
FACS 2006

Self Management

and the Future of Software Design

Peter Van Roy1 ,2

Department of Computing Science and Engineering
Université catholique de Louvain

Louvain-la-Neuve, Belgium

Abstract

Most software is fragile: even the slightest error, such as changing a single bit, can make it crash. As
software complexity has increased, development techniques have kept pace to manage this fragility. But
today there is a new challenge. Complexity is increasing rapidly as a result of two factors: the increasing
use of distributed systems as a result of the sufficient reliability and bandwidth of the Internet, and the
increasing scale of these systems as a result of the addition of many new computers to the Internet (e.g.,
mobile phones and other devices). To manage this new complexity, we propose an approach based on self-
managing systems: systems that can maintain useful functionality despite changes in their environment.
The paper motivates this approach and gives some ideas on how to build general self-managing software
systems. An important part of the approach is to build systems as hierarchies of interacting feedback loops.
We give examples of these systems and we deduce some of their design rules. The SELFMAN project is
elaborating these ideas into a programming methodology and an implementation.

Keywords: Software development, self management, general system theory, distributed system, feedback,
software component, complexity, concurrency, asynchronous, autonomic computing, overlay network

1 Introduction

Software is fragile and highly nonlinear: even a minor error can have catastrophic

effects. Major disasters have occurred due to minor errors such as omitted commas

in Fortran programs or changed bits because of alpha rays [11]. So far, this has not

unduly hampered the quantity of software being developed. As software complexity

has increased, software development techniques have kept pace. This situation is

analogous to the Red Queen’s behavior in Alice [10]: we are running as fast as we

can in order to stay in the same place. Software development is now facing a new

challenge: complexity is increasing quickly because of two reasons. First, the relia-

bility and bandwidth of the Internet infrastructure has reached a point where it is

1 This paper is intended to stimulate discussion; all comments are welcome! This work is funded by the
European Union in the SELFMAN project (contract 34084), EVERGROW project (contract 001935), and
CoreGRID network of excellence (contract 004265). We thank Luis Quesada, Boriss Mejias, Raphaël Collet,
Yves Jaradin, Kevin Glynn, and Seif Haridi for comments that helped improve this paper.
2 Email: pvr@info.ucl.ac.be

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:pvr@info.ucl.ac.be

Van Roy

feasible to build large distributed applications. Examples of such applications in-

clude a wide variety of file-sharing programs (Napster, Gnutella, Morpheus, Freenet,

Bit Torrent, etc.), collaborative tools (Skype and other messenger tools), Massive

Multiplayer Online Role Playing Games (MMORPGs) (World of Warcraft, Dun-

geons & Dragons, etc.) and research testbeds (SETI@home [25], PlanetLab [12],

etc.). Technologies for building such applications now exist, e.g., Web services and

Grid software. The second reason is the increase in the number of small devices

connected to the Internet. For example, mobile phones are now full-fledged com-

puting nodes with Internet connectivity, and protocols such as Zigbee, Bluetooth,

and Wifi facilitate network connectivity among small devices.

How can we address the problem of programming large-scale distributed sys-

tems? Such systems have new properties that greatly increase the complexity of

programming: scale (large numbers of independent nodes), partial failure (part of

the system fails), security (multiple security domains), resource management (re-

sources are localized), performance (harnessing multiple nodes or spreading load),

and global behavior (emergent behavior of the system as a whole). Each of these

properties has been studied in isolation. For example, the area of distributed algo-

rithms has solutions for handling partial failure in many cases. But the properties

have not been looked at together. The purpose of this paper is to give some ideas

how this can be done.

Global behavior is particularly relevant for large systems. They must be de-

signed carefully, otherwise the system will not behave well when stressed. Ideally,

it should converge rapidly to its desired behavior and stay there despite changes in

the system’s environment. But it may instead collapse, oscillate, or show chaotic

behavior. Such erratic behavior has been observed for power grids and has resulted

in large-scale power outages [15]. One reason for this is because the power grid’s

behavior was designed for a situation close to equilibrium; it was not studied far

from equilibrium.

2 Self-managing systems

To build large-scale distributed systems with good behavior, we need a framework

in which to think about them. What should such a framework look like? To reduce

the complexity of the system, it should be able to manage its own problems as much

as possible. This leads us to propose self-managing systems as a suitable framework.

A self-managing system is one that can maintain its functionality despite changes

in its environment, in a general sense.

Self-managing systems have recently been brought to the forefront because of

IBM’s Autonomic Computing initiative [19]. When computer systems become large

then the cost of managing them becomes prohibitive. The initiative aims to reduce

this cost by removing humans from the management loop. The role of humans

is then to manage the policy and not to maintain the mechanisms. This greatly

reduces the need for manual intervention.

