
DISTRIBUTED WIKIS ON STRUCTURED
OVERLAYS∗

Stefan Plantikow
Zuse Institute Berlin

Alexander Reinefeld
Zuse Insitute Berlin

Florian Schintke
Zuse Insitute Berlin

Abstract We present a transaction processing scheme for structured overlay networks and
use it to develop a distributed Wiki application that is based on a relational data
model. The Wiki supports rich metadata and additional indexes for navigation
purposes.

Ensuring consistency and durability requires handling of node failures. We
mask such failures by providing high availability of nodes by constructing the
overlay from replicated state machines (Cell Model). Atomicity is realized using
two phase commit with additional support for failure detection and restoration of
the transaction manager. The developed transaction processing schema provides
the application with a mixture of pessimistic, hybrid optimistic and multiver-
sioning concurrency control techniques to minimize the impact of replication on
latency and optimize for read operations. We present pseudocode of the rele-
vant Wiki functions and evaluate the different concurrency control techniques in
terms of message complexity.

Keywords: Distributed transactions, content management systems, structured overlay net-
works, consistency, concurrency control.

1. Introduction
Structured overlay networks provide a scalable and efficient means for stor-

ing and retrieving data in distributed environments without central control. Un-
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fortunately, in their most basic implementation, structured overlays do not pro-
vide any guarantees on the ordering of concurrently executed operations.

Transaction processing provides concurrently executing clients with a sin-
gle, consistent view of a shared database. This is done by bundling client oper-
ations together in a transaction and executing them as if there was a global,
serial transaction execution order. Enabling structured overlays to provide
transaction processing support is a sensible next step for building consistent
decentralized, self-managing storage virtualization services.

We propose a transactional system for an Internet-distributed content man-
agement system built on a structured overlay. Our emphasis is on supporting
transactions in dynamic decentralized systems where nodes may fail with a
relatively high rate. The chosen approach provides clients with different con-
currency control options to minimize latency.

The article is structured as follows: Section 2 describes a general model for
distributed transaction processing in structured overlay networks. The main
problem addressed is handling the unreliability of nodes. Section 3 presents
our transaction processing schema with a focus on concurrency control. This
schema is extended to the relational model and exemplified using the dis-
tributed Wiki in Section 4. Finally, in Section 5, we evaluate the different
proposed transaction processing techniques in terms of message complexity.

2. Transactions on Structured Overlays
Transaction processing is used to guarantee the four ACID properties: Atom-

icity (transactions are either executed completely or aborted and any effects
undone), consistency (transaction processing will never corrupt the database
state), isolation (data operations of concurrently executing transactions do not
interfere with each other), durability (results of successfull transactions survive
system crashes). These ACID properties can be separated into two aspects:
Concurrency control is responsible for isolation and consistency by proper
scheduling of elementary operations, and database recovery ensures atomic-
ity and durability of transactions.

Page model. In this paper we consider transactions in the page model [4]
in which a database contains a set of uniquely addressable, single objects. Valid
elementary operations are reading and writing of objects and transaction com-
mit and abort. The model does not support predicate locking and thus phan-
toms can occur and our scheme cannot support consistent aggregation queries.
The page model was chosen because it can be naturally applied to structured
overlays. Objects are stored by their identifier using the overlay’s policy for
data placement. In Section 4.1 we show how relational data models can be
mapped on top of this simple scheme.
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2.1 Distributed Transaction Processing
Distributed transaction processing guarantees the ACID-properties in sce-

narios where clients access multiple databases or different parts of the same
database located on different nodes. All accesses to local databases are con-
trolled by resource manager (RM) processes in each participating node. Addi-
tionally, for each active transaction one node takes the role of the transaction
manager (TM). The TMs coordinate with the involved RMs to execute trans-
actions on behalf of their clients. The TMs also plays an important role during
the execution of distributed atomic commit protocols.

Distributed transaction processing in a structured overlay network requires
to distribute resource- and transaction management. Transaction management
can be performed by the initiating peer. For resource management it is neces-
sary to minimize the required communication overhead between resource man-
ager and the storing node. Therefore, in the following, we assume that each
peer of the overlay performs resource management for all objects in its fraction
of the keyspace. For application scenarios where certain groups of objects are
accessed together, it could be preferable to perform resource management at a
dedicated peer for the whole group.

