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1 EXECUTIVE SUMMARY

1 Executive summary

This deliverable reports on the activity of the Task 2.3 of the Selfman project, which
is concerned with the definition of a formal operational semantics for the Selfman
computation model. Because the language is constructed in a layered fashion, on a
kernel language with a well-defined operational semantics, we have adopted Oz as
a baseline for the work on this task.

The deliverable reports initial results in two complementary directions. The
first work concerns the handling of faults, a crucial consideration in a distributed
environment. Specifically, it develops a new asynchronous failure handling model for
Oz, which combines well with the network transparency philosophy of Oz, and that
allows to cleanly separate fault handling from the functional part of an application.
The second work concerns the addition of a concept of locality to the Oz language,
drawing on previous works on distributed process calculi. Specifically, the notion of
locality can be used: to improve security in Oz (by providing a unit of isolation and
the ability to build security wrappers or programmable sandboxes), and to provide
a basis for dynamic reconfiguration and strong mobility (a locality constitutes an
isolated computation space that can be passivated into a first-class value). Both
these works extend the standard Oz formal operational semantics.

The deliverable also discusses future work under the purview of Task 2.3, and
positions the work done with respect to the state of the art. The work reported
in this deliverable has been the subject of two papers at international conferences.
It is fully documented in a technical report and a (forthcoming) PhD thesis. The
appendices to the deliverable contain one of the published papers (on fault handling)
and the technical report (on extending Oz with localities).
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2 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

2 Contractors contributing to the Deliverable

UCL and INRIA have contributed to this deliverable.

UCL (P1) has contributed the definition of a new failure handling model for Oz,
that takes into account distributed node failures. This work has led in particular
to the paper [3], which is included as Appendix A.

INRIA (P3) has contributed the definition of Oz/K and of its formal operational
semantics. This work has led to in particular to the technical report [7], which is
included as Appendix B, and to the paper [8] (to appear).
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3 RESULTS

3 Results

3.1 Introduction

The Selfman project aims to develop software technology for the construction of
self-managing large scale systems. The project approach is predicated on two basic
assumptions [19]:

1. Building large scale distributed systems, a fortiori large scale self-managed
distributed systems, requires a scalable infrastructure. Structured overlays
such as DHTs (see e.g. [5]) can provide such an infrastructure.

2. Building self-managed distributed systems requires a software engineering
substrate to deal with key management issues such as distributed configu-
ration management. A reflective component basis (see e.g. [2]) can provide
such a substrate .

The Workpackage 2 (Service Architecture and Component Model) of the Selfman
project is primarily concerned with the software engineering substrate mentioned
above. This encompasses in particular the definition of an appropriate model for dis-
tributed software system construction (a computation model), and the development
of programming support for this model. Obviously, we expect programming support
for this model to provide a basis for (distributed) component-based programming
and component-based software construction (as it is discussed e.g. in [16, 17]). The
basis for developing the Selfman computation model is the Oz computation model
[20], and the Fractal component model [2]. Oz provides a multiparadigm compu-
tation model, and its Mozart programming environment is one the targets for the
development of Selfman software prototypes. The Fractal component model is a
programming-language-independent reflective component model that embodies di-
rect support for programming with control loops (as discussed in [18]), through its
notion of meta-level component controllers.

We report in this deliverable on initial work that extends the Oz computation
model in two different directions:

1. Failure handling. This is an attempt to extend the Oz computation model
with failure handling capabilities that take into account the asynchronous
nature of fault detection in distributed systems.

2. Oz/K. This is an attempt to extend the Oz computation model with explicit
and programmable localities. Localities can be a unifying concept to deal
with open programming issues, and to extend Oz with Fractal-like component
abstractions.

Apart from the fact that Oz has been advertised as one of the two programming
environments (Java and Oz) that the project targets for its prototype developments,
the use of Oz in our work on the operational semantics is motivated by several facts:

• Oz is built on a kernel computation model with a simple formal operational
semantics, which is close to formal models of computation such as the λ-
calculus or the π-calculus, and which makes it amenable to formal analysis.
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3 RESULTS

• the Oz computation model is dynamically-typed and has a layered design,
which makes it easier to investigate extensions, and their combination with
the different programming paradigms supported by Oz.

Both works proceed from perceived limitations with the current Oz language and
computation model as a basis for open programming. “Open programming” refers
to programming in open distributed environments, characterized by physical and
organizational distribution, heterogeneity, occurrence of failures – both accidental
and malicious –, and dynamicity. Programming in open distributed environments
remains challenging because, as pointed out by the Alice programming language
designers [11], it requires combining several features: (i) modularity, i.e. the ability
to build systems by combining and composing multiple elements; (ii) security, i.e.
the ability to deal with unknown and untrusted system elements, and to enforce
if necessary their isolation from the rest of the system; (iii) distribution, i.e. the
ability to build systems out of multiple elements executing separately on multiple
interconnected machines, which operate at different speed and under different ca-
pacity constraints, and which may fail independently; (iv) concurrency, i.e. the
ability to deal with multiple concurrent events, and non-sequential tasks; and (v)
dynamicity, i.e. the ability to introduce new systems, as well as to remove, update
and modify existing ones, possibly during their execution.

The work on failure handling can be understood as an attempt to remove limita-
tions in the Oz computation model to deal with distributed failures. As Appendix A
discusses, this is a continuation of several works studying the combination of net-
work transparency with the construction of robust systems in presence of partial
failures. The work on Oz/K can be understood as an attempt to remove limitations
in the Oz computation model in the areas of security, distribution, and dynamicity,
by introducing the concept of locality as a first-class language construct (in contrast
to the Oz computation model where localities appear in the distributed operational
semantics, but not as explicit constructs in the computation model).

The rest of this section is organized as follows. Section 3.2 briefly presents the
work on failure handling. Section 3.3 briefly presents the work on Oz/K. Section 3.4
discusses future work. Section 3.6 discusses the results presented in this deliverable
in relation with the state of the art.

3.2 Handling distributed failures

The current Oz language has a network-transparent semantics, meaning the seman-
tics of a remote language entity is the same as if it were purely local, and primitive
operations on that entity return the same results as if the whole computation was in
the same address space. The fault handling model detailed in Appendix A extends
the Oz computation model with a fault model and fault handling primitives that
are compatible with network transparency, and allow fault handling to take place
asynchronously (in contrast with standard exception handling in Oz).

The Oz execution model, defined by its formal operational semantics, consists
of dataflow threads that operate on a shared store. Threads contain statement se-
quences, and communicate through shared references in the store and asynchronous
communication channels called ports. The distributed operational semantics of Oz
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3 RESULTS

provides a formal model of the execution environment for Oz computations as a
network of sites, and assigns a site to each thread and each store element (variable
bindings, cell bindings, etc). The fault model presented in Appendix A extends
the distributed semantics of Oz with a model of site and network failures: site are
fail-stop, and (bi-directional) connections between sites are fail-stop with recovery.
This yields a fault model where sites can be temporarily suspected of failures. The
failure handling model can be summarized by the following principles:

1. Each site assigns a local fault state to each entity, which reflects the site’s
knowledge about the entity.

2. There is no synchronous failure handler. A thread attempting to use a failed
entity blocks until the failure possibly goes away. In particular, no exception
is raised because of the failure.

3. Each site provides a fault stream for each entity, which reifies the history of
fault states of that entity. Asynchronous failure handlers are programmed
with this stream.

4. Some fault states can be enforced by the user. In particular, a program may
provoke a global failure for an entity.

This failure handling model has a number of advantages. First, it combines
nicely with the network transparency philosophy of Oz, where the semantics of a
non-distributed program is the same as that of a distributed one where site and
network failures do not occur. Second, it allows mostly to separate fault handling
(located in failure handlers) from the functional part of an application. This in
turn simplifies the evolution of applications: if no extra entity is distributed, failure
handlers do not need to be modified. Third, the fault handling model is essentially a
reactive one, with failures modeled as events (in a fault stream) and failure handling
is programmed as reactions to these events. This simplifies the reasoning about
failures and their consequences.

The Oz computation model and its distributed semantics have further been
extended with protocol annotations, which allow programmers to choose the dis-
tribution strategy for each language entity in their programs. The resulting Oz
computation model and operational semantics, including the failure handling model
and protocol annotations, will be fully documented in the forthcoming thesis:

Raphaël Collet. The Limits of Network Transparency in a Distributed
Programming Language, Ph. D. thesis, Dept. of Computing Science and
Engineering, Université Catholique de Louvain. Expected completion
Nov. 2007.

3.3 A locality-based computation model: Oz/K

As stated in the introduction, this work aims at dealing with limitations of the
Oz computation model, primarily in three areas: security, and more precisely a
certain lack of isolation capabilities to deal with potentially malicious components;
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dynamicity, and more precisely a certain lack in dynamic reconfiguration capabil-
ities; distribution, and more precisely a perceived lack of programmability for the
distribution semantics. The intent of the work reported in Appendix B is to deal
uniformly with these limitations by extending the Oz computation model with a
first-class notion of locality, called kell. Much like a thread is a unit of concurrency
in the Oz computation model, a kell can be understood as a unit of isolation and
reconfiguration in Oz/K. The Oz/K computation model can be summarized by the
following principles:

1. A notion of location, or primitive form of component, called a kell, is added
to the Oz computation model. A kell has a name, and encapsulates threads
and a private store shared by all the kell threads, as well as other kells. The
set of kells is organized in a tree.

2. Communication between kells is restricted to the sending and receiving of
strict values on gates. Gates are similar to π-calculus channels, and support
a rendez-vous semantics. Strict values are values that do not contain any
unbound variable (to ensure isolation between kells).

3. By default, communication on gates is only possible between a kell and one of
its subkell. It is possible for a kell to open gates for its subkells to allow a direct
communication between subkells or between a subkell and the environment of
its parent kell.

4. A thread in a kell can pack (or passivate) a subkell, i.e. freeze its execution
and marshall its store, thread execution stacks and its own subkells in a value,
called a packed value.

5. A packed value can be unpacked, which unmarshalls the store, thread stacks
and subkells in the packed value. Prior to unpacking, it is possible to rename
gate names and procedure names in a packed value, using a mark operation,
to dynamically link the contents of a packed value to its local environment.

The combination of passivation (packing) and localities (kells) in Oz/K allows
to address open programming issues with only a few constructs. For instance, as
illustrated by examples in Appendix B:

• Packing can be seen as a generalization of Oz pickling, allowing to program
dynamically linkable software modules and stateful mobile agents.

• Kells can be used to program sandboxes, that control communications between
untrusted components and a local environment.

• Basic forms of reconfiguration can be programmed using kell packing and
unpacking, e.g. to remove a faulty component by a new one.

That kells can be understood as primitive forms of component is illustrated in
Appendix B by the fact that one can build an interpretation of the Fractal compo-
nent model, with its different forms of component controllers (or meta-objects).

Even though Oz/K builds on the Oz computation model, Oz/K takes a dif-
ferent approach to distribution. the approach in Oz and its Mozart environment,
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is to provide a distribution semantic for Oz, where the execution environment is
modeled as a network of sites, each thread and store element is assigned a site,
and where the semantics of the Oz constructs is defined so that, in absence of site
or network failure, it is insensitive to the presence of sites (network transparency).
This network transparency is not built in the semantics of Oz/K. Instead, Oz/K
localities (kells) can be used to model sites, and Oz/K programs can model the
behavior of a distributed infrastructure (including supporting network behavior).
Note that the constructs for distributed fault handling presented in the previous
section (including the protocol annotations which will be documented in R. Collet’s
PhD thesis) constitute a form of reflection of the distributed Oz infrastructure, ex-
posing site and network faults (and different distribution strategies). Oz/K allows
a more complete reflection of a supporting distribution infrastructure as interacting
localities. In particular, one can think of reifying in Oz/K the site and network
fault model presented in the previous section using packing to model silent failures.

3.4 Future work

The work conducted so far, concerning a distributed fault model and distribution
strategies on the one hand, and extending Oz with localities on the other hand,
needs to be integrated. Both results point at the benefits of reifying (part of) the
Oz distributed infrastructure. An intriguing possibility would be to combine the two
works so that programmers can switch from the high level reification provided by the
distributed fault model reported in Section 3.2, to a more detailed reification using
localities introduced in Section 3.3, when required (e.g. to implement a new low-level
protocol or failure detector using Oz). Realizing this combination would probably
require allowing communication between localities by means of logical variables, and
as a consequence devising new ways of constraining communications, generalizing
the open and close primitives in Oz/K. This in turn could bring the notion of
locality closer to the notion of computation space, which has been introduced in Oz
to encapsulate constraint-based computations [12].

Another direction worth investigating is to what extent one can obtain a “simple
and natural” form of distributed component-based programming on the basis of the
above combination. The interpretation of the Fractal component model in Oz/K,
which is reported in Appendix B, constitutes only a first indication, made a bit
unwieldy in part because of the restrictions on communication between localities
which Oz/K enforces. Also, as discussed in Section 6 of Appendix B, it would
be interesting to obtain more uniformity on the encoding of components, from Oz
modules and functors, to Oz port objects, and to full-fledged localities.

Section 6 of Appendix B contains additional indications for further research. We
single out two of them here: introducing a form of reactive programming in Oz, and
increased support for dynamic reconfiguration. By reactive programming, we un-
derstand a set of linguistic capabilities that revolve around the definition of timers,
watchdogs and interrupts, that can be used to deal with a (possibly multiscale)
formal notion of time in Oz programs, as well as to support a form of deterministic
stateful concurrent programming. Introducing reactive programming in our com-
putation model1 would allow a fuller reification of fault detection capabilities of the

1Note that Mozart environment provides a module that allows access to time and the definition
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supporting infrastructure, and provide a set of formal constructs for building timed
programs. Increased support for dynamic reconfiguration is required for our com-
putation model, for the current capabilities in Oz/K (higher-order programming,
thanks to the Oz substrate, and passivation) fall short of providing all the required
capabilities to support un-planned evolution and safe dynamic update of Oz/K pro-
grams. For instance, in the general case, replacing a faulty stateful component by
a new one, would require access to its state and to its behavior invariants [1]. In
Oz/K, this would mean e.g. some way of introspecting packed values, which capture
the entire state of passivated localities.

3.5 Relations with other tasks in Selfman

The results reported in this deliverable contribute directly to the definition of a
component-based computation model for open environments, which is directly rele-
vant for Task 2.1 of WP2 dealing with the development of the Selfman computation
model. As mentioned above, one of the objectives of the Oz/K work is to provide
direct programming support for (an extension of) the Fractal reflective component
model, which has been considered as one of the starting points for the work in
Task 2.1 and Task 2.2 of WP2. In particular, this work can be exploited in two
ways by Task 2.1 and Task 2.2: directly (at least through the development of an
appropriate Mozart library, in absence of a full-fledged implementation of Oz/K),
when working with the Oz/Mozart environment; or indirectly, by leveraging some
of the constructs reported in the deliverable into an extension of the Fractal Archi-
tecture Description Language (ADL), when working in a Java environment. Apart
from this, their significance for the Selfman project at large can be understood as
follows. The introduction of localities and asynchronous distributed fault handling
can provide a small and uniform set of capabilities for dealing with strong mobil-
ity, distributed deployment and on-line reconfiguration, which are basic effectors
required for distributed systems management and autonomic behavior (adopting a
control view of autonomic systems [4, 18, 21]). This will be exploited in Task 2.2 of
WP2 dealing with the development of an architectural framework for self-managing
systems. Supporting infrastructure reflection, as advocated in the Oz/K approach,
allows to perform infrastructure upgrades and reconfigurations, bringing adaptabil-
ity and programmability to the Selfman infrastructure. In particular, the different
constructs presented in this deliverable should provide a good basis for formalizing
the event-based component model defined in Task 2.2 in WP2 for the re-engineering
of the DKS middleware.

3.6 Relation to the state of the art

The appendices contain an analysis of the state of the art in their areas. The
work reported in this deliverable is most clearly related to the study of linguistic
abstractions for open programming. As explained above, the difficulty in the task
lies in dealing with a combination of different but inter-related issues, including
modularity, security, distribution, concurrency, and dynamicity. As mentioned in

of timers. However, the notion of time thus supported has no formal semantics, and is not sufficient
to support deterministic reactive programming.
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Appendix B, the work carried out in this Task is related to several areas: program-
ming languages, component-based programming models and technologies, architec-
ture description languages, distributed process calculi. The basis for the work in
this task, the Oz programming language and its Mozart environment, correspond
to a state of the art environment for open programming. The extensions presented
in this report build on the Oz computation model to improve it with respect to
distributed fault handling, security, strong mobility, dynamic reconfiguration, and
distribution infrastructure programmability. If one were to list a few works that
characterize the current state of the art with respect to language support for open
programming with a formal semantics, one can probably single out Acute [13, 14, 15]
and Alice [11, 9, 10, 6]. Acute and Alice are probably, with Oz, the most compre-
hensive attempts at devising an open programming language, with a well-defined
semantics. One can note that our works on fault handling and localities provide
a formal operational semantics for areas that are still imperfectly handled in both
Acute and Alice (e.g. fault handling, component managers, sandboxing and security
wrappers, thread pickling and strong mobility, dynamic reconfiguration).
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4 PAPERS AND PUBLICATIONS

4 Papers and publications

Papers and publications relevant for this deliverable include the following:

1. R. Collet and P. Van Roy. Failure Handling in a Network-Transparent Dis-
tributed Programming Language. In Advanced Topics in Exception Hand ling
Techniques, volume 4119 of Lecture Notes in Computer Science. Springer,
2006.

2. R. Collet. The Limits of Network Transparency in a Distributed Program-
ming Language, Ph. D. thesis, Dept. of Computing Science and Engineering,
Université Catholique de Louvain (Expected completion Nov. 2007).

3. M. Lienhardt, A. Schmitt, and J.B. Stefani. Oz/K: A Kernel Language for
Component-Based Open Programming. Technical Report RR-6202, Institut
National de Recherche en Informatique et Automatique (INRIA), France,
2007.

4. M. Lienhardt, A. Schmitt, and J.B. Stefani. Oz/K: A Kernel Language for
Component-Based Open Programming. In 6th ACM International Confer-
ence on Generative Programming and Component Engineering (GPCE). ACM
Press, 2007 (to appear).
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Failure Handling in a Network-Transparent
Distributed Programming Language

Raphaël Collet and Peter Van Roy
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Abstract. This paper shows that asynchronous fault detection is a prac-
tical way to reflect partial failure in a network-transparent distributed
programming language. In the network-transparency approach, a pro-
gram can be distributed over many sites without changing its source
code. The semantics of the program’s execution does not depend on how
the program is distributed. We have experimented with various mecha-
nisms for detecting and handling faults from within the language Oz. We
present a new programming model that is based on asynchronous fault
detection, is more consistent with the network-transparent nature of Oz,
and improves the modularity of failure handling at the same time.

1 Introduction

A network-transparent programming language tries as much as possible to make
distributed execution look like centralized execution. This illusion cannot be
complete, because distributed execution introduces new elements that do not
exist in centralized execution, namely latency and limited bandwidth between
sites, partial failure, resources localized on sites, and security issues due to mul-
tiple users and security domains. In our view, these new elements should not be
considered as making network transparency an undesirable or unrealistic goal.
On the contrary, we consider that network transparency can be a realistic ap-
proximation that greatly simplifies distributed programming, and that it should
be part of the design of a distributed programming language. We find that a
network-transparent implementation can be practical if it starts from an appro-
priate base language. The execution model of the base language is crucial, e.g.,
Oz is an appropriate choice [1] but Java is not [2].

This paper focuses on one part of network transparency, namely failure han-
dling. We propose a solution to the issue of reflecting partial failures in the lan-
guage that provides a way to build fault-tolerance abstractions in the language,
while maintaining transparency and separation of concerns.

1.1 Context of the Paper

This work is done in the context of the Distributed Oz project, which is a long-
term research project whose aim is to simplify distributed programming. This

C. Dony et al. (Eds.):Exception Handling, LNCS 4119, pp. 121–140, 2006.
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122 R. Collet and P. Van Roy

project started in 1995 with the goal of making a distributed implementation of
the Oz language that is both network transparent and network aware [1,3]. That
is, our main goal is to separate the distribution aspect from the functionality of
the program. This was implemented in the Mozart Programming System, which
was first released in 1999 [4].

In this system, an application is composed of several sites (i.e., system pro-
cesses) that virtually share language entities. All language entities are imple-
mented with distributed protocols that respect the language semantics in the
case of no site failures. The difference between the protocols is in their network
behavior. For example, objects were implemented with both a stationary pro-
tocol and a mobile (cached state) protocol. Single-assignment entities (dataflow
variables) were implemented with a distributed binding protocol (that in its full
generality is an implementation of distributed unification). These protocols were
designed with a well-defined fault behavior, in the case of site failures, and the
fault behavior was reflected in the language through a fault module.

The site and network faults are reflected as data failures, depending on how
the faults affect the proper functioning of the data. For instance, a stationary
object fails when the site holding its state crashes. The original fault module
provided two ways to reflect failures in the language: a synchronous detection
and an asynchronous detection. The present paper proposes a new model for
reflecting partial failure based on our experience with this design.

1.2 Synchronous and Asynchronous Failure Handling

We make a clear distinction between two basic ways of handling entity failures,
namely synchronous and asynchronous handlers. As we shall see, asynchronous
failure handling is preferable to synchronous failure handling. A synchronous
failure handler is executed in place of a statement that attempts to perform an
operation on a failed entity. In other words, the failure handling of an entity is
synchronized with the use of that entity in the program. Raising an exception
is one possibility: the failure handler simply raises an exception. In contrast, an
asynchronous failure handler is triggered by a change in the fault state of the
entity. The handler is executed in its own thread. One could call it a “failure
listener”. It is up to the programmer to synchronize with the rest of the program,
if that is required.

The following rules give small step semantics for both kinds of handlers. The
symbol σ represents the store, i.e., the memory of the program. The system
reflects the instantaneous fault state of an entity in the store through a system-
defined function fstate(x), which gives the fault state of x. Each execution rule
shows on its left side a statement and the store before execution, and on the
right side the result of one execution step. Rule (sync) states that a statement
S can be replaced by a handler H if the fault state of entity x is not ok , i.e., if x
has failed. Rule (async) spawns a new thread running handler H whenever the
fault state of x changes. Note that there may be more than one handler on x;
we assume all handlers are run when the fault state changes.
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S H
σ σ

if
statement S uses entity x
and σ |= fstate(x) �= ok (sync)

H
σ ∧ fstate(x)=fs σ ∧ fstate(x)=fs ′ if fs → fs ′ is valid (async)

Synchronous failure handlers are natural in single-threaded programs because
they follow the structure of the program. Exceptions are handy in this case
because the failures can be handled at the right level of abstraction. But the
failure modes can become very complex in a highly concurrent application. Such
applications are common in Oz and they are becoming more common in other
languages as well. Because of the various kinds of entities and distribution pro-
tocols, there are many more interaction schemes than the usual client-server
scheme. Handlers for the same entity may exist in many threads at the same
time, and those threads must be coordinated to recover from the failure.

All this conspires to make fault tolerance complicated to program if based
on synchronous failure handling. This mechanism was in fact never used by Oz
programmers developing robust distributed applications [5]. Instead, program-
mers relied on the asynchronous handler mechanism to implement fault-tolerant
abstractions. One such abstraction is the “GlobalStore”, a fault-tolerant trans-
actional replicated object store designed and implemented by Iliès Alouini and
Mostafa Al-Metwally [6].

1.3 Structure of the Paper

The present paper introduces a model based on asynchronous failure handling
and shows how programming fault tolerance is simplified with this model. Sec-
tion 2 explains the distributed programming model of Oz. Section 3 presents the
design of a new fault module that takes our experience building fault-tolerance
abstractions into account. Section 4 gives a detailed example of a group commu-
nication abstraction that shows minimal interaction between the failure handling
and the abstraction’s main functionality. Section 5 describes the implementation
of the fault module. Finally, Sect. 6 explains the lessons we learned and Sect. 7
compares with related work.

2 The Programming Model of Oz

This section gives an overview of Oz as a programming language and its extension
to distributed programming. We discuss an important property of the latter
extension, namely the network transparency, which is convenient for separating
distribution concerns from functional concerns of a program [3].

Oz is a high-level general-purpose programming language that supports decla-
rative programming, object-oriented programming, and fine-grained concurrency
as part of a coherent whole. It is dynamically typed and supports multiparadigm
programming in a natural way. The Mozart Programming System implements
the language and provides the support for its distributed implementation [4].
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local X Y in
thread X={Pow 2 100} end % computes 2ˆ100
thread Y={Pow 5 10} end % computes 5ˆ10
{Show X+Y} % blocks until X and Y are known

end

Fig. 1. An example of dataflow synchronization

To understand Oz and its distribution model, it is important to keep in mind
that entities in Oz are classified into three kinds: stateless (including numbers,
records, and procedures), stateful (cells and ports, see below), and single assign-
ment (dataflow logic variables, see below).

2.1 Dataflow Concurrency

We briefly give the ideas underlying the Oz execution model. Oz can be de-
fined by a process calculus based on concurrent constraints [7,8]. It provides
lightweight threads and dataflow logic variables [9]. A logic variable is a place-
holder for a value. Upon creation, the variable’s value is unknown. The variable
can be assigned at most once to a value, thanks to a unification mechanism.
Note that unification is monotonic and there is no backtracking. A unification
that fails simply raises an exception (see below).

A thread is created by an explicit statement thread S end, where S is the
statement to be executed by the new thread. Threads communicate with each
other by sharing logic variables, stateless entities (values), and stateful values
(such as objects). A thread that attempts to use a variable’s value automatically
blocks if that variable is not bound yet. Once the variable is bound to a value, all
threads blocking on that variable become runnable again. This synchronization
mechanism is called dataflow. An example is shown in Fig. 1. We note that
dataflow in Oz is monotonic (at most one token can appear on an input), whereas
classic dataflow is nonmonotonic (new tokens can appear on an input).

2.2 Stateful Entities

Oz comes with a set of stateful entities that have a well-defined behavior in the
presence of concurrency. The most primitive of them is the cell, which is a simple
mutable pointer with an atomic value exchange operation. The first part of Fig. 2
shows the main operations on a cell. The exchange operation is provided as the
multifix operator x=y:=z. In the example, the variable J is put in C, and the
statement resumes by unifying I with the former contents of C. The new value of
C is then determined. The last two lines of the example implement a thread-safe
atomic increment of a counter.

Another important stateful entity is the port. The port defines a simple and
efficient message-passing interface. The second part of Fig. 2 gives the typical use
of a port. The stream S is a potentially infinite list that is built incrementally,
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local C I J in
C={NewCell 42} % create a new cell C with contents 42
{Show @C} % print the contents of C (42)
C:=7 % assign 7 to C
I=C:=J % assign J to C, and unify I with 7
J=I+1 % bind J to I+1=8

end

local S P in
P={NewPort S} % create a port with stream S
thread % print every element appearing on S

for X in S do {Show X} end
end
{Send P foo} % send foo on P, S becomes foo|_
{Send P bar} % send bar on P, S becomes foo|bar|_

end

Fig. 2. Examples showing the cell and port entities

and whose elements are the messages sent to the port. In order to receive the
messages, one simply has to read the list S. A list is either the empty list nil, or
a pair x|t, where x is the head element, and the tail t is also a list. The dataflow
synchronization automatically wakes up the threads reading the stream when
new messages arrive.

2.3 Exceptions and Failed Values

The language provides a classical, thread-based exception mechanism. The block
construct try. . . catch. . . end works as in most languages. When an exception is
raised, all following statements are skipped until the closest catch delimiter. The
exception is then handled by the code that follows the matching catch. Threads
have no default handler, so uncaught exceptions are programming errors, which
make the whole program fail.

An example is shown in Fig. 3. The keyword fun defines a new function.
Notice that the exception value is the record divisionByZero(Y), and that the
catch construct supports pattern matching.

Threads are independent of each other, and an exception can only be caught
within the thread where it was raised. In order to propagate exceptions from
thread to thread, we extend the basic model with failed values. A failed value is
a special value that encapsulates an exception. A thread that attempts to use
that value automatically raises the exception.

This model fits well with functional style programming. Suppose that a thread
T computes some value, and binds a variable X to that result. That variable may
be shared by other threads that are interested in the result. If the computation
in T raises an exception E, the latter is caught, and X is bound to a failed value



126 R. Collet and P. Van Roy

fun {Divide X Y}
if Y==0
then raise divisionByZero(Y) end % throw exception
else X div Y % return result
end

end

try
{Show {Divide 42 0}}

catch divisionByZero(Y) then % match exception
{ShowError "error: division by zero"}

end

Fig. 3. An example of exception handling

fun {ConcurrentDivide X Y}
thread % return either the result, or a failed value

try {Divide X Y} catch E then {FailedValue E} end
end

end

try
I={ConcurrentDivide 42 J} % (1)
J={ConcurrentDivide 7 13} % (2)

in
{Show I+1} % blocks on I, which will raise an exception

catch E then
{ShowError E}

end

Fig. 4. An example of exception passing between threads

containing E. Other threads trying to use X automatically raise the exception.
An example is shown in Fig. 4. The statement (1) spawns a thread that blocks
until J is known. Statement (2) spawns a thread that computes J, which is
determined to be zero. Once this is known, I is bound to a failed value. The
expression I+1 then raises the exception contained in I, which is caught in the
main thread.

