A SCALABLE, TRANSACTIONAL DATA STORE FOR WEB 2.0 SERVICES

IMPLEMENTING WIKIPEDIA WITH SCALARIS

Web 2.0 — the Internet as an information society platform supporting business, recreation and
knowledge exchange — initiated a business revolution. Service providers offer Internet services for
shopping (Amazon, eBay), online banking, information (Google, Flickr, Wikipedia), social
networking (MySpace, Facebook), and recreation (Second Life, online games). In our information

society, Web 2.0 services are no longer a thing

that is just nice to have, but customers today
their
regardless of time and space.

depend on continuous availability,

How to cope with such strong demands,
especially in case of interactive community
services that cannot be simply replicated? All
users access the same Wikipedia, meet in the
same Second Life environment and want to
discuss with others via Twitter. Even the

shortest interruption, caused by system
downtime or network partitioning may cause
huge losses in reputation and revenue. Web
2.0 services are not just an added value, but
they must be dependable. Apart from 24/7
availability, providers face another challenge:
they must, for a good user experience, be able
to respond within milliseconds to incoming
requests, regardless whether thousands or
millions of concurrent requests are currently
being served. Indeed, scalability is a key
challenge. Any scalable service, to be
affordable, somehow requires the system to be

self managing (see sidebar).

Availability is the proportion of time a system
is in a functioning condition. More formally,
availability is a ratio of the expected value of
the uptime of a system to the aggregate of the
expected values of up and down time.
Availability is often specified in a logarithmic
unit called “nines”, which corresponds roughly
to a number of nines following the decimal
point. “Six nines”, for example, denote an
availability of 0.999999, allowing a maximum
downtime of 31 seconds per year.

Scalability refers to the capability of a system
to increase the total throughput under an
increased load when resources are added. A
scalable database management system is one
that can be upgraded to process more
transactions by adding new processors, devices
and storage, and which can be upgraded easily
and transparently without service interrupt.

Self Management refers to the ability of a
system to adjust to changing operating
conditions and requirements without human
intervention at runtime. Self Management
includes self configuration, self healing and self
tuning.

Our Scalaris system, described below, provides

a comprehensive solution for self managing, scalable data management. In our opinion, Scalaris
and similar systems will be an important core service of future Cloud Computing environments.

1



As a common key aspect, all Web 2.0 services have to deal with concurrent data updates. Typical
examples are checking the availability of products and their prices, purchasing items and putting
them into virtual shopping carts, and updating the state in multi-player online games. Clearly,
many of these data operations have to be atomic, consistent, isolated and durable (so-called ACID
properties). Traditional centralized database systems are ill-suited for this task, sooner or later
they become a bottleneck for business workflow. Rather, a scalable, transactional data store like
Scalaris is what is needed.

SCALARIS KEY/VALUE STORE

As part of the EU funded SELFMAN® project we set out to build a distributed key/value store
capable of serving thousands or even millions of concurrent data accesses per second. Providing
strong data consistency in the face of node crashes and hefty concurrent write accesses was one
of our major goals.

With our Scalaris system, we do not attempt to replace current database management systems
with their general, full-fledged SQL interfaces. Instead our target is to support transactional Web
2.0 services like those needed for Internet shopping, banking, or multi-player online games. Our
system consists of three layers:

e At the bottom, an enhanced structured overlay network, with logarithmic routing
performance, provides the basis for storing and retrieving keys and their corresponding
values. In contrast to many other overlays, our implementation stores the keys in
lexicographical order. Lexicographical ordering instead of random hashing enables control
of data placement which is necessary for low latency access in multi-datacenter
environments.

e The middle layer implements data replication. It enhances the availability of data even
under harsh conditions such as node crashes and physical network failures.

! SELFMAN is a specific targeted research project funded in the 6" framework programme of the EU under
contract no. 34084.



e The top layer provides transactional support for strong data consistency in the face of
concurrent data operations. It uses a fast consensus protocol with low communication
overhead that has been optimally embedded into the structured overlay.

Together, these three layers provide a distributed key/value store as a scalable and highly
available service which is an important building block for Web 2.0 applications.

WIKIPEDIA ON SCALARIS

As a challenging benchmark for Scalaris, we implemented the core of Wikipedia, the “free
encyclopedia, that anyone can edit”. Wikipedia runs on three sites. The main one in Tampa is
organized in three layers, the proxy server layer, the web server layer, and the MySQL database
layer. The proxy layer serves as a cache for recent requests, and the web server layer runs the
application logic and issues requests to the data base layer. Wikipedia handles about 50,000
requests per second, from which 48,000 are cache hits in the proxy server layer and 2,000 are
processed by the data base layer. The proxy and the web server layers are embarrassingly parallel
and therefore trivial to scale. From a scalability point of view, only the data base layer is
challenging.

Our implementation uses Scalaris to replace the data base layer. This enables us to run Wikipedia
on geographically distributed sites and to scale to almost any number of hosts. It inherits all the
favorable properties of Scalaris, such as scalability and self management.

The Wikipedia on Scalaris is fast. Using eight servers it executes 2,500 transactions per second. All
operations are performed within transactions to guarantee data consistency and replica
synchronization. Adding more computers improves the performance almost linearly. The public
Wikipedia, in contrast, employs ten servers to execute the 2,000 requests per second on the large
master/slave MySQL database in Tampa.

SELF-MANAGEMENT

For many Web 2.0 services, the total cost-of-ownership is dominated by the costs needed for
personnel to maintain and optimize the service. Scalaris greatly reduces the operation cost with
its built-in self* properties:



e Self healing: Scalaris continuously monitors the hosts it is running on. When it detects a
node crash, it immediately repairs the overlay network and the database. Management
tasks such as adding or removing hosts require minimal human intervention.

e Self tuning: Scalaris monitors the nodes’ workload and autonomously moves items to
distribute the load evenly over the system to improve the response time of the system.
When deploying Scalaris over multiple data-centers, these algorithms are used to place
frequently accessed items nearby the users.

In traditional database systems these operations require human interference which is error prone
and costly. With Scalaris the same number of system administrators can operate much larger
installations than with legacy databases.

SUMMARY
. . . IEEE Technical Committee
Scalaris provides a scalable and self managing % on Scalakile Compuating
transactional key-value store. We have implemented R )
A Transactional ibuted
Wikipedia using Scalaris. Its scalability and self* Data Store: W

capabilities were demonstrated in the IEEE Scalable e e
Computing Challenge 2008, where Scalaris won the 1*
prize (see plaque).

TCSC SCALE

Compared to other data services, Scalaris has
significantly lower operating costs. Scalaris and similar
systems will be an important building block for Web 2.0
services and future Cloud Computing environments.

ADDITIONAL INFORMATION

e Forthe EU project Selfman see http://www.ist-selfman.org

e The Scalaris code is open source. It is available at http://code.google.com/p/scalaris/.
Additional information (papers, videos) can be found at http://www.zib.de and
http://www.onscale.de.




