
May 2008 1P. Van Roy & SELFMAN project

Self Management
for Large-Scale

Distributed Systems

Peter Van Roy
and SELFMAN partners

May 8, 2008

Grid@Mons 2008

Université catholique de Louvain

Louvain-la-Neuve, Belgium

May 2008 P. Van Roy & SELFMAN project 2

Vision

 Software is fragile!
 A single bit error can cause a catastrophe

 Software complexity is ramping up quickly due to:
 The sufficient bandwidth and reliability of the Internet
 The increasing number of networked devices
 The increasing computing power of these devices

 Many new applications are appearing
 File-sharing (Napster, Morpheus, Freenet, BitTorrent,…), information sharing

(Youtube, Flickr, …), social networks (LinkedIn, FaceBook, …), collaboration
(Wikis, Skype, Messengers, …), MMORPGs, on-line vendors (Amazon, eBay,
PriceMinister, …), etc.

 These applications are currently a mix of client/server and peer-to-peer,
but they are getting more complicated

 How can we build such applications so they are not fragile?
 They should be self managing

May 2008 P. Van Roy & SELFMAN project 3

What is self management?

 The system should be able to reconfigure itself to handle
changes in its environment or its requirements without human
intervention but according to high-level management policies
 Human intervention is lifted to the level of the policies

 Typical self-management operations include: add/remove nodes, tune
performance, auto-configure, failure detection & recovery, intrusion
detection & recovery, software rejuvenation

 Self management is needed at all levels
 Such as: single node level (failures), network level, services (transactional

storage, broadcast), application level

 For large-scale systems, environmental changes that require
recovery by the system become normal and even frequent events
 “Abnormal” events are normal occurrences (failure is a normal

occurrence)

May 2008 P. Van Roy & SELFMAN project 4

How to build large-scale self-
managing applications?

 We start with systems that already solve the problem
 Structured overlay networks (derived from peer-to-peer)

 These systems already handle the lower layers
 Self-managed communication and storage

 We add the higher layers needed by applications
 First we complete the overlays by handling network partitioning

and improving lookup consistency
 Then we add replicated storage and a transaction service

 The needs are guided by three application scenarios
 Machine-to-machine messaging (France Telecom)
 Distributed Wiki (ZIB)
 On-demand video streaming (Stakk)

!

May 2008 P. Van Roy & SELFMAN project 5

Three application scenarios

 Our self-management architecture is designed so that these
three scenarios can work well:

 Machine-to-machine messaging (France Telecom):
decentralized messaging application, must recover on node
failure, must gracefully degrade and self optimize, have
transactional behavior

 Distributed Wiki (ZIB): Wiki distributed over SON using
transactions with versioning and replication, both editing and
search support

 P2P video streaming (Stakk): distributed live media streams
with quality of service to large numbers of customers, need
dynamic reconfiguration to handle fluctuating structure

May 2008 P. Van Roy & SELFMAN project 6

Application requirements

+++++J2EE
Application

Server

+++++P2P Video
Streaming

+++++++Distributed
Wiki

++++++Machine To
Machine

TransactionsOverlay
Networks

ComponentsSelf-*
Properties

Use Case

May 2008 P. Van Roy & SELFMAN project 7

Successive steps to build a
self-management architecture

 First, we fix the overlay networks
 Improving lookup consistency: relaxed ring

 Handling network partitioning: merge algorithm

 Second, we add services
 Replicated storage

 Distributed transaction service

 We explain each of these steps
 This is work being done in the SELFMAN project

May 2008 P. Van Roy & SELFMAN project 8

SELFMAN project

 STREP in IST Software and Services,
3 years starting June 2006

 Partners:
 Université catholique de Louvain

(Belgium) (coordinator)
 Kungliga Tekniska Högskolan

(Sweden)
 Institut National de Recherche en

Informatique et Automatique (France)
 France Télécom Recherche et

Développement (France)
 Konrad-Zuse-Zentrum für

Informationstechnik Berlin (Germany)
 National University of Singapore

(Singapore)
 Peerialism AB (Sweden)

May 2008 9P. Van Roy & SELFMAN project

Structured
overlay networks

May 2008 P. Van Roy & SELFMAN project 10

Three generations of
peer-to-peer networks

 Hybrid (client/server)
 Napster

 Unstructured overlay
 Gnutella, Kazaa,

Morpheus, Freenet, …
 Uses flooding

 Structured overlay
 Exponential network
 DHT (Distributed Hash

Table), e.g., Chord, DKS,
P2PS

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

May 2008 P. Van Roy & SELFMAN project 11

What is a Structured Overlay Network
(also known as Distributed Hash Table)?