Failed values are strongly motivated by lazy computations in Oz. We model a
lazy computation as a thread that waits until a result variable becomes needed.
Another thread that blocks on the variable automatically makes it needed, which
wakes up the lazy thread. A failed value allows to propagate the exception with-
out forcing the user to add extra tests on the result.
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2.4 Distribution Model

The distribution model of Oz allows several sites to share language entities.
A site is simply a system process, and sites can be spread among a network
of computers. The model gives all sites the illusion of a shared memory, with
reference integrity. Well-chosen protocols implement the semantics of entity op-
erations [10,11,1]. The power of the model is that it clearly distinguishes be-
tween the protocols for stateless, stateful, and single-assignment entities. The
distribution strategies and implementation are chosen to be appropriate for each
category.

Stateless entities, e.g., atomic values (numbers, literals), records, and pro-
cedures, are copied between sites that share them. Entities whose equality is
referential (e.g., code) are given a globally unique identity, which ensures their
referential integrity. Entities with structural equality (like integers and records)
can be copied at will.

Stateful entities are given a global identity and use specific protocols to en-
sure the consistency of their state. For instance, ports use a stationary state.
A stationary state requires each read/write operation to send a message to the
state’s home site. On the other hand, objects can use a mobile state [11]. The
migratory protocol ensures that the state migrates where the operations are at-
tempted. Once the state arrives on a site, a batch of operations can be performed
locally without extra overhead. The state behaves like a cache. Protocols for a
replicated state are also provided.

Single-assignment entities, i.e., logic variables, are implemented by a dis-
tributed unification algorithm [10]. Among the sites sharing a given variable,
one of them is responsible for determining the final binding of the variable.
Other sites that want to bind it send a message to that site, which propa-
gates the binding to the other sites. The algorithm ensures the unicity of the
binding, and the absence of cycles (when several variables are bound to each
other).

In general, distributed entity references are acquired by transitivity. A boot-
strapping mechanism allows a site to create a ticket, which is a public reference
to an entity. The ticket is a character string that has the syntax of a URL, and
can be transmitted by any other means (web page, email). The receiver program
uses that ticket to retrieve the entity, and share it with its provider.

2.5 Network Transparency and Network Awareness

The distribution model has two important aspects: it is both transparent and
aware with respect to the network. While these may look contradictory, they
are in fact complementary. Let us give a definition for each one.

– Network Transparency. This property states that the semantics of a dis-
tributed entity is the same as if it were purely local. Primitive operations on
that entity return the same results as if the whole computation was in the
same address space. In other words, a programmer may reason about the
functionality of a program without taking distribution into account.
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– Network Awareness. This aspect gives the programmer some control over
the non-functional behavior of the entity. For instance, different strategies for
distributing a stateful entity will have different performances and robustness,
depending on how they are used by the application.

A programmer cannot write a program without ever taking distribution into
account. He or she should decide at some point where the various pieces of
the code will be run, and which entities will be distributed among sites. But
the network transparency will favor a separation of concerns, where the ap-
plication’s functionality is as independent as possible from its non-functional
properties.

3 The Fault Model

This section proposes a language-level fault model that is compatible with net-
work transparency. The model defines how site and network failures are reflected
in the language. Because a failure may affect the proper functioning of a dis-
tributed entity, failures are reflected at the level of entities. Here are the prin-
ciples defining our model, each being described in the corresponding subsection
below.

1. Each site assigns a local fault state to each entity, which reflects the site’s
knowledge about the entity.

2. There is no synchronous failure handler. A thread attempting to use a failed
entity blocks until the failure possibly goes away. In particular, no exception
is raised because of the failure.

3. Each site provides a fault stream for each entity, which reifies the history of
fault states of that entity. Asynchronous failure handlers are programmed
with this stream.

4. Some fault states can be enforced by the user. In particular, a program may
provoke a global failure for an entity.

This fault model is an evolution of the first fault model of Oz, and integrates
parts of another proposal [5]. A comparison between the latter and this proposal
is given in Sect. 6.

3.1 Fault States

First, each site defines a current fault state for each entity, which reflects the
local knowledge of the system about the entity’s global state. This implies
that a given entity may have different fault states on different sites. We de-
fine four different fault states: ok, tempFail, localFail, and permFail. Their
semantics are given below, and the arrows on the left show the valid state
transitions.
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ok The entity behaves normally.
↓↑

tempFail

The entity is currently unavailable locally. This is typically trig-
gered by a communication timeout. It can be temporary (hence
the name), or might hide a permanent failure. Basically the ac-
tual status of the entity is unknown.

↓

localFail

The entity is permanently unavailable locally. This state reflects
the fact that the site considers the entity to be failed, whatever
its actual global status is. This state can always be enforced by
the program.

↓

permFail

The entity is permanently failed on a global scale. This final state
comes with a strict guarantee: the entity will never recover. Usu-
ally this kind of diagnosis can only be performed on a LAN. We
have extended the use of permFail by allowing an application
to explicitly cause an entity to fail permanently. This allows an
application to use permFail as a way to communicate between
different parts of itself.

The absence of some state transitions is intensional. An entity going from
ok to permFail will have to step through states tempFail and localFail

before entering permFail. This simplifies the monitoring of the fault state of an
entity, since observing the state localFail means that the state has reached
localFail at least. This will become clear with the fault stream below.

Our experience shows that this simple model is in fact sufficient in practice.
One can program abstractions in the language to improve the failure detectors
by using local observations in a global consensus algorithm, for instance.

As the reader may guess, fault states are related to how the distribution of an
entity is implemented. The more sophisticated the distribution’s implementation,
the more complicated the fault model. In this paper, we favor a simple fault
model, therefore keeping the implementation simple. The programmer should
be able to reason easily about the properties of the distribution. Complex fault-
tolerant abstractions should be built at the higher user level, not at the low
level.

The original fault model of Mozart was much more complex. It tried to extract
the maximum information that could be deduced efficiently about failed entities
[12]. Our experience with the original model showed that this extra information
was in fact never used. We conclude that a simple model (such as defined by the
present paper) is sufficient in practice.

3.2 No Synchronous Failure Handler

When the fault state of a given entity is not ok, operations on that entity have
few chances to succeed. Raising an exception in that case might look reasonable,
but our experience suggested that it is not. The main reason is that it breaks
the transparency: such an exception would never occur if the application was
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not distributed. This is even worse for asynchronous operations, like sending a
message on a port. Such operations should succeed immediately. With excep-
tions, the programmer cannot write a program without taking distribution into
account from the start.

Another reason that exceptions are inadequate is because the exception mech-
anism assumes that you can confine the error. A partial failure in a distributed
system can hardly be kept confined. Handling a distributed failure often requires
some global action in the program. Moreover, because of the highly concurrent
nature of Oz, the failure may affect many threads on a single site. Having many
failure handlers for a single entity on a given site introduces too much complexity
in the program.

In order to keep the network transparency, an operation on a failed entity
simply blocks until the entity’s fault state becomes ok again. The operation
naturally resumes if the failure proves to be temporary. It will suspend forever
if the failure is permanent (localFail or permFail).

3.3 Fault Stream

We propose a simple mechanism to monitor an entity’s fault state and take
action upon a state change. On each site, each entity is associated with a fault
stream1, which reflects the history of the fault states of the entity. The system
maintains the current fault stream, which is a list fs |s, where fs is the current
fault state, and s is an unbound variable. The semantic rule

σ ∧ fstream(x)=fs |s σ ∧ s=fs ′|s′ ∧ fstream(x)=fs ′|s′ if fs → fs ′ is valid (1)

reflects how the system updates the fault state to fs ′. The dataflow synchroniza-
tion mechanism wakes up every thread blocked on s, which is bound to fs ′|s′.
An asynchronous handler can thus observe the new fault state.

The fault stream of an entity reifies the history of fault states of that entity.
Moreover it transforms the nonmonotonic changes of a fault state into monotonic
changes in a stream. It provides an almost declarative interface to the fault state
maintained by the system.

To get access to the fault stream of an entity x, a thread simply calls the
function GetFaultStream with x, which returns the current fault stream. A
formal definition is given below. To read the current fault state, one simply
takes the first element of the returned list.

y={GetFaultStream x} y=fs |s
σ σ

if σ |= fstream(x)=fs |s (2)

Figure 5 shows an example of how an entity’s fault stream may evolve over
time. The stream is a partially known list, and the underscore “_” denotes an

1 The fault stream is just like a port’s stream.
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time
�

FS={GetFaultStream E}
FS=ok|_
FS=ok|tempFail|_
FS=ok|tempFail|ok|_
FS=ok|tempFail|ok|tempFail|localFail|permFail|_

Fig. 5. An example of a fault stream evolving over time

thread
for S in {GetFaultStream E} do

T = case S % pattern matching on S
of ok then "entity is fine"
[] tempFail then "some problem, don´t know"
[] localFail then "no longer usable locally"
[] permFail then "no longer usable globally"
end

in
{Show T}

end
end

Fig. 6. A thread that prints messages when entity E’s fault state changes

anonymous logic variable. Figure 6 shows a thread monitoring an entity E, and
printing a message for each fault state appearing on the stream. The printed
message is chosen by pattern matching. The thread is woken up each time the
stream is extended with a new state.

3.4 Enforced Failure

Sometimes the system is unable to diagnose a distribution problem. And often,
the actual impact of a distribution problem on a whole application is not reflected
in the fault states. It is sometimes simpler to force a part of the application to
fail, which causes it to launch a recovery mechanism.

We propose two operations to force an entity to fail, called KillLocal and
Kill. The statement {KillLocal E} has a pure local effect. It forces the fault
state of E to be at least localFail. The statement {Kill E} attempts to make
the entity permanently failed. Execution of {Kill E} is asynchronous, i.e., it
returns immediately. It initiates a protocol that attempts to make the entity
globally failed. To succeed, this may require some of the other sites sharing the
entity to be reachable at some point in the future. The local fault state of the
entity becomes permFail upon confirmation of the failure. The next section
gives an example that uses Kill.
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4 An Example: A Robust Forwarder Tree

This section gives an example showing how to use the fault model defined in
the preceding section. We present a simple and flexible group communication
abstraction. The abstraction was tested on Mozart using the DSS implementa-
tion described in Sect. 5. The abstraction maintains a distributed tree whose
nodes forward messages from the root to the leaves. Useful components are in-
serted as leaves in the tree. Depending on how the forwarding is defined at
each internal node, one can broadcast messages or balance messages between
components. In the latter case, each node forwards to one of its children only.
With a small modification, one can also forward messages from the leaves to the
root.

4.1 Architecture

Figure 7 depicts the architecture of the various components of the tree. The tree’s
nodes, shown as white circles in the figure, appear as Oz ports. They also use
other entities (cells, and other ports) that are not visible outside the abstraction.
The latter entities are not distributed, because they are never shared outside the
site where they were created. This is implied by the fact that threads do not
migrate by default.

We assume that the components are given as Oz ports, too. For each compo-
nent, we create a leaf node, which is inserted in the tree by the root. For the
sake of simplicity, the tree is built top-down. Every leaf first becomes a child of
the root. When the root has six children, it groups them into two subtrees with
three children each. The nodes of the tree can fail at any time, and the failure
may be detected by the system or provoked by the program.

On the right of Fig. 7 we have illustrated some rules to follow when nodes fail.
The main idea is that an internal node with less than two children makes itself
fail. The failure will be propagated down the tree, and eventually forces new
leaves to be created and inserted back in the tree. This avoids keeping “skinny”
branches (linear chains) in the tree. The root of the tree is the only weak point
in the architecture. Other algorithms could be used to make it robust.

One child node failure is
tolerated.  The parent node

automatically fails when less
than two children remain.

A node automatically
fails when its parent

node fails.

Root

Fig. 7. Architecture of the forwarding tree
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% create a leaf node
proc {MakeLeaf Root Component}

Ms Leaf={NewNodeWithParent Ms}
in

{Send Root insert(Leaf)}
thread % forwarding messages to Component

for M in Ms do {Send Component M} end
end

thread % handling failures
case {WaitTwo {WhenFailed Component} {WhenFailed Leaf}}
of 1 then {Kill Leaf}
[] 2 then {MakeLeaf Root Component}
end

end

end

% return a variable that is bound to true when E fails
fun {WhenFailed E}

thread {Member permFail {GetFaultStream E}} end
end

Fig. 8. Creation of a leaf node in the tree

4.2 Leaf Nodes

Figure 8 shows a procedure that creates a leaf in the tree (identified with its
root) for a given component. The code inside the box is the part that handles
failures. It can be removed for a non-robust version.

As a first approximation, consider that NewNodeWithParent is equivalent to
NewPort. The returned Leaf is effectively a port, and Ms is its stream of incoming
messages. We will see more in detail how it works below. The code outside the
box sends a message to the root node to insert the leaf in the tree, then a thread
forwards all incoming messages to the component.

The boxed code handles failures from the leaf node and the component itself. If
the component fails, the leaf is forced to fail, too. That leaf will be removed from
the tree. If the leaf fails before the component, we simply recreate another leaf. The
function WhenFailed returns a variable that is bound only when its argument has
reached the fault state permFail. The function Member tests whether a value is an
element of a list. The function WaitTwo is nondeterministic; it can return 1 if its
first argument is bound and 2 if its second argument is bound.

4.3 Nodes Monitoring Their Parent

As we stated before, when a node’s parent fails, the node itself must fail. The
leaves should follow that rule, too. Figure 9 shows how to implement such a
node, in a generic way. As the node must know its parent, we assume that every
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% create a port node that kills itself when its parent fails
proc {NewNodeWithParent Ms Node}

Strm

DependOn = {MakeDependency Node}

fun {CatchParent M|Ms}
case M of parent(P) then {DependOn P} {CatchParent Ms}
else M|{CatchParent Ms}
end

end
in

Ms = thread {CatchParent Strm} end
Node = {NewPort Strm}

end

% return a procedure that establishes a dependency for E
fun {MakeDependency E}

CurrentD={NewCell none}
proc {DependOn D}

CurrentD := D
thread

{Wait {WhenFailed D}}
if D==@CurrentD then {Kill E} end

end
end

in
DependOn

end

Fig. 9. Creation of an Oz port that is the basis of a node in the tree

node in the tree receives a message of the form parent(P) with its parent P.
That message is sent to the node when its parent changes, too. This is the case
when a child of the root is put under a new node.

In NewNodeWithParent, a port is created for the node. Its stream Strm is
filtered by the function CatchParent, which catches the parenthood message.
Note that CatchParent is tail recursive, and its output is incremental. When
a new parent is found on the stream, the loop calls the procedure DependOn,
which establishes a link between the parent’s failure, and the current node’s
failure. The procedure DependOn uses a hidden cell (CurrentD) to keep track
of the current dependency. If a dependency D fails, and the dependency has not
changed, the entity must fail. The procedure Wait blocks until its argument gets
bound to a value.

4.4 Subtrees

The function MakeTree in Fig. 10 takes a list of nodes Cs in its argument, and
returns a new node with Cs as children. That node must monitor its parent,
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% create an internal node, initially with three children
fun {MakeTree Cs}

Ms Node={NewNodeWithParent Ms}
Children={NewCell Cs}

in
thread % forwarding messages to children

for M in Ms do {Forward Children M} end
end
for C in Cs do

thread {Send C parent(Node)} end % send parent message

thread Cs Cs1 in % handle child failures
{Wait {WhenFailed C}}
Cs = Children := Cs1
Cs1 = {RemoveFromList C Cs}
if {Length Cs1}<2 then {Kill Node} end

end

end
Node

end

% forward message M to one or many of Children
proc {Forward Children M}

for C in @Children do
thread {Send C M} end

end
end

Fig. 10. Creation of non-root internal nodes of the tree

so it is created by NewNodeWithParent. The cell Children contains the list of
children of that node. The first thread created forwards messages to the children.
The definition of Forward can be changed to forward to one child only, for
instance. The procedure Forward is used by the root node as well.

For every child, a message parent is sent with the current node. The Send

operation is performed in a separate thread, to make sure it does not block the
main thread in case of a failure. The code that handles the failure is quite easy
to read. It waits until the given child fails, then removes it from the children
list. If the resulting list has less than two elements, the current node fails. This
failure will be handled by Node’s parent and remaining children.

4.5 The Root Node

Figure 11 shows the function that makes a root node. That node must be given
to the components in order to create the leaves. The root node is similar to
the subtree nodes. The first difference is that it has to insert leaves, which may
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% make the root node of a tree
fun {MakeRoot}

Ms Root={NewPort Ms}
Children={NewCell nil}
proc {Adopt C}

thread {Send C parent(Node)} end % send parent message

thread Cs Cs1 in % handle child failures
{Wait {WhenFailed C}}
Cs = Children := Cs1
Cs1 = {RemoveFromList C Cs}

end

end
in

thread % handle insertions, and forward messages
for M in Ms do

case M of insert(C) then Cs Cs1 in
Cs = Children := Cs1
case Cs of [C1 C2 C3 C4 C5] then

% make two subtrees of the 6 children
Cs1 = [{MakeTree [C1 C2 C3]}

{MakeTree [C4 C5 C]} ]
for T in Cs1 do {Adopt T} end

else % simply add another child
Cs1 = C|Cs
{Adopt C}

end
else {Forward Children M} end

end
end
Root

end

Fig. 11. Creation of the root of the tree

force it to create subtrees. The second difference is that it does not fail when its
children fail. Failed children are simply removed from its list.

4.6 Discussion of the Example

The first thing to notice is that the code that handles failures has been written so
that it interacts as little as possible with the functional part of the abstraction.
Keeping the failure handlers in separate threads improves their modularity, and
they are quite easy to reason about. A consequence is that it is pretty easy to
extend the functional part. If no extra entity is distributed, the failure handlers
will not need to be modified.

Another interesting point is that the fault model encourages the programmer
to think in terms of events and reactions. A failure is an event on its own, and
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Fig. 12. The implementation’s architecture

simple reactions are sometimes enough to make the program recover. The use of
message passing also helps to simplify the reasoning.

One issue that has not been mentioned is where the entities are. Where should
we place the nodes of the tree? The answer is: this is mostly an orthogonal
issue. In other words, put them where you want. This works because of network
transparency. Only the leaves of the tree should be placed on the site of their
component. This is because the thread that monitors the leaf should preferably
be on the same site as the component. The root node could keep track of a pool
of machines that may host the intermediate leaves, and creates them there. We
have not included this part in the code to keep it simple. The Mozart system
provides a simple abstraction to create a remote process and execute code on it.

5 Implementation

The Mozart system contains a virtual machine that executes Oz programs and
implements the distribution of Oz entities [4]. The distribution part of Mozart
is currently being reimplemented with the Distribution SubSystem (DSS) li-
brary. The DSS is completely separate from the virtual machine emulator, with
a well-defined interface between the two. The DSS provides generic distributed
entities [13,14]. There are three types of abstract entities, namely mutable, mono-
tonic, and immutable, and each type comes with a small set of abstract opera-
tions. The DSS makes a clear separation between communication protocols and
the entity’s semantics. The protocols are used internally by the DSS to imple-
ment generic operations, a distributed garbage collector, and failure detectors.

The way Mozart uses the DSS is sketched in Fig. 12. A purely local entity
is managed exclusively by the virtual machine, while a distributed entity is
mapped to an abstract entity in the DSS, which provides the basic support
for its distribution. An intermediate object, called the mediator, defines the
mapping between the virtual machine entity and the DSS entity. The mediator
maps entity operations on abstract entity operations, and makes the virtual
machine’s garbage collector collaborate with the distributed garbage collector. It
also reflects the abstract entity’s failure state in the virtual machine, by building
the fault stream of the entity and resuming threads that suspend because of a
failure. The fault stream only has a small overhead in practice, because it is
created on demand. Only monitored entities update their fault streams.
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6 Lessons from the Past

Our argument against the use of exceptions to handle distribution failures comes
from the original fault model used in Oz. The original model overlaps with the
new model proposed in Sect. 3. The original model provided much more fault
information (most of which was not used in practice) and provided both syn-
chronous and asynchronous handlers. The major difference was the ability to
define synchronous failure handlers, i.e., handlers that are called when attempt-
ing an operation on a failed entity. The programmer could either ask for an ex-
ception or provide a handler procedure that replaces the operation. The failure
handler was defined for a given entity and with certain conditions of activation.

Instead of the synchronous handlers, programmers favored an asynchronous
handler, called a watcher. A watcher is a user procedure that is called in a
new thread when a failure condition is fulfilled. The fault stream we propose in
this paper simply factors out how the system informs the user program. It also
avoids race conditions related to the watcher registry system, which could make
one miss a fault state transition. And finally, a watcher could not be triggered
by a transition to state ok.

The original model had one further deficiency. There was no way to force an
entity to be considered failed locally. As a result, there was a lack of control in
case of erratic entity behavior (e.g., many transitions between ok and tempFail).

The original model is criticized in [5], which proposes an alternative model.
That paper proposes something similar to our fault stream and an operation to
make an entity fail locally. In order to handle faults, it proposes to explicitly
break the transparent distribution of a failed entity. The local representative
of the failed entity is disconnected from its peers and is put in a fault state
equivalent to localFail. Another operation replaces that entity by a fresh new
entity. This model has the advantage to avoid blocking threads on failed en-
tities, because you can replace a failed entity by a healthy one. But this re-
placement introduces inconsistencies in the application’s shared memory. We
were not able to give a satisfactory semantics that takes into account these
inconsistencies.

7 Related Work

Most mainstream programming languages use exceptions to reflect failures due
to distribution faults. Those systems often propose less ambitious models for
distributed programs. They usually do not favor concurrency, the distribution
is often explicit, and failure handling is often mixed with the functionality of
the program. A typical representative of those systems is Java’s Remote Method
Invocation (RMI) system. The exceptions thrown because of network failures are
visible in the methods’ signatures. Moving from a centralized to a distributed
application requires to change API’s explicitly. Making robust distributed ab-
stractions is not impossible, but it comes at the price of a huge complexity
increase in the program.
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An interesting question is: how to implement the forwarder tree with the RMI
approach? The problem is that no message is sent “upwards” the tree, hence a
node never calls its parent. In order to detect the failure of its parent, a node
would need to make regular dummy calls to it. Another possibility is to make
the communication channel explicit, and catch problems at the receiving side.
But this breaks the abstraction provided by RMI. Moreover, extra messages
are required to simulate node failures, if those failures are not caused by site
failures.

The Erlang programming language and system was designed at the Ericsson
Computer Science Laboratory for building high availability telecommunication
systems [15,16]. An Erlang program consists of a (possibly large) number of pro-
cesses. An Erlang process is a lightweight thread with its own memory space.
Processes are programmed with a strict functional language, and they commu-
nicate by asynchronous message passing.

Erlang provides asynchronous fault detection of permanent failures between
processes. Two processes can be linked together. When one of them fails, the
other one receives a message from the runtime system, provided it is declared
as a supervisor. Erlang chooses to model all failures as permanent failures, in
accordance with its philosophy of “Let it fail”. That is, keeping the fault model
simple allows the recovery algorithm to be simple as well. This simplicity is very
important for correctness. We extend Erlang’s model with temporary failures and
with a fault stream. Furthermore, our model is designed for a richer language
than Erlang, which only has stationary objects (in our terminology).

8 Conclusion

This paper proposes a simple fault model for the distributed execution of the
Oz language. This distributed execution is network transparent, i.e., the seman-
tics of a language entity does not depend on whether it is distributed or not.
Synchronous failure handlers, like exceptions, break this transparency property.
Moreover, they are no longer practical if the language is highly concurrent. We
give evidence that asynchronous failure handlers are more adequate. They can
be defined so that they do not break the network transparency of the language.
In our design, each language entity produces a stream giving its fault state tran-
sitions. Monitoring an entity is done by reading the stream. One can also force a
failure either locally or globally, which allows to implement simple abstractions
for handling partial failure.
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OZ/K: A kernel language for component-based distributed
programming
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Abstract

Programming in an open environment remains challenging because it requires combining modularity, security,
concurrency, and distribution. This has lead recently to the development of new programming languages such as
Alice, Acute, OZ, JoCaml, or ArchJava, which deal with several of these aspects. However, the combination of
all the above features with dynamicity, i.e. the ability to build and modify systems during execution, still remains
an open question. In this paper, we propose an approach to open distributed programming that exploits the notion
of locality, which has been studied intensively during the last decade, with the development of several process
calculi with localities, including e.g. Mobile Ambients, Dπ, and Seal. We suggest to use the locality concept as
a general form of component, that can be used, at the same time, as a unit of modularity, of isolation, and of
mobility. Specifically, we introduce in this paper OZ/K, a kernel programming language, that adds to the OZ

computation model a notion of locality borrowed from the Kell calculus. We present an operational semantics for
the language, and several examples to illustrate how OZ/K supports open distributed programming.
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1 Introduction
Open environments involve distributed users that access and combine multiple services. These services interact,
fail, and evolve constantly. Programming in such environments remains challenging because it requires, as pointed
out in [91] by the designers of the Alice programming language, the combination of several features, notably: (i)
modularity, i.e. the ability to build systems by combining and composing multiple elements; (ii) security, i.e. the
ability to deal with unknown and untrusted system elements, and to enforce if necessary their isolation from the
rest of the system; (iii) distribution, i.e. the ability to build systems out of multiple elements executing separately
on multiple interconnected machines, which operate at different speed and under different capacity constraints,
and which may fail independently; (iv) concurrency, i.e. the ability to deal with multiple concurrent events, and
non-sequential tasks; and (v) dynamicity, i.e. the ability to introduce new systems, as well as to remove, update
and modify existing ones, possibly during their execution.

Each of these features has been, and continues to be, the subject of active research on its own. Combining them
into a coherent and practical programming language, however, is still an open question, despite interesting devel-
opments in the past two decades, including languages such as Acute [100], Alice [91], ArchJava [3], Classages
[71], Erlang [10], E [80], Java [12], JoCaml [48], Kali Scheme [33], Klaim [18], Nomadic Pict [114], OZ [111],
Scala [83]. For instance, the combination of strong objective mobility (i.e. the ability to move an executing com-
ponent from one location to another) and dynamic linking with sandboxing (i.e. the ability to isolate an untrusted
component from the rest of a computation, and to exercize discretionary control over its communication) is either
not available in these different languages, or only through the use of relatively complex constructions and pro-
gramming environment libraries with no formally defined semantics. Among these languages, Acute, Alice, and
OZ (the latter with its MOZART environment [57, 93]) provide the most extensive support for open programming,
but they still fall short, we argue below, of providing enough support for isolation and dynamic reconfiguration.

In this paper, we propose an approach to open programming that exploits the notion of locality. This notion
has been studied in several families of process calculi such as Mobile Ambients [31], Dπ [58], Klaim [18], or
the Seal calculus [32]. We suggest to use the locality concept as a primitive form of component that can be used
simultaneously as a unit of modularity, of isolation, and of passivation (we call passivation the ability to freeze and
marshall a component during its execution). Conflating these different kinds of units into a single notion provides
a way to address the different concerns of open programming with few programming constructs.

Specifically, we introduce the OZ/K kernel programming language, that extends the OZ kernel language with
a notion of locality, called kell1, borrowed from the Kell calculus [96], together with a passivation operation,
borrowed from the M-calculus [95]. The layered design of the OZ kernel language, and the fact that it supports
multiple programming paradigms make it a good substrate for our study, namely the use of locality as a basis for
open programming. Because of the multi-paradigm character of the OZ language, extending OZ with localities
can provide guidance for similar combinations using different language substrates (e.g. Ocaml [88] for functional
and object-oriented programming, Haskell [87] for functional programming and lazy evaluation).

With respect to OZ and MOZART, OZ/K makes a number of contributions: (i) it generalizes the pickling
operation in MOZART (i.e. the ability to make values in the language persistent – e.g. for storing them in a file or for
sending them in a message) to cover not only stateless values but also complete execution structures; (ii) it allows
to define different distributed programming abstractions without depending on a single, pre-defined distribution
semantics for the different language entities as is currently the case in MOZART; (iii) it enhances security in OZ
through first-class isolation units, and the ability to program sandboxes and security wrappers; (iv) it extends the
classical exception handling mechanisms in OZ with failure handling facilities that operate at the component level;
and (v) it provides basic support for strong mobility and dynamic reconfiguration through passivation.

Technically, the main contributions of this paper are: (i) the introduction of an extension of the kell concept
from the Kell calculus [96] and the Kell calculus with sharing [61], with the ability to control communication
channels of subordinate kells; (ii) the introduction of a passivation operation, called packing, which generalizes the
passivation operator of the M-calculus [95] to an execution model with a shared store and logic variables; (iii) the

1Localities in the Kell calculus are called kells, in a loose analogy to biological cells.
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introduction of operations on packed values (i.e. values resulting from the packing of kells) that provide support
for dynamic linking and component replacement; (iv) the introduction of failure handling mechanisms that can
deal with thread and component-level failures; (v) a formal operational semantics for the addition of the above
constructs to the OZ kernel language.

The paper is organized as follows. Section 2 motivates and introduces our approach in the design of OZ/K.
Section 3 defines the abstract syntax and provides an informal overview of the OZ/K kernel language. Section 4
presents several simple examples of open programming in OZ/K. Section 5 defines a formal operational semantics
for OZ/K. Section 6 discusses various design decisions and issues. Section 7 discusses related work. Section 8
concludes the paper.

