reliable group communication

– Gossip based systems

Cosmin Arad, ZIB Berlin, May 22nd 2008 5

Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook

Cosmin Arad, ZIB Berlin, May 22nd 2008 6

Model overview

• The Kompics model is a concurrent extension
of any sequential strongly typed programming
language having the notion of types and
subtypes

• We have a first implementation in Java

• We introduce the model entities using object
oriented programming terminology

Cosmin Arad, ZIB Berlin, May 22nd 2008 7

Concepts and artifacts

• Component

• Event

• Channel

• Event Handler

• Factory

• Component Type

• Component Membrane
Cosmin Arad, ZIB Berlin, May 22nd 2008 8

Components…

• … are active objects

• … interact with each other by triggering
asynchronous events

• … react to events by executing event specific
procedures to handle the received events

• … are decoupled (through channels)

• … publish events into channels

• … subscribe to channels

Cosmin Arad, ZIB Berlin, May 22nd 2008 9

Events…

• … are passive immutable objects

• … are typed and event types can form type
hierarchies

• … are triggered by components and published
into channels

10Cosmin Arad, ZIB Berlin, May 22nd 2008

Channels…

• … are interaction links between components

• … carry events from publishers to subscribers

• … are associated with a set of event types

• Components subscribe to a channel for a
certain event type

• Components can only publish into a channel
events of a type that is associated with the
channel

Cosmin Arad, ZIB Berlin, May 22nd 2008 11

An event handler…

• … is a component method that handles events

• … is executed as a reaction to an event

• … takes as argument an event of a certain type

• … can be guarded by a boolean guard

• … can trigger events

Cosmin Arad, ZIB Berlin, May 22nd 2008 12

Component type CT

• Components interact with its environment
through input and output channels

• CT represents the signature of a component

• CT specifies the set of input event types of any
component that implements it

• CT specify the set of output event types that
are triggered by any component that
implements it

Seif Haridi, Grid@Mons, May 9th 2008 1313Cosmin Arad, ZIB Berlin, May 22nd 2008

A Component Membrane…

• … is the collection of channels through which
a component instance a interacts with its
environment

• … maps every pair of (event type, in/out) in a’s
signature (component type) to an actual
channel x

• a is either subscribed to x (in), or a publishes
events into x (out)

Cosmin Arad, ZIB Berlin, May 22nd 2008 14

Example

E1

A B

{E1}

E1

Node

E1

E1

{E1}

Event handler that triggers events of type E1

Component output channel parameter

Event handler that handles events of type E1

Component input channel parameter

Channel carrying events of type E1
15Cosmin Arad, ZIB Berlin, May 22nd 2008

Factories…

• … are artifacts that take a component
specification (class) and create components
(instances)

• … create and initialize component instances

• … allow the creation of multiple component
instances from the same component
specification

• There is one factory for each component spec

Cosmin Arad, ZIB Berlin, May 22nd 2008 16

Composite components…

• … are components

• … encapsulate components and local channels
in addition to state variables and event
handlers

• … interact with their environment through
input and output channels

• … interact with subcomponents through the
local channels

17Cosmin Arad, ZIB Berlin, May 22nd 2008

Best Effort Broadcast (BEB) component

Pp2pD(m)

BebD(m)

PP2P

BEB

BebB(m)

Pp2pS(m)

{Pp2pS}

{Pp2pD}

{BebD}

{BebB}

Pp2pS(end)

Pp2pD(eliver)

BebB(roadcast)

BebD(eliver)

18Cosmin Arad, ZIB Berlin, May 22nd 2008

Component abstract syntax example
component CompName {

declare
state variables

create(channel param1 … paramn) do {…}
init(any param1 … paramm) do { … }
onEvent EventType1 e do {

…
trigger new EventType2(e)
…

}
onEvent EventType3 e do { … }

… /* private methods */
}

19Cosmin Arad, ZIB Berlin, May 22nd 2008

BEB Component example
component BEB {

declare ps /* the process group */
…
create(channel in, channel out) do {

subscribe(in, BebB)
Channel pp2pIn = new Channel({Pp2pS})
Channel pp2pOut = new Channel({Pp2pD})
Factory pp2pFactory = new Factory(PP2P)
Component pp2p = pp2pFactory.create(pp2pIn, pp2pOut)

}
onEvent BebB b do {

for all processes p in ps do
trigger new Pp2pS(b.message)

}
….