Another area that is building self-managing systems is structured overlay net-

works [1]. This research is inspired by the popular protocols of peer-to-peer net-

works. Many of the applications mentioned in the introduction are based on these

2

Van Roy

peer-to-peer networks. Unlike peer-to-peer networks based on random neighbor

communication, structured overlay networks provide both guarantees (information

is guaranteed to be found if it exists) and efficiency (broadcast does not flood the

network as it does in, e.g., random neighbor networks such as the one used in

Gnutella). Structured overlay networks provide primitive self-managing behavior:

they reorganize themselves to maintain their functionality in reaction to environ-

mental changes such as failures and overloads. Structured overlay networks have

led to robust software that is being used in various areas, such as the construc-

tion of robust distributed communication networks and robust storage services that

continue to provide service despite high node turnover (node “churn”).

These two research areas, autonomic systems and structured overlay networks,

have attracted attention once again to self-managing systems. But self-managing

systems are actually a very old idea. The beginning of the area as a discipline can

be dated to the definition by Norbert Wiener of cybernetics in the 1940’s [29] and by

Ludwig von Bertalanffy of general system theory in the 1960’s [5]. The basic idea of

system theory is to study the concept of a system, its properties and design. There

are various ways to define the concept of a system [24]. For this paper, we define a

system recursively as a set of components (called subsystems) connected together

to form a coherent whole. The main problem is to understand the relationship

between the system and its subsystems: can we predict a system’s behavior and

can we design a system with a desired behavior.

System theory is still very much in its early stages. Recent research results

have not been systematized in a textbook and the ideas have not been applied

to computer science in a systematic way. W. Ross Ashby wrote an introductory

textbook in 1956 that is still worth reading today [4]. Gerald M. Weinberg wrote

an introduction in 1975 explaining how to use system theory to improve general

thinking processes [28]. In the area of computer systems, textbooks exist only for

specialized subfields such as distributed algorithms [21]. We consider that it is high

time to apply system theory to software construction. This paper gives examples of

realistic systems to motivate this goal and to explore how to build software according

to system theory.

3 Designing self-managing systems

How does one design a self-managing software system? We do not yet have a general

set of design techniques, but we can talk about several important aspects: feedback

loops, global properties, and a general architectural framework. It turns out that

designing with feedback loops is fundamental. Feedback loops are currently being

used for the autonomous management of computing clusters, for example they are

being used in J2EE clusters [6] and Grid systems [2]. But feedback loops are much

more generally applicable in system design. We give examples of systems built with

feedback loops to see what they can teach us for the general case. The paper by

Andrzejak et al [2] gives a broad introduction to the different disciplines that can

be useful when designing adaptive systems with feedback loops. The present paper

is narrower: it restricts itself to the architectural questions of how the loops are

organized and how they interact with each other and with distributed programming.

3

Van Roy

3.1 Feedback loops

The notion of a feedback loop is a basic element of system theory. A feedback loop

consists of three elements that together interact with a subsystem (see Figure 1):

an element that monitors the state of the subsystem, an element that calculates a

corrective action, and an element that applies the corrective action to the subsystem.

For the purposes of this paper, we consider these elements to be concurrent software

agents that communicate by asynchronous message passing. The complete system

can be described as a graph of interacting feedback loops. Feedback loops can

interact in two main ways. The simplest interaction is where both loops affect

interdependent system parameters, i.e., they interact through their environment.

This is called stigmergy. A second form of interaction is where a loop manages

another loop, i.e., the first loop continuously adapts the policy implemented by the

second loop. In both cases, the system’s global behavior depends on all the feedback

loops taken together.

Subsystem

Monitoring agentActuating agent

Calculate corrective action

Fig. 1. Basic structure of a feedback loop

Monitoring agents

Thermostat
(run aircond. if too warm)

