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Abstract

Distributed Hash Tables (DHT) with order-preserving
hash functions require load balancing to ensure an even
item-load over all nodes. While previous item-balancing
algorithms only improve the load imbalance, we argue that
due to the cost of moving items, the competing goal of min-
imizing the used network traffic must be addressed as well.

We aim to improve on existing algorithms by augmenting
them with approximations of global knowledge, which can
be distributed in a DHT with low cost using gossip mecha-
nisms. In this paper we present initial simulation-based re-
sults from a decentralized balancing scheme extended with
knowledge about the average node load. In addition, we
discuss future work including a centralized auction-based
algorithm that will be used as a benchmark.

1 Introduction

This work is motivated by research on self-managing dis-
tributed databases for use as a storage layer in large-scale
Internet services. We envision that load balancing in such a
system will not only consider node capacities, but can also
be based on geographic location and application policies.

As an example, Wikipedia provides encyclopedias in dif-
ferent languages. Figure 1 shows how the Wikipedia arti-
cles and their respective replicas can be stored on a Dis-
tributed Hash Table (DHT) [12]. In such an application it
is beneficial to host data nearby the users, i.e. in the geo-
graphic area where the language is used. We can use load
balancing algorithms to implement location and application
policies.

DHTs extend structured overlay networks (SON) with
primitives for storing (key, value)-pairs and for retrieving
the value associated with a key. Their functionality in-
clude support for both direct key lookups [13, 10] and range
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Figure 1. Geographic Load Balancing for
Wikipedia.

queries [11]. When a key is stored in a DHT with range
queries, its location is decided using an order-preserving
hash function. Depending on the distribution of the inserted
keys the nodes in the DHT can quickly become unbalanced,
which can lead to, for example, network congestion and un-
responsive nodes.

Load balancing algorithms in DHTs focus on three dif-
ferent problems. First, when each item is hashed uniformly
over the ID space, some nodes can have an O(logN) im-
balance in terms of stored items [9, 6]. Second, when using
order-preserving hash function [11], the items are mapped
to the ID space such that they keep their original distribu-
tion. Therefore, for the system to be balanced, i.e. nodes
storing an equal number of items, their node IDs must be
distributed according to the key distribution [8, 4]. Third,
independent of the item distribution, certain items can have
much higher request rates than others. This is typically
solved through caching, replication or by exploiting redun-
dant network routes [3].



A common solution to the first problem is to maintain a
set of virtual DHT nodes, or servers, at each physical ma-
chine. Virtual servers migrate between physical hosts to
balance the system load [6, 13]. However, virtual servers
have several issues such as increased churn when a physi-
cal host fails and increased state maintenance. In addition,
in order-preserving DHTs, a single virtual server can still
become overloaded when being responsible for a popular
key range. In this paper, we are investigating solutions to
the second problem, i.e. algorithms that are balancing the
item-load at each node.

Since the network connecting the DHT nodes is the
only shared resource, it is vital that DHT maintenance and
tuning-algorithms use the network efficiently. This is es-
pecially the case for load balancing algorithms since their
main operations trigger data movements. We aim to im-
prove current algorithms by introducing approximations of
global knowledge at each node, thereby helping them to
take informed decisions in order to reduce data transfers.
Examples of such information is the average node load
or the network topology, which has already proved useful
when balancing virtual servers [16]. Recent developments
in gossiping for unstructured P2P networks and DHTs has
shown that it is possible to obtain estimates of global prop-
erties with high confidence and low overhead [15, 14, 5].

In this paper, we argue for the benefits of introducing ap-
proximations of global knowledge to DHT load balancing
algorithms with the goal of reducing the network utilization
while maintaining a balanced system. To support this claim,
we extend a well-known decentralized load balancing algo-
rithm [8] to take the information about the average node
load into account. The modified algorithm shows direct im-
provements on the overall items moved during balancing.
We further argue for the use of centralized algorithms as a
comparative benchmark.

2 Background

In this section we give an overview of current approaches
for DHT load balancing with respect to virtual servers and
item-balancing algorithms. This paper does not cover tech-
niques for request balancing which is often solved through
caching and/or replication.

Virtual Servers is a technique where each physical host
maintains a set of virtual nodes. Load balancing is done by
moving virtual servers, without changing their item range,
from overloaded physical hosts to more lightly loaded hosts.
The assignment of virtual nodes to physical hosts is typ-
ically performed by one or more directory nodes. A di-
rectory node periodically receives load information from
random nodes in the system. When it has received load
data from a sufficient amount of nodes it executes the load

balancing algorithm [9, 6, 2]. An advantage of the virtual
server scheme is that it does not require any changes to the
DHT routing algorithm and allows for re-use of the join and
leave overlay primitives.

An immediate issue with virtual servers is the increase
of the routing table state maintained at each host. Godfrey
et al. [7] introduce a scheme where a physical host main-
tains a set of virtual servers which have overlapping links in
the routing table. With this placement restriction, a physi-
cal host only needs Θ(logN)-links while hosting Θ(logN)
virtual servers.

The above approaches use simple metrics for the cost of
the load balancing operations, like the number of transferred
items or bytes. A better cost metric could include the over-
all network utilization. In [16], Zhu et al. investigate how
to minimize network usage by introducing proximity-aware
load balancing algorithms for virtual servers. In [2], the as-
signment of virtual servers to physical hosts is modeled as
an optimization problem which allows for an arbitrary cost
function.

Another issue with virtual servers is that a physical host
failure causes the hosted virtual nodes to fail as well. This
increases the churn in the system and must be considered
when selecting global parameters such as the replication
factor.

Item-balancing Most of the research on load balancing
in DHTs has focused on virtual servers. However, these ap-
proaches assume that items are uniformly distributed over
the ID space using a hash function. In a DHT with an
order-preserving hash function, a single virtual server can
be overloaded if it is responsible for a popular key range.
For example, when storing a dictionary, keys with the prefix
“e” are more common than “w”, resulting in the nodes stor-
ing items with prefix “e” being responsible for more items.
The goal of item-balancing schemes is to adapt the location
of the nodes in the system to correspond to the item distri-
bution. This is performed using two operations, jump and
slide. Jump transfers a node to an arbitrary ID in the system,
while a slide operation only exchanges items with a node’s
direct neighbor.

Karger et al. [8] present a randomized item balancing
scheme where each node contacts another random node pe-
riodically. If the load of the nodes differs by more than a
factor 0 < ε < 1

4 , they share each others load by either
jumping or sliding. Karger provides a theoretical analysis
of the protocol, but does not evaluate the algorithms in an
experimental or real-world setting. In addition, Karger’s al-
gorithm does not aim to minimize network traffic.

Ganesan et al. [4] use a reactive approach which trig-
gers an algorithm when the node utilization super-cedes
a threshold value. A node executing the algorithm first
checks whether it should slide by comparing the load with



its neighbor’s load. If this is not possible, it finds the least
loaded node in the system and requests that it jumps to share
the overloaded node’s load. The least and most loaded node
is located through a lookup to a separate DHT which stores
all nodes sorted by their load.

We are basing our algorithms on the proactive approach
presented by Karger, but aim to minimize the network uti-
lization. This is achieved by making the algorithm aware of
approximations of global parameters. While Ganesan stores
the global knowledge in an additional DHT, we distribute
this information through gossiping. This is more light-
weight since it avoids the maintenance of another DHT and
combines the strength of both structured and unstructured
networks.

3 System model and problem definition

A DHT consist of N nodes, where each node has an ID
in the range [0, 1). This range wraps around at 1,0 and can
be seen as a ring. A node, ni has a successor-pointer to the
next node in clockwise direction, ni+1, and a predecessor-
pointer to the first counter-clockwise node, ni−1. The node
with the largest ID has the node with the lowest ID as suc-
cessor. Thus, the nodes and their pointers create a double
linked list where the first and last node are linked.

Figure 2. A node Ni with successor and pre-
decessor and their responsibilities.

Each node in the DHT stores a subset of items, I(ni),
where each item has a key in the range [0, 1) and a uni-
form weight of one. A node ni is responsible for a key iff
it falls within the node’s key range (ni−1, ni]. Each node
has a load l(ni) indicating the number of stored data items.
Figure 2 shows three nodes and their respective responsibil-
ities.

A node is balanced when it is neither underloaded nor
overloaded relative to any other node in the system times a
factor ε [8]. That is, when l(ni) < εl(nj), l(nj) is over-
loaded compared to ni and ni is underloaded compared to
nj . The goal of the load-balancing algorithm is to make all
nodes balanced. ε is a system-defined parameter with values
between 0 and 1

4 .
In order to change the load of nodes in the system, two

types of operations are used: jump and slide.

Jump allows a node to move to an arbitrary position in the
ID space. A jumping node ni first leaves its current

position and re-joins at its new location, IDk, with nj

as its successor. Data is moved two times. First, the
items in the range (ni−1, ni] are transferred to ni+1.
Second, when ni joins at IDk, all data in the range
(nj−1, IDk] is transferred from nj to ni.

Slide is a specialized form of jumping where ni moves to
an ID in the range (ni, nj), assuming that the over-
loaded node nj is ni+1. Since a node does not need
to leave and re-join the system, which results in extra
data transfer, sliding is always preferred over jumping.

We define a load-balanced configuration as a system
state where all nodes are balanced. The maximum load in
a configuration, Ci is denoted by lmax(Ci), while the min-
imum load is lmin(Ci), respectively. We use the standard
deviation of a configuration, σ(Ci), as a measure to indi-
cate its imbalance. A jump or slide changes a configuration
Ci to a new configuration Ci+1. For a jump or a slide op-
eration performed by any node the algorithm must meet the
following properties for the load to converge towards a bal-
anced configuration.

lmax(Ci) ≥ lmax(Ci+1) (1)

lmin(Ci) ≤ lmin(Ci+1) (2)

σ(Ci) > σ(Ci+1) (3)

Following these properties, an algorithm will reach a bal-
anced configuration after a finite number of iterations.

Problem definitions. The load balancing problem can be
summarized as follows: given a configuration C0 with a set
of nodes N and items I, where each item i ∈ I is assigned
to a responsible node, find a configuration Cb that only con-
tains balanced nodes using the operations jump and slide.
A solution to the load balancing problem is a sequence of
operations transforming C0 to Cb.

In addition to the load balancing problem, we search for
a solution that minimizes the data movement cost of the
transition from C0 to Cb. That is, given a set of solutions,
S, find a solution Si with minimal cost. The cost-function
is cost(op), where op is either a slide or jump operation.
The cost-function can be chosen arbitrarily, but is typically
based on the number of bytes moved or the network utiliza-
tion.

4 Decentralized Algorithms

Unlike a centralized algorithm, a decentralized algorithm
can only use the information locally available at each node.
We modify Karger’s randomized item-balancing algorithm
to work with different globally approximated parameters.
In this paper we use the system’s average load.



Global information is, by definition, not available in
peer-to-peer systems, unless aggregation algorithms are em-
ployed. However, by using gossiping techniques such as
Vicinity and Cyclon [15, 14] or DHT gossip [5] it is pos-
sible to get a good approximation locally at each node of a
parameter’s value with low network traffic overhead.

Karger’s Algorithm. In order to reach a load-balanced
configuration, we rely on the heuristics introduced for
Karger’s item balancing algorithm [8]. Expressed in our
notation, a load-balance operation is only performed be-
tween any pair of nodes ni, nj , iff l(ni) < εl(nj) or
l(nj) < εl(ni), 0 < ε < 1

4 . When these restrictions
are satisfied, the following cases are possible (assuming
l(ni) > l(nj)).

Case 1, i = j + 1 ni is the successor of nj . Slide nj to-
wards ni, letting nj take responsibility for l(ni)−l(nj)

2
of ni’s items.

Case 2, i 6= j + 1 If l(nj+1) > l(ni), set i = j + 1 and go
to case 1. That is, when the load of nj’s successor is
larger then the load of ni, slide nj towards the over-
loaded node nj+1. Otherwise, nj jumps to a position
in the range (ni−1, ni), taking half of l(ni).

Modified Karger. Karger’s randomized algorithm is
based on two decisions. (1) Which nodes should balance?
(2) Should they use jump or slide? The new location of a
node performing a jump or slide is calculated such that the
load is shared evenly by the two participating nodes. We
want to show that global information can be used to reduce
the number of transferred items, which indirectly impacts
the network usage. Therefore, we introduce a heuristics
based on the average load. Our modification is a restriction
on the position a node takes after an operation. Instead of as
in Karger, sharing the load evenly, we ensure that an under-
loaded node never takes more than the average load, Lavg.
This effectively limits the amount of unnecessary data item
transfers.

The described strategy has the biggest advantage when a
node is overloaded relative to another node and it’s load is
much larger than the average load. Figure 3 shows a sce-
nario where a node Ni+1 has a load much larger than the
average load, i.e. l(Ni+1) > 3Lavg . Let two nodes, A and
B, execute the load balancing algorithm in that order. In
Karger, assuming that A balances with Ni+1, it would first
take more than 1.5Lavg load. If B then chooses to balance
with node A, which is possible if A is still overloaded in re-
lation to B. Then the data in A’s range is transferred twice,
first from Ni+1 to A and then from A to B. With our mod-
ified version, since node A would take at most Lavg load
from Ni+1, the probability that B balances with A is lower

as well as the transferred data items if A decides to balance
with B.

BA

Join

Ni Ni+1

Join

Lavg Lavg

Figure 3. Two consecutive slots being filled
by joining nodes, taking at most Lavg load.

5 Evaluation

We simulated Karger’s algorithm and a version with
knowledge of the systems average load. The effect of know-
ing the average load can be seen in Figures 4 and 5.

Experiments. The experiments are performed in a dis-
crete time simulator where a single operation represents a
step in time. The system contains 100 nodes, and the items
are distributed such that the first 90 nodes have one item
and the remaining ten nodes have 10000, 20000, ..., 90000
items, respectively. We measure the number of moved items
as operation cost and the standard deviation is used to indi-
cate the load imbalance of the system.

Figure 4 shows the sum of moved items for the oper-
ations necessary to go from the initial configuration to a
load balanced configuration. Increasing ε values, between
0 < ε < 0.25 as suggested by Karger, shows a linear in-
crease in the balance cost. Interestingly, the comparison be-
tween Karger and the modified Karger shows that in many
cases the latter moves half as many items to reach a bal-
anced configuration.

In Figure 5 we set ε = 0.21 and study how each oper-
ation influences the load imbalance. The x-axis represents
the aggregated number of moved items for each round and
the y-axis is the standard deviation for the current configu-
ration. The simulation is continued until no further balance
operations can be performed. Our main conclusion from
this experiment is that the modified Karger decreases the
load imbalance of the system faster, even though it moves
less items than the basic Karger.

6 Outlook

In this section we discuss the implications of load bal-
ancing algorithms for other DHT services. We also outline
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Figure 5. Load imbalance as a function of the number of moved items.

our approach to a centralized algorithm which we plan to
used as a comparative benchmark for the decentralized al-
gorithms.

Additional Global Estimates. In the evaluation section,
we showed that using the average load can have an impact
on the load balancing performance. In addition to the aver-
age load, we are interested in evaluating the following pa-
rameters.

Standard Deviation In section 3 we used the standard de-
viation as an invariant for the progress of an algorithm.
If each node has knowledge of this value they could try
to minimize it for each balancing operation they per-
form.

Location Proximity-information allows a node which will
transfer load to select a target node which minimizes
the network utilization [16].

Over- and Underloaded nodes A list of the k most over-
loaded and most underloaded nodes. These lists can be
used for example in the Karger-algorithm to improve
the convergence rate.

Implications of Load Balancing on a DHT. As argued
throughout this paper, load balancing is an important part in
an efficient and self-tuning DHT. However, the load balanc-
ing algorithms must work seamlessly together with other
components in a DHT-based storage layer such as replica-
tion and transactions.

The jump and slide primitives are using the basic join
and leave operations from the overlay. Since these oper-
ations are triggered by the load balancing algorithms, the
balancing itself incurs extra churn in the system. Therefore,
it is important that, for example, the systems replication fac-
tor is chosen with this in mind. Tuning the load balancing
to work at a rate acceptable for the system is an important
trade-off that needs to be evaluated for a working system.



A Centralized Auction-based Algorithm. In a central-
ized algorithm the global state of the system is known. A
centralized algorithm can be used as a reference bench-
mark for decentralized algorithms. We aim to base our cen-
tralized algorithm on an auction algorithm [1] where over-
loaded and underloaded are matched to find an optimal as-
signment.

An auction algorithm finds an optimal one-to-one assign-
ment of persons to objects in polynomial time. The assign-
ment depends on the cost of the object and the benefit of the
person being assigned to the object. For the load balanc-
ing problem this is analogous to finding a lowest cost match
between underloaded and overloaded nodes.

More formally, each person i has a benefit aij of se-
lecting an object j with price pj . The net value for a
person i of choosing object j is aij − pj . The goal of
the auction is to find an assignment where every persons
find an object which maximizes the total net value. Thus,
an auction is finished when the equilibrium aij − pj =
maxj∈Objects(aij − pj) is reached.

Each iteration of the algorithm consists of a bidding
phase followed by an assignment phase. During the bidding
phase, each person finds an object resulting in maximum
net value after which it computes a bidding increment. The
value of the bidding increment is used after the assignment
phase to increase the price of the object. In the assignment
phase the persons with the highest bids are assigned to the
respective objects. When all people are assigned to an ob-
ject the algorithm terminates. This also means that the equi-
librium has been satisfied.

An advantage of the auction algorithm is that the bene-
fit function and the object price can be chosen arbitrarily.
This allows us to explore more complicated costs than e.g.
moved data items. Furthermore, the order of the load bal-
ancing operations slide and join are affecting the total price
of the load balancing process. Due to the apparent advan-
tages in computational complexity of the auction algorithm
approach, we are actively investigating an appropriate cost-
function which can include proximity information and the
order of operations.

7 Conclusion

We showed that it is possible to reduce the cost of load
balancing by introducing simple heuristics and knowledge
about basic global parameters. We plan to continue this
work by evaluating the effects of more properties such as
the network topology. In addition, a centralized algorithm
can give the optimal cost for balancing a given configura-
tion. This can be used as a reference to evaluating the per-
formance of the decentralized algorithms.
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