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Abstract. As Internet applications become larger and more complex,
the task of managing them becomes overwhelming. “Abnormal” events
such as software updates, failures, attacks, and hotspots become frequent.
The SELFMAN project will show how to handle these events automati-
cally by making the application self managing. SELFMAN combines two
technologies, namely structured overlay networks and advanced com-
ponent models. Structured overlay networks (SONs) developed out of
peer-to-peer systems and provide robustness, scalability, communication
guarantees, and efficiency. Component models provide the framework to
extend the self-managing properties of SONs over the whole application.
SELFMAN is building a self-managing transactional storage and using it
for three application demonstrators: a machine-to-machine messenging
service, a distributed Wiki, and an on-demand media streaming service.
This paper provides an introduction and motivation to the ideas under-
lying SELFMAN and a snapshot of its contributions midway through the
project. We explain our methodology for building self-managing systems
as networks of interacting feedback loops. We then summarize the work
we have done to make SONs a practical basis for our architecture: using
an advanced component model, handling network partitions, handling
failure suspicions, and doing range queries with load balancing. Finally,
we show the design of a self-managing transactional storage on a SON.

1 Introduction

It is now possible to build applications of a higher level of complexity than ever
before, because the Internet has reached a higher level of reliability and scale
than ever before using computing nodes that are more powerful than ever before.
Applications that take advantage of this complexity cannot be managed directly
by human beings; they are just too complicated. In order to build them, they



need to manage themselves. In that way, human beings only need to manage the
high-level policies.

The SELFMAN project targets one part of this application space: applica-
tions built on top of structured overlay networks. Such networks are already
self managing in the lower layers: they self organize around failures to provide
reliable routing and lookup. We are building a service architecture on top of the
overlay network using an advanced component model. To make it self manag-
ing, the service architecture is designed as a set of interacting feedback loops.
Furthermore, by studying several application scenarios we find that support for
distributed transactions is important. We are therefore building a replicated
transactional storage as a key service on top of the structured overlay network.
We will build three application demonstrators that use the service architecture
and its transactional storage.

SELFMAN is a specific targeted research project (STREP) in the Informa-
tion Society Technologies (IST) Strategic Objective 2.5.5 (Software and Ser-
vices) of the European Sixth Framework Programme [30]. It started in June
2006 for a duration of three years with a budget of 1.96 MEuro. The project has
seven partners: Université catholique de Louvain, Kungliga Tekniska Hogskolan,
INRIA (Grenoble), France Télécom Recherche et Développement (Grenoble),
Konrad-Zuse-Zentrum fiir Informationstechnik (Berlin), National University of
Singapore, and Stakk AB in Stockholm. This paper gives an overview of the
motivations of SELFMAN; its approach, and its contributions midway through
the project. The paper consists of the following six sections:

— Section 2: Motivation for self-managing systems. We give a brief history
of system theory and cybernetics. We then explain why programs must be
structured as systems of interacting feedback loops.

— Section 3: Presentation of the SELFMAN project. We present SELFMAN’s
decentralized service architecture and its three demonstrator applications.

— Section 4: Understanding and designing feedback structures. We explain
some techniques for analyzing feedback structures and we give two realistic
examples taken from human biology: the human respiratory system and the
human endocrine system. We infer some design rules for feedback structures
and present a tentative architecture and methodology for building them.

— Section 5: Introduction to structured overlay networks. We explain the basic
ideas of SONs and the low-level self-management operations they provide.
We then explain how they need to be extended for self-managing systems.
We have extended them in three directions: to handle network partitions,
failure suspicions, and range queries.

— Section 6: The transaction service. From our application scenarios, we have
concluded that transactional storage is a key service for building self-managing
applications. We are building the transaction service on top of a SON by us-
ing symmetric replication for the storage and a modified version of the Paxos
nonblocking atomic commit.

— Section 7: Some conclusions. We recapitulate the progress that has been
made midway through the project and summarize what remains to be done.



2 Motivation

2.1 Software complexity

Software is fragile. A single bit error can cause a catastrophe. Hardware and
operating systems have been reliable enough in the part so that this has not
unduly hampered the quantity of software written. Hardware is verified to a high
degree. It is much more reliable than software. Good operating systems provide
strong encapsulation at their cores (virtual memory, processes) and this has been
polished over many years. New techniques in fault tolerance (e.g., distributed
algorithms, Erlang) and in programming (e.g., structured programming, object-
oriented programming, more recent methodologies) have arguably kept the pace
so far. In fact we are in a situation similar to the Red Queen in Through the
Looking-Glass: running as hard as we can to stay in the same place [7].

In our view, the next major increase in software complexity is now upon
us. The Internet now has sufficient bandwidth and reliability to support large
distributed applications. The number of devices connected to the Internet has in-
creased exponentially since the early 1980s and this is continuing. The computing
power of connected devices is continuously increasing. Many new applications are
appearing: file sharing (Napster, Gnutella, Morpheus, Freenet, BitTorrent, etc.),
information sharing (YouTube, Flickr, etc.), social networks (LinkedIn, Face-
Book, etc.), collaborative tools (Wikis, Skype, various Messengers), MMORPGs
(Massively Multiplayer On-line Role-Playing Games, such as World of Warcraft,
Dungeons & Dragouns, etc.), on-line vendors (Amazon, eBay, PriceMinister, etc.),
research testbeds (SETI@Qhome, PlanetLab, etc.), networked implementations of
value-added chains (e.g., in the banking industry). These applications act like
services. In particular, they are supposed to be long-lived. Their architectures
are a mix of client/server and peer-to-peer. The architectures are still rather
conservative: they do not take full advantage of the new possibilities.