}

20Seif Haridi, Grid@Mons, May 9th 2008 20Cosmin Arad, ZIB Berlin, May 22nd 2008

Event type hierarchy
event EventType1 {

declare attributes;
…
/* public selector methods */

}

event EventType2 extends EventType1 {
declare attributes;
…
/* public selector methods */

}

21Cosmin Arad, ZIB Berlin, May 22nd 2008

Sharing
• Subcomponents can be shared by multiple

composite components

• Sharing a component is done by sharing the
channels in the component’s membrane

• To share a component a, a component
membrane is created for a and registered under a
name in a registry of shared components

• A composite component b that wants to use a,
retrieves a’s membrane from the registry and
subscribes to or publishes events into its channels

Cosmin Arad, ZIB Berlin, May 22nd 2008 22

PP2P and FLP2P share the Network component

Pp2pS

NetS

PP2P

Pp2pNetD

Pp2pD

Network

{NetS} {NetD}

{Pp2pD}
{Pp2pS}

Flp2pS

NetS

FLP2P

Flp2pNetD

Flp2pD

Network

{NetS} {NetD}

{Flp2pD}
{Flp2pS}

Flp2pNetD  NetD

Pp2pNetD  NetD

shared channel in shared component membrane

shared component

23Cosmin Arad, ZIB Berlin, May 22nd 2008

Sharing patterns
• Sharing a component a among different types of

components (static sharing)

– User components subscribe to subtypes of the event types
published by a

– Events filtering done by subtyping

• Sharing a component a among different instances of
the same component type (instance sharing)

– Events published by a have an attribute that identifies the
target component

– Events filtering done by demultiplexing on the identifier

Cosmin Arad, ZIB Berlin, May 22nd 2008 24

Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook

Cosmin Arad, ZIB Berlin, May 22nd 2008 25

Publish-subscribe semantics

• A component can publish into a channel only
events that have the same type or a subtype
of one of the channel event types

• A component can subscribe to a channel for
events of the same type or of a subtype of one
of the channel event types

Cosmin Arad, ZIB Berlin, May 22nd 2008 26

Execution semantics
• The system contains n workers that execute

event handlers on behalf of components

• Different component instances can execute
event handlers in parallel

• The event handlers of one component
instance are guaranteed to be executed
sequentially by the execution model

• The execution of a handler h1 of component c1

is not atomic w.r.t to any other handler exec

Cosmin Arad, ZIB Berlin, May 22nd 2008 27

Channel properties

• Channels are FIFO

– each component subscribed to a channel C, executes
events published in C, in the same order in which they
are published

• A channel serializes the concurrent publication of
events into the channel

• Events triggered sequentially by one component
instance will be published in the channel in the
order in which they were triggered

Cosmin Arad, ZIB Berlin, May 22nd 2008 28

Subscription semantics

• Component a subscribes an event handler
h for events of type T to channel x

– A subscription (a, T, h) is registered at x

–A FIFO work queue qx is created at a for x
(if it is not already created by a previous sub)

• Multiple handlers in the same component
can subscribe to the same channel

Cosmin Arad, ZIB Berlin, May 22nd 2008 29

Scheduling: component state

• A component a can be in one of three
states:
– Busy: a worker is currently executing an event

handler of a

– Ready: one or more of its queues qx are not
empty and the component is not busy

– Idle: all its queues qx are empty and it is not
busy

Cosmin Arad, ZIB Berlin, May 22nd 2008 30

Event triggering semantics

• Component a triggers event e of type T in
channel x

• Let S be the subset of all subscriptions (b, T’, h)
to x, where T’ is T or a super-type of T

• For each (b, T’, h) in S

– A work item (e, h) is enqueued at b in qx

– If b is idle then b becomes ready

• Free workers pick ready components (thus
making them busy)

3131Cosmin Arad, ZIB Berlin, May 22nd 2008

Worker picks a ready component a

• It makes a busy

• a has at least one work queue qx that is not
empty

• Dequeue one work item (e, h) from qx

• Execute a.h(e)

• If all a’s work queues are empty make a idle

• Otherwise make a ready

Cosmin Arad, ZIB Berlin, May 22nd 2008 32

Worker loop (Summary)
• Workers wait for components to become ready

• When a component a becomes ready, a worker w
picks it and executes one work item (e, h) enqueued
in some qx at a

