CSE 590K: Analysis and Control of Computing Systems Using Linear Discrete-Time System Theory

Advanced Topics

Joseph L. Hellerstein, Jie Liu Microsoft Corporation

March 3, 2008

Challenges Not Addressed by Classical Control

- Change in system model (e.g., workload changes)
- Stochastics
- Incomplete or imprecise model of target system

Agenda

- Motivating example
- Gain scheduling
- Self-Tuning regulators
- Minimum variance control
- Fuzzy control

Approach to handling non-stationarities

- 1. Design at one arrival rate
- 2. See if robust at other

Designed using high arrival rates

Designed using low arrival rates

Gain Scheduling

- Addresses situations in which model changes
- Key concepts
 - Scheduling variable: measures environmental effects that determine the model to use
 - Gain scheduler: selects the model

Structure of Gain Scheduling

Principles for developing gain schedulers

- 1. Identify the variables that characterize how the target system changes
- Develop rules that determine which control gains to use with which values of scheduling variables. Conceptually, gain scheduler indexes into a table of the form:

Rule 1	1 st Gains
Rule 2	2 nd Gains
Rule n	n-th Gains

Performance of Gain Scheduling

Designed using high arrival rates

4

Time (hour)

6

10

Gain Scheduling

Self-Tuning Regulator (STR)

- Issue with gain scheduling
 - Discrete set of controllers
- Self-tuning regulators
 - Computes a continuous set of gains
 - Based on updated model of the target system

Structure of Self-Tuning Regulators

Structure of Self-Tuning Regulators

Principles for developing self-tuning regulators

- 1. Express control gains in terms of the a_n and b_m and desired poles $(p_1, p_2)_1$.
- 2. Use recursive least squares (or other techniques) to estimate a_n and b_m online
- 3. Compute new control gains whenever the a_n and b_m are updated

Example for a PI controller:

$$K_{P} = \frac{a - p_{1}p_{2}}{b}$$
$$K_{I} = \frac{1 + p_{1} + p_{2} + p_{1}p_{2}}{b}$$

Performance of Self-Tuning Regulator

STR is slower than gain scheduling
But STR is easier to design

Minimum Variance Control (MVC)

- Metrics of computing systems are often dominated by stochastics
- MVC provides an explicit way to control variance

Structure of Minimum Variance Control

Structure of Minimum Variance Control

y(k+1) = ay(k) + bu(k) + w(k); w(k) is a random variable, $E[y(k)] = r_{ss}$

$$var(y(k+1)) = E(y(k+1) - E(y(k+1))^{2})$$

= $E(ay(k) + bu(k) + w(k)) - r_{ss})^{2}$
= $E(ay(k) + bu(k) - r_{ss})^{2} + \sigma_{ss}^{2}$
 $u(k) = \frac{r_{ss} - ay(k)}{b}$, minimizes $var(y(k+1))$

Principles for developing minimum variance controllers

- 1. Express control gains in terms of the a_n and b_m
- 2. Use recursive least squares (or other techniques) to estimate a_n and b_m online
- 3. Compute new control gains whenever the a_n and b_m are updated

Performance of Minimum Variance Control

Fuzzy Control

- Simplified modeling target system
- Address optimization rather than regulation

The Control Problem

Operation of Fuzzy Control

Difference: Compute change Fuzzification: Translate into linguistic value Inference mechanism: Interpret fuzzy rules Fuzzy rules: Express how control input changes as other linguistic variables change Defuzzification: Translate into quantitative values Integrate: Compute non-differenced values

Linguistic Variables

Linguistic variables take on categorical values Ex 1: positive, negative Ex 2: small, medium, large

Linguistic variables provide a quality description of the system Linguistic values are ordinal with a small number of distinct value Ex 1: x(k)=45, x(k+1)=30 \rightarrow change-in-x = negative

- R1: If change-in-response-time is negative and last change-in-MaxClients was positive Then increase MaxClients
- R2: If change-in-response-time is positive and last change-in-MaxClients was negative Then increase MaxClients
- R3: If change-in-response-time is positive and last change-in-MaxClients was positive Then decrease MaxClients
- R4: If change-in-response-time is negative and last change-in-MaxClients was negative Then decrease MaxClients

Operation of Fuzzy Control

Which rule(s) are being applied?

Summary

- Gain scheduling
 - Use scheduling variables to select among multiple controllers
- Self-tuning regulator
 - Continuous adjustment of controller gains based on updated model of target system
- Minimum variance controller
 - Control input compensates for variability
- Fuzzy control
 - Use rules to optimize performance