2.2 The Cell Model for Handling Churn
Distributing resource management over all peers puts tight restrictions on

the message delivery. Messages initiating operations under transaction control
must never be delivered to the wrong node. This property is known as lookup
consistency. Without lookup consistency, a node might erroneously grant a
lock on a data item or deliver outdated data. It is an open question how lookup
consistency can be efficiently guaranteed in the presence of frequent and un-
expected node failures (churn). Some authors [3, 6] have proposed protocols
based on atomic commit that ensure consistent lookup if properly executed
by all joining and leaving nodes. Yet large scale overlays are subject to con-
siderable amounts of churn [8]. Thus handling the unreliability of nodes is
important for any transaction processing scheme.

Relational databases usually assume the crash-recovery model in which
durability is guaranteed by a combination of persistent storage and certain
restart mechanisms. For structured overlays, the crash-recovery model is not
useful because it is often unknown whether a disconnected node will later re-
join again. As a consequence, traditional locking cannot be used, because
unreleased locks of crashed nodes would block the system forever. Hence, for
structured overlays, the crash-stop model is used instead. Here the positive
dynamics of structured overlays (neighboring nodes take over the keyspace
partition of a failed node) conflicts with transactional consistency.
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Cell model. Irrespective of the chosen failure model, data loss created
by terminal node failures will violate the durability property. Therefore we
propose the use of replicated state machines (RSMs) [16] to ensure (a) lookup
consistency (b) availability and (c) durability. Instead of constructing the over-
lay network from single nodes, the overlay is made up by cells. Each cell
is a dynamically sized group of physical nodes [15] that constitutes a RSM.
Performing replication below the overlay’s topology yields the advantage of
reduced communication costs. No overlay lookups are necessary to send mes-
sages between replicas.

The execution of replicated operations has considerable cost: Even modern
consensus algorithms like Fast Paxos [7] require at least N(b2N/3c+1) mes-
sages. While this cost is hardly avoidable for consistent replication, it is also
unacceptable for regular message routing. Routing using dirty reads avoids
these costs but may create routing errors if node and cell state are temporarily
deviating. To handle this, the presumed target cell will deliver the message
using a replicated operation (Fig. 1). If during the delivery attempt it is de-
tected that the cell is not responsible for the message, routing continues using
the cell’s proper routing table.

Client Target cell

Route using dirty reads.
Deliver with an atomic and 

replicated operation.

Figure 1. Cell routing using dirty reads.

We do not cover the distribution of physical nodes on cells, nor do we
consider Byzantine failures. For this paper, we assume that cells either have
enough nodes or are merged with topologically adjacent cells. In any case cells
never fail unexpectedly and always orderly execute the overlay algorithm. If
too many nodes of a cell fail, the cell destroys itself by executing the overlay’s
leave protocol. The freed nodes can then rejoin neighbouring cells. This has
the benefit that crash-recovery of failed nodes and the use of stable storage is
unnecessary. For simplification, we also assume that the keyspace partition
associated to each cell does not change during transaction execution.
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3. Concurrency Control and Atomic Commit in
Structured Overlays

We use hybrid optimistic concurrency control and two phase commit on top
of replicated state machines (cells). Additionally we support optimized read
transactions using read-only multiversioning.

Atomic Operations. Using RSMs directly allows the execution of
atomic and totally ordered operations. This already suffices to implement
transaction processing, e.g. by using pessimistic, strong two phase locking (2PL)
and an additional distributed atomic commit protocol. But each replicated op-
eration is expensive. Thus any efficient transaction processing scheme for cell-
structured overlays must aim at minimizing the number of replicated opera-
tions.

Optimistic concurrency control (OCC). OCC executes transac-
tions against a local working copy (working phase). This copy is validated
just before the transaction is committed (validation phase). The transaction is
aborted if conflicts are detected during validation. As every node has (a possi-
bly temporarily deviating) local copy of its cell’s shared state, OCC is a prime
candidate for reducing the number of replicated operations by executing the
transaction against single nodes of each involved cell.