The main problem that comes from the increase in complexity is that software
errors cannot be eliminated [2, 38]. We have to cope with them. There are many
other problems: scale (large numbers of independent nodes), partial failure (part
of the system fails, the rest does not), security (multiple security domains) [18],
resource management (resources tend to be localized), performance (harnessing
multiple nodes or spreading load), and global behavior (emergent behavior of
the system as a whole). Of these, global behavior is particularly relevant. Ex-
periments show that large networks show behavior that is not easily predicted
by the behaviors of the individual nodes (e.g., the power grid [11]).

2.2 Self-managing systems

What solution do we propose to these problems? For inspiration, we go back
fifty years, to the first work on cybernetics and system theory: designing sys-
tems that regulate themselves [37,4,5]. A system is a set of components (called
subsystems) that are connected together to form a coherent whole. Can we pre-
dict the system’s behavior from its subsystems? Can we design a system with



. Unorganized complexity
{aggregates)

\ AAMHBHBIBDIN \§

l computing research

Randomness

I11. Organized complexity
(systems)

U 1. Organized f computing research

A simplicity
L' (machines)
£

Complexity

Fig. 1. Randomness versus complexity (taken from Weinberg [35])

desired behavior? These questions are particularly relevant for the distributed
systems we are interested in. No general theory has emerged yet from this work.
We do not intend to develop such a theory in SELFMAN. Our aim is narrower:
to build self-managing software systems. Such systems have a chance of coping
with the new complexity. Our work is complementary to [17], which applies con-
trol theory to design computing systems with feedback loops. We are interested
in distributed systems with many interacting feedback loops.

Self management means that the system should be able to reconfigure it-
self to handle changes in its environment or its requirements without human
intervention but according to high-level management policies. In a sense, hu-
man intervention is lifted to the level of the policies. Typical self-management
operations include adding/removing nodes, performance tuning, failure detec-
tion & recovery, intrusion detection & recovery, software rejuvenation. It is clear
that self management exists at all levels of a system: the single node level, the
network routing level, the service level, and the application level. For large-scale
systems, environmental changes that require recovery by the system become nor-
mal and even frequent events. “Abnormal” events (such as failures) are normal
occurrences.

Figure 1 (taken from [35]) classifies systems according to two axes: their com-
plexity (the number of components and interactions) and the amount of random-
ness they contain (how unpredictable the system is). There are two shaded areas
that are understood by modern science: machines (organized simplicity) and ag-
gregates (unorganized complexity). The vast white area in the middle is poorly
understood. We extend the original figure of [35] to emphasize that computing



research is the vanguard of system theory: it is pushing inwards the boundaries
of the two shaded areas. Two subdisciplines of computing are particularly rele-
vant: programming research (developing complex programs) and computational
science (designing and simulating models). In SELFMAN we do both: we design
algorithms and architectures and we simulate the resulting systems in realistic
conditions.

2.3 Designing self-managing software systems

Designing self-managing systems means in large part to design systems with
feedback loops. Real life is filled with variations on the feedback principle. For
example:

— Bending a plastic ruler: a system with a single stable state. The ruler resists
with a force that increases with the degree of bending, until equilibrium is
reached (or until the ruler breaks: a change of phase). The ruler is a simple
self-adaptive system with a single feedback loop.

— A clothes pin: a system with one stable and one unstable state. It can be kept
temporarily in the unstable state by pinching. When the force is released, it
will go back to (a possibly more complex) stable state.

— A safety pin: a system with two stable states, open and closed. Within each
stable state the system is adaptive like the ruler. This is an example of a
feedback loop with management (see Section 4): the outer control (usually
a human being) chooses the stable state.

In general, anything that has continued existence is managed by a feedback loop.
Lack of feedback means that there is a runaway reaction (an explosion or an
implosion). This is true at all size scales, from the atomic to the astronomic. For
example, binding of atoms to form a molecule is governed by a negative feedback
loop: when perturbed it will return to equilibrium (or find another equilibrium).
A star at the end of its lifetime collapses until it finds a new stable state. If
there is no force to counteract the collapse, then the star collapses indefinitely
(at least, until it goes beyond our current understanding of physics). If the star
is too heavy to become a neutron star, then it becomes a black hole, which in
our current understanding is a singularity.

Most products of human civilization need an implicit management feedback
loop, called “maintenance”, done by a human. For example, changing lightbulbs,
replacing broken windows, or tanking a car. Each human mind is at the center of
an enormous number of these feedback loops. The human brain has a large ca-
pacity for creating such loops; they are called “habits” or “chores”. Most require
very little conscious awareness. Repetition has caused them to be programmed
into the brain below consciousness. However, if there are too many feedback
loops to manage then the brain is overloaded: the human complains that “life is
too complicated”! We can say that civilization advances by reducing the number
of feedback loops that have to be explicitly managed [36]. A dishwashing ma-
chine reduces the work of washing dishes, but it needs to be bought, filled and
emptied, maintained, replaced, etc. Is it worth it? Is the total effort reduced?



Software is in the same situation as other products of human civilization. In
the current state, most software products are very fragile: they require frequent
maintenance by a human. This is one of the purposes of SELFMAN: to reduce
this need for maintenance by designing feedback loops into the software. This
is a vast area of work; we have decided to restrict our efforts to large-scale
distributed systems based on structured overlay networks. Because they have
low-level self management built in, we consider them an ideal starting point.
SONs have greatly matured since the first work in 2001 [33]; current SONs
are (almost) ready to be used in real systems. We are adapting them in two
directions for SELFMAN. First, we are extending the SON algorithms to handle
important network issues that are not handled in the SON literature, such as
network partitioning (see Section 5). Second, we are rebuilding the SON using
a component model [1]. This is needed because the SON algorithms themselves
have to be managed and updated while the SON is running, for example to add
new basic functionality such as load balancing or new routing algorithms. The
component model is also used for the other services we need for self management.