2 Extending OZ for open programming

2.1 OZ and MOZART limitations
The OZ language and its MOZART environment already provide several features for open programming. These
include in particular: first class modules (records that group together related language entities such as procedures)
and functors (functions that take modules and functors as arguments, and return modules); module managers, that
allow access to modules referenced by URLs; pickles, that can be used to save complete values (i.e. values that do
not contain unbound variables) to files; tickets, that constitute references to arbitrary language entities; connections,
that support the establishment of communication links between remote sites using tickets for cross-site references;
a distributed semantics (described in [57, 93]) that assigns sites to certain languages entities such as variables,
and cells, together with associated communication protocols tailored for achieving network transparency with the
different kinds of language entities, namely stateless entities (e.g. base values, records, procedures, functors),
and stateful entities (e.g. variables, cells). Despite these features, we can single out three main areas where OZ
and MOZART fall short of supporting open programming: isolation, support for dynamic reconfiguration, and
distribution semantics.

Isolation. Systems operating in an open environment should be ready to deal with unknown, potentially mali-
cious components. A basic strategy to deal with untrusted components is to set up sandboxes, as formalized e.g.
by the notion of wrappers in the Boxed-π calculus [102]. A sandbox is an execution context that isolates encap-
sulated computations from the rest of their environment, and that prevents unwanted or suspicious communication
attempts. More generally, isolating different parts of a running system from one another is required for perfor-
mance isolation and for preventing denial of service (e.g. to prevent a component interfering with the execution of
another one merely through inordinate resource consumption).

The current OZ language and its MOZART environment fail to support sandboxes formalized as Boxed-π
wrappers, which allow a strict control of communications between a module or component and its environment.
For instance, while it is possible, through the subclassing of the base MOZART module manager, to forbid a
downloaded module to access local resources on installation, it is not possible to control the communication of a
module with its environment while it executes, and thus to prevent it from discovering – and accessing – forbidden
resources in the process.

Support for dynamic reconfiguration. An open distributed environment is a highly dynamic one, where fail-
ures, updates, adaptations, and unplanned changes can occur all the time. A language for open distributed pro-
gramming should provide the means to change a system’s structure and behavior on-the-fly, with no need to stop
the whole system in order to perform modifications. Dynamic reconfiguration typically involves: the ability to
circumscribe the part of a system which needs changing (the target); the ability to suspend the execution of the
target in a well-defined state; the ability to replace the suspended target by a different subsystem.

The higher-order character of the OZ language allows to program systems as collections of components (e.g.
in the form of port objects as described in [111]), and to program these components so that their behavior include
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some operation to change their state (see for instance the upgradable compute server in Chapter 11 of [111]). How-
ever, it is not possible to suspend the execution of a component or to delete it (e.g. if some unwanted behavior like
unwarranted resource consumption is detected), unless such behavior is already part of the component program.
Thus replacing a faulty or malicious component that does not support the appropriate update behavior is not pos-
sible in OZ. In addition, it is not possible to capture as a value the state of an ongoing execution (e.g. to take a
checkpoint or to reinstate a failed system from a saved checkpoint).

Distribution semantics. An open environment is essentially heterogeneous, with a wide variety of networks
and protocols, supporting different communication semantics and providing different guarantees. Furthermore,
depending on the application, different levels of distribution transparency and different views of a networked
infrastructure may need to be provided. For instance, a deployment application will likely require an explicit
view of the individual sites in the target network, so as to control the placement, installation, and configuration
of different software components on different sites. This view may be quite detailed, depending on deployment
requirements. For instance, one could consider separate spaces for different users, separate component containers
for different applications, different tiers in site clusters, with different interconnection schemas, different sub-
networks for fault-tolerance and enhanced performance, etc.

It is this very diversity that has lead the designers of the Acute language to abstain from incorporating in their
language any specific means of remote interaction. In their words, “a general-purpose distributed programming
language should not have a built-in commitment to any particular means of interaction” [101, 99]. The current
MOZART environment relies on a predefined distribution semantics. We wish to avoid that dependency to keep
in line with the above philosophy, and, in contrast to OZ and MOZART, to allow the definition of a distribution
semantics and its supporting protocols within the language itself.

2.2 Our approach
To deal with the above issues, we extend the OZ kernel language with a locality construct. The aim is to provide
a small and uniform formal basis for open programming capabilities that subsume those of the MOZART envi-
ronment. As a consequence, open programming features in MOZART which are not expressible in the OZ kernel
language (e.g. distribution protocols, or module placement), can now be defined in OZ/K. The OZ kernel language
is built using a layered approach, with successive layers adding expressive power and capabilities. The first layer
combines logic variables and higher-order procedures. The second layer adds explicit concurrency, in the form
of threads. The third layer adds explicit state, in the form of updatable memory cells. The last layer adds lazy
execution, in the form of by-need triggers. Our approach adds a new layer to the language, consisting of three
main features: (i) a primitive form of component, which we call kell; (ii) a primitive operation for passivating
kells, which we call packing; and (iii) a set of primitive operations for communication between kells, and for
manipulating packed values.

A kell acts as a unit of modularity (kells encapsulate data and behavior behind well defined interfaces, called
gates), a unit of isolation (a kell may fail independently of other kells, and a kell can act as a sandbox for its
subkells, i.e. for kells that it contains), and a unit of reconfiguration (a kell can be passivated, independently from
other kells, then moved, replaced, or deleted). The conflation of these different units in the single notion of kell
is the key element of our approach. A kell encapsulates both activity, in the form of threads and other (sub) kells,
and state, in the form of a private data store. Kells can thus be understood as hierarchically organized components,
with the same granularity as port objects or active objects in OZ.

In order to achieve isolation, means of communication between kells are restricted to the emission and receipt
of messages on gates, which are similar to channels in the (synchronous) π-calculus. As a consequence, logic
variables, memory cells, and by-need triggers remain private to a kell and cannot be shared between different
kells. This design choice is similar to the one made in the Erlang language, where processes, which are the
unit of modularity and isolation, only communicate through mailboxes. It is also similar to the one made in the
E language, where vats, which are units of concurrency and isolation, only communicate through asynchronous
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message exchanges (with futures). There are several reasons for this choice, including those well-documented in
disfavor of shared state concurrency (see e.g. [69], [9] for a discussion in the context of the Erlang language, and
[80] for a discussion in the context of the E language). The overarching consideration in OZ/K is to avoid any
form of shared state between kells to guarantee isolation.

OZ/K does not come equipped with a predefined distribution semantics. Instead, kells provide a basic notion
of separation, from which different forms of remote interaction can be built, in line with the Acute philosophy
discussed above. Communication on gates, which takes the form of atomic rendez-vous, should thus be seen
as local communication. Remote interaction in OZ/K can be modeled by a program mediating communications
between two or more peer kells (communication can take place via gates between a thread situated in a kell and a
thread situated in the immediate parent kell). The net effect of our approach is to replace the network awareness
principle that presided to the design of the OZ distribution semantics described in [57, 93, 92], which assigns
localities (called sites) to language constructs, by a network independence principle that makes localities explicit,
and does not define a fixed semantics for interaction over a network. A consequence of this design principle is
that the distributed semantics developed for OZ is no longer primitive, but can be implemented in OZ/K as a set of
abstractions for distributed programming. As a result, an OZ/K virtual machine2 does not embed any assumption
concerning supporting network services. Previous work on a Kell calculus abstract machine [21] has showed that
this was an effective approach.

One may ask why we did not consider adding this last layer to OZ as a library instead of language extension.
The reason can be given as a three-pronged argument: (i) we wish to have a simple formal semantics for our kernel
language; (ii) we consider that a library ought to be programmable (even if not actually implemented) in terms of
its host language, so as to avoid introducing constructs that are not definable in the host language semantics; (iii)
the isolation achieved by kells, and the passivation operation cannot strictly be expressed in OZ. Consideration
(ii) ensures that different forms of remote interaction can be defined and understood by OZ/K programmers as
programs that relay information between peer kells.

3 Syntax and overview
The OZ/K kernel programming language retains the OZ general computation model at its core (with some amend-
ments), and extends it with a notion of component directly inspired by the notion of kell in the Kell calculus.
We provide below a brief overview of the main constructs in OZ/K. We leave aside in this overview constructs
pertaining to lazy evaluation (by-need synchronization).

3.1 OZ core
The basis for OZ/K is the OZ kernel language [111], featuring logical variables (single assignment variables),
higher-order procedures, cells (which support multiple assignments), exception handling, concurrent threads, and
by-need triggers. A tutorial on OZ is available online [56]. We just recall here the main constructs of the language.
The OZ execution model consists of dataflow threads that operate on a shared store. Threads contain statement
sequences and communicate through shared references in the store.

The syntax of the OZ kernel language constructs we use in this paper is given in Table 1, where S and its
decorated variants denote statements; P, X, Y, C, and their decorated variants denote variable identifiers; v denotes
base values (integers and literals – i.e. names or atoms); and J denotes patterns. We assume that in any statement
defining a lexical scope for a list of variable identifiers, the identifiers in the list are pairwise distinct. Specifically,
in statements of the form:

local X1 ... Xn in S end
proc{X X1 ... Xn} S end
case X of V(V1:X1 ... Vn:Xn) then S1 else S2 end

2The operational semantics developed in this paper constitutes the specification of an OZ/K virtual machine, which should be implemented
by considering all the different OZ/K primitives, including communication on gates, as actions local to a single site.
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we must have Xi 6= Xj, for all i 6= j, i, j ∈ {1, . . . , n}.
We use the term variable identifier to refer to syntactical entities that denote variables. We use the term

variables to refer to single-assignment variables, or logical variables (semantical entities).

S ::= skip empty statement
| S1 S2 sequential composition
| thread{X} S end thread creation
| local X1 ... Xn in S end variable introduction
| X = Y imposing equality
| X = v binding to base value
| X = l(f1:X1 ... fn:Xn) binding to record
| {Unify X Y} unification
| if X then S1 else S2 end branch statement
| case X of J then S1 else S2 end pattern matching
| {NewName X} name creation
| proc{P X1 ... Xn} S end procedure definition
| {P X1 ... Xn} procedure call
| {IsDet X Y} testing bound status
| {NewCell X C} cell creation
| {Exchange C X Y} cell read-and-update
| {WaitNeeded X} by-need synchronization
| Y = !!X read-only variable
| raise X end exception handling
| try S1 catch X then S2 end
| {FailedValue X Y}
| . . .

Table 1: Syntax: OZ core

The syntax for patterns is given in Table 2.

J ::= V base value pattern
| V(V1:X1 ... Vn:Xn) record pattern

V ::= v base value
| !X base value of variable

Table 2: Pattern syntax

Variables and values. References in the store are through logic variables (or variables, for brevity) that can be
bound or unbound. An unbound variable does not yet refer to a value. A bound variable X refers to a definite value,
which can be a base value (an integer, an atom or a name), or a record.

Atoms are values whose identity is determined by a sequence of printable characters. A record takes the form
lab(f1:X1 ... fn:Xn), where lab is the label of the record, f1,...,fn are the features of the record, and
variables X1,...,Xn (which can be bound or unbound) are the fields of the record. Assume R is a record, with
feature f. Record selection is written R.f, i.e. if R = lab(... f:X ...), then R.f evaluates to X. Records are
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used to constructs usual concrete types. Thus, tuples are records with consecutive integer features, starting with 1.
A tuple lab(X1 ... Xn) corresponds precisely to the record lab(1:X1 ... n:Xn). Lists are defined as tuples
built from the atom nil, denoting the empty list, and the record label “|”, which can be used as an infix operator.
Thus, H|T denotes a list whose first element is H, and whose tail is the list T. Lists can also be written in extension:
[A1 ... An] stands for the list of n elements A1, . . ., An. Pairs can be built as tuples with label #, using an infix
notation. Thus X#Y corresponds to the tuple ’#’(X Y).

New logical variables are introduced with the statement:

local X1 ... Xn in S end

where S is an arbitrary statement, and X1,...,Xn are the n new variables being introduced3. Variables just
introduced are unbound. To bind a variable to a value, one can use equality statements of the forms (where v is an
arbitrary base value, and X1,...,Xq are variables):

X = v
X = l(f1:X1 ... fq:Xq)

Note that in statement: X = l(f1:X1 ... fq:Xq) variables X1,...,Xq may be unbound. This allows poten-
tially infinite data structures to be represented in OZ and OZ/K. Two variables X and Y can be constrained to be
bound to the same value through the statement:

X = Y

Determining the bound or unbound status of a variable X is possible via the statement:

{IsDet X B}

which binds variable B to true or false if X is bound or not.

Names. Names are unforgeable constants, which are typically used to identify various execution entities, such
as procedures and threads. There are three special names with reserved keywords: unit, true, false. Names
true and false denote the boolean values true and false, respectively. The name unit is typically used as a
synchronization token. Names can be created with the statement:

{NewName N}

which binds the variable N to a fresh name, guaranteed to be unique among OZ and OZ/K computations.

Cells. New assignable memory cells are created with the statement:

{NewCell X C}

which binds the variable C to a fresh cell, and stores variable X in the newly created cell. An atomic read-and-update
of a cell is provided by the statement:

{Exchange C A N}

which atomically binds the content of cell C to variable A, and updates the content of cell C with variable N. Using
Exchange, one can define an assignment operation to a cell C, noted C:= X, which updates the content of the cell
C to the variable X, and an operation to access the content of a cell C, noted X = @C, which binds the content of
cell C to variable X.

3We keep in OZ/K the OZ syntactic constraint that variables start with an upper case letter. A lexical token which is not a keyword and
starts with a lower case letter is deemed to be an atom. Thus Var is an identifier for a variable, whereas var denotes the atom ’var’.
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Procedural abstraction. A procedure definition takes the form:

proc{P X1 ... Xn} S end

where the variable P is bound to the name of the newly created procedure, the identifiers X1 ... Xn correspond
to the formal parameters of the procedure, and S is a statement that constitutes the body of the newly created
procedure. Identifiers X1 ... Xn are bound in the procedure definition, and their scope is the body S of the
procedure. A procedure definition can also be written:

P = proc{$ X1 ... Xn} S end

where $ is an anonymous marker, to emphasize the fact that a procedure definition binds the name of the newly
created procedure to variable P, and puts a procedure value (a closure) in the store. Note that formal parameters
of a procedure can be input parameters (variables which are bound prior to the procedure execution) or output
parameters (variables which are bound during the procedure execution). This means that a procedure may return
any number of results, including none.

A call to the procedure named P takes the form:

{P A1 ... An}

where A1 ... An are variables corresponding to the actual parameters of the call. Since a variable can be bound
to a procedure name, procedures in OZ and in OZ/K, are higher-order. For instance, the following program leads
to an infinite execution:

local P in
proc{P X} {X X} end
{P P}

end

Control flow and concurrency. Statements can be composed sequentially. The statement: S1 S2, is the se-
quential composition of statement S1 with statement S2. The empty statement is skip. The statement

thread{T} S end

creates a new thread that executes statement S, and binds its (freshly generated) name to variable T.
The statements above are non-blocking. The basic conditional statement in OZ and OZ/K:

if X then S1 else S2 end

blocks until variable X is bound to a boolean value true or false (and then executes statement S1 or statement
S2, respectively).

The pattern matching statement in OZ and OZ/K:

case X of J then S1 else S2 end

also blocks till variable X is bound to a value. The pattern J is then matched with this value. If the match is
successful, i.e. if unification between the value and J succeeds, the pattern variables in J are bound and statement
S1 is executed. The identifiers in J that correspond to pattern variables are bound in the case statement; their
scope is the statement S1. For instance, if X is bound to the record rec(a:V1 b:V2), then the statement

case X of rec(a:X1 b:X2) then {P X1 X2} else skip end

evaluates to {P V1 V2} (pattern variables X1 and X2 are bound during pattern matching to V1 and V2, respec-
tively).

Exception handling in OZ is standard, and available through the statements

raise X end
try S1 catch X then S2 end
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3.2 OZ/K constructs
To the OZ core, OZ/K adds three main elements: kells, gates, and packing. The syntax for the OZ/K-specific
constructs is given in Table 3, where K, X, Y, Z, G denote variable identifiers.

S ::= . . .
| kell{K} S end kell creation
| {NewGate X} gate creation
| {Send G X} emitting message X on gate G
| {Receive G X} receiving message X on gate G
| {Open K G} grant kell K access to gate G
| {Close K G} revoke access to gate G for kell K
| {Pack K X} packing kell K
| {Unpack X Y} unpacking packed value X
| {Mark X Y Z} marking X with names in Y
| {Status K X} get status of thread K

Table 3: Syntax: OZ/K extensions

Kells. A kell is a computational location, i.e. a form of concurrent component, which associates a named locality
to part of an OZ/K computation. Localities are organized in a tree where each node contains a (logically) private
store and several running threads. Kells are created via statements of the form:

kell{K} S end

where K is bound to the (freshly generated) name of the newly created kell. Statement S corresponds to the body
of the kell. Upon creation of kell K, the execution of S starts in a new thread running within K. In order to ensure
isolation, S must contain only strict variables (except for K which is bound during the creation of the kell). Strict
variables are variables which are bound to strict values, i.e. values which, recursively, do not contain unbound
variables. In effect, kells partition OZ/K computations into isolated subsets, organized in a tree, that can only
communicate through gates.

As an example, consider the statement

kell{Server} {Serve In Out} end

This statement creates a new kell named Server. Once created, the kell starts executing its body (in this case, a
call to the procedure Serve) in a new thread. Procedure Serve can be defined e.g. as follows:

proc{Serve In Out}
Message Response Handle in
proc{Handle M R} ... end
{Receive In Message}
{Handle Message Response}
{Send Out Response}
{Serve In Out}

end

Serve first receives a message Message on gate In. The message is then handled by procedure Handle, which
returns a result Response. The result is then sent on gate Out, and procedure Serve calls itself recursively, which
will trigger the handling of the following input message on gate In. This example illustrates that kells can typically
be programmed in much the same way as active objects or port objects in OZ, or as processes in Erlang.
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Gates and communication. A gate in OZ/K denotes an interaction point for a kell. It is similar to a π-calculus
channel: communication is pairwise and bidirectional, and gate names can be sent across gates. A new gate G can
be created via a call of the form:

{NewGate G}

Once the gate G has been created, it can be used to send values via the statement

{Send G X}

or to receive them, via the statement

{Receive G X}

Communication through gates is by atomic rendez-vous: a Receive statement is successful only if there is
a matching Send statement available in a different thread. This mode of communication on gates, together with
the isolation property, allows locality passivation (packing) to take place at any point in time during an execution.
Having an atomic rendez-vous as a primitive form of communication allows to derive other forms of interaction,
including ones that implement flow control between emitters and receivers. In particular, component connectors
can be realized as kells that mediate communication between two or more peer kells. Only strict values can be
sent through a gate. This restriction ensures that kells remain isolated during execution, and that gates form the
only means of communication between kells. Communication on gates should be understood as local, i.e. as taking
place on a single machine. Remote communication in OZ/K can be modeled, as illustrated in the next section, by
programs that relay information between two or more peer kells, using two or more gates.

Controlling communication. In order to support sandboxing, kell boundaries can impose restrictions on com-
munications. By default, communication may cross at most one kell boundary: it is allowed within a kell, and
between a kell and its parent-kell. Direct communication on some gate G between two threads separated by more
than one kell boundary is only allowed if every kell boundary crossed by the communication has this gate opened4.
A gate G can be opened in the boundary of a kell K by its parent-kell using the procedure call

{Open K G}

To allow two sibling kells K1 and K2, children of kell K, to communicate directly on a gate G, one has to open G for
either K1 or K2, for instance via this statement in kell K:

{Open K1 G}

To make a parent kell transparent for some or all of its child-kells, i.e. to allow all child-kells to communicate
directly between them, or with the parent kell environment, one can use the key-word all to reference all the
child-kells, and all the gates in a kell. Thus, the statement

{Open all all}

opens all the gates for all the children-kells of the current kell, whereas the statement

{Open K all}

opens all the gates for child-kell K of the current kell.

4The exact condition, defined formally in Appendix A, is a bit more complex than that, because it takes into account the base case where all
gates are opened for communication between a thread in a child kell and a thread in a parent kell. Hence, when a gate G is opened for a child
kell, all the threads in the child kell have the same communication possibilities, on gate G, than thread in the parent kell.
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Packing and unpacking. {Pack K V} is the statement implementing passivation. It suspends the execution of
the child K of the current kell and marshalls it, together with the relevant portion of the store, in a packed value
bound to the variable V. Packed values can be modifed using the Mark operation. Specifically, {Mark V1 R V2}

returns in V2 the packed value V1 modified according to the instruction given by tuple R. If R=gate(G1 G2),
the gate G1 is replaced in V2 by G2. If R=prc(P Q), the procedure P is replaced by Q. A side-effect of Mark is
that it prevents marked names to be changed during unpacking of the packed value, as described below. Thus, the
statement {Mark V1 gate(G G) V2} only marks gate G to prevent it being renamed when unpacking V2.

The statement {Unpack V R} can be used to unpack a packed value V. Unpacking creates an execution
structure similar to the one which has been packed, with new names for its gates, kells, and procedures, with
the exception of the ones which have been marked. The new gate names are returned in the list of pairs R. The
first element of a pair in R is the name of a gate in the packed value. The second element of a pair in R is the
corresponding new name for the gate. A Mark operation on a packed value can be understood as a dynamic linking
operation that connects a kell about to be unpacked to its new environment.

Failure handling. OZ has only classical exception handling. In the context of OZ/K, we need to deal with
thread-level and kell-level failures. This is made possible by the detection of thread failures, via the Status

statement. Briefly, the statement

{Status T X}

returns in X the termination status of thread T. More precisely, X gets bound to either terminated, if thread T

has terminated successfully, or a failed value reflecting the unsuccessful termination of a thread. See Section 5 for
details.

3.3 OZ values and syntactic conveniences
OZ values. We occasionnally employ in our examples procedures that do not belong to the OZ/K kernel lan-
guage, but that can be defined in terms of the kernel language, and which belong to the OZ base environment. We
refer the reader to [56, 40] for more details on the OZ base environment. In particular, we use the notion of chunk,
which is a basic data type provided in OZ. A chunk behaves much like a record, except that its label is always a
name (and not an atom), and it is not possible to obtain its list of features through the Arity operation.

Syntactic conveniences. We use syntactic conveniences to abbreviate OZ/K programs. Thus, variable introduc-
tion
local X1 ... Xn in S end
can be abbreviated as

X1 ... Xn in S

Also, variables can be both declared and initialized at variable introduction. Thus,

local X in
X = 10 {P X}

end

can be abbreviated as

X = 10 in {P X}

Likewise, a procedure declaration of the following form, where S is some statement,

Pr in
proc {Pr ...} ... end
S
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can be abbreviated as

proc {Pr ...} ... end in S

or

Pr = proc {$ ...} ... end in S

Nested case statements can be abbreviated using [] to discriminate between different cases in a case statement:
for instance,

case X of
a(X1 X2) then {P1 X1 X2}

[] b(Y1 Y2) then {P2 Y1 Y2}
else skip
end

abbreviates

case X of a(X1 X2) then {P1 X1 X2}
else
case X of b(Y1 Y2) then {P2 Y1 Y2}
else skip
end

end

Tuples are record with integer features. They can be written with their features left implicit. Thus X = r(X1 X2)

is the same as X = r(1:X1 2:X2). Nested values can be written directly, without introducing variables to hold
intermediate values. Thus, X = rec(a:11 b:r(1 2)) abbreviates:

local X1 X2 X3 X4 in
X1 = 11
X2 = 1
X3 = 2
X4 = r(X1 X2)
X = rec(aX1 b:X4)

end

We can use the wildcard “_” in places where a variable is needed but not subsequently used. Thus thread{_} S end
abbreviates:

local X in thread{X} S end

We also abbreviate: thread{_} S end to the simpler: thread S end. Likewise, we abbreviate: kell{_} S end
to: kell S end.

We often make use of a list version of the Open and Close primitives, writing for instance:

{Open K1 [G1 G2 G3]}

for the statements:

{Open K1 G1} {Open K1 G2} {Open K1 G3}

Finally we make use of the nested marker $ to simplify the writing of expressions, i.e. statements that return
a value. For instance, if P is a procedure of n + 1 arguments, that returns its result on the last argument, we can
write: X = {P A1 ... An $} for: {P A1 ... An X}, and:

{P {P A1 ... An $} B2 ... Bn X}

for:

Y in {P A1 ... An Y} {P Y B2 ... Bn X}
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4 Open programming in OZ/K
In this section, we present several simple examples that illustrate how OZ/K supports various open programming
features. In the process, we discuss the motivation for the features presented.

4.1 Components
The kell construct provides a form of component that is close to the software architecture [50, 103] notion: encap-
sulation behind well defined interfaces (gates), separation between interface and implementation, first-class notion
of connector for supporting interaction between components. Apart from usual software engineering considera-
tions (e.g. software quality, ease of maintenance and evolution), an explicit software architecture is interesting to
combat architecture erosion, to facilitate system configuration and assembly, and to automate system management
functions, as demonstrated e.g. in architecture-based management approaches [24, 35].

To illustrate support for component-based concepts, we present below three examples: the first one illustrates
changes in component implementation exploiting only standard OZ constructs; the second one shows how one
can recover the notion of owned component interface using gates; the third one illustrates the use of kells as both
components and connectors, and kell-based dynamic reconfiguration.

As a first example, consider the kell Server, created by the kell statement below.

kell{Server}
ServerState = {NewCell unit $}
Serve = proc{$ InGate OutGate Handler State}

Message in
{Receive Ingate Message}
case Message of

replace(NewServe) then {NewServe InGate OutGate ServerState}
[] update(NewHandler) then {Serve InGate OutGate NewHandler ServerState}
[] msg(Op Args Continuation) then

Response in
{Handler Op Args Response}
{Send OutGate resp(Continuation Response)}
{Serve InGate Outgate Handler ServerState}

else skip end
end
Handle = proc{$ X Y Z} ... end
in
{Serve In Out Handle ServerState}

end

This kell corresponds to a component with two interfaces, gates In and Out, and an initial implementation
given by the statement {Serve In Out Handle ServerState}. The cell ServerState holds the internal
state of the Server component. The implementation of kell Server does a simple job: upon receipt on gate In
of a message of the form msg(Op As C) (where Op denotes the name of the operation to perform, As is a list
of arguments for the operation, and C is a continuation), the operation name and the arguments are passed to an
internal procedure (initially, Handle) for evaluation; when the call to the procedure returns, the result R is send
together with the continuation C as a response message on gate Out. In addition, the implementation (given by
procedure Serve) can be changed partially, upon receipt of an update message, which changes only the internal
Handle procedure, or completely, upon receipt of the replace message. The latter illustrates the separation that
is achieved between interfaces (gates) and implementation (a call to a procedure taking gates as arguments).

Apart from the kell construct, the above example uses only standard OZ constructs. It illustrates what one
may call planned reconfiguration. Reconfiguration in Server can take place, as a consequence of the receipt of
update or replace messages, in between the handling of request messages of the form msg(Op As C). The
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reconfiguration triggered by the update and replace messages is planned (or subjective) in the sense that the
code of the Server component itself contains instructions for changing its own internal configuration. In OZ/K,
the kell construct also supports unplanned (or objective) reconfigurations, by means of passivation. We illustrate
this in the second component example below.

Before we come to this example, let us remark that the analogy with the usual notion of component is not
perfect, for a component typically owns its ports or interfaces, which cannot be shared with other components.
This is not the case with kells and gates, however it is possible to enforce a form of “gate ownership”, by turning a
gate into a unidirectional communication port and exporting only to the environment of a kell one “side” of a gate.
We can do this using chunks as capabilities, as shown below.

proc{NewHalfGate Dir GI GO}
G Anchor in
{NewGate G} {NewName Anchor}
proc{NSend X} {Send G X} end
proc{NReceive X} {Receive G X} end
proc{NOpen K} {Open K G} end
case Dir of

send then Z in {NewChunk r(send:NSend open:NOpen) GO}
{NewChunk r(receive:NReceive Anchor:Z) GI}

[] recv then Z in {NewChunk r(receive:NReceive open:NOpen) GI}
{NewChunk r(send:NSend Anchor:Z) GO}

else skip end
end

In the above code snippet, we define a new procedure NewHalfGate which creates two “half gates”, one for
receiving and one for emitting. The additional argument Dir to NewHalfGate specifies which capability is to be
exported: if it is send, then the send capability is exported (notice how the ability to open the gate is attached to
the send capability in this case, meaning that communication across kell boundaries can only be done by passing
this capability). Note the extra feature Anchor that is added to the non-exportable half gate. The field associated
with Anchor remains unbound, which prevents the corresponding chunk from being communicated outside the
current kell, because of the strictness requirement on gate communication. This suffices to ensure that only the
proper half gate can be known outside of the current kell, and that the other half remains only known inside the
current kell. This ensures a form of ownership of the gate since only the originating kell can either send or receive
on the private half gate.

