
ATOMIC COMMITMENT IN TRANSACTIONAL DHTS∗

Monika Moser
Zuse Institute Berlin (ZIB)
Berlin, Germany
moser@zib.de

Seif Haridi
Royal Institute of Technology (KTH)
Stockholm, Sweden
haridi@kth.se

Abstract We investigate the problem of atomic commit in transactional database systems
built on top of Distributed Hash Tables. Therefore we present a framework
for DHTs to provide strong data consistency and transactions on data stored in
a decentralized way. To solve the atomic commit problem within distributed
transactions, we propose to use an adaption of Paxos commit as a non-blocking
algorithm. We exploit the symmetric replication technique existing in the DKS
DHT to determine which nodes are necessary to execute the commit algorithm.
By doing so, we achieve a lower number of communication rounds in contrast
to applying traditional Three-Phase-Commit protocols. We also show how the
proposed solution can cope with dynamism due to churn in DHTs. Our solution
works correctly relying only on an inaccurate failure detection of node failure,
what is necessary for systems running over the Internet.

Keywords: Atomic Commit, Database, Transactions, DHT, Paxos

1. Introduction
DHTs provide the ability to store and lookup data in a fully decentralized

manner. They can be utilized to build a distributed database on top of it. We
consider such a database which provides the user with an interface to perform
transactions on its data, and where all operations on distributed data are done

∗This research work is carried out under the SELFMAN project funded by the European Commission and
the Network of Excellence Core-GRID funded by the European Commission.



2

in a transactional manner. For distributed transactions an atomic commit pro-
tocol is needed to guarantee that either all operations of the transaction take
place or none of them. Only committed states are made visible. Another im-
portant mechanism of distributed transactional systems is concurrency control,
which ensures that concurrent transactions cannot interfere with each other. We
present a framework for having transactions on DHTs and consequently strong
notion of data consistency in DHTs. Our focus in this paper is on the atomic
commit problem.

A typical transaction is a sequence with an arbitrary number of operations
on different items. This sequence of operations is enclosed by a Begin of
Transaction (BOT) and an End of Transaction (EOT). BOT signals that a client
or application wants to start a transaction. The end of a transaction is marked
with EOT. At this point the system has to ensure that either all of the operations
contained in the transaction take place or none of them will affect the system.
Therefore a node receiving EOT starts a distributed commit protocol where it
determines whether all nodes, which are responsible for items that are involved
in the transaction, can execute the operations. If all those nodes confirm that
they can do so, the transaction will be committed.

We propose a solution for atomic commit which is based on the Paxos commit
algorithm introduced in [6]. We show how it can be adapted for a DHT-based
database. The Paxos commit algorithm defines different roles for nodes running
the protocol. We use the specific structure and services of the DHT to determine
which nodes have to act in which role. As DHTs are systems that are highly
dynamic, we show how we can cope with the dynamism and when we have to
fix the group of nodes involved in the protocol. Another advantage of the Paxos
commit algorithm is that it can handle a number of failures among the nodes
without relying on a perfect failure detector, which is an important property for
distributed systems running on the Internet.

Outline. Section 2 gives the problem description for this paper. In section 3
we describe the architecture of our system. Our approach for atomic commit
in a transactional DHT-based database system is presented in 4. Section 5 lists
some related work. As this paper summarizes some work in progress, we add
an outlook on our future work to the final conclusions presented in 6.

2. Problem Description
DHTs are utilized to efficiently find data items stored in a P2P system. They

use a hashing function to assign each data item consisting of (Key, Value) an
identifier in a typically large identifier space. Each node that is part of the DHT
is responsible for at least one subrange in the identifier space. Examples for
DHTs are DKS [4], Chord [1], Chord# [2] and CAN [10].



Atomic Commitment in Transactional DHTs 3

Figure 1. State-charts for a 2-Phase-Commit Protocol with 2 Participants and 1 Transaction
Manager

There exist a number of storage systems which are built on DHTs, e.g.
Bamboo1 which is based on Pastry and DHash2 which is based on Chord.
Mostly items in such systems are replicated for a higher degree of availability
and reliability. These systems are typically read-only storage systems.