3 The SELFMAN project

The SELFMAN project is designing a decentralized service architecture and us-
ing it to build three demonstrator applications. Here we introduce the service
architecture and the demonstrator applications. We also mention two impor-
tant inspirations of SELFMAN: IBM’s Autonomic Computing Initiative and the
Chord system. Section 4.3 explains how the service architecture is used as a basis
for self management.

3.1 Decentralized service architecture

SELFMAN is based on the premise that there is a synergy between structured
overlay networks (SONs) and component models:

— SONSs already provide low-level self-management abilities. We are reimple-
menting our SONs using a component model that adds lifecycle management
and hooks for supporting services. This makes the SON into a substrate for
building services.

— The component model is based on concurrent components and asynchronous
message passing. It uses the communication and storage abilities of the SON
to enable it to run in a distributed setting. Because the system may need
to update and reorganize itself, the components need introspection and re-
configuration abilities. We have designed a process calculus, Oz/K, that has
these abilities in a practical form [23].

This leads to a simple service architecture for decentralized systems: a SON lower
layer providing robust communication and routing services, extended with other
basic services and a transaction service. Applications are built on top of this



service architecture. The transaction service is important because many realistic
application scenarios need it (see Section 3.2).

The structured overlay network is the base. It provides guaranteed connec-
tivity and fast routing in the face of random failures (Section 5). It does not
protect against malicious failures: in our current design we must consider the
network nodes as trusted. We assume that untrusted clients may use the over-
lay as a basic service, but cannot modify its algorithms. See [42] for more on
security for SONs and its effect on SELFMAN. We have designed and imple-
mented robust SONs based on the DKS, Chord#, and Tango protocols [13, 29,
8]. These implementations use different styles and platforms, for example DKS is
implemented in Java and uses locking algorithms for node join and leave. Tango
is implemented in Oz and uses asynchronous algorithms for managing connec-
tivity (Section 5.2). We have also designed an algorithm for handling network
partitions and merges, which is an important failure mode for structured overlay
networks (Section 5.1).

The transaction service uses a replicated storage service (Section 6). The
transaction service is implemented with a modified version of the Paxos non-
blocking atomic commit [15] and uses optimistic concurrency control. This algo-
rithm is based on a majority of correct nodes and eventual leader detection (the
so-called partially synchronous model). It should therefore cope with failures as
they occur on the Internet.

This simple service architecture is our starting point for building self-managing
applications. Section 4.3 shows how this service architecture is used to build the
feedback structures that are needed for self management.

Application Self-* Properties| Components|Overlays| Transactions
M2M Messaging ++ ++ + +
Distributed Wiki ++ + ++ ++
P2P Media Streaming ++ + ++
J2EE Application Server ++ ++ +

Table 1. Requirements for selected self-managing applications

3.2 Demonstrator applications and guidelines

Using this self-management architecture, we will build three application demon-
strators [12]:

— A machine-to-machine messaging application (specified by partner France
Télécom). This is a decentralized messaging application. It must recover on
node failure, gracefully degrade and self optimize, and have transactional
behavior.



— A distributed Wiki application (specified by partner ZIB). This is a Wiki
(a user-edited set of interlinked Web pages) that is distributed over a SON
using transactions with versioning and replication, supporting both editing
and search.

— An on-demand video streaming application (specified by partner Stakk).
This application provides distributed live media streams with quality of
service to large and dynamically varying numbers of customers. Dynamic
reconfiguration is needed to handle the fluctuating structure.

Table 1 shows how much these applications need in four areas: self-* properties,
components, overlay networks (decentralized execution), and transactions. Two
pluses (++) mean strong need and one plus (4) means some need. An empty
space means no need for that area according to our current understanding. All
these applications have a strong need for self-management support. The table
shows a fourth application that was initially considered, an application server
written in J2EE, but we rejected it for SELFMAN because it does not have any
requirements for decentralized execution.

At the end of the project we will provide a set of guidelines and general
programming principles for building self-managing applications. One important
principle is that these applications are built as a set of interacting feedback
loops. A feedback loop, where part of the system is monitored and then used
to influence the system, is an important basic element for a system that can
adjust to its surroundings. As part of SELFMAN, we are carefully studying
how to build applications with feedback loops and how feedback interacts with
distribution.

3.3 Related work
The SELFMAN project is related to two important areas of work:

— IBM’s Autonomic Computing Initiative [19]. This initiative started in 2001
and aims to reduce management costs by removing humans from low-level
system management loops. The role of humans is then to manage policy and
not to manage the mechanisms that implement it.

— Structured overlay network research. The most well-known SON is the Chord
system, published in 2001 [33]. Other important early systems are Ocean
Store and CAN. Inspired by popular peer-to-peer applications, these systems
led to much active research in SONs, which provide low-level self manage-
ment of routing, storage and smart lookup in large-scale distributed systems.

Other important related work is research in ambient and adaptive computing,
and research in biophysics on how biological systems regulate and adapt them-
selves. For example, [21] shows how systems consisting of two coupled feedback
loops behave in a biological setting.
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4 Understanding and designing feedback structures

A self-managing system consists of a large set of interacting feedback loops.
We want to understand how to build systems that consist of many interacting
feedback loops. Systems with one feedback loop are well understood, see, e.g.,
the book by Hellerstein et al [17], which shows how to design computing systems
with feedback control, for example to maximize throughput in Apache HTTP
servers, TCP communication, or multimedia streaming. The book focuses on
regulating with single feedback loops. Systems with many feedback loops are
quite different. To understand them, we start by doing explorations both in
analysis and synthesis: we study existing systems (e.g., biological systems) and
we design decentralized systems based on SONs.