Our second component example illustrates that component configurations can be organized hierarchically, and
can be changed in an objective fashion by packing kells. Consider the following code:

proc{Link I O} M in {Receive I M}{Send O M}{Link I O} end

kell{Comp}
I1 O1 I2 O2 I3 O3 Comp1 Comp2 Comp3 Con1 Con2 Con3 in
{NewGate [I1 O1 I2 O2 I3 O3]}

kell{Comp1} {Beh1 I1 O1} end
kell{Comp2} {Beh2 I2 O2} end
kell{Comp3} {Beh3 I3 O3} end
kell{Con1} thread {Link In I1} end {Link O1 I3} end
kell{Con2} {Link O3 Out} end
{Open Con1 [In I1 O1 I3]} {Open Con2 [O3 Out]}

{Receive G M}
case M of switch
then {Pack Con1 _}

kell{Con3}
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thread {Link In I2} end
{Link O2 I3}

end
open Con3 [In I2 O2 I3]

else skip
end

end

In the above example, kell Comp has three subcomponents Comp1, Comp2 and Comp3, whose behavior is
defined by three procedures, Beh1, Beh2, and Beh3, defined elsewhere. Initially, Comp is configured as a pipeline
of two subcomponents, Comp1 and Comp3, with the gate In linked to gate I1, gate O1 linked to gate I3, and gate
O3 linked to gate Out. In this initial configuration, Comp2 is not in use since its gates are not linked. Note that
procedure Link acts as a channel between an input gate and an output gate, and that kells Con1, Con2, and Con3

are used as connectors, that bind several gates at once (for instance, gates In and I1, as well as O1 and I3, in
the case of Con1). Upon receipt of the switch event on the G gate, defined elsewhere, the initial configuration
is changed to a pipeline of Comp2 and Comp3. The reconfiguration is effected by removing the connector Cn1,
via packing, and by replacing it with a new connector kell, Cn3. Notice that the reconfiguration code above does
not pay any consideration to the exact state of the components: in particular, the switch may lose messages being
processed by Comp1 and by Con1 at the moment of the switch. Note also that, in this instance, one could have
programmed the removal of Con1 directly in OZ, e.g. by having its behavior dependent on checking whether a
given variable, indicating termination, is bound or not. However, the use of packing here provides an example
of unplanned reconfiguration, where the code of connector components is independent of external reconfiguration
actions.

4.2 Distribution
As explained in Section 2.2, OZ/K has no built-in support for remote communications. However, because of their
inherent separation, kells in can be used to model different sites, communicating using different communication
semantics. For instance, here is a simple configuration, with two sites Site1 and Site2, running programs P1
and P2 respectively. The kell Net acts like an interconnecting asynchronous network, relaying messages from one
site to another: we suppose that S1 (resp. S2) listen on the gate In1 (resp. In2) and emit on Out1 (resp. Out2).

kell{Site1} {P1} end
kell{Site2} {P2} end
kell{Net}
Relay in
proc{Relay G1 G2}
M in
{Receive G1 M} thread {Send G2 M} end {Relay G1 G2}

end
thread {Relay Out1 In2} end
thread {Relay Out2 In1} end

end
{Open Net all}

The Net component simply relays messages that are sent on output gates Out1 and Out2 to their destina-
tion sites, designated by their addresses, i.e. input gates In1 and In2. The Relay procedure simply forwards
asynchronously (due to the triggering of a separate thread for forwarding messages to their destination) messages
between two gates. The Net component is allowed to communicate on all gates with its siblings, namely sites
Site1 and Site2. Note also that Site1 and Site2 are not allowed to communicate directly with each other
since there are no gates explicitly opened for them (as a result, threads in Site1 and Site2 can only communicate
with threads in Net).
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This (evidently simplistic) example illustrates how the separation between different loci of computation can
be used to model a networked environment. Note that we encapsulated the network in a separate kell: this would
allow us, for instance, to model failures of the Net component independent from failures of sites. A programmer
can thus be provided with a semantics for distributed computation in terms of the OZ/K computation model. Im-
portantly, this semantics can be adapted to different network environments, and arbitrary details of the supporting
infrastructure revealed to the programmer, without having to change the language semantics. One can thus provide
different abstractions to distributed programmers, depending on their needs, the network environment considered,
and the level of distribution transparency required, as in [21].

4.3 Modules and dynamic linking
Modules. The notion of kell unifies notions of software modules and components, and packing provides both a
generalization and a formal interpretation of the pickling construct provided by the MOZART environment for the
OZ language. Consider for instance the following code, where G is a gate:

kell{Mod}
P1 P2 M T in
proc{P1 A} ... end
proc{P2 A} ... end
proc{T X} {Send G X}{T X} end
M = module(op1:P1 op2:P2)
{T M}

end

This code fragment creates a new kell Mod which simply defines two unary procedures, P1 and P2, and gathers
them in a record M, which is repeatedly sent on gate G. In effect, M corresponds to a software module that consists
of just two procedures, accessed through the names op1 and op2. To use the module is simple; just retrieve the
module proper on gate G, and use the module’s procedures through their advertised names, op1 and op2:

{Receive G Y}
{M.op1 X}

Importantly, kell Mod can be packed and sent to a different site (another kell), so that the module can be made
available there. For instance, assuming Out is a gate on a channel to a different site (as illustrated in Section 4.2),
then:

{Pack Mod Z}
{Send Out Z}

illustrates how to marshall the kell Mod using the packing operation, and how to send the resulting packed value
for use of the module at a different site.

Strong mobility and dynamic linking. Assume a distributed environment similar to the one in Section 4.2.
Assume further that each site upholds the convention that the atom service denotes a local module, consisting
of two operations op1 and op2 (like the module in the previous example), which have different implementations
at each site. How can we ensure that code programmed to use the service module at one site can be moved
safely to a different site and use the local service module implementation ? We cannot simply use the previous
Mod construction: the variable M references the module available at gate G, which does not refer to the correct
implementation at other sites. One solution is to ensure each copy of the module dynamically retrieves the local
implementation upon each call, so as to take into account possible moves from clients of the module. The following
code implements this:

kell{DynMod}
T P1 P2 DynM Ploc1 Ploc2 Loc1 Loc2 in
proc{P1 A} ... end
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proc{P2 A} ... end
{NewName Loc1}{NewName Loc2}
proc{T X} {Send G X}{T X} end
proc{Ploc1 M} Z in {Receive G Z}{Z.Loc1 M} end
proc{Ploc2 M} Z in {Receive G Z}{Z.Loc2 M} end
DynM = {NewChunk m(op1:Ploc1 Loc1:P1 op2:Qloc2 Loc2:P2) $}
{T DynM}

end

As before, the procedures P1 and P2 constitute the local implementation of the module’s functionality, and
the procedure T aes available the module M on gate G. Using the module DynMod remains similar to the previous
example: just access the procedure through the module’s features op1 and op2. The features Loc1 and Loc2,
that store the local implementation of the procedures P1 and P2, are not directly used by the client of the module.
Access to the private features Loc1 and Loc2 is protected by gathering all the features of module DynM in a chunk.

Assume an agent, modelled as a kell, that moves from site to site, through a series of packing/sending/receiv-
ing/unpacking moves, and that requires access at each site to the service module. Now, as the agent moves
from the site S1 to the site S2, the gate where the module is available changes, raising the necessity to modify the
reference of the gate in the agent’s code. This modification of the agent’s code is done using the procedure Mark,
as presented in the next example (we suppose that the module is available at G1 – resp. G2 – at site S1 – resp. S2):

%% Site 1
{Pack Agent Z}
{Send Out1 msg(service:G1 pack:Z)}

%% Site 2
Message K Agent in
{Receive In2 Message}
case Message of msg(service:OldGate pack:PackedAgent) then
kell{Agent}
{Mark PackedAgent gate(OldGate G2) K}
{Unpack K _}

end
else skip end

The dynamic linking technique introduced above incurs an overhead at each call, since it requires retrieving
the local copy of the module before the actual call. We can provide an optimized version of dynamic linking by
changing directly procedures in packed values. Assume a module defined like Mod above, with local copies of the
same form at different sites. We can optimize the transfer of a mobile agent and the execution of dynamically linked
procedures, by proceeding as follows: before sending the agent (in packed form), replace the procedures from
module Mod by place-holder ones; upon receiving the agent in packed form, replace the place-holder procedures
by those of the local copy of Mod. Sending of the mobile agent Agent would look like this, assuming Agent

designates a kell, G denotes the gate at which the module Mod is available, service is the well-known name under
which Mod is known at the different sites, and Out denotes a gate for sending to the chosen remote site:

Z1 Z2 M PackedAgent P1 P2 PH1 PH2 in
proc{PH1 A} skip end
proc{PH2 A} skip end
{Pack Agent Z1}
{Receive G M}
P1 = M.op1 P2 = M.op2
{Mark Z1 prc(P1 PH1) Z2}{Mark Z2 prc(P2 PH2) PackedAgent}
{Send Out msg(s:service prc:[PH1 PH2] agent:PackedAgent}

Receiving and linking the mobile agent at the remote site, would look like this, assuming that In denotes a gate
for receiving from the original site, and that G denotes the gate at which Mod is known at the receiving site:
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Message M Z1 Z2 Agent P1 P2 K in
{Receive In Message}
case Message of msg(s:service prc:[PH1 PH2] agent:PackedAgent)
then {Receive G M}

P1 = M.op1 P2 = M.op2
kell{Agent}
{Mark PackedAgent prc(PH1 P1) Z1}{Mark Z1 prc(PH2 P2) K}
{Unpack K _}

end
else skip end

In effect, we directly replace in the agent code the place-holder procedures PH1 and PH2 by the local procedures
P1 and P2. This solution for dynamically linking a mobile agent to local copies of a well-known module, has less
overhead than the previous one, since there is no need to first retrieve the local module copy prior to invoking an
operation of the module. Note that the above techniques for dynamic linking can be used in conjunction with a
name server at each site. Provided that all sites agree of a single atom such as service to refer to this name server,
then this is enough to bootstrap dynamic linking (and dynamic binding) of services referenced across sites using
well-known names (e.g. atoms or strings).

4.4 Isolation
The kell construct provides the ability to build very configurable sandboxes. Consider the case of a plug-in of
dubious origin. It is possible to isolate it in different ways. A first example is provided by the following code, which
is a straightforward application of dynamic linking. In this case, the sandbox Sandbox allows communication of
the plug-in only on the gate G, that correspond to the communications advertised as required by the plug-in, under
the well-known name service. Once received, the plug-in is placed inside the new kell K, inside the sandbox. It
is then marked with the local gate G, and unpacked. The double inclusion is necessary to avoid any communication
of the plug-in with the environment of the sandbox, apart from communications on gate G.

Sandbox in
{Receive In Message}
case Message of msg(service:OldGate plugin:PlugIn) then
kell{Sandbox}
K P in
kell{K} {Mark PlugIn gate(OldGate G) P}{Unpack P _} end
{Open K G}

end
else skip end

The behavior of a sandbox can be more complex. For instance, we may allow the plug-in to request the opening
of some gate for communication. The sandbox can then check the security of such an opening, using the procedure
Check, and allow it or not. The control policy module can take the form of a procedure Control listening on a
given gate identified by a well-known name such as control. The resulting sandbox can take the following form:

Check = proc{$ K X Y B} ... end
Control = proc{$ SandBoxedKell CtrlGate}
{Receive CtrlGate Message}
case Message of r(service:S gate:G returnGate:R)
then B in
{Check SandBoxedKell S G B}
if B then {Open SandBoxedKell G} {Send R ok} else {Send R nok} end

else skip end
{Control SandBoxedKell CtrlGate}

end
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in
{Receive In Msg}
case Msg of msg(control:G plugin:P) then

kell{Sandbox}
Ctrl SndBoxK P1 in
{NewGate Ctrl}
kell{SndBoxK} {Mark P gate(G Ctrl) P1}{Unpack P1 _} end
{Control SndBoxK Ctrl}

end
else skip end

The encapsulation realized by the kell construct allows in particular to build wrappers as in the Boxed-π
calculus [102]. For instance, we can build a simple filtering wrapper for some untrusted plugin, which requires the
use of a service, where the required service is made available locally (after filtering) on gate SV.
Filter Msg Sandbox in

proc{Filter G1 G2} ... end
{Receive In Msg}
case Msg of msg(service:PG plugin:P) then

kell{Sandbox}
K P1 G in
{NewGate G}
kell{K} {Mark P gate(PG G) P1} {Unpack P1 _} end
thread {Filter G SV} end

end
else skip end

In this example, the procedure Filter acts as a partial relay between the gates G and SV, transmitting only valid
messages and erasing the others.

4.5 Handling failures
Failure handling in OZ/K bears a strong similarity with failure handling in Erlang [9], and with a recent proposal
for enhanced failure handling in OZ [39]. Units of failure in OZ/K are threads and kells. Handling a failure in a
thread or a kell requires setting up an independent thread that can monitor state changes in the supervised thread
or kell. Setting up a monitoring thread can be done as in the following program:

proc {NewMonThread Body Gate}
M in
thread{Th} {Body} end
thread{M}
S = {Status Th $} in
case S of failed(Z) then {Send Gate thFail(Th Z)} else skip end

end
end

The above program creates two threads, the monitoring thread M, and the monitored thread Th. The behavior of M
is simple: it waits for Th to fail, and then notifies this failure on gate G. The program makes use of the operation
Status, that returns the execution status of a thread. A thread execution status can essentially be in two states:
active or failed. It is manifested by a ’read-only) variable that is either unbound, signifying that the thread is active,
or bound to a failed value of the form failed(X), signifying that the thread has failed with failure cause X.

It is also possible to force a kell to abort upon the occurrence of some failure in one of its threads, thereby
obtaining a similar effect to process linking in Erlang, which causes a group of Erlang processes to fail together
if one of the processes in the group fails. In our case, we can link threads by placing them in a kell and setting
up an appropriate monitoring structure. This is illustrated in the following program, where two threads are linked
in a kell, which is aborted as soon as one the two threads fails. The code snippet below also illustrates how kells
themselves can be monitored for failure (in this case, a failure message is sent on the monitoring gate MG).
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G K in
{NewGate G}
kell{K} {NewMonThread Beh1 G} {NewMonThread Beh2 G} end
{Receive G M}
case M of thFail(T Z) then {Pack K _} {Send MG kFail(K Z)}
else skip end

5 OZ/K operational semantics
The operational semantics of the OZ/K kernel language is given in terms of a reduction relation → ⊆ (Store ×
Task)2, which is a binary relation on execution structures. We call execution structure an element of Store×Task,
i.e. a pair consisting of a store and a task. We assume given the following infinite countable and mutually disjoint
sets: Ident, the set of variable identifiers, Var the set of logical variables, Name the set of names, Atom the set of
atoms. We denote Int the set of integers, which we assume also disjoint from Ident∪ Var∪ Name∪ Atom. Name
contains the following distinguished elements: true, false, unit, >. The latter name denotes the name of the
root of the kell tree (or top-level kell).

Statements. The set of statements, Statement, corresponds to the set of terms S given by the grammar pro-
ductions in Table 1 and Table 3. The set of extended statements, Statement†, consists in the set of statements
augmented with the set of terms S where logical variables are substituted to some or all variable identifiers in the
term S, i.e.

Statement† = Statement ∪ {Sθ | S ∈ Statement, θ : Ident→ Var}

The effect of a substitution θ on a statement S is defined in Section A.

Tasks. The set of tasks, Task, consists of elements T given by the following grammar (where η denotes a name,
and S denotes an extended statement):

T ::= η : T | T T tasks

T ::= 〈〉 | 〈S T 〉 thread stacks

Intuitively, a task T is a multiset (parallel composition) of named threads η : T . As a notational convenience, when
making explicit the structure of a named thread, we often elide the ‘:’, thus “η : 〈S T 〉” is often noted “η〈S T 〉”.

Stores. The set of stores, Store, consists of elements σ given by the grammar in Figure 1, where x, y and their
decorated variants range over variables; l, and its decorated variants range over literals (atoms and names); f and
its decorated variants range over integers and literals; ξ, η, ζ and their decorated variants range over names.

A store consists in a conjunction (noted ∧) of primitive assertions. Primitive assertions comprise:

• Variable in store assertions of the form x, which indicates that variable x is in the store domain, which we
denote by: x ∈ dom(σ).

• Variable bindings, of the form x = V , where x is a variable and V is some value (integer, atom, name,
record, failed value, or packed value), or x = y, where x and y are both variables. Notice that the assertion
x = pack(ζ, T , σ, µ) corresponds to a binding of a variable to a packed value, which happens only as a
side-effect of passivation.

• Name bindings, of the form ξ : T , where T is some semantical value such as a procedure or a gate. Notice
that a semantical value T embeds explicit type information about the nature of elements which are referred
to by a name.
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σ ::= x variable in store

| x = u binding to base value

| x = l(f1 : x1, . . . , fn : xn) binding to record

| x = y equality between variables

| x = failed(y) failed value

| x = pack(ζ, T , σ, µ) variable bound to packed value

| ξ : proc{$ X1 . . . Xn}S end procedure value

| ξ : thread(x) thread pointer

| ξ : cell(x) cell value

| ξ : kell(π, x) kell pointer

| ξ : gate gate

| need(x) needed variable

| read(x, y) read-only variable

| read(x)

| in(ξ, ζ) kell in kell

| inth(ξ, ζ) thread in kell

| subg(ξ, ζ) sub gate

| σ ∧ σ store conjunction

µ ::= ∅ | {ξ1, . . . , ξn} mark set

π ::= ∅ empty grant set

| {ξ · γ} gates γ for subkell ξ

| ξ · G all gates for subkell ξ

| K · γ gates γ for all subkells

| K · G all gates for all subkells

| π ∪ π grant set union

| π \ π grant set difference

γ ::= ξ | ξr | ξ∗ gate, or gate and subordinates

Figure 1: Store grammar
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• Additional assertions; of the form pred(. . .), where pred is some predicate qualifying or relating names, or
variables.

The packed value, thread, and kell constructs warrant some explanation. A packed value v = pack(κ, T , σ, µ)
comprises four elements: a suspended task T , and its associated store σ; the name κ of the kell that has been
packed; a set of names µ that have been marked to not be affected during unpacking. The suspended task and the
store are captured by packing an executing kell. The set of names µ can include the name of the packed kell, the
name of procedures in the packed kell, and the name of gates in the packed kell.

A thread binding τ : thread(x) refers to a thread named τ , whose execution status is given by the (read-only)
variable x. While the thread is running, variable x remains unbound. If the thread terminates normally, then x
becomes bound to the value terminated. If the thread fails, because of an uncaught exception, then x becomes
bound to a failed value of the form failed(y), where y is the exception that caused the thread to fail. The status
of a thread can be obtained using the Status operation.

A kell binding takes the form κ : kell(π, x), where κ is the name of the kell, π is called the grant set of the
kell, and where the variable x contains the execution status of the kell. Variable x remains unbound while the kell
is executing. It becomes bound to the value packed when the kell is packed. The status of a kell is not directly
accessible, but it can be obtained indirectly when packing a kell, as the kell monitoring example in Section 4
illustrates. The packed status of a kell is checked when replacing a kell (only a packed kell can be replaced). The
grant set corresponds to a specification of the gates that have been opened for communication to and from subkells
of ξ. If κ · γ ∈ π, then gate γ is opened to subkell κ for communication. If K · γ ∈ π, then the gate γ is opened to
all subkells. If κ · G, then all gates are opened to subkell κ for communication. If κ · γr ∈ π, then gate γ and all
its immediate subordinate gates are opened to subkell κ for communication. If κ · γ∗ ∈ π, then gate γ and all its
(recursively) subordinate gates are opened to subkell κ for communication. If K · G ∈ π, then all gates are opened
to all subkells.

The predicate need is used for lazy evaluation. Specifically, it is used for the definition of the WaitNeeded

operation: the statement {WaitNeeded X} blocks until the variable X references is needed elsewhere in a com-
putation. The predicate read is used for read-only variables. read(x) just indicates that the variable x is read
only, while read(x, y) indicates that the variable x is read only and that its value, when it is determined, will be
that of variable y. The predicate in(ξ, ζ) indicates that the kell ζ is located inside kell ξ. The predicate inth(ξ, ζ)
indicates that the thread ζ is located inside kell ξ.The predicate subg(ξ, ζ) indicates that the gate ζ is a subordinate
of the gate ξ.

Reduction relation. The reduction relation → is defined as the smallest subset of (Store×Task)2 that satisfies
the set of inference rules given in Section 5.1 below. To facilitate the comparison with the original OZ operational
semantics, and to stay close to the definition of an abstract machine for OZ/K, we use the same approach to
operational semantics than the one defined in chapter 13 of [111]. In particular, we use the same notational

conventions, noting 〈σ, T 〉 → 〈σ′, T ′〉 as
T T ′
σ σ′

. The reduction rules take the form of inference rules of the

form
T T ′
σ σ′

if C

where C is some condition on T , σ, T ′ and σ′. We use a number of abbreviations to simplify the writing of
reduction inference rules. The table below gathers the different abbreviations. By definition, names and tasks that
appear on the right column, but that do not appear on the left column, are different from the latter, and mutually
distinct, but otherwise arbitrary. Intuitively, a decorated statement such as S |κ refers to a statement occurring
within a thread of the kell named κ.
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Rule Abbreviates

S S′

σ σ′
if C

τ〈S T 〉 τ〈S′ T 〉
σ σ′

if C

T T ′
σ |= φ σ′

if C
T T ′
σ σ′

if C ∧ σ |= φ

S |κ S′

σ σ′
if C

τ〈S T 〉 τ〈S′ T 〉
σ |= inth(κ, τ) σ′

if C

S1 |κ1 S2 |κ2 S′1 S′2
σ σ′

if C
τ1〈S1 T1〉 τ2〈S2 T2〉 τ1〈S′1 T1〉 τ2〈S′2 T2〉

σ |= inth(κ1, τ1) ∧ inth(κ2, τ2) σ′
if C

S |κ T S′ T ′
σ σ′

if C
τ〈S T 〉 T τ〈S′ T 〉 T ′

σ |= inth(κ, τ) σ′
if C

Table 4: Abbreviations for reduction rules

5.1 Reduction rules
We give in this section the inference rules that define the reduction relation. Some of these rules make use of various
auxiliary functions and relations. In this section, we only present them informally. They are defined formally in
Appendix A. To simplify the presentation, we do not present straightforward failure rules, which specify that a
given operation fails in case its arguments are ill-typed. Failure rules are given in Appendix B. We also do not
present garbage collection or obvious optimization rules which can be applied during an OZ/K computation, for
instance when packing a kell and its associated store.

In the following rules, unless explicitly stated otherwise: σ and its decorated variants denote stores; φ, ψ and
their decorated variants denote assertions; ξ, η, ζ and their decorated variants denote names; κ and its decorated
variants denote kell names; τ and its decorated variants denote thread names; γ and its decorated variants denote
gate names; x, y, z, w, r, s and their decorated variants denote logical variables; u, v and their decorated variants
denote values (i.e. integers, atoms, names, failed values, records); S and its decorated variants denote extended
statements; T and its decorated variants denote thread stacks; U , T and their decorated variants denote tasks.

Auxiliary functions and relations. The reduction relation depends on a number of functions and relations. The
first relation is an equivalence relation, noted ≡, between tasks and between stores. Intuitively, the equivalence
relation between tasks asserts that the parallel operator between tasks is commutative, and associative, and that
thread stacks that differ only from an alpha-renaming of variable identifiers in the statement they contain, are
equivalent. The equivalence relation betwen stores asserts that the conjunction of stores is commutative and as-
sociative, and that two stores are equivalent if they entail the same assertions. The entailment relation between
stores and assertions, noted |=, characterizes the logical assertions that can be derived from a store. The func-
tion dom takes a store σ as parameter and returns the set of all the names and variables used in σ. The predicate
strictσ(v) is true if v is a strict value in the store σ. We extend this predicate on variables x and statements S.
The predicate strictσ(S, V ) is true if all the variables in extended statement S, except those in V , are strict. The
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assertion accessσ(γ, κ, κ′) means that gate γ is accessible for communication between the kells κ and κ′. For
this to be true, γ must have been opened for communication for all the kells on the path that connects κ and κ′ in
the kell tree5, unless they are separated by at most one kell boundary. The function grantσ associates to the pair
of variables (k, g) a set: the singleton pair corresponding to their names if k denotes a kell and g denotes a gate,
and ∅ otherwise. The last auxiliary functions are subkσ and subthσ: subthσ(κ) returns the set of names of all the
threads contained by the kell κ and all its descendant kells, subkσ(κ) returns the set of names of all the descendant
kells of kell κ.

Structural rules

The contextual rules define reductions under execution contexts, – namely parallel task contexts –, and for equiva-
lent execution structures (i.e. pairs 〈store, task〉). Rules PAR and EQUIV are already present in OZ semantics.

[PAR]
T U T ′ U
σ σ′

if
T T ′
σ σ′

[EQUIV]
V V ′
γ γ′

if
U U ′
σ σ′

and U ≡ V , U ′ ≡ V ′, σ ≡ γ, σ′ ≡ γ′.

Sequential execution

[SKIP]
τ〈skip T 〉 τ : T

σ σ

[SEQTH]
τ〈(S1 S2) T 〉 τ〈S1 〈S2 T 〉〉

σ σ

[NIL]
τ〈〉

σ |= τ : thread(x) ∧ x = ⊥ σ ∧ x = terminated

The rules for sequential execution are identical to those in OZ, modulo the introduction of named threads, and
the garbage collection rule NIL, that replaces the equivalent rule NIL in the OZ semantics given in [111]. Notice
that only the thread stack is collected: the termination status x of thread τ can be still be accessed.

Thread creation

[NEWTH]
τ〈thread{x} S end T 〉 τ : T τ ′〈S 〈〉〉
σ |= x = ⊥ ∧ inth(κ, τ) σ ∧ σ′ τ ′, w 6∈ dom(σ)

where
σ′ ≡ x = τ ′ ∧ τ ′ : thread(w) ∧ w ∧ read(w) ∧ inth(κ, τ ′)

Variable introduction

[VAR]
local X1 . . . Xn in S end S{X1 → x1, . . . , Xn → xn}

σ σ ∧ x1 ∧ . . . ∧ xn
xi 6∈ dom(σ)

5The exact rule is a bit more subtle, but see Appendix A for a formal definition.
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Read-only variables

[READ]
x =!!y skip

σ |= x = ⊥ σ ∧ z ∧ x = z ∧ read(z, y)
z 6∈ dom(σ)

[READU]
σ ∧ read(z, y) |= y 6= ⊥ σ ∧ z = y

Binding

We adopt a different approach than MOZART for variable bindings: we consider only basic bindings, i.e. bindings
where, in a statement x = y, only one of x or y, previously unbound, gets bound. This behavior is captured by the
rules below, where v is a value (i.e. either a base value, integer or literal, a record, a failed value, or a packed value
— and hence v 6= ⊥). We note rread(x) the predicate read(x) ∨ ∃y read(x, y).

[BINDV]
x = v skip

σ |= x = ⊥ ∧ ¬rread(x) σ ∧ x = v

The following rule, which defines the semantics of the variable equality statement, is actually a rule schema,
with correlated φ and σ(φ), given by the table below the rule:

[BINDXY]
x = y skip
σ |= φ σ ∧ σ(φ)

where
φ σ(φ)

x = v ∧ y = ⊥ ∧ ¬rread(y) x = y

y = v ∧ x = ⊥ ∧ ¬rread(x) x = y

x = ⊥ ∧ ¬rread(x) ∧ y = ⊥ ∧ ¬rread(y) x = y

x = ⊥ ∧ y = ⊥ ∧ rread(x) ∧ ¬rread(y) x = y ∧ read(y)

x = ⊥ ∧ y = ⊥ ∧ ¬rread(x) ∧ rread(y) x = y ∧ read(x)

[BINDR]
x = y.z skip

σ |= x = ⊥ ∧ ¬rread(x) ∧ y = l(f1 : w1 . . . fn : wn)m ∧ z = fi σ ∧ x = wi

Unification

The Unify operation is defined by the rules UNI and UNIF. It essentially implements the naive tell semantics
discussed in chapter 13 of [111].

[UNI]
{Unify x y} skip

σ σ′
if σ′ = Unify(x, y, σ) 6≡ ⊥

[UNIF]
{Unify x y} raise error(uni(x y)) end

σ σ
if Unify(x, y, σ) ≡ ⊥

Equality between values

Two operations are possible on all values. They correspond to equality and inequality tests. Note that as syntactic
convenience we write X == Y for {Equal X Y $} (i.e. the value of X == Y is the boolean returned by operation
Equal), and X \= Y for {NotEqual X Y $}, where the function NotEqual can be defined as

proc{NotEqual X Y R}
if {Equal X Y $} then R = false else R = true end

end
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Note that the operation Equal suspends if the checks x ≡σ y and x 1σ y cannot take place.

[EQTRUE]
{Equal x y r} skip
σ |= r = ⊥ σ ∧ r = true

if x ≡σ y

[EQFALSE]
{Equal x y r} skip
σ |= r = ⊥ σ ∧ r = false

if x 1σ y

Status

The operation Status returns the status of a thread. This is captured by the following rule. Note that it is only
possible to check the status of a thread that resides in the current kell: this is to ensure separation between kells.

[STATUS]
{Status x y} |κ skip

σ |= y = ⊥ ∧ x = τ ∧ τ : thread(w) ∧ in(κ, τ) σ ∧ y = w

If statement

The if statement is identical to the original OZ if statement.

[IFTRUE]
if x then S1 else S2 end S1

σ |= x = true σ

[IFFALSE]
if x then S1 else S2 end S2

σ |= x = false σ

Case statement

The case statement is identical to the original OZ case statement.

[CASE]
case x of J then S1 else S2 S1θ

σ σ
if matchσ(x, J) = θ

[CASEU]
case x of J then S1 else S2 S2

σ σ
if matchσ(x, J) = ⊥

Names

[NEWNAME]
{NewName x} skip
σ |= x = ⊥ σ ∧ x = η

η 6∈ dom(σ)

Procedure abstraction

Rules governing the introduction of procedures (PNEW), and procedures calls (PCALL) are similar to the ones in
OZ. However, compared to OZ, we allow a dynamic update of procedure values, through the rule PREP.

The introduction of a new procedure is governed by the following rule.

[PNEW]
proc{x X1 . . . Xn} S end skip

σ |= x = ⊥ σ ∧ x = ξ ∧ ξ : proc{$ X1 . . . Xn}S end
ξ 6∈ dom(σ)

Calling a procedure is governed by the following rule.