Atomicity is one of the four ACID properties of a transaction. A transaction
will be executed either completely or will have no effects on the data at all.
Changes on data made by a transaction will be made persistent when it reaches
its commit point at EOT. A transaction will either end with commit or with
abort, in which case the data modifications are canceled, and the transaction
has no effect. In distributed databases, items involved in a transaction may be
spread over different nodes. There is one node that acts as the Transaction
Manager (TM), which is responsible for coordinating the transaction. Nodes
that are responsible for items which are involved in the transaction are the
Transaction Participants (TP). A transaction can only be committed if each of
the TPs is able to commit its part of the transaction. All TPs have to agree
on the same outcome of the transaction. Well known solutions to this problem
are Two-Phase-Commit (2PC) algorithms. In the first phase (voting phase) the
TM initially asks all the TPs to prepare. The TPs answer whether they are
prepared and were able to commit. In the second phase (decision phase) the
TM tells the TPs to commit if all TPs are prepared and are able to make their
changes durable. Figure 1 shows the possible states of a 2PC protocol with one
Transaction Manager and two Transaction Participants.

One Problem with the basic 2PC is that it is a blocking protocol. If the TM
fails in the decision phase (state Collecting), the TPs are not able to receive
the outcome of the transaction and are blocked. A number of non-blocking
algorithms were introduced. Three-Phase-Commit (3PC) algorithms introduce

1http://www.bamboo-dht.org/
2http://pdos.csail.mit.edu/chord/



4

an extra phase to circumvent a blocking state. For DHT-based systems adding
an extra phase might be very costly in terms of latencies, in particular if nodes
are distributed worldwide. Most of them are also relying on timeouts, which
might impact the performance for Internet-based systems with fluctuating link
delays. We therefore use the Paxos based commit algorithm introduced in
[6]. Instead of using an extra phase, votes of the TPs are sent to a number
of so called acceptors. The non-blocking property is introduced at the cost of
a higher number of messages, instead of an additional communication round.
We think that in a P2P environment it is more important to reduce latency than
reducing the number of messages sent, to achieve an acceptable performance.
Besides the size of the messages needed for the protocol is small. Another
important property of the Paxos commit protocol is that it does not rely on a
perfect failure detector.

Next we will describe the architecture of the system for which our solution
is designed for.

3. Architecture of the Transactional System
In DHT-based transactional database systems each node can act as TM and as

TP. Clients and applications which invoke transactions are connected to arbitrary
nodes in the DHT. Any such node will act as a TM for the transaction started by
the associated client. During the commit phase all nodes which are responsible
for an item that is involved in the transaction act as TPs. Items in our DHT are
replicated. Our solution is illustrated with the symmetric replication scheme of
the DKS DHT as mentioned below. With symmetric replication replicas can
be accessed concurrently.

3.1 Symmetric Replication and Data Consistency
We consider symmetric replication as described in [5, 3]. The storage system

replicates each item with the replication factor f . An identifier of an item is
associated with f − 1 other identifiers. This corresponds to a partition of the
identifier space of size N in N

f equivalence classes. The identifiers for replicas
of an item with identifier id are determined using the following function:
ri(id) = (id+(i−1)N

f )mod N, for 1 ≤ i ≤ f . Using symmetric replication,
items can be accessed concurrently by determining their associated identifiers.

Our system maintains strong consistency among operations on data by in-
cluding at least a majority of replicas in these operations. All operations related
to data enforce the invariant that a majority of replicas for a certain data item
is up to date. A majority contains at least bf

2 c+ 1 replicas. As write and store
operations are performed on a majority, a read operation includes a majority
as well, to ensure to get the latest version of an item. As a consequence join,
leave and node failure handling have to maintain the replication factor. Espe-



Atomic Commitment in Transactional DHTs 5

cially they have to ensure that the number of replicas never exceeds f . When
a new node joins the system, it gets the data it will be responsible for, and then
takes over the responsibility from the node formerly responsible for those items.
There is no point where they are both responsible for the transfered items in
order to ensure that the number of replicas for each item does not exceed f .
When a node leaves, it transfers the responsibility for its items to its successor
node and thus again does not change the number of replicas for an item. When
a node failure is detected, another node in the system becomes responsible for
this node’s items. It will read the items from the remaining replicas. Here the
number of replicas is restored to f after some time, but it does not increase the
number of replicas

According to Brewer’s conjecture [12], we will only be able to maintain
availability until partitioned overlays merge. It is impossible to maintain con-
sistency, availability and partition-tolerance at the same time. Our emphasis is
on consistency.