 An ordinary hash table that is distributed

 Every node provides a lookup operation
 Provide the value associated with a any key

 Nodes keep routing pointers
 If item not found, route to another node

Key Value

Bengt 193.20.10.2

Ali 202.49.2.44

Björn 241.13.11.19

Peter 169.14.33.1

Olle 10.0.0.1

Nisse 211.113.9.12

May 2008 P. Van Roy & SELFMAN project 12

Properties of SONs/DHTs

 Scalability
 Number of nodes
 Number of items

 Self-manage in presence joins/leaves/failures
 Routing information
 Data items

 Guarantees: fast routing, finding the item

Maximum log(n) re-routes
log(n) routing table size

1/n portion of items per node

Update routing tables continuously

Replicate data for reliability

May 2008 P. Van Roy & SELFMAN project 13

Based on a ring topology

Ring
(connectivity)

Fingers
(efficiency)

May 2008 P. Van Roy & SELFMAN project 14

Lookup illustrated in Chord

Indicates presence of a node

We illustrate lookup in Chord, a simple SON.
Nodes sparsely populate a circular identifier
space.

Given a key, find the value associated to
the key (here, the value is the IP address of
the node that stores the key)

Assume node 0 searches for the value
associated to key K with identifier 7

Interval node to be contacted
 [0,1) 0
 [1,2) 6
 [2,4) 6
 [4,8) 6
 [8,0) 12

0

8

412

2

610

14

1

3

5

79

11

13

15

May 2008 P. Van Roy & SELFMAN project 15

Where are SONs used?

 Internet Architecture
 Routing On Flat Labels (ROFL) [sigcomm’06]

 Mobility
 Session Initiation Protocol, Host Identity Protocol (HIP), I3, …

 File sharing and Streaming
 e-Mule, Azureus, PPLive [sigcomm’07], …

 Application Servers
 amazon.com DYNAMO [sosp’07]

 Other uses
 databases (PIER), DFS (WheelFS [sosp’07], …), caches

(squirrel, …)

May 2008 16P. Van Roy & SELFMAN project

Relaxed ring
algorithm

May 2008 P. Van Roy & SELFMAN project 17

Ring maintenance

 In a SON based on a ring topology,
self organization is done at two levels:
 The ring ensures connectivity (correctness): it must

always exist despite joins, leaves, and failures

 The fingers reduce number of routing hops (efficiency):
they can be temporarily in an inconsistent state

 The relaxed ring algorithm improves the
connectivity maintenance
 It has improved behavior for failures

 It greatly reduces the probability of inconsistent lookups

May 2008 P. Van Roy & SELFMAN project 18

Connectivity maintenance

 Connectivity maintenance is not trivial
 Peers can join and leave at any time

 Peers that crash are like peers that leave but
without notification

 Temporarily broken links create false
suspicions of failure

 Crucial properties to be guaranteed
 Lookup consistency

 Ring connectivity

May 2008 P. Van Roy & SELFMAN project 19

The relaxed-ring architecture

 The ring is constructed using an invariant:
Every peer is in the same ring as its successor

 Connectivity maintenance is completely asynchronous

 Nodes communicate through message passing
 For a join, instead of one step involving 3 peers (as in DKS, also developed in

SELFMAN), we have two steps each with 2 peers → we do not need locking

 A peer can never indicate another peer as the responsible node (a peer
knows only its own responsibility, which starts with the key of the
predecessor + 1)

May 2008 P. Van Roy & SELFMAN project 20

Example of a relaxed ring

 It looks like a ring with “bushes”
sticking out

 The bushes appear only if
there are failure suspicions
 Usually the ring is not as bushy

as in this example!