[PCALL]
{x x1 . . . xn} S{X1 → x1, . . . , Xn → xn}

σ |= x = ξ ∧ ξ : proc{$ X1 . . . Xn}S end σ

Replacing a procedure is governed by the following rule. The rule expects an already existing procedure under
the name ξ, and just replaces the closure associated with the name ξ. The replacement procedure must have the
same number of arguments than the replaced one.
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[PREP]
proc{x X1 . . . Xn} S end skip

σ ∧ ξ : Q |= x = ξ σ ∧ ξ : P
if C

where
Q = proc{$ X1 . . . Xn}S′ end P = proc{$ X1 . . . Xn}S end C ≡ strictσ(S, ∅)

Checking determinacy

[DETTRUE]
{IsDet x y} skip

σ |= x 6= ⊥ ∧ y = ⊥ σ ∧ y = true

[DETFALSE]
{IsDet x y} skip

σ |= x = ⊥ ∧ y = ⊥ σ ∧ y = false

Cells

[NCELL]
{NewCell x y} skip
σ |= y = ⊥ σ ∧ ξ : cell(x) ∧ y = ξ

ξ 6∈ dom(σ)

[ECELL]
{Exchange x y z} skip

σ ∧ x = ξ ∧ ξ : cell(t) |= y = ⊥ σ ∧ x = ξ ∧ ξ : cell(z) ∧ y = t

Exception handling

[TRYU]
try S1 catch X then S2 end S1(catch X then S2 end)

σ σ

[TRYC]
catch X then S2 end skip

σ σ

[RAISEW]
τ〈raise x end 〈S T 〉〉 τ〈raise x end T 〉

σ σ
S 6≡ catch . . .end

[RAISE]
τ〈raise x end 〈S T 〉〉 τ〈S2{X → x} T 〉

σ σ
S ≡ catch X then S2 end

[RAISES]
τ〈raise x end 〈〉〉

σ |= τ : thread(w) ∧ w = ⊥ σ ∧ w = failed(x)

When a thread statement sequence has finished executing in a failed state, raised exceptions can be handled
through the Status operation. Note that the RAISES rule is a form of garbage collection for abnormally terminated
threads that complements the NIL garbage collection rule for normally terminated threads.

By-need synchronization

The rule for by-need synchronization is given below. It depends on the relation need, which is defined below.

[WAITN]
{WaitNeeded x} skip
σ |= need(x) σ

The predicate need(x) is added to the store according to the following rules:

[NEED]
S S

σ 6|= need(x) σ ∧ need(x)
if needσ(S, x)
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[NEEDD]
σ |= x 6= ⊥ σ ∧ need(x)

if σ 6|= need(x)

The assertion needσ(S, x) is true if and only if the following conditions hold:

1. σ |= x = ⊥.

2. No reduction is possible for S with store σ.

3. There exists a set β of variable bindings such that σ′ ∧ β is consistent and a reduction is possible for S with
store σ′ ∧ β.

4. For all β satisfying the above condition, σ′ ∧ β |= x 6= ⊥.

Failed values

The rule for the creation of failed values is given below.

[FAILC]
{FailedValue x y} skip

σ |= y = ⊥ σ ∧ y = z ∧ z = failed(x)
z 6∈ dom(σ)

The second rule for failed values ensures that needing a failed value raises an exception.

[FAILW]
S raise x end

σ |= y = failed(x) σ
if needσ(S, y)

Strictness check

The rules for checking whether a value is strict or not are given below.

[STRICTTRUE]
{IsStrict x y} skip

σ |= y = ⊥ σ ∧ y = true
if strictσ(x)

[STRICTFALSE]
{IsStrict x y} skip

σ |= y = ⊥ σ ∧ y = false
if ¬strictσ(x)

Gate abstraction

The rules for the creation of new gates are given below. The second rule creates a gate that is subordinate to an
existing one.

[NEWG]
{NewGate x} skip
σ |= x = ⊥ σ ∧ x = γ ∧ γ : gate

γ 6∈ dom(σ)

[NEWGS]
{NewGate x#z} skip

σ |= z = ⊥ ∧ x = γ ∧ γ : gate σ ∧ z = γ′ ∧ γ′ : gate ∧ subg(γ, γ′)
γ′ 6∈ dom(σ)

The rule COM governs communication through gates.

[COM]
{Send g x} |κ {Receive h y} |κ′ skip skip

σ |= y = ⊥ ∧ φ σ ∧ y = x
if strictσ(x) ∧ accessσ(γ, κ, κ

′)

where
φ ≡ g = γ ∧ h = γ ∧ γ : gate
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Opening and closing

The ability for a kell to communicate with its environment is governed by the Open and Close operations. Oper-
ation Open opens a gate for communication for a subkell of the current kell, whereas Close closes this gate for
communication. There are thus two prerequisites for a successful communication: (i) knowing a gate name, and
(ii) having an access path established (through previous Open operations) to cross the required kell boundaries.
Note that both arguments to primitives Open and Close can take the value all. If the first argument is all, this
means that the gate specified in the second argument is opened or closed to all children of the current kell. If the
second argument is all, this means that all the gates are opened, or closed, to the subkell specified in the first
argument.

The rules that define the semantics of operations Open and Close are given below.

[OPEN]
{Open k g} |κ skip

σ ∧ κ : kell(π,w) σ ∧ κ : kell(π ∪ grant(σ, k, g), w)
if grant(σ, k, g) 6= ∅

[CLOSE]
{Close k g} |κ skip
σ ∧ κ : kell(π,w) σ ∧ κ : kell(π \ grant(σ, k, g), w)

if grant(σ, k, g) 6= ∅

Kell abstraction

The rules pertaining to the kell abstraction deal with the creation and the replacement of kells. The rule for kell
creation is similar to the rule for thread creation. It creates a new kell as well as a new thread which begins
executing the body of kell statement:

[NEWKELL]
kell{y} S end |κ skip τ ′〈S 〈〉〉

σ |= y = ⊥ σ ∧ σ′ if C

where
C ≡ κ′, τ ′, w, r 6∈ dom(σ) ∧ strictσ(S, {y})

σ′ ≡ y = κ′ ∧ κ′ : kell(∅, w) ∧ w ∧ read(w) ∧ τ ′ : thread(r) ∧ r ∧ read(r) ∧ inth(κ′, τ ′) ∧ in(κ, κ′)

The rule for kell replacement is similar to the rule of procedure replacement. It allows the replacement of a
silent (i.e. non running) kell by a new one while preserving the original kell name. A side effect of this replacement
is to change the status of the replaced kell to active (run) again.

[KREP]
kell{y} S end |κ skip τ ′〈S 〈〉〉

σ ∧ κ′ : kell(π,w) |= φ σ ∧ σ′ if C

where
C ≡ τ ′, r, s 6∈ dom(σ) ∧ strictσ(S, ∅)
φ ≡ y = κ′ ∧ w = packed ∧ in(κ, κ′)

σ′ ≡ κ′ : kell(π, s) ∧ s ∧ read(s) ∧ τ ′ : thread(r) ∧ r ∧ read(r) ∧ inth(κ′, τ ′)

Packed values

Packed values can be modified by means of the Mark operation. The Mark operation takes as input a change
instruction, in the form of a pair of names. The first name of the input pair specifies the name of the gate or
procedure to replace in the packed value. The second name of the input pair specifies the name of the replacement
gate or procedure. A side effect of the operation is that gates or procedures that have thus marked do not get
renamed upon unpacking. The first rule concerns the replacement of gates.

[MARKG]
{Mark z gate(x y) p} skip

σ |= φ ∧ p = ⊥ σ ∧ p = pack(ω, T θ, σ′θ, µ ∪ {γ}) if C
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where
C ≡ σ′ |= γ′ : gate ∧ θ = {γ′ → γ}

φ ≡ z = pack(ω, T , σ′, µ) ∧ x = γ′ ∧ γ′ : gate ∧ y = γ ∧ γ : gate

The next rule deals with the replacement of a procedure inside a packed value. The operation is similar to the
replacement of gates, and has an effect similar to the rule PREP that governs the replacement of procedures, except
this replacement takes place inside a packed value.

[MARKP]
{Mark z prc(x y) p} skip

σ |= φ ∧ p = ⊥ σ ∧ p = pack(ω, T θ, σ2, µ ∪ {ξ})
if C

where

φ ≡ z = pack(ω, T , σ1, µ) ∧ x = ξ′ ∧ ξ′ : proc{$ X1 . . . Xn}S′ end ∧ y = ξ ∧ ξ : proc{$ X1 . . . Xn}S end

C ≡ θ = {ξ′ → ξ} ∧ strictσ(S, ∅) ∧ σ2 ≡ σ1θ ∧ ξ : proc{$ X1 . . . Xn}S end

Packing

The rule for packing is given below. Notice that packing implies passivating the target kell, together with all
of its subkells. Packing produces a packed value, which encapsulates the part of the current execution structure
corresponding to the target kell. The set of marks of the resulting packed value is initially empty.

[PACK]
{Pack x y} |κ τ1 : T1 . . . τn : Tn skip ∅

σ |=
Vm
i=1 φi ∧ y = ⊥ ∧ φ σ ∧ σ′ if C

where
C ≡ subthσ(κ0, {τ1, . . . , τn}) ∧ subkσ(κ0, {κ1, . . . , κm})

φ ≡ x = κ0 ∧ κ0 : kell(π, z) ∧ z = ⊥ ∧ in(κ, κ0) φi ≡ κi : kell(πi, wi) ∧ wi = ⊥

σ′ ≡
m̂

i=1

wi = packed ∧ y = pack(κ0, T , σ, ∅) ∧ z = packed T ≡ τ1 : T1 . . . τn : Tn

The rule for unpacking is given below. Unpacking creates an execution structure which is similar to the packed
one, except all the variables and all the non-marked names in the packed structure are renamed to avoid any
potential conflict between the current store, σ, and the unpacked one, σ′. In addition, unpacking returns a list of
pairs, called the name list. The first elements ξi pairs in the name list are all the gate names that appear in the
packed value. The second element ξiθ of a pair in the name list is the new name which has been substituted to the
the first element of the pair during unpacking.

[UNPACK]
{Unpack y x} |κ ∅ skip T θθ′

σ |= κ : kell(π, z) ∧ x = ⊥ ∧ y = pack(κ0, T , σ′, µ) σ ∧ σ′′′ if C1 ∧ C2

where
C1 ≡ (dom(θ) = dom(σ′) \ µ) ∧ (σ ∧ σ′′′ 6≡ ⊥) ∧ ∀l ∈ ran(θ), l 6∈ dom(σ, σ′)

C2 ≡ (σ′ ≡ σ′′ ∧ κ0 : kell(π′, z′)) ∧ θ′ = {κ0 → κ} ∧ {ξ1, . . . , ξn} = gn(T , σ′)

σ′′′ ≡ x = [(ξ1 ξ1θ) . . . (ξn ξnθ)] ∧ σ′′θθ′ ∧
^

κ′∈tknσ′ (T )

in(κ, κ′θ)
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5.2 OZ/K properties
This section gathers elementary properties of the OZ/K operational semantics. We let →∗ denote the reflexive
and transitive closure of the reduction relation →. We say that an execution structure (σ, T ) results from the
execution of an OZ/K statement, if there exists a OZ/K statement S such that (σ0, τ〈S 〈〉〉) →∗ (σ, T ), where
σ0 ≡ τ : thread(w) ∧ w ∧ read(w) ∧ inth(>, τ).

We say that a task T belongs to a kell κ if for all names τ of threads in T , we either have inth(κ, τ) or
inth(κ′, τ), where κ′ is a descendant kell of the kell κ. The following proposition establishes the separation
property for OZ/K computation. It asserts that two distinct kells in an execution structure cannot hold references
to the same unbound variable (either directly, or indirectly, through cells, procedures, etc).

Proposition 1 Assume (σ, T ), with T ≡ T1 T2 T ′, is an execution structure that result from the execution of an
OZ/K statement, where T1 belongs to kell κ1, T2 belongs to kell κ2, and κ1 6= κ2. If σ |= x = ⊥, and x ∈ v(T1, σ),
then x 6∈ v(T2, σ).

Proof: See Appendix C. 2

The following proposition asserts a form of perfect firewall property for OZ/K, namely, that there exists an
execution structure where a task can be completely isolated from the rest of the other tasks in the execution
structure. Let (T , σ) be an execution structure. We say that κ appears at the top level in (T , σ), if σ = σ′ ∧
in(>, κ), for some σ′. We also say that κ is not referenced in T if there exists no variable x such that x ∈ v(T , σ)
and σ = σ′ ∧ x = κ, for some σ′.

Proposition 2 Let (T Tκ, σ) be an execution structure that results from the execution of a OZ/K statement, where
κ appears at the top level, Tκ is the set of all threads that belong to κ, κ is not referenced in T , there is no thread τ
such that σ |= inth(κ, τ), and σ = σ0 ∧ κ : kell(∅, w), for some σ0, w. The reductions possible from 〈σ, T Tκ〉
can only be of one of the following two forms:

T Tκ T ′ Tκ
σ σ′

or
T Tκ T T ′κ
σ σ′

where T ′κ is the set of threads that belong to κ in execution structure (T T ′κ, σ′), and σ′ is such that there is no τ
such that σ′ |= inth(κ, τ), and σ′ = σ′0 ∧ κ : kell(∅, w), for some σ′0.

Proof: See Appendix C. 2

Informally, if we denote by κ[T ] a task T whose threads belong to κ, the proposition asserts that a kell structure
of the form κ[κ1[T1] . . . κn[Tn]] at the top level, where κ is not referenced outside of κ[. . .] (and thus cannot be
packed), constitutes a perfect firewall for the tasks T1, . . . , Tn. This can be understood intuitively since there is
no thread in kell κ (condition there is no thread named τ such that σ |= inth(κ, τ)) that can act as a relay of
communication between threads in T1, . . . , Tn and the outer environment, and since there is no gate opened in κ
for such communication (condition σ = σ0 ∧ κ : kell(∅, w)).

6 Discussion

6.1 Component granularity in OZ/K
As currently designed, OZ/K supports different forms of components. Kells, of course, constitutes primitive com-
ponents. Notions of components which can be built in standard OZ, such as e.g. port objects, active objects, and
modules, and their variants (such as e.g. port objects sharing one thread) are also available to OZ/K programmers.
This variety of component forms allows programmers to build component-based programs at different granulari-
ties. For instance, having multiple port objects sharing the same thread can reduce their cost to that of a standard
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object, whereas a kell can be as small as a single thread or an active object6. However, these different compo-
nents do not share the same properties, e.g. with respect to passivation and objective reconfiguration, or isolation.
It might be beneficial to study how to unfiy further the different notions involved. For instance, the kell and
thread constructs share many characteristics, and one could think of applying the passivation operation to a sin-
gle thread. The current OZ/K design distinguishes threads and kells because of their different communication
capabilities. However, this distinction could be lifted if one allowed other forms of communication between kells,
and a different passivation semantics.

6.2 Encapsulation and sharing in OZ/K
The kell construct in OZ/K enforces a strong encapsulation, exemplified by the firewall property (Proposition 2
in Section 5.2). This strong encapsulation prevents communications between subkells or between a subkell and
its parent kell’s environment, to bypass the parent kell, which can thus act as a sandbox. Sandboxing can be done
without any knowledge of the behavior of en encapsulated kell, as exemplified by the sandbox examples in Section
4, and thus provides a simple way to enforce given protocols for establishing communication with an environment
outside a sandbox. The encapsulation realized by the kell construct allows in particular to build wrappers as in the
Boxed-π calculus [102].

The strong encapsulation provided by the kell construct can become a hindrance, however, when building
software architectures with component sharing [61]. For instance, A logger might be used to provide a logging
service to different components in a software structure, whose locations, in the component hierarchy, can be
arbitrary. A component such as the logger, can be understood as being shared among all the composite components
that encapsulate its client components. In OZ/K, component structures with sharing can be approximated using
gate opening. For instance, a logger configuration, with two components C1 and C2 that use the logging service,
placed inside composite components CA1 and CB1, and CA2, respectively, can be defined as follows (with LG the
gate at which the logging service is made available by the logger Logger):

kell{CA1}
kell{CB1}

kell{C1} ... end
{Open C1 LG}
...

end
{Open CB1 LG}

end

kell{CA2}
kell{C2} ... end
{Open C2 LG}
...

end

kell{Logger} ... end
{Open all LG}

In the above program sketch, sharing the Logger component amounts to establishing direct communication
channels with it, by opening the LG gate for communication at all the required levels of the component structure. In
the case of a logging service, the communication between a logger client and the logger is typically unidirectional,
with the client just requesting that some information be logged in a single message. If a service such as a database
management service is shared, then one would expect to have interactions between a client and the database take
the for of requests with responses. We can accommodate simply this kind of interactions using subordinate gates.
For instance, with a component structure similar to the one above, we would set:

kell{CA1}

6Note that threads in OZ are extremely lightweight, which authorizes in OZ the liberal use of port objects as units of modularity. The cost
of a kell at execution is no higher than that of an OZ port object.
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kell{CB1}
kell{C1} ... end
{Open C1 LG#all}
...

end
{Open CB1 LG#all}

end

kell{CA2}
kell{C2} ... end
{Open C2 LG#all}
...

end

kell{Database} ... end
{Open all LG#all}

Instructions of the form {Open C LG#all} open the gate LG for direct communication but also all of it subor-
dinate gates, thus allowing, for instance, a subordinate gate to be used as a continuation in a request / response
interaction style. If necessary, one can protect the different gates from tampering by the component involved by
building e.g. the equivalent of FRACTAL interfaces, as shown in Section 6.7, which encapsulate gates and a partic-
ular interaction protocol. Unfortunately, we do not know how to avoid decorating the whole component structure
with Open instructions in order to model component structures with sharing. It seems there is a basic tension
between the need for strict encapsulation, as required e.g. for writing wrappers for untrusted components, and the
definition of “natural” component architectures with sharing. One could of course imagine adopting a different
stance for OZ/K, which would consist in turning by default all kells into transparent ones (i.e. ones which would
allow direct communication on all gates), and in adding a new operation allowing to retrieve and monitor the set of
gates used for communication by kell. Creating transparent kells is easy in OZ/K. The following procedure creates
such kells:

proc{NewKell P K}
kell{K} {P} {Open all all} end
{Open K all}

end

The body of the kell is input to procedure NewKell in the form of a nullary procedure, P. The first Open statement
allows all the subkells of the transparent kell K to have the same communication rights as threads in K. The second
Open statement allows the content of K to have the same communication rights as threads in the current kell.

However we do not have the possibility to dynamically monitor the gates of a kell and preventing communica-
tion using only transparent kells. The problem with the alternate approach would thus be to devise an appropriate
primitive for this gate monitoring and selective gate communication prevention.

A different approach to the issues of encapsulation and sharing would be to rely on a static type system, to
ensure proper encapsulation in a context where sharing is the norm, as with object-based languages. The solutions
devised for object-oriented languages to overcome the aliasing issues, would be relevant here. For instance, Clarke
et al. [36, 37] introduce ownership types which attribute to each object obj an owner that controls the references
to obj. Similar types are used in ArchJava [3] to ensure a form of component encapsulation called communication
integrity. To what extent these ideas, together with the techniques for typing and the dynamic binding of modules
developed for Alice and Acute can be exploited in our setting, remains for further study.

6.3 On network independence
The principle of network independence actually leads us to avoid introducing in the language any abstraction for
remote communication or remote execution. This may seem paradoxical in a language intended for distributed
programming, but this decision actually opens the way for the introduction of many different forms of abstractions
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for distributed programming. Let us explain this in more detail7. The only abstraction for distribution which we
introduce is OZ/K, is that of a kell, a form of locality as can be found in distributed process calculi such as Dπ
or Mobile Ambients. The presence of kells means that we can partition OZ/K computations into separate places.
Now, these places can be realized either as data structures and programs executing on a given machine, or as whole
machines, together with their software environment – including e.g. a virtual machine for running OZ/K programs.
In other words we can view an OZ/K statement either as an executable program, to be run e.g. on an OZ/K virtual
machine, or as a model, that specifies the behavior of some system. A distributed environment with two machines
M1 and M2, an interconnection network N, can be modelled by an OZ/K statement of the form:

kell{N} {NetBehavior} end
kell{M1} {MachineBehavior M1 Add1 Program1} end
kell{M2} {MachineBehavior M2 Add2 Program2} end
thread {TopLevelBehavior} end

where Program1 and Program2 correspond to OZ/K statements to execute on M1 and M2, respectively, and
where Add1 and Add2 correspond to addresses of M1 and M2 on the network, and the overall behavior of the network
is modelled by the two statements TopLevelBehavior and NetBehavior (the statement TopLevelBehavior
typically merely provides for the opening and closing of gates for a direct communication between the network
kell N and the machine kells M1 and M2). The procedure MachineBehavior can also be seen as having a structure
of the form

proc{MachineBehavior M Add Program}
VM in
thread {VirtualMachinery VM} end
kell{VM} {Program M Add} end
end

which means it consists in running a Program – here described as a procedure that takes as argument the name of
the local machine (e.g. a gate representing its IP domain name), and its address (e.g. its IP address) – together with
some additional virtual machinery.

The important point to notice is this: because we have separated the computation space into different kells,
these can be realized in different ways. For instance, the kell VM above can be realized as an OZ/K virtual ma-
chine, able to execute OZ/K statements, such as {Program M Add}, whereas kells M1, M2, N will model the actual
machines and network, that support the execution of the two copies of the VM virtual machine in our distributed
environment. The statements NetBehavior, and {MachineBehavior M1 Add1 Program1}, should then be consid-
ered not as executable OZ/K programs, but as models of the behavior of N, and M1, respectively. From the point
of view of an OZ/K programmer, programming in a distributed setting means accessing, using the communication
constructs in OZ/K (sending and receiving on gates), the services available in the realization of MachineBehavior
and NetBehiavor, just as if they were ordinary OZ/K programs. In other terms, to program in a distributed en-
vironment, we just require that its basic services (typically, communication services) be made available as OZ/K
abstractions. From a semantical point of view, the boundary between actual programs and models of the supporting
environment, is clearly marked, thanks to the separation of computation in different kells.

In a sense, this approach is comparable to a distributed computing extension to an object-based language that
relies on special objects that wrap distributed services available from the supporting environment (communication
libraries, machines and networks). Contrary to classical distributed extensions to object-oriented languages, such
as RMI for Java or Network Objects for Modula 3 [22], however, we do not try to extend the semantics of the
language local communication primitive — method invocation in the case of Java and Modula 3 — to cover the case
of remote execution. Instead, all communications in OZ/K, including those with distributed services, retain their
semantics, and remain strictly local. Also, note an important distinction: with our approach, distributed execution
can be described within the semantics of the language, because of the introduction of localities; this is not the case
with the network objects approach, where distributed execution is not captured by the language semantics. Having
a primitive notion of locality in the language semantics allows to specify different forms of separation, much like

7 A similar case has been made for a network independent abstract machine for the Kell calculus in [21].

35



having a notion of thread in the language semantics allows to formalize concurrent execution and synchronization,
compared to an approach where concurrency is introduced as an external library to a sequential language, and thus
is not part of the language semantics.

Overall, our approach to distribution is similar to that of Acute, which adheres to the belief that “a general-
purpose distributed programming language should not have a built-in commitment to any particular means of
interaction” [101, 99]. However, in contrast to Acute, we believe it is important to add a basic notion of separation
in the language semantics, so as to be able to provide a model of a distributed environment in terms of the language
semantics. In Acute, distribution is only manifest through the sending and receiving of marshalled modules.

Supporting different communication capabilities in a uniform fashion can be obtained via the export/bind

design pattern, which has been used to good effect in different operating system and middleware developments
[5, 45, 47, 68]. This architectural pattern can be summarized as follows:

• Communication between different sites first requires that these sites share a common naming context, within
which communicating entities at each site can be unambiguously designated (named). The export operation
allow an entity in a participating site to receive an unambiguous name within the common context.

• Communication between different sites then requires the existence of binding factories. A binding factory
supports the bind operation, which establishes a communication path (called binding) between a set of
named entities.

A simple example of the export/bind pattern is provided by the establishment of a remote operation channel
between a client and a server located on two different machines. To enable clients to connect to the server requires
first that the server’s local name be exported with the naming context that is provided by the chosen remote
operation protocol. The export operation returns a name that unambiguously designates the server in the context
of the chosen remote operation protocol, and that can be communicated to potential clients. Once a client has
obtained the exported name of the server, it can invoke the appropriate binding factory to establish a binding with
the server via the bind operation. Once the binding is established, the client can invoke operations on the server.
This behavior can be readily captured as follows. We model as above each site and the network by a distinct kell.
A server component is modelled as a kell communicating on a dedicated half-gate (with the receive capability
private to the server kell). Each request to the server takes the form of a message, i.e. a tuple with two fields:
the first field contains the request arguments, the second field contains a subgate of the server gate, which can be
used as a continuation to send back to the client the response to the request. Each site runs a BindingFactory

component (typically as part of the VirtualMachinery behavior in the previous code snippet), which provides
both an Export operation and a Bind operation. The Export operation takes as input the interface of a server (its
dedicated half-gate) and returns a chunk that can be used as input to the Bind operation to create a communication
channel between sites (e.g. similar in principle to a Relay process as defined in Section 4.2).

6.4 Gate semantics and implementation
Two important design choices have been made concerning gates and gate communication. First, gates are not
located, i.e. a gate does not belong to a particular kell. This is possible because of the network independence
assumption, which makes all gates local (to the top level kell in an OZ/K virtual machine). An advantage of this
design choice is that gates can be used indifferently by all kells, subject to the opening and closing specifications
that govern communication on gates. A disadvantage is that the usual notion of component interface, which implies
some sort of ownership of interfaces by components, must be encoded, as demonstrated with the encoding of half-
gates. Second, communication via gates is by atomic rendezvous. Again, the network independence assumption
means this is reasonable since all gates are assumed to be local to an OZ/K virtual machine. A main advantage of
this design choice is that there is no state associated with gates. This in turn simplifies considerably the semantics
of packing and unpacking. In particular, both operations can take place at any point during an OZ/K computation.
If a different communication semantics had been chosen, e.g. communication by means of bounded or unbounded
buffers, then packing and unpacking would have had to deal with the state of communication buffers, as is the
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case e.g. in the implementation of the Kell calculus abstract machine reported in [21]. Another advantage is that
it is possible to encapsulate different communication semantics in connectors, i.e. kells that act as communication
channels between other kells, as illustrated in Section 4. In particular, it is possible to define connectors with
explicit flow control, in contrast e.g. to ports or mailboxes in OZ, E, Erlang, or Sing#.

A disadvantage of this choice of communication semantics is that care should be exercised to obtain an efficient
implementation. However one can note that communication by atomic rendezvous-vous can be implemented
efficiently, as shown e.g. by its use as the interprocess communication primitive in the Minix 3 operating system
[59]. Also, it is possible to devise efficient specific implementations for rendezvous-vous with certain forms of
kells which can be assumed to always have a thread waiting for communication, e.g. when dealing with kells
providing an asynchronous communication service based on buffers, or when dealing with kells that support server
interfaces as in the FRACTAL model.

Overall, the current design choices represent a reasonable compromise, for they do allow different communi-
cation semantics to be defined as different forms of “connector” kells, while allowing a clear semantics for packing
and unpacking. However, there are several questions pertaining to the definition of communication primitives for
kells that remain open. For instance, programing control loops for self-manageable systems, as advocated by [110],
could be facilitated by introducing regulative superposition [64], as supported in the IP formalism [49]. This in
turn could require adopting some form of multicast guarded communication, with kell containment understood as
superposition composition.

6.5 Dynamic reconfiguration in OZ/K
OZ/K provides basic support for dynamic reconfiguration through kells and packing. However, there are at least
two issues that still need to be addressed with respect to dynamic reconfiguration: the granularity of possible
reconfigurations, and automated support for state transfer.

The unit of dynamic reconfiguration in OZ/K, the kell, is coarse grained, for it corresponds roughly to that
of an active object. On the one hand, this level of granularity provides a good isolation between components:
components can fail independently, and failure handling can take place in separate monitoring components, as
illustrated in Section 4. On the other hand, finer-grained component-based designs, illustrated e.g. in [111], do not
get built-in support for on-line update and replacement. Supporting dynamic reconfiguration at this level, would
require the ability to update executing code at the level of procedure frames, possibly exploiting ideas for dynamic
software update as proposed e.g. in [60], and for updateability analysis, as presented in [106].

The second issue with dynamic reconfiguration has to do with the automation of state transfer to ensure safe
component updates. The semantic issues associated with dynamic reconfiguration have been explored in some
works in the past two decades [23, 55]. A key enabler is the capture of appropriate state information on the compo-
nent to replace. In OZ/K, this information is made available in the form of a packed value. Providing support for
automated state transfer would require having the ability to introspect the contents of a packed value, at a sufficient
level of granularity. A fine-grained access to the contents of a packed value can easily be provided by a standard-
ized record representation for tasks and stores. However, support for extracting higher-level state information from
packed values record representation would still be required, typically exploiting meta-programming ideas and in
particular template meta-programming, e.g. as described for Haskell in [104].