3.2 System Properties
A DHT-based database system differs from a traditional distributed database

system in a number of points that are important for the design of the commit
algorithm. Traditional distributed database systems usually consist of a number
of reliable nodes connected through a LAN. In contrast a DHT is built on
unreliable nodes. The MTTF (Mean Time to Failure) of a node in a DHT
system is typically much smaller. The need for a non-blocking atomic commit
algorithm therefore is higher than in a traditional database system. Traditional
database systems often are optimized for the failure-free case as failures occur
quite seldom.

Another point is latency. In DHT-based database systems latencies are high
due to the WAN communication paths and the routing structure of a DHT. A
non-blocking atomic commit algorithm implemented in a DHT has to be low
in the number of communication rounds to achieve acceptable performance.

The number of nodes involved in a transaction is typically much higher for a
DHT-based system as items are distributed over a larger number of nodes. There
are even two levels of distribution. Additionally distributed items are replicated
and again spread over the whole system. The number of nodes involved in a
transaction depends on the number of items which are part of the transaction.
An atomic commit algorithm for a DHT therefore has to be scalable in the
number of participants.

The failure model for a traditional database system is normally based on
a crash-recovery process model. In contrast there are several possible failure
models for DHT-based database systems. In this paper we consider a DHT
database system that is based on a crash-stop process model. When a node



6

crashes and later recovers, it joins as a new node. Therefore it does not need
to remember any previously stored data, nor logs of uncommitted transactions.
Here we rely on the majority of nodes holding replicas of items involved in
ongoing transactions will survive. This is a consequence of our majority based
consistency mechanisms.

The atomic commit algorithm we present in the next section assumes the
crash-stop DHT model and symmetric replication. It is tailored for high laten-
cies, high distribution of items and it can handle the failure of the TM.

4. Atomic Commit Protocol for a DHT
As mentioned above nodes of the DHT can act as TMs and as TPs. A client

that invokes a transaction is connected to a node in the DHT. This node will be
the TM for that particular transaction. Invoking a transaction will result in the
creation of a transaction item, such that the key of the transaction item results
in an identifier that belongs to the responsibility of the TM and which we refer
to as the transaction-ID. This item will contain the result of the transaction and
will be stored in the transaction manager and also symmetrically stored in the
DHT.

As failures of nodes in DHTs may occur quite often, a non-blocking atomic
commit protocol is needed. Gray and Lamport [6] introduce a commit protocol
built on the Paxos consensus algorithm[8–9]. Our solution is an adaptation of
this commit protocol to work for DHTs. The Paxos commit protocol uses a
number of nodes that collect the votes of the TPs. These are called acceptors.
In the case of a TM’s failure the decision for the transaction can be requested
from the associated set of acceptors. We adapt this protocol by having the set
of nodes responsible for the replicated transaction item as our set of acceptors.
Therefore the number of acceptors is determined by the replication factor of
the whole system.

As mentioned above the Paxos commit algorithm provides an ability to cir-
cumvent the blocking problem of a Two-Phase-Commit protocol. In the next
section we will briefly introduce the properties of the Paxos consensus algorithm
and thereafter Paxos commit.

4.1 The Paxos Protocol
Paxos is an algorithm which guarantees uniform consensus. Consensus is

necessary when a set of nodes has to decide on a common value. Uniform
consensus satisfies the following properties: 1. Uniform agreement, which
means that no two nodes decide differently, regardless of whether they fail
after the decision was taken; 2. Validity describes the property that the value
which is decided can only be a value that has been proposed by some node;
3. Integrity, meaning no node may decide twice and finally 4. Termination,



Atomic Commitment in Transactional DHTs 7

every node eventually decides some value [7]. Paxos assumes an eventual
leader election to guarantee termination. Eventual leader election can be built
by using inaccurate failure detectors.