 There always exists a perfect
ring (in red) as a subset of the
relaxed ring.

 The relaxed ring is always
converging toward the perfect
ring
 The number of bushes existing

at any time depends on the
churn (rate of change of the
ring, failures/joins per time)

May 2008 P. Van Roy & SELFMAN project 21

Lookup consistency

 Definition: Lookup consistency means that at any time there is
exactly one responsible node for a particular key k
 Lookup consistency is difficult to achieve

 Strong (atomic) data consistency, availability, and partition tolerance are
impossible to achieve simultaneously (Brewer’s conjecture)

 What can we do in the case of the Internet’s failure model?
 Crash failures of nodes and networks and false failure suspicions
 Eventually perfect failure detection

 Theorem: The relaxed-ring join algorithm guarantees lookup
consistency at any time in presence of multiple joining peers
 This is not true for many other SONs, e.g., Chord

 Theorem: Multiple failing peers never introduce inconsistent lookup
unless the network is partitioned
 In practice, the probability of inconsistency is vastly reduced

May 2008 22P. Van Roy & SELFMAN project

Ring merge algorithm

May 2008 P. Van Roy & SELFMAN project 23

Problem statement

 Network partitions occur frequently
 Often small, occasionally large

 Any long-lived DHT will experience partitions
 Problem barely studied at all

 This is an important problem
 Studied in other contexts: databases (80s), file systems

(90s)

May 2008 P. Van Roy & SELFMAN project 24

Real world example

May 2008 P. Van Roy & SELFMAN project 25

Real world example

May 2008 P. Van Roy & SELFMAN project 26

Current beliefs about partitions &
SONs are wrong!

 Ring-based DHTs ”cannot function at all until
the whole merge process is complete”, Datta
et al. [iwsos’06, best paper award]

 Ring-based SONs are inherently ill-suited for
dealing with network partitions, Ken Birman
[gossip-leiden’06]

May 2008 P. Van Roy & SELFMAN project 27

Existing systems

 Most existing DHTs survive network partitions

 How to efficiently merge several rings?
 Automatic merge when partition detected
 Manual merge decided by external management

May 2008 P. Van Roy & SELFMAN project 28

Automatically detecting need
for a merge

 Each node maintains a passive list
 Stores every locally stored crashed node

 Ping passive lists periodically
 Alive node indicative of merger

 If passive list contains no live node
 “Kick start” the merge by using external mechanism

to add one node to passive list

May 2008 P. Van Roy & SELFMAN project 29

Simple ring unification
algorithm

 Assume a detects b on a different ring

 a calls mlookup(b)
 mlookup traverses ring to get close to b

 It then calls trymerge(cpred, csucc)

 trymerge(cpred, csucc)
 Try merging by updating pointers to candidates

(cpred, csucc)

 Recursively call mlookup to continue the merger

May 2008 P. Van Roy & SELFMAN project 30

SON 1

SON 2

b

a

mlookup(a)

mlookup(b)

a:trymerge

b:trymerge

trymerge

trymerge

May 2008 P. Van Roy & SELFMAN project 31

SON 1

SON 2

b

b:trymerge

trymerge

c

c.succ

mlookup(r.succ)

mlookup(c)

c:trymerge

trymerge

trymerge

c.succ:trymerge

May 2008 P. Van Roy & SELFMAN project 32

Improved algorithm

 The algorithm needs linear time to merge rings
 This can be acceptable:

 Partitions are rare
 Let algorithm run in background
 Low cost, low performance

 With gossiping we improve the algorithm to merge
rings in logarithmic average time
 Let detecting node share info with M random nodes
 Caveat: node does not know M random nodes

 Spread this process during the merger

May 2008 P. Van Roy & SELFMAN project 33

Fixing “loopy rings”