A feedback loop consists of three parts that interact with a subsystem (see
Figure 2): a monitoring agent, a correcting agent, and an actuating agent. The
agents and the subsystem are concurrent components that interact by sending
each other messages. We call them “agents” because they play specific roles in
the feedback loop; an agent can of course have subcomponents. As explained in
[34], feedback loops can interact in two ways:

— Stigmergy: two loops monitor and affect a common subsystem.
— Management: one loop directly controls another loop.

How can we design systems with many feedback loops that interact both through
stigmergy and management? We want to understand the rules of good feedback
design, in analogy to structured and object-oriented programming. Following
these rules should give us good designs without having to laboriously analyze all
possibilities. The rules can tell us what the global behavior is: whether the system
converges or diverges, whether it oscillates or behaves chaotically, and what
states it settles in. To find these rules, we start by studying existing feedback
loop structures that work well, in both biological and software systems. We
try to understand these systems by analysis and by simulation. Many feedback
systems and feedback patterns have been investigated in the literature [34, 27,
22]. Sections 4.1 and 4.2 give two approaches to understanding existing systems
and summarize some of the design rules we can infer from them. Finally, Section
4.3 gives a first tentative methodology for designing feedback structures.
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4.1 Feedback structures in the human body

We investigate two feedback loop structures that exist in the human body: the
human respiratory system and the human endocrine system. Figure 3 (taken
from [34]) shows the human respiratory system, which has four feedback loops:
three are arranged in a management hierarchy and the fourth interacts with
them through stigmergy. This design works quite well. Laryngospasm can tem-
porarily interfere with the breathing reflex, but after a few seconds it lets normal
breathing take over. Conscious control can modulate the breathing reflex, but
it cannot bypass it completely: in the worst case, the person falls unconscious
and normal breathing takes over. We can already infer several design rules from
this system: one loop managing another is an example of data abstraction, loops
can avoid interference by working at different time scales, and since complex
loops (such as conscious control) can have an unpredictable effect (they can be
either stabilizing or unstabilizing) it is a good idea to have an outer “fail-safe”
management loop. Conscious control is a powerful problem solver but it needs
to be held in check.

The respiratory system is a simple example of a feedback loop structure
that works; we now give a more complex biological example, namely the human
endocrine system [10]. The endocrine system regulates many quantities in the
human body. It uses chemical messengers called hormones which are secreted by
specialized glands and which exercise their action at a distance, using the blood
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stream as a diffusion channel. By studying the endocrine system, we can obtain
insights in how to build large-scale self-regulating distributed systems. There are
many feedback loops and systems of interacting feedback loops in the endocrine
system. It provides homeostasis (stability) and the ability to react properly to
environmental stresses. Much of the regulation is done by simple negative feed-
back loops. For example, the glucose level in the blood stream is regulated by
the hormones glucagon and insulin. In the pancreas, A cells secrete glucagon and
B cells secrete insulin. An increase in blood glucose level causes a decrease in
the glucagon concentration and an increase in the insulin concentration. These
hormones act on the liver, which releases glucose in the blood. Another example
is the calcium level in the blood, which is regulated by parathyroid hormone
(parathormone) and calcitonine, also in opposite directions, both of which act
on the bone. The pattern here is of two hormones that work in opposite direc-
tions (push-pull). This pattern is explained by [21] as a kind of dual negative
feedback loop (an NN loop) that improves regulation.

More complex regulatory mechanisms also exist in the endocrine system, e.g.,
the hypothalamus-pituitary-target organ axis. Figure 4 shows its main parts as a
feedback structure. This system consists of two superimposed groups of negative
feedback loops (going through the target tissues and back to the hypothalamus
and anterior pituitary), a third short negative loop (from the anterior pituitary
to the hypothalamus), and a fourth loop from the central nervous system. The
hypothalamus and anterior pituitary act as master controls for a large set of other
regulatory loops. Furthermore, the nervous system affects these loops through
the hypothalamus. This gives a time scale effect since the hormonal loops are
slow and the nervous system is fast. Letting it affect the hormonal loop helps to
react quickly to external events.

Figure 4 shows only the main components and their interactions; there are
many more parts in the full system. There are more interacting loops, “short cir-
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cuits”, special cases, interaction with other systems (nervous, immune). Negative
feedback is used for most loops, saturation (like in the Hill equations introduced
in Section 4.2) for others. Realistic feedback structures can be complex. Evolu-
tion is not always a parsimonious designer! The only criterion is that the system
has to work.

Computational architecture We can say something about the computational ar-
chitecture of the human endocrine system. There are components and commu-
nication channels. Components can be both local (glands, organs, clumps of
cells) or global (diffuse, over large parts of the body). Channels can be point-
to-point or broadcast. Point-to-point channels are fast, e.g., nerve fibers from
the spinal chord to the muscle tissue. Broadcast is slower, e.g., diffusion of a
hormone through the blood circulation. Buffering is used to reduce variations,
e.g., the carrier proteins in the bloodstream act as buffers by storing and releas-
ing hormones. Regulatory mechanisms can be modeled by interactions between
components and channels. Often there are intermediate links (like the carrier
proteins). Abstraction (e.g., encapsulation) is almost always approximate. This
is an important difference with digital computers. Biological and social abstrac-
tions tend to be leaky; computer abstractions tend not to be. This can have a
large effect on the design. In biological systems security is done through a mech-
anism that is itself leaky, e.g., the human immune system. In computer systems,
the security architecture tries to be as nonleaky as possible, although this cannot
be perfect because of covert channels.