• The execution of handler h, may trigger new events ei

of type Ti, published in channels xi

• Components subscribed to xi for type Ti become
ready if not busy

• Upon termination of h, worker w repeats the above
steps

Cosmin Arad, ZIB Berlin, May 22nd 2008 33

Multicore execution
• The number of workers can be proportional to

the number of cores

• The semantics described guarantees
serialization of handler in same component
instance and FIFO execution of events in the
same channel

• Locking is needed on channels and
component queues qx (no component locking)

• Initial results shows good multicore scalability

34Cosmin Arad, ZIB Berlin, May 22nd 2008

Fault isolation

• Every component gets an associated control
channel when it is created

• Any error/exception that is not caught within
an event handler triggers a fault event
published into the control channel

• The control channel is available to the parent
component

• This allow various fault supervision hierarchies

35Cosmin Arad, ZIB Berlin, May 22nd 2008

Dynamic reconfiguration

• Means that the software architecture can be
changed at runtime

– Components at any level

– Channels and associated event types

– Subscriptions to channels

36Cosmin Arad, ZIB Berlin, May 22nd 2008

Primitives of reconfiguration

• Components
– Create components and factories

– Destroy …

– Subscribe/Unsubscribe an event handler from a
channel

• Channels
– Create

– Modify the set of associated event types

– Destroy

Cosmin Arad, ZIB Berlin, May 22nd 2008 37

Security

• Mechanism for Principle Of Least Authority

• References to components and channels embed
revocable capabilities (caretaker pattern)

– Component capabilities

• (un)subscribe, share, reconfigure, trigger events, create
channel, create factory, etc.

– Channel capabilities

• publish, (un)subscribe, change associated event types

Cosmin Arad, ZIB Berlin, May 22nd 2008 38

Resource control

• Computing resources can be reallocated to
favor hot components

• Worker pools of various sizes can be created

• Each component is member of one worker pool
at any one time and it shares the workers in the
pool with the other member components

• A component can be moved from one worker
pool to another

Cosmin Arad, ZIB Berlin, May 22nd 2008 39

Threaded components
• Long running event handlers that execute

RPCs need a blocking receive primitive

• A threaded component is a component that
has an associated thread that executes its
event handlers (does not use worker pool)
o Event e = receive()

o Event e = receive(EventType…, Channel…)

o Event e = receive(Channel…)

o Event e = receive(EventType, Channel…)

o Event e = receive(EventType, Guard, Channel…)

Cosmin Arad, ZIB Berlin, May 22nd 2008 40

Threaded components
• Threaded components look just like normal

components to the environment

– They publish/subscribe for events

• When a threaded component a executes a
receive, the associated thread first checks the
queues qx of a, for an eligible event to return

• If no eligible event is found, it blocks

• Whenever a newly published eligible event is
enqueued at a, the thread unblocks and
returns it to the receive caller

Cosmin Arad, ZIB Berlin, May 22nd 2008 41

Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook

Cosmin Arad, ZIB Berlin, May 22nd 2008 42

Composite component example

• Reliable Broadcast

– Best Effort Broadcast

• Perfect Point-to-point Links
– Network

– Perfect Failure Detector

• Perfect Point-to-point Links
– Network

• Timer

• Static sharing of the PP2P component

Cosmin Arad, ZIB Berlin, May 22nd 2008 43

Perfect Point-to-point Links component (PP2P)

Pp2pS(Pp2pD)

NetS(Pp2pNetD(Pp2pD))

PP2P

Pp2pNetD(Pp2pD)

Pp2pD

NetS(end)

NetD(eliver)

Network

{NetS} {NetD}

Pp2pS(end)

Pp2pD(eliver)

{Pp2pD}
{Pp2pS(Pp2pD)}

44Cosmin Arad, ZIB Berlin, May 22nd 2008

Pp2pNetD  NetD

Best Effort Broadcast component (BEB)

BebB(BebD)

Pp2pS(BebPp2pD(BebD))

BEB

BebPp2pD(BebD)

BebD

BebB(broadcast)

BebD(eliver)