Paxos defines different roles for the nodes. There are Proposers, which
propose a value, and Acceptors, which either accept a proposal or reject it in
a way that guarantees uniform agreement. Paxos as described in [9] assumes
that each node may act as both proposer and acceptor. In our solution presented
below we use different nodes as proposers and acceptors.

The above mentioned properties of uniform agreement can be guaranteed by
Paxos whenever a majority of acceptors is alive. That means, it tolerates the
failure of F acceptors out of initially 2F + 1 acceptors.

Paxos basically consists of two phases called the read and write phase. In
the read phase a node makes a proposal and tries to get a promise that his value
will be accepted by a majority or it gets a value that it must adopt for the write
phase. In the write phase a node tries to impose the value resulting from the
read phase on a majority of nodes. Either the read or write phase may fail.
Proposals are ordered by proposal numbers. By using an eventual leader to
coordinate different proposals, the algorithm will eventually terminate.

4.2 Atomic Commit with Paxos
Uniform consensus alone is not enough for solving atomic commit. Atomic

commit has additional requirements on the value decided. If some node pro-
poses abort or is perceived to have crashed by other nodes before a decision
was taken, then all nodes have to decide on abort. To decide on commit, all
nodes have to propose prepared.

In the Paxos Commit protocol [6] we have a set of acceptors, with a distin-
guished leader, and a set of proposers. The set of acceptors play the role of the
coordinator and the set of proposers are those who have to decide in the atomic
commit protocol.

Each proposer creates a separate instance of the Paxos algorithm with itself
as the only proposer to decide on either prepared or abort. All instances share
the same set of acceptors. It can be noted that the Paxos consensus can be
optimized, because there is only one proposer for each instance. If a proposer
fails, one of the acceptors, normally the leader, acts on behalf of that proposer
in the particular Paxos instance and proposes abort.

Acceptors store the decisions of all proposers. Whenever an acceptor has
collected all decisions, it sends commit or abort to the leader. A leader needs to
receive the decision of a majority of acceptors to do the final decision. Thereafter
the final abort/commit is sent to the initial proposers. If the leader fails by
the eventual failure detector, another leader will take over and can extract the
decision from a majority of acceptors and complete the protocol.



8

The state-chart of a proposer is similar to the state-chart of a TP in the
original 2PC protocol, as shown in figure 1. Also the state-chart of an acceptor
is similar to that of the TM, referring to the same figure. But instead of sending
the decision commit to the participants, the acceptors send the outcome to the
leader.

4.3 Adapted Paxos Commit for a DHT
Paxos is designed for a static environment with a fixed number of participants

and acceptors. However each transaction involving items of a DHT has different
nodes involved. Every node responsible for an item in a transaction becomes
a TP for that particular transaction. In fact the TM initially does not know
which nodes are TPs. The number of nodes varies according to whether or
not the node is responsible for an item that is involved in the transaction. As
mentioned earlier, each transaction has a certain transaction item. We therefore
use a certain group of acceptors for each particular transaction, that can be easily
determined from the transaction-ID of the transaction item, by using symmetric
replication. The set of acceptors consists of the nodes responsible for a replica
of the transaction item. One advantage is that we create a pseudo static group
of acceptors. The group of acceptors is fixed temporarily by the TM just before
the prepare request is sent to the TPs. With the prepare request the TM informs
the nodes responsible for items in the transaction about the set of acceptors.
When such a node receives the prepare request, it becomes a TP and starts its
Paxos instance. It has to be noted that a node could be responsible for several
items involved in the transaction. The TP runs a separate Paxos instance for
each item it is responsible for.

At this stage the group of TPs and the group of acceptors are fixed. It will
remain fixed during the atomic commit phase. If a node joins/leaves in a DHT,
the responsibility of certain items has to be transferred. The transfer of the
responsibility of items involved in an active commit protocol is deferred until
the protocol instance terminates.

One modification to the Paxos commit is that the acceptors collect the votes
from the TPs and classify them per item. When a majority of TPs holding a
replica of an item votes prepared, the acceptors record a prepared vote for this
specific item. If the decision is prepared for all items, the transaction commits.

When a TM knows the decision for the transaction, it can store this infor-
mation in the transaction item. This item can then be replicated in the DHT
just like regular data items. Whenever a TP does not receive the result of the
transaction from the TM, it can query the result of the transaction by reading
the transaction item stored in the DHT.