4.2 Analysis of feedback structures

How can we design a system with many interacting feedback loops like that of
Figure 37 Mathematical analysis of interacting feedback loops is quite complex,
especially if they have nonlinear behavior. Can we simplify the system to have
linear or monotonic behavior? Even then, analysis is complex. For example,
Kim et al [21] analyze biological systems consisting of just two feedback loops
interacting through stigmergy. They admit that their analysis only has limited
validity because the coupled feedback loops they analyze are parts of much larger
sets of interacting feedback loops. Their analysis is based on Matlab simulations
using the Hill equations, first-order nonlinear differential equations that model
the time evolution and mutual interaction of molecular concentrations. The Hill
equations model nonlinear monotonic interaction with saturation effects. We give
a simple example using two molecular concentrations X and Y. The equations
have the following form (taken from [21]):

dY  Vx(X/Kxy)¥
dt 14 (X/Kxy)®
dx Vy

dt 1+ (Y/Kyx)H

— KayY + Kpy

Here we assume that X activates Y and that Y inhibits X. The equations
model saturation (the concentration of a molecule has an upper limit) and ac-
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tivation/inhibition with saturation (one molecule can affect another, up to a
point). We see that X and Y, when left to their own, will each asymptotically
approach a limit value with an exponentially decaying difference. Figure 5 shows
a simplified system where X activates Y but Y does not affect X. X has a dis-
crete step decrease at ty and a continuous step increase at ¢1. Y follows these
changes with a delay and eventually saturates. The constants Kgzy and Kpy
model saturation of Y (and similarly for X). The constants Vx, Kxy, and H
model the activation effect of X on Y. We see that activation and inhibition
have upper and lower limits.

By simulating these equations, Kim et al determine the effect of two coupled
feedback loops, each of which can be positive or negative.

— A positive loop is bistable or multistable; it is commonly used in biological
systems for decision making. Two coupled positive loops cause the decision
to be less affected by environmental perturbations: this is useful for biological
processes that are irreversible (such as mitosis, i.e., cell division).

— A negative loop reduces the effect of the environment; it is commonly used
in biological systems for homeostasis, i.e., to keep the biological system in
a stable state despite environmental changes. Negative loops can also show
oscillation because of the time delay between the output and input. Two cou-
pled negative loops can show stronger and more sustained oscillations than
a single loop. They can implement biological oscillations such as circadian
(daily) rhythms.

— A combined positive and negative loop can change its behavior depending
on how it is activated, to become more like a positive or more like a negative
loop. This is useful for regulation.

These results are interesting because they give insight into nonlinear monotonic
interaction with saturation. They can be used to design structures with two
coupled feedback loops.

Many patterns of feedback loops have been analyzed in this way. For ex-
ample, [27] shows how to model oscillations in biological systems by cycles of
feedback loops. The cycle consists of molecules where each molecule activates or
inhibits the next molecule in the cycle. If the total effect of the cycle is a negative
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feedback then the cycle can give oscillations. Given an oscillatory behavior, the
topology of the cycle (the molecules involved and their interaction types) can
be reconstructed. Many other patterns have been analyzed as well in biological
systems, but there is as yet no general theory for analyzing these feedback struc-
tures. In SELFMAN we are interested in investigating the kinds of equations
that apply to software. In software, the feedback structures may not follow the
Hill equations. For example, they may not be monotonic. Nevertheless, the Hill
equations are a useful starting point because they model saturation, which is an
interesting form of nonlinearity.

4.3 Feedback structures for self management

From the examples given in the previous sections and elsewhere [34,4,37,5,
35], we can give a tentative methodology for designing feedback structures. We
assume that the overall architecture follows the decentralized structure given in
Section 3.1: a set of loosely-coupled services built on top of a structured overlay
network. We build the feedback structure within this framework. We envisage
the following three layers for a self-managing system:

1. Components and events. This basic layer corresponds to the service architec-
ture of Section 3.1: services based on concurrent components that interact
through events [1,9]. There can be publish/subscribe events, where any com-
ponent that subscribes to a published type will receive the events. There is a
failure detection service that is eventually perfect with suspect and resume
events. There can be more sophisticated services, like the transaction service
mentioned in Section 3.1 and presented in more detail in Section 6.

2. Feedback loop support. This layer supports building feedback loops. This is
sufficient for cooperative systems. The two main services needed for feedback
loops are a pseudoreliable broadcast (for actuating) and a monitoring layer.
Pseudoreliable broadcast guarantees that nodes will receive the message if
the originating node survives [13]. Monitoring detects both local and global
properties. Global properties are calculated from local properties using a
gossip algorithm [20] or using belief propagation [39]. The multicast and
monitoring services are used to implement self management abilities.

3. Multiple user support. This layer supports users that compete for resources.
This is a general problem that requires a general solution. If the users are
independent, one possible approach is to use collective intelligence techniques
(see Section 4.4). These techniques guarantee that when each user maximizes
its private utility function, the global utility will also be maximized. This
approach does not work for Sybil attacks (where one user appears as multiple
users to the system). No general solution to Sybil attacks is known. A survey
of partial solutions is given in [42]. We cite two solutions. One solution
is to validate the identities of users using a trusted third party. Another
solution is to use algorithms designed for a Byzantine failure model, which
can handle multiple identical users up to some upper bound. Both solutions
give significant performance penalties.
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We now discuss two important issues that affect feedback structures: simple
versus complex components (how much computation each component does) and
time scales (different time scales can be independent). A complex component
does nontrivial reasoning, but in most cases this reasoning is only valid in part
of the system’s state space and should be ignored in other parts. This affects
the architecture of the system. At different time scales, a system can behave
as separate systems. We can take advantage of this to improve the system’s
behavior.