(stoke fire if too cold)
Tribesman

Measure
temperature

near fire

Measure
temperature

in lobbyairconditioning
Run

fire
Stoke

Subsystem

Hotel lobby

Calculate corrective action

Fire

Hotel lobby

Tribesman

Thermostat

Actuating agents

Fig. 2. Wiener’s example of two feedback loops interacting through stigmergy

4

Van Roy

3.1.1 Two simple examples

The first example is taken from Wiener [29] and is shown in Figure 2. It consists

of two interacting feedback loops with counterintuitive global behavior: in an air-

conditioned hotel, a primitive tribesman attempts to warm himself by starting a

fire. This causes the airconditioning to work harder, so the result is that the harder

he stokes the fire, the lower the temperature becomes. In this example, the two

loops affect system parameters that depend on each other, namely the tempera-

ture in different parts of the lobby. Each block in the figure is a concurrent agent

continuously sending asynchronous messages to the other agents in the direction of

the arrows. Even though each loop taken in isolation uses negative feedback and

is stable, 3 the result of both loops is that the system becomes unstable, i.e., the

temperature will continue to decrease (until the system reaches a boundary, and

then its behavior will change again). We conclude that it is not enough to add a

negative feedback loop to an existing system to ensure stability! The result may

well be unstable because of the new loop’s interaction with the system.

(adjust thermostat)

Thermostat
(run aircond. if too warm)

airconditioning
Run

Hotel lobby

Tribesman

Measure
temperature

Measure
temperature

at thermostat at tribesman

Fig. 3. Wiener’s example modified to use management instead of stigmergy

The correct solution is given in Figure 3. Instead of starting a fire, the tribesman

simply adjusts the thermostat. This maintains the stability of the airconditioning

loop. This is an example of one loop managing another. This illustrates a design

rule: to modify a system’s behavior, the right way is to work with the system and

not to try to bypass it.

The second example is shown in Figure 4. This shows a generic single-user applica-

tion as a feedback loop structure. We give this example to illustrate that feedback

loops are generally useful in programming and not just for contrived examples such

as Figure 2. Feedback loops are omnipresent in software systems if one looks with

the right mindset. The three elements of the loop in Figure 4 all run on a single

computer, and the subsystem being managed is a human user. The monitoring and

actuating agents are the computer’s GUI interface. Remark that we consider the

3 In negative feedback, an increase in the monitored value of a system parameter causes a corrective action
that decreases the system parameter. In positive feedback, the corrective action increases the system
parameter.

5

Van Roy

GUI interface

Computer

Application

Human user

Display
and mouse
Keyboard

Actuating agent Monitoring agent

Fig. 4. A single-user application shown as a feedback loop

user and not the application to be the managed subsystem. This viewpoint is ad-

vantageous because it lets us extend the feedback loop structure in interesting ways.

We can put a second loop around the first to monitor the application’s behavior and

apply corrections if something goes wrong. When the user runs two applications

and passes information between them then we have two loops interacting through

stigmergy. The rest of this paper gives more substantial examples of systems shown

as feedback loop structures, including systems that were not originally conceived in

this way.

3.1.2 Using program properties

Designing systems with feedback has been extensively studied in electronics, typ-

ically with building blocks such as operational amplifiers and phase-locked loops.

These systems exploit the fact that there is a good (piecewise) linear approximation

of the building blocks’ behavior. This is a strong condition that can be exploited.

But linearity is probably too strong a condition to impose on computer systems,

which are highly nonlinear by default, e.g., changing a single bit can have major

effects. It may be possible to use a weaker property than linearity that can be satis-

fied by computer systems and that gives a satisfactory design theory. The approach

then is to choose first a property that facilitates reasoning about the program and

its global behavior, and then to build a program that satisfies the property. This

can greatly simplify program design. Note that one possible failure mode is that

the property itself no longer holds.

One example property is monotonicity or strict monotonicity. In a strict mono-

tonic system, when the input changes in one direction (e.g., increases, in a general

sense), the output will also change in the same direction. Using monotonicity as the

basic property is sufficient for designing systems with feedback. A negative feedback

amplifier can be built using strict monotonicity. Another property weaker than lin-

earity that may be useful is continuity, but continuity is in general not enough to

guarantee stability. We note that two further properties that may be useful in a

theory of feedback program design are determinism and confluence.

6

Van Roy

Render unconscious

reflex
Breathing Laryngospasm

(seal air tube) in blood
CO2

Measure

in blood
O2

Measure

Trigger breathing reflex
when CO2 increases to threshold

Increase or decrease breathing rate

Conscious control

when O2 falls to threshold
Trigger unconsciousness

(and reduce CO2 threshold to base level)

(maximum is breath−hold breakpoint)

of body and breathing

and change CO2 threshold

Trigger laryngospasm temporarily

in airways

Detect
obstruction

when sufficient obstruction in airways

breathing
Monitor

Other inputs

in human body
Breathing apparatus

Actuating agents Monitoring agents

Fig. 5. Feedback loop structure of the human respiratory system

3.2 System design with feedback loops: the human respiratory system

Let us give a detailed example of a practical design that uses feedback loops. Our

example is taken from a biological system, namely the human body. Biological

systems have to survive in natural environments, which can be particularly harsh.