PP2P

{Pp2pS} {Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

{BebD}
{BebB(BebD)}

45Cosmin Arad, ZIB Berlin, May 22nd 2008

BebPp2pD  Pp2pD

Perfect Failure Detector component (PFD)

TimerE

Pp2pS(PfdPp2pD)

PfdC

TimerS

Timer

PFD

 PfdPp2pD

{PfdC}

{TimerS}

TimerS(et)

TimerE(xpired)

PfdC(rash)

PP2P

{TimerE}{Pp2pS}{Pp2pD}

46Cosmin Arad, ZIB Berlin, May 22nd 2008

PfdPp2pD  Pp2pD

Pp2pS(end)

Pp2pD(eliver)

Reliable Broadcast component (RB)

RB

RbBebD(RbD)

RbD

BebB(RbBebD(RbD))

{RbD}

{PfdC}

{RbB(RbD)}

PFDBEB

PfdC

 BebB(RbBebD(RbD))

RbB(RbD),

BebB(RbBebD(RbD))

{BebB}{BebD}

RbB(broadcast)

RbD(eliver)

47Cosmin Arad, ZIB Berlin, May 22nd 2008

RbBebD  BebD

Compositionality with many instances

• Consensus Service

– Consensus Port (#)

• Consensus Instance (#)
– Abortable Consensus

» Best Effort Broadcast

• Perfect Point-to-point Links

• Network

– Eventual Leader Detector

» Timer

» Best Effort Broadcast

• Perfect Point-to-point Links

• Network

• Instance sharing of PP2P and BEB
Cosmin Arad, ZIB Berlin, May 22nd 2008 48

Consensus Service component (CS)

BebDC

BebDC

BEB

CS

Pp2pDC

Pp2pDC

{BebB}

{CsPortReq()}
Pp2pDC  Pp2pD

BebDC  BebD

UcP(ropose)

UcD(ecide)

PP2P

CsPortReq

CsPortRes

{BebD}{Pp2pS}{Pp2pD}

CsPortReq(uest)

CsPortRes(ponse)

49Cosmin Arad, ZIB Berlin, May 22nd 2008

{Pp2pS}

Consensus Port

{BebB}

…

{UcP}
{UcD}

port membrane

1 CM(CP)

… …

n CM(CP)

{CsPortRes}

{Pp2pS}

Consensus Port

{BebB}

{UcP}
{UcD}

{Pp2pDC} {BebDC}

{Pp2pDC} {BebDC}

new

Consensus Port component (CP)

BebDC

BebDC

CP

Pp2pDC

Pp2pDC

{BebB}

{UcP}

UcP

UcP

{BebDC}{Pp2pS} {Pp2pDC}

UcP(ropose)

UcD(ecide)

50Cosmin Arad, ZIB Berlin, May 22nd 2008

{Pp2pS}

Consensus Instance

{BebB}

…

id membrane

1 CM(CI)
… …

n CM(CI)

{UcD}

{Pp2pS}

Consensus Instance

{BebB}

{UcP} {UcD}{UcP} {UcD}

UcD

UcD

{Pp2pDC} {BebDC} {Pp2pDC} {BebDC}

new

Consensus Instance component (CI)

AcR

AcP

BebB

Abortable Consensus

CI

BebDC

UcD

{UcD}

{EldT} {AcP}

{UcP}

Eventual Leader

Detector

EldT

AcP

UcP

AcP

{AcR}

51Cosmin Arad, ZIB Berlin, May 22nd 2008

{BebB} {BebDC}{Pp2pS} {Pp2pDC}

AcP(ropose)

AcR(eturn)

UcP(ropose)

UcD(ecide)

EldT(rustLeader)

new

Abortable Consensus component (AC)

BebDC

Pp2pS

AC

Pp2pDC

AcR

BebB

{AcR}

{BebB}

{AcP}

BebB(broadcast)

BebD(eliver)

C(onsensus)

AcP(ropose)

AcR(eturn)

AcP

BebB

{BebDC}{Pp2pS}{Pp2pDC}

Pp2pS(end)

Pp2pD(eliver)

C(onsensus)

52Cosmin Arad, ZIB Berlin, May 22nd 2008

new

Eventual Leader Detector component (ELD)

TimerE

Pp2pS(EldPp2pD)

Timer

ELD

EldPp2pD

{EldT}

{TimerS}

TimerS(et)

