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Overview
 Motivation

 Why software design needs self management

 Feedback loops
 Why feedback loops are everywhere
 Biological regulatory systems

 Program design with feedback loops
 Architecture of self-managing systems
 Decentralized distributed systems
 Conclusions

 Software systems should be self managing
 This is ongoing work in the SELFMAN project
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Software and the Red Queen

 Software is fragile!
 A single bit error can cause a catastrophe

 Hardware and operating systems have been reliable enough so that this
has not unduly hampered the quantity of software being written
 Hardware is verified to a high degree, it is much more reliable than software

 Good operating systems provide strong encapsulation at their core (virtual
memory, multitasking) and this has been polished for many years

 New techniques in fault tolerance (e.g., distributed algorithms, Erlang) and in
programming (e.g., structured programming, OOP, the usual bunch of modern
methodologies – agile, extreme, etc.) have arguably kept pace so far

 We are in a Red Queen situation: running as hard as we can to stay in the
same place

 So what is the next challenge and the next technique that will keep pace
with it?
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The next challenge (1)

 Software complexity is ramping up quickly due to:
 The sufficient bandwidth and reliability of the Internet to support

distributed applications

 The increasing number of devices connected to the Internet

 The increasing computing power of these devices

 Many new applications are appearing: file-sharing (Napster,
Gnutella, Morpheus, Freenet, etc.), collaborative tools (Skype,
various Messengers), MMORPGs (World of Warcraft, Dungeons &
Dragons, etc.), research testbeds (SETI@home, PlanetLab, etc.)

 These applications are like services: they should be long-lived

 Their architectures are a mix of client/server and peer-to-peer

 These applications are still rather conservative: they do not take full
advantage of the new complexity space
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The next challenge (2)

 The main problem that comes from the increase in complexity
is that software errors cannot be eliminated [Armstrong 2003]
 We have to cope with them

 Programming large-scale distributed systems introduces other
problems too:
 Scale: large numbers of independent nodes
 Partial failure: part of the system fails
 Security: multiple security domains
 Resource management: resources are localized
 Performance: harnessing multiple nodes or spreading load
 Global behavior: emergent behavior of the system as a whole

 Global behavior is particularly relevant
 Example: the power grid [Fairley 2005]
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The next solution

 Now that we have set the stage, what solution do we propose?

 For inspiration, we go back fifty years, to the first work on
cybernetics and general system theory
 Designing systems that regulate themselves (self-managing systems)

[Wiener 1948, Ashby 1956, von Bertalanffy 1969]

 A system is a set of components (called subsystems) that are
connected together to form a coherent whole
 Can we predict the system’s behavior from its subsystems?

 Can we design a system with desired behavior?

 No general theory has emerged (yet) from this work
 We do not intend to develop such a theory

 Our aim is narrower: to build self-managing software systems
 Such systems have a chance of coping with the new complexity
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Types of systems

 This diagram is from
[Weinberg 1977] An
Introduction to General
Systems Thinking

 The discipline of computing
is pushing the boundaries
of the two shaded areas
inwards

 Programming research is
(one of) the vanguards of
system theory
 The other is computational

science (model design and
simulation)

computing

computing
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Some recent work

 IBM’s Autonomic Computing initiative (2001)
 Reduce management costs by removing humans from system

management loops

 The role of humans is then to manage policy and not to manage
the mechanisms that implement it

 Structured overlay networks ([Stoica et al 2001], …)
 Inspired by popular peer-to-peer applications

 Provide low-level self management of routing, storage, and smart
lookup in large-scale distributed systems

 Research in ambient and adaptive computing
 E.g., adaptive user interfaces, ubiquitous computing

 Self management has a bigger role than just these areas
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Designing self-managing
software systems

 From system theory, we take some fundamental principles
 Programming with feedback loops
 Focus on global (emergent) properties
 Architectural framework

 We will use these principles as a basis for practical
software development
 This talk will give some ideas and many examples; our work

in this area is just starting
 All comments welcome!