6.6 Failure and event handling
The failure handling facilities provided in OZ/K still remain fairly crude, and depend on predefined status infor-
mation for threads and kells. Additional support is required in the OZ/K computation model for programming
different forms of failure detectors, dealing e.g. with omission failures. Two alternatives seem to be worth explor-
ing. The first one would imply introducing an explicit notion of time in OZ/K, relying on the large body of work
dealing with timed transition systems, and the timed-π-calculus in particular (for instance, [17]). The second one
would be to introduce reactive programming constructs as in the ULM programming model [25], which combines
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synchronous and functional programming. The second alternative is particularly appealing for it provides an ele-
gant way to deal with multiple forms of timers and interrupts, and formalizes event-driven execution with no need
to introduce an explicit notion of time. A crucial element in reactive programming is the ability to react to the
absence of events. It would be interesting to see how this relates to the ability to test for the determinacy of logical
variables, and whether streams in OZ and OZ/K could be used to model flows of reactive events.

6.7 On component-based programming in OZ/K
The kell concept provides a basis for component-based programming, with strictly enforced component encap-
sulation and isolation. As an illustration of this fact, we define in this section different constructs to support
programming following the FRACTAL component model. The FRACTAL model is a language-independent re-
flective component model, which targets the construction of highly configurable systems. It has been used for
the construction of several configurable systems, including operating system kernels [47], message-oriented mid-
dleware [68], for the instrumentation and automatic deployment of application server clusters [24], for building
auto-adaptive systems [44], for building systems with integrated quality of service (QoS) management [109], or
building adaptive multimedia applications [66]. The main elements of the model can be summarized as follows:

• Components are run-time entities, that are encapsulated, and that exhibit interfaces (access points) for com-
munication with their environment. Interfaces can be of two kinds: server interfaces, which can receive
operation invocations (either simple requests with no response, or requests with responses); client interfaces,
which can emit operation invocations.

• Components can provide different meta-level interfaces for accessing their internal structure, and for control-
ling their behavior. In the general case, the internal structure of a component can be understood as comprising
membrane and contents. The contents of a component consists in a set of other components. The membrane
of a component embodies the specific behavior of the component, including meta-level behavior, e.g. for
supporting introspection and intercession.

The FRACTAL model does not prescribe a given set of meta-level interfaces for components, however several
useful such interfaces have been identified [28], including:

• Component. This interface provides access to the different interfaces of a component.

• Content Controller. This interface provides access to the contents of a component, and the ability to add or
remove subcomponents.

• Binding Controller. This interface provides the ability to bind client interfaces of the component with server
interfaces of other components in its environment.

• Attribute Controller. This interface provides the ability to access the attributes of a component, a set of
named pieces of information associated with a component.

• Lifecycle Controller. This interface provides the ability to access and modify some macro-states of a com-
ponent, such as active, waiting, stopped, etc.

We present in this section an interpretation in OZ/K of the FRACTAL specifications. This interpretation is
analogous to the interpretation of objects in the OZ kernel computation model. Briefly, we interpret a FRACTAL
component as an OZ/K kell, whose interfaces are mapped onto gates. The sub-components of a FRACTAL compo-
nent are modelled as sub-kells, whereas the membrane of a component is modelled as a record (of shared attributes)
and processes, which can comprise operation handlers, and meta-level interface controllers.
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Component templates. We first define component templates, i.e., by analogy with object-oriented programming,
classes for components. This allows to enforce certain programming conventions when building components. A
component template Temp is a record that contains:

• A set of server interface templates, accessible via the feature svIfs. A server interface template contains an
interface name, and a record of operations. The features of the operation record are the names of the opera-
tion. The fields of the operation record are operations. An operation is a procedure with three arguments: a
message M, which is always a record, whose label denotes the name of the operation; a parameter State the
represents the current state of the component owning the interface; and a reference S to the interface itself.

• A set of client interface templates, accessible via the feature slIfs. A client interface template contains an
interface name, and a set of operation names to be used as labels of messages

• A set of names, that correspond to the names of the attributes of the component, accessible via the feature
atts. Each attribute is a stateful cell that can be accessed by the attribute name, which is either an atom or
a name. The record of all attributes of a component constitute its state.

• A template for a component controller, acessible via the feature comp. The component controller is the most
basic form of controller for a component. It provides access to the other interfaces of the component.

• A set of controller templates, accessible via the feature ctrls. A controller provides a meta-level interface
to implement. A controller template takes the form of a procedure. A call to the procedure instantiates a new
controller for the current component.

• A set of component templates, accessible via the feature subTemps, that constitutes the templates required
to create the subcomponents of the enclosing composite.

• An initialization procedure, accessible via the fature init. This procedure is responsible for initializing the
internal structure of the composite component, including creating subcomponents, binding them together,
binding subcomponent interfaces to interfaces of the enclosing composite.

Components. Components are created from component templates, via the following procedure (note that we
make use of standard list and record operations as provided in the MOZART environment):

proc{NewComponent Template Gate}
K Gate = {NewGate $} in

kell{K}
State IST ICT CT CCT Component Meta = c(ist:IST ict:ICT ct:CT cct:CCT) in
{List.forAll [IST ICT CT CCT] proc{$ T}{{NewDictionaryObject T}end}
{MakeRecord s Template.atts State}
{Record.forAll State proc{$ A}{NewCell _ A}end}
{Template.comp K Component State Meta Gate}
{Record.forAll Template.ctrls proc{$ I}{I K State Meta}end}
{Record.forAll Template.svIfs proc{$ I}{Interface.newS I Component State IST _}end}
{Record.forAll Template.clIfs proc{$ I}{Interface.newC I Component ICT _}end}
{Template.init K State c(IST ICT CT)}

end
end

Component creation proceeds as follows. First, dictionaries are created8 that will hold meta data associated
with the component: the table of (external) server interfaces of the component, called IST; the table of (external)
client interfaces of the component, called ICT; the table of component controller interfaces, called CCT; the table of
subcomponents, called CT. Then a record is created that will constitute the internal State of the component, in the

8Note that, to simplify the code, we postulate the existence of an operation NewDictionaryObject which returns not a standard
MOZART dictionary but a dictionary object. Just like objects in MOZART, a dictionary object is a procedure which takes an operation request
as argument. An operation request is a record whose label corresponds to the name of the operation.
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form of a set of attributes. The component controller of the component is then created (and put in the componaent
controller table CCT as a side effect). Other controllers are created, followed by server and client interfaces, and
finally the initialization procedure is called (which typically can create subcomponents and configure them).

Interfaces. We define here the module Interface that allows to instantiate server and client interfaces from
server and client interface templates, respectively. For server interfaces, it essentially creates a new gate which
can be opened for communication with the owner component (the owner component is the current component
executing the NewServerIf operation). For client interfaces, it essentially creates a cell that can be updated with
a server interface, which corresponds to the establishment of a binding between the client interface and a server
interface.

ServerIf TagS={NewName $} NewServerIf IsServerIf
ClientIf TagC={NewName $} NewClientIf IsClientIf
in
proc{IsServerIf I B} {HasFeature TagS I B} end
proc{NewServerIf Template Component State IfT Server}

G = {NewGate $}
Server = {NewChunk r(TagS:Request open:OpenS close:CloseS owner:Component) $}
OpenS = proc{$ K} {Open K G#all} end
CloseS = proc{$ K} {Close K G#all} end

Request = proc{$ M}
L = {Label M $} in
if {HasFeature Template.ops L $}
then case M of

L(R unit) then {Send G M}
[] L(R X) then Y RG in {NewGate G#RG}{Send G L(R RG)}{Receive RG Y} X = Y
else raise invalidRequest(M) end
end

else raise invalidOperation(L) end
end

end

Handle = proc{$}
M L = {Label M $} in

{Receive G M}
case M of

L(R unit) then
try {Template.ops.L M State Server}
catch _ then skip end

[] L(R RG} then Y in
try {Template.ops.L L(R Y) State Server}{Send RG Y}
catch E then {Send RG error(E)} end

else skip end
{Handle}

end

in
thread {Handle} end
{IfT put(Template.ifName Server)}

end

\% Client interfaces

proc{IsClientIf I B} {HasFeature TagC I $} end

proc{NewClientIf Template Component IfT Client}
Ch = {Newcell unit $}
Client = {NewChunk r(TagC:Ch owner:Component bind:Bind unbind:Unbind invoke:Invoke) $}
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Bind = proc{$ S}
if {IsServerIf S $} then Ch := S
else raise notServerIf(S) end
end

end

Unbind = proc{$} Ch := unit end

Invoke = proc{$ M}
L = {Label M $}
S = @Ch in
if {Member L Template.opLabels $}
then case M of L(R X)

then {S.TagS M}
else raise invalidRequest(M) end
end

else raise invalidOperation(L) end
end

end

in
{IfT put(Template.ifName Client)}

end

Interface = ifMod(isServer:IsServerIf newS:NewServerIf isClientIf:IsClientIf newC:NewClientIf)

The procedure NewServerIf creates a new server interface (a chunk, with features TagS, open, Close,
and owner), creates a thread dedicated to the handling (via procedure Handle) of operation requests on the newly
created server interface, and registers the newly created server interface in the interface table ifTwhich is passed as
a parameter to the procedure. An interface table is a dictionary, whose keys are the names of interfaces (represented
as OZ/K atoms or names) it holds. The Template parameter of the procedure is a server interface template,
the Component parameter corresponds to the owner of the newly created interface, and the State parameter
corresponds to the record of attributes of the owner component. The Handle behavior is simple: it awaits a
message on the gate G which is attached to the server interface. A message is essentially a record whose label is
the name of the requested operation, and which contains two fields: the first one is a record of arguments of the
operation, the second one is a continuation for the operation. If the continuation is unit, this indicates that the
operation is a simple request with no response. Otherwise, the continuation is a gate on which the response to the
operation request is returned. Note that Handle serves requests sequentially. If another behavior is required, such
as e.g. handling requests concurrently with a pool of threads and a scheduler, then all that is required is to change
the Handle procedure to implement the required behavior.

A server interface can be passed freely in communication to different components. The OpenS operation is
present to allow communication on a server interface to cross component boundaries, i.e. for both operation re-
quests and operation responses (via the statement {Open K G#all} in the body of procedure OpenS) to freely
cross component boundaries. Notice that the gate which a server interface encapsulates cannot be used directly.
This enforces communication on a server interface to obey the request/response protocol associated with its opera-
tion. Thus, it is not possible for a thrid-party to listen on the gate of a server interface and to intercept requests and
responses coming sent on this gate. This construction is similar to the half-gate construct presented in section 4.

A client interface can only be known outside of its owner component via its interface name (this is because a
client interface is chunk that holds a cell – a non-strict value) 9. However it is possible to bind a client interface to a
server interface from outside its owner component by using the binding controller (server) interface below, which
will use to that effect the Bind operation provided by the client interface. The Bind operation merely updates

9Ensuring that an interface name is unambiguous within the context of a component is the responsibility of the procedures that update the
component interface tables, i.e. procedures NewS and NewC in module Interface. However, for the sake of simplicity, we have not
added these checks in the code of these two procedures.
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the client interface internal cell with the server interface passed as argument. The Invoke operation on a client
interface can be used to communicate via a client interface (note that only threads within its owner component can
make use of a client interface). It takes a message as an argument, which is a record whose label corresponds to
the name of an operation supported by the interface, and which contains two fields. The first one is the content
of the message. The second one is the continuation of the message. If it is bound to unit upon invocation of the
Invoke operation, this means the operation is a simple request with no expected response. Otherwise, it will be
bound to the response to the operation request when the latter completes.

Component controller. We define here the component controller from the FRACTAL specification10. It al-
lows to discover the different interfaces of a component. Note that, from an interface, it is possible to recover
the Component controller interface, by accessing the interface’s owner feature. The component controller pro-
vides operations with which it is possible to retrieve all the server interfaces (GetSIfs), all the client interfaces
(GetCIfs), and all the controller interfaces (GetCtrls) of a component. In addition, operation (GetHand) re-
trieves the name of the kell that constitutes the component. The gate Gate provides a means to retrieve the
component interface itself11.

proc{ComponentCtrl K Component State Meta Gate}
Temp = temp(ifname:component

ops:m(getSIfs:GetSIfs getCIfs:GetCIfs getCtrls:GetCtrls getHand:GetHand))
GetSIfs = proc{$ M}

case M of getSIfs(_ R) then {Meta.ist toRecord(ist R)} else skip end
end

GetCIfs = proc{$ M}
case M of getCIfs(_ R) then {Meta.ict toRecord(ict R)} else skip end

end

GetCtrls = proc{$ M}
case M of getCtrls(_ R) then {Meta.cct toRecord(cct R)} else skip end

end

GetHand = proc{$ M}
case M of getHand(_ R) then R = K else skip end

end

in
{Interface.newS Temp Component State Meta.cct Component}
thread P = proc{$}{Send Gate Component}{P} end in {P} end

end

Note that the creation of the component controller uses the Interface module and its operation for creating
server interfaces, which puts in place, as a side effect, a Handle thread for dealing with operation requests. The
component controller behavior is thus determined by the Handle procedure defined in the Interface module,
and the operations associated with the Component server interface. This scheme is used for the other controllers
defined below.

Attribute controller. We define here the attribute controller from the FRACTAL specification. This controller
allows to access the attributes of a component, through getter and setter operations.

proc{AttributeCtrl K State Meta}
Temp = temp(ifname:attribute ops:m(get:Get set:Set))
Get = proc{$ M}

10For the sake of simplicity, there are some slight differences between the controller operations we define in this section, and those in the
FRACTAL specification. However the essential functionality of the FRACTAL default controllers is preserved.

11This gate can be seen also as a component identifier. To turn it into a true component identifier would require to wrap it in a half-gate, as
illustrated in Section 4, so that it is only possible to receive on this gate. For the sake of simplicity, this is not shown here.
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case M of get(A R) then R = @(State.A)
else skip
end

end

Set = proc{$ M}
case M of set((A V) unit) then (State.A) := V
else skip
end

end

in
{Interface.newS Temp Component State Meta.cct _}

end

Binding controller. We define here the binding controller from the FRACTAL specification. This controller
allows to bind and unbind client interfaces of a component to server interfaces of another component.

proc{BindingCtrl K State Meta}
Temp = temp(ifname:binding ops:m(bind:Bind unbind:Unbind))
Bind = proc{$ M}

case M of bind((L S) unit)
then C = {Meta.ict get(L $)} in {C.bind S}
else skip
end

end

Unbind = proc{$ M}
case M of unbind(L unit)
then C = {Meta.ict get(L $)} in {C.unbind}
else skip
end

end

in
{Interface.newS Temp Component State Meta.cct _}

end

The Bind operation takes as arguments the name of the client interface to bind (as registered in the component’s
client interface table), and a server interface. The name of a client interface can be an atom (as is the case here
with controller interfaces), or an OZ/K name.

Content controller. We define here the content controller from the FRACTAL specification12. This controller
allows to add and remove subcomponents, to and from a component.

proc{ContentCtrl K State Meta}
Temp = temp(ifname:content ops:m(add:Add remove:Remove))
Add = proc{$ M}

case M of add((V G) unit)
then KK W Comp in

kell{KK} {V.mark top(KK) W}{V.Mark gate(G:G)}{Unpack W _} end
{Receive G Comp}
{Meta.ct put(G Comp)}

else skip
end

end

12In the FRACTAL specification, the content controller supports an operation that returns the internal interfaces of a component, i.e. interfaces
that are provided by interceptors for subcomponent interfaces. We have not defined this operation to keep things simple.
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Remove = proc{$ M}
case M of remove((Comp G) R)
then K = {Comp getHand(_ $)} in

if {Meta.ct member(G Comp) $}
then {Meta.ct remove(G Comp)} {Pack K R}
else R = notSubComponent(Comp G)
end

else skip
end

end

in
{Interface.newS Temp Component State Meta.cct _}

end

The Add operation takes as argument a packed value V that contains the component to add, and a gate G, which
corresponds to the gate on which to retrieve the component controller interface of the added component. The Add
operation just unpacks the packed component in a new kell. The gate which G which identifies the component is
preserved, and the component controller interface of the new sub-component is added to the sub-component table
of the current component. The Remove operation takes as argument a component controller interface and a gate G
that identify the sub-component of the current component to remove. The operation returns a packed value which
contains the remove sub-component, after having removed the appropriate entry from the sub-component table of
the current component.

Lifecycle controller. We define here the life cycle controller from the FRACTAL specification. This controller
allows to start and stop the execution of a component (apart from its controllers).

proc{LifecycleCtrl K State Meta}
Temp = temp(ifname:lifecycle ops:m(start:Start stop:Stop getState:GetState))
Status = {NewCell stopped $}

Stop = proc{$ M}
T = Meta.ct in

case M of stop(_ unit)
then O N in {Exchange Status O N}

if O == started
then

R = {T toRecord($)}
L = {Record.arity R $}
P = proc{$ G}

V = {T get(G $)} K = {V getHand(_ $)}
W = {Pack K $} Z = {W.mark gate(G:G) $} in
{T remove(G)} {T put(G Z)}

end
in
{List.forAll L P} N = stopped

else skip
end

else skip
end

end

Start = proc{$ M}
T = Meta.ct in

case M of start(_ unit)
then O N in {Exchange Status O N}

if O == stopped
then

R = {T toRecord($)}
L = {Record.arity R $}
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P = proc{$ G}
V = {T get(G $)} K W Comp in
kell{K} {V.mark top(K)}{Unpack V _} end
{Receive G Comp}
{T remove(G)} {T put(G Comp)}

end
in
{List.forAll L P} N = started

else skip
end

else skip
end

end

GetState = proc{$ M}
case M of getState(_ R) then R = @Status
else skip
end

end

in
{Interface.newS Temp Component State Meta.cct _}

end

7 Related work
OZ/K is related to several bodies of work, which we can classify in, roughly, the following categories: component-
based programming models, architecture description languages, programming languages, process calculi.

Programming languages. The reference language for open programming is the Java language [12, 54], with its
comprehensive programming environment. A number of open programming facilities are provided by Java and
its associated environment (e.g. through class loading, remoting and security mechanisms), but they still exhibit
important limitations, e.g. with respect to modularization and componentization (no native notion of component,
except through the notions of Java Beans or EJBs, but without hierarchical components and control over component
interconnections; limited form of modules through OSGI bundles), explicit marshalling and pickling (no generic
pickling mechanism, serialization provides only limited marshalling – e.g. code cannot be serialized), dynamic
linking, and isolation (dynamic linking and sandboxing available through class loaders and security managers,
with complex APIs and no formal semantics). Overall, support for open programming in the Java environment
appears complex, with crucial aspects dealt with in environment libraries and associated APIs, and with no formal
semantics.

A few programming languages are built around a notion of locality, notably JoCaml [48], Nomadic Pict [114],
O’Klaim [18], ULM [25]. None of these languages provide the ability to build sandboxes with strong isolation
properties as OZ/K provides. Except for JoCaml (which supports hierarchical localities and strong mobility),
localities in these languages essentially represent execution sites.

A number of works have considered recently open programming issues, dealing in particular with software
configuration, modules and dynamic linking, such as e.g. [8, 30]. These works focus on basic formalisms and
calculi dealing with specific issues. There have been comparatively less work on programming language designs
taking open programming features into account. Recent ones include AchJava [3, 4], Assemblage [72], Compo-
nentJ [97, 98], E [80], Jiazzi [78], Piccola [2, 75], Scala [83], Classages [71], Sing# [46], OZ [111], Alice [91, 90],
Acute [99, 100, 101] and O-Klaim [19].

ArchJava, ComponentJ, Jiazzi, Assemblage and Classages focus on the notions of components and component
composition. ArchJava, Assemblage, and Classages come closest to the notion of component as embodied in the
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kell notion in OZ/K. However, even though ArchJava and Classages components are units of encapsulation, and
provide what ArchJava calls communication integrity, components in ArchJava and Classages are not units of fault
isolation (multiple threads may traverse a given component at any point in time). Also, component configurations
in ArchJava and Classages can evolve at run time, through the creation of new components and new connectors,
but these evolutions are limited by what the behavior programmed in component classes and classages. ArchJava
and Classages do not provide for the kind of unplanned reconfigurations and component mobility that can take
place in OZ/K through the use of the Pack and Unpack primitives, and they do not support passivation, failure
detection, and isolation, as OZ/K does. Assemblage has recently been extended to include explicit deployment
[70], but still the language does not provide support for passivation and isolation.

Piccola is a scripting language developed on top of a formal kernel, the asynchronous π-calculus with extensible
records (called forms). Piccola is intended as a composition language, which derives its expressive power from
the combination of the π-calculus lexical scoping and name passing, together with extensible records, which allow
e.g. the encoding of generic wrappers and higher-order composition schemas. Piccola’s notion of component is
that of a π-calculus process, and remains limited with respect to the handling of distribution, isolation, explicit
marshalling and passivation, compared to OZ/K.

Scala combines object-oriented and functional programming in a statically typed programming language,
which supports class mixins and views, with a very expressive type system. The notion of component and compo-
nent composition in Scala is closer to the notion of module than to the run-time unit of isolation and reconfiguration
that OZ/K provides with its notion of kell. In addition, Scala does not provide support for passivation, explicit mar-
shalling and pickling, as available in OZ/K.

Alice can be understood as an extension of Standard ML [81] that offers higher-order modules, packages (es-
sentially, an extension of the notion of dynamics [1], which combines a higher-module with its dynamic signature),
pickles (marshalled forms of packages), components, and concurrency with futures and laziness. The Alice notion
of component (or dynamic module) can be understood, following [90] as a function, taking packages as arguments
(imports), and that evaluates to a package (containing the export module). The Alice notions of packages, pickles
and components, formalize, in a strongly typed setting, similar notions of notions of functors and pickles that ap-
pear in OZ. Still, compared to OZ/K, Alice does not provide support for passivation, and the notion of sandbox
in Alice, available through a notion of component manager that is part of the Alice library environment, is not
accessible to programmers.

Acute is also a language in the ML family, with extensive support for open programming in a strongly typed
setting, including explicit marshalling, dynamic linking, dynamic modules, support for versioning constraints,
support for concurrency through threads, and even a form of passivation through the ability to thunkify running
threads. Acute also introduces the notion of mark to control the extent of dynamic linking in module. The notion
of mark in Acute is related to the mark operation on packed values in OZ/K, that can be exploited to obtain similar
effects (e.g. shipping only the relevant portion of a module code, as illustrated in Section 4). Compared to OZ/K,
Acute does not support sandboxing and isolation, and it supports open programming through a relative complex
set of mechanisms that are subsumed in OZ/K by a smaller set of constructs (namely via kells, gates, and packing).

O-Klaim provides a Java-based, object-oriented programming language built on a formal kernel, the Klaim
process calculus [82], that provides generative communication à la Linda [51, 52]. O-Klaim supports classes and a
form of mixins with first-class status, that provide support for mobile code in a strongly-typed setting. In contrast
to OZ/K, the notion of dynamic module provided by O-Klaim (also in comparison with Alice and Acute), through
its mobile mixins appears limited (for instance, higher-order modules are not supported). In addition, O-Klaim
does not provide support for sandboxing, isolation, and passivation.

The E programming language [80], whose aim is to be a secure language, combines object-oriented program-
ming, capability-based access control, and concurrency control. Concurrency control in E is based on the notion
of vat, which corresponds roughly to a thread communicating by its environment (other vats) via asynchronous
remote method invocation with futures. E provides extensive support for capabilities, but fails to provide the
sandboxing and passivation functionality that OZ/K supports.

The Sing# language [46], developed as part of the Microsoft Singularity operating system, that extends the C#
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programming language with isolated processes and asynchronous message passing communication. Processes in
Sing# are isolated by virtue of being units of fault isolation, and of their code being unmodifiable, at run-time.
However, Sing# does not provide the sandboxing and capabilities of OZ/K, and relies on standard C# notions and
associated .Net capabilities for handling modules and code deployment.

OZ/K obviously builds upon OZ. The benefits brought by OZ/K have already been identified in the introduc-
tion. Our work on OZ/K is also related to recent proposals for extending OZ. A first attempt at exploiting a locality
concept inspired by the Kell calculus was made in [63]. In this paper, localities (named “membranes”) are finer
grained than kells in OZ/K, but they are used only for communication control (confinement), and do not constitute
units of failure isolation, or of passivation. The kell construct in OZ/K seems in line with the proposed design
guidelines for a secure OZ, presented in [105].

Like OZ, OZ/K is an essentially untyped language. This is in contrast to most of the languages cited above
(Acute, Alice, ArchJava, Classages, ComponentJ, O-Klaim, Scala), which are statically typed languages (with
forms of dynamics for some, such as Acute and Alice). Static type checking has well-known advantages, and
languages such as Acute and Alice provide stronger safety guarantees during execution than OZ/K does. However
an untyped setting provides more flexibility when trying to combine different language features, as we are doing in
OZ/K. It also allows for a simpler formal operational semantics (compare e.g. the operational semantics of OZ/K,
and that of Acute). Devising a strongly-typed variant of OZ/Kis an item for further study.

Component-based programming models. Several component models have appeared during the last decade, in
industry standards and specifications, such as Sun’s Java Beans, and Enterprise Java Beans (EJBs) [107], Microsoft
COM and .Net [73], the OMG CORBA Component Model (CCM) [84], the OSGI Bundle model [86], IBM and
BEA’s Service Component Architecture (SCA) [62], the Grid Forum Commmon Component Architecture (CCA)
[11]. An overview and discussion of several of these models can be found in [108]. Some of these models (e.g.
CCA, SCA) merely cater for interface specifications and managing inter component connection. Other, such as
Java EJBs and .Net provide comprehensive programming environments. However, even the most complete ones
fail to support all the open programming capabilities presented in this paper (i.e. support for components, dynamic
modules, dynamic linking and binding, isolation, fault handling, and passivation) in an integrated fashion. Their
programming support typically takes the form of complex and loosely integrated APIs, with no formal semantics,
and the use of several different languages and formalisms to deal with open programming issues such as e.g. dis-
tributed deployment and configuration, and limited native support for dynamic reconfiguration. More experimental
component models such as OpenCOM [38, 41] and Fractal [27] provide a stronger support for dynamic reconfig-
uration, but, as with other programming language independent models, such as CCM, their implementations are
typically limited by the host programming environment. This is apparent e.g. with Java implementations, which
suffer from the limitations of the language and its associated environment.

Architecture Description Languages. During the past fifteen years, several architecture description languages
have been developed, that embody component models and linguistic support for component-based specification
and programming (see e.g. [79] for a survey). Of particular interest are ADLs that provide the ability to spec-
ify or program dynamically reconfigurable architectures (see e.g. [26] for a survey). These include in particular
Rapide [74], Darwin [76, 77], CommUnity [112, 113], Olan [13], Dynamic Wright [7, 6], π-ADL [85]. Of these,
CommUnity and π-ADL provide the more expressive power, especially with respect to dynamic reconfigurations.
CommUnity is based on the Unity [34] and IP [49] specification languages, and describes a component configura-
tion as a graph with nodes labelled by programs and arcs labelled by morphisms. In CommUnity, a reconfiguration
is thus specified by conditional graph rewriting rules. While CommUnity can describe complex reconfigurations,
it does not appear possible to specify a situation where a component is to be replaced by an unknown one, received
on a communication channel. In π-ADL, components and component specifications are specified as higher-order
processes, with process specifications combining process descriptions as in the higher-order π-calculus [94], and
behavioral properties expressed in a variant of the µ-calculus [65]. and reconfigurations correspond to higher-
order actions effected by processes. Thanks to its higher-order communication, only π-ADL provides the ability to
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specify dynamic reconfigurations that depend on components received from the environment (e.g. as arguments of
messages). However, π-ADL does not provide the equivalent of the packing capability of OZ/K, with its ability to
suspend and marshall a running component. Overall, the architecture description languages that provide the more
extensive support for dynamic reconfiguration, allow high-level behavioral specifications, but do not explicitly sup-
port un-planned dynamic reconfigurations that can be expressed in OZ/K, through a combination of higher-order
communication and passivation.

Process calculi. The notion of kell in OZ/K is directly inspired by the Kell calculus [96], and the kell calculus
with sharing developed in [61]. The OZ/K notion of packing and unpacking is close to the passivation operator
of the M-calculus [95]. For a more in-depth discussion of the relations between kells and localities in other
distributed process calculi, such as Mobile Ambients [31] and their many variants, the Distributed π-calculus [89]
and its higher-order variant SafeDpi [58], the Seal calculus [32], and Klaim [18], the reader can refer to [96]. The
approach advocated in OZ/K, inherited from the Kell calculus and the M-calculus, is the only one to combine a
higher-order approach as can be found in SafeDpi, and the possibility to passivate a locality. The Seal calculus can
approximate to some extent the effect of passivation, but at the expense of complex encodings in order to simulate
simple Kell calculus moves.

Two recent process calculi that offer the possibility of dynamic reconfiguration are the γ-calculus, that embod-
ies a higher-order chemical computation model [14, 15], and Homer [53], that provides for locality passivation as
in the Kell calculus. As [16] illustrates, it is possible to program some forms of dynamic reconfigurations in the
γ-calculus. However the calculus does not allow for passivating executing chemical solutions (only inert solutions
can be matched by pattern matching), which would be the equivalent of passivating a kell. As a result, it is un-
clear how to support un-planned reconfigurations in the γ-calculus, where part of the system can be modified even
though it was not programmed to account for such a reconfiguration. Homer is very close to the Kell calculus, but
it allows the passivation of localities from an arbitrary ancestor in the locality tree, provided the path from ancestor
to descendant is known. In contrast, OZ/K, as in the Kell calculus, only allows an immediate parent locality to
passivate a given locality. This preserves the local aspect of all OZ/K reductions. In addition, it is possible if
necessary to encode Homer-type passivation through some form of content controllers à la FRACTAL(see Section
6.7 for an encoding of simple content controllers).