TimerE(xpired)

EldT(rust)

PP2P

{TimerE}{Pp2pS}{Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

53Cosmin Arad, ZIB Berlin, May 22nd 2008

EldPp2pD  Pp2pD

Best Effort Broadcast component (BEB)

BebB(BebD)

Pp2pS(BebPp2pD(BebD))

BEB

BebPp2pD(BebD)

BebD

BebB(broadcast)

BebD(eliver)

PP2P

{Pp2pS} {Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

{BebD}
{BebB(BebD)}

54Cosmin Arad, ZIB Berlin, May 22nd 2008

BebPp2pD  Pp2pD

Perfect Point-to-point Links component (PP2P)

Pp2pS(Pp2pD)

NetS(Pp2pNetD(Pp2pD))

PP2P

Pp2pNetD(Pp2pD)

Pp2pD

NetS(end)

NetD(eliver)

Network

{NetS} {NetD}

Pp2pS(end)

Pp2pD(eliver)

{Pp2pD}
{Pp2pS(Pp2pD)}

55Cosmin Arad, ZIB Berlin, May 22nd 2008

Pp2pNetD  NetD

Observation 1

• We achieved decoupling of functional and non-
functional aspects of consensus

• The Consensus Instance component implements a
single-instance Paxos consensus algorithm (functional)

• The Consensus Port component deals with creating and
garbage collecting consensus instances (non-functional)

• The Consensus Service component creates different
Consensus Ports for client components (non-functional)

Cosmin Arad, ZIB Berlin, May 22nd 2008 56

Observation 2

• We used an instance sharing pattern where
demultiplexing is done in the high level
components (CS and CP)

• This forces us to pass the channels of the
shared component in the interface of the
lower level components (CP, CI, and AC)

• The alternative is to provide channel
subscription by event attribute and do the
event demultiplexing in the channel

Cosmin Arad, ZIB Berlin, May 22nd 2008 57

Consensus Service component (CS)

CS

{CsPortReq()}
UcP(ropose)

UcD(ecide)

CsPortReq

CsPortRes

CsPortReq(uest)

CsPortRes(ponse)

58Cosmin Arad, ZIB Berlin, May 22nd 2008

port membrane

1 CM(CP)

… …

n CM(CP)

{CsPortRes}

Consensus Port … Consensus Port

{UcP} {UcD}{UcP} {UcD}

old

Consensus Port component (CP)

CP

{UcP}

UcP(port)

UcP

UcP(ropose)

UcD(ecide)

59Cosmin Arad, ZIB Berlin, May 22nd 2008

Consensus Instance …

id membrane

1 CM(CI)
… …

n CM(CI)

{UcD}

Consensus Instance

{UcP} {UcD}{UcP} {UcD}

UcD

UcD

(just for GC)

port

old

Consensus Instance component (CI)

AcR

AcP

BebB

AC

CI

BebDC(id)

UcD

{UcD}

{EldT}{AcP}

{UcP}
BebD(eliver)

BebB(broadcast)

AcP(ropose)

AcR(eturn)

ELDBEB

EldT

AcP

UcP(id)

AcP

{AcR}{BebB}{BebD}

UcP(ropose)

UcD(ecide)

60Cosmin Arad, ZIB Berlin, May 22nd 2008

id

old

Abortable Consensus component (AC)

BebDC(id)

Pp2pS

BEB

AC

Pp2pDC(id)

AcR

BebB

{AcR}

{BebB}

{AcP}

BebB(broadcast)

BebD(eliver)

AcP(ropose)

AcR(eturn)

PP2P

AcP

BebB

{BebD}{Pp2pS}{Pp2pD}

Pp2pS(end)

Pp2pD(eliver)

61Cosmin Arad, ZIB Berlin, May 22nd 2008

id

old

Observation 3

• We showed demultiplexing of events from BEB and
PP2P in the CS and CP

• We showed demultiplexing of events from BEB and
PP2P in the channel by subscription by attribute
(topic)

• A third alternative is demultiplexing events of BEB
and PP2P directly in BEB and PP2P

– This is done in conjunction with the registration of user
components to the shared components

– Each component registers its own channel(s) (example CS)