 We will emphasize how to program with feedback loops
 Slogan: no open-ended software
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Feedback loops
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Feedback loops

 A feedback loop consists of three elements that interact with a
subsystem: a monitoring agent, a correcting agent, and an actuating
agent
 The elements and the subsystem are concurrent components interacting

through asynchronous message passing

 Feedback loops can interact in two ways:
 two loops that affect interdependent system parameters (stigmergy)
 one loop that directly controls another loop (management)
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Stigmergy example (Wiener)

 This system is unstable!

 But each loop is stable in
isolation
 Combining stable loops

can result in instability
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Correct solution uses
management

 Instead of stoking a fire, the tribesman simply adjusts
the thermostat.  The resulting system is stable.

 This uses management instead of stigmergy
 Design rule: use the system, don’t try to bypass it
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Feedback loops are everywhere

 Feedback loops are literally everywhere, if you look
at a system with the right mindset

 A single-user application is a simple example
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Feedback loops are really
everywhere!
 Real life is literally filled with variations on the feedback principle.

 Bending a plastic ruler: single stable state.  The ruler resists with a
force that increases with degree of bending, until equilibrium (or until
ruler breaks: change of phase)
 The ruler is a simple self-adaptive system.
 The feedback loop: force imposed on ruler, ruler reacts with

counteracting force, this may affect the force, etc.
 Clothes pin: one stable and one unstable state.  Can be kept

temporarily in the unstable state by pinching.  Release the force and
it will go back to (a possibly more complex) stable state.

 Safety pin: two stable states, open and closed.  Within each stable
state, the system is adaptive like the ruler.  Example of feedback loop
with management: the outer control chooses the stable state.

 Anything with duration is managed by a feedback loop
 Lack of feedback means there is a runaway reaction (explosion)
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Civilization relies on
feedback loops
 Most products of human civilization use an implicit management

feedback loop, called “maintenance”, done by a human
 Changing lightbulbs, replacing broken windows, filling up a car

 Each human mind is at the center of an enormous number of these
feedback loops
 Most require very little conscious thinking, since they have become

“habits”: programmed into the brain below consciousness
 Each human being creates huge numbers of such habit programs

 If there are too many feedback loops to manage the human
complains that “life is too complicated”!
 “Civilization advances by reducing the number of feedback loops that

have to be explicitly managed” (Van Roy’s corollary to A. N. Whitehead’s
dictum)

 A dishwashing machine reduces work of washing dishes, but it needs to
be bought, maintained, replaced, etc.  Is it worth it?  Is the total effort
reduced?
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Complexity of interacting
feedback loops

 Problems of global behavior
 Does it converge or diverge?

 Does it oscillate or behave
chaotically?

 Analysis not always easy
 Linear and monotonic loops are

easy; unfortunately software is
usually nonlinear

 What are the rules of good
feedback design?
 We need to understand how to

program with feedback loops

 Analogous to structured and
object-oriented programming

 Let us start by looking at
some real systems

Level 1

Level 2

Level 3

Level 4
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Biological
regulatory systems
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Biological regulatory systems

 We start our investigation by looking at some
existing systems built with feedback loops

 Biological systems a good example, and they
have the great advantage that they work!
 Design rules inferred by studying them may be

good ones

 Examples:
 Human respiratory system

 Human endocrine system
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Human respiratory system
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Discussion of respiratory system

 Four feedback loops: two inner loops (breathing reflex and laryngospasm),
a loop controlling the breathing reflex (conscious control), and an outer
loop controlling the conscious control (falling unconscious)
 This design is derived from a precise textual medical description [Wikipedia

2006: “Drowning”]

 Holding your breath can have two effects
 Breath-hold threshold is reached first and breathing reflex happens

 O2 threshold is reached first and you fall unconscious, which reestablishes the
normal breathing reflex

 Some plausible design rules inferred from this system
 Conscious control is sandwiched in between two simpler loops: the breathing

reflex provides abstraction (consciousness does not have to understand details
of breathing) and falling unconscious provides protection against instability

 Conscious control is a powerful problem solver but it needs to be held in check
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Human endocrine system

 The endocrine system regulates many quantities in
the human body

 It used chemical messengers called hormones
which are secreted by specialized glands and which
exercise their action at a distance, using the blood
stream as a diffusion channel

 By studying the endocrine system, we can obtain
insights in how to build large-scale self-regulating
distributed systems
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Feedback loops in the
endocrine system
 There are many feedback loops and systems of interacting feedback

loops in the endocrine system
 Provides homeostasis (stability) and reaction to stresses

 Much regulation is done by simple negative feedback loops
 Glucose level in blood is regulated by hormones glucagon & insulin. In the

pancreas, A cells secrete glucagon and B cells secrete insulin.  Increase in
glucose in blood causes decrease in glucagon and increase in insulin.  These
hormones act on the liver, which releases glucose in the bloodstream.