For that reason, we consider that studying biological systems is a useful way to get

insight in how to design software for a more complex system. Our example is the

human respiratory system. Figure 5 shows the different components of this system

and how they interact. We derived this figure from a precise medical description

of the system’s behavior [31]. The figure is slightly simplified when compared to

reality. We have left out interactions with the rest of the body. Nevertheless it is

complete enough to give many insights. There are four feedback loops: two inner

loops (breathing reflex and laryngospasm), a loop controlling the breathing reflex

(conscious control), and an outer loop controlling the conscious control (falling

unconscious). From the figure we can deduce what happens in many realistic cases.

For example, when choking on a liquid or a piece of food, the larynx constricts

and we temporarily cannot breath (this is called laryngospasm). We can hold our

breath consciously: this increases the CO2 threshold so that the breathing reflex is

delayed. If you hold your breath as long as possible, then eventually the breath-hold

threshold is reached and the breathing reflex happens anyway. A trained person

can hold his or her breath long enough so that the O2 threshold is reached first and

they fall unconscious without breathing. When unconscious the normal breathing

reflex is reestablished.

We can infer some plausible design rules from this system. The innermost loops

(breathing reflex and laryngospasm) and the outermost loop (falling unconscious)

are based on negative feedback using a monotonic parameter. This gives them

stability. The middle loop (conscious control) is not stable: it is highly nonlinear

7

Van Roy

and may run both with negative or positive feedback. It is the most complex of

the four loops by far. We can justify why it is sandwiched in between two simpler

loops. On the one side, conscious control manages the breathing reflex, but it does

not have to understand the details of how this reflex is implemented. This is an

example of nested feedback loops that implement abstraction. On the other side,

the outermost loop overrides the conscious control so that it is less likely to bring

the body’s survival in danger. Conscious control seems to be the body’s all-purpose

general problem solver: it appears in many (but not all) of the body’s feedback loop

structures. This very power means that it needs a check.

Send

Inner loop (reliable transfer)

Outer loop (congestion control)

Calculate policy modification

Actuator
(send packet)

Monitor Monitor
throughput

Calculate bytes to send

(modify throughput)

(sliding window protocol)

destination and receives ack)
(network that sends packet to

Subsystem

(receive ack)

Send
stream acknowledgement

Fig. 6. An example programming pattern with two nested feedback loops

3.3 A new way of designing programs

The style of system design illustrated in the last section can be applied to program-

ming. Programming then consists of building hierarchies of interacting feedback

loops. Let us give a simplified example with two nested feedback loops that im-

plements a reliable byte stream transfer protocol with congestion control (this is

a variant of the TCP protocol). The protocol sends a byte stream from a source

to a destination node. Figure 6 shows the two feedback loops as they appear at

the source node. The inner loop does reliable transfer of a stream of packets: it

sends packets and monitors the acknowledgements of which packets have arrived

successfully. The inner loop manages a sliding window: the actuator sends packets

so that the sliding window can advance. The sliding window can be seen as a case of

negative feedback using monotonic control. The outer loop does congestion control:

it monitors the throughput of the system and acts by either changing the policy

of the inner loop or by changing the inner loop itself. If the buffered send stream

grows too big or the rate of acknowledgements decreases, then it modifies how the

inner loop works, for example by reducing the rate of send acknowledgements or the

8

Van Roy

rate of sending. If the transfer stops then the outer loop may terminate the inner

loop and abort the transfer.

This structure is a special case of a multi-agent system. Each block in Fig-

ure 6 is a single agent acting concurrently with the others and sending messages

asynchronously to the others. Each of the two feedback loops implements one task

according to a given policy. The policy of the inner loop is determined by the outer

loop. Because the system is distributed over two nodes, part of the design consists

in situating each agent on a node.

The example of Figure 6 has just two nested feedback loops. In a real system,

there will typically be more nested feedback loops. In particular, the outermost

loop determines the main interface between the system and its environment.

S

S

Send
packet

D

Send
ack

D S

S D

Manage send window

Manage receive window

Monitor
packets
received

Monitor
acks

received

D

S

Send
stream stream

Receive

D

SS to D transfer

D to S transfer

Unreliable network
D

Fig. 7. Inner loop of the reliable byte stream protocol showing distribution

3.4 Interaction between feedback loops and distribution

The protocol of Figure 6 runs on a distributed system consisting of two nodes.