 Sometimes DHTs end up in a loopy ring

 The gossip algorithm can recover from loopy rings
8

9 7

6

5

4

3

2

1
0

10

11

12

13

14

15

May 2008 34P. Van Roy & SELFMAN project

Distributed
transactions

May 2008 P. Van Roy & SELFMAN project 35

Transactions on a SON

 Transactions on a SON are challenging because of
high churn:
 Frequent node leaves, crashes, and joins
 Results in changing data responsibilities of nodes

 We use a crash stop failure model
 We assume an eventually perfect failure detector

 Failure detection on Internet is notoriously difficult
 We use a majority algorithm based on a modified Paxos
 Inconsistent lookups are hidden by the majority algorithm

 We build the transactions on top of a reliable
storage service that uses symmetric replication

May 2008 P. Van Roy & SELFMAN project 36

Concurrency control

 Pessimistic CC is used …
 in scenarios with high contention

 in DBs (with in crash recovery model)

 Optimistic CC is used …
 in scenarios with low contention

 when long network latencies cause much blocking

eotbot valid

May 2008 P. Van Roy & SELFMAN project 37

Atomic commit on a SON

Client:

 Client asks nearest node,
e.g. node 15

 Node 15 becomes the
Transaction Manager (TM)

 TM creates a transaction
item with a key for which it
is responsible for
(e.g. key = 15)

T
M

1,5,9,13

BOT
Write item(1)
Write item(2)

EOTClient

15,3,7,11
2,6,10,14

Start of validation phase

May 2008 P. Van Roy & SELFMAN project 38

Client:

 Assuming symmetric
replication, let the
replication degree f = 4

 Nodes 3, 7, 11 become
replicated Transaction
Managers (rTM), according
to the replication of the
transaction item

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

BOT
Write item(1)
Write item(2)

EOT

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 39

Client:

 Nodes 1, 5, 9, 13 and
2, 6, 10, 14 become
Transaction Participants
(TP)

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

BOT
Write item(1)
Write item(2)

EOT

1. and 2. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 40

 When the transaction is
complete, we start the
atomic commit algorithm

 TM sends “Prepare”
together with the
information needed for
validation to all TPs

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

3. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 41

 After having received
“Prepare” from the TM,
each TP sends a
“Prepared” or “Abort”
message to all rTMs

T
M

r
T
M

1,5,9,13

Clie
nt

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

4. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 42

 The rTMs collect votes
from a majority of TPs
per item and locally
decide on abort or
commit

 Each rTM sends the
outcome to the TM

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

5. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 43

 The TM collects the
outcome from at least a
majority of rTMs

 After having collected a
majority, the TM sends
the decision to all TPs

 If the TM fails, this is
detected and a new
leader is chosen

T
M

r
T
M

1,5,9,13
Client

3,7,11,15

15,3,7,11

11,15,7,3

7,11,15,3
rTM

rTM

2,6,10,14

6. Step

Atomic commit on a SON

May 2008 P. Van Roy & SELFMAN project 44

Current status

 Performance
 6 communication rounds

 Succeeds if more than f/2 nodes alive
 Time outs are not used

 Simulations in progress
 For validating assumptions and performance

 Implementations
 Transaction algorithm and Distributed Wiki application implemented in

Erlang at ZIB
 This implementation won first prize in the First IEEE International

Scalable Computing Challenge (SCALE 2008) (May 2008)

 Implementations in progress on PlanetLab/EverLab and using network
simulator

May 2008 45P. Van Roy & SELFMAN project

Conclusions

May 2008 P. Van Roy & SELFMAN project 46

Conclusions
 Structured overlay networks are a good starting point for building

large-scale self-managing systems
 Current SON research is almost mature enough for building self-

management architectures
 We have fixed the main problems: network merge and lookup

consistency

 We are currently implementing and evaluating a replicated
transactional storage algorithm
 Majority algorithm (modified Paxos for atomic commit) together with

network merge seems to be adequate to deal with Internet failure model
 We implemented a distributed Wiki using this algorithm which won first

prize in the First IEEE International Scalable Computing Challenge
(SCALE 2008).

 This work is being done as part of the SELFMAN project
 See www.ist-selfman.org