 Calcium level in blood is regulated by parathyroid hormone (parathormone)
and calcitonine (also in opposite directions), which act on the bone

 Pattern: two hormones that work in opposite directions

 More complex regulatory mechanisms exist, e.g., hypothalamus-
pituitary-target organ axis

 There is interaction between nervous transmission and hormonal
transmission
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Hypothalamus-pituitary-target
organ axis

 Two superimposed groups of negative feedback loops, a third short negative loop, a
fourth loop from the central nervous system (from [Encyc. Brit. 2005])

 This diagram shows only the main components and their interactions; there are many
more parts giving a much more complex full system
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Discussion of endocrine system

 This system is quite complex
 Many interacting feedback loops, many “short circuits”,

many special cases, much interaction with other systems
(nervous, immune)
 Negative feedback for most, also saturation (logistic curve)

 Evolution is not always a parsimonious designer!
 Only criterion: it has to work

 Several feedback loops are channeled through a single point,
the hypothalamus-pituitary complex in the brain
 So that the central nervous system can manage these loops

 Time scales: the loops are slow; the central nervous system
is fast
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Computational architecture of
human endocrine system
 Local and global components

 Local: gland, organ, or clumps of cells
 Global (diffuse): large part of the body

 Point-to-point and broadcast channels
 Fast point-to-point: nerve fiber, e.g., from spinal chord to muscle
 Slower broadcast: hormone diffused by blood circulation

 With buffering (reducing variations): carrier proteins

 Regulatory mechanisms can be modeled by interactions
between components and channels
 There are often intermediate links
 Abstraction (encapsulation) is almost always approximate
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Program design
with feedback
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Program design with feedback

 The style of system design illustrated by biological
systems can be applied to programming

 Programming then consists of building hierarchies of
interacting feedback loops

 Examples
 Simple loop: Self-adaptive user interface

 Distribution: TCP (reliable point-to-point byte stream)

 Fault tolerance: Erlang fault-tolerance architecture

 Environment: Subsumption architecture
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Example: self adaptation of
user interfaces
 A simple example that uses one feedback loop

 With a user interface toolkit that implements monitoring and
actuating abilities

 EBL/Tk toolkit is designed to do exactly this
 Monitoring: changes in environment including migration, using

event-based architecture (window resize, migration, mouse, any
environmental change)

 Actuating: recalculation of display using hybrid declarative-
imperative approach, transparent migration, platform
independence

 Implemented for Mozart Programming System
 Donatien Grolaux, “Transparent migration and adaptation in a

Graphical User Interface toolkit”, Ph.D. thesis, Sept. 2007
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Self-adaptable clock utility

 Clock dynamically adapts display according to window size and device
capability (including resize and migration to other devices)

 One feedback loop: resize/migration event → choose display → new display
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Example: TCP

 This example shows a
reliable byte stream
protocol with
congestion control (a
variant of TCP)
 This diagram is for the

sending side

 The congestion control
loop manages the
reliable transfer loop
 By changing the sliding

window’s buffer size
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Interaction between feedback
loops and distribution

 The previous slide only showed what happens at the source node
 We expand the inner loop to show execution on both nodes.  This shows

two feedback loops (S loop and D loop), one running at the source and
one running at the destination.  The loops interact through stigmergy.
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Feedback loops and
distribution
 The interaction between feedback loops and distribution

is not well understood

 Distributed algorithmics has studied special cases of this
interaction
 Fault tolerance

 Self-stabilizing systems

 Structured overlay networks

 Feedback loops are useful for much more than fault
tolerance!
 We will take a closer look at structured overlay networks as

an example of a decentralized distributed system
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Other examples of self-
managing software systems