Figure 6 only shows what happens at the source node. Figure 7 gives a more

complete depiction of the inner loop of Figure 6 that shows the execution on both

nodes. In Figure 7, each component is annotated with S or D depending on whether

it executes on the source or destination node. This protocol can be seen as two

feedback loops (the S loop and the D loop), each executing on one node (S or D),

interacting through stigmergy over the unreliable network. If one node fails, then

its loop disappears and the other loop sees a change in the behavior of the network.

Another way to see the protocol is as a single distributed feedback loop, with parts

executing on both source and destination nodes.

An interesting open question raised by this example is how to design distributed

feedback loops. This is nontrivial because of the interactions between the design

of the loop, its distribution, and the partial failures that it is intended to tolerate.

Designing these systems is still mostly an open research question. Structured overlay

networks are an interesting special case that is presented below. Other special cases

include parts of distributed algorithm theory such as self-stabilizing systems [32].

These systems are able to survive large classes of transient faults.

9

Van Roy

fingers

.
.

.
.

...

...

Calculate
reorganization

Finger table

Router

Update Failure
detector

Node 1

Node 0

Node n−1

Node 3

Node 2

finger table

......

......

......

.

Fig. 8. Feedback loop structure of a structured overlay network

3.5 Feedback loops in a structured overlay network

We complete our series of examples by outlining how a structured overlay network

can be formulated in terms of feedback loops. The most primitive functionality of a

structured overlay network is to self-organize a large number of computing nodes to

provide reliable and efficient routing despite nodes continuously joining and leaving

the network [1,17]. A node can leave in two ways, either by a deliberate action or

by failure of the node or its network connections. At all times, routing between

non-failed nodes must be correct and efficient.

Figure 8 shows the feedback loop structure of a structured overlay network with

n computing nodes numbered from 0 to n− 1. Node 0 is drawn in detail; the other

nodes are shown schematically. The routing organization of the structured overlay

network consists of two levels. The first level is a ring in which each node has

direct communication links (called fingers) to a fixed number f of successors. This

ensures correctness (each node can reach all the others by walking the ring) and fault

tolerance (failure of f −1 nodes does not affect reachability). The second level adds

additional links to improve efficiency. The routing algorithm uses a convergence

criterium to ensure that eventually the destination node is reached. Each routing

10

Van Roy

hop reduces the distance to the destination until the distance reaches zero. Many

well-known structured overlay networks, such as Chord and DKS, are organized in

this way.

The communication links provide failure detection. When a node detects the

failure of a link then it reorganizes its local finger table to provide correct rout-

ing. There is also a distributed algorithm to improve routing efficiency. Correct

operation of the structured overlay network is therefore based on three convergence

properties:

• Within each node, the finger table converges to a correct content.

• Globally, the finger tables converge together to improve routing efficiency.

• When routing, a message in transit converges to its destination node.

From the viewpoint of each node, the subsystem being managed consists of the

set of nodes it is linked to. When a node leaves or fails, it is eventually dropped

from each set containing it. When a new node joins, it is given an initial set

that depends on its position in the ring. Since these operations are common, this

means that the feedback structure is undergoing frequent changes. Ghodsi [17] gives

algorithms and an implementation of a structured overlay network, DKS, that has

the above structure. He proves that it does correct routing assuming that the failure

detectors are strongly complete, i.e., every node crash will eventually be detected

permanently [18]. The structure modifications done by DKS are designed to be

atomic and preserve the topology of the overlay network.

root supervisor

supervisor processes

program processes

Fig. 9. Supervisor tree architecture of an Erlang program

4 Related work

Several areas of computer science already use a feedback loop architecture. This

section gives two examples, namely the Erlang fault-tolerance architecture and the

subsumption architecture for implementing intelligent behavior, and discusses them

as instances of a feedback loop architecture.

11

Van Roy

4.1 The Erlang system

The Erlang system is designed to build distributed systems that survive software

and hardware faults [3]. It has been successfully used to build systems of extremely

high dependability, for example the AXD301 ATM switch which has a claimed

down time of only 30 milliseconds per year [30]. Erlang is designed according to the

hypothesis that software faults cannot be eliminated completely. Instead of trying

to eliminate them, Erlang allows programs to survive them. An Erlang program

is organized as a set of concurrent agents (called processes in Erlang terminology)

that communicate by asynchronous message passing.