Complex components A self-managing system consists of many different kinds
of components. Some of these can be quite simple (e.g., a thermostat). Others
can be quite complex (e.g., a human being or a chess program). We define a
component as complex if it can do nontrivial reasoning. Some examples are a
human user, a computer chess program, a compiler that translates a program
text, a search engine over a large data set, and a problem solver based on SAT
or constraint algorithms.

Whether or not a component is simple or complex can have a major effect
on the design of the feedback structure. For example, a complex component
may introduce instability that needs fail-safe protective mechanisms (see, e.g.,
the human respiratory system) or mechanisms to avoid “freeloaders” (see Sec-
tion 4.4). Many systems have both simple and complex components. We have
seen regulatory systems in the human body which may have some conscious
control in addition to simpler components. Other systems, called social systems,
have both human and software components. Many distributed applications (e.g.,
MMORPGs) are of this kind.

A complex component can radically affect the behavior of the system. If
the component is cooperative, it can stabilize an otherwise unstable system. If
the component is competitive, it can unstabilize an otherwise stable system. All
four combinations of {simple,complex} x {cooperative,competitive} appear in
practice. With respect to stability, there is no essential difference between human
components and programmed complex components; both can introduce stability
and instability. Human components excel in adaptability (dynamic creation of
new feedback loops) and pattern matching (recognizing new situations as varia-
tions of old ones). They are poor whenever a large amount of precise calculation
is needed. Programmed components can easily go beyond human intelligence in
such areas. Whether or not a component can pass a Turing test is irrelevant for
the purposes of self management.

How do we design a system that contains complex components? If the com-
ponent is external to the designed system (e.g., human users connecting to a
system) then we must design defensively to limit the effect of the component on
the system’s behavior. We need to protect the system from the users and the
users from each other. For example, the techniques of collective intelligence can
be used, as explained in Section 4.4. Getting this right is not just an algorithmic
problem; it also requires social engineering, e.g., incentive mechanisms [28].

If the component is inside the system, then it can improve system behav-
ior but fail-safe mechanisms must be built in to limit its effect. For example,
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conscious control can improve the behavior of the human respiratory system,
but it has a fail-safe to avoid instability (see Section 4.1). In general, a complex
component will only enhance behavior in part of the system’s state space. The
system must make sure that the component cannot affect the system outside of
this part.

Time scales Feedback loops that work at different time scales can often be
considered to be completely independent of each other. That is, each loop is
sensitive to a particular frequency range of system behavior and these ranges are
often nonoverlapping. Wiener [37] gives an example of a human driver braking
an automobile on a surface whose slipperiness is unknown. The human “tests”
the surface by small and quick braking attempts; this allows to infer whether
the surface is slippery or not. The human then uses this information to modify
how to brake the car. This technique uses a loop at a short time scale to gain
information about the environment, which is then used to help for a long time
scale. The fast loop manages the slow loop.

4.4 Managing multiple users through collective intelligence

An important part of feedback structures that we have not yet explained is
how to support users that compete for resources. A promising technique for
this is collective intelligence [40,41]. It can give good results when the users
are independent (no Sybil attacks or collusion). The basic question is how to
get selfish agents to work together for the common good. Let us define the
problem more precisely. We have a system that is used by a set of agents. The
system (called a “collective” in this context) has a global utility function that
measures its overall performance. The agents are selfish: each has a private utility
function that it tries to maximize. The system’s designers define the reward (the
increment in its private utility) given to each of the agent’s actions. The agents
choose their actions freely within the system. The goal is that agents acting to
maximize their private utilities should also maximize the global utility. There is
no other mechanism to force cooperation. This is in fact how society is organized.
For example, employees act to maximize their salaries and work satisfaction and
this should benefit the company.

A well-known example of collective intelligence is the El Farol bar problem
[3], which we briefly summarize. People go to El Farol once a week to have fun.
Each person picks which night to attend the bar. If the bar is too crowded or
too empty it is no fun. Otherwise, they have fun (receive a reward). Each person
makes one decision per week. All they know is last week’s attendance. In the
idealized problem, people don’t interact to make their decision, i.e., it is a case
of pure stigmergy! What strategy should each person use to maximize his/her
fun? We want to avoid a “Tragedy of the Commons” situation where maximizing
private utilities causes a minimization of the global utility [16].
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We give the solution according to the theory of collective intelligence. Assume
we define the global utility G as follows:

G= ZW(w)

w

W(w) = dalaq)
d

This sums the week utility W (w) over all weeks w. The week utility W (w) is the
sum of the day utilities ¢4(aq) for each weekday d where the attendance aq is the
total number of people attending the bar that day. The system designer picks
the function ¢4(y) = agye™¥/¢. This function is small when y is too low or too
high and has a maximum in between. Now that we know the global utility, we
need to determine the agents’ reward function. This is what the agent receives
from the system for its choice of weekday. We assume that each agent will try to
maximize its reward. For example, [40] assumes that each agent uses a learning
algorithm where it picks a night randomly according to a Boltzmann distribution
distributed according to the energies in a 7-vector. When it gets its reward, it
updates the 7-vector accordingly. Real agents may use other algorithms; this one
was picked to make it possible to simulate the problem.