Cosmin Arad, ZIB Berlin, May 22nd 2008 62

Java implementation example

• We now show a Java implementation of the
Reliable Broadcast (RB) component

• RB is a composite component containing a
BEB and a PFD component

• In this example, the BEB and PFD components
are not shared and completely encapsulated
in the RB component

• BEB and PFD are created by RB’s creation
routine

Cosmin Arad, ZIB Berlin, May 22nd 2008 63

Reliable Broadcast component (RB)

RB

RbBebD

RbD

BebB

{RbD}

{PfdC}

{RbB}

BebB(broadcast)

BebD(eliver)

PfdC(rash)

PFDBEB

PfdC

BebB

RbB

BebB

{BebB}{BebD}

RbB(broadcast)

RbD(eliver)

RbBebD(eliver)

RbBebD  BebD

64Cosmin Arad, ZIB Berlin, May 22nd 2008

public class RbBroadcastComponent {

// reference to the ”core” of the component

private Component component;

// parameters and internal channels

private Channel rbBroadcastChannel, rbDeliverChannel, pfdCrashChannel,

bebBroadcastChannel, bebDeliverChannel;

// state variables

private HashSet<Address> correct;

private HashMap<Address, Set<RbDeliverEvent>> from;

private HashSet<RbDeliverEvent> delivered;

private NeighbourLinks neighbourLinks;

// Java constructor

public RbBroadcastComponent(Component component) {

this.component = component;

this.correct = new HashSet<Address>();

this.from = new HashMap<Address, Set<RbDeliverEvent>>();

this.delivered = new HashSet<RbDeliverEvent>();

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 65

RbBroadcastComponent.java 1/6

...

@ComponentCreateMethod

public void create(Channel rbBroadcastChannel, Channel rbDeliverChannel)

throws ClassNotFoundException {

this.rbBroadcastChannel = rbBroadcastChannel;

this.rbDeliverChannel = rbDeliverChannel;

pfdCrashChannel = component.createChannel();

bebBroadcastChannel = component.createChannel();

bebDeliverChannel = component.createChannel();

pfdCrashChannel.addEventType(PfdCrashEvent.class);

bebBroadcastChannel.addEventType(BebBroadcastEvent.class);

bebDeliverChannel.addEventType(BebDeliverEvent.class);

Cosmin Arad, ZIB Berlin, May 22nd 2008 66

RbBroadcastComponent.java 2/6

...

...

Factory pfdFactory = component.createFactory(

"se.sics.kompics.protocols.pfd.PerfectFailureDetectorComponent");

Factory bebFactory = component.createFactory(

"se.sics.kompics.protocols.beb.BestEffortBroadcastComponent");

Channel faultChannel = component.getFaultChannel();

Component pfdComponent = pfdFactory.createComponent(faultChannel,

pfdCrashChannel);

Component bebComponent = bebFactory.createComponent(faultChannel,

bebBroadcastChannel, bebDeliverChannel);

component.subscribe(this.rbBroadcastChannel,"handleRbBroadcastEvent");

component.subscribe(pfdCrashChannel, "handlePfdCrashEvent");

component.subscribe(bebDeliverChannel, "handleRbBebDeliverEvent");

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 67

RbBroadcastComponent.java 3/6

...

...

@ComponentInitializeMethod

public void init(NeighbourLinks neighbourLinks) {

this.neighbourLinks = neighbourLinks;

correct.addAll(this.neighbourLinks.getAllNodes());

}

@EventHandlerMethod

@MayTriggerEventTypes(BebBroadcastEvent.class)

public void handleRbBroadcastEvent(RbBroadcastEvent event) {

RbDeliverEvent rbDeliverEvent = event.getRbDeliverEvent();

RbBebDeliverEvent bebDeliverEvent = new RbBebDeliverEvent(

rbDeliverEvent);

BebBroadcastEvent bebBroadcastEvent = new BebBroadcastEvent(

bebDeliverEvent);

component.triggerEvent(bebBroadcastEvent, bebBroadcastChannel);

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 68

RbBroadcastComponent.java 4/6

...

...