When a problem occurs in a process, the Erlang philosophy is to let the process

fail and to let another process handle recovery. Erlang uses a concept called super-

visor tree to manage this. The program agents form the leaves of the supervisor tree

(see Figure 9). Each internal node in the supervisor tree corresponds to a feedback

loop in our architecture. The first internal level in the tree consists of supervisor

agents that observe pools of agents in the program’s execution. If a program agent

fails, then a supervisor agent will restart it in a consistent state, using a database

to get the consistent state. There are two kinds of supervisors, AND supervisors

that restart all processes in a pool if one fails and OR supervisors that restart just

the failed processes. The second internal level in the supervisor tree consists of a

root agent that handles failures of the supervisor agents. This root agent must be

completely reliable. This is possible because it is a very small program.

maneuver

environment

Robot in

Forward decision

Turn decision

Avoidance decision
Obstacle

Direction
Turn

Avoidance

Forward

disable

disable

sensor

detector

Fig. 10. Feedback loop structure of an obstacle-avoiding robot in the subsumption architecture

4.2 The subsumption architecture

The subsumption architecture of Rodney Brooks is a way to implement intelligent

systems by decomposing complex behaviors into layers of simple behaviors that

interact through their environment [7,8]. Knowledge is not represented directly

inside the system, but indirectly through the system’s state in its environment. The

subsumption architecture has been used to successfully implement systems that

12

Van Roy

interact with their environment in a life-like fashion. For example, an obstacle-

avoiding robot can be designed with three layers: a move forward layer, a turn

layer, and an obstacle-avoiding layer. Each layer is a feedback loop that observes

the world continuously. The layers are given priorities. If a layer can react, then

it disables the lower layers and performs its own actions. In the terminology of

Brooks, it suppresses inputs to the lower layers and inhibits outputs from the lower

layers. The default behavior is to move forward. If the direction is wrong, then

the turn layer disables the move forward layer to turn. If there is an obstacle, then

the obstacle-avoiding layer disables the other two layers and performs an obstacle

avoidance maneuver. Figure 10 shows this obstacle-avoiding robot as a feedback

architecture. This is a simple example that shows the basic principle. There exist

more refined versions of the architecture.

In the subsumption architecture, the feedback loops interact through stigmergy.

E.g., in a robot, all the loops detect the robot’s position and control the robot’s

movements. In the feedback loop architecture, feedback loops can also have a

policy/mechanism relationship, where each loop modifies the policy that is im-

plemented by the next innermost loop.

5 General architectural framework

Let us now take a step back from the above examples and summarize what a gen-

eral architectural framework can look like for building a self-managing system. The

system is organized as a set of concurrent components that communicate by means

of asynchronous events. The default behavior is that the components are indepen-

dent. Any synchronous or dependent behavior must be programmed explicitly. This

default gives good results in many cases: for fault-tolerant systems such as Erlang

[3], for network-transparent distributed programming systems such as Mozart [13],

and for secure distributed programming systems such as E [22]. It also matches

well with the complex systems approach taken in physics [14] and used, e.g., in

approaches such as belief propagation for solving inference problems [33].

Following the examples of Sections 3.2–3.4 and Section 4, the system consists of

a hierarchy of interacting feedback loops, where each feedback loop is implemented

by several agents and each agent is an instance of a component. Feedback loops

interact either through stigmergy or through management.

5.1 Higher-order component model

In a self-managing system, the system is able to monitor and reconfigure itself, that

is, install and update parts of itself while it is running. If the system is built as

a set of interacting components then it is possible for components to install other

components. Components are therefore first-class entities that can be passed as ar-

guments to other components. This is called higher-order component programming.

The Fractal component model is an example of such a component model [9]. This

model is already being used as a framework for building self-managing systems [6].

In a higher-order component model, it takes some care to determine what compo-

nent is to blame when a subsystem fails. This has been studied by Findler and

Blume [16].

13

Van Roy

f

input port

feedback component

system component

output port

F

C

F

C

new system component f(F,C)

Fig. 11. A component combinator for programming with feedback loops

5.2 Programming with feedback loops

With the right abstractions, a programming language can make programming with

feedback loops simple. Each component is a concurrent entity with one input port

that accepts a stream of input events and one output port that returns a stream

of output events. Components ignore irrelevant events. Both control and content

events pass through the same ports. These properties make it easy to compose

components in a modular way. This programming model is similar to the model used

by Guerraoui and Rodrigues for defining distributed algorithms in a compositional

way [18].

Figure 11 shows a component combinator f that takes two components F and C

and returns a component f(F,C) that combines F and C in a feedback arrangement.

The combinator f satisfies properties such as f(F1, f(F2, C)) = f(F2, f(F1, C)). We

can define an operator || such that f(F1, f(F2, C)) = f(F1||F2, C). This operator

is a form of parallel composition that connects the input and output streams of

F1 and F2. There are variations of f depending on whether C is explicit (part of

the program) or implicit (part of an environment) and depending on whether the

feedback loop is managed or not. The semantics of the combinator f needs to take

into account two effects:

• The interleaving of the input and output streams. That is, C’s input is the merge

of f(F,C)’s input and F ’s output and f(F,C)’s output is also the input to F .