How do we design the agent’s reward function R(w), i.e., the reward that the
agent is given each week? There are many bad reward functions. For example,
Uniform Division divides ¢4(y) uniformly among all a, agents present on day y.
This one is particularly bad: it causes the global utility to be minimized. One
reward that works surprisingly well is called Wonderful Life:

RWL(w) = W(w) - Wagent absent (w)

Wagent absent (W) is calculated in the same way as W(w) but when the agent
is missing (dropped from the attendance vector). We can say that Ry (w) is
the difference that the agent’s existence makes, hence the name Wonderful Life
taken from the title of the Frank Capra movie [6]. We can show that if each agent
maximizes its reward Ry (w), the global utility will also be maximized. Let us
see how we can use this idea for building collective services. We assume that
agents try to maximize their rewards. For each action performed by an agent,
the system calculates the reward. The system is built using security techniques
such as encrypted communication so that the agent cannot “hack” its reward.

This approach does not solve all the security problems in a collaborative sys-
tem. For example, it does not solve the collusion problem when many agents get
together to try to break the system. For collusion, one solution is to have a mon-
itor that detects suspicious behavior and ejects colluding users from the system.
This monitor is analogous to the SEC (Securities and Exchange Commission)
which regulates and polices financial markets in the United States. Collective
intelligence can still be useful as a base mechanism. In many cases, the default
behavior is that the agents cannot or will not talk to each other, since they do
not know each other or are competing. Collective intelligence is one way to get
them to cooperate.
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Fig. 6. Three generations of peer-to-peer networks

5 Structured overlay networks

Structured overlay networks are a recent development of peer-to-peer networks.
In a peer-to-peer network, all nodes play equal roles. There are no specialized
client or server nodes. There have been three generations of peer-to-peer net-
works, which are illustrated in Figure 6:

— The first generation is a hybrid: all client nodes are equal but there is a
centralized node that holds a directory. This is the structure used by the
Napster file-sharing system.

— The second generation is an unstructured overlay network. It is completely
decentralized: each node knows a few neighbor nodes. This structure is used
by systems such as Gnutella, Kazaa, Morpheus, and Freenet. Lookup is done
by flooding: a node asks its neighbor, which asks its neighbors, up to a
fixed depth. There are no guarantees that the lookup will be successful (the
item may be just beyond the horizon) and flooding is highly wasteful of
network resources. Recent versions of this structure use a hierarchy with two
kinds of peer nodes: normal nodes and super nodes. Super nodes have higher
bandwidth and reliability than normal nodes. This alleviates somewhat the
disadvantages.

— The third generation is the structured overlay network. A well-known early
example of this generation is Chord [33]. The nodes are organized in a struc-
tured way called an exponential network. Lookup can be done in logarithmic
time and will guarantee to find the item if it exists. If nodes fail or new
nodes join, then the network reorganizes itself to maintain the structure.
Since 2001, many variations of structured overlay networks with different
advantages and disadvantages have been designed: Chord, Pastry, Tapestry,
CAN, P-Grid, Viceroy, DKS, Chord#, Tango, etc. In SELFMAN we build
on our previous experience in DKS, Chord#, and Tango.

Structured overlay networks provide two basic services: name-based communica-
tion (point-to-point and group) and distributed hash table (also known as DHT,
which provides efficient storage and retrieval of (key,value) pairs). Routing is
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done by a simple greedy algorithm that reduces the distance of a message be-
tween the current node and the destination node. Correct routing means that
the distance converges to zero in finite time.

Almost all current structured overlay networks are organized in two levels, a
ring complemented by a set of fingers:

— Ring structure. All nodes are connected in a simple ring. The ring must
always be connected despite node joins, leaves, and failures.

— Finger tables. For efficient routing, extra routing links called fingers are
added to the ring. They are usually exponential, e.g., for the fingers of one
node, each finger jumps twice as far as the previous finger. The fingers can
temporarily be in an inconsistent state; this has an effect only on efficiency,
not on correctness. Within each node, the finger table is continuously con-
verging to a correct content.

Ring maintenance is a crucial part of the SON. Peer nodes can join and leave
at any time. Peers that crash are like peers that leave but without notification.
Temporarily broken links create false suspicions of failure.

We give three examples of structured overlay network algorithms developed in
SELFMAN that are needed for important aspects of ring maintenance: handling
network partitioning (Section 5.1), handling failure suspicions (Section 5.2), and
handling range queries with load balancing (Section 5.3). These algorithms can
be seen as dynamic feedback structures: they converge toward correct or opti-
mal structures. The network partitioning algorithm restores a single ring in the
case when the ring is split into several rings due to network partitioning. The
failure handling algorithm restores a single ring in the case of failure suspicion
of individual nodes. The range query algorithm handles multidimensional range
queries. It has one ring per dimension. When nodes join or leave, each of these
rings is adjusted (by splitting or joining pieces in the key space) to maintain
balanced routing.

5.1 Handling network partitioning: the ring merge algorithm

Network partitioning is a real problem for any long-lived application on the
Internet. A single router crash can cause part of the network to become isolated
from another part. SONs should behave reasonably when a network partition
arrives. If no special actions are taken, what actually happens when a partition
arrives is that the SON splits into several rings. What we need to do is efficiently
detect when such a split happens and efficiently merge the rings back into a single
ring [31].