3.1 Hybrid Optimistic Concurrency Control
Plain OCC has the drawback that long-running transactions which need ob-

jects that are frequently accessed by short-running transactions may suffer star-
vation due to consecutive validation failures. This is addressed by hybrid op-
timistic concurrency control (HOCC, [18]) under the assumption of access
invariance, i.e. repeated executions of the same transaction have identical read
and write sets.

HOCC works by executing strong 2PL for the transaction’s read and write
sets at the beginning of the validation phase. In case of a validation failure,
the locks are kept and the transaction logic is reexecuted. Because of access
invariance this second execution cannot fail. All necessary locks are already
held by the transaction.

The use of strong 2PL has the additional benefit that no distributed dead-
lock detection is necessary if a global validation order between transactions
with non-disjoint sets of accessed objects can be established. A possible tech-
nique for this has been described by Agrawal et. al [1]: Every cell v maintains
a strictly monotonic increasing timestamp tv for the largest, validated transac-
tion. Before the start of validation, the transaction manager suggests a valida-
tion time stamp t > tv to all involved cells v. After every cell v has acknowl-
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edged that t > tv and updated tv to t, the validation phase is started. Otherwise
the algorithm is repeated. Gruber [5] optimized this approach by including the
largest validation timestamp in every message.

3.2 Distributed Atomic Commit
Distributed atomic commit (DBAC) requires consensus between all transac-

tion participants on the transaction’s termination state (committed or aborted).
If DBAC is not guaranteed, all four ACID properties are violated.

We propose a blocking DBAC protocol that uses cells to treat TM failures
by replicating transaction termination state.1 A commit record holding the
state is stored under the transaction’s unique identifier (TXID) in the overlay
network (for example in the same cell as the transaction manager’s node). If
no failures occur, regular two-phase atomic commit (2PC) is executed. But
after prepared-messages have been received from and before the final commit
messages are sent, the TM first writes the commit record. If the record already
is set to abort, the TM aborts the transaction. If RMs suspect a TM failure,
they read the commit record to either determine the termination state or initiate
transaction abort.

3.3 Read-only Transactions
In many application scenarios simple read-only transactions are much more

common than update transactions. Therefore we optimize and extend our trans-
action processing scheme for read-only transactions by applying techniques
similar to read-only multiversioning (ROMV) [11].

All data items are versioned using unique timestamps generated from each
node’s loosely synchronized clock and globally unique identifier. Additionally
for each data item we maintain a current version. This version is accessed
and locked exclusively by HOCC transactions as described above and implic-
itly associated with the cell’s maximum validation timestamp tv. The current
version decouples read-only multiversioning and HOCC.

Our approach moves newly created versions to the future such that they
never interfere with read operations from ongoing read-only transactions. This
avoids the cost associated with distributed atomic commit for read-only trans-
actions but necessitates it to execute reads as replicated operations. Read-only
transactions are associated with their start time. Every read operation is exe-
cuted as a replicated operation using the multiversioning rule [14]: The result
is the oldest version that is younger than the transaction start time. If this ver-
sion is the current version, the maximum validation timestamp tv is updated.
This may block the read operation until a currently running validation is fin-

1For an alternative, non-blocking approach, see [12].
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ished. Update transactions create new versions of all written objects using
t > tv during atomic commit.

4. Algorithms for a Distributed Wiki
In the following sections we describe the basic algorithms of a distributed

content management system that is built on a structured overlay with transac-
tion support.

4.1 Mapping the Relational Model
So far we only considered uniquely addressable, uniform objects. In prac-

tice, many applications use more complex, relational data structures. This rises
the question of how multiple relations with possibly multiple attributes can be
stored in a single structured overlay. For this, we assume that the overlay sup-
ports range queries over a finite number of index dimensions.2

Storing multiple attributes requires mapping them on index dimensions. As
the number of available dimensions is limited, it is necessary to partition the
attributes into disjoint groups and map these groups instead. The partition must
be chosen in such a way that fast primary-key based access is still possible.
Depending on their group membership, attributes are either primary, index, or
data attributes. Multiple relations can be modeled by introducing an additional
primary attribute that contains a unique relation identifier.

4.2 Notation
Table 1 contains an overview of the pseudocode syntax from [13]. Relations

are represented as sets of tuples and written in CAPITALS. Relation tuples
are addressed using values for the primary attributes in the fixed order given
by the relation. For reasons of readability, tuple components are identified
using unique labels (Such labels easily can be converted to positional indexes).
Range queries are expressed using labels and marked with a "?".