• Both C and F have a propagation delay, i.e., an output event does not appear

instantaneously when an input event is given.

5.3 Global properties

An important part of any general system theory concerns the global properties of

a system. Can they be determined for an existing system and can we design sys-

tems with desired global properties? The latter question is especially important for

large-scale computer systems, such as the Internet or distributed systems built on

top of the Internet. Some of the important points are the system’s stability, its be-

havior when stressed, and whether the system’s imminent collapse can be detected

before it happens. Answers to some of these questions exist for complex systems

in physics. Such systems consist of large numbers of very simple components, but

14

Van Roy

they can sometimes be a useful approximation to computer systems. For exam-

ple, Krishnamurthy et al [20] have done an analytic study of the Chord structured

overlay network using a master equation approach. Another example is the belief

propagation algorithm. This algorithm is defined in terms of message passing be-

tween large numbers of simple nodes [33]. It has been used to give solutions to the

SAT problem and other problems. Belief propagation is a general technique that

can determine global properties of a system in terms of local properties. It can be

used for monitoring global properties as part of a feedback loop.

6 Conclusions

This paper motivates that a good approach for building large-scale distributed sys-

tems is to consider them as general self-managing systems. We propose to build

self-managing software systems as sets of concurrent agents interacting by means

of asynchronous events and implemented using a component model with first-class

components and component instances. In this framework, self-managing systems

are built as hierarchies of interacting feedback loops. The first design rule is that

the whole system (except perhaps a small kernel) should be inside a feedback loop.

Feedback loops interact through two mechanisms, stigmergy (shared environment

parameters) or management (one loop controls another). The feedback loop struc-

ture is designed to provide a desired global behavior. This behavior should also

be predictable from the loop structure. We relate this proposal to two other ar-

chitectures, namely the Erlang fault-tolerance architecture and the subsumption

architecture for implementing intelligent behavior.

These ideas are being realized in SELFMAN, a project in the European 6th

Framework Programme that started in June 2006 [27]. We intend to elaborate

these ideas into a programming methodology together with an implementation. It

should be as easy to program with and reason about a feedback loop as it is for an

object or a component. We will design and formalize a component model that is

based on the Oz kernel language extended with elements from the Fractal model.

We will use this component model as the basis of a programming model along the

lines of Section 5 and implement this model in Mozart [26,9,13,23]. We will build a

feedback loop architecture on top of this implementation and use it to implement a

self-managing replicated transactional storage service.

References

[1] Aberer, K., L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi, The essence
of P2P: A reference architecture for overlay networks, 5th International Conference on Peer-to-Peer
Computing (P2P 05), IEEE Computer Society, 2005.

[2] Andrzejak, Artur, Alexander Reinefeld, Florian Schintke, and Thorsten Schütt, On Adaptability in Grid
Systems, Future Generation Grids, Springer LNCS, 2005.

[3] Armstrong, Joe, “Making reliable distributed systems in the presence of software errors,” Ph.D.
dissertation, Royal Institute of Technology (KTH), Kista, Sweden, November 2003.

[4] Ashby, W. Ross, “An Introduction to Cybernetics,” Chapman & Hall Ltd., London, 1956. Internet
(1999): http://pcp.vub.ac.be/books/IntroCyb.pdf.

[5] von Bertalanffy, Ludwig, “General System Theory: Foundations, Development, Applications,” George
Braziller, 1969.

15

Van Roy

[6] Bouchenak, S., F. Boyer, D. Hagimont, S. Krakowiak, N. de Palma, V. Quéma, and J.-B. Stefani,
Architecture-Based Autonomous Repair Management: Application to J2EE Clusters, 2nd International
Conference on Autonomic Computing (ICAC’05), 2005, pp. 369–370.

[7] Brooks, Rodney A., A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics
and Automation, RA-2, April 1986, pp. 14–23.

[8] Brooks, Rodney A., Intelligence without representation, Artificial Intelligence 47, 1991, pp. 139–159.

[9] Bruneton E., V. Quéma, T. Coupaye, M. Leclercq, and J.-B. Stefani, An Open Component Model and its
Support in Java, Proceedings 7th International Symposium on Component-Based Software Engineering
(CBSE 2004), Springer LNCS 3054, 2004.

[10] Carroll, Lewis, “Through the Looking-Glass and What Alice Found There,” 1872 (Dover Publications
reprint 1999).