 Erlang fault-tolerance architecture [Armstrong 2003]
 Erlang is designed explicitly to build applications that survive

software faults
 Hypothesis: Software faults are inevitable

 The Erlang system has been used to build highly available products:
AXD301 ATM switch, Bluetail Mail Robustifier, SSL accelerator

 Subsumption architecture [Brooks 1986]
 To build systems that show intelligent behavior by decomposing

complex behaviors into layers of simple behaviors
 Knowledge is represented indirectly through the environment
 Used successfully to program physical robots
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Erlang

 Erlang is a language used to
develop highly reliable software
systems

 An Erlang program consists of a
set of running “processes”
(lightweight threads with
independent address spaces) that
send messages asynchronously

 Fault tolerance consists of three
levels:
 Primitive failure detection through

process linking: when one process
fails, another is notified

 Supervisor trees to structure the
program

 Stable storage to restart after
crashes (single or multiple disk)

P4

P3

P1

P2

process

message
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Primitive failure detection

 Two processes can be linked: if
one fails then both are
terminated
 Failure is a permanent crash

failure, detected by the run-time
system

 “Let it fail” philosophy: if anything
goes wrong, just crash and let
another process correct the
problem

 If a linked process has its
supervisor bit set, then it is sent
a message instead of failing

 This primitive failure detection
can be seen as monitoring in a
feedback loop

Link

Link

supervisors=1

s=0 s=0

supervised processes
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Supervisor trees

 The program consists of a
large number of processes

 Program processes are
organized in pools
 Each pool is observed by a

supervisor process linked to all
of them

 An AND supervisor stops and
restarts all its children if one
crashes

 An OR supervisor restarts just
the crashed child

 The supervisors themselves
are observed by a root
supervisor

 Each internal node in the
supervisor tree corresponds to
a feedback loop

program processes

supervisor
processes

root supervisor
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Subsumption architecture

 The subsumption architecture is a way to
implement complex, “intelligent” behaviors by
decomposing them into simpler behaviors

 The system consists of layers where each layer
provides a simple ability

 Layers are given priorities: when a layer can act,
it disables the lower layers

 Layers interact through stigmergy
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An obstacle-avoiding robot

 Each layer provides a competence
 Each layer can override the lower layers
 If a higher layer fails, some competence remains
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Architecture of self-
managing systems
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Self-management architecture

 Axes of self management
 Cooperation/competition
 Simple/complex component
 Time scales
 Noise

 Three-layered architecture
 Event layer
 Feedback loop layer
 Market (collective intelligence) layer

 Collective intelligence
 El Farol bar example
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Axes of self management
 Cooperation/competition

 One designer/user versus many designers/users

 Simple/complex components
 Complex: contains human intelligence or some other form of nontrivial

reasoning (e.g., digital assistant for Minesweeper with constraint-based
reasoning or chess program)

 Many systems have both simple and complex components, e.g., social
systems with both humans and computers, human regulatory systems

 Fault tolerance: malicious component is simple (“noise” is not malicious),
security: malicious component is complex

 Time scales
 Abstraction degree

 How “leaky” are the abstractions?
 Biological and social abstractions tend to be leaky; computer abstractions

tend not to be
 Security architectures are different in both cases
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Complex versus simple

 A complex component can radically affect the behavior of the
system
 Complex cooperative component can stabilize an otherwise

highly unstable system
 Complex competitive component can unstabilize an otherwise

highly stable system

 All four combinations do appear
 {complex,simple} x {cooperative,competitive}

 How to design a system that has complex components?
 If the component is imposed: defensive design (e.g., collective

intelligence)
 If the component is designed: it can improve system behavior, but

fail-safe mechanisms must be built in (complex components will
only enhance behavior in part of the configuration space)
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Some complex components

 Human intelligence
 Main strength: adaptability (dynamic

creation of new feedback loops)

 Program intelligence
 Can easily go beyond human

intelligence in special areas!
 Turing test is moot: complex

boxes are replacing humans in
more and more areas

 Minesweeper digital assistant: uses
constraints (easy to program!)