4.3 Wiki
A Wiki is a content management system that embraces the principle of min-

imizing access barriers for non-expert users. Wikis like www.wikipedia.org
comprise millions of pages that are written in a simplified, human-readable
markup syntax. Each page has a unique name which is used for hyperlinking
with other Wiki pages. All pages can be read and edited by any user, which
may result in many concurrent modification requests for hotspot pages. This
makes Wikis a perfect test-case for our distributed transaction algorithm.

2Possible approaches can be found in [17, 2].
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Table 1. Pseudocode notation

Syntax Description

Procedure Proc (arg1, arg2, . . ., argn) Procedure declaration

Function Fun (arg1, arg2
de f
= "Value", . . ., argn) Function declaration, default for arg2

begin transaction . . .commit (abort) transaction Transaction boundaries
ADDRESS"ZIB" Read tuple from relation
ADDRESS"ZIB"← ("Takustr. 7","Berlin") Write tuple to relation
Πattr1, ..., attrn(M) = {πattr1, ..., attrn(t) | t ∈ M} Projection

∀t ∈ tuple set : RELATION
+← t bzw. −← t Bulk insert and delete

DHT?
key1="a", key2

or DHT?
key1="a", key2=∗ Range query (∗ asks for any value)

ADDRESS?
"ZI"<orga<"ZZ"

←−−orga,
−−−→street

#<50
Sorted range query with result limit

Modern Wikis extend provide a host of additional features, particularly to
simplify navigation. In this paper we exemplarily consider backlinks (list of
other pages linking to this page) and recent changes (list of recent modifica-
tions of this pages). We model our Wiki using the following two relations:

Relation Primary Index Data
attributes attributes attributes

CONTENT pageName ctime (change time) content
BACKLINKS referencing (page), referenced (page) - -

All Wiki operations use transactions to maintain the following consistency
invariants:

CONTENT always contains the page’s current content,

BACKLINKS contains proper backlinks for all pages given by CONTENT,

users cannot modify pages whose content has never been seen by them
(explained below).

The function WikiRead (Alg. 4.1) delivers the content of a page and all back-
links pointing to it. This requires a single read for the content and a range query
to obtain the backlinks. Both operations can be executed in parallel.

The function RecentChanges (Alg. 4.2) issues a range query to return a
sorted list of the limit newest pages that have been changed be f oreTime.

The function WikiWrite (Alg. 4.3) is more complex because conflicting writes
by multiple users must be resolved. This can be done by serializing the write
requests using locks or request queues. If conflicts are detected during (atomic) writes
by comparing last read and current content, the write operation is aborted.
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Algorithm 4.1 WikiRead: Read page content
1: function WikiRead (pageName)
2: begin transaction read-only
3: content← πcontent(CONTENTpageName)
4: backlinks←Πre f erenced(BACKLINKS?

referencing=pageName, referenced)
5: commit transaction
6: return content, backlinks
7: end function

Algorithm 4.2 RecentChanges: List of recently modified pages
1: function RecentChanges (beforeTime, limit)
2: begin transaction read-only
3: result←{CONTENT?

pageName, ctime>beforeTime}
←−−−
ctime
#<limit

4: commit transaction
5: return result
6: end function

Users may then manually merge their changes and retry. This approach is
similar to the compare-and-swap instructions used in modern microprocessors
and to the concurrency control in version control systems.3 For our distributed
Wiki, we realize the compare-and-swap in WikiWrite by using transactions.
First, we precompute which backlinks should be inserted and deleted. Then,
we compare the current and old page content and abort if they differ. Other-
wise all updates are performed by writing the new page content and modifying
BACKLINKS. The update operations again can be performed in parallel.

4.4 Wiki with Metadata
Often it is necessary to store additional metadata with each page (e.g. page

author, category). To support this, we add a third relation METADATA with pri-
mary key attributes pageName and attrName and data attribute attrValue. Al-
ternatively we could also add metadata attributes to CONTENT. But this would
not be scalable as current overlays only provide a limited number of index
dimensions.