[11] Ceruzzi, Paul E., “Beyond the Limits: Flight Enters the Computer Age,” MIT Press, Cambridge, MA,
1989.

[12] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, PlanetLab:
An Overlay Testbed for Broad-Coverage Services, ACM SIGCOMM Comp. Comm. Review, 33(3), 2003.

[13] Collet, Raphaël, and Peter Van Roy, Failure Handling in a Network-Transparent Distributed
Programming Language, in Recent Advances in Exception Handling Techniques, C. Dony et al (Eds.),
Springer LNCS 4119, 2006.

[14] EVERGROW: Ever-growing global scale-free networks, their provisioning, repair and unique functions,
Integrated Project, European 6th Framework Programme, 2004-7. Internet: http://www.evergrow.org.

[15] Fairley, Peter, The Unruly Power Grid, IEEE Spectrum Online, Oct. 2005.

[16] Findler, Robert Bruce, and Matthias Blume, Contracts as Pairs of Projections, FLOPS 2006, April
24-26, 2006.

[17] Ghodsi, Ali, “Algorithms for Large Scale Self Managing Overlay Networks,” Ph.D. dissertation, Royal
Institute of Technology (KTH), Kista, Sweden, 2006.

[18] Guerraoui, Rachid, and Luis Rodrigues, “Introduction to Reliable Distributed Programming,” Springer-
Verlag Berlin, 2006.

[19] IBM, Autonomic computing: IBM’s perspective on the state of information technology, 2001. Internet:
http://researchweb.watson.ibm.com/autonomic/.

[20] Krishnamurthy, S., S. El-Ansary, E. Aurell, and S. Haridi, A statistical theory of Chord under churn,
The 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), 2005.

[21] Lynch, Nancy, “Distributed Algorithms,” Morgan Kaufmann, San Francisco, CA, 1996.

[22] Miller, Mark, “Robust Composition: Towards a Unified Approach to Access Control and Concurrency
Control,” Ph.D. dissertation, Johns Hopkins University, Baltimore, Maryland, May 2006.

[23] Mozart Programming System, version 1.3.2, June 2006. Internet: http://www.mozart-oz.org.

[24] Principia Cybernetica Web. Entry “system,” August 2006. Internet:
http://pespmc1.vub.ac.be/ASC/SYSTEM.html.

[25] SETI@home, August 2006. Internet: http://setiathome.berkeley.edu/.

[26] Van Roy, Peter, and Seif Haridi, “Concepts, Techniques, and Models of Computer Programming,” MIT
Press, Cambridge, MA, 2004.

[27] Van Roy, Peter, Ali Ghodsi, Seif Haridi, Jean-Bernard Stefani, Thierry Coupaye, Alexander Reinefeld,
Ehrhard Winter, and Roland Yap, Self Management of Large-Scale Distributed Systems by Combining
Peer-to-Peer Networks and Components, CoreGRID Technical Report TR-0018, Dec. 14, 2005. Internet:
http://www.ist-selfman.org.

[28] Weinberg, Gerald M., “An Introduction to General Systems Thinking: Silver Anniversary Edition,”
Dorset House, 2001 (original edition 1975).

[29] Wiener, Norbert, “Cybernetics, or Control and Communication in the Animal and the Machine,” MIT
Press, Cambridge, MA, 1948.

[30] Wiger, Ulf, Four-fold increqse in productivity and quality industrial-strength functional programming
in telecom-class products, Proceedings of the 2001 Workshop on Formal Design of Safety Critical
Embedded Systems, 2001.

[31] Wikipedia, the free encyclopedia. Entry “drowning,” August 2006. Internet:
http://en.wikipedia.org/wiki/Drowning.

16

Van Roy

[32] Wikipedia, the free encyclopedia. Entry “self-stabilization,” August 2006. Internet:
http://en.wikipedia.org/wiki/Self-stabilization.

[33] Yedidia, J.S., W.T. Freeman, and Y. Weiss, Understanding Belief Propagation and Its Generalizations,
Exploring Artificial Intelligence in the New Millennium, Chap. 8, Jan. 2003. Also MERL Technical
Report TR-2001-22, Jan. 2002.

17

	Introduction
	Self-managing systems
	Designing self-managing systems
	Feedback loops
	System design with feedback loops: the human respiratory system
	A new way of designing programs
	Interaction between feedback loops and distribution
	Feedback loops in a structured overlay network

	Related work
	The Erlang system
	The subsumption architecture

	General architectural framework
	Higher-order component model
	Programming with feedback loops
	Global properties

	Conclusions
	References