 Chess: uses alpha-beta search with
heuristics

 Compiler: translates human-
readable program into executable
form
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Time scale example (Wiener)

 Braking of a car (without ABS!)
 Driver tests road traction by quick braking attempts

 Driver then uses this information to help brake

 Short and long time scales are often
independent (little leakage)
 Use short time scale to gain information about the

environment

 This information helps the long time scale
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Three-layered architecture

 Market architecture
 Collective intelligence: optimizing a

local utility (selfish behavior) will
optimize the global utility

 Works for competitive systems

 Feedback loop architecture
 All components are part of feedback

loops
 Works well for cooperative systems

 Event architecture
 Concurrent components that

interact through events
 Publish/subscribe events: any

component that subscribes to a
published type will receive the event

 Eventually perfect failure detector
with suspect and resume events

Market architecture
with utility function

Feedback loop
architecture

Event architecture
(concurrent components)
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Feedback loop layer
 A self-managing software system can be organized as a set of agents

(instances of concurrent components) that communicate through
asynchronous message passing
 Event-based and publish/subscribe communication are adequate

mechanisms

 The system is a hierarchy of interacting feedback loops, where each
loop is implemented by several concurrent agents

 To allow the system to monitor and reconfigure itself, components
must be first-class entities that allow higher-order component
programming (e.g., the Fractal model [Bruneton et al 2004])

 Global properties of the system (total effect of all feedback loops)
need to be monitored, e.g., using diffusion algorithms or belief
propagation
 There is a close relationship between global property monitoring and

feedback monitoring



Sept. 2007 P. Van Roy, UCL, Louvain-la-Neuve 48

Observation: feedback loops
are needed at all levels

 Application level
 User interaction
 Self-describing components/software
 "Autonomic Computing" techniques: removing

humans from the loop
 Service levels

 Loosely-coupled service infrastructure
 Search and discovery of resources
 Robust, self-organizing communication
 Data management and replication
 Redundancy-based fault tolerance

 Cluster level
 Tightly-coupled infrastructure
 Self-management services (e.g., demand

prediction)
 Scheduling services
 Node replication and replacement

 Process/OS level
 Node protection mechanisms (e.g., intrusion

detection)
 Software rejuvenation
 Fault detection and alerting

Process/OS

Cluster

Services

Application
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Programming
with feedback loops

 We can build feedback loops with a component combinator f

 We need different combinators depending on whether C or F is an explicit or
implicit system (e.g., environment) and whether the loop is managed or not

 The semantics must take into account the input and output interleaving and the
feedback delay
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Programming
with feedback loops in Mozart
 We have programmed this in the Mozart Programming System using

higher-order functions, lightweight concurrency, and dataflow
synchronization
 Mozart Programming System: an advanced multiparadigm programming

platform (see www.mozart-oz.org)

 Component interface: one input port (accepts input events) and one
output stream (produces ordered sequence of output events)

 Component behavior:
 State × Event → State × Event* × (R+,Event)*
 Given an input state and an input event, create an output state, new output

events, and new time-delayed input events

 Component combinators can be written in a few lines of code
 All the examples we have shown can be programmed (or simulated)

easily
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Mozart Programming System
 Mozart implements the Oz language

 Oz is a multiparadigm language with lightweight threads, dataflow, symbolic, functional,
logic, and object-oriented programming

 Oz has a simple formal semantics
 Mozart is a high-quality open-source implementation of Oz developed since the early

1990s (www.mozart-oz.org)
 See “Concepts, Techniques, and Models of Computer Programming” (MIT Press, 2004)

 Mozart has advanced support for distributed programming
 Network-transparent distribution with reflective failure detection
 Recent development of Mozart Distribution Subsystem (Ph.D. work of Raphaël

Collet and Erik Klintskog)
 Choice of distribution protocols for language entities
 Asynchronous event-based interface to failure detection
 Kill operation to manage fault tolerance
 Support for temporary failures (imperfect failure detection: Internet failures)

 Mozart has advanced support for logic and constraint programming
 For building complex components (e.g., minesweeper assistant shown earlier)
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Collective intelligence

 How do we get selfish agents to work together for the common good?