Modifying page metadata requires checking that the page has not been changed
by some other transaction. Otherwise new metadata could be associated wrongly
to a page (This is similiar to storing the wrong backlinks). For reading page
metadata, a simple range query suffices ([13] contains the algorithms).

3Most version control systems provide heuristics (e.g. content merging) for automatic conflict resolution
that could be used for the Wiki as well.
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Algorithm 4.3 WikiWrite: Write new page content and update backlinks
1: procedure WikiWrite (pageName, contentold, contentnew)
2: refsold← Refs (contentold)
3: refsnew← Refs (contentnew)
4: refsdel← refsold \ refsnew — precalculation
5: refsadd← refsnew \ refsold
6: txStartTime← CurrentTimeUTC()
7: begin transaction
8: if πcontent(CONTENTpageName) = contentold then
9: CONTENTpageName = (txStartTime, contentnew)

10: ∀t ∈ {(ref , pageName) | ref ∈ refsadd} : BACKLINKS
+← t

11: ∀t ∈ {(ref , pageName) | ref ∈ refsdel} : BACKLINKS
−← t

12: else
13: abort transaction
14: end if
15: commit transaction
16: end procedure

5. Evaluation
It is noteworthy that the presented algorithms for ensuring consistency mainly

require the atomicity property. There are only few conditions on the serial ex-
ecution order of operations. Thus in theory, a high degree of concurrency is
possible. This is especially interesting for range queries like RecentChanges
which can utilize the overlay’s capabilities to multicast to many nodes in par-
allel.

Table 2. Comparison of concurrency control methods

Transaction type Once for N Parallel ops Total for k serial ops
involved cells on N cells

(1) Atomic Write 1L 1R 1L+1R, because k,N = 1
(2) Read-Only Trans. N L N R N L+ kN R
(3) Pess. 2PL + 2PC N L+2N R N R N L+(k +1)N R
(4) Hyb. Opt. + 2PC N L+2N R NU N L+(k−1)NU +2N R
(5) Hyb. Opt. + 2PC N L+3N R 2NU N L+(2k−2)NU +3N R
+ Validation Error

Table 2 compares the communication overhead of the different concurrency
control methods. We assume transactions consisting of k serial operations.
Every such operation is executed in parallel on N cells. U is a simple, un-
replicated, R is a replicated, and L is a lookup (routing) operation. The cost
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is split into one-time (initial and DBAC) overhead, overhead per k operations,
and total overhead. Totals include DBAC costs and respect possible combined
sending of messages (e.g. combining last data operation with validate and pre-
pare).

Table 2 contains (1) a simple, replicated operation on a single cell, (2) a
read-only multiversioning transaction (Sec. 3.3), (3) a pessimistic 2PL trans-
action, (4) a HOCC (Sec. 3.1) transaction without validation failure, and (5)
a HOCC transaction with validation failure and transaction logic reexecution.
(2)-(4) all use the 2PC variant described in 3.2 (For the evaluation, we assume
no failures occur during commit).

HOCC reduces the number of necessary replicated operations for k > 1. For
k = 1 and a operation on a single cell, ACID is already provided by using
a RSM and no DBAC is necessary. For k = 1 and a single operation over
multiple cells, HOCC degenerates into 2PL: the data operations on the different
cells are combined with validate-and-prepare messages and executed as single
replicated operations.

Read-only transactions use more replicated operations but save the DBAC
costs of HOCC. This makes them well-suited for quick, parallel reads. But
long running read transactions might be better off by choosing HOCC if the
performance gained by optimism outweights DBAC overhead and vaidation
failure chance.

Using cells yields an additional benefit. If replication would be performed
above the overlay layer, additional routing costs of (r−1)N lookup messages
would be necessary (r is the number of replicas).

6. Summary
In this article, we presented a transaction processing scheme suitable for a

distributed Wiki application on a structured overlay network. While previous
work on overlay transactions (e.g. [10]) has not treated handling the unreliabil-
ity of nodes, we identified this as a key requirement for consistent data storage
in structured overlays and proposed the cell model as a possible solution.

The developed transaction processing scheme provides applications with a
mixture of concurrency control techniques to minimize the required commu-
nication effort. We showed core algorithms for the Wiki that utilize overlay
transaction handling support and evaluated the different concurrency control
techniques in terms of message complexity.
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