Finally, it is worth noting that, although very close to the kell constructs in OZ/K are close to those of the
M-calculus and of the Kell calculus, there are some important differences. The packing operation is very similar to
the passivation operation of the M-calculus, but the M-calculus relied on located channels, whereas gates in OZ/K
are not. The the Open and Close operations in OZ/K have no equivalent in the M-calculus and the Kell calculus.
In these calculi, it is possible to model the opening of a given gate by the introduction of a relaying process, but it
is not possible to model a statement of the form {Open K#all}. In fact, transparent kells introduced in Section 6,
correspond to localities of the Kell calculus with sharing [61].

8 Conclusion
We have presented OZ/K, a kernel language for open distributed programming. The main contribution of OZ/K is
the introduction of a notion of locality as a unit of modularity, isolation, and reconfiguration in the multi-paradigm
OZ computation model. Localities in OZ/K can be used to model distributed sites, to construct sandboxes, or to
program dynamic modules. We have presented a formal operational semantics for OZ/K, and given a number of
programming examples illustrating how open distributed programming can be supported in OZ/K.

The language presented in this paper constitutes a first attempt at introducing localities in OZ/K. As mentioned
above, several aspects of the language warrant further study: the granularity of localities, the semantics of gate
communication, the handling of failures, improved support of component sharing, improved support for dynamic
reconfiguration and state capture. In addition, several questions are worth investigating. First, it would be interest-
ing to define a compositional semantics for (possibly a subset of) the OZ/K kernel language. This would allow the
development of a behavioral theory for OZ/K, and would ease the definition of type systems for OZ/K. Defining
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type systems for OZ/K would also be of interest, especially targeting configuration errors as studied e.g. in [20],
and dealing with evolving configurations and mobility scenarios as studied e.g. in [58, 115]. A third question
would be the development of appropriate support for transactional behavior or recoverable actions, exploiting for
instance recent studies on the subject such as [29, 42, 43].
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v(u)
∆
= ∅ v(!ε)

∆
= v(ε)

v(〈X〉) ∆
= ∅ v(ε(ε1 : X1 . . . εn : Xn))

∆
= v(ε, ε1, . . . , εn)

v(skip ) = ∅ v(S1 S2) = v(S1, S2)

v(thread{ε} S end) = v(ε, S) v(local X1 . . . Xn in S end) = v(S)

v(ε = ε′) = v(ε, ε′) v(ε =!!ε′) = v(ε, ε′)

v(ε = u) = v(ε) v(ε = l(f1 : ε1 . . . fn : εn)) = v(ε, ε1, . . . , εn)

v(if ε then S1 else S2 end) = v(ε, S1, S2) v(case ε of J then S1 else S2) = v(ε, J, S1, S2)

v(proc{ε X1 . . . Xn} S end) = v(ε, S) v({ε ε1 . . . εn}) = v(ε, ε1, . . . , εn)

v(try S1 catch X then S2 end) = v(S1, S2) v(raise ε end) = v(ε)

v(kell{ε} S end) = v(ε, S) v({P ε1 . . . εn}) = v(ε1, . . . , εn)

Figure 2: Variables of an extended statement

A Auxiliary relations and predicates
The definition of the reduction relation relies on a number of functions, predicates and relations which we define
in this section.

Primitive operations. We call primitive operations the operations Unify, NewName, IsDet, NewCell, Exchange,
WaitNeeded, FailedValue, NewGate, Send, Receive, Open, Close, Pack, Unpack, Mark, Status, that ap-
pear in Tables 1 and 3.

Variables. Notions of free and bound variable identifiers are classical. Variable identifier binders are the follow-
ing statements, which bind variable identifiers X1, . . ., Xn, with scope the statement S1:

local X1 ... Xn in S1 end
proc{P X1 ... Xn} S1 end
case X of V(V1:X1 ... Vn:Xn) then S1 else S2 end
try S catch X1 then S1 end

The set of variables of an extended statement S, noted v(S), is defined inductively in Figure 2, where P denotes
a primitive operation, where u denotes a base value (integer, atom or name), and where ε, δ, and their decorated
variants, denote both variable identifiers and variables. By definition, we set v(ε) = {x} if ε = x (i.e. ε is a
variable), and v(ε) = ∅ if ε = X (i.e. ε is a variable identifier). Also, if T1, . . . , Tn are terms, we set:

v(T1, . . . , Tn) = v(T1) ∪ . . . ∪ v(Tn)

The set of variables of task T , relative to store σ, noted v(T , σ), is defined as the smallest set satisfying the
inference rules in Figure 3.

The set of variables of a store σ, noted v(σ) is defined inductively in Figure 4.
We define the substitution of variable identifiers by variables in a statement. We write

θ = {X1 → x1, . . . , Xn → xn}

for the substitution that substitutes variables xi to identifiers Xi, and Sθ for the application of substitution θ to the
extended statement S. We define θ{X1,...,Xn} to be the substitution that coincides with θ on dom(θ)\{X1, . . . , Xn},
i.e.

θ{X1,...,Xn}
∆= {X → x ∈ θ | X 6∈ {X1, . . . , Xn}}

Using ε and its decorated variants to stand for a variable or a variable identifier, and P to stand for any of the
primitive operations, we define by induction in Figure 5 the application of a substitution θ to an extended statement
S (and a pattern J). In Figure 5, we define bv(J) as follows:
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x ∈ v(S) ∨ x ∈ v(τ : T, σ)

x ∈ v(τ〈S T 〉, σ)

x ∈ v(T , σ) ∨ x ∈ v(U , σ)

x ∈ v(T U , σ)

x ∈ v(T , σ) σ |= x = y

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = ξ ∧ ξ : cell(y)

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = ξ ∧ ξ : thread(y)

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = ξ ∧ ξ : kell(π, y)

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= read(x, y)

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = failed(y)

y ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = f(l1 : x1, . . . , ln : xn)m
xi ∈ v(T , σ)

x ∈ v(T , σ) σ |= x = ξ ∧ ξ : proc{$ X1 . . . Xn}S end y ∈ v(S)

y ∈ v(T , σ)

Figure 3: Variables of a task relative to a store

v(x) = {x} v(x = l(f1 : x1 . . . fn : xn)m) = {x, x1, . . . , xn}
v(x = u) = {x} v(x = y) = {x, y}

v(x = pack(ξ, T , σ′, µ)) = v(T , σ′) ∪ v(σ′) v(x = failed(y)) = {x, y}
v(ξ : proc{$ X1 . . . Xn}S end) = v(S, σ) v(ξ : thread(x, y)) = {x, y}

v(ξ : kell(π, x)) = {x} v(ξ : cell(x)) = {x}
v(ξ : gate) = ∅ v(need(x)) = {x}
v(read(x)) = {x} v(read(x, y)) = {x, y}
v(in(κ, κ′)) = ∅ v(subg(γ, γ′)) = ∅
v(inth(κ, τ) = ∅ v(σ ∧ σ′) = v(σ) ∪ v(σ′)

Figure 4: Variables of a store

εθ
∆
= θ(ε) if ε ∈ dom(θ) εθ

∆
= ε if ε 6∈ dom(θ) vθ

∆
= v

(!ε)θ
∆
=!(εθ) (ε(ε1 : X1 . . . εn : Xn))θ

∆
= εθ(ε1θ : X1 . . . εnθ : Xn)

skip θ
∆
= skip (S1 S2)θ

∆
= S1θ S2θ

(thread{ε} S end)θ
∆
= thread{εθ} Sθ end (ε1 = ε2)θ

∆
= ε1θ = ε2θ

(ε = v)θ
∆
= εθ = v (ε1 = ε2.ε3)θ

∆
= ε1θ = ε2θ.ε3.θ

{P ε1 . . . εn}θ
∆
= {P ε1θ . . . εnθ} {ε ε1 . . . εn}θ

∆
= {εθ ε1θ . . . εnθ}

(kell{ε1} S end)θ
∆
= kell{ε1θ} Sθ end (ε1 = !!ε2)θ

∆
= ε1θ = !!ε2θ

(if ε then S1 else S2 end)θ
∆
= if εθ then S1θ else S2θ end

(raise ε end)θ
∆
= raise εθ end

(local X1 . . . Xn in S end)θ
∆
= local X1 . . . Xn in Sθ{X1,...,Xn} end

(proc{ε X1 . . . Xn} S end)θ
∆
= proc{εθ X1 . . . Xn} Sθ{X1,...,Xn} end

(try S1 catch X then S2 end)θ
∆
= try S1θ catch X then S2θ{X} end

(case ε of J then S1 else S2 end)θ
∆
= case εθ of Jθ then S1θbv(J) else S2θ end

Figure 5: Substitution on statements and patterns
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bv(v)
∆
= ∅ bv(!X)

∆
= ∅ bv(ε(ε1 : X1 . . . εn : Xn))

∆
= {X1, . . . , Xn}

Names. We define here functions and predicate dealing with names. The set of gate names gn(T , σ) of an
execution structure (T , σ) is defined as follows:

gn(T , σ) = {γ ∈ name | ∃x, x ∈ v(T , σ), σ |= x = γ ∧ γ : gate}

The set of thread names thn(T , σ) of an execution structure (σ, T ) is defined inductively as follows:

thn(τ : T, σ) = {τ} thn(T1 T2, σ) = thn(T1, σ) ∪ thn(T2, σ)

The set of kell names kn(T , σ) of an execution structure (σ, T ) is defined as follows:

kn(T , σ) = {κ ∈ name | ∃x, y, π, x ∈ v(T , σ) ∧ σ |= x = κ ∧ κ : kell(π, y)}

The set of procedure names pn(T , σ) of an execution structure (T , σ) is defined as follows:

pn(T , σ) = {ξ ∈ name | ∃x, y,Xi, S, x ∈ v(T , σ) ∧ σ |= x = ξ ∧ ξ : proc{$ X1 . . . Xn}S end}

The function kgpn that returns the set of gate, procedure and kell names of an execution structure (T , σ) is
defined as:

kgpn(T , σ) = gn(T , σ) ∪ pn(T , σ) ∪ kn(T , σ)
The function tknσ returns the names of top level kells in a task, relative to a store σ. It is defined as follows,

where > denotes by convention the name of the top-level kell:

tknσ(T ) = {η ∈ kn(T , σ) | σ |= in(>, η))}

Equivalence relation. The reduction relation makes use of an equivalence relation, noted ≡, between state-
ments, between tasks and between stores. The equivalence relation between statement, noted ≡, is the smallest
equivalence relation that obeys the rules given in Figure 6.

The equivalence relation between tasks, also noted ≡, is the smallest equivalence relation that obeys the rules
in Figure 7.

The equivalence relation between stores, also noted ≡, is the smallest relation that obeys the rules in Figure 8,
where δ denotes a variable or a value, and where P and its decorated variants denote a store predicate of the form
proc{$ X1 . . . Xn}S end.

Entailment between stores. The rules in Figure 8 define also an entailment relation between stores and stores.
The entailment relation |= is defined as the smallest relation that obeys the rules in Figure 8.

The domain of a store σ, noted dom(σ), is the set of variables and names that occur in σ. It is defined as

dom(σ) = v(σ) ∪ {ξ ∈ Name | ∃x ∈ dom(σ), σ |= x = ξ ∨ x = ξ(...)}

The extension of the entailment relation to first-order formulas is classical and is given by the rules below,
where ε denotes a variable x or a name ξ.

σ |= ¬φ ⇐⇒ ¬(σ |= φ)

σ |= φ ∨ ψ ⇐⇒ (σ |= φ) ∨ (σ |= ψ)

σ |= ∀ε, φ ⇐⇒ ∀ε ∈ dom(σ), (σ |= φ)

σ |= ∃ε, φ ⇐⇒ ∃ε ∈ dom(σ), (σ |= φ)

We note σ |= x = ⊥ if x ∈ dom(σ) and ¬∃v, σ |= x = v.
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[S.α]
S1 =α S2

S1 ≡ S2
[S.SEQ]

S1 ≡ S2 S′1 ≡ S′2
S1 S

′
1 ≡ S2 S

′
2

[S.LOCAL]
S1 ≡ S2

local X1 . . . Xn in S1 end ≡ local X1 . . . Xn in S2 end

[S.THREAD]
S1 ≡ S2

thread{X} S1 end ≡ thread{X} S2 end

[S.IF]
S1 ≡ S2 S3 ≡ S4

if X then S1 else S3 end ≡ if X then S2 else S4 end

[S.CASE]
S1 ≡ S2 S3 ≡ S4

case X of J then S1 else S3 ≡ case X of J then S2 else S4

[S.TRY]
S1 ≡ S2 S3 ≡ S4

try S1 catch X then S3 end ≡ try S2 catch X then S4 end

[S.PROC]
S1 ≡ S2

proc{P X1 . . . Xn} S1 end ≡ proc{P X1 . . . Xn} S2 end
[S.KELL]

S1 ≡ S2

kell{K} S1 end ≡ kell{K} S2 end

Figure 6: Equivalence between statements

[T.THREAD]
S1 ≡ S2 T1 ≡ T2

η : 〈S1 T1〉 ≡ η : 〈S2 T2〉 [T.COMM] T1 T2 ≡ T2 T1 [T.ASSOC] T1 (T2 T3) ≡ (T1 T2) T3

[T.PAR]
T1 ≡ T2

T1 T ≡ T2 T

Figure 7: Equivalence between tasks

[E.PACK]
T1 ≡ T2 σ1 ≡ σ2

x = pack(ζ, T1, σ1, µ) ≡ x = pack(ζ, T2, σ2, µ)
[E.PROC]

P ≡ P′

ξ : P ≡ ξ : P′ [E.EQUAL] x = y ≡ y = x

[E.ELIM1]
σ ≡ σ1 ∧ σ2

σ |= σ1
[E.ELIM2]

σ ≡ σ1 ∧ σ2

σ |= σ2
[E.INTRO]

σ |= σ1 σ |= σ2

σ |= σ1 ∧ σ2
[E.EQUALT]

σ |= y = δ ∧ x = y

σ |= x = δ

[E.ENTAILS]
σ |= σ′ σ′ |= σ

σ ≡ σ′ [E.REFLEX] σ |= σ
[E.TRANS]

σ1 |= σ2 σ2 |= σ3

σ1 |= σ3

Figure 8: Equivalence between stores
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[EQ.BASE]
u = u′

u ≡σ u′
[EQ.EQUAL]

σ |= x = y

x ≡σ y
[EQ.VAR]

σ |= x = v ∧ y = v′ v ≡σ v′

x ≡σ y

[EQ.PACK]
T1 ≡ T2 σ1 ≡ σ2

pack(ζ, T1, σ1, µ) ≡σ pack(ζ, T2, σ2, µ)
[EQ.FAILED]

x ≡σ y
failed(x) ≡σ failed(y)

[EQ.RECORD]
x1 ≡σ y1 . . . xn ≡σ yn

l(f1 : x1 . . . fn : xn) ≡σ l(f1 : y1 . . . fn : yn)

Figure 9: Equality between values

[DIS.BASE]
u 6= u′

u 1σ u
′ [DIS.VAR]

σ |= x = v ∧ y = v′ v 1σ v
′

x 1σ y
[DIS.PACK]

¬∃T2, σ2, v = pack(ζ, T2, σ2, µ)

v 1σ pack(ζ, T1, σ1, µ)

[DIS.PACKD]
v = pack(ζ, T2, σ2, µ) T2 6≡ T1 ∨ σ2 6≡ σ2

v 1σ pack(ζ, T1, σ1, µ)
[DIS.FAIL]

¬∃x, v = failed(x)

v 1σ failed(y)

[DIS.FAILD]
v = failed(x) x 1σ y

v 1σ failed(y)
[DIS.REC]

¬∃x1, . . . , xn, v = l(f1 : x1 . . . fn : xn)

v 1σ l(f1 : y1 . . . fn : yn)

[DIS.RECD]

v = l(f1 : x1 . . . fn : xn)

n_
i=1

xi 1σ yi

v 1σ l(f1 : y1 . . . fn : yn)

Figure 10: Inequality between values

Equality between values. The notion of equality between values during execution is captured by relations ≡σ
and 1σ . Intuitively, two values are equal, relative to a store σ if they correspond to the same base value, or to the
same packed value, or to the same failed value, or to the same record. The relation ≡σ is defined as the smallest
equivalence relation that satisfies the rules in Figure 9, where u denotes a base value (integer, atom, or name), and
v, v′ denote arbitrary values (v, v′ 6= ⊥).

The relation 1σ is defined as the smallest relation that satisfies the rules in Figure 10, where u denotes a base
value (integer, atom, or name), and v, v′ denote arbitrary values (v, v′ 6= ⊥). Intuitively, the relation 1σ expresses
the fact that two values can be proved to be non-equal in store σ, regardless of future bindings.

Invalid stores. Intuitively, a store is invalid if it binds different values to the same variable or to the same name,
or if its does not obey structural invariants such as e.g. the fact that a kell can only have one parent kell. We note
in+ the transitive closure of the relation in, and subg+ the transitive closure of the relation subg. We note σ = ⊥
to indicate that store σ is invalid. We define the predicate σ ≡ ⊥ in Figure 11, where P, Q denote store predicates
of the forms cell(x), gate, thread(x), kell(π, x), or proc{$ X1 . . . Xn}S end.

Strictness. We say that a value v is strict relative to σ, noted strictσ(v), if v is either an integer or an atom,
if v is a pure name (i.e. not a gate name, a cell name, a thread name, a kell name, or a procedure name), if v
is a record value which contains only variables bound to strict values, or if v is a name bound to a gate, or a
procedure whose free variables are bound, recursively, to strict values. Formally, the predicate strict is defined
as the smallest predicate verifying the rules given in Figure 12, where p ranges over the set of semantical pred-
icates {proc, cell, thread, kell, gate}. We extend the strict function into a predicate on pairs of the form
〈extended statement, set of variables〉 thus:

strictσ(S, V ) ∆= ∀x ∈ v(S, σ) \ V, strictσ(x)
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σ ≡ ⊥ ∆
= ∃x, v, v′, σ |= x = v ∧ x = v′ ∧ v 1σ v

′ (1)

∨ ∃ξ, P, Q, σ |= ξ : P ∧ ξ : Q ∧ P 6≡ Q (2)

∨ ∃τ, x, σ |= τ : thread(x) ∧ ¬read(x) (3)

∨ ∃κ, π, x, σ |= κ : kell(π, x) ∧ ¬read(x) (4)

∨ ∃κ, κ′, κ′′, κ 6= κ′ ∧ σ |= in(κ, κ′′) ∧ in(κ′, κ′′) (5)

∨ ∃κ, κ′, τ, κ 6= κ′ ∧ σ |= inth(κ, τ) ∧ in(κ′, τ) (6)

∨ ∃κ, κ′, σ |= in(κ, κ′) ∧ ¬∃π, x, π′, x′, σ |= κ : kell(π, x) ∧ κ′ : kell(π′, x′) (7)

∨ ∃κ, τ, σ |= inth(κ, τ) ∧ ¬∃π, x, y, σ |= κ : kell(π, x) ∧ τ : thread(y) (8)

∨ ∃κ, κ′, σ |= in+(κ, κ′) ∧ σ |= in+(κ, κ′) (9)

∨ ∃γ, γ′, σ |= subg(γ, γ′) ∧ ¬σ |= γ : gate ∧ γ′ : gate (10)

∨ ∃γ, γ′, σ |= subg+(γ, γ′) ∧ σ |= subg+(γ′, γ) (11)

Figure 11: Invalid stores

v ∈ int ∪ atom

strictσ(v)

ξ ∈ name σ 6|= ξ : p(. . .)

strictσ(v)

ξ ∈ name σ |= ξ : gate

strictσ(ξ)

v = pack(ζ, T , σ, µ)

strictσ(v)

strictσ(v) σ |= x = v

strictσ(x)

strictσ(x)

strictσ(failed(x))

strictσ(v1) . . . strictσ(vn) σ |= x1 = v1 ∧ . . . ∧ xn = vn
strictσ(f(l1 : x1, . . . , ln : xn))

ξ ∈ name σ |= ξ : P P = proc{$ X1 . . . Xn}S end ∀x ∈ v(S, σ) strictσ(x)

strictσ(ξ)

Figure 12: Definition of strictness

Matching. The reduction relation depends also on a function match that operates on lists of values and patterns.
Function match is defined inductively by the table below (matchσ(x, J) is defined to be ⊥, where ⊥ denotes a
match failure, in all other cases). We note Id the trivial substitution, i.e. the substitution whose domain is empty
(and thus, for all terms S, SId = S).

σ J matchσ(x, J)

σ |= x = v v Id

σ |= x = v ∧ y = v !y Id

σ |= x = v0(v1 : x1 . . . vn : xn)r ∧ εi = vi ε0(ε1 : X1 . . . εn : Xn) {X1 → x1, . . . , Xn → xn}

Unification The function Unify is defined by

Unify(x, y, σ) = fst(U(x, y, σ, ∅))

with the function U defined inductively by the following rules, where the function fst returns the first element of a
pair, the function snd returns the second element of a pair, v denotes an arbitrary value, and u, u′ denote arbitrary
base values, i.e. integers, names or atoms (note that a failed value failed(z) is considered for the purpose of the
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algorithm as a unary tuple):

U(x, y, σ,B) = 〈σ ∧ x = y,B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = ⊥ ∧ y = v ∧ ¬rread(x)
U(x, y, σ,B) = 〈σ ∧ x = y,B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = v ∧ y = ⊥ ∧ ¬rread(y)
U(x, y, σ,B) = 〈σ ∧ x = y,B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = ⊥ ∧ y = ⊥ ∧ ¬rread(x) ∧ ¬rread(y)
U(x, y, σ,B) = 〈σ ∧ x = y ∧ read(y), B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = ⊥ ∧ y = ⊥ ∧ rread(x) ∧ ¬rread(y)
U(x, y, σ,B) = 〈σ ∧ x = y ∧ read(x), B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = ⊥ ∧ y = ⊥ ∧ ¬rread(x) ∧ rread(y)

U(x, y, σ,B) = 〈σ,B ∪ {{x, y}}〉 if {x, y} 6∈ B ∧ σ |= x = u ∧ y = u′ ∧ u = u′

U(x, y, σ,B) = 〈σ ∧ σ′, B ∪B′〉 if {x, y} 6∈ B ∧ σ |= x = f(a1 : x1 . . . an : xn) ∧ y = f(a1 : y1 . . . an : yn)

with σ′ =
n̂

i=1

fst(Ui) B′ =
n[
i=1

snd(Ui) Ui = U(xi, yi, σ, B ∪ {{x, y}})

U(x, y, σ,B) = 〈σ,B〉 if {x, y} ∈ B
U(x, y, σ,B) = 〈⊥, B〉 otherwise

Subkells. The assertion subkσ(ζ, {ζ1, . . . , ζn}) indicates that the set {ζ1, . . . , ζn} corresponds to the set of all
active subkells of kell ζ, in store σ. The assertion subthσ(ζ, {ζ1, . . . , ζn}) indicates that the set {ζ1, . . . , ζn}
corresponds to the set of all threads executing in active subkells of kell ζ, in store σ.

The predicates subth and subk are defined as follows:

childσ(ξ, η) ≡ σ |= ξ : kell($,w) ∧ η : kell(π, z) ∧ z = ⊥ ∧ in(ξ, η)

descσ(ξ, η) ≡ childσ(ξ, η) ∨ ∃ζ, descσ(ξ, ζ) ∧ childσ(ζ, η)

subkσ(ξ, {ξ1, . . . , ξn}) ≡ {ξ1, . . . , ξn} = {ξ | descσ(ξ, η)}
subthσ(ξ, {ζ1, . . . , ζn}) ≡ {ζ1, . . . , ζn} = {ζ | ∃η, descσ(ξ, η) ∧ σ |= inth(η, ζ)}

Gate access. The assertion accessσ(γ, κ, κ′) means that gate γ is accessible for communication between the
threads in κ and threads in κ′. The predicate access is defined by cases as follows. In the first case, accessσ(γ, κ, κ).
In the second case, where σ |= in(κ, κ′) or σ |= in(κ′, κ), we have accessσ(γ, κ, κ′), and accessσ(γ, κ′, κ).
In the third case, let κ0, κ1, . . . , κn+1, n ≥ 1, be the smallest sequence such that κ0 = κ, κn+1 = κ′, σ |=
in(κi, κi+1) or σ |= in(κi+1, κi) for all i ∈ I = {0, . . . , n} (i.e. κ1, . . . , κn+1 is the minimal path from τ to τ ′ in
the kell tree, where we assume a top-level kell named >). Let π1, . . . , πn+1 be such that σ |= κi : kell(πi, xi).
We define accessσ(γ, κ, κ′) by:

accessσ(γ, κ, κ
′)

∆
=

_
i∈I

^
j∈I\{i}

authσ(γ, κj , κj+1)

authσ(γ, κi, κi+1)
∆
= κi · γ ∈ πi+1 if σ |= in(κi+1, κi)

authσ(γ, κi, κi+1)
∆
= κi+1 · γ ∈ πi if σ |= in(κi, κi+1)

The truth value of the assertion κ · γ ∈ π in store σ is defined inductively by the table below (the truth value of
the assertion is that of the table cell predicate, depending on the form of π), where subgr is the reflexive closure
of the relation subg, and subg∗ is the reflexive and transitive closure of the relation subg:

π K · G K · γ′ κ′ · G {κ′ · γ′} {κ′ · ηr} {κ′ · η∗} π1 ∪ π2 π1 \ π2

κ · γ ∈ π true γ = γ′ κ = κ′ κ = κ′ κ = κ′ κ = κ′ κ · γ ∈ π1 κ · γ ∈ π1

∧ γ = γ′ ∧ σ |= subgr(η, γ) ∧ σ |= subg∗(η, γ) ∨ κ · γ ∈ π2 ∧ κ · γ 6∈ π2
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Grants. Granting access of a gate to a kell is specified using the function grant, which is defined below:

grant(σ, k, g)
∆
= κ · γ if σ |= k = κ ∧ κ : kell(...) ∧ g = γ ∧ γ : gate

grant(σ, k, g)
∆
= κ · γr if σ |= k = κ ∧ κ : kell(...) ∧ g = γ#all ∧ γ : gate

grant(σ, k, g)
∆
= κ · γ∗ if σ |= k = κ ∧ κ : kell(...) ∧ g = γ#allrec ∧ γ : gate

grant(σ, k, g)
∆
= κ · G if σ |= k = κ ∧ κ : kell(...) ∧ g = all

grant(σ, k, g)
∆
= K · γ if σ |= k = all ∧ g = γ ∧ γ : gate

grant(σ, k, g)
∆
= K · γr if σ |= k = all ∧ g = γ#all ∧ γ : gate

grant(σ, k, g)
∆
= K · γ∗ if σ |= k = all ∧ g = γ#allrec ∧ γ : gate

grant(σ, k, g)
∆
= K · G if σ |= k = all ∧ g = all

grant(σ, k, g)
∆
= ∅ otherwise
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B Failure rules
We gather in this section the failure rules of the OZ/K operational semantics.

Thread creation failure

Thread creation fails when the thread name parameter is already bound. This is captured by the following rule.

[THREADF]
thread{x} S end raise error(thread(x)) end

σ |= x 6= ⊥ σ

Read-only variables

[READF]
x =!!y raise error(read(x y)) end

σ |= x 6= ⊥ σ

Binding

A binding statement x = v fails if variable x is already bound, or is read-only. The following rule captures this.

[BINDVF]
x = v raise error(bindV(x)) end

σ |= x 6= ⊥ ∨ rread(x) σ

A binding statement x = y fails if both variables x and y are already bound, or both of them are read-only. The following
rule captures this.

[BINDXYF]
x = y raise error(bindXY(x y)) end

σ |= (x 6= ⊥ ∧ y 6= ⊥) ∨ (rread(x) ∧ rread(y)) σ

A binding statement x = y.z fails if x is already bound, y is not a record or a chunk, or if z is not an integer, an atom or a
name. The following rule captures this.

[BINDRF]
x = y.z raise error(bindR(x y z)) end
σ σ

if C

where
C ≡ (σ |= x 6= ⊥) ∨ (σ |= y 6= l(f1 : w1 . . . fn : wn)m) ∨ (σ |= z = v ∧ v 6∈ Int ∪ Atom ∪ Name)

Values

The operation Equal fails if the thrid parameter is already bound. This is captured by the following rule.

[EQF]
{Equal x y r} raise error(equal(r))end
σ |= r 6= ⊥ σ

The operation Status fails if the first argument is not a thread, or is not a thread of the current kell.

[STATUSF]
{Status x y} |κ raise error(status(x y)) end

σ σ
if C

where
C ≡ (σ |= y 6= ⊥) ∨ (σ |= x 6= ⊥ ∧ σ 6|= ∃ ξ, x = τ ∧ τ : thread(w) ∧ in(κ, τ))

65



If statement

An if statement fails if its condition evaluates to a non boolean value. This is captured by the following rule.

[IFF]
if x then S1 else S2 end raise error(if(x)) end

σ |= x = v σ
if v 6∈ {true, false}

Names

Name creation fails if its argument is already bound. This is captured by the following rule.

[NEWNAMEF]
{NewName x} raise error(newName(x)) end
σ |= x 6= ⊥ σ

Procedure abstraction

Introducing a new procedure fails if the procedure name argument is already bound. This is captured by the following rule.

[PNEWF]
proc{x X1 . . . Xn} S end raise error(pNew(x)) end

σ |= x 6= ⊥ σ

Calling a procedure fails if the first argument of the call is not a procedure name, or if the number of arguments provided
does not match that of the called procedure. This is captured by the following rule.