 The system (called a “collective”):
 Has a global utility function that measures the system’s performance

 Is composed of many selfish agents that each tries to optimize its private
utility

 Who does what
 The system designers define the agent’s private utility and how the agent’s

actions affect its private utility

 The agents choose their actions within the system

 The goal: agents acting to optimize their private utilities should also
optimize the global utility
 There is no other mechanism to force cooperation

 This is in fact how society is organized.  For example, employees act to
optimize their salaries/work satisfaction and this benefits the company.



Sept. 2007 P. Van Roy, UCL, Louvain-la-Neuve 53

Example: El Farol bar problem

 People go to El Farol once a week to have fun
 B. Arthur introduced this problem in [Arthur 1994]

 Each person picks which night to attend the bar
 If the bar is too crowded or too empty it is no fun
 Otherwise they have fun (receive a reward)

 Each person makes one decision per week
 All they know is last week’s attendance
 People don’t interact to make their decision (only stigmergy)!

 What strategy should each person use to maximize his/her
fun?
 To avoid a “Tragedy of the Commons” where everybody

maximizing their local utility causes minimization of the global
utility
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Collective intelligence solution

 Global utility G = Σw (week) W(w) (week utility)
 Week utility W(w) = Σd (weekday) φd(ad) where ad is total attendance on

weekday d for week w
• φd(y) = αdy exp(-y/c)  (picked by system designer: low when y is too low

or too high, optimum somewhere in the middle)

• Local utility = agent reward function
• The reward that the agent gets for its choice
• The system designer picks this function: we will see how to do it!

• Each agent would like to maximize its reward.  For example, it can
use a learning algorithm:
• It picks a night randomly according to a Boltzmann distribution

distributed according to the energies in a 7-vector
• When it gets its reward, it updates the 7-vector accordingly
• (Real agents may use other algorithms.  We pick this one just so that we

can simulate the problem [Wolpert et al 1999].)



Sept. 2007 P. Van Roy, UCL, Louvain-la-Neuve 55

What is the agent’s reward?

 How do we design the agent’s reward function?
 There are many bad utility functions

 For example, Uniform Division: divide φd(y) uniformly among all
agents present on day y.  This is particularly awful!

 One utility that works surprisingly well is called the Wonderful Life
utility:
 RWL(w) = W(w) - Wagent is absent(w)
 I.e., we calculate W(w) when the agent is missing (dropped from the

attendance vector)
 RWL(w) is the difference that the agent’s existence makes (hence the

name “Wonderful Life”, from the Frank Capra movie)

 With the Wonderful Life utility, if each agent maximizes its
reward, the global utility will also be maximized
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How can we use this?

 How can we use this idea for building collective services?
 The agent chooses its action and the system calculates the reward

 The system is built using cryptographic protocols so that the agent
cannot “hack” its reward

 We assume that agents will try to maximize their rewards

 This does not solve all security problems
 For example, collusion: when many agents get together to break

the system

 But it can be useful
 In many cases, the agents cannot or will not talk to each other

 Collective intelligence is one way to get them to cooperate
 One example is the “grey goo” problem in the Second Life

application: self-replicating objects that use up resources
 A solution could be based on collective intelligence
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Related ideas
 Game theory: studies strategic interactions between rational players

 “Rational” strategies for players to maximize their payoffs
 Strictly dominant strategy for a player:

 Always gives better result than dominated strategy, no matter what the
other players do

 Pareto efficiency:
 Cannot change a strategy to make one player better off without making

some other player worse off
 Nash equilibrium:

 Each player has a local maximum (cannot unilaterally change its strategy
without reducing its payoff)

 Much more controversial: not always the best strategy for the player!
 These are mathematical notions, not always applicable to the real-world

 Agoric systems: software design based on market principles
 Markets can achieve “intelligent” regulation that cannot be achieved by a

subset of the market (like a regulatory agency or a manager) [Hayek]
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Decentralized
distributed systems
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Building robust distributed
systems
 How can one build robust distributed systems?