@EventHandlerMethod

@MayTriggerEventTypes({ RbDeliverEvent.class, BebBroadcastEvent.class })

public void handleRbBebDeliverEvent(RbBebDeliverEvent event) {

RbDeliverEvent rbDeliverEvent = (RbDeliverEvent) event

.getRbDeliverEvent();

Address sourceNode = event.getSource();

if (!delivered.contains(rbDeliverEvent)) {

delivered.add(rbDeliverEvent);

component.triggerEvent(rbDeliverEvent, rbDeliverChannel);

saveMessage(sourceNode, rbDeliverEvent);

if (!correct.contains(sourceNode)) {

BebBroadcastEvent bebBroadcastEvent = new

BebBroadcastEvent(event);

component.triggerEvent(bebBroadcastEvent,bebBroadcastChannel);

}

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 69

RbBroadcastComponent.java 5/6

...

...

@EventHandlerMethod

@MayTriggerEventTypes(BebBroadcastEvent.class)

public void handlePfdCrashEvent(PfdCrashEvent event) {

Address crashedNode = event.getCrashedNodeAddress();

correct.remove(crashedNode);

if (from.containsKey(crashedNode)) {

for (RbDeliverEvent rbDeliverEvent : from.get(crashedNode)) {

RbBebDeliverEvent bebDeliverEvent = new

RbBebDeliverEvent(rbDeliverEvent);

BebBroadcastEvent bebBroadcastEvent = new

BebBroadcastEvent(bebDeliverEvent);

component.triggerEvent(bebBroadcastEvent,

bebBroadcastChannel);

}

from.remove(crashedNode);

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 70

RbBroadcastComponent.java 6/6

...

...

@EventType

public final class BebBroadcastEvent implements Event {

private Address source;

private BebDeliverEvent bebDeliverEvent;

public BebBroadcastEvent(BebDeliverEvent bebDeliverEvent,

Address source){

this.source = source;

this.bebDeliverEvent = bebDeliverEvent;

}

public BebBroadcastEvent(BebDeliverEvent bebDeliverEvent) {

this(bebDeliverEvent, Address.getLocalAddress());

}

public final Address getSource() {

return source;

}

public final BebDeliverEvent getBebDeliverEvent() {

return bebDeliverEvent;

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 71

BebBroadcastEvent.java

@EventType

public abstract class BebDeliverEvent implements Event, Serializable {

private transient Address source;

public final Address getSource() {

return source;

}

public final void setSource(Address source) {

this.source = source;

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 72

BebDeliverEvent.java

@EventType

public final class RbBebDeliverEvent extends BebDeliverEvent {

private static final long serialVersionUID = -7947782637977816609L;

RbDeliverEvent rbDeliverEvent;

public RbBebDeliverEvent(RbDeliverEvent rbDeliverEvent) {

super();

this.rbDeliverEvent = rbDeliverEvent;

}

public final RbDeliverEvent getRbDeliverEvent() {

return rbDeliverEvent;

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 73

RbBebDeliverEvent.java

@EventType

public class PfdCrashEvent implements Event {

private Address address;

public PfdCrashEvent(Address address) {

this.address = address;

}

public Address getCrashedNodeAddress() {

return address;

}

}

Cosmin Arad, ZIB Berlin, May 22nd 2008 74

PfdCrashEvent.java

Demonstration scenario

• We run some protocols from “Introduction to
Reliable Distributed Programming” by Rachid
Guerraoui and Luís Rodrigues, 2006

• We start n processes and some of them can die
(we use fail-stop protocols)

• We have a topology describing the characteristics
of the links between the processes

Cosmin Arad, ZIB Berlin, May 22nd 2008 75

Demonstration scenario

Cosmin Arad, ZIB Berlin, May 22nd 2008 76

Network

FLP2P PP2P

RBBEB

ApplicationBoot

ELDUNB

AC

CI

CP

Demonstration scenario

• Each process executed a sequence of
operations

Cosmin Arad, ZIB Berlin, May 22nd 2008 77

Outline

• Model overview

• Concepts semantics

• Examples and Java implementation demo

• Outlook

Cosmin Arad, ZIB Berlin, May 22nd 2008 78

Outlook
• Wrap Kompics into a Fractal interface

• Dynamic reconfiguration: scenarios for real systems

• Deployment: binary dependencies management

• Extensive comparison with existing protocol
frameworks
– Appia

– SEDA

• Translator from abstract syntax or visual representation
to specific programming languages
– Java

– C++

Cosmin Arad, ZIB Berlin, May 22nd 2008 79

Questions?

Cosmin Arad, ZIB Berlin, May 22nd 2008 80