Another issue is garbage collection of transaction items. As information
on previous transactions grows by time, garbage collection is needed to throw



Atomic Commitment in Transactional DHTs 9

away information which is no longer needed. This can be done in different ways
either by acknowledgment messages or expiry date associated with transaction
items.

Most of the operations mentioned in this particular DHT-based Paxos commit
are operations on a set of identifiers. This is supported efficiently by bulk
operations in DHTs as described in the DKS system [5, 3].

5. Related Work
In [11] Paxos is used to achieve consensus in DHTs. The authors present

a middleware service called PaxonDHT, which provides a mean to guarantee
strong consistency among a set or replicas. In contrast to PaxonDHT our work
is providing an approach for atomic commit with replicas of several items
involved.

OceanStore [13] provides the ability to concurrently update data stored in a
global persistent data store. A master replica is required which consists of a
set of nodes which run a Byzantine agreement protocol to cooperate with each
other. In [13] the authors mention that transactions could be built on top of the
API of OceanStore. Our work considers a system that provides transactions in
its own interface and provides strong consistency among operations on data.

6. Conclusion and Future Work
We presented a framework for having transactions on DHTs and conse-

quently strong notion of data consistency in DHTs. We focus on the atomic
commit problem. Our solution is based on the Paxos commit algorithm. We
showed why Paxos commit is suitable for DHT-based systems and how we
can adapt it for transactional DHT-based databases. Among nodes Paxos com-
mit defines a set of acceptor and a set of proposers. Our approach uses the
symmetric replication scheme for DHTs to determine a pseudo static group of
acceptors. The non-blocking property of this commit protocol is important as
failures in DHTs occur quite often. Another advantage is a lower number of
communication rounds compared to traditional non-blocking algorithms in dis-
tributed database systems like Three-Phase-Commit. Paxos commit can handle
a number of failures among the nodes which are involved in the atomic commit
without violating the properties of atomic commit. Further we showed how to
handle dynamism in a DHT due to churn. We defined the phases when it is
necessary to fix the group of participants in the algorithm to enable a correct
atomic commit.

There is a number of issues left that will be addressed in the future. We
will investigate concurrency control for a DHT-based database system. An
optimistic concurrency control seems reasonable for this scenario. One solu-



10

tion will be a timestamp based ordering. Further we will evaluate the whole
architecture and specify the algorithms formally.

References
[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. Chord: A Scalable

Peer-To-Peer Lookup Service for Internet Applications. Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, 149-160

[2] Thorsten Schütt, Florian Schintke and Alexander Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. Proceedings of the Sixth Workshop on Global and
Peer-to-Peer Computing (GP2PC’06), 2006

[3] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables KTH.
Doctoral Dissertation, KTH — Royal Institute of Technology, 2006

[4] L. Onana Alima, S. El-Ansary, P. Brand and S. Haridi. DKS (N, k, f): A Family of
Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications.
In Proceedings of the 3st International Symposium on Cluster Computing and the Grid,
2003

[5] A. Ghodsi, L. Alima and S. Haridi. Symmetric Replication for Structured Peer-to-Peer
Systems. In The 3rd Int Workshop on Databases, Information Systems and Peer-to-Peer
Computing, 2005

[6] J. Gray and L. Lamport. Consensus on transaction commit. In ACM Trans. Database
Syst., ACM Press, 2006, 31, 133-160

[7] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.
Springer-Verlag, 2006

[8] L. Lamport. Paxos Made Simple. 2001

[9] L. Lamport. The part-time parliament. In ACM Trans. Comput. Syst., ACM Press, 1998,
16, 133-169

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker. A scalable content-
addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, ACM
Press, 2001, 161-172

[11] B. Temkow, A. Bosneag, X. Li and M. Brockmeyer. PaxonDHT: Achieving Consensus
in Distributed Hash Tables. In SAINT ’06: Proceedings of the International Symposium
on Applications on Internet, IEEE Computer Society, 2006, 236-244

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. In SIGACT News, 2002

[13] J. Kubiatowicz , et al. OceanStore: An Architecture for Global-scale Persistent Storage.
In Proceedings of ACM ASPLOS, 2000