 One approach is to make them decentralized and self-managing
 No single point of failure, every node can play any role

 A good example is the structured overlay network, which is an
example of a peer-to-peer network with strong self-organizing
properties

 We examine one design, the relaxed ring [Mejias et al 2007]
 A self-organizing decentralized distributed system that works in

the presence of Internet-style failures (permanent node failures
and temporary network failures, with false suspicions)

 The relaxed ring is a form of structured overlay network

 We use structured overlay networks (SONs) as the basis for
self-managing distributed systems
 We build the three-layer architecture on top of them
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Context of the work

 This work is done in the following projects
 SELFMAN project (2006-2009) on self management of large-scale distributed

systems (see www.ist-selfman.org)

 EVERGROW integrated project (2004-2007) on complexity and large-scale
distributed systems (see www.evergrow.org)

 CoreGRID network of excellence (2004-2008) on grid and peer-to-peer systems
(www.coregrid.net)

 Our main implementation work is done in SELFMAN
 Build a self-managing system based on a structured overlay network

 We have developed the P2PS library in the Mozart Programming System
(www.mozart-oz.org)

 We have implemented the relaxed ring in P2PS and we have built a
visualization tool to observe its behavior

 We are studying its behavior (on PlanetLab) and simulating it (on EVERGROW
cluster)

 The P2PS library will be the basis for building decentralized services (storage
and transactions) and applications using them

 In the second and third years of SELFMAN
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Structured overlay networks:
inspired by peer-to-peer

 Hybrid (client/server)
 Napster

 Unstructured overlay
 Gnutella, Kazaa,

Morpheus, Freenet, …
 Uses flooding

 Structured overlay
 Exponential network
 DHT (Distributed Hash

Table), e.g., Chord, DKS,
P2PS

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)
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Properties of
structured overlay networks

 Scalable
 Works for any number of nodes

 Self organizing
 Routing tables (fingers) updated with node joins/leaves
 Routing tables updated with node failures

 Provides guarantees and efficiency (unlike flooding approach)
 If operated inside of failure model, then communication is guaranteed

with an upper bound on number of hops
 Broadcast can be done with a minimal number of messages

 Provides basic services
 Name-based communication (point-to-point and group)
 DHT (Distributed Hash Table): efficient storage and retrieval of

(key,value) pairs
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Based on a ring topology

P2PS organization with fingers from Tango protocol

Ring

Fingers
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Lookup illustrated in Chord

Indicates presence of a node

We illustrate lookup in Chord, a simple SON.
Nodes sparsely populate a circular identifier
space.

Given a key, find the value associated to
the key (here, the value is the IP address of
the node that stores the key)

Assume node 0 searches for the value
associated to key K with identifier 7

Interval         node to be contacted
  [0,1) 0
  [1,2) 6
  [2,4) 6
  [4,8) 6
  [8,0) 12

0

8

412

2

610

14

1

3

5

79

11

13

15
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Feedback loops in the ring

 The primitive functionality of a SON
is to self-organize its nodes to
provide reliable and efficient routing,
despite nodes continuously joining,
leaving, and failing

 Study of SONs has blossomed
since the development of Chord in
2001 [Stoica et al 2001]

 SON operation is based on three
convergence properties:
 Within each node, the finger table

converges to a correct content
 Globally, the finger tables converge

together to improve routing efficiency
 When routing, a message in transit

converges to its destination node

 Proving correctness:
 Need atomic join/leave/fail operations
 Need ability to work with strongly

complete failure detection
 First proved in [Ghodsi 2006]
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Ring maintenance

 In a SON based on a ring structure, self-
organization is done at two levels:
 The ring ensures connectivity: it must always

exist despite joins, leaves, and failures

 The fingers provide efficient routing: they can
be temporarily in an inconsistent state

 These two layers are part of a more
general layered architecture…
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SON layered architecture
for self-managing systems

 An instance of the three-
layered architecture shown
before

 Implementation
 Lower 4 layers exist in

P2PS library

 Other layers in progress

 Adding services
 One instance per node

 Self management
 Inside a layer (e.g.,

connectivity)

 Between layers
(monitoring and actuating
services)

Node-node communication

Failure detector

Connectivity

Efficient routing

Multiple routing

Event architecture

DHT storage

Replicated storage

TransactionsMonitor/actuate

Basic SON
operations

Single node
operations



Sept. 2007 P. Van Roy, UCL, Louvain-la-Neuve 68

Doing ring maintenance

 Ring maintenance is not a trivial issue
 Peers can join and leave at any time

 Peers that crash are like peers that leave but
without notification

 Temporarily broken links create false
suspicions in failure detection

 Crucial properties to be guaranteed
 Lookup consistency

 Ring connectivity
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The relaxed-ring architecture

 Relaxed ring maintenance is completely asynchronous

 Nodes communicate through message passing
 For a join, instead of one step involving 3 peers (as in DKS, also

developed in SELFMAN), we have two steps each with 2 peers →
we do not need locking

 Invariant: Every peer is in the same ring as its successor
 A peer can never indicate another peer as the responsible node

(a peer knows only its own responsibility, which starts with the
key of the predecessor + 1)
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Example of a relaxed ring

 It looks like a ring with “bushes”
sticking out

 The bushes appear only if
there are failure suspicions
 Usually the ring is not as bushy

as in this example!

 There always exists a perfect
ring (in red) as a subset of the
relaxed ring

 The relaxed ring is always
converging toward a perfect
ring
 The number of bushes existing

at any time depends on the
churn (rate of change of the
ring, failures/joins per time)
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The join algorithm

 joining peer q requests a
lookup for its key

 q sends the join
message to its successor
candidate r

 r accepts new pred and
sends reference p to q

 q contacts p to inform
that is its new succ
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Join feedback loops

 Model algorithm as a feedback loop
 Feedback loops are the primitive concept of self-managing systems

 Boxes are concurrent components, arrows are asynchronous message flows

 Events perturbing the stability of the ring are constantly monitored

 Corresponding corrective actions are triggered

At one node

Rest of system (network and other nodes)
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Lookup consistency

 Definition: Lookup consistency means that at any time there is only
one responsible node for a particular key k
 In the case of temporary failures (imperfect failure detection) lookup

consistency cannot always be guaranteed: we may temporarily have
more than one responsible node

 Failure model: nodes may fail permanently and network links may fail
temporarily, with eventually perfect failure detector (accurate: permanent
failure is always detected, eventually perfect: false suspicion is possible,
but only temporarily)

 Theorem: The relaxed-ring join algorithm guarantees lookup
consistency at any time in presence of multiple joining peers
 This is not true for Chord

 When there are multiple failing peers, this is not guaranteed but the time
interval of inconsistency is small
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Failure recovery

 When a peer detects that its successor has
crashed, it contacts the first peer in its successor
list for recovery
 Resilience is based on the length of the successor list
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Failure recovery feedback loops

 Failures are perturbations of the relaxed-ring topology

 Join mechanism is triggering for fixing the topology
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Failure recovery triggers join
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Relaxed ring conclusions

 The relaxed-ring guarantees lookup consistency and ring connectivity
while simplifying the ring maintenance and assuming a realistic
failure detection
 Ring connectivity is maintained by relaxing the ring structure; this allows

handling imperfect failure detection (false suspicions), i.e., Internet-style
failure detection

 Lookup consistency is maintained on joins, with the single limitation that
temporarily the lookup may not succeed

 Lookup consistency is not maintained on multiple failures, but the
inconsistency is temporary

 Resilience of the system is currently limited to a fixed number of
permanent node failures (does not currently handle network partitioning)

 We have implemented the system in P2PS and we will use it in the
SELFMAN project to build a self-managing application using storage
and transaction services
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Conclusions
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Research agenda
 Software systems should be self managing

 Self management has a role to play in general software development; it has too
long been relegated to specialized subdomains

 All parts of the system should be inside one or more feedback loops
 There is a research agenda here!

 We propose a layered architecture
 Event-driven foundation (concurrent components, asynchronous comm.)
 Feedback loops (for cooperative part)
 Market principles, e.g., collective intelligence (for competitive part)

 Design for a desired global behavior

 This is work in progress
 Architecture of a decentralized distributed system (using relaxed ring)
 We are applying these principles in the SELFMAN project (EU 6FP, since June

2006): www.ist-selfman.org
 We are combining a structured overlay network (which is already self managing at

a low level) with an advanced component model, to achieve a self-management
architecture for large-scale distributed systems