The merging algorithm consists of two parts. The first part detects when the
merge is needed. When a node detects that another node has failed, it puts the
node in a local data structure called the passive list. It periodically pings nodes
in its passive list to see whether they are in fact alive. If so, it triggers the ring
unification algorithm. This algorithm can merge rings in O(n) time for network
size n. We also define an improved gossip-based algorithm that can merge the
network in O(logn) average time.
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Fig. 7. The ring merge algorithm

Ring unification happens between pairs of nodes that may be on different
rings. The unification algorithm assumes that all nodes live in the same identifier
space, even if they are on different rings. Suppose that node p detects that node
q on its passive list is alive. Figure 7 shows an example where we are merging the
black ring (containing node p) and the white ring (containing node ¢). Then p
does a modified lookup operation (mlookup(g)) to g. This lookup tries to reduce
the distance to q. When it has reduced this distance as much as possible, then
the algorithm attempts to insert ¢ at that position in the ring using a second
operation, trymerge(pred,succ), where pred and succ are the predecessor and
successor nodes between which ¢ should be inserted. The actual algorithm has
several refinements to improve speed and to ensure termination.

5.2 Handling failure suspicions: the relaxed ring algorithm

A typical Internet failure mode is that a node suspects another node of failing.
This suspicion may be true or false. In both cases, the ring structure must
be maintained. This can be handled through the relaxed ring algorithm [24].
This algorithm maintains the invariant that every peer is in the same ring as its
successor. Furthermore, a peer can never indicate another peer as the responsible
node for data storage: a peer knows only its own responsibility. If a successor
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Fig. 8. The relaxed ring structure

node is suspected of having failed, then it is ejected from the ring. However, the
node may still be alive and point to a successor. This leads to a structure we call
the relazed ring, which looks like a ring with “bushes” sticking out (see Figure
8). The bushes appear only if there are failure suspicions. At all times there is
a perfectly connected ring at the core of the relaxed ring. The relaxed ring is
always converging toward a perfect ring. The number of nodes in the bushes
existing at any time depends on the churn (the rate of change of the ring, the
number of failures and joins per time).

5.3 Handling multidimensional range queries with load balancing

Efficient data lookup is at the heart of peer-to-peer computing. Many SONs,
including DKS and Tango, use consistent hashing to store (key,value) pairs in a
distributed hash table (DHT). The hashing distributes the keys uniformly over
the key space. Unfortunately, this scheme is unable to handle queries with partial
information (such as wildcards and ranges) because adjacent keys are spread over
all nodes. In this section, we argue that using DHTs is not a good idea in SONs.
We support this argument by showing how to build a practical SON that stores
the keys in lexicographic order. We have developed a first protocol, Chord#,
and a generalization for multidimensional range queries, SONAR [29].

In SONAR the overlay has the shape of a multidimensional torus, where
each node is responsible for a contiguous part of the data space. A uniform
distribution of keys on the data space is not necessary, because denser areas get
assigned more nodes. To support logarithmic routing, SONAR maintains, per
dimension, fingers to other nodes that span an exponentially increasing number
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of nodes. Figure 9 shows an example in two dimensions. Most other overlays
maintain such fingers in the key space instead and therefore require a uniform
data distribution (e.g., which is obtained using hashing). SONAR, in contrast,
avoids hashing and is therefore able to perform range queries of arbitrary shape
in a logarithmic number of routing steps, independent of the number of system-
and query-dimensions.

6 Transactions over structured overlay networks

For our three decentralized application scenarios, we need a decentralized trans-
actional storage. We need transactions because the applications need concurrent
access to shared data. We have therefore designed a transaction algorithm over
SONs. We are currently simulating it to validate its assumptions and measure
its performance [25,26]. Implementing transactions over a SON is challenging
because of churn (rate of node leaves, joins, and crashes and subsequent reor-
ganizations of the SON) and because of the Internet’s failure model (crash stop
with imperfect failure detection).

The transaction algorithm is built on top of a reliable storage service. We
implement this using replication. There are many approaches to replication on a
SON. For example, we could use file-level replication (symmetric replication) or
block-level replication using erasure codes. These approaches all have their own
application areas. Our algorithm uses symmetric replication [14].

To avoid the problems of failure detection, we implement atomic commit
using a majority algorithm based on a modified version of the Paxos algorithm
[15]. In a companion paper, we have shown that majority techniques work well
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Fig. 10. Transaction with replicated manager and participants

for DHTs [32]: the probability of data consistency violation is negligible. If a
consistency violation does occur, then this is because of a network partition and
we can use the network merge algorithm of Section 5.1.

A client initiates a transaction by asking its nearest node, which becomes a
transaction manager. Other nodes that store data are participants in the trans-
action. Assuming symmetric replication with degree f, we have f transaction
managers and each other node participating gives f replicated participants. Fig-
ure 10 shows a situation with f = 4 and two nodes participating in addition
to the transaction manager. Each transaction manager sends a Prepare message
to all replicated participants, which each sends back a Prepared or Abort mes-
sage to all replicated transaction managers. Each replicated transaction manager
collects votes from a majority of participants and locally decides on abort or com-
mit. It sends this to the transaction manager. After having collected a majority,
the transaction manager sents its decision to all participants. This algorithm has
six communication rounds. It succeeds if more than f/2 nodes of each replica
group are alive.

7 Conclusions and future work

The SELFMAN project is using self-management techniques to build large-scale
distributed systems. This paper gives a snapshot of the SELFMAN project at
its halfway point. We explain why self management is important for software
design and we give some first results on how to design self-managing systems
as feedback loop structures. We show how to use structured overlay networks
(SONSs) as the basis of large-scale distributed self-managing systems. We explain
how we have adapted SONs for our purposes by handling network partitioning,
failure suspicions, and range queries with load balancing, and by providing a
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transactional store service running over the SON. We present three realistic
application scenarios, a machine-to-machine messaging application, a distributed
Wiki, and an on-demand video streaming application. In the rest of the project,
we will complete the transactional store and build the demonstrator applications.
The final result will be a set of guidelines on how to build decentralized self-
managing applications.
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