[PCALLF]
{x x1 . . . xn} raise error(pCall(x [x1 . . . xn])) end

σ σ
if C

where

C ≡ (σ |= x = v ∧ (v 6∈ Name ∨ (v ∈ Name ∧ σ 6|= v : proc{$ . . .} end))) ∨ (σ |= x = ξ ∧ ξ : P ∧ P.arity 6= n)

Replacing a procedure fails if the first argument is not an existing procedure, or if the replacement closure does not have
the same arity as the replaced one. This is captured by the following rule.

[PREPBF]
proc{x X1 . . . Xn} S end raise error(pRep(x)) end

σ σ
if C

where

C ≡ (σ |= x = v ∧ (v 6∈ Name ∨ (v ∈ Name ∧ σ 6|= v : proc{$ . . .} end))) ∨ (σ |= x = ξ ∧ ξ : P ∧ P.arity 6= n)

Checking determinacy

Operation IsDet fails if its second argument is already bound. This is captured by the following rule.

[DETF]
{IsDet x y} raise error(isDet(y)) end
σ |= y 6= ⊥ σ

Cells

Cell creation fails if its second argument is already bound. This is captured by the following rule.

[NCELLF]
{NewCell x y z} raise error(nCell(y)) end

σ |= y 6= ⊥ σ

Operation Exchange fails if its first argument is not a cell, or if its second argument is already bound. This is captured by
the following rule.

[ECELLF]
{Exchange x y z} raise error(eCell(x)) end

σ σ
if C

where
C ≡ (σ |= x = v ∧ (v 6∈ Name ∨ (v ∈ Name ∧ ¬∃w, σ |= v : cell(w)))) ∨ (σ |= y 6= ⊥)
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Failed values

The creation of a failed value fails if is second argument is already bound. This is captured by the following rule.

[FAILF]
{FailedValue x y} raise error(failC(y)) end

σ |= y 6= ⊥ σ
z 6∈ dom(σ)

Strictness check

[STRICTF]
{IsStrict x y} raise error(strict(y)) end

σ |= y 6= ⊥ σ
if strictσ(x)

Gate abstraction

Creating a gate fails if the argument is already bound. This is captured by the following rule.

[NEWGF]
{NewGate x} raise error(newG(x)) end
σ |= x 6= ⊥ σ

Creating a subordinate gate fails if the first element of the argument pair is not a gate or if the second element is already
bound. This is captured by the following rule.

[NEWGSF]
{NewGate x#z} raise error(newGS(x y))

σ σ
if C

where
C ≡ (σ |= x = v ∧ σ 6|= v : gate) ∨ (z 6= ⊥)

Sending a message fails if the first argument of the Send operation is not a gate. This is captured by the following rule.

[SENDF]
{Send g x} raise error(send(g)) end

σ σ
if C

where
C ≡ (σ |= g = v ∧ σ 6|= v : gate) ∨ ()

Receiving a message fails if the first argument of the Receive operation is not a gate, or if the second argument is already
bound. This is captured by he following rule.

[RECEIVEF]
{Receive g x} raise error(receive(g x)) end

σ σ
if C

where
C ≡ (σ |= g = v ∧ σ 6|= v : gate) ∨ (x 6= ⊥)

Opening and closing

The Open and Close operation fail if their arguments are not of the correct type. This is captured by the rules below.

[OPENF]
{Open k g} |κ raise error(open(k g)) end

σ σ
if C

where

C ≡ σ 6|= ∃κ′, π, w, k = κ′ ∧ κ′ : kell(π,w)

∨ σ 6|= ∃γ, g = γ ∧ γ : gate

∨ σ |= k = κ′ ∧ κ′ : kell(π,w) ∧ ¬in(κ, κ′)
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[CLOSEF]
{Close k g} |η raise error(close(k g)) end

σ σ
if C

where

C ≡ σ 6|= ∃κ′, π, w, k = κ′ ∧ κ′ : kell(π,w)

∨ σ 6|= ∃γ, g = γ ∧ γ : gate

∨ σ |= k = κ′ ∧ κ′ : kell(π,w) ∧ ¬in(κ, κ′)

Kell abstraction

Kell creation fails if the kell name argument is already bound. This is captured by the rule below.

[KNEWF]
kell{y} S end raise error(kNew(y)) end

σ |= y 6= ⊥ σ

Kell replacement fails if the kell name argument does not denote a packed subkell of the current kell. This is captured by
the rule below.

[KREPF]
kell{y} S end |κ raise error(kRep(y)) end

σ |= ¬φ σ

where
φ ≡ ∃κ′, w, y = κ′ ∧ w = packed ∧ in(κ, κ′)

Packed values

The failure rule for gate replacement is given below.

[MARKGF]
{Mark z gate(x y) p} raise error(markG(z x y p)) end

σ σ
if ¬C

where
C ≡ (σ |= p = ⊥ ∧ ∃κ, T , σ′, µ, z = pack(κ, T , σ′, µ)) ∧ φ

φ ≡ ∃γ, γ′, σ |= x = γ ∧ γ : gate ∧ y = γ′ ∧ γ′ : gate ∧ σ′ |= γ : gate

The failure rule for procedure replacement is given below.

[MARKPF]
{Mark z prc(x y) p} raise error(markP(z x y p)) end

σ σ
if ¬C

where
C ≡ (σ |= p = ⊥ ∧ ∃κ, T , σ′, µ, z = pack(κ, T , σ′, µ)) ∧ φ

φ ≡ ∃η, ζ, X̃, S, S′ x = η ∧ η : proc{$ X̃}S end ∧ y = ζ ∧ ζ : proc{$ X̃}S′ end ∧ σ′ |= η : proc{$ X̃}S end
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Packing

The failure rule for packing is given below.

[PACKF]
{Pack x y} |κ T raise error(pack(x y)) end T

σ σ
if ¬C

where
T ≡ τ1 : T1 . . . τn : Tn

C ≡ ∃κ0, π0, w0, . . . , κm, πm, wm (σ |=
m̂

i=0

φi ∧ φ) ∧ subthσ(κ0, {τ1, . . . , τn}) ∧ subkσ(κ0, {κ1, . . . , κm})

φ ≡ x = κ0 ∧ y = ⊥ ∧ in(κ, κ0)

φi ≡ κi : kell(πi, wi) ∧ wi = ⊥
The failure rule for unpacking is given below.

[UNPACKF]
{Unpack y x} |κ raise error(pack(y x)) end

σ σ
if ¬C

where

C ≡ ∃κ′, T , σ′, µ, π, z, π′, z′, σ |= κ : kell(π, z) ∧ x = ⊥ ∧ y = pack(κ′, T , σ′, µ) ∧ σ′ |= κ′ : kell(π′, z′)
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C Proofs
We gather in this section proofs of the properties in Section 5.2. We first have a few auxiliary lemmas.

Lemma 1 Let σ be a store, S and S′ be statements such that S ≡ S′, and θ a substitution on variables and names such that
ran(θ) ∩ v(S, σ) = ∅. Then, Sθ ≡ S′θ.

Proof: By induction on the derivation of S ≡ S′. In the case of rule S.α, S =α S
′, then Sθ =α S

′θ, and hence Sθ ≡ S′θ.
In the case of rule S.SEQ S = S1 ;S2 and S′ = S′1 S

′
2, with S1 ≡ S′1 and S2 ≡ S′2, then by induction S1θ ≡ S′1θ and

S2θ ≡ S′2θ, and thus Sθ ≡ S′θ. Other cases are similar to that of rule S.SEQ. 2

Lemma 2 Let σ be a store, T and T ′ be tasks such that T ≡ T ′, and θ a substitution on variables and names such that
ran(θ) ∩ v(T , σ) = ∅. Then, T θ ≡ T ′θ.

Proof: By induction on the derivation of T ≡ T ′, using Lemma 1 for the case of rule T.THREAD. 2

Lemma 3 Let σ and σ′ be stores such that σ ≡ σ′, and θ a substitution on variables and names such that ran(θ)∩dom(σ) = ∅.
Then, σθ ≡ σ′θ.

Proof: By induction on the derivation of σ ≡ σ′, using Lemma 1 and Lemma 2 for the case of rule E.PACK, and Lemma 1 for
the case of rule E.PROC. 2

Lemma 4 Let σ be a store, v, v′ be values such that v ≡σ v′, and θ be a substitution on variables and names such that
ran(θ) ∩ dom(σ) = ∅. Then, vθ ≡σθ v′θ.

Proof: By induction on the derivation of v ≡σ v′, using Lemma 3 and Lemma 2 for the case of rule EQ.PACK. 2

Lemma 5 Let σ be a store, v, v′ be values such that v 1σ v′, and θ be a substitution on variables and names such that
ran(θ) ∩ dom(σ) = ∅. Then, vθ 1σθ v

′θ.

Proof: By induction on the derivation of v 1σ v
′, using Lemma 3 and Lemma 2 for the case of rule DIS.PACKD. 2

Lemma 6 Let σ be a valid store, and let θ be a substitution on variables and names such that ran(θ)∩ dom(σ) = ∅. Then σθ
is a valid store.

Proof: The proof proceeds by contradiction. Assume that σθ is invalid. Then one of the properties in the definition of
store invalidity must hold. Assume for instance (dealing with other properties is similar) that the first property holds, i.e.
∃x, v, v′, v 1σ v

′ ∧ σ |= x = v ∧ x = v′. Since ran(θ) ∩ dom(σ) = ∅, there exists θ′ such that ran(θ′) ∩ dom(σθ) = ∅ and
σθθ′ = σ. Now σθ |= x = v ∧ x = v′ implies σθ ≡ σ′ ∧ x = v ∧ x = v′ for some σ′, and thus σ ≡ σ′θ′ ∧ y = w ∧ y = w′,
where y = xθ′, w = vθ′, and w′ = v′θ′. Now, by Lemma 5, w 1σ w

′, and hence σ is not valid, a contradiction. 2

Lemma 7 Let σ, σ′ be stores such that σ ≡ σ′. If σ is valid, then σ′ is valid.

Proof: By induction on the derivation of σ ≡ σ′. For the cases E.PACK, E.PROC, and E.EQUAL, the result is immediate, by
definition of store validity. For the case E.ENTAILS, the result is obtained reasoning by contradiction and using E.TRANS. 2

Lemma 8 Let σ1 and σ2 be valid stores, and θ be a substitution such that ran(θ)∩dom(σ1, σ2) = ∅. Then σ1∧σ2θ is a valid
store.

Proof: Immediate since σ2θ is valid by Lemma 6, and dom(σ1) ∩ dom(σ2θ) = ∅. 2

Lemma 9 Let 〈σ, T 〉 execution structure that results from the execution of an OZ/K statement. Then σ is valid.

Proof: By induction on the length of the reduction that leads to 〈σ, T 〉. In the base case, we have σ0 ≡ σ, where σ = τ :
thread(w) ∧ w ∧ read(w) ∧ inth(>, τ). Since σ is trivially valid, so is σ0 by Lemma 7. Assume that (σ0, T0) → . . . →
(σn, Tn) → (σ, T ), with σj valid for 0 ≤ j ≤ n. We reason by induction on the derivation that has been used to obtain
(σn, Tn)→ (σ, T ):
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• [PAR] In this case, Tn = U V , T = U ′ V , and (σn,U)→ (σ,U ′). By induction, we have σ valid, as required.

• [EQUIV] In this case, Tn ≡ Un, T ≡ U , σn ≡ σ′n, σ ≡ σ′, and (σ′n,Un) → (σ′,U). By induction, σ′ is valid, and
hence σ is valid by Lemma 7.

• Failure rules [THREADF] to [UNPACKF]: in these cases, we have σn = σ, hence σ is valid, as required.

• [SKIP], [SEQTH], [UNIF], [IFTRUE], [IFFALSE], [CASE], [CASEU], [PCALL], [TRYU], [TRYC], [RAISEW], [RAISE],
[WAITN], [FAILW] In these cases, we have σn = σ, hence σ is valid, as required.

• [NIL] In this case, σn |= x = ⊥, for some x, and σ = σn ∧x = terminated. Since σn is valid, by induction, the only
possibility to make σ invalid would be if (1) σ |= x = v ∧ x = v′, with v 1σ v

′. But since σn |= x = ⊥, we have only
σ |= x = terminated, and hence property (1) does not hold. Hence σ is valid, as required.

• [NEWTH] In this case, σn |= x = ⊥ ∧ inth(κ, τ), for some x, κ, τ , and σ = σn ∧ x = τ ′ ∧ τ ′ : thread(w) ∧ w ∧
read(w) ∧ inth(κ, τ ′), with τ ′, w 6∈ dom(σn). By induction, σn is valid. For σ to be invalid one of the following
properties from the definition of store invalidity must hold: (1) with x, τ ′, (3) with τ ′, w, (6) with κ, τ ′, or (8) with κ, τ ′.
Now: (1) does not hold since σn |= x = ⊥, σn valid; (3) does not hold since σn valid and σ |= τ ′ : thread(w) ∧
read(w); (6) does not hold since σn valid and τ ′ fresh; (8) does not hold since σn valid (and thus σn |= κ : kell(π, z)
for some π, z), and σ |= τ ′ : thread(w). Hence σ is valid, as required.

• [VAR] Immediate since in this case σ = σn ∧ x1 ∧ . . . ∧ xn with xi fresh, and σn is valid by induction.

• [READ] Immediate since in this case σ = σn ∧ read(x, y), for some y, σn valid by induction, and the added assertion
read(x, y) does not change the properties required for store invalidity.

• [READU] In this case, σn = σ′ ∧ read(z, y), σ = σ′ ∧ z = y, and σn |= y 6= ⊥, for some y, z. Now σn is valid by
induction, and the added store assertion z = y cannot invalidate stor validity. Indeed, if σ were invalid, this would be
because σn |= x = z ∧ x 6= ⊥ for some x (property (1) in the definition of store invalidity). But this is only possible
if the rule [BINDXY], and the rule [BINDV] or the rule [BINDR] have been used in the chain of reduction leading to
(σn, Tn), with statements of the form x = z, x = v or x = r.f , for some value v, and variables r, f , respectively.
Assume that rule [BINDXY] has been used at step j with statement x = z, followed by rule [BINDV] at step k ≥ j
with statement x = v. In this case we would have σj |= read(x) following the conditions with [BINDXY]. But then,
since the assertion read(x) is not erased by any rule, rule [BINDV] could not be applied at step k in the reduction chain.
The other cases are likewise impossible, which leads to a contradiction. Hence σ is valid, as required.

• [UNI] In this case, we have σ = σn∧Unify(x, y, σn) for some x, y. This case is handled similarly to the case [READU]
above, noting that the added store assertions in Unify(x, y, σn) do not invalidate store validity.

• [BINDV] In this case, we have σ = σn ∧ x = v, σn |= x = ⊥ ∧ ¬rread(x), for some variable x and value v. Now
σn is valid by induction, and since σn |= x = ⊥, the addition of assertion x = v does not make property (1) of store
invalidity true. Hence σ is valid, as required.

• [BINDXY] In this case, we have σ = σn ∧ σ′, where σ′ can be any of five possiblities. We handle the first one, the
other ones are handled similarly. We have in this case σ′ ≡ y = v and σn |= x = v ∧ y = ⊥ ∧ ¬rread(y), for some
x, y, v. No, since σn is calid by induction, and σn |= x = v ∧ y = ⊥, the assertion y = v does not make property (1)
of store invalidity true. Hence σ is valid, as required.

• [BINDXY] [EQTRUE] [EQFALSE] [STATUS] [NEWNAME] These cases are similar to case [BINDV].

• [PNEW] In this case, we have σ = σn ∧ x = ξ ∧ ξ : proc{$ X1 . . . Xn}S end, σn |= x = ⊥, for some x,Xi, S, with
ξ 6∈ dom(σn). Since σn is valid by induction and σn |= x = ⊥, the addition of assertion x = ξ does not make property
(1) of store invalidity true. Furthermore, since ξ is fresh and only the assertion ξ : proc{$ X1 . . . Xn}S end is added,
property (2) of store invalidity does not hold either. Hence σ is valid, as required.

• [PREP] In this case, we have σn = σ′ ∧ ξ : Q and σ = σ′ ∧ ξ : P, for some closures Q, P. Since σn is valid by induction,
property (2) of store invalidity does not hold for σn, nor for σ. Hence, σ is valid, as required.

• [DETTRUE] [DETFALSE] These cases are similar to case [BINDV].

• [NCELL] This case is similar to case [PNEW].

• [ECELL] In this case, we have σn = σ′ ∧ ξ : cell(t), σ = σ′ ∧ ξ : cell(z) ∧ y = t, σn |= y = ⊥, for some y, z, t.
By induction, σn is valid, hence σ′ ∧ ξ : cell(z) is valid. And since σn |= y = ⊥, the addition of the assertion y = t
does not make property (1) of store invalidity true. Hence σ is valid, as required.
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• [RAISES] This case is similar to case [BINDV].

• [NEED] [NEEDD] Immediate since σn is valid by induction, and σ = σn ∧ need(x) for some x, and the addition of
assertion need(x) dot not make any property of store invalidity true.

• [FAILC] [STRICTTRUE] [STRICTFALSE] [NEWG] [NEWGS] [COM] These cases are similar to case [BINDV].

• [OPEN] [CLOSE] In this cases, we have σn = σ′ ∧ κ : kell(π, x), σ = σ′ ∧ κ : kell(π′, x), for some κ, π, π′, x.
Since σn is valid by induction, the change from π to π′ does not make any of the properties (2), (4), (6)-(8) of store
invalidity true. Hence, σ is valid, as required.

• [NEWKELL] In this case, we have σ = σn ∧ y = κ∧κ : kell(∅, w)∧w∧ read(w)∧ τ : thread(r)∧ r∧ read(r)∧
inth(κ, τ) ∧ in(κ′, κ), σn |= y = ⊥ ∧ κ′ : kell(π, z), for some κ, κ′, τ, y, w, r, π, z, with κ, τ, w, r 6∈ dom(σn).
Now, σn is valid by induction. Since σn |= y = ⊥, then the addition of the assertion y = κ does not make property (1)
of store invalidity true. Likewise, since κ, τ, w, r 6∈ dom(σn), property (2) of store invalidity remains false; since σ |=
τ : thread(r)∧ r ∧ read(r), property (3) of store invalidity remains false; since σ |= κ : kell(∅, w)∧w ∧ read(w),
property (4) remains false; since κ, τ 6∈ dom(σn) and only the assertions inth(κ, τ)∧in(κ′, κ) are added, properties (5),
(6) and (9) of store invalidity remain false; since σ |= κ : kell(∅, w)∧τ : thread(r)∧inth(κ, τ), property (8) of store
invalidity remains false. Hence σ is valid, as required; finally, since σ |= κ′ : kell(π, z) ∧ κ : kell(∅, w) ∧ in(κ′, κ),
property (7) of store invalidity also remains false. Hence σ is valid, as required.

• [KREP] Similar to the case [NEWKELL].

• [MARKG] [MARKP] [PACK] Similar to the case [BINDV].

• [UNPACK] Immediate, since σ valid is a condition for the application of the rule.

2

Lemma 10 The set of kells in an execution structure that results from the execution of an OZ/K statement forms a tree, with
root >.

Proof: By Lemma 9 and the definition of store validity. 2

Lemma 11 Let (σ, T ) and (σ′, T ′) be execution structures such that σ ≡ σ′ and T ≡ T ′. Then v(T , σ) = v(T ′, σ′).

Proof: We first show by induction on the derivation of the statement T ≡ T ′ that v(T , σ) = v(T ′, σ). We then show by
induction on the derivation of the statement σ ≡ σ′ that v(T ′, σ) = v(T ′, σ′). 2

Proposition 1 Assume (σ, T ), with T ≡ T1 T2 T ′, is an execution structure that result from the execution of an OZ/K
statement, where T1 belongs to kell κ1, T2 belongs to kell κ2, and κ1 6= κ2. If σ |= x = ⊥, and x ∈ v(T1, σ), then
x 6∈ v(T2, σ).

Proof: We reason by induction on the length of the reduction to (σ, T ). We actually prove a stronger property, (P ), which is
the conjunction of the following properties:

1. if σ |= x = ⊥, and x ∈ v(T1, σ), then x 6∈ v(T2, σ).

2. if σ |= x = ξ ∧ ξ : cell(t), and x ∈ v((T1, σ), then there exists no y such that σ |= y = ξ and y ∈ v(T2, σ).

3. if σ |= x = τ ∧ τ : thread(t), and x ∈ v((T1, σ), then there exists no y such that σ |= y = τ and y ∈ v(T2, σ).

4. if σ |= x = κ ∧ κ : kell(π, t), and x ∈ v((T1, σ), then there exists no y such that σ |= y = κ and y ∈ v(T2, σ).

5. if σ |= x = ξ ∧ ξ : proc{$ eX}S end, and x ∈ v(T1, σ), then if there exists y such that σ |= y = ξ and y ∈ v(T2, σ),
we have strictσ(S, ∅).

We first note that we can replace the condition “there exists no y such that σ |= y = η and y ∈ v(T2, σ)” in the definition of
the property above by the condition “x 6∈ v(T2, σ)”. Indeed, cells, threads, kells, and procedures are objects created through
explicit creation operations (given by rules [NCELL], [NEWTH], [PNEW], [NEWKELL], respectively), that bind the fresh
name η of the newly created object to a single variable. Now, all relevant binding operations in the language, given by rules
[READU], [BINDXY], [BINDR], [UNI], and [COM] proceed by adding bindings of the form z = z′ to the store, where z, z′

are variables. Thus a simple induction, using rule [E.EQUALT] shows that to obtain σ |= x = η ∧ y = η, where x and y are
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two distinct variables, one must have σ |= x = y. Thus, if y ∈ v(T2, σ), we must have, by definition of variables of a task
relative to a store, x ∈ v(T2, σ).

The base case is immediate since there only one thread in the initial execution structure. Assume the property holds for n,
and let (σn, Tn)→ (σ, T ). Without loss of generality, we can consider that the derivation of the reduction (σn, Tn)→ (σ, T )
has been obtained through an application of one of the rules in Section 5.1, except [PAR] and [EQUIV], or one of the rules
in Appendix B (base rules); an application of [PAR]; and an application of [EQUIV]. The application of rule [EQUIV] is
handled immediately thanks to the remark above and Lemma 11. Hence we can consider without loss of generality that
(σn, Tn)→ (σ, T ) is obtained by an application of a base rule followed by an application of [PAR]. We consider the different
base rules in turn.

Failure rules are easily handled since they leave the store unchanged and modify only a single thread. Since (P ) holds for
(σn, Tn) by induction assumption, then (P ) holds for (σ, T ). Base rules that leave the store unchanged and modify only a
single thread are handled similarly: they are [SKIP], [SEQTH], [UNIF], [IFTRUE], [IFFALSE], [CASE], [CASEU], [PCALL],
[TRYU], [TRYC], [RAISEW], [RAISE], [WAIT], [FAILW]. We now consider the remaining base rules:

• [NIL] We have σn |= τ : thread(x)∧ x = ⊥, Tn = τ〈〉 U , σ = σn ∧ x = terminated, T = U . Since (P ) holds of
(σn, τ〈〉 U) by induction assumption, (P ) holds also of (σn ∧ x = terminated,U) for v(τ〈〉, σn) = ∅. Hence (P )
holds of (σ, T ), as required.

• [NEWTH] We have σn |= x = ⊥ ∧ inth(κ, τ), Tn = τ〈thread{x} S end T 〉 U , σ = σn ∧ x = τ ′ ∧
τ ′ : thread(w) ∧ w ∧ read(w) ∧ inth(κ, τ ′), T = τ : T τ ′ : 〈S′ 〈〉〉 U , with w fresh. Now, we have
v(τ : T τ ′ : 〈S′ 〈〉, σ〉 = v(τ〈thread{x} S end T 〉, σn) ∪ {w}. Since (P ) holds of (σn, τ〈〉 U) by induction
assumption, we need only check whether clause 1 and clause 3 of (P ) hold of (σ, T ). Since σn |= x = ⊥, x does not
belong to the variables of any thread in U that is not in kell κ, hence clause 3 of (P ) holds (σ, T ). Also, w is fresh, and
is only reachable through x, hence w does not belong to the variables of any thread in U that is not κ. Hence (P )) holds
of (σ, T ), as required.

• [VAR] We have σ = σn ∧ x1 ∧ . . . ∧ xn, Tn = τ : T U , T = τ : T ′ U , with xi fresh, and xi reachable only from
τ : T ′. Hence, since (P ) holds of (σn, Tn) by induction, it holds also of (σ, T ), as required.

• [READ] This case is imilar to [VAR].

• [BINDV] We have σn |= x = ⊥ ∧ ¬read(x), Tn = τ〈x = v T 〉 U , T = τ : T U , σ = σn ∧ x = v. We have
v(τ : T, σ) ⊆ v(τ〈x = v T 〉, σn), and (P ) holds of (σn, Tn) by induction. Hence (P ) holds of (σ, T ), as required.

• [BINDXY], [BINDR], [UNI], [EQTRUE], [EQFALSE], [STATUS] These cases are similar to [BINDV].

• [NEWNAME], [PNEW] These cases are similar to [NEWTH].

• [PREP] We have σn = σ′ ∧ ξ : Q, σ′ |= x = ξ, Tn = τ : T U , T = τ : T ′ U , σ = σ′ ∧ ξ : P , with strictσ′(P, ∅).
By induction, (P ) holds of (σn, Tn), and in particular clause 5 of (P ) in relation with x and ξ. Since strictσ′(P, ∅),
we have strictσ(P, ∅), and hence (P ) holds of (σ, T ), as required.

• [DETTRUE], [DETFALSE] Similar to [BINDV].

• [NCELL] Similar to [NEWTH].

• [ECELL], [RAISES] Similar to [BINDV].

• [NEED] We have σn 6|= need(x), σ = σn ∧ need(x), Tn = T . Since (P ) holds of (σn, Tn) by induction, it holds of
(σ, T ), as required.

• [NEEDD] Similar to [NEED].

• [FAILC], [STRICTTRUE], [STRICTFALSE] Similar to [BINDV].

• [NEWG], [NEWGS] Similar to [NEWTH].

• [COM] We have σn |= y = ⊥ ∧ g = γ ∧ h = γ ∧ γ : gate ∧ inth(κ, τ) ∧ inth(κ′, τ ′), Tn = τ : T τ ′ : T ′ U ,
T = 〈{Send g x} U〉, T ′ = 〈{Receive h y} U ′〉, σ = σn ∧ y = x, T = τ : U τ ′ : U ′ U , with strictσn(x).
By induction (P ) holds of (σn, Tn). We thus need only check whether (P ) holds with T1 = τ : U and T2 = τ : U ′.
But this is immediate since strictσn(x). Hence (P ) holds of (σ, T ), as required.

• [OPEN], [CLOSE] Similar to [NEED].

• [NEWKELL] Similar to [NEWTH], thanks to the condition strictσ(S, {y}).

• [KREP] Similar to [NEWKELL].
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• [MARKG], [MARKP] Similar to [BINDV].

• [PACK] We have σn |= x = κ0∧y = ⊥∧inth(κ, τ), σ = σn∧y = pack(κ0,U , σn, ∅), Tn = τ〈{Pack x y} T 〉 U V ,
T = τ : T V . By the definition of variables of a task relative to a store, we have v(τ : U, σ) ⊆ v(τ : T, σn). Since,
(P ) holds of (σn, Tn), we can conclude immediately that it holds for (σ, T ), as required. Also, note that (P ) holds for
(σn,U).

• [UNPACK] We have σn |= κ : kell(π, z)∧x = ⊥∧inth(κ, τ)∧y = pack(κ0,U , σ′, µ), σ′ = σ′′∧κ0 : kell(π′, z′),
σ = σn ∧ σ′′θ ∧

V
κ′∈tknσ′ (U) in(κ, κ

′θ) ∧ x = l, Tn = τ〈{Unpack y x} T 〉 V , T = τ : T Uθ V , where l is the
name list, θ is a substitution that replaces κ0 with κ, and that renames all variables and names appearing in σ′ with fresh
variables and fresh names, respectively. By induction, we have that (P ) holds of (σn, Tn) and of (σ′,U). Since all the
names and variables in σ′θ and Uθ are distinct from those in σn and T,V , and since x is bound to a list of pairs of gate
names (which are strict values), (P ) holds of (σ, T ), as required.

2

Proposition 2 Let (T Tκ, σ) be an execution structure that results from the execution of a OZ/K statement, where κ appears at
the top level, Tκ is the set of all threads that belong to κ, κ is not referenced in T , there is no thread τ such that σ |= inth(κ, τ),
and σ ≡ σ0 ∧κ : kell(∅, w), for some σ0, w. The reductions possible from 〈σ, T Tκ〉 can only be of one of the following two
forms:

T Tκ T ′ Tκ
σ σ′

or
T Tκ T T ′κ
σ σ′

where T ′κ is the set of threads that belong to κ in execution structure (T T ′κ, σ′), and σ′ is such that there is no τ such that
σ′ |= inth(κ, τ), and σ′ ≡ σ′0 ∧ κ : kell(∅, w), for some σ′0.

Proof: Because of the assumption σ |= κ : kell(∅, w), we have accessσ(γ, κ1, κ2) = false for κi such that κi is a
descendant kell of κ, and κi⊕1 is not a descendant of κ. This implies that we cannot apply rule [COM] between a thread in T
and a thread in Tκ. Because of the assumption κ not referenced in T , we cannot apply rule [PACK] with κ as the target from
any thread in T Tκ. Because of the assumption that there is no thread τ such that σ |= inth(κ, τ), we cannot apply any of the
rules [OPEN] and [CLOSE] from within κ, and hence σ′ |= κ : kell(∅, w). 